Science.gov

Sample records for blue stellar objects

  1. The Nature of the FBS Blue Stellar Objects

    NASA Astrophysics Data System (ADS)

    Sinamyan, Parandzem K.; Mickaelian, Areg M.

    2007-08-01

    Using the digitization technique for the photographic observations done during 1987-1991 and 1997-2000 with the Byurakan 2.6m and OHP 1.9m telescopes, we have obtained 650 digitized spectra for 450 FBS blue stellar objects (BSOs) (plus a number of CCD spectra). The digitized spectra have been standardized and reduced automatically in MIDAS package as for CCD ones. The BSO spectra were analyzed in order to get correct classifications, discover new interesting objects, which help us understanding the nature of the FBS BSOs. These objects contain white dwarfs (WD), hot subdwarfs (sd), horizontal branch B stars (HBB), cataclysmic variables (CV), planetary nebula (PNN) and extragalactic objects such as quasars and Seyfert galaxies. All galactic objects are important for studying the structure of Our Galaxy and stellar evolution, while the extragalactic ones are important for re-estimation of the surface density of the bright QSO/Sy. For objects in the FBS zones with central DEC=+43°, +39° and +35°, we have already obtained about 15 WDs, 150 sd-s, 15 HBBs, 1 new planetary nebula, 1 new CV, Seyfert galaxies and some new bright quasars. Some objects have been identified with X-ray sources and proper motion has been found for some white dwarfs. The overall analysis and statistics for the FBS blue stellar objects is done, and their nature is discussed.

  2. Accretion disks in luminous young stellar objects

    NASA Astrophysics Data System (ADS)

    Beltrán, M. T.; de Wit, W. J.

    2016-01-01

    An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and, therefore, predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.

  3. Blue Stragglers in Clusters and Integrated Spectral Properties of Stellar Populations

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Deng, Licai

    Blue straggler stars are the most prominent bright objects in the colour-magnitude diagram of a star cluster that challenges the theory of stellar evolution. Star clusters are the closest counterparts of the theoretical concept of simple stellar populations (SSPs) in the Universe. SSPs are widely used as the basic building blocks to interpret stellar contents in galaxies. The concept of an SSP is a group of coeval stars which follows a given distribution in mass, and has the same chemical property and age. In practice, SSPs are more conveniently made by the latest stellar evolutionary models of single stars. In reality, however, stars can be more complicated than just single either at birth time or during the course of evolution in a typical environment. Observations of star clusters show that there are always exotic objects which do not follow the predictions of standard theory of stellar evolution. Blue straggler stars (BSSs), as discussed intensively in this book both observationally and theoretically, are very important in our context when considering the integrated spectral properties of a cluster, or a simple stellar population. In this chapter, we are going to describe how important the contribution of BSSs is to the total light of a cluster.

  4. Stellar Clusters Forming in the Blue Dwarf Galaxy NGC 5253

    NASA Astrophysics Data System (ADS)

    2004-11-01

    ; it is located at a distance of about 11 million light-years in the direction of the southern constellation Centaurus. Some time ago a group of European astronomers [1] decided to take a closer look at this object and to study star-forming processes in the primordial-like environment of this galaxy. True, NGC 5253 does contains some dust and heavier elements, but significantly less than our own Milky Way galaxy. However, it is quite extreme as a site of intense star formation, a profuse "starburst galaxy" in astronomical terminology, and a prime object for detailed studies of large-scale star formation. ESO PR Photo 31a/04 provides an impressive view of NGC 5253. This composite image is based on a near-infrared exposure obtained with the multi-mode ISAAC instrument mounted on the 8.2-m VLT Antu telescope at the ESO Paranal Observatory (Chile), as well as two images in the optical waveband obtained from the Hubble Space Telescope data archive (located at ESO Garching). The VLT image (in the K-band at wavelength 2.16 μm) is coded red, the HST images are blue (V-band at 0.55 μm) and green (I-band at 0.79 μm), respectively. The enormous light-gathering capability and the fine optical quality of the VLT made it possible to obtain the very detailed near-infrared image (cf. PR Photo 31b/04) during an exposure lasting only 5 min. The excellent atmospheric conditions of Paranal at the time of the observation (seeing 0.4 arcsec) allow the combination of space- and ground-based data into a colour photo of this interesting object. A major dust lane is visible at the western (right) side of the galaxy, but patches of dust are visible all over, together with a large number of colourful stars and stellar clusters. The different colour shades are indicative of the ages of the objects and the degree of obscuration by interstellar dust. The near-infrared VLT image penetrates the dust clouds much better than the optical HST images, and some deeply embedded objects that are not

  5. Spectral evolution of young stellar objects

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Lada, Charles J.; Shu, Frank H.

    1987-01-01

    An evolutionary sequence, from protostars to pre-main sequence stars, for the classification of young stellar objects is derived by comparing the predictions of the theoretical protostar models of Adams and Shu (AS, 1986) with the morphological classification scheme of Lada and Wilking (1984). It is shown that the AS models adequately explain the emergent spectral energy distributions of unidentified objects with negative spectral indices in the mid-IR and near-IR in both Taurus and Ophiuchus. If the infalling dust envelope is then completely removed, the spectra of the underlying stars and nebular disks used by AS provide a natural explanation for the near-IR and mid-IR excesses and the positive spectral indices of embedded T Tauri stars. It is found that the addition of a simple physical model for residual dust envelopes can reproduce the far-IR excesses found in some of these T Tauri stars.

  6. Spectral evolution of young stellar objects

    NASA Technical Reports Server (NTRS)

    Adams, F. C.

    1986-01-01

    An evolutionary sequence, from protostars to pre-main-sequence stars, is suggested for the classification of young stellar objects. This sequence is derived by comparing the predictions of the theoretical models of Adams and Shu with the morphological classification scheme of Lada and Wilking. We first define the spectral index in the near- and mid-infrared, n is identical to d log(nu F sub nu)/d log nu, and then interpret the class of sources with negative spectral indices as protostars. The inferred mass infall rates for these objects are generally consistent with the measured gas temperatures of approx. 35 K in Ophiuchus, and of approx. 10 K in Taurus. Fitting the data requires us to adopt cloud rotation rates in Ophiuchus which are typically an order of magnitude greater than in Taurus, and we speculate on the mechanistic origin for this difference. Next, we consider a subclass of T Tauri stars with near- and mid-infrared excesses and positive or zero spectral indices. We find that the objects with the steeper indices can be understood as the post-infall products from the collapse of rotating cloud cores, where the infrared excesses arise from the simple reprocessing of visible stellar photons in optically thick but spatially thin disks. The sources with flatter spectra may require massive accretion disks. Given the existence of protostars and naked star/disk systems, there is a natural interpretation of another subclass of T Tauri stars, those with two peaks in their emergent spectral energy distributions. These are readily explained as intermediate cases in which dust envelopes still surround the stars and disks. Finally, we find that the theory can be extended to explain the spectral energy distribution of FU Orionis, a famous outburst source. Our model suggests that FU Orionis has a disk, but it offers no discrimination between the competing ideas that the outburst took place on the star or in the disk.

  7. The Gaseous Disks of Young Stellar Objects

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.

    2006-01-01

    Disks represent a crucial stage in the formation of stars and planets. They are novel astrophysical systems with attributes intermediate between the interstellar medium and stars. Their physical properties are inhomogeneous and are affected by hard stellar radiation and by dynamical evolution. Observing disk structure is difficult because of the small sizes, ranging from as little as 0.05 AU at the inner edge to 100-1000 AU at large radial distances. Nonetheless, substantial progress has been made by observing the radiation emitted by the dust from near infrared to mm wavelengths, i.e., the spectral energy distribution of an unresolved disk. Many fewer results are available for the gas, which is the main mass component of disks over much of their lifetime. The inner disk gas of young stellar objects (henceforth YSOs) have been studied using the near infrared rovibrational transitions of CO and a few other molecules, while the outer regions have been explored with the mm and sub-mm lines of CO and other species. Further progress can be expected in understanding the physical properties of disks from observations with sub-mm arrays like SMA, CARMA and ALMA, with mid infrared measurements using Spitzer, and near infrared spectroscopy with large ground-based telescopes. Intense efforts are also being made to model the observations using complex thermal-chemical models. After a brief review of the existing observations and modeling results, some of the weaknesses of the models will be discussed, including the absence of good laboratory and theoretical calculations for essential microscopic processes.

  8. ISO spectroscopy of young stellar objects

    NASA Astrophysics Data System (ADS)

    van Dishoeck, E. F.; Black, J. H.; Boogert, A. C. A.; Boonman, A. M. S.; Ehrenfreund, P.; Gerakines, P. A.; de Graauw, Th.; Helmich, F. P.; Keane, J. V.; Lahuis, F.; Schutte, W. A.; Tielens, A. G. G. M.; Whittet, D. C. B.; Wright, C. M.; van den Ancker, M. E.; Blake, G. A.; Creech-Eakman, M.; Waters, L. B. F. M.; Wesselius, P. R.

    1999-03-01

    Observations of gas-phase and solid-state species toward young stellar objects (YSOs) with the spectrometers on board the Infrared Space Observatory are reviewed. The excitation and abundances of the atoms and molecules are sensitive to the changing physical conditions during star-formation. In the cold outer envelopes around YSOs, interstellar ices contain a significant fraction of the heavy element abundances, in particular oxygen. Different ice phases can be distinguished, and evidence is found for heating and segregation of the ices in more evolved objects. The inner warm envelopes around YSOs are probed through absorption and emission of gas-phase molecules, including CO, CO2, CH4 and H2O. An overview of the wealth of observations on gas-phase H2O in star-forming regions is presented. Gas/solid ratios are determined, which provide information on the importance of gas-grain chemistry and high temperature gas-phase reactions. The line ratios of molecules such as H2, CO and H2O are powerful probes to constrain the physical parameters of the gas. Together with atomic and ionic lines such as [O I] 63 μm, [S I] 25 μm and [Si II] 35 μm, they can also be used to distinguish between photon- and shock-heated gas. Finally, spectroscopic data on circumstellar disks around young stars are mentioned. The results are discussed in the context of the physical and chemical evolution of YSOs.

  9. Dust Disks Around Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Suh, Kyung-Won

    2016-06-01

    To reproduce the spectral energy distributions (SEDs) of young stellar objects (YSOs), we perform radiative transfer model calculations for the circumstellar dust disks with various shapes and many dust species. For eight sample objects of T Tauri and Herbig Ae/Be stars, we compare the theoretical model SEDs with the observed SEDs described by the infrared space observatory and Spitzer space telescope spectral data. We use the model, CGPLUS, for a passive irradiated circumstellar dust disk with an inner hole and an inner rim for the eight sample YSOs. We present model parameters for the dust disk, which reproduce the observed SEDs. We find that the model requires a higher mass, luminosity, and temperature for the central star for the Herbig Ae/Be stars than those for the T Tauri stars. Generally, the outer radius, total mass, thickness, and rim height of the theoretical dust disk for the Herbig Ae/Be stars are larger than those for the T Tauri stars.

  10. Exotic populations in globular clusters: blue stragglers as tracers of the internal dynamical evolution of stellar systems

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco R.

    2016-02-01

    In this paper I present an overview of the main observational properties of a special class of exotic objects (the so-called Blue Straggler Stars, BSSs) in Galactic Globular Clusters (GCs). The BSS specific frequency and their radial distribution are discussed in the framework of using this stellar population as probe of GC internal dynamics. In particular, the shape of the BSS radial distribution has been found to be a powerful tracer of the dynamical evolution of stellar systems, thus allowing the definition of an empirical ``clock''able to measure the dynamical age of stellar aggregates from pure observational properties.

  11. Stellar science from a blue wavelength range. A possible design for the blue arm of 4MOST

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Ludwig, H.-G.; Seifert, W.; Koch, A.; Xu, W.; Caffau, E.; Christlieb, N.; Korn, A. J.; Lind, K.; Sbordone, L.; Ruchti, G.; Feltzing, S.; de Jong, R. S.; Barden, S.

    2015-09-01

    From stellar spectra, a variety of physical properties of stars can be derived. In particular, the chemical composition of stellar atmospheres can be inferred from absorption line analyses. These provide key information on large scales, such as the formation of our Galaxy, down to the small-scale nucleosynthesis processes that take place in stars and supernovae. By extending the observed wavelength range toward bluer wavelengths, we optimize such studies to also include critical absorption lines in metal-poor stars, and allow for studies of heavy elements (Z\\ensuremath{g}e 38) whose formation processes remain poorly constrained. In this context, spectrographs optimized for observing blue wavelength ranges are essential, since many absorption lines at redder wavelengths are too weak to be detected in metal-poor stars. This means that some elements cannot be studied in the visual-redder regions, and important scientific tracers and science cases are lost. The present era of large public surveys will target millions of stars. It is therefore important that the next generation of spectrographs are designed such that they cover a wide wavelength range and can observe a large number of stars simultaneously. Only then, we can gain the full information from stellar spectra, from both metal-poor to metal-rich ones, that will allow us to understand the aforementioned formation scenarios in greater detail. Here we describe the requirements driving the design of the forthcoming survey instrument 4MOST, a multi-object spectrograph commissioned for the ESO VISTA 4 m-telescope. While 4MOST is also intended for studies of active galactic nuclei, baryonic acoustic oscillations, weak lensing, cosmological constants, supernovae and other transients, we focus here on high-density, wide-area survey of stars and the science that can be achieved with high-resolution stellar spectroscopy. Scientific and technical requirements that governed the design are described along with a thorough

  12. STELLAR COLLISIONS AND BLUE STRAGGLER STARS IN DENSE GLOBULAR CLUSTERS

    SciTech Connect

    Chatterjee, Sourav; Rasio, Frederic A.; Sills, Alison; Glebbeek, Evert

    2013-11-10

    Blue straggler stars (BSSs) are abundantly observed in all Galactic globular clusters (GGCs) where data exist. However, observations alone cannot reveal the relative importance of various formation channels or the typical formation times for this well-studied population of anomalous stars. Using a state-of-the-art Hénon-type Monte Carlo code that includes all relevant physical processes, we create 128 models with properties typical of the observed GGCs. These models include realistic numbers of single and binary stars, use observationally motivated initial conditions, and span large ranges in central density, concentration, binary fraction, and mass. Their properties can be directly compared with those of observed GGCs. We can easily identify the BSSs in our models and determine their formation channels and birth times. We find that for central densities above ∼10{sup 3} M{sub ☉} pc{sup –3}, the dominant formation channel is stellar collisions, while for lower density clusters, mass transfer in binaries provides a significant contribution (up to 60% in our models). The majority of these collisions are binary-mediated, occurring during three-body and four-body interactions. As a result, a strong correlation between the specific frequency of BSSs and the binary fraction in a cluster can be seen in our models. We find that the number of BSSs in the core shows only a weak correlation with the collision rate estimator Γ traditionally used by observers, in agreement with the latest Hubble Space Telescope Advanced Camera for Surveys data. Using an idealized 'full mixing' prescription for collision products, our models indicate that the BSSs observed today may have formed several Gyr ago. However, denser clusters tend to have younger (∼1 Gyr) BSSs.

  13. Computer Infrastructure for the Variable Young Stellar Objects Survey

    NASA Astrophysics Data System (ADS)

    Walawender, Josh; Reipurth, Bo; Paegert, Martin

    2011-03-01

    An increasing number of remote or robotically controlled telescopes are using commercial "off the shelf" hardware and software. We describe a system which has been implemented in the Variable Young Stellar Objects Survey (VYSOS) project which uses simple, commercially available software and hardware to enable the quick restoration of observatory operations in the event of a computer failure.

  14. Theoretical studies of the outer envelopes of young stellar objects

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee

    1992-01-01

    With the Monte Carlo code developed by Whitney and Hartmann, a series of models was computed of scattering in disks around young stellar objects. The code calculates scattering by dust, including polarization, in arbitrary geometries. By computing model images, it was found that disk, by themselves, around young stellar objects would be very difficult to detect with present day imaging techniques. In comparing these images to observations of young stellar objects which show diffuse structure, little resemblance was found. A flared disk system will only give high polarization when viewed edge-on, and the position angle is always oriented perpendicular to the disk plane. This suggests that an envelope, perhaps the remnant infalling envelope, must be present to scatter more stellar light than a disk can, and obscure the star at many inclinations. A grid was computed of models of scattering in a disk+envelope system. Evidence is presented that the wind of the pre-main sequence object FU Orionis arises from the surface of the luminous prostellar accretion disk. A disk wind model calculated assuming radiative equilibrium explains the differential behavior of the observed asymmetrical absorption line profiles. The model predicts that strong lines should be asymmetric and blueshifted, while weak lines should be symmetric and doubled peaked due to disk rotation, in agreement with observations.

  15. Chemical evolution of circumstellar matter around young stellar objects

    NASA Technical Reports Server (NTRS)

    van Dishoeck, E. F.; Blake, G. A.

    1995-01-01

    Recent observational studies of the chemical composition of circumstellar matter around both high- and low-mass young stellar objects are reviewed. The molecular abundances are found to be a strong function of evolutionary state, but not of system mass or luminosity. The data are discussed with reference to recent theoretical models.

  16. Disks around Massive Young Stellar Objects: Are They Common?

    NASA Astrophysics Data System (ADS)

    Jiang, Zhibo; Tamura, Motohide; Hoare, Melvin G.; Yao, Yongqiang; Ishii, Miki; Fang, Min; Yang, Ji

    2008-02-01

    We present K-band polarimetric images of several massive young stellar objects at resolutions ~0.1''-0.5''. The polarization vectors around these sources are nearly centrosymmetric, indicating they are dominating the illumination of each field. Three out of the four sources show elongated low-polarization structures passing through the centers, suggesting the presence of polarization disks. These structures and their surrounding reflection nebulae make up bipolar outflow/disk systems, supporting the collapse/accretion scenario as their low-mass siblings. In particular, S140 IRS 1 shows well-defined outflow cavity walls and a polarization disk which matches the direction of previously observed equatorial disk wind, thus confirming that the polarization disk is actually the circumstellar disk. To date, a dozen massive protostellar objects show evidence for the existence of disks; our work adds additional samples around massive young stellar objects equivalent to early B type stars.

  17. Gravitational effects of condensate dark matter on compact stellar objects

    SciTech Connect

    Li, X.Y.; Wang, F.Y.; Cheng, K.S. E-mail: fayinwang@gmail.com

    2012-10-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed.

  18. INTERMEDIATE-AGE STELLAR POPULATIONS IN CLASSICAL QUASI-STELLAR OBJECT HOST GALAXIES

    SciTech Connect

    Canalizo, Gabriela; Stockton, Alan E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Although mergers and starbursts are often invoked in the discussion of quasi-stellar object (QSO) activity in the context of galaxy evolution, several studies have questioned their importance or even their presence in QSO host galaxies. Accordingly, we are conducting a study of z {approx} 0.2 QSO host galaxies previously classified as passively evolving elliptical galaxies. We present deep Keck/LRIS spectroscopy of a sample of 15 hosts and model their stellar absorption spectra using stellar synthesis models. The high signal-to-noise ratio of our spectra allows us to break various degeneracies that arise from different combinations of models, varying metallicities, and contamination from QSO light. We find that none of the host spectra can be modeled by purely old stellar populations and that the majority of the hosts (14/15) have a substantial contribution from intermediate-age populations with ages ranging from 0.7 to 2.4 Gyr. An average host spectrum is strikingly well fit by a combination of an old population and a 2.1 (+0.5, -0.7) Gyr population. The morphologies of the host galaxies suggest that these aging starbursts were induced during the early stages of the mergers that resulted in the elliptical-shaped galaxies that we observe. The current active galactic nucleus activity likely corresponds to the late episodes of accretion predicted by numerical simulations, which occur near the end of the mergers, whereas earlier episodes may be more difficult to observe due to obscuration. Our off-axis observations prevent us from detecting any current star formation or young stellar populations that may be present in the central few kiloparsecs.

  19. Search for Exoplanets around Young Stellar Objects by Direct Imaging

    NASA Astrophysics Data System (ADS)

    Uyama, Taichi; Tamura, Motohide; Hashimoto, Jun; Kuzuhara, Masayuki

    2015-12-01

    SEEDS project, exploring exoplanets and protoplanetary disks with Subaru/HiCIAO, has observed about 500 stars by Direct Imaging from 2009 Dec to 2015 Apr. Among these targets we explore around Young Stellar Objects (YSOs; age ≦ 10Myr) which often have the protoplanetary disks where planets are being formed in order to detect young exoplanets and to understand the formation process. We analyzed 66 YSOs (about 100 data in total) with LOCI data reduction. We will report the results (companion candidates and detection limit) of our exploration.

  20. Stellar

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This eerie, dark structure, resembling an imaginary sea serpent's head, is a column of cool molecular hydrogen gas (two atoms of hydrogen in each molecule) and dust that is an incubator for new stars. The stars are embedded inside finger-like protrusions extending from the top of the nebula. Each 'fingertip' is somewhat larger than our own solar system. The pillar is slowly eroding away by the ultraviolet light from nearby hot stars, a process called 'photoevaporation.' As it does, small globules of especially dense gas buried within the cloud is uncovered. These globules have been dubbed 'EGGs' -- an acronym for 'Evaporating Gaseous Globules.' The shadows of the EGGs protect gas behind them, resulting in the finger-like structures at the top of the cloud. Forming inside at least some of the EGGs are embryonic stars -- stars that abruptly stop growing when the EGGs are uncovered and they are separated from the larger reservoir of gas from which they were drawing mass. Eventually the stars emerge, as the EGGs themselves succumb to photoevaporation. The stellar EGGS are found, appropriately enough, in the 'Eagle Nebula' (also called M16 -- the 16th object in Charles Messier's 18th century catalog of 'fuzzy' permanent objects in the sky), a nearby star-forming region 7,000 light-years away in the constellation Serpens. The picture was taken on April 1, 1995 with the Hubble Space Telescope Wide Field and Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emission from singly-ionized sulfur atoms. Green shows emission from hydrogen. Blue shows light emitted by doubly-ionized oxygen atoms.

  1. The U.S. survey for faint blue objects

    NASA Technical Reports Server (NTRS)

    Mitchell, K. J.; Howell, S. B.; Usher, P. D.

    1987-01-01

    A spectrophotometric study of the blue and UV-excess starlike objects in the U.S. survey (Usher, 1981) has been conducted. Observations were obtained with a resolution of about 20 A over the 3500-7000-A wavelength range. Considered within the sample are 42 DA white dwarfs, 4 DB/DO white dwarfs, 13 subdwarf B stars, 12 subdwarf O stars, and 13 horizontal branch stars. The sample is analyzed using numerical convolution photometry.

  2. Blue Straggler Stars in Galactic Open Clusters and the Simple Stellar Population Model

    NASA Astrophysics Data System (ADS)

    Xin, Y.; Deng, L.; Han, Z. W.

    2007-05-01

    The presence of blue straggler stars (BSs) as secure members of Galactic open clusters (OCs) poses a major challenge to the conventional picture of simple stellar population (SSP) models. These are based on the stellar evolution theory of single stars, whereas the major formation mechanisms of BSs are all correlated with stellar interactions. We have illustrated this in a previous study based on a small sample of old (age >=1 Gyr) Galactic OCs. However, for the purpose of demonstrating the contributions of BSs to the conventional SSP models statistically and systematically, a large database with sufficient coverage of age and metallicity is definitely needed. The working sample now includes 100 Galactic OCs with ages ranging from 0.1 to 10 Gyr. The contributions of BSs to the integrated light of their host clusters are calculated on an individual cluster basis. The general existence of BSs in our star cluster sample dramatically alters the predictions of conventional SSP models in terms of their integrated properties. Neglecting the consequences of nonstandard evolutionary products, such as BSs, in stellar populations, very large uncertainties can be made in analyzing their integrated spectral energy distributions at unresolvable conditions. The current work strongly suggests that when evolutionary population synthesis technique is used to study the properties of unresolved stellar populations in galaxies, the contributions of BSs should be taken into account.

  3. THE STELLAR POPULATION AND STAR FORMATION PROPERTIES OF BLUE COMPACT DWARF GALAXIES

    SciTech Connect

    Zhao Yinghe; Gao Yu; Gu Qiusheng E-mail: yugao@pmo.ac.cn

    2011-02-15

    We study stellar populations, star formation histories (SFHs), and star formation properties for a sample of blue compact dwarf galaxies (BCDs) selected by cross-correlating the Gil de Paz et al. sample with the Sloan Digital Sky Survey Data Release 6. The sample includes 31 BCDs, which span a large range of galactic parameters. Using a stellar population synthesis method, we derive stellar populations and reconstruct SFHs for these BCDs. Our studies confirm that BCDs are not young systems experiencing their first star formation, but old systems undergoing a starburst activity. The stellar mass-weighted ages can be up to 10 Gyr, while the luminosity-weighted ages might be up to approximately three orders of magnitude younger ({approx}10 Myr) for most galaxies. Based on multiwavelength data, we also study the integrated star formation properties. The star formation rate (SFR) for our sample galaxies spans nearly three orders of magnitude, from a few 10{sup -3} to {approx}1 M{sub sun} yr{sup -1}, with a median value of {approx}0.1 M{sub sun} yr{sup -1}. We find that about 90% of BCDs in our sample have their birthrate parameter (the ratio of the current SFR to the averaged past SFR) b>2-3. We further discuss correlations of the current SFR with the integrated galactic stellar mass and explore the connection between SFR and metallicity.

  4. Possible Young Stellar Objects without Detectable CO Emission

    NASA Astrophysics Data System (ADS)

    Iwata, Ikuru; Okumura, Shin-ichiro; Saitō, Mamoru

    1999-10-01

    Young stellar objects (YSOs) usually appear in molecular clouds as infrared objects associated with a molecular envelope. Wouterloot and Brand (1989, AAA 50.133.012) searched 1302 IRAS point sources with reliable fluxes at 25, 60, and 100 mu m near to the galactic plane for 12CO (J=1-0) emission; 1077 sources were detected. Among their far-infrared sources without detectable CO emission, we found that at least 18 objects are invisible at optical and near-infrared wavelengths. The infrared spectral indices between 2.2 mu m and 25 mu m correspond to those of class I YSOs, and the IRAS colors are similar to those of the usual YSOs. These peculiar far-infrared objects are highly concentrated around the galactic plane and the distances are estimated to be ~ 1 kpc. Although their distribution is away from molecular clouds, some of them seem to be associated with large dark clouds or weak radio sources. These objects are possible YSOs with low CO abundance in the envelopes.

  5. Possible Young Stellar Objects without Detectable CO Emission

    NASA Astrophysics Data System (ADS)

    Iwata, I.; Saitō , M.

    1999-12-01

    We discovered about 20 possible Young Stellar Objects (YSOs) which are invisible both in optical and near-infrared wavelengths, do not have detectable 12CO emission and locate avoiding molecular clouds. Wouterloot and Brand (1989) searched 1302 IRAS point sources with reliable fluxes at 25, 60, and 100 μm near the galactic plane for 12CO(J=1-0) line, and detected CO emission for 83% of them. We checked literature and optical images of their sources without detectable CO emission, and carried out near-infrared imaging observations for 55 objects without CO emission and optical counterpart. We found that at least 18 objects are also invisible at near-infrared wavelengths. These objects are highly concentrated around the galactic plane and dispersely distributed avoiding molecular clouds. The distances are estimated to be 1 kpc and their induced infrared luminosities are 4 96 Lodot (average 27 Lodot). The infrared spectral indices between 2.2 μm and 25 μm correspond to those of Class I YSOs, and the IRAS infrared colors are similar to colors of usual YSOs rather than those of cirrus and cold dust associated with early-type stars. The objects are possible YSOs with unusually low CO abundance in their envelopes.

  6. Young Stellar Objects in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Chu, Y.-H.

    2015-05-01

    Cerro Tololo Inter-American Observatory (CTIO) has played vital roles in complementing space-based observatories to maximize their scientific yields. In the past three decades, I have used CTIO observations to aid in the interpretation of X-ray, ultraviolet, gamma-ray, and infrared observations of the Large Magellanic Cloud (LMC). In this presentation, I will show how CTIO observations made a difference in the analysis of Spitzer Space Telescope observations of young stellar objects (YSOs) in the LMC. With a higher angular resolution, CCD images taken with the CTIO Blanco 4m telescope can resolve nearby galaxies, small clusters, and compact HII regions that appear to be point sources in Spitzer images; furthermore, ISPI J and Ks images taken with the Blanco telescope reveal near-IR excesses that can be used to confirm YSO candidates identified from their mid-IR excesses. In the near future, CTIO's Dark Energy Camera will survey the LMC, and the data can be used to search for pre-main sequence stars, extending the study of on-going star formation to lower stellar masses.

  7. ClassLess: A Comprehensive Database of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne A.; baliber, nairn

    2015-08-01

    We have designed and constructed a database intended to house catalog and literature-published measurements of Young Stellar Objects (YSOs) within ~1 kpc of the Sun. ClassLess, so called because it includes YSOs in all stages of evolution, is a relational database in which user interaction is conducted via HTML web browsers, queries are performed in scientific language, and all data are linked to the sources of publication. Each star is associated with a cluster (or clusters), and both spatially resolved and unresolved measurements are stored, allowing proper use of data from multiple star systems. With this fully searchable tool, myriad ground- and space-based instruments and surveys across wavelength regimes can be exploited. In addition to primary measurements, the database self consistently calculates and serves higher level data products such as extinction, luminosity, and mass. As a result, searches for young stars with specific physical characteristics can be completed with just a few mouse clicks. We are in the database population phase now, and are eager to engage with interested experts worldwide on local galactic star formation and young stellar populations.

  8. MID-INFRARED SPECTRAL VARIABILITY ATLAS OF YOUNG STELLAR OBJECTS

    SciTech Connect

    Kospal, A.; Abraham, P.; Kun, M.; Moor, A.; Acosta-Pulido, J. A.; Henning, Th.; Leinert, Ch.; Turner, N. J.

    2012-08-01

    Optical and near-infrared variability is a well-known property of young stellar objects. However, a growing number of recent studies claim that a considerable fraction of them also exhibit mid-infrared flux changes. With the aim of studying and interpreting variability on a decadal timescale, here we present a mid-infrared spectral atlas containing observations of 68 low- and intermediate-mass young stellar objects. The atlas consists of 2.5-11.6 {mu}m low-resolution spectra obtained with the ISOPHOT-S instrument on board the Infrared Space Observatory (ISO) between 1996 and 1998, as well as 5.2-14.5 {mu}m low-resolution spectra obtained with the Infrared Spectrograph instrument on board the Spitzer Space Telescope between 2004 and 2007. The observations were retrieved from the ISO and Spitzer archives and were post-processed interactively by our own routines. For those 47 objects where multi-epoch spectra were available, we analyze mid-infrared spectral variability on annual and/or decadal timescales. We identify 37 variable candidate sources. Many stars show wavelength-independent flux changes, possibly due to variable accretion rates. In several systems, all exhibiting 10 {mu}m silicate emission, the variability of the 6-8 {mu}m continuum, and the silicate feature exhibit different amplitudes. A possible explanation is variable shadowing of the silicate-emitting region by an inner disk structure of changing height or extra silicate emission from dust clouds in the disk atmosphere. Our results suggest that mid-infrared variability, in particular, the wavelength-dependent changes, is more ubiquitous than was known before. Interpreting this variability is a new possibility for exploring the structure of the disk and its dynamical processes.

  9. SPATIAL DISTRIBUTION AND EVOLUTION OF THE STELLAR POPULATIONS AND CANDIDATE STAR CLUSTERS IN THE BLUE COMPACT DWARF I ZWICKY 18

    SciTech Connect

    Contreras Ramos, R.; Annibali, F.; Fiorentino, G.; Tosi, M.; Clementini, G.; Aloisi, A.; Van der Marel, R. P.; Marconi, M.; Musella, I.; Saha, A.

    2011-10-01

    The evolutionary properties and spatial distribution of I Zwicky 18 (IZw18) stellar populations are analyzed by means of Hubble Space Telescope/Advanced Camera for Surveys deep and accurate photometry. A comparison of the resulting color-magnitude diagrams (CMDs) with stellar evolution models indicates that stars of all ages are present in all the system's components, including objects possibly up to 13 Gyr old, intermediate-age stars, and very young ones. The CMDs show evidence of thermally pulsing asymptotic giant branch and carbon stars. classical and ultra-long-period Cepheids as well as long-period variables have been measured. About 20 objects could be unresolved star clusters; these are mostly concentrated in the northwest (NW) portion of the main body (MB). If interpreted with simple stellar population models, these objects indicate a particularly active star formation over the past 100 Myr in IZw18. The stellar spatial distribution shows that the younger ones are more centrally concentrated, while old and intermediate-age stars are distributed homogeneously over the two bodies, although they are more easily detectable at the system's periphery. The oldest stars are most visible in the secondary body (SB) and in the southeast (SE) portion of the MB, where crowding is less severe, but are also present in the rest of the MB, where they are measured with larger uncertainties. The youngest stars are a few Myr old, are located predominantly in the MB, and are mostly concentrated in its NW portion. The SE portion of the MB appears to be in a similar, but not as young, evolutionary stage as the NW, while the SB stars are older than at least 10 Myr. There is then a sequence of decreasing age of the younger stars from the SB to the SE portion of the MB to the NW portion. All our results suggest that IZw18 is not atypical compared to other blue compact dwarfs.

  10. Faint Blue Objects in the Hubble Deep Field North

    NASA Astrophysics Data System (ADS)

    Kilic, M.; von Hippel, T.; Mendez, R. A.; Winget, D. E.

    2005-07-01

    Using the deepest and finest resolution images of the Universe acquired with the Hubble Space Telescope and a similar image taken 7 years later for the Great Observatories Origins Deep Survey, we have derived proper motions for the point sources in the Hubble Deep Field-North. Two faint blue objects, HDF2234 and HDF3072, are found to display significant proper motions, 10.0 ± 2.5 and 15.5 ± 3.8 mas yr-1. Photometric distances and tangential velocities for these stars are consistent with disk white dwarfs located at ≈500 pc. At least one of these two objects now appears spectroscopically to be a white dwarf (Kilic et al., in preparation). The faint blue objects analyzed by Ibata et al. (1999) and Mendez & Minniti (2000) do not show any significant proper motion; they are not halo white dwarfs and they do not contribute to the Galactic dark matter. These objects are likely to be distant AGN.

  11. 76 FR 81004 - Culturally Significant Objects Imported for Exhibition Determinations: “Woman in Blue, Against...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF STATE Culturally Significant Objects Imported for Exhibition Determinations: ``Woman in Blue, Against Blue Water..., 2003), I hereby determine that the object ``Woman in Blue, Against Blue Water'' by Edvard...

  12. 77 FR 23318 - Culturally Significant Object Imported for Exhibition Determinations: “African Cosmos: Stellar Arts”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Culturally Significant Object Imported for Exhibition Determinations: ``African Cosmos: Stellar Arts... Cosmos: Stellar Arts,'' imported from abroad for temporary exhibition within the United States, is...

  13. INFRARED SPECTROSCOPY OF INTERMEDIATE-MASS YOUNG STELLAR OBJECTS

    SciTech Connect

    Pitann, Jan; Bouwman, Jeroen; Krause, Oliver; Henning, Thomas; Hennemann, Martin

    2011-12-10

    In this paper, we present Spitzer Infrared Spectrograph spectroscopy for 14 intermediate-mass young stellar objects (YSOs). We use Spitzer spectroscopy to investigate the physical properties of these sources and their environments. Our sample can be divided into two types of objects: young isolated, embedded objects with spectra that are dominated by ice and silicate absorption bands, and more evolved objects that are dominated by extended emission from polycyclic aromatic hydrocarbons (PAHs) and pure H{sub 2} rotational lines. We are able to constrain the illuminating FUV fields by classifying the PAH bands below 9 {mu}m. For most of the sources we are able to detect several atomic fine structure lines. In particular, the [Ne II] line appearing in two regions could originate from unresolved photodissociation regions or J-shocks. We relate the identified spectral features to observations obtained from NIR through submillimeter imaging. The spatial extent of several H{sub 2} and PAH bands is matched with morphologies identified in previous Infrared Array Camera observations. This also allows us to distinguish between the different H{sub 2} excitation mechanisms. In addition, we calculate the optical extinction from the silicate bands and use this to constrain the spectral energy distribution fit, allowing us to estimate the masses of these YSOs.

  14. Model scattering envelopes of young stellar objects. II - Infalling envelopes

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.; Hartmann, Lee

    1993-01-01

    We present scattered light images for models of young stellar objects surrounded by dusty envelopes. The envelopes are assumed to have finite angular momentum and are falling in steady flow onto a disk. The model envelopes include holes, such as might be created by energetic bipolar flows. We calculate images using the Monte Carlo method to follow the light scattered in the dusty envelope and circumstellar disk, assuming that the photons originate from the central source. Adopting typical interstellar medium dust opacities and expected mass infall rates for protostars of about 10 exp -6 solar mass/yr, we find that detectable amounts of optical radiation can escape from envelopes falling into a disk as small as about 10-100 AU, depending upon the viewing angle and the size of the bipolar flow cavity. We suggest that the extended optical and near-IR light observed around several young stars is scattered by dusty infalling envelopes rather than disks.

  15. ClassLess: A Comprehensive Database of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne; Baliber, Nairn

    2015-01-01

    We have designed and constructed a database housing published measurements of Young Stellar Objects (YSOs) within ~1 kpc of the Sun. ClassLess, so called because it includes YSOs in all stages of evolution, is a relational database in which user interaction is conducted via HTML web browsers, queries are performed in scientific language, and all data are linked to the sources of publication. Each star is associated with a cluster (or clusters), and both spatially resolved and unresolved measurements are stored, allowing proper use of data from multiple star systems. With this fully searchable tool, myriad ground- and space-based instruments and surveys across wavelength regimes can be exploited. In addition to primary measurements, the database self consistently calculates and serves higher level data products such as extinction, luminosity, and mass. As a result, searches for young stars with specific physical characteristics can be completed with just a few mouse clicks.

  16. Searching for Young Stellar Objects in CG4

    NASA Astrophysics Data System (ADS)

    Johnson, Chelen H.; Rebull, L. M.; Hoette, V.; Mallory, C.; McCarron, K.; Gartner, C.; VanDerMolen, J.; Gamble, L.; Laher, R.; Legassie, M.; Crump, R.; Laorr, A.; Mork, K.; Steinbergs, E.; Wigley, E.; Caruso, S.; Killingstad, N.; McCanna, T.; Matche, L.; McCartney, A.; Doering, M.; Feig, M.; Mahmud, N.; Selic, T.; Kim, S.

    2011-01-01

    We used archival Spitzer infrared data to look for new young stellar objects (YSOs) in Cometary Globule 4 (CG4) in Puppis. CG4 is approximately 1300 parsecs away and one of about 30 cometary globules in the Gum Nebula, many of which are known to be forming stars. CG4 is dramatic in appearance, and that has brought it to the attention of both scientists and the public. Our team used archival Spitzer InfraRed Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) data, combined with 2 Micron All Sky Survey (2MASS) data as well as optical data obtained by collaborators. We used infrared excess to investigate the properties of previously known YSOs in this region and identify additional new candidate YSOs in this region. This research was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.

  17. THE BLUE TIP OF THE STELLAR LOCUS: MEASURING REDDENING WITH THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Schlafly, Edward F.; Finkbeiner, Douglas P.; Juric, Mario; Schlegel, David J.; Ivezic, Zeljko; Gibson, Robert R.; Knapp, Gillian R.; Weaver, Benjamin A.

    2010-12-10

    We present measurements of reddening due to dust using the colors of stars in the Sloan Digital Sky Survey (SDSS). We measure the color of main-sequence turnoff stars by finding the 'blue tip' of the stellar locus: the prominent blue edge in the distribution of stellar colors. The method is sensitive to color changes of order 18, 12, 7, and 8 mmag of reddening in the colors u - g, g - r, r - i, and i - z, respectively, in regions measuring 90' by 14'. We present maps of the blue tip colors in each of these bands over the entire SDSS footprint, including the new dusty southern Galactic cap data provided by the SDSS-III. The results disfavor the best-fit O'Donnell and Cardelli et al. reddening laws, but are described well by a Fitzpatrick reddening law with R{sub V} = 3.1. The Schlegel et al. (SFD) dust map is found to trace the dust well, but overestimates reddening by factors of 1.4, 1.0, 1.2, and 1.4 in u - g, g - r, r - i, and i - z largely due to the adopted reddening law. In select dusty regions of the sky, we find evidence for problems in the SFD temperature correction. A dust map normalization difference of 15% between the Galactic north and south sky may be due to these dust temperature errors.

  18. Young Stellar Clusters Containing Massive Young Stellar Objects in the VVV Survey

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Ramírez Alegría, S.; Alonso, J.; Lucas, P. W.; Kurtev, R.; Medina, N.; Navarro, C.; Kuhn, M.; Gromadzki, M.; Retamales, G.; Fernandez, M. A.; Agurto-Gangas, C.; Chené, A.-N.; Minniti, D.; Contreras Pena, C.; Catelan, M.; Decany, I.; Thompson, M. A.; Morales, E. F. E.; Amigo, P.

    2016-09-01

    The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800 M ⊙), the slope Γ of the obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M ⊙). Using VVV and GLIMPSE color–color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.

  19. E/S0 GALAXIES ON THE BLUE COLOR-STELLAR MASS SEQUENCE AT z = 0: FADING MERGERS OR FUTURE SPIRALS?

    SciTech Connect

    Kannappan, Sheila J.; Guie, Jocelly M.; Baker, Andrew J. E-mail: jocelly@mail.utexas.edu

    2009-08-15

    We identify a population of morphologically defined E/S0 galaxies lying on the locus of late-type galaxies in color-stellar mass space - the 'blue sequence' -at the present epoch. Using three samples (from the Nearby Field Galaxy Survey or NFGS, a merged HyperLeda/Sloan Digital Sky Survey/Two Micron All Sky Survey catalog, and the NYU Value-Added Galaxy Catalog), we analyze blue-sequence E/S0s with stellar masses {approx}>10{sup 8} M {sub sun}, arguing that individual objects may be evolving either up toward the red sequence or down into the blue sequence. Blue-sequence E/S0 galaxies become more common with decreasing stellar mass, comprising {approx}<2% of E/S0s near the 'shutdown mass' M{sub s} {approx} 1-2 x 10{sup 11} M {sub sun}, increasing to {approx}>5% near the 'bimodality mass' M{sub b} {approx} 3 x 10{sup 10} M {sub sun}, and sharply rising to {approx}> 20%-30% below the 'threshold mass' M{sub t} {approx} 4-6 x 10{sup 9} M {sub sun}, down to our completeness analysis limit at {approx}10{sup 9} M {sub sun}. The strong emergence of blue-sequence E/S0s below M{sub t} coincides with a previously reported global increase in mean atomic gas fractions below M{sub t} for galaxies of all types on both sequences, suggesting that the availability of cold gas may be basic to blue-sequence E/S0s' existence. Environmental analysis reveals that many sub-M{sub b} blue-sequence E/S0s reside in low-to-intermediate density environments. Thus, the bulk of the population we analyze appears distinct from the generally lower-mass cluster dE population; S0 morphologies with a range of bulge sizes are typical. In mass-radius and mass-{sigma} scaling relations, blue-sequence E/S0s are more similar to red-sequence E/S0s than to late-type galaxies, but they represent a transitional class. While some of them, especially in the high-mass range from M{sub b} to M{sub s} , resemble major-merger remnants that will likely fade onto the red sequence, most blue-sequence E/S0s below M{sub b

  20. A WISE Census of Young Stellar Objects in Canis Major

    NASA Astrophysics Data System (ADS)

    Fischer, William J.; Padgett, Deborah L.; Stapelfeldt, Karl L.; Sewiło, Marta

    2016-08-01

    With the Wide-field Infrared Survey Explorer (WISE), we searched for young stellar objects (YSOs) in a 100 deg2 region centered on the lightly studied Canis Major star-forming region. Applying stringent magnitude cuts to exclude the majority of extragalactic contaminants, we find 144 Class I candidates and 335 Class II candidates. The sensitivity to Class II candidates is limited by their faintness at the distance to Canis Major (assumed as 1000 pc). More than half the candidates (53%) are found in 16 groups of more than four members, including four groups with more than 25 members each. The ratio of Class II to Class I objects, N II/N I, varies from 0.4 to 8.3 in just the largest four groups. We compare our results to those obtainable with combined Two Micron All Sky Survey and post-cryogenic Spitzer Space Telescope data; the latter approach recovers missing Class II sources. Via a comparison to protostars characterized with the Herschel Space Observatory, we propose new WISE color criteria for flat-spectrum and Class 0 protostars, finding 80 and 7 of these, respectively. The distribution of YSOs in CMa OB1 is consistent with supernova-induced star formation, although the diverse N II/N I ratios are unexpected if this parameter traces age and the YSOs are due to the same supernova. Less massive clouds feature larger N II/N I ratios, suggesting that initial conditions play a role in determining this quantity.

  1. Multiply imaged quasi-stellar objects in the Gaia survey

    NASA Astrophysics Data System (ADS)

    Finet, F.; Surdej, J.

    2016-05-01

    Aims: We report a study on the statistical properties of the multiply imaged quasi-stellar objects (QSOs) to be detected within the Gaia survey. Methods: We considered two types of potential deflectors, the singular isothermal sphere (SIS) and the singular isothermal ellipsoid (SIE), to estimate the number of multiply imaged quasars as well as the normalized distributions of the redshifts of the lensed sources and of their associated deflectors. We also investigated the distribution of the lensing events as a function of their angular size and apparent magnitude. We compared the Gaia survey for multiply imaged quasars to typical ground-based surveys and to an ideal survey that would be carried out with a perfect instrument from space. Results: Of the 6.64 × 105 QSOs brighter than G = 20 to be detected by Gaia, we expect the discovery of about 2886 multiply imaged sources, 450 of which are expected to be produced by a late-type galaxy. We expect only ~1600 of these multiply imaged quasars to have an angular separation between their images that is large enough to be resolved from seeing-limited observations, and ~80 of them to have more than two lensed images.

  2. The AKARI Far-Infrared Surveyor young stellar object catalog

    NASA Astrophysics Data System (ADS)

    Tóth, L. Viktor; Marton, Gábor; Zahorecz, Sarolta; Balázs, Lajos G.; Ueno, Munetaka; Tamura, Motohide; Kawamura, Akiko; Kiss, Zoltán T.; Kitamura, Yoshimi

    2014-02-01

    We demonstrate the use of the AKARI all-sky survey photometric data in the study of galactic star formation. Our aim was to select young stellar objects (YSOs) in the AKARI Far-Infrared Surveyor (FIS) Bright Source Catalogue. We used AKARI/FIS and Wide-field Infrared Survey Explorer (WISE) data to derive mid- and far-infrared colors of YSOs. Classification schemes based on quadratic discriminant analysis (QDA) have been given for YSOs and the training catalog for QDA was the whole-sky selection of previously known YSOs (i.e., listed in the SIMBAD database). A new catalog of AKARI FIS YSO candidates including 44001 sources has been prepared; the reliability of the classification is over 90%, as tested in comparison to known YSOs. As much as 76% of our YSO candidates are from previously uncatalogued types. The vast majority of these sources are Class I and II types according to the Lada classification. The distribution of AKARI FIS YSOs is well correlated with that of the galactic ISM; local over-densities were found on infrared loops and towards the cold clumps detected by Planck.

  3. Complex molecule formation around massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.; Fayolle, Edith C.; Reiter, John B.; Cyganowski, Claudia

    2014-02-01

    Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature. Towards the three MYSOs, we find multiple complex organic emission peaks characterized by different molecular compositions and temperatures. In particular, CH3CCH and CH3CN seem to always trace a lukewarm (T ≈ 60 K) and a hot (T > 100 K) complex chemistry, respectively. These spatial trends are consistent with abundance-temperature correlations of four representative complex organics - CH3CCH, CH3CN, CH3OCH3 and CH3CHO - in a large sample of complex molecule hosts mined from the literature. Together, these results indicate a general chemical evolution with temperature, i.e. that new complex molecule formation pathways are activated as a MYSO heats up. This is qualitatively consistent with model predictions. Furthermore, these results suggest that ratios of complex molecules may be developed into a powerful probe of the evolutionary stage of a MYSO, and may provide information about its formation history.

  4. Complex molecule formation around massive young stellar objects.

    PubMed

    Oberg, Karin I; Fayolle, Edith C; Reiter, John B; Cyganowski, Claudia

    2014-01-01

    Interstellar complex organic molecules were first identified in the hot inner regions of massive young stellar objects (MYSOs), but have more recently been found in many colder sources, indicating that complex molecules can form at a range of temperatures. However, individually these observations provide limited constraints on how complex molecules form, and whether the same formation pathways dominate in cold, warm and hot environments. To address these questions, we use spatially resolved observations from the Submillimeter Array of three MYSOs together with mostly unresolved literature data to explore how molecular ratios depend on environmental parameters, especially temperature. Towards the three MYSOs, we find multiple complex organic emission peaks characterized by different molecular compositions and temperatures. In particular, CH3CCH and CH3CN seem to always trace a lukewarm (T = 60 K) and a hot (T > 100 K) complex chemistry, respectively. These spatial trends are consistent with abundance-temperature correlations of four representative complex organics--CH3CCH, CH3CN, CH3OCH3 and CH3CHO--in a large sample of complex molecule hosts mined from the literature. Together, these results indicate a general chemical evolution with temperature, i.e. that new complex molecule formation pathways are activated as a MYSO heats up. This is qualitatively consistent with model predictions. Furthermore, these results suggest that ratios of complex molecules may be developed into a powerful probe of the evolutionary stage of a MYSO, and may provide information about its formation history. PMID:25302375

  5. POPULATIONS OF YOUNG STELLAR OBJECTS IN NEARBY MOLECULAR CLOUDS

    SciTech Connect

    Hsieh, Tien-Hao; Lai, Shih-Ping E-mail: slai@phys.nthu.edu.tw

    2013-03-01

    We develop a new method for identifying young stellar objects (YSOs) from star-forming regions using the photometry data from Spitzer's c2d Legacy Project. The aim is to obtain YSO lists as complete as possible for studying statistical properties such as the star formation rate (SFR) and lifetimes of YSOs in different evolutionary stages. The largest obstacle in identifying YSOs comes from background galaxies with similar spectral energy distributions to YSOs. Traditionally, selected color-color and color-magnitude criteria are used to separate YSOs and galaxies. However, since there is no obvious boundary between YSOs and galaxies in color-color diagrams and color-magnitude diagrams (CMDs), those criteria may exclude faint YSOs near the boundary. In this paper, we separate the YSOs and galaxies in a multi-dimensional (multi-D) magnitude space, which is equivalent to using all variations of CMDs simultaneously. Comparing sources from molecular clouds to Spitzer's SWIRE data, which have a negligible amount of YSOs, we can naturally identify YSO candidates (YSOc) located outside of the galaxy-populated regions in the multi-D space. In the five c2d surveyed clouds, we select 322 new YSOc and miss/exclude 33 YSOc compared to Evans et al., and this results in 1313 YSOc in total. As a result, SFR increases 28% correspondingly, but the lifetimes of YSOs in different evolutionary stages remain unchanged. Compared to theories by Krumholz and McKee, our derived SFR suggests that star formation at a large scale is dominated by supersonic turbulence rather than magnetic fields. Furthermore, we identify seven new very low luminosity objects.

  6. WISE Identified Young Stellar Objects In BRC 38

    NASA Astrophysics Data System (ADS)

    Gibbs, John; Rebull, L. M.; Laurence, W.; Marshall, R.; Murphy, M.; Orr, L.; Whitworth, C.; Burton, A.; Corris, T.; Goodey, S.; McGinnis, S.; Laurence, C.; Aschman, O.; Kikuchi, R.; Prather, J.; Whitley, L.; Billings, C.; Mader, C.

    2014-01-01

    Bright rimmed clouds (BRCs) are dense clumps of gas and dust within HII regions at the edges of molecular clouds; while the BRCs themselves are dark, their rims are optically bright from illumination by nearby O or B stars. Many BRCs show evidence of active star formation possibly triggered by the ionizing radiation from the nearby O or B stars. The large molecular cloud IC1396 is home to eleven BRCs thought to be driven by the O6.5V star HD206267. BRC 38 is located in the north of IC1396, at 21:40:42 +58:16:13. The immediate ~5'x5' region around BRC 38 has been extensively studied in many wavelengths from X-rays to infrared (IR), identifying ~100 young stellar objects (YSOs). We used data from the Wide-field Infrared Survey Explorer (WISE) to expand the search for YSOs to a 20 arcminute radius from the center of BRC 38. Starting with approximately 7000 sources identified in the WISE catalog, we used an updated version of the IR color selection scheme developed by Koenig et al. (2012) to identify ~40 objects having IR colors consistent with those of YSOs; some overlapping with the literature YSO candidates. Combining confirmed and candidate YSOs from literature with those we identified by color selection, we find 115 unique objects of interest. For each of these sources, we analyzed (a) the WISE, 2MASS, and Spitzer images to determine if they were point-like sources; (b) their IR colors to determine if they exhibited a clear IR excess; and (c) their spectral energy distributions (SEDs) to determine if they had an SED shape consistent with their identification as YSO candidates. Our work adds several new YSO candidates to the list of YSOs in and near BRC 38 and newly identifies IR excesses for many of the previously identified YSOs in the region. We looked for evidence of triggered star formation in BRC 38, but are limited in our conclusions by small-number statistics. Support is provided for this work by the NASA/IPAC Teacher Archive Research Program (NITARP

  7. A search for ionized jets towards massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Purser, S. J. D.; Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Cunningham, N.; Purcell, C. R.; Brooks, K. J.; Garay, G.; Gúzman, A. E.; Voronkov, M. A.

    2016-07-01

    Radio continuum observations using the Australia telescope compact array at 5.5, 9.0, 17.0 and 22.8 GHz have detected free-free emission associated with 45 of 49 massive young stellar objects and H II regions. Of these, 26 sources are classified as ionized jets (12 of which are candidates), 2 as ambiguous jets or disc winds, 1 as a disc-wind, 14 as H II regions and 2 were unable to be categorized. Classification as ionized jets is based upon morphology, radio flux and spectral index, in conjunction with previous observational results at other wavelengths. Radio luminosity and momentum are found to scale with bolometric luminosity in the same way as low-mass jets, indicating a common mechanism for jet production across all masses. In 13 of the jets, we see associated non-thermal/optically thin lobes resulting from shocks either internal to the jet and/or at working surfaces. 10 jets display non-thermal (synchrotron emission) spectra in their lobes, with an average spectral index of α = -0.55 consistent with Fermi acceleration in shocks. This shows that magnetic fields are present, in agreement with models of jet formation incorporating magnetic fields. Since the production of collimated radio jets is associated with accretion processes, the results presented in this paper support the picture of disc-mediated accretion for the formation of massive stars with an upper limit on the jet phase lasting approximately 6.5 × 104 yr. Typical mass-loss rates in the jet are found to be 1.4 × 10-5 M⊙ yr-1 with associated momentum rates of the order of (1-2) × 10-2 M⊙ km s-1 yr-1.

  8. Young Stellar Object Candidates in the Aquila Rift Region

    NASA Astrophysics Data System (ADS)

    Zhang, Miao-miao; Wang, Hong-chi; Stecklum, B.

    2010-10-01

    Using the 2m telescope of the Turingia State Observatory at Tauten-berg (TLS), imaging observations in 3 wavebands (H α, R and I) are performed in the 16 fields in the Aquila Rift region. The observed fields cover about 7 square degrees. Excluding the 3 fields with unqualified data, the photometrical analysis is made for the remaining 13 fields, from which point sources are identified, and finally 7 H α emission-line star candidates are identified by color-color diagrams. The 7 candidates are located in five fields. Three of them are located near the Galactic plane, while the galactic latitudes of the rest are greater than 4°. The 2 M ASS counterparts of the point sources are identified, and the properties of the 7 H α emission-line star candidates are further analyzed by using the two-color diagrams. It is found that the near-infrared radiation from these H α emission-line star candidates has no obvious infrared excess, one of them even falls on the main-sequence branch. This indicates that the H α-emissive young stellar objects (YSOs) are not always accompanied with the infrared excess, and that the results of the H α emission line observation and the infrared excess observation are mutually supplemented. If the 7 H α emission-line star candidates are regarded as YSO candidates, then the number of YSOs in the Aquila Rift region is quite small. The further confirmation of these candidates needs subsequent spectral observations.

  9. The evoluation of young stellar object disks and their environment

    NASA Technical Reports Server (NTRS)

    Strom, Stephen E.

    1988-01-01

    By carrying out direct imaging and spectroscopic observations of young, pre-main sequence stars in nearby molecular clouds researchers have begun: to define the frequency with which disks of approximately solar system size and mass form around young stars, and to understand the timescale for disk evolution; to characterize the early radiation (ultraviolet and keV particle) environment of circumstellar disks through study of evolution of stellar winds, wind/disk interactions and the UV and optical emission characteristics of young stars; and to understand the evolution of the solid and gaseous constituents of disks through observations of absorption features in circumstellar gas, broad emission features produced by organic compounds on grain surfaces, and absorption features (e.g., ice) produced in grain mantles. These programs offer the possibilty of relating results from astrophysical studies of the environment to newly-formed stars to the record of planet formation preserved in the solar system. Researchers completed a spectroscopic survey of 30 T Tauri stars with ages ranging from approximately 2 x 10 to the 5th power to 3 x 10 to the 7th power years. From analysis of (OI) and (SII) emission lines, it was concluded that all but two of the stars in our sample are surrounded by optically opaque disks of dimension approximately 50 AU. The two remaining objects show evidence consistent with partial disk clearing (at an age approximately 3 x 10 to the 6th power year). R and I band CFHT observations yielded detections of disks of dimension approximately 100 AU surrounding 5 additional T Tauri stars.

  10. THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS

    SciTech Connect

    Whitney, B. A.; Honor, J.; Robitaille, T. P.; Bjorkman, J. E.; Dong, R.; Wolff, M. J.; Wood, K.

    2013-08-15

    We have updated our publicly available dust radiative transfer code (HOCHUNK3D) to include new emission processes and various three-dimensional (3D) geometries appropriate for forming stars. The 3D geometries include warps and spirals in disks, accretion hotspots on the central star, fractal clumping density enhancements, and misaligned inner disks. Additional axisymmetric (2D) features include gaps in disks and envelopes, ''puffed-up inner rims'' in disks, multiple bipolar cavity walls, and iteration of disk vertical structure assuming hydrostatic equilibrium (HSEQ). We include the option for simple power-law envelope geometry, which, combined with fractal clumping and bipolar cavities, can be used to model evolved stars as well as protostars. We include non-thermal emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains, and external illumination from the interstellar radiation field. The grid structure was modified to allow multiple dust species in each cell; based on this, a simple prescription is implemented to model dust stratification. We describe these features in detail, and show example calculations of each. Some of the more interesting results include the following: (1) outflow cavities may be more clumpy than infalling envelopes. (2) PAH emission in high-mass stars may be a better indicator of evolutionary stage than the broadband spectral energy distribution slope; and related to this, (3) externally illuminated clumps and high-mass stars in optically thin clouds can masquerade as young stellar objects. (4) Our HSEQ models suggest that dust settling is likely ubiquitous in T Tauri disks, in agreement with previous observations.

  11. A search for ionized jets towards massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Purser, S. J. D.; Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Cunningham, N.; Purcell, C. R.; Brooks, K. J.; Garay, G.; Gúzman, A. E.; Voronkov, M. A.

    2016-05-01

    Radio continuum observations using the Australia telescope compact array at 5.5, 9.0, 17.0 and 22.8 GHz have detected free-free emission associated with 45 of 49 massive young stellar objects and HII regions. Of these, 26 sources are classified as ionized jets (12 of which are candidates), 2 as ambiguous jets or disc winds, 1 as a disc-wind, 14 as HII regions and 2 were unable to be categorised. Classification as ionized jets is based upon morphology, radio flux and spectral index, in conjunction with previous observational results at other wavelengths. Radio-luminosity and momentum are found to scale with bolometric luminosity in the same way as low-mass jets, indicating a common mechanism for jet production across all masses. In 13 of the jets, we see associated non-thermal/optically-thin lobes resulting from shocks either internal to the jet and/or at working surfaces. Ten jets display non-thermal (synchrotron emission) spectra in their lobes, with an average spectral index of α = -0.55 consistent with Fermi acceleration in shocks. This shows that magnetic fields are present, in agreement with models of jet formation incorporating magnetic fields. Since the production of collimated radio jets is associated with accretion processes, the results presented in this paper support the picture of disc-mediated accretion for the formation of massive stars with an upper-limit on the jet phase lasting approximately 6.5 × 104 yr. Typical mass loss rates in the jet are found to be 1.4× 10-5 M⊙yr-1 with associated momentum rates of the order (1-2)× 10^{-2} M_⊙ km s^{-1 yr}^{-1}.

  12. 75 FR 82128 - Culturally Significant Objects Imported for Exhibition Determinations: “Vishnu: Hinduism's Blue...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Culturally Significant Objects Imported for Exhibition Determinations: ``Vishnu: Hinduism's Blue-Skinned... ``Vishnu: Hinduism's Blue-Skinned Savior,'' imported from abroad for temporary exhibition within the...

  13. 78 FR 8682 - Culturally Significant Object Imported for Exhibition Determinations: “Vermeer's Woman in Blue...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Culturally Significant Object Imported for Exhibition Determinations: ``Vermeer's Woman in Blue Reading a... ``Vermeer's Woman in Blue Reading a Letter,'' imported from abroad for temporary exhibition within...

  14. Accelerating a water maser face-on jet from a high mass young stellar object

    NASA Astrophysics Data System (ADS)

    Motogi, Kazuhito; Sorai, Kazuo; Honma, Mareki; Hirota, Tomoya; Hachisuka, Kazuya; Niinuma, Kotaro; Sugiyama, Koichiro; Yonekura, Yoshinori; Fujisawa, Kenta

    2015-01-01

    We report on long-term single-dish and VLBI monitoring for intermittent flare activities of a dominant blue-shifted H2O maser associated with a southern high mass young stellar object, G353.273+0.641. Bi-weekly single-dish monitoring using the Hokkaido University Tomakomai 11 m radio telescope has shown that a systematic acceleration continues over four years beyond the lifetime of individual maser features. This fact suggests that the H2O maser traces a region where molecular gas is steadily accelerated. There were five maser flares during the five years of monitoring, and maser distributions in four of them were densely monitored by VLBI Exploration of Radio Astrometry (VERA). The overall distribution of the maser features suggests the presence of a bipolar jet, with the 3D kinematics indicating that it is almost face-on (inclination angle of ˜ 8°-17° from the line of sight). Most maser features were recurrently excited within a region of 100×100 au2 around the radio continuum peak, while their spatial distributions significantly varied between each flare. This confirms that episodic propagations of outflow shocks recurrently invoke intermittent flare activities. We also measured annual parallax, deriving a source distance of 1.70^{+0.19}_{-0.16} kpc that is consistent with the commonly used photometric distance.

  15. Ne II FINE-STRUCTURE LINE EMISSION FROM THE OUTFLOWS OF YOUNG STELLAR OBJECTS

    SciTech Connect

    Shang, Hsien; Lin, Wei-Chieh; Liu, Chun-Fan J.; Glassgold, Alfred E.

    2010-05-10

    The flux and line shape of the fine-structure transitions of Ne II and Ne III at 12.8 and 15.55 {mu}m and of the forbidden transitions of O I {lambda}6300 are calculated for young stellar objects with a range of mass-loss rates and X-ray luminosities using the X-wind model of jets and the associated wide-angle winds. For moderate and high accretion rates, the calculated Ne II line luminosity is comparable to or much larger than produced in X-ray irradiated disk models. All of the line luminosities correlate well with the main parameter in the X-wind model, the mass-loss rate, and also with the assumed X-ray luminosity-and with one another. The line shapes of an approaching jet are broad and have strong blue-shifted peaks near the effective terminal velocity of the jet. They serve as a characteristic and testable aspect of jet production of the neon fine-structure lines and the O I forbidden transitions.

  16. TRANSITS AND LENSING BY COMPACT OBJECTS IN THE KEPLER FIELD: DISRUPTED STARS ORBITING BLUE STRAGGLERS

    SciTech Connect

    Di Stefano, R.

    2011-05-15

    Kepler's first major discoveries are two hot (T > 10,000 K) small-radius objects orbiting stars in its field. A viable hypothesis is that these are the cores of stars that have each been eroded or disrupted by a companion star. The companion, which is the star monitored today, is likely to have gained mass from its now-defunct partner and can be considered to be a blue straggler. KOI-81 is almost certainly the product of stable mass transfer; KOI-74 may be as well, or it may be the first clear example of a blue straggler created through three-body interactions. We show that mass-transfer binaries are common enough that Kepler should discover {approx}1000 white dwarfs orbiting main-sequence stars. Most of these, like KOI-74 and KOI-81, will be discovered through transits, but many will be discovered through a combination of gravitational lensing and transits, while lensing will dominate for a subset. In fact, some events caused by white dwarfs will have the appearance of 'anti-transits' - i.e., short-lived enhancements in the amount of light received from the monitored star. Lensing and other mass-measurement methods provide a way to distinguish white dwarf binaries from planetary systems. This is important for the success of Kepler's primary mission, in light of the fact that white dwarf radii are similar to the radii of terrestrial planets, and that some white dwarfs will have orbital periods that place them in the habitable zones of their stellar companions. By identifying transiting and/or lensing white dwarfs, Kepler will conduct pioneering studies of white dwarfs and of the end states of mass transfer. It may also identify orbiting neutron stars or black holes. The calculations inspired by the discovery of KOI-74 and KOI-81 have implications for ground-based wide-field surveys as well as for future space-based surveys.

  17. Near infrared photographic sky survey. 1: Catalog of red stellar objects

    NASA Technical Reports Server (NTRS)

    Craine, E. R.; Duerr, R. E.; Horner, V. M.; Imhoff, C. L.; Routsis, D. E.; Swihart, D. L.; Turnshek, D. A.

    1979-01-01

    Red stellar objects for which V-1 was greater than a value of about 2 (supm). 5 were extracted from photographs of 23 program fields. Tabular data for each field show the object name; the 1950 epoch right ascension, declination, galactic longitude, galactic latitude; radial distance from field venter in decimal degrees; color classes; and objects ordered by redness.

  18. AKARI observations of ice absorption bands towards edge-on young stellar objects

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Terada, H.; Noble, J. A.; Pontoppidan, K. M.; Fraser, H. J.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2012-02-01

    Context. Circumstellar disks and envelopes of low-mass young stellar objects (YSOs) contain significant amounts of ice. Such icy material will evolve to become volatile components of planetary systems, such as comets in our solar system. Aims: To investigate the composition and evolution of circumstellar ice around low-mass young stellar objects (YSOs), we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Methods: We performed slit-less spectroscopic observations using the grism mode of the InfraRed Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO2 band and the blue wing of the H2O band, which are inaccessible from the ground. We developed procedures to carefully process the spectra of targets with nebulosity. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Results: Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS 04302), absorption bands of H2O, CO2, CO, and XCN are clearly detected. Column density ratios of CO2 ice and CO ice relative to H2O ice are 21-28% and 13-46%, respectively. If XCN is OCN-, its column density is as high as 2-6% relative to H2O ice. The HDO ice feature at 4.1 μm is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 μm provide upper limits to the CH3OH abundance of 26% (L1527) and 42% (IRAS 04302) relative to H2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN- could originate in the region close to the protostar

  19. SPARCO : a semi-parametric approach for image reconstruction of chromatic objects. Application to young stellar objects

    NASA Astrophysics Data System (ADS)

    Kluska, J.; Malbet, F.; Berger, J.-P.; Baron, F.; Lazareff, B.; Le Bouquin, J.-B.; Monnier, J. D.; Soulez, F.; Thiébaut, E.

    2014-04-01

    Context. The emergence of optical interferometers with three and more telescopes allows image reconstruction of astronomical objects at the milliarcsecond scale. However, some objects contain components with very different spectral energy distributions (SED; i.e. different temperatures), which produces strong chromatic effects on the interferograms that have to be managed with care by image reconstruction algorithms. For example, the gray approximation for the image reconstruction process results in a degraded image if the total (u,v)-coverage given by the spectral supersynthesis is used. Aims: The relative flux contribution of the central object and an extended structure changes with wavelength for different temperatures. For young stellar objects, the known characteristics of the central object (i.e., stellar SED), or even the fit of the spectral index and the relative flux ratio, can be used to model the central star while reconstructing the image of the extended structure separately. Methods: We present a new method, called SPARCO (semi-parametric algorithm for the image reconstruction of chromatic objects), which describes the spectral characteristics of both the central object and the extended structure to consider them properly when reconstructing the image of the surrounding environment. We adapted two image-reconstruction codes ( Macim , Squeeze , and MiRA ) to implement this new prescription. Results: SPARCO is applied using Macim , Squeeze , and MiRA on a young stellar object model and also on literature data on HR 5999 in the near-infrared with the VLTI. We obtain smoother images of the modeled circumstellar emission and improve the χ2 by a factor 9. Conclusions: This method paves the way to improved aperture-synthesis imaging of several young stellar objects with existing datasets. More generally, the approach can be used on astrophysical sources with similar features, such as active galactic nuclei, planetary nebulae, and asymptotic giant branch

  20. Stellar Ultraviolet Rocket Research Program. [faint object spectrograph

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A 1/4 meter ultraviolet spectrometer, developed to measure the ultraviolet flux from several standard type stars was flown successfully on Aerobee rockets. The ultraviolet flux from alpha Lyr, eta U Ma, zeta Oph, delta Ori, alpha CMa, beta CMa, and alpha Leo were measured. These values agreed with the OAO data obtained by Code in the 1200 to 3400 A region to + or - 9%. The design and calibration of a faint object spectrometer for observing stars and nebula with a 3 A resolution and a 3% accuracy in a 60 second observation are discussed.

  1. Highly Red Objects in M31: Candidates for Massive Young Stellar Objects or Superwind-Phase Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Kodaira, Keiichi; Tamura, Motohide; Vansevičius, Vladas; Miyazaki, Satoshi

    1998-06-01

    Several highly red objects (H-K>=0.9) are detected in the ~2'×2' field of OB association A24 near the 7 kpc spiral arm of M31. They show infrared excesses on the J-H versus H-K diagram, which is typical for stars with thick dust shells. We suspect them to be candidates either for compact young clusters containing massive young stellar objects or for superwind-phase asymptotic giant branch stars in M31.

  2. The real-time stellar evolution of Sakurai's object.

    PubMed

    Hajduk, Marcin; Zijlstra, Albert A; Herwig, Falk; van Hoof, Peter A M; Kerber, Florian; Kimeswenger, Stefan; Pollacco, Don L; Evans, Aneurin; Lopéz, José A; Bryce, Myfanwy; Eyres, Stewart P S; Matsuura, Mikako

    2005-04-01

    After a hot white dwarf ceases its nuclear burning, its helium may briefly and explosively reignite. This causes the star to evolve back into a cool giant, whereupon it experiences renewed mass ejection before reheating. A reignition event of this kind was observed in 1996 in V4334 Sgr (Sakurai's object). Its temperature decrease was 100 times the predicted rate. To understand its unexpectedly fast evolution, we have developed a model in which convective mixing is strongly suppressed under the influence of flash burning. The model predicts equally rapid reheating of the star. Radio emission from freshly ionized matter now shows that this reheating has begun. Such events may be an important source of carbon and carbonaceous dust in the Galaxy. PMID:15821085

  3. The Evolution of the Multiplicity of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Connelley, Michael S.; Reipurth, B.; Tokunaga, A.

    2006-12-01

    We have conducted a high resolution infrared survey of a large sample of Class I protostars to determine their binary frequency distribution from 60 AU to 5000 AU. Our goal was to address the question: "Do stars form in isolation?". To do this, we compiled a new sample of 267 nearby candidate Class I objects from across the whole sky, and observed those visible from Mauna Kea at H, K, and L' with a median resolution of 0.34" at L'. Our survey found 90 companions to 207 targets. In addition to being consistent with previous studies showing a strong binary excess over the solar-type main-sequence population, we have also observed a binary excess at wider and closer separations than previous studies. Our research is the first to have observational evidence for dynamical evolution through changes in the binary frequency distribution within the Class I lifetime, as well as differences in the protostellar binary statistics between star forming regions. This research was funded by the NASA IRTF.

  4. Hot and cold gas toward young stellar objects

    NASA Technical Reports Server (NTRS)

    Mitchell, George F.; Maillard, Jean-Pierre; Allen, Mark; Beer, Reinhard; Belcourt, Kenneth

    1990-01-01

    High-resolution M band spectra are presented for the seven embedded IR sources W3 IRS 5, S140 IRS1, NGC 7538 IRS 1, NGC 7538 IRS 9, GL 2136, LkH-alpha 101, and MWC 349A, and the data are combined with previously published work for W33A and GL 2591. Cold CO is seen toward all nine sources, with temperatures from 11 K to 66 K. Column densities of cold CO are presented. Hot gas is seen toward eight of the nine objects with temperatures from 120 K to 1010 K. New lower limits to the hot gas density are obtained. The hot gas toward GL 2591, GL 2136, W3 IRS 5, and S140 IRS 1 is probably very near the central source and heated via gas-grain collisions. The optical depth in the silicate feature is strongly correlated with the (C-13)O column density, confirming that silicate optical depth is a useful measure of gas column density. The ratio of solid-to-gaseous CO is obtained for seven sources.

  5. Hot and cold gas toward young stellar objects

    SciTech Connect

    Mitchell, G.F.; Maillard, J.; Allen, M.; Beer, R.; Belcourt, K. Canada-France-Hawaii Telescope Corp., Waimea, HI CNRS, Institut d'Astrophysique, Paris JPL, Pasadena, CA )

    1990-11-01

    High-resolution M band spectra are presented for the seven embedded IR sources W3 IRS 5, S140 IRS1, NGC 7538 IRS 1, NGC 7538 IRS 9, GL 2136, LkH-alpha 101, and MWC 349A, and the data are combined with previously published work for W33A and GL 2591. Cold CO is seen toward all nine sources, with temperatures from 11 K to 66 K. Column densities of cold CO are presented. Hot gas is seen toward eight of the nine objects with temperatures from 120 K to 1010 K. New lower limits to the hot gas density are obtained. The hot gas toward GL 2591, GL 2136, W3 IRS 5, and S140 IRS 1 is probably very near the central source and heated via gas-grain collisions. The optical depth in the silicate feature is strongly correlated with the (C-13)O column density, confirming that silicate optical depth is a useful measure of gas column density. The ratio of solid-to-gaseous CO is obtained for seven sources. 43 refs.

  6. Circumstellar Environments of Luminous Infrared Stellar Objects in the Magellanic Clouds

    NASA Technical Reports Server (NTRS)

    Azari, Abigail; Sahai, Raghvendra

    2011-01-01

    Young stars are formed out of the interstellar medium (ISM) which is replenished by mass loss rates from evolved stars. Circumstellar matter around young and evolved stellar objects usually emits energy in the infrared (IR) wavelength range as the matter is heated by the central star. Surveys of the Magellanic Clouds with the Spitzer Space Telescope in the 3.6-160 micron range have previously been completed. These surveys have led to catalogs of infrared sources: which include HII regions, young stars, super giants, asymptotic giant branch (AGB) stars, post-asymptotic giant branch (post-AGB) stars, and planetary nebulae. The utility of such surveys can be improved upon by using Hubble Space Telescope (HST) data. HST provides higher angular resolution than Spitzer and has allowed for more detailed investigation of these luminous IR objects. This project used previously obtained HST archival data to examine luminous IR objects at optical wavelengths. This allows for the reclassification of stellar objects previously thought as one type of object or in a particular stage of their stellar evolution. An overall objective of this project included looking for extended nebulosity around evolved stars to better understand the life cycle of such objects and classify these nebulae by shape.

  7. Model scattering envelopes of young stellar objects. I - Method and application to circumstellar disks

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.; Hartmann, Lee

    1992-01-01

    We describe a Monte Carlo code that accurately treats multiple scattering, absorption, and polarization by dust, and use this code to calculate images of dusty disks around young stellar objects. We present some approximate analytic results that describe the behavior of the Monte Carlo calculations. A geometrically thin disk illuminated by a central T Tauri star scatters very little light at distances of many AU from the star. Viewed at any inclination, the flux scattered by such a disk at the distance to the nearest star-forming region will be overwhelmed by the stellar image. An optically thick disk that has a flaring surface may be observable, especially if viewed nearly edge-on so that the stellar source becomes occulted. An optically thin disk with a finite opening angle, similar to the one surrounding beta Pictoris, is about as observable as the typical flared optically thick disk at a similar distance from the earth. The polarization position angle is perpendicular to the disk plane in all of the models, in contrast to observations of many young stellar objects which have the position angle oriented parallel to the presumed disk plane. We suggest that the scattered light structures observed around many premain-sequence objects are dusty envelopes rather than disks.

  8. A Fourier Optics Method for Calculating Stellar Occultation Light Curves by Objects with Thin Atmospheres

    NASA Astrophysics Data System (ADS)

    Young, E. F.

    2012-08-01

    A stellar occultation occurs when a solar system object passes in front of a distant star. The light curves resulting from stellar occultations can reveal many aspects of the obscuring object. For airless bodies, the diffraction light curve specifies the object's size, distance and, if several chords are observed, shape. Occultation light curves are especially sensitive to the presence of atmospheres; the refraction light curve is a function of the atmosphere's density, pressure, and temperature profiles. The goal of this paper is to develop a practical algorithm to model the simultaneous effects of diffraction and refraction for objects in which both phenomena are observable. The algorithm we present is flexible: it can be used to calculate light curves by objects with arbitrary shapes and arbitrary atmospheres (including the presence of opacity sources such as hazes), provided that the atmosphere can be represented by a thin screen with a phase delay and an opacity defined at each location in the screen. Because the algorithm is limited at present to thin atmospheres (in which rays from a star are bent but undergo virtually no translation as they pass through an atmosphere), the gas giants, Earth, Mars, and Venus are not treated. Examples of stellar occultations are presented for round or irregularly shaped objects having thin atmospheres of various column densities.

  9. A FOURIER OPTICS METHOD FOR CALCULATING STELLAR OCCULTATION LIGHT CURVES BY OBJECTS WITH THIN ATMOSPHERES

    SciTech Connect

    Young, E. F.

    2012-08-15

    A stellar occultation occurs when a solar system object passes in front of a distant star. The light curves resulting from stellar occultations can reveal many aspects of the obscuring object. For airless bodies, the diffraction light curve specifies the object's size, distance and, if several chords are observed, shape. Occultation light curves are especially sensitive to the presence of atmospheres; the refraction light curve is a function of the atmosphere's density, pressure, and temperature profiles. The goal of this paper is to develop a practical algorithm to model the simultaneous effects of diffraction and refraction for objects in which both phenomena are observable. The algorithm we present is flexible: it can be used to calculate light curves by objects with arbitrary shapes and arbitrary atmospheres (including the presence of opacity sources such as hazes), provided that the atmosphere can be represented by a thin screen with a phase delay and an opacity defined at each location in the screen. Because the algorithm is limited at present to thin atmospheres (in which rays from a star are bent but undergo virtually no translation as they pass through an atmosphere), the gas giants, Earth, Mars, and Venus are not treated. Examples of stellar occultations are presented for round or irregularly shaped objects having thin atmospheres of various column densities.

  10. BlueJ Visual Debugger for Learning the Execution of Object-Oriented Programs?

    ERIC Educational Resources Information Center

    Bennedsen, Jens; Schulte, Carsten

    2010-01-01

    This article reports on an experiment undertaken in order to evaluate the effect of a program visualization tool for helping students to better understand the dynamics of object-oriented programs. The concrete tool used was BlueJ's debugger and object inspector. The study was done as a control-group experiment in an introductory programming…

  11. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    SciTech Connect

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla; Cote, Patrick; Stetson, Peter; Simon, Joshua D.; Djorgovski, S. G. E-mail: rmunoz@das.uchile.cl

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed for inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.

  12. Stellar Occultations by Transneptunian and Centaurs Objects: results from more than 10 observed events

    NASA Astrophysics Data System (ADS)

    Braga-Ribas, F.; Vieira-Martins, R.; Assafin, M.; Camargo, J. I. B.; Sicardy, B.; Ortiz, J. L.

    2014-10-01

    Transneptunian objects (TNOs) are small fossils of the Solar System orbiting beyond Neptune. We use stellar occultations to derive their size and shape. This work summarizes the main results derived, so far, from all detected TNO occultations (excluding Pluto system). We have developed a process, constructing astrometric star catalogues to make long-term reliable predictions (Camargo et al. 2014). Information about their physical properties are invaluable to the understanding of the dynamical evolution of the Solar System.

  13. A Model for (Quasi-)Periodic Multiwavelength Photometric Variability in Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth; Whitney, Barbara A.; Hillenbrand, L. A.; Gregory, Scott G.; Stauffer, J. R.; Morales-Calderon, M.; Rebull, L.; Alencar, S. H. P.

    2016-09-01

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at optical and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.

  14. Accretion-induced variability links young stellar objects, white dwarfs, and black holes

    PubMed Central

    Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.

    2015-01-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  15. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    PubMed

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  16. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    SciTech Connect

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B.; De Mink, S. E.; De Koter, A.; Sana, H.; Gvaramadze, V. V.; Liermann, A.

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range

  17. A hot compact dust disk around a massive young stellar object.

    PubMed

    Kraus, Stefan; Hofmann, Karl-Heinz; Menten, Karl M; Schertl, Dieter; Weigelt, Gerd; Wyrowski, Friedrich; Meilland, Anthony; Perraut, Karine; Petrov, Romain; Robbe-Dubois, Sylvie; Schilke, Peter; Testi, Leonardo

    2010-07-15

    Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass ( approximately 20 solar masses) young stellar object. The image shows an elongated structure with a size of approximately 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of approximately 45 degrees . Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system. PMID:20631793

  18. Faint blue objects at high Galactic latitude. V - Palomar Schmidt field centered on selected area 71

    NASA Technical Reports Server (NTRS)

    Usher, Peter D.; Mitchell, Kenneth J.; Warnock, Archibald, III

    1988-01-01

    Starlike objects with both blue and ultraviolet excess have been selected from a Palomar 1.2 m Schmidt field centered on Kapteyn selected area 71. The method of selection is that used in the previous papers of this series, but modified to account for the differential reddening that occurs across the field. The color classes, color subclasses, positions, and magnitudes of the selected objects are listed.

  19. Luminosity excesses in low-mass young stellar objects - A statistical study

    NASA Technical Reports Server (NTRS)

    Strom, Karen M.; Strom, Stephen E.; Kenyon, Scott J.; Hartmann, Lee

    1988-01-01

    This paper presents a statistical study in which the observed total luminosity is compared quantitatively with an estimate of the stellar luminosity for a sample of 59 low-mass young stellar objects (YSOs) in the Taurus-Auriga complex. In 13 of the analyzed YSOs, luminosity excesses greater than 0.20 are observed together with greater than 0.6 IR excesses, which typically contribute the bulk of the observed excess luminosity and are characterized by spectral energy distributions which are flat or rise toward long wavelengths. The analysis suggests that YSOs showing the largest luminosity excesses typically power optical jets and/or molecular outflows or have strong winds, as evidenced by the presence of O I emission, indicating a possible correlation between accretion and mass-outflow properties.

  20. LBT/LUCIFER near-infrared spectroscopy of PV Cephei. An outbursting young stellar object with an asymmetric jet

    NASA Astrophysics Data System (ADS)

    Caratti o Garatti, A.; Garcia Lopez, R.; Weigelt, G.; Tambovtseva, L. V.; Grinin, V. P.; Wheelwright, H.; Ilee, J. D.

    2013-06-01

    Context. Young stellar objects (YSOs) occasionally experience enhanced accretion events, the nature of which is still poorly understood. The discovery of various embedded outbursting YSOs has recently questioned the classical definition of EXors and FUors. Aims: We present a detailed spectroscopic investigation of the young eruptive star PV Cep, to improve our understanding of its nature and characterise its circumstellar environment after its last outburst in 2004. Methods: The analysis of our medium-resolution spectroscopy in the near-infrared (NIR, 0.9-2.35 μm), collected in 2012 at the Large Binocular Telescope with the IR spectrograph LUCIFER, allows us to infer the main stellar parameters (visual extinction, accretion luminosity, mass accretion and ejection rates), and model the inner disc, jet, and wind. Results: The NIR spectrum displays several strong emission lines associated with accretion/ejection activity and circumstellar environment. Our analysis shows that the brightness of PV Cep is fading, as well as the mass accretion rate (2 × 10-7 M⊙ yr-1 in 2012 vs. ~5 × 10-6 M⊙ yr-1 in 2004), which is more than one order of magnitude lower than in the outburst phase. Among the several emission lines, only the [Fe ii] intensity increased after the outburst. The observed [Fe ii] emission delineates blue- and red-shifted lobes, both with high- and low-velocity components, which trace an asymmetric jet and wind, respectively. The observed emission in the jet has a dynamical age of 7-8 years, indicating that it was produced during the last outburst. The visual extinction decreases moving from the red-shifted (AV(red) = 10.1 ± 0.7 mag) to the blue-shifted lobe (AV(blue) = 6.5 ± 0.4 mag). We measure an average electron temperature of 17 500 K and electron densities of 30 000 cm-3 and 15 000 cm-3 for the blue and the red lobe, respectively. The mass ejection rate in both lobes is ~1.5 × 10-7 M⊙ yr-1, approximately matching the high accretion rate observed

  1. QUASI-STELLAR OBJECT SELECTION ALGORITHM USING TIME VARIABILITY AND MACHINE LEARNING: SELECTION OF 1620 QUASI-STELLAR OBJECT CANDIDATES FROM MACHO LARGE MAGELLANIC CLOUD DATABASE

    SciTech Connect

    Kim, Dae-Won; Protopapas, Pavlos; Alcock, Charles; Trichas, Markos; Byun, Yong-Ik; Khardon, Roni

    2011-07-10

    We present a new quasi-stellar object (QSO) selection algorithm using a Support Vector Machine, a supervised classification method, on a set of extracted time series features including period, amplitude, color, and autocorrelation value. We train a model that separates QSOs from variable stars, non-variable stars, and microlensing events using 58 known QSOs, 1629 variable stars, and 4288 non-variables in the MAssive Compact Halo Object (MACHO) database as a training set. To estimate the efficiency and the accuracy of the model, we perform a cross-validation test using the training set. The test shows that the model correctly identifies {approx}80% of known QSOs with a 25% false-positive rate. The majority of the false positives are Be stars. We applied the trained model to the MACHO Large Magellanic Cloud (LMC) data set, which consists of 40 million light curves, and found 1620 QSO candidates. During the selection none of the 33,242 known MACHO variables were misclassified as QSO candidates. In order to estimate the true false-positive rate, we crossmatched the candidates with astronomical catalogs including the Spitzer Surveying the Agents of a Galaxy's Evolution LMC catalog and a few X-ray catalogs. The results further suggest that the majority of the candidates, more than 70%, are QSOs.

  2. NuSTAR Observations of Bright X-ray Flares from Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Vievering, Juliana; Glesener, Lindsay; Grefenstette, Brian; Smith, David

    2016-05-01

    Bright x-ray flares are observed to occur on young stellar objects (YSOs) and are presumed to be driven by similar processes as those seen on our sun. Observations of the flaring activity of YSOs can add to our understanding of the early lives of stars and the development of planetary systems. In particular, x-ray observations of these stellar flares are essential for probing the youngest stars, as these stars are most obscured by dense molecular clouds. One such cloud complex of YSOs, rho Ophiuchi, has been a past target for soft x-ray (SXR) missions, including Chandra and XMM-Newton. However, the energy ranges covered by these missions drop off prior to the hard x-ray (HXR) regime, where the crossover to a dominant nonthermal component could be observed. Whether or not this nonthermal emission is strong enough to be observed could then be an indicator of how large an influence these flares have on the surrounding protoplanetary disk. To begin investigating this HXR emission, two 50ks observations of rho Ophiuchi have been taken with the Nuclear Spectroscopic Telescope Array (NuSTAR), which is optimized over the energy range of 3-79 keV. Multiple stellar flares have been identified in the observations; here we present the preliminary analysis, including light curves and spectra, of the brightest of these flaring events. We explore the implications of the data for flaring activity of YSOs and compare the results to typical flaring activity of the sun.

  3. Stellar, Remnant, Planetary, and Dark-Object Masses from Astrometric Microlensing

    NASA Technical Reports Server (NTRS)

    Gould, Andrew P.; Bennett, David P.; Boden, Andrew; Depoy, Darren L.; Gaudi, Scott B.; Griest, Kim; Han, Cheongho; Paczynski, Bohdan; Reid, I. Neill

    2004-01-01

    The primary goal of our project is to make a complete census of the stellar population of the Galaxy. We are broadening the term stellar here to include both ordinary stars and dark stars. Ordinary stars, burning their nuclear fuel and shining, can perhaps best be studied with traditional astronomical techniques, but dark stars, by which we include old brown dwarfs, black holes, old white dwarfs, neutron stars, and perhaps exotic objects such as mirror matter stars or primordial black holes, can only be studied by their gravitational effects. Traditionally, these objects have been probed in binaries, and thus selected in a way that may or may not be representative of their respective field populations. The only way to examine the field population of these stars is through microlensing, the deflection of light from a visible star in the background by an object (dark or not) in the foreground. When lensed, there are two images of the background star. Although these images cannot be resolved when the lens has a stellar mass, the lensing effect can be detected in two ways: photometrically, i.e. by measuring the magnification of the source by the lens, and astrometrically, i.e. by measuring the shift in the centroid of the two images. Photometric microlensing experiments have detected hundreds of microlensing events over the past decade. Despite its successes, photometric microlensing has so far been somewhat frustrating because these events are difficult to interpret. Almost nothing is known about the masses of individual lenses and very little is known about the statistical properties of the lenses treated as a whole, such as their average mass. Although probably over 100 of the lenses are in fact dark objects, we can't determine which they are, let alone investigate finer details such as what their masses are, and where they are in the Galaxy. With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We

  4. Thomas-Fermi model for a bulk self-gravitating stellar object in two dimensions

    NASA Astrophysics Data System (ADS)

    De, Sanchari; Chakrabarty, Somenath

    2015-09-01

    In this article we have solved a hypothetical problem related to the stability and gross properties of two-dimensional self-gravitating stellar objects using the Thomas-Fermi model. The formalism presented here is an extension of the standard three-dimensional problem discussed in the book on statistical physics, Part I by Landau and Lifshitz. Further, the formalism presented in this article may be considered a class problem for post-graduate-level students of physics or may be assigned as a part of their dissertation project.

  5. The EREBOS Project: Determining the Influence of Substellar Objects on Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Barlow, Brad; Schaffenroth, Veronika; Catalan-Hurtado, Rodrigo; EREBOS Team

    2016-01-01

    Planets and brown dwarfs in close orbits around main sequence stars will interact with their stellar hosts once they ascend the red giant branch. The details of these interactions and their outcomes are currently unclear. Recent discoveries of brown dwarfs orbiting post-red giant branch "hot subdwarf" stars imply that (i) the angular momentum resident in an orbiting substellar object is sufficient for ejecting the outer layers of a red giant's atmosphere and (ii) the substellar object can survive this interaction. Thirty-six new eclipsing hot subdwarf binaries with cool, low-mass companions were discovered from light curves obtained through the Optical Gravitational Lensing Experiment (OGLE) project, tripling the number of known systems. We recently started the Eclipsing Reflection Effect Binaries from the OGLE Survey (EREBOS) project to obtain follow-up spectroscopy and determine the stellar masses in these systems. The companion mass distribution resulting from this work will allow us to determine whether there is a lower mass limit for substellar objects to eject a red giant's envelope and survive engulfment, as suggested by theory. Here we give a brief overview of the EREBOS project and discuss progress towards this goal.

  6. Accretion-caused deceleration of a gravitationally powerful compact stellar object moving within a dense Fermi gas

    NASA Astrophysics Data System (ADS)

    Tito, E. P.; Pavlov, V. I.

    2016-07-01

    We consider accretion-caused deceleration of a gravitationally-powerful compact stellar object traveling within a cold Fermi-gas medium. We provide analytical and numerical estimates of the effect manifestation.

  7. Stellar envelope inflation near the Eddington limit. Implications for the radii of Wolf-Rayet stars and luminous blue variables

    NASA Astrophysics Data System (ADS)

    Gräfener, G.; Owocki, S. P.; Vink, J. S.

    2012-02-01

    Context. It has been proposed that the envelopes of luminous stars may be subject to substantial radius inflation. The peculiar structure of such inflated envelopes, with an almost void, radiatively dominated region beneath a thin, dense shell could mean that many in reality compact stars are hidden below inflated envelopes, displaying much lower effective temperatures. The inflation effect has been discussed in relation to the radius problem of Wolf-Rayet (WR) stars, but has yet failed to explain the large observed radii of Galactic WR stars. Aims: We wish to obtain a physical perspective of the inflation effect, and study the consequences for the radii of WR stars, and luminous blue variables (LBVs). For WR stars the observed radii are up to an order of magnitude larger than predicted by theory, whilst S Doradus-type LBVs are subject to humongous radius variations, which remain as yet ill-explained. Methods: We use a dual approach to investigate the envelope inflation, based on numerical models for stars near the Eddington limit, and a new analytic formalism to describe the effect. An additional new aspect is that we take the effect of density inhomogeneities (clumping) within the outer stellar envelopes into account. Results: Due to the effect of clumping we are able to bring the observed WR radii in agreement with theory. Based on our new formalism, we find that the radial inflation is a function of a dimensionless parameter W, which largely depends on the topology of the Fe-opacity peak, i.e., on material properties. For W > 1, we discover an instability limit, for which the stellar envelope becomes gravitationally unbound, i.e. there no longer exists a static solution. Within this framework we are also able to explain the S Doradus-type instabilities for LBVs like AG Car, with a possible triggering due to changes in stellar rotation. Conclusions: The stellar effective temperatures in the upper Hertzsprung-Russell (HR) diagram are potentially strongly affected

  8. Migratory and resident blue tits Cyanistes caeruleus differ in their reaction to a novel object

    NASA Astrophysics Data System (ADS)

    Nilsson, Anna L. K.; Nilsson, Jan-Åke; Alerstam, Thomas; Bäckman, Johan

    2010-11-01

    Individuals differ consistently in their behavioural reactions towards novel objects and new situations. Reaction to novelty is one part of a suit of individually consistent behaviours called coping strategies or personalities and is often summarised as bold or shy behaviour. Coping strategies could be particularly important for migrating birds exposed to novel environments on their journeys. We compared the average approach latencies to a novel object among migrants and residents in partially migratory blue tits Cyanistes caeruleus. In this test, we found migrating blue tits to have shorter approach latencies than had resident ones. Behavioural reactions to novelty can affect the readiness to migrate and short approach latency may have an adaptive value during migration. Individual behaviour towards novelty might be incorporated among the factors associated with migratory or resident behaviour in a partially migratory population.

  9. The envelopes around young stellar objects: What can far-infared observations tell us?

    NASA Technical Reports Server (NTRS)

    Butner, H. M.; Moriarty-Schieven, G. H.; Ressler, M. E.; Werner, Michael W.

    1995-01-01

    High resolution, far-infrared spatial observations offer a way to probe the density structure of the envelopes around young stellar objects, and thus provide a test of star formation theories. As part of a long term program, we are using the Kuiper Airborne Observatory with the Yerkes Far-Infrared Camera system to study the far-infrared emission (60, 100, 160, and 200 microns) from a number of low mass embedded objects in Taurus. By comparing the observations with the results of radiative transfer models, we are able to estimate the envelope density distribution around these systems. We present our initial results for 4 embedded objects (L1551-IRS 5, L1489-IR, L1551-NE, and L1527-IR).

  10. THE EXTENDED NARROW-LINE REGION OF TWO TYPE-I QUASI-STELLAR OBJECTS

    SciTech Connect

    Oh, Semyeong; Woo, Jong-Hak; Bennert, Vardha N.; Jungwiert, Bruno; Leipski, Christian; Albrecht, Marcus E-mail: woo@astro.snu.ac.kr E-mail: bruno@ig.cas.cz E-mail: leipski@mpia-hd.mpg.de

    2013-04-20

    We investigate the narrow-line region (NLR) of two radio-quiet QSOs, PG1012+008 and PG1307+085, using high signal-to-noise spatially resolved long-slit spectra obtained with FORS1 at the Very Large Telescope. Although the emission is dominated by the point-spread function of the nuclear source, we are able to detect extended NLR emission out to several kiloparsec scales in both QSOs by subtracting the scaled central spectrum from outer spectra. In contrast to the nuclear spectrum, which shows a prominent blue wing and a broad line profile of the [O III] line, the extended emission reveals no clear signs of large-scale outflows. Exploiting the wide wavelength range, we determine the radial change of the gas properties in the NLR, i.e., gas temperature, density, and ionization parameter, and compare them with those of Seyfert galaxies and type-II QSOs. The QSOs have higher nuclear temperature and lower electron density than Seyferts, but show no significant difference compared to type-II QSOs, while the ionization parameter decreases with radial distance, similar to the case of Seyfert galaxies, For PG1012+008, we determine the stellar-velocity dispersion of the host galaxy. Combined with the black hole mass, we find that the luminous radio-quiet QSO follows the local M{sub BH}-{sigma}{sub *} relation of active galactic nuclei.

  11. VizieR Online Data Catalog: Faint blue objects at high galactic latitude (Mitchell+, 2004)

    NASA Astrophysics Data System (ADS)

    Mitchell, K. J.; Usher, P. D.

    2006-11-01

    The US survey has cataloged 3987 objects in seven high Galactic latitude fields according to their optical colors, magnitudes, and morphologies using photographic techniques. This paper analyzes the effectiveness of the survey at producing finding lists for complete samples of hot stars and quasars that exhibit blue and/or ultraviolet excess (B-UVX) relative to the colors of halo F and G subdwarf stars. A table of 599 spectroscopic identifications summarizes the spectroscopic coverage of the US objects that has been accomplished to date. (6 data files).

  12. Near-infrared (JHK) spectroscopy of young stellar and substellar objects in orion

    SciTech Connect

    Ingraham, P.; Albert, L.; Doyon, R.; Artigau, E.

    2014-02-10

    We performed low-resolution (R ∼ 40) near-infrared (0.9-2.4 μm) multi-object spectroscopy of 240 isolated point sources having apparent H-band magnitudes between 9 and 18 in the central 5' × 6' of the Orion Trapezium cluster. The observations were performed over four nights at the Canada-France-Hawaii Telescope using the visiting instrument SIMON, an infrared imager and multi-object spectrograph. We present the spectra of 104 objects with accurately derived spectral types including 7 new objects having masses below the hydrogen-burning limit, and 6 objects with masses below the deuterium-burning limit. The spectral classification is performed by fitting previously classified spectral templates of dwarf stars (K4-M3) and optically classified young stellar and substellar objects (M4-L0), to the entire 0.9-2.4 μm spectral energy distribution in order to assign a spectral type and visual extinction for each object. Of the 104 objects studied, 44 have been previously classified spectroscopically using various techniques. We perform a rigorous comparison between the previous classifications and our own and find them to be in good agreement. Using the dereddened H-band magnitudes, the classified objects are used to create an Hertzsprung-Russell diagram for the cluster. We find that the previous age estimates of ∼1 Myr to be consistent with our results. Consistent with previous studies, numerous objects are observed to have luminosities several magnitudes above the 1 Myr isochrone. Numerous objects exhibiting emission features in the J band are also reported.

  13. Faint quasi-stellar-object candidates in selected areas 28 and 68 identified from multicolor photometry

    SciTech Connect

    Shields, J.C.; Koo, D.C.; Kron, R.C.; California Univ., Berkeley; Lick Observatory, Santa Cruz, CA; Yerkes Observatory, Williams Bay, WI )

    1989-04-01

    Forty-five QSO candidates over a total area of 0.53 square degree in two fields at high Galactic latitudes have been identified. These candidates reached B of about 21.5 for field Lynx.3 in SA 28 and B of about 22 for field SA68.2, and were selected from a subset of objects in catalogs generated from multicolor photometry (UBV) of deep Kitt Peak 4-m plates with limits of B of about 24. This subset consists of all objects which appeared stellar-like in size but which did not have the UBV colors of common Galactic stars. Besides several probable high-redshift QSOs, this study yields faint QSO counts consistent with those from other surveys, and thus provides further support to models that include mainly the luminosity evolution of QSOs. 29 refs.

  14. Warm Gas and Dust of Massive Young Stellar Objects Revealed by Herschel PACS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Woojin; van der Tak, Floris; Karska, Agata; Herczeg, Gregory; Chavarria, Luis; Herpin, Fabrice; Wyrowski, Friedrich; Braine, Jonathan; van Dishoeck, Ewine

    2015-08-01

    We present results of Herschel PACS imaging spectroscopy data toward ten massive young stellar objects taken as part of the WISH project. Our sample consists of four high mass protostellar objects (HMPOs), two hot molecular cores (HMCs), and four ultracompact HII regions (UCHIIs), and the spectra cover a broad range of wavelengths (55 to 210 micron) presenting various atomic and molecular lines as well as excellent continua. By fitting the continua utilizing a modified black-body formula we estimate mass-weighted temperature and column density distributions of warm dust and find that UCHII regions are hottest and HMCs are most deeply embedded. We also estimate rotational temperature and column density distributions of warm CO gas using the rotational diagram analysis. In addition, based on the comparison of high J CO line fluxes to the RATRAN estimates of central heating envelope models, we find that majority of warm CO is originated from bipolar outflow shocks.

  15. The peculiar dipping events in the disk-bearing young-stellar object EPIC 204278916

    NASA Astrophysics Data System (ADS)

    Scaringi, S.; Manara, C. F.; Barenfeld, S. A.; Groot, P. J.; Isella, A.; Kenworthy, M. A.; Knigge, C.; Maccarone, T. J.; Ricci, L.; Ansdell, M.

    2016-08-01

    EPIC 204278916 has been serendipitously discovered from its K2 light curve which displays irregular dimmings of up to 65% for ≈25 consecutive days out of 78.8 days of observations. For the remaining duration of the observations, the variability is highly periodic and attributed to stellar rotation. The star is a young, low-mass (M-type) pre-main-sequence star with clear evidence of a resolved tilted disk from ALMA observations. We examine the K2 light curve in detail and hypothesise that the irregular dimmings are caused by either a warped inner-disk edge or transiting cometary-like objects in either circular or eccentric orbits. The explanations discussed here are particularly relevant for other recently discovered young objects with similar absorption dips.

  16. Near-infrared observations of young stellar objects in the Rho Ophiuchi dark cloud

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.; Young, Erick T.

    1992-01-01

    We have conducted an imaging survey of 1.4 sq pc of the Rho Ophiuchi dark cloud in the J, H, and K near-infrared photometric bands. Approximately 337 of our 481 detected sources are associated with the cloud, and we estimate that 48 percent of these have near-infrared excesses, indicative of disks or circumstellar material surrounding these young stellar objects (YSOs). The K-band luminosity function is significantly different in different regions of our survey area, suggesting that YSOs in these regions have different ages or mass functions. We estimate that the entire survey area has a high star-formation efficiency, at roughly 23 percent. Finally, our many newly detected sources provide a relatively large, uniformly sensitive sample of objects for study at longer wavelengths to better determine true source luminosities and evolutionary lifetimes.

  17. First Spectroscopic Identification of Massive Young Stellar Objects in the Galactic Center

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C.; Schultheis, Mathias; Stolovy, Susan R.; Cotera, Angela S.; Robitaille, Thomas P.; Smith, Howard A.

    2009-01-01

    We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.

  18. Further Observations of Dust/Gas Stratification in the Disks of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Horne, David J.; Blake, D.; Gibb, E.; Rettig, T.; Brittain, S.

    2008-05-01

    The distribution of gas compared to dust in the circumstellar discs of young stellar objects (YSO's) is crucial to our understanding of the early evolution of planetary bodies in young stellar systems. Planetary formation models indicate that dust density in the mid-plane of a protoplanetary disk is critical to the formation timescale of planetary bodies, but turbulent mixing may act to distribute dust to higher scale heights. Observations of gas/dust stratification provide a good measure of internal disc dynamics and potential formation of planetesimals. Rettig et al. (2006) reported observational evidence of stratification in the discs of four class II TTauri stars utilizing NIRSPEC observations of 12CO,13CO and C18O fundamental and 12CO overtone absorption lines to measure the column density of gas along the line of sight. This project aims to expand the scope of this work by studying the extent of this effect for a larger sample of T Tauri stars. Since our sample consists of low mass stars that often exhibit photospheric CO absorption at K-band, we have expanded our analysis to incorporate the ATLAS advanced stellar photosphere models (Sbordone et.al 2004). Photospheric features may then be extracted from the target spectrum using custom written algorithms. These methods will allow the gas/dust ratio as a function of inclination to be derived for a greater range of sources. We present our initial results and discuss the correlation of gas/dust ratio with disk inclination presented in Rettig et al. (2006).

  19. Spectroscopic Assessment of WISE-based Young Stellar Object Selection Near λ and σ Orionis

    NASA Astrophysics Data System (ADS)

    Koenig, Xavier; Hillenbrand, Lynne A.; Padgett, Deborah L.; DeFelippis, Daniel

    2015-10-01

    We have conducted a sensitive search down to the hydrogen burning limit for unextincted stars over ∼200 square degrees around Lambda Orionis and 20 square degrees around Sigma Orionis using the methodology of Koenig & Leisawitz. From WISE and 2MASS data we identify 544 and 418 candidate young stellar objects (YSOs) in the vicinity of λ and σ respectively. Based on our followup spectroscopy for some candidates and the existing literature for others, we found that ∼80% of the K14-selected candidates are probable or likely members of the Orion star-forming region. The yield from the photometric selection criteria shows that WISE sources with {K}S-w3\\gt 1.5 mag and KS between 10 and 12 mag are most likely to show spectroscopic signs of youth, while WISE sources with {K}S-w3 > 4 mag and {K}S\\gt 12 were often active galactic nuclei when followed up spectroscopically. The population of candidate YSOs traces known areas of active star formation, with a few new “hot spots” of activity near Lynds 1588 and 1589 and a more dispersed population of YSOs in the northern half of the H ii region bubble around σ and ɛ Ori. A minimal spanning tree analysis of the two regions to identify stellar groupings finds that roughly two-thirds of the YSO candidates in each region belong to groups of 5 or more members. The population of stars selected by WISE outside the MST groupings also contains spectroscopically verified YSOs, with a local stellar density as low as 0.5 stars per square degree.

  20. Near-infrared spectra of ISO selected Chamaeleon I young stellar objects

    NASA Astrophysics Data System (ADS)

    Gómez, M.; Persi, P.

    2002-07-01

    We present 0.95-2.5 mu m moderate (R ~ 500) resolution spectra of 19 ISOCAM detected sources in the Chamaeleon I dark cloud. Thirteen of these stars are candidate very low mass members of the cloud proposed by Persi et al. (\\cite{per00}) on basis of the mid-IR color excess. The sample also includes a bona-fide young brown dwarf (Cha Hα 1), a transition - stellar/sub-stellar - object (Cha Hα 2), one previously known T Tauri star (Sz 33) and three ISOCAM sources with no mid-IR excess. The spectra of the mid-IR color excess sources are relatively flat and featureless in this wavelength range. Both atomic and molecular lines (when in absorption) are partially veiled suggesting the presence of continuum emission from circumstellar dust. In addition some of the sources show Paschen and Brackett lines in emission. We apply the 2 mu m water vapor index defined by Wilking et al. (\\cite{wil99}) to estimate spectral types. These stars have spectral types M0-8. We use Persi et al.'s stellar luminosity determinations, in combination with D'Antona & Mazzitelli latest pre-main sequence evolutionary tracks, to estimate masses and ages. The ISOCAM detected mid-IR excess sources have sub-solar masses down to the H-burning limit and a median age of few x106 yr, in good agreement with the higher mass members of this cloud. Based on observations collected at the European Southern Observatory, Chile, (ESO proposal N.65.I-0054).

  1. Blue compact dwarf galaxies. II - Near-infrared studies and stellar populations

    NASA Technical Reports Server (NTRS)

    Thuan, T. X.

    1983-01-01

    An IR photometric survey was performed of 36 blue compact dwarf galaxies (BCDG) where intense bursts of star formation have been observed. The survey covered the J, H, and K lines, with all readings taken at the level of a few mJy. Although the near-IR fluxes observed in the galaxies are due to K and M giants, the bursts have calculated ages of less than 50 million yr. However, the BCDG galaxies surveyed are not young, with the least chemically evolved galaxy observed, I Zw 18, featuring 50 pct of its stars formed prior to its last burst, but with a missing mass that is not accounted for by H I interferometric observations. It is concluded that the old stars must be more spatially extended than the young stars, and a mixture of OB stars with the K and M giants is projected as capable of displaying the colors observed. The star formation processes in the BCDG galaxies is defined as dependent on the total mass of the galaxies, with low mass galaxies having a high ratio of star formation, compared to their previous rates.

  2. THE STRUCTURE OF THE SAGITTARIUS STELLAR STREAM AS TRACED BY BLUE HORIZONTAL BRANCH STARS

    SciTech Connect

    Ruhland, Christine; Rix, Hans-Walter; Bell, Eric F.; Xue Xiangxiang

    2011-04-20

    We use a sample of blue horizontal branch (BHB) stars from the Sloan Digital Sky Survey Data Release 7 to explore the structure of the tidal tails from the Sagittarius Dwarf Galaxy. We use a method yielding BHB star candidates with up to {approx}70% purity from photometry alone. The resulting sample has a distance precision of roughly 5% and can probe distances in excess of 100 kpc. Using this sample, we identify a possible extension to the trailing arm at distances of 60-80 kpc from the Sun with an estimated significance of at least 3.8{sigma}. Current models predict that a distant 'returning' segment of the debris stream should exist, but place it substantially closer to the Sun where no debris is observed in our data. Exploiting the distance precision of our tracers, we estimate the mean line-of-sight thickness of the leading arm to be {approx}3 kpc, and show that the two 'bifurcated' branches of the debris stream differ by only 1-2 kpc in distance. With a spectroscopic very pure BHB star subsample, we estimate the velocity dispersion in the leading arm, 37 km s{sup -1}, which is in reasonable agreement with models of Sgr disruption. We finally present a sample of high-probability Sgr BHB stars in the leading arm of Sgr, selected to have distances and velocities consistent with Sgr membership, to allow further study.

  3. On the accretion properties of young stellar objects in the L1615/L1616 cometary cloud

    NASA Astrophysics Data System (ADS)

    Biazzo, K.; Alcalá, J. M.; Frasca, A.; Zusi, M.; Getman, F.; Covino, E.; Gandolfi, D.

    2014-12-01

    We present the results of FLAMES/UVES and FLAMES/GIRAFFE spectroscopic observations of 23 low-mass stars in the L1615/L1616 cometary cloud, complemented with FORS2 and VIMOS spectroscopy of 31 additional stars in the same cloud. L1615/L1616 is a cometary cloud in which the star formation was triggered by the impact of massive stars in the Orion OB association. From the measurements of the lithium abundance and radial velocity, we confirm the membership of our sample to the cloud. We use the equivalent widths of the Hα, Hβ, and the He i λ5876, λ6678, λ7065 Å emission lines to calculate the accretion luminosities, Lacc, and the mass accretion rates, Ṁacc. We find in L1615/L1616 a fraction of accreting objects (~30%), which is consistent with the typical fraction of accretors in T associations of similar age (~3 Myr). The mass accretion rate for these stars shows a trend with the mass of the central object similar to that found for other star-forming regions, with a spread at a given mass that depends on the evolutionary model used to derive the stellar mass. Moreover, the behavior of the 2MASS/WISE colors with Ṁacc indicates that strong accretors with log Ṁacc ≳ -8.5 dex show large excesses in the JHKs bands, as in previous studies. We also conclude that the accretion properties of the L1615/L1616 members are similar to those of young stellar objects in T associations, like Lupus. Based on FLAMES (UVES+GIRAFFE) observations collected at the Very Large Telescope (VLT; Paranal, Chile). Program 076.C-0385(A).Tables 3-6 and Appendices are available in electronic form at http://www.aanda.org

  4. YOUNG STELLAR OBJECTS IN LYNDS 1641: DISKS, ACCRETION, AND STAR FORMATION HISTORY

    SciTech Connect

    Fang Min; Kim, Jinyoung Serena; Flaherty, Kevin; Van Boekel, Roy; Henning, Thomas; Sicilia-Aguilar, Aurora

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering {approx}1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of {approx}50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M{sub *}/M{sub Sun }) Almost-Equal-To -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.

  5. The physics of the accretion process in the formation and evolution of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Manara, C. F.

    2014-07-01

    The formation of planets is thought to happen in protoplanetary disks surrounding young stars during the first few Myrs of their pre-main-sequence evolution. In order to understand planet formation a detailed knowledge of the disk evolution process is needed. By studying the interaction of the disk with the central star, which includes accretion of matter due to viscous processes in the disk, we can constrain the physical conditions of the inner gaseous disk in which planet formation takes place. With the recent advent of the X-Shooter spectrograph, a second generation instrument of the ESO/VLT, the excess emission due to accretion in the ultraviolet can be studied simultaneously with the accretion signatures in the visible and in the near-infrared, finally giving a complete view of this phenomenon. In this Thesis I have studied various X-Shooter datasets of young stars to determine the intensity and the properties of the accretion process at various phases of disk evolution and as a function of the central star mass and age. To fully exploit the potential of the X-Shooter spectra, I have developed an innovative method of analysis to derive accretion and stellar parameters with an automatic algorithm. This is based on a set of models, composed of a set of photospheric templates of young stars that I gathered and characterized, a set of slab models, that I have coded, to reproduce the emission due to the accretion shock, and a reddening law to take into account extinction effects. This method allows to accurately determine for the first time the stellar and accretion parameters of the targets self-consistently and with no prior assumptions, a significant improvement with respect to previous studies. I have applied this methodology to determine the correct stellar parameters of two objects in the Orion Nebula Cluster that were reported in the literature to have an anomalous old age. My analysis has shown why previous investigations could not resolve the degeneracy

  6. Characterizing stellar halo populations II: The age gradient in blue horizontal-branch stars

    NASA Astrophysics Data System (ADS)

    Das, Payel; Williams, Angus; Binney, James

    2016-08-01

    The distribution of Milky Way halo blue horizontal-branch (BHB) stars is examined using action-based extended distribution functions (EDFs) that describe the locations of stars in phase space, metallicity, and age. The parameters of the EDFs are fitted using stars observed in the Sloan Extension for Galactic Understanding and Exploration-II (SEGUE-II) survey that trace the phase-space kinematics and chemistry out to ˜70 kpc. A maximum a posteriori probability (MAP) estimate method and a Markov Chain Monte Carlo method are applied, taking into account the selection function in positions, distance, and metallicity for the survey. The best-fit EDF declines with actions less steeply at actions characteristic of the inner halo than at the larger actions characteristic of the outer halo, and older ages are found at smaller actions than at larger actions. In real space, the radial density profile steepens smoothly from -2 at ˜2 kpc to -4 in the outer halo, with an axis ratio ˜0.7 throughout. There is no indication for rotation in the BHBs, although this is highly uncertain. A moderate level of radial anisotropy is detected, with βs varying from isotropic to between ˜0.1 and ˜0.3 in the outer halo depending on latitude. The BHB data are consistent with an age gradient of -0.03 Gyr kpc-1, with some uncertainty in the distribution of the larger ages. These results are consistent with a scenario in which older, larger systems contribute to the inner halo, whilst the outer halo is primarily comprised of younger, smaller systems.

  7. 76 FR 39974 - Culturally Significant Object Imported for Exhibition Determinations: “Titian's Woman in a Blue...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Culturally Significant Object Imported for Exhibition Determinations: ``Titian's Woman in a Blue Dress `La... ``Titian's Woman in a Blue Dress `La Bella','' imported from abroad for temporary exhibition within...

  8. IRAS observations of young stellar objects in the Corona Australis dark cloud

    NASA Technical Reports Server (NTRS)

    Wilking, Bruce A.; Greene, Thomas P.; Lada, Charles J.; Meyer, Michael R.; Young, Erick T.

    1992-01-01

    The young stellar object (YSO) population associated with the dark cloud complex in Corona Australis is studied by synthesizing IRAS data with newly obtained near-IR and mid-IR photometry and previously published optical/IR data. Twenty-four YSOs in the Cr A complex are identified. The observed range of spectral energy distribution shapes and bolometric luminosities are consistent with those observed in other dark clouds. The duration and efficiency of star formation are found to be similar to the Rho Ophiuchi IR cluster. The low number of YSOs compared to other dark clouds is understood by a reevaluation of the molecular mass of the R Cr A cloud which shows it to be much less massive than previously assumed.

  9. Detection of water masers toward young stellar objects in the Large Magellanic Cloud

    SciTech Connect

    Johanson, A. K.; Migenes, V.; Breen, S. L.

    2014-02-01

    We present results from a search for water maser emission toward N4A, N190, and N206, three regions of massive star formation in the Large Magellanic Cloud (LMC). Four water masers were detected; two toward N4A, and two toward N190. In the latter region, no previously known maser emission has been reported. Future studies of maser proper motion to determine the galactic dynamics of the LMC will benefit from the independent data points the new masers in N190 provide. Two of these masers are associated with previously identified massive young stellar objects (YSOs), which strongly supports the authenticity of the classification. We argue that the other two masers identify previously unknown YSOs. No masers were detected toward N206, but it does host a newly discovered 22 GHz continuum source, also associated with a massive YSO. We suggest that future surveys for water maser emission in the LMC be targeted toward the more luminous, massive YSOs.

  10. A molecular Einstein ring: imaging a starburst disk surrounding a quasi-stellar object.

    PubMed

    Carilli, C L; Lewis, G F; Djorgovski, S G; Mahabal, A; Cox, P; Bertoldi, F; Omont, A

    2003-05-01

    Images of the molecular CO 2-1 line emission and the radio continuum emission from the redshift 4.12 gravitationally lensed quasi-stellar object (QSO) PSS J2322+1944 reveal an Einstein ring with a diameter of 1.5". These observations are modeled as a star-forming disk surrounding the QSO nucleus with a radius of 2 kiloparsecs. The implied massive star formation rate is 900 solar masses per year. At this rate, a substantial fraction of the stars in a large elliptical galaxy could form on a dynamical time scale of 108 years. The observation of active star formation in the host galaxy of a high-redshift QSO supports the hypothesis of coeval formation of supermassive black holes and stars in spheroidal galaxies. PMID:12677071

  11. High spatial resolution IR observations of young stellar objects - A possible disk surrounding HL Tauri

    NASA Technical Reports Server (NTRS)

    Grasdalen, G. L.; Strom, S. E.; Strom, K. M.; Capps, R. W.; Thompson, D.; Castelaz, M.

    1984-01-01

    High spatial resolution images of the T Tauri star HL Tau were obtained at 1.6 microns and 2.2 microns. The original images as well as maximum entropy image reconstructions reveal a circumstellar envelope structure, similar at both wavelenghts, and extended along P.A. = 112 deg; the 10 percent width of the structure is 1.9 sec (300 AU at 160 pc). The extended structure is interpreted as light scattered toward earth by dust in a disk surrounding this young stellar object. Polarization measurements made at 2.2 microns support this hypothesis. The total solid particle mass is, at minimum, 5 x 10 to the -7th solar mass.

  12. Optical evidence for the unification of active galactic nuclei and quasi-stellar objects.

    PubMed Central

    Miller, J S

    1995-01-01

    There is a variety of optical evidence for some unification of different types of active galactic nuclei and quasi-stellar objects (QSOs). The case is very strong for the unification of at least some Seyfert galaxies, where polarization data show that the type assigned to the Seyfert galaxy must depend on viewing direction. It has been proposed that Fanaroff-Riley type 2 (FR2) radio galaxies are quasars seen in a direction from which the quasar is obscured, and there is some limited direct evidence for this picture. The broad absorption line QSOs may be normal QSOs seen from a special direction. Some of the sources observed to have high luminosities in the far infrared could be obscured QSOs and active nuclei. Mergers and interactions are likely to play an important role in nuclear activity, and active galaxies and QSOs could change their apparent types through these encounters followed by subsequent evolution. PMID:11607611

  13. Statistical tests of peaks and periodicities in the observed redshift distribution of quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Duari, Debiprosad; Gupta, Patrick D.; Narlikar, Jayant V.

    1992-01-01

    An overview of statistical tests of peaks and periodicities in the redshift distribution of quasi-stellar objects is presented. The tests include the power-spectrum analysis carried out by Burbidge and O'Dell (1972), the generalized Rayleigh test, the Kolmogorov-Smirnov test, and the 'comb-tooth' test. The tests reveal moderate to strong evidence for periodicities of 0.0565 and 0.0127-0.0129. The confidence level of the periodicity of 0.0565 in fact marginally increases when redshifts are transformed to the Galactocentric frame. The same periodicity, first noticed in 1968, persists to date with a QSO population that has since grown about 30 times its original size. The prima facie evidence for periodicities in 1n(1 + z) is found to be of no great significance.

  14. Extended red objects and stellar-wind bow shocks in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Sexton, Remington O.; Povich, Matthew S.; Smith, Nathan; Babler, Brian L.; Meade, Marilyn R.; Rudolph, Alexander L.

    2015-01-01

    We report the results of infrared photometry on 39 extended red objects (EROs) in the Carina Nebula, observed with the Spitzer Space Telescope. Most EROs are identified by bright, extended 8.0 μm emission, which ranges from 10 arcsec to 40 arcsec in size, but our sample also includes four EROs identified by extended 24 μm emission. Of particular interest are nine EROs associated with late O- or early B-type stars and characterized by arc-shaped morphology, suggesting dusty, stellar-wind bow shocks. These objects are preferentially oriented towards the central regions of the Carina Nebula, suggesting that these bow shocks are generally produced by the interactions of OB winds with the bulk expansion of the H II region rather than high proper motion. We identify preferred regions of mid-infrared colour space occupied by our bow shock candidates, which also contain bow shock candidates in M17 and RCW 49 but are well separated from polycyclic aromatic hydrocarbon emission or circumstellar discs. Colour cuts identify an additional 12 marginally resolved bow shock candidates, 10 of which are also associated with known late O or early B stars. H II region expansion velocities derived from bow shock candidate standoff distances are ˜10 km s-1, assuming typical H II region gas densities, comparable to expansion velocities derived from bow shocks in M17 and RCW 49. One candidate bow shock provides direct evidence of physical interaction between the massive stellar winds originating in the Trumpler 15 and Trumpler 14 clusters, supporting the conclusion that both clusters are at similar heliocentric distances.

  15. THE YOUNG STELLAR OBJECT POPULATION IN THE VELA-D MOLECULAR CLOUD

    SciTech Connect

    Strafella, F.; Maruccia, Y.; Maiolo, B.; Lorenzetti, D.; Giannini, T.; Elia, D.; Molinari, S.; Pezzuto, S.; Massi, F.; Olmi, L.

    2015-01-10

    We investigate the young stellar population in the Vela Molecular Ridge, Cloud-D, a star-forming region observed by both the Spitzer/NASA and Herschel/ESA space telescopes. The point-source, band-merged, Spitzer-IRAC catalog complemented with MIPS photometry previously obtained is used to search for candidate young stellar objects (YSOs), also including sources detected in less than four IRAC bands. Bona fide YSOs are selected by using appropriate color-color and color-magnitude criteria aimed at excluding both Galactic and extragalactic contaminants. The derived star formation rate and efficiency are compared with the same quantities characterizing other star-forming clouds. Additional photometric data, spanning from the near-IR to the submillimeter, are used to evaluate both bolometric luminosity and temperature for 33 YSOs located in a region of the cloud observed by both Spitzer and Herschel. The luminosity-temperature diagram suggests that some of these sources are representative of Class 0 objects with bolometric temperatures below 70 K and luminosities of the order of the solar luminosity. Far-IR observations from the Herschel/Hi-GAL key project for a survey of the Galactic plane are also used to obtain a band-merged photometric catalog of Herschel sources intended to independently search for protostars. We find 122 Herschel cores located on the molecular cloud, 30 of which are protostellar and 92 of which are starless. The global protostellar luminosity function is obtained by merging the Spitzer and Herschel protostars. Considering that 10 protostars are found in both the Spitzer and Herschel lists, it follows that in the investigated region we find 53 protostars and that the Spitzer-selected protostars account for approximately two-thirds of the total.

  16. The RMS survey: ammonia mapping of the environment of massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Figura, C. C.; Moore, T. J. T.; Csengeri, T.; Lumsden, S. L.; Pillai, T.; Thompson, M. A.; Eden, D. J.; Morgan, L. K.

    2015-10-01

    We present the results of ammonia observations towards 66 massive star forming regions identified by the Red Midcourse Space Experiment Source survey. We have used the Green Bank Telescope and the K-Band Focal Plane Array to map the ammonia (NH3) (1,1) and (2,2) inversion emission at a resolution of 30 arcsec in 8 arcmin regions towards the positions of embedded massive star formation. We have identified a total of 115 distinct clumps, approximately two-thirds of which are associated with an embedded massive young stellar object or compact H II region, while the others are classified as quiescent. There is a strong spatial correlation between the peak NH3 emission and the presence of embedded objects. We derive the spatial distribution of the kinetic gas temperatures, line widths, and NH3 column densities from these maps, and by combining these data with dust emission maps we estimate clump masses, H2 column densities and ammonia abundances. The clumps have typical masses of ˜1000 M⊙ and radii ˜0.5 pc, line widths of ˜2 km s-1 and kinetic temperatures of ˜16-20 K. We find no significant difference between the sizes and masses of the star-forming and quiescent subsamples; however, the distribution maps reveal the presence of temperature and line width gradients peaking towards the centre for the star-forming clumps while the quiescent clumps show relatively uniform temperatures and line widths throughout. Virial analysis suggests that the vast majority of clumps are gravitationally bound and are likely to be in a state of global free fall in the absence of strong magnetic fields. The similarities between the properties of the two subsamples suggest that the quiescent clumps are also likely to form massive stars in the future, and therefore provide an excellent opportunity to study the initial conditions of massive pre-stellar and protostellar clumps.

  17. Measuring the 3D shape of high temperature objects using blue sinusoidal structured light

    NASA Astrophysics Data System (ADS)

    Zhao, Xianling; Liu, Jiansheng; Zhang, Huayu; Wu, Yingchun

    2015-12-01

    The visible light radiated by some high temperature objects (less than 1200 °C) almost lies in the red and infrared waves. It will interfere with structured light projected on a forging surface if phase measurement profilometry (PMP) is used to measure the shapes of objects. In order to obtain a clear deformed pattern image, a 3D measurement method based on blue sinusoidal structured light is proposed in this present work. Moreover, a method for filtering deformed pattern images is presented for correction of the unwrapping phase. Blue sinusoidal phase-shifting fringe pattern images are projected on the surface by a digital light processing (DLP) projector, and then the deformed patterns are captured by a 3-CCD camera. The deformed pattern images are separated into R, G and B color components by the software. The B color images filtered by a low-pass filter are used to calculate the fringe order. Consequently, the 3D shape of a high temperature object is obtained by the unwrapping phase and the calibration parameter matrixes of the DLP projector and 3-CCD camera. The experimental results show that the unwrapping phase is completely corrected with the filtering method by removing the high frequency noise from the first harmonic of the B color images. The measurement system can complete the measurement in a few seconds with a relative error of less than 1 : 1000.

  18. VizieR Online Data Catalog: Faint Blue Objects at High Galactic Latitude (Warnock+ 1982)

    NASA Astrophysics Data System (ADS)

    Warnock, A., III; Usher, P. D.

    1995-05-01

    The data set of Faint Blue Objects at High Galactic Latitude is a catalog of objects selected according to relative ultraviolet excess from ubv three-color 1.2-m Palomar Schmidt plates. Five selected area fields centered on SA28, SA29, SA55, SA57 and SA94 are included. The data consist of color classifications, B magnitudes, 1950 equatorial coordinates and remarks; the current file contains 3678 objects. Three selected area fields were included originally, centered on SA57 (Usher 1981), SA29 (Usher, Mattson and Warnock 1982) and SA28 (Usher and Mitchell 1982). Areas centered on SA55 and SA94 were added in 1984. (1 data file).

  19. A New Spectroscopic and Interferometric Study of the Young Stellar Object V645 Cyg

    NASA Technical Reports Server (NTRS)

    Miroshinichenko, A. S.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Kraus, S.; Manset, N.; Balega, Y. Y.; Klochkova, V. G.; Rudy, R. J.; Lynch, D. K.; Mazuk, S.; Venturini, C. C.; Grankin, K. N.; Puetter, R. C.; Perry, R. B.

    2009-01-01

    Aims. We present the results of high-resolution optical spectroscopy, low-resolution near-IR spectroscopy and near-infrared speckle interferometry of the massive young stellar object candidate V645 Cyg that were taken in order to refine its fundamental parameters and properties of its circumstellar envelope. Methods. Speckle interferometry in the H- and K-bands and an optical spectrum in the range 5200-6680 A with a spectral resolving power of R = 60000 were obtained at the 6 m telescope of the Russian Academy of Sciences. Another optical spectrum in the range 4300-10500 A with R = 79000 was obtained at the 3.6m CFHT. A low-resolution spectrum in the ranges 0.46-1.4 and 1.4-2.5 microns with a R approx. 800 and approx. 700, respectively, were obtained at the 3m Shain telescope of the Lick Observatory. Results. Using a new kinematic method based on non-linear modeling of the neutral hydrogen density profile in the direction toward the object, we suggest a new a distance D = 4.2+/-0.2 kpc. We also suggest a new estimate for the star's effective temperature, T(sub eff) approx. 25000 K. We have resolved the object in both H- and K-bands. Using a two-component ring fit, we derived a compact component size of 18 mas and 15 mas in the H- and K-band, respectively, which correspond to 37 and 33 AU at the new distance. Analysis of our and previously published data shows a approx. 2 mag drop of the near-infrared brightness of V645 Cyg in the beginning of the 1980 s. At the same time, the cometary nebular condensation N1 seems to fade in this wavelength range with respect to the N0 object, which represent the star with a nearly pole-on optically-thick disk and an optically-thin envelope. Conclusions. We conclude that V645 Cyg is a young massive main-sequence star, which recently emerged from its cocoon. and already passed the protostellar accretion stage. The presence of accretion is not necessary to account for the high observed luminosity of (2.6) x 10(exp 4) Solar Mass

  20. MAIN-SEQUENCE STARS MASQUERADING AS YOUNG STELLAR OBJECTS IN THE CENTRAL MOLECULAR ZONE

    SciTech Connect

    Koepferl, Christine M.; Robitaille, Thomas P.; Morales, Esteban F. E.; Johnston, Katharine G.

    2015-01-20

    In contrast to most other galaxies, star formation rates in the Milky Way can be estimated directly from young stellar objects (YSOs). In the central molecular zone the star formation rate calculated from the number of YSOs with 24 μm emission is up to an order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 μm. However, we show that in some cases the main-sequence models can be marginally resolved at 24 μm, whereas the YSO models are always unresolved. Based on the fraction of resolved MIPS 24 μm sources in the sample of YSOs previously used to compute the star formation rate, we estimate the fraction of misclassified ''YSOs'' to be at least 63%, which suggests that the star formation rate previously determined from YSOs is likely to be at least a factor of three too high.

  1. The detection of a discrete outflow from the young stellar object GL 490

    NASA Technical Reports Server (NTRS)

    Mitchell, G. F.; Allen, M.; Beer, R.; Dekany, R.; Huntress, W.

    1988-01-01

    A high-resolution (0.059/cm) M-band spectrum has been obtained of the embedded young stellar object GL490. The spectrum shows interstellar absorption in the fundamental vibrational band, v = 1-0, of (C-12)O. Two strong and narrow (10 km/s) velocity components are present. One, at the velocity of GL490 (vLSR = -16 km/s), is likely gas in the molecular cloud within which GL490 is embedded. The other component is blueshifted by 13 km/s relative to GL490. An observation of emission from the J = 3-2 transition of HCO(+) using a 20-arcsec beam supports the view that the blueshifted gas is near the central object. The -29-km/s feature is interpreted as a recently ejected shell. It is conjectured that the extended outflows of cold molecular gas seen by millimeter CO emission observations are driven by sporadic outbursts rather than by continuous flows from the central object.

  2. KINEMATICS OF THE STELLAR HALO AND THE MASS DISTRIBUTION OF THE MILKY WAY USING BLUE HORIZONTAL BRANCH STARS

    SciTech Connect

    Kafle, Prajwal R.; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2012-12-20

    Here, we present a kinematic study of the Galactic halo out to a radius of {approx}60 kpc, using 4664 blue horizontal branch stars selected from the SDSS/SEGUE survey to determine key dynamical properties. Using a maximum likelihood analysis, we determine the velocity dispersion profiles in spherical coordinates ({sigma}{sub r}, {sigma}{sub {theta}}, {sigma}{sub {phi}}) and the anisotropy profile ({beta}). The radial velocity dispersion profile ({sigma}{sub r}) is measured out to a galactocentric radius of r {approx} 60 kpc, but due to the lack of proper-motion information, {sigma}{sub {theta}}, {sigma}{sub {phi}}, and {beta} could only be derived directly out to r {approx} 25 kpc. From a starting value of {beta} Almost-Equal-To 0.5 in the inner parts (9 < r/kpc < 12), the profile falls sharply in the range r Almost-Equal-To 13-18 kpc, with a minimum value of {beta} = -1.2 at r = 17 kpc, rising sharply at larger radius. In the outer parts, in the range 25 < r/kpc < 56, we predict the profile to be roughly constant with a value of {beta} Almost-Equal-To 0.5. The newly discovered kinematic anomalies are shown not to arise from halo substructures. We also studied the anisotropy profile of simulated stellar halos formed purely by accretion and found that they cannot reproduce the sharp dip seen in the data. From the Jeans equation, we compute the stellar rotation curve (v{sub circ}) of the Galaxy out to r {approx} 25 kpc. The mass of the Galaxy within r {approx}< 25 kpc is determined to be 2.1 Multiplication-Sign 10{sup 11} M{sub Sun }, and with a three-component fit to v{sub circ}(r), we determine the virial mass of the Milky Way dark matter halo to be M{sub vir} = 0.9{sup +0.4}{sub -0.3} Multiplication-Sign 10{sup 12} M{sub Sun} (R{sub vir} = 249{sup +34}{sub -31} kpc).

  3. Accretion, jets and winds: High-energy emission from young stellar objects

    NASA Astrophysics Data System (ADS)

    Günther, H. M.

    2011-06-01

    This article summarizes the processes of high-energy emission in young stellar objects. Stars of spectral type A and B are called Herbig Ae/Be (HAeBe) stars in this stage, all later spectral types are termed classical T Tauri stars (CTTS). Both types are studied by high-resolution X-ray and UV spectroscopy and modeling. Three mechanisms contribute to the high-energy emission from CTTS: 1) CTTS have active coronae similar to main-sequence stars, 2) the accreted material passes through an accretion shock at the stellar surface, which heats it to a few MK, and 3) some CTTS drive powerful outflows. Shocks within these jets can heat the plasma to X-ray emitting temperatures. Coronae are already well characterized in the literature; for the latter two scenarios models are shown. The magnetic field suppresses motion perpendicular to the field lines in the accretion shock, thus justifying a 1D geometry. The radiative loss is calculated as optically thin emission. A mixture of shocked and coronal gas is fitted to X-ray observations of accreting CTTS. Specifically, the model explains the peculiar line-ratios in the He-like triplets of Ne IX and O VII. All stars require only small mass accretion rates to power the X-ray emission. In contrast, the HAeBe HD 163296 has line ratios similar to coronal sources, indicating that neither a high density nor a strong UV-field is present in the region of the X-ray emission. This could be caused by a shock in its jet. Similar emission is found in the deeply absorbed CTTS DG Tau. Shock velocities between 400 and 500 km s-1 are required to explain the observed spectrum. Doctoral Thesis Award Lecture 2010

  4. Faint Blue Objects at High Galactic Latitude. VIII. Performance Characteristics of the US Survey

    NASA Astrophysics Data System (ADS)

    Mitchell, Kenneth J.; Usher, P. D.

    2004-07-01

    The US survey has cataloged 3987 objects in seven high Galactic latitude fields according to their optical colors, magnitudes, and morphologies using photographic techniques. This paper analyzes the effectiveness of the survey at producing finding lists for complete samples of hot stars and quasars that exhibit blue and/or ultraviolet excess (B-UVX) relative to the colors of halo F and G subdwarf stars. A table of 599 spectroscopic identifications summarizes the spectroscopic coverage of the US objects that has been accomplished to date. In addition, some of the survey plates have been reexamined for objects missed during the original selection, and the literature has been searched for all other spectroscopically identified blue stars and quasars with z<2.2 that have been selected by other surveys within the US survey areas. These results are used to estimate empirically both the accuracy of the US survey selection boundaries (in color, morphology, and brightness) and the completeness of the resulting samples of B-UVX US objects within those boundaries. In particular, it is shown that the reliability of the US color classifications is high and that the previously derived US morphological boundary for the complete selection of unresolved quasars is accurate. The contribution of color and morphological classification errors to B-UVX sample incompleteness is therefore correspondingly small. The empirical tests indicate high levels of completeness (95+1-2%) for the samples of US quasars and hot stars isolated within the stated survey selection limits. Errata and improvements to some of the published catalog data are presented in Appendices.

  5. Imaging Polarimetry of Young Stellar Objects with ACS and NICMOS: A study in dust grain evolution

    NASA Astrophysics Data System (ADS)

    Hines, Dean

    2004-07-01

    The formation of planetary systems is intimately linked to the dust population in circumstellar disks, thus understanding dust grain evolution is essential to advancing our understanding of how planets form. By combining {1} the high resolution polarimetric capabilities of ACS and NICMOS, {2} powerful 3-D radiative transfer codes, and {3} observations of objects known to span the earliest stellar evolutionary phases, we will gain crucial insight into the initial phases of dust grain growth: evolution away from an ISM distribution. Fractional polarization is a strong function of wavelength, therefore by comparing polarimetric images in the optical and infrared, we can sensitively constrain not only the geometry and optical depth of the scattering medium, but also the grain size distribution. By observing objects representative of the earliest evolutionary sequence of YSOs, we will be able to investigate how the dust population evolves in size and distribution during the crucial transition from a disk+envelope system to a disk+star system. The proposed study will help to establish the fundamental time scales for the initial depletion of ISM-like grains: the first step in understanding the transformation from small submicron sized dust grains, to large millimeter sized grains, and untimely to planetary bodies.

  6. Size and albedo of Kuiper belt object 55636 from a stellar occultation.

    PubMed

    Elliot, J L; Person, M J; Zuluaga, C A; Bosh, A S; Adams, E R; Brothers, T C; Gulbis, A A S; Levine, S E; Lockhart, M; Zangari, A M; Babcock, B A; Dupré, K; Pasachoff, J M; Souza, S P; Rosing, W; Secrest, N; Bright, L; Dunham, E W; Sheppard, S S; Kakkala, M; Tilleman, T; Berger, B; Briggs, J W; Jacobson, G; Valleli, P; Volz, B; Rapoport, S; Hart, R; Brucker, M; Michel, R; Mattingly, A; Zambrano-Marin, L; Meyer, A W; Wolf, J; Ryan, E V; Ryan, W H; Morzinski, K; Grigsby, B; Brimacombe, J; Ragozzine, D; Montano, H G; Gilmore, A

    2010-06-17

    The Kuiper belt is a collection of small bodies (Kuiper belt objects, KBOs) that lie beyond the orbit of Neptune and which are believed to have formed contemporaneously with the planets. Their small size and great distance make them difficult to study. KBO 55636 (2002 TX(300)) is a member of the water-ice-rich Haumea KBO collisional family. The Haumea family are among the most highly reflective objects in the Solar System. Dynamical calculations indicate that the collision that created KBO 55636 occurred at least 1 Gyr ago. Here we report observations of a multi-chord stellar occultation by KBO 55636, which occurred on 9 October 2009 ut. We find that it has a mean radius of 143 +/- 5 km (assuming a circular solution). Allowing for possible elliptical shapes, we find a geometric albedo of in the V photometric band, which establishes that KBO 55636 is smaller than previously thought and that, like its parent body, it is highly reflective. The dynamical age implies either that KBO 55636 has an active resurfacing mechanism, or that fresh water-ice in the outer Solar System can persist for gigayear timescales. PMID:20559381

  7. FIRST SPECTROSCOPIC IDENTIFICATION OF MASSIVE YOUNG STELLAR OBJECTS IN THE GALACTIC CENTER

    SciTech Connect

    An, Deokkeun; Boogert, A. C. Adwin; RamIrez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Stolovy, Susan R.; Cotera, Angela S.; Robitaille, Thomas P.; Smith, Howard A. E-mail: sellgren@astronomy.ohio-state.edu

    2009-09-10

    We report the detection of several molecular gas-phase and ice absorption features in three photometrically selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO{sub 2} (15.0 {mu}m), C{sub 2}H{sub 2} (13.7 {mu}m), and HCN (14.0 {mu}m). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 {mu}m CO{sub 2} ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH{sub 3}OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observations demonstrate the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.

  8. Size and albedo of Kuiper belt object 55636 from a stellar occultation

    NASA Astrophysics Data System (ADS)

    Elliot, J. L.; Person, M. J.; Zuluaga, C. A.; Bosh, A. S.; Adams, E. R.; Brothers, T. C.; Gulbis, A. A. S.; Levine, S. E.; Lockhart, M.; Zangari, A. M.; Babcock, B. A.; Dupré, K.; Pasachoff, J. M.; Souza, S. P.; Rosing, W.; Secrest, N.; Bright, L.; Dunham, E. W.; Sheppard, S. S.; Kakkala, M.; Tilleman, T.; Berger, B.; Briggs, J. W.; Jacobson, G.; Valleli, P.; Volz, B.; Rapoport, S.; Hart, R.; Brucker, M.; Michel, R.; Mattingly, A.; Zambrano-Marin, L.; Meyer, A. W.; Wolf, J.; Ryan, E. V.; Ryan, W. H.; Morzinski, K.; Grigsby, B.; Brimacombe, J.; Ragozzine, D.; Montano, H. G.; Gilmore, A.

    2010-06-01

    The Kuiper belt is a collection of small bodies (Kuiper belt objects, KBOs) that lie beyond the orbit of Neptune and which are believed to have formed contemporaneously with the planets. Their small size and great distance make them difficult to study. KBO 55636 (2002 TX300) is a member of the water-ice-rich Haumea KBO collisional family. The Haumea family are among the most highly reflective objects in the Solar System. Dynamical calculations indicate that the collision that created KBO 55636 occurred at least 1Gyr ago. Here we report observations of a multi-chord stellar occultation by KBO 55636, which occurred on 9 October 2009 UT. We find that it has a mean radius of 143+/-5km (assuming a circular solution). Allowing for possible elliptical shapes, we find a geometric albedo of in the V photometric band, which establishes that KBO 55636 is smaller than previously thought and that, like its parent body, it is highly reflective. The dynamical age implies either that KBO 55636 has an active resurfacing mechanism, or that fresh water-ice in the outer Solar System can persist for gigayear timescales.

  9. A High Time Resolution Study of Water Masers Near Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Voss, Kurt S.; Claussen, M. J.; Wootten, H. A.; Marvel, K. B.; Wilking, B. A.

    2006-06-01

    From April 2003 to March 2004, we monitored the water maser emission from a sample of approximately 30 low-to-intermediate mass young stellar objects (YSOs) in different environments approximately every two weeks (excluding the summer months), using the 100-meter NRAO Green Bank Telescope. In this poster we present the spectra from this monitoring project, and address the questions of variation timescales, the underlying causes of the maser excitation and variations, and the role of YSO evolution in the water maser phenomenon. We report the results of a search for high-velocity (+/- 350 km/s) water maser emission toward these objects, obtained as a byproduct of this monitoring project. Finally, we will report on a detailed case study: the very strong and highly variable water masers in the low-mass YSO IRAS 16293-2422 in the rho Ophiuchi star-forming region.The NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Part of this research was carried out under the auspices of the National Science Foundation's Research Experience for Teachers (RET) program at the NRAO, and we gratefully acknowledge the funding for this program.

  10. SEARCH FOR IONIZED JETS TOWARD HIGH-MASS YOUNG STELLAR OBJECTS

    SciTech Connect

    Guzman, Andres E.; Garay, Guido; Brooks, Kate J.; Voronkov, Maxim A.

    2012-07-01

    We are carrying out multi-frequency radio continuum observations, using the Australia Telescope Compact Array, to systematically search for collimated ionized jets toward high-mass young stellar objects (HMYSOs). Here we report observations at 1.4, 2.4, 4.8, and 8.6 GHz, made with angular resolutions of about 7'', 4'', 2'', and 1'', respectively, toward six objects of a sample of 33 southern HMYSOs thought to be in very early stages of evolution. The objects in the sample were selected from radio and infrared catalogs by having positive radio spectral indices and being luminous (L{sub bol} > 2 Multiplication-Sign 10{sup 4} L{sub Sun }), but underluminous in radio emission compared with that expected from its bolometric luminosity. This criterion makes the radio sources good candidates for being ionized jets. As part of this systematic search, two ionized jets have been discovered: one previously published and the other reported here. The rest of the observed candidates correspond to three hypercompact H II regions and two ultracompact H II regions. The two jets discovered are associated with two of the most luminous (7 Multiplication-Sign 10{sup 4} and 1.0 Multiplication-Sign 10{sup 5} L{sub Sun }) HMYSOs known to harbor this type of object, showing that the phenomena of collimated ionized winds appear in the formation process of stars at least up to masses of {approx}20 M{sub Sun} and provide strong evidence for a disk-mediated accretion scenario for the formation of high-mass stars. From the incidence of jets in our sample, we estimate that the jet phase in high-mass protostars lasts for {approx}4 Multiplication-Sign 10{sup 4} yr.

  11. Velocity asymmetries in young stellar object jets. Intrinsic and extrinsic mechanisms

    NASA Astrophysics Data System (ADS)

    Matsakos, T.; Vlahakis, N.; Tsinganos, K.; Karampelas, K.; Sauty, C.; Cayatte, V.; Matt, S. P.; Massaglia, S.; Trussoni, E.; Mignone, A.

    2012-09-01

    Context. It is well established that some YSO jets (e.g. RW Aur) display different propagation speeds between their blue and red shifted parts, a feature possibly associated with the central engine or the environment in which the jet propagates. Aims: To understand the origin of asymmetric YSO jet velocities, we investigate the efficiency of two candidate mechanisms, one based on the intrinsic properties of the system and the other on the role of the external medium. In particular, a parallel or anti-parallel configuration between the protostellar magnetosphere and the disk magnetic field is considered, and the resulting dynamics examined both in an ideal and in a resistive magneto-hydrodynamical (MHD) regime. Moreover, we explore the effects of a potential difference in the pressure of the environment, as a consequence of the nonuniform density distribution of molecular clouds. Methods: Ideal and resistive axisymmetric numerical simulations were carried out for a variety of models, all of which are based on a combination of two analytical solutions, a disk wind and a stellar outflow. The initial two-component jet is modified by either inverting the orientation of its inner magnetic field or imposing a constant surrounding pressure. The velocity profiles are studied by assuming steady flows as well as after strong time variable ejection is incorporated. Results: Discrepancies between the speeds of the two outflows in opposite directions can indeed occur both due to unaligned magnetic fields and different outer pressures. In the former case, the asymmetry appears only on the dependence of the velocity on the cylindrical distance, but the implied observed value is significantly altered when the density distribution is also taken into account. On the other hand, a nonuniform medium collimates the two jets unevenly, directly affecting their propagation speed. A further interesting feature of the pressure-confined outflow simulations is the formation of static knots

  12. X-shooter spectroscopy of young stellar objects. IV. Accretion in low-mass stars and substellar objects in Lupus

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Natta, A.; Manara, C. F.; Spezzi, L.; Stelzer, B.; Frasca, A.; Biazzo, K.; Covino, E.; Randich, S.; Rigliaco, E.; Testi, L.; Comerón, F.; Cupani, G.; D'Elia, V.

    2014-01-01

    We present VLT/X-shooter observations of a sample of 36 accreting low-mass stellar and substellar objects (YSOs) in the Lupus star-forming region, spanning a range in mass from ~0.03 to ~1.2 M⊙, but mostly with 0.1 M⊙object. The accretion luminosity (Lacc), and in turn the accretion rate (Ṁacc), was derived by modelling the excess emission from the UV to the near-infrared as the continuum emission of a slab of hydrogen. We computed the flux and luminosity (Lline) of many emission lines of H , He , and Ca ii, observed simultaneously in the range from ~330 nm to 2500 nm. The luminosity of all the lines is well correlated with Lacc. We provide empirical relationships between Lacc and the luminosity of 39 emission lines, which have a lower dispersion than relationships previously reported in the literature. Our measurements extend the Paβ and Brγ relationships to Lacc values about two orders of magnitude lower than those reported in previous studies. We confirm that different methodologies of measuring Lacc and Ṁacc yield significantly different results: Hα line profile modelling may underestimate Ṁacc by 0.6 to 0.8 dex with respect to Ṁacc derived from continuum-excess measures. These differences may explain the probably spurious bi-modal relationships between Ṁacc and other YSOs properties reported in the literature. We derived Ṁacc in the range 2 × 10-12-4 × 10-8 M⊙ yr-1 and conclude that Ṁacc ∝ M⋆1.8(±0.2), with a dispersion lower by a factor of about 2 than in previous studies. A number of properties indicate that the physical conditions of the accreting gas are similar over more than 5 orders of magnitude in Ṁacc, confirming previous suggestions that the geometry of the accretion flow

  13. Infrared Spectroscopy and Young Stellar Objects: Characterizing the Dust and Gas in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kruger, Andrew James

    In this dissertation, I describe my work in infrared spectroscopy and in studying the circumstellar disks around young stellar objects. In the first part, I detail an electronic component I designed for the Texas Echelon Cross Echelle Spectrograph (TEXES), which has acted as a visiting instrument on Gemini North and the NASA Infrared Telescope Facility. In order to detect the incoming infrared flux, a bias voltage is applied across the detector to sweep out the photo-excited electrons. If the bias voltage is too weak, the electrons can recombine before being swept out, while a strong bias can create unstable photoconductive gain. The initial design of TEXES required the operator to open the electronics and change the bias voltage by hand. However, the optimal bias is not the same for different instrument modes, which wasted substantial observing time when changing instrument modes. In order to save future observing time, and to fulfill a precondition set by Gemini North for TEXES to act as a visiting instrument, I created an electronic component to change the detector bias from the computer control room. I investigate and characterize the optimal voltages for the Raytheon 2562 SiAs IBC "SIRTF" array for the different instrument modes used by TEXES. In the following sections, I describe our observing campaign using the Spitzer IRS module and three ground-based telescopes to investigate edge-on circumstellar disks and classical infrared companions. Observations of the terrestrial planet forming regions of circumstellar disks are difficult to obtain, but recent detections of molecular absorption originating from these regions have proven valuable for disk models. We were granted time with the Spitzer Space Telescope to observe seven targets classified as young stellar objects, likely with their disks seen edge-on, to search for molecular absorption features. We used ground-based telescopes, including Gemini South, W. M. Keck Observatory, and the European Southern

  14. Hydrogen line and continuum emission in young stellar objects. I - Excitation model

    NASA Technical Reports Server (NTRS)

    Kwan, John; Alonso-Costa, Jose L.

    1988-01-01

    Two mechanisms that populate the n = 2 level of hydrogen after the Lyman continuum is depleted are identified. They are ionization of N I from its excited states, followed by charge-exchange between N II and H I, and Ly-beta line wing absorption. Both processes involve absorption of the sub-Lyman continuum between 11 and 13.6 eV. With population in level n = 2 thus maintained, the strong Brackett line fluxes observed are then produced as a result of Balmer photoionization. The magnitude of the sub-Lyman continuum dictates the fraction of Balmer continuum that will be absorbed. Numerical calculations for four young stellar objects with luminosity ranging from 10 to 10,000 solar are performed, and it is concluded that this two-step process of sub-Lyman continuum absorption followed by Balmer photoionization can account for the great majority of observed Brackett line fluxes. The location and mass of the emitting as as determined from the Brackett line fluxes are reported. The Br-alpha luminosity is calculated as a function of the mass loss rate.

  15. Absence of Significant Cool Disks in Young Stellar Objects Exhibiting Repetitive Optical Outbursts

    NASA Astrophysics Data System (ADS)

    Liu, Hauyu Baobab; Galván-Madrid, Roberto; Vorobyov, Eduard I.; Kóspál, Ágnes; Rodríguez, Luis F.; Dunham, Michael M.; Hirano, Naomi; Henning, Thomas; Takami, Michihiro; Dong, Ruobing; Hashimoto, Jun; Hasegawa, Yasuhiro; Carrasco-González, Carlos

    2016-01-01

    We report Submillimeter Array 1.3 mm high angular resolution observations toward the four EXor-type outbursting young stellar objects VY Tau, V1118 Ori, V1143 Ori, and NY Ori. The data mostly show low dust masses Mdust in the associated circumstellar disks. Among the sources, NY Ori possesses a relatively massive disk with Mdust ˜ 9 × 10-4M⊙. V1118 Ori has a marginal detection equivalent to Mdust ˜ 6 × 10-5M⊙. V1143 Ori has a non-detection also equivalent to Mdust < 6 × 10-5M⊙. For the nearest source, VY Tau, we get a surprising non-detection that provides a stringent upper limit Mdust < 6 × 10-6M⊙. We interpret our findings as suggesting that the gas and dust reservoirs that feed the short-duration, repetitive optical outbursts seen in some EXors may be limited to the small-scale, innermost region of their circumstellar disks. This hot dust may have escaped our detection limits. Follow-up, more sensitive millimeter observations are needed to improve our understanding of the triggering mechanisms of EXor-type outbursts.

  16. YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD STAR-FORMING REGION N206

    SciTech Connect

    Romita, Krista Alexandra; Meixner, M.; Sewilo, M.; Shiao, B.; Carlson, Lynn Redding; Whitney, B.; Babler, B.; Meade, M.; Indebetouw, R.; Hora, J. L. E-mail: carlson@stsci.ed E-mail: brian@sal.wisc.ed E-mail: jhora@cfa.harvard.ed

    2010-09-20

    We present analysis of the energetic star-forming region Henize 206 (N206) located near the southern edge of the Large Magellanic Cloud (LMC) based on photometric data from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE-LMC; IRAC 3.6, 4.5, 5.8, 8.0 {mu}m and MIPS 24 {mu}m), Infrared Survey Facility near-infrared survey (J, H, K{sub s}), and the Magellanic Clouds Photometric Survey (MCPS UBVI) covering a wavelength range of 0.36-24 {mu}m. Young stellar object (YSO) candidates are identified based upon their location in infrared color-magnitude space and classified by the shapes of their spectral energy distributions in comparison with a pre-computed grid of YSO models. We identify 116 YSO candidates: 102 are well characterized by the YSO models, predominately Stage I, and 14 may be multiple sources or young sources with transition disks. Careful examination of the individual sources and their surrounding environment allows us to identify a factor of {approx}14.5 more YSO candidates than have already been identified. The total mass of these well-fit YSO candidates is {approx}520 M{sub sun}. We calculate a current star formation rate of 0.27 x 10{sup -1} M{sub sun} yr{sup -1} kpc{sup -2}. The distribution of YSO candidates appears to follow shells of neutral material in the interstellar medium.

  17. A search for massive young stellar objects with 98 CH3OH maser sources

    NASA Astrophysics Data System (ADS)

    Liu, Tie; Wu, Yue-Fang; Wang, Ke

    2010-01-01

    Using the 13.7 m telescope of the Purple Mountain Observatory (PMO), a survey of the J = 1-0 lines of CO and its isotopes was carried out on 98 methanol maser sources in January 2008. Eighty-five sources have infrared counterparts within one arcmin. In the survey, except for 43 sources showing complex or multiple-peak profiles, almost all the 13CO line profiles of the other 55 sources have large line widths of 4.5km s-1 on average and are usually asymmetric. Fifty corresponding Infrared Astronomical Satellite (IRAS) sources of these 55 sources have Lbol larger than 103 Lodot, which can be identified as possible high-mass young stellar sources. Statistics show that the 13CO line widths correlate with the bolometric luminosity of the associated IRAS sources. Here, we also report the mapping results of two sources: IRAS 06117+1350 and IRAS 07299-1651. Two cores were found in IRAS 06117+1350 and one core was detected in IRAS 07299-1651. The northwest core in IRAS 06117+1350 and the core in IRAS 07299-1651 can be identified as precursors of UC HII regions or high-mass protostellar objects (HMPOs). The southeast core of IRAS 06117+1350 has no infrared counterpart, seeming to be at a younger stage than the pre-UC HII phase.

  18. Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore; Reale, Fabio; Peres, Giovanni; Mignone, Andrea

    2014-11-01

    According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a signicant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but more energetic phenomena occur in YSOs and may influence the circumstellar environment. In fact, a recent study has shown that an intense flaring activity close to the disk may strongly perturb the stability of circumstellar disks, thus inducing mass accretion episodes (Orlando et al. 2011). Here we review the main results obtained in the field and the future perspectives.

  19. High angular resolution and young stellar objects: Imaging the surroundings of MWC 158 by optical interferometry

    NASA Astrophysics Data System (ADS)

    Kluska, J.; Malbet, F.; Berger, J.-P.; Benisty, M.; Lazareff, B.; Le Bouquin, J.-B.; Pinte, C.

    2012-12-01

    In the course of our VLTI young stellar object PIONIER imaging program, we have identified a strong visibility chromatic dependency that appeared in certain sources. This effect, rising value of visibilities with decreasing wavelengths over one base, is also present in previous published and archival AMBER data. For Herbig AeBe stars, the H band is generally located at the transition between the star and the disk predominance in flux for Herbig AeBe stars. We believe that this phenomenon is responsible for the visibility rise effect. We present a method to correct the visibilities from this effect in order to allow "gray" image reconstruction software, like Mira, to be used. In parallel we probe the interest of carrying an image reconstruction in each spectral channel and then combine them to obtain the final broadband one. As an illustration we apply these imaging methods to MWC158, a (possibly Herbig) B[e] star intensively observed with PIONIER. Finally, we compare our result with a parametric model fitted onto the data.

  20. A Study of the Variability of Water Maser Emission in a Sample of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Trinidad, M. A.; Rojas, V.; Plascencia, J. C.; Ricalde, A.; Curiel, S.; Rodríguez, L. F.

    We present results of water maser observations in a sample of young stellar objects. The observations were made using the Haystack 37 m antenna during a span of time of about eight months. The sample was selected to study the variability of the water maser emission in young sources with far-infrared luminosities between 260 and 2.5×10^4 L[sun]. The results are shown in a series of plots that allow the analysis of the variation of the maser emission and to discuss the global properties of the sample. The results show that in all the observed sources the water maser emission varies with time. Based on the observed variability, the sample shows two kinds of behavior. About half of the sources show large variations in the peak flux density of at least one feature (by more than an order of magnitude) in time spans between one and several months, while in all the sources there is more than one feature where the changes in peak flux density are smaller (by less than a factor of 10) but in similar time scales. Finally, the variability of the observed water maser emission does not show a clear periodicity pattern in time and we do not find a clear relationship between the luminosity of the sources and the water maser variability. >From a statistical point of view, the H[2]O maser variability can be described as due to small (10%) Gaussian fluctuations in the line opacity.

  1. Young stellar object variability (YSOVAR): Long timescale variations in the mid-infrared

    SciTech Connect

    Rebull, L. M.; Cody, A. M.; Stauffer, J. R.; Morales-Calderón, M.; Carey, S. J.; Covey, K. R.; Günther, H. M.; Poppenhaeger, K.; Wolk, S. J.; Hora, J. L.; Hillenbrand, L. A.; Plavchan, P.; Gutermuth, R.; Song, I.; Barrado, D.; Bayo, A.; James, D.; Vrba, F. J.; Alves de Oliveira, C.; Bouvier, J.; and others

    2014-11-01

    The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 and 4.5 μm) time series photometry of the Orion Nebula Cluster plus smaller footprints in 11 other star-forming cores (AFGL 490, NGC 1333, Mon R2, GGD 12-15, NGC 2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC 1396A, and Ceph C). There are ∼29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the 'standard sample' on which we calculate statistics, consisting of fast cadence data, with epochs roughly twice per day for ∼40 days. We also define a 'standard sample of members' consisting of all the IR-selected members and X-ray-selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data—the Stetson index, a χ{sup 2} fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of six to seven years by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data set; out of members and field objects combined, at most 0.02% may have transient IR excesses.

  2. Evolutionary stages and disk properties of young stellar objects in the Perseus cloud

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Xin; Gao, Yu; Fang, Min; Yuan, Hai-Bo; Zhao, Ying-He; Chang, Rui-Xiang; Jiang, Xue-Jian; Liu, Xiao-Wei; Luo, A.-Li; Ma, Hong-Jun; Shao, Zheng-Yi; Wang, Xiao-Long

    2015-08-01

    We investigated the evolutionary stages and disk properties of 211 young stellar objects (YSOs) across the Perseus cloud by modeling their broadband optical to mid-infrared (IR) spectral energy distribution (SED). Our optical gri photometry data were obtained from the recently finished Purple Mountain Observatory Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC). About 81% of our sample fall into the Stage II phase which is characterized by having optically thick disks, while 14% into the Stage I phase characterized by having significant infalling envelopes, and the remaining 5% into the Stage III phase characterized by having optically thin disks. The median stellar age and mass of the Perseus YSOs are 3.1 Myr and 0.3 M⊙ respectively. By exploring the relationships among the turnoff wave bands λturnoff (longward of which significant IR excesses above the stellar photosphere are observed), the excess spectral index αexcess as determined for λ > λturnoff, and the disk inner radius Rin (determined from SED modeling) for YSOs at different evolutionary stages, we found that the median and standard deviation of αexcess for YSOs with optically thick disks tend to increase with λturnoff, especially at λturnoff ≥5.8 μm, whereas the median fractional dust luminosities Ldust/L★ tend to decrease with increasing λturnoff. This points to an inside-out process of disk clearing for small dust grains. Moreover, a positive correlation between αexcess and Rin was found at αexcess ≳ 0 and Rin ≳ 10 × the dust sublimation radius Rsub, irrespective of λturnoff, Ldust/L★ and disk flaring. This suggests that the outer disk flaring either does not evolve synchronously with the inside-out disk clearing of small dust grains or has little appreciable influence on the spectral slopes at λ ≲ 24 μm. About 23% of our YSO disks are classified as transitional disks, which have λturnoff ≥ 5.8 μm and Ldust/L★ > 10-3. The transitional

  3. HUBBLE SPACE TELESCOPE NICMOS POLARIZATION OBSERVATIONS OF THREE EDGE-ON MASSIVE YOUNG STELLAR OBJECTS

    SciTech Connect

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Burton, Michael G.; Cotera, Angela S.; Hines, Dean C.; Whitney, Barbara A.

    2009-08-01

    Massive young stellar objects (YSOs), like low-mass YSOs, appear to be surrounded by optically thick envelopes and/or disks and have regions, often bipolar, that are seen in polarized scattered light at near-infrared wavelengths. We are using the 0.''2 spatial resolution of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on Hubble Space Telescope to examine the structure of the disks and outflow regions of massive YSOs in star-forming regions within a few kpc of the Sun. Here we report on 2 {mu}m polarimetry of NGC 6334 V and S255 IRS1. NGC 6334 V consists of a double-lobed bright reflection nebula seen against a dark region, probably an optically thick molecular cloud. Our polarization measurements show that the illuminating star lies {approx}2'' south of the line connecting the two lobes; we do not detect this star at 2 {mu}m, but there are a small radio source and a mid-infrared source at this location. S255 IRS1 consists of two YSOs (NIRS1 and NIRS3) with overlapping scattered light lobes and luminosities corresponding to early B stars. Included in IRS1 is a cluster of stars from whose polarization we determine the local magnetic field direction. Neither of the YSOs has its scattered light lobes aligned with this magnetic field. The line connecting the scattered light lobes of NIRS1 is twisted symmetrically around the star; the best explanation is that the star is part of a close binary and the outflow axis of NIRS1 is precessing as a result of non-coplanar disk and orbit. The star NIRS3 is also offset from the line connecting its two scattered light lobes. We suggest that all three YSOs show evidence of episodic ejection of material as they accrete from dense, optically thick envelopes.

  4. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF YOUNG STELLAR OBJECTS IN THE WESTERN CIRCINUS MOLECULAR CLOUD

    SciTech Connect

    Liu, Wilson M.; Fajardo-Acosta, Sergio; Padgett, Deborah L.; Leisawitz, David; Koenig, Xavier P.

    2011-05-20

    The Wide-field Infrared Survey Explorer has uncovered a population of young stellar objects (YSOs) in the Western Circinus molecular cloud. Images show the YSOs to be clustered into two main groups that are coincident with dark filamentary structure in the nebulosity. Analysis of photometry shows numerous Class I and II objects. The locations of several of these objects are found to correspond to known dense cores and CO outflows. Class I objects tend to be concentrated in dense aggregates, and Class II objects more evenly distributed throughout the region.

  5. Subaru Near-Infrared Multicolor Images of Class II Young Stellar Object, RNO 91

    NASA Astrophysics Data System (ADS)

    Mayama, Satoshi; Tamura, Motohide; Hayashi, Masahiko; Itoh, Yoichi; Ishii, Miki; Fukagawa, Misato; Hayashi, Saeko S.; Oasa, Yumiko; Kudo, Tomoyuki

    2007-12-01

    We conducted subarcsecond near-infrared imaging observations of RNO 91 with CIAO (Coronagraphic Imager with Adaptive Optics) mounted on the 8.2m Subaru telescope. We present our JHK band data along with optical images, which when considered together reveal a complex circumstellar structure. We examined the colors of associated nebulae and compared the geometry of the outflow/disk system suggested by our data with that already proposed on the basis of previous studies. Our K-band image shows bright circumstellar nebulosity detected within ˜ 2" around the central source, while it is less conspicuous at shorter wavelengths. PA and the size of this red color nebulosity agree with those of the previously detected polarization disk. Agreements among these data indicate that this bright nebulosity region, which follows the reddening law, might be attributed to a disklike structure. At J and optical wavelengths, several blue knotlike structures are detected around and beyond the bright circumstellar nebulosity. We suggest that these knotty reflection nebulae may represent disintegrating fragments of an infalling envelope. The three-color composite image has the appearance of arc-shaped nebulosity. We interpret these structures as being roots of a bipolar cavity opening toward the northeast and the southwest. The complex distribution of reflection nebulosity seen around RNO 91 appears to confirm the interpretation that this source is an object dispersing its molecular envelope while transitioning from protostar to T Tauri star.

  6. A LARGE, MASSIVE, ROTATING DISK AROUND AN ISOLATED YOUNG STELLAR OBJECT

    SciTech Connect

    Quanz, Sascha P.; Beuther, Henrik; Steinacker, Juergen; Linz, Hendrik; Krause, Oliver; Henning, Thomas; Birkmann, Stephan M.

    2010-07-10

    dense gas in the disk and the molecules' abundances are similar to those found in other circumstellar disks. We furthermore detected C{sub 2}H toward the objects and discuss this finding in the context of star formation. Finally, we have performed radiative transfer modeling of the K-band scattered light image varying a disk plus outflow two-dimensional density profile and the stellar properties. The model approximately reproduces extent and location of the dark lane, and the basic appearance of the outflow. We discuss our findings in the context of circumstellar disks across all mass regimes and conclude that our discovery is an ideal laboratory to study the early phases in the evolution of massive circumstellar disks surrounding young stellar objects.

  7. Detection of a large massive circumstellar disk around a high-mass young stellar object in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Ratzka, T.; Gehring, T.; Ohlendorf, H.; Zinnecker, H.; King, R. R.; McCaughrean, M. J.; Lewis, J. R.

    2011-06-01

    Context. The characterization of circumstellar disks around young stellar objects can provide important information about the process of star formation and the possible formation of planetary systems. Aims: We investigate the spatial structure and the spectral energy distribution of a newly discovered edge-on circumstellar disk around an optically invisible young stellar object that is embedded in a dark cloud in the Carina Nebula. Methods: The disk object was serendipitously discovered in our deep near-IR imaging survey of the Carina Nebula obtained with HAWK-I at the ESO VLT. Whereas the object was detected as an apparently point-like source in earlier infrared observations, only the superb image quality (FWHM ≈ 0.5'') of the HAWK-I data could reveal, for the first time, the peculiar morphology of the object. It consists of a very red point-like central source that is surrounded by a roughly spherical nebula, which is intersected by a remarkable dark lane through the center. We construct the spectral energy distribution of the object from 1 μm to 870 μm and perform a detailed radiative transfer modeling of the spectral energy distribution and the source morphology. Results: The observed object morphology in the near-IR images clearly suggests a young stellar object that is embedded in an extended, roughly spherical envelope and surrounded by a large circumstellar disk with a diameter of ≈5500 AU that is seen nearly edge-on. The radiative transfer modeling shows that the central object is highly luminous and thus must be a massive young stellar object, most likely in the range 10-15 M⊙. The circumstellar disk has a mass of about 2 M⊙. Conclusions: The disk object in Carina is one of the most massive young stellar objects for which a circumstellar disk has been detected so far. The size and mass of the disk are very large compared to the corresponding values found for most other similar objects. These results support the assumption that 10-15 M⊙ stars

  8. Orbit determination of trans-Neptunian objects and Centaurs for the prediction of stellar occultations

    NASA Astrophysics Data System (ADS)

    Desmars, J.; Camargo, J. I. B.; Braga-Ribas, F.; Vieira-Martins, R.; Assafin, M.; Vachier, F.; Colas, F.; Ortiz, J. L.; Duffard, R.; Morales, N.; Sicardy, B.; Gomes-Júnior, A. R.; Benedetti-Rossi, G.

    2015-12-01

    Context. The prediction of stellar occultations by trans-Neptunian objects (TNOs) and Centaurs is a difficult challenge that requires accuracy both in the occulted star position and in the object ephemeris. Until now, the most used method of prediction, involving dozens of TNOs/Centaurs, has been to consider a constant offset for the right ascension and for the declination with respect to a reference ephemeris, usually the latest public version. This offset is determined as the difference between the most recent observations of the TNO/Centaur and the reference ephemeris. This method can be successfully applied when the offset remains constant with time, i.e. when the orbit is stable enough. In this case, the prediction even holds for occultations that occur several days after the last observations. Aims: This paper presents an alternative method of prediction, based on a new accurate orbit determination procedure, which uses all the available positions of the TNO from the Minor Planet Center database, as well as sets of new astrometric positions from unpublished observations. Methods: Orbits were determined through a numerical integration procedure called NIMA, in which we developed a specific weighting scheme that considers the individual precision of the observation, the number of observations performed during one night by the same observatory, and the presence of systematic errors in the positions. Results: The NIMA method was applied to 51 selected TNOs and Centaurs. For this purpose, we performed about 2900 new observations in several observatories (European South Observatory, Observatório Pico dos Dias, Pic du Midi, etc.) during the 2007-2014 period. Using NIMA, we succeed in predicting the stellar occultations of 10 TNOs and 3 Centaurs between July 2013 and February 2015. By comparing the NIMA and Jet Propulsion Laboratory (JPL) ephemerides, we highlight the variation in the offset between them with time, by showing that, generally, the constant offset

  9. The statistics of triggered star formation: an overdensity of massive young stellar objects around Spitzer bubbles

    NASA Astrophysics Data System (ADS)

    Thompson, M. A.; Urquhart, J. S.; Moore, T. J. T.; Morgan, L. K.

    2012-03-01

    We present a detailed statistical study of massive star formation in the environment of 322 Spitzer mid-infrared bubbles by using the Red MSX Source (RMS) survey for massive young stellar objects (YSOs). Using a combination of simple surface density plots and a more sophisticated angular cross-correlation function analysis, we show that there is a statistically significant overdensity of RMS YSOs towards the bubbles. There is a clear peak in the surface density and angular cross-correlation function of YSOs projected against the rim of the bubbles. By investigating the autocorrelation function of the RMS YSOs, we show that this is not due to intrinsic clustering of the RMS YSO sample. RMS YSOs and Spitzer bubbles are essentially uncorrelated with each other beyond a normalized angular distance of two bubble radii. The bubbles associated with RMS YSOs tend to be both smaller and thinner than those that are not associated with YSOs. We interpret this tendency to be due to an age effect, with YSOs being preferentially found around smaller and younger bubbles. We find no evidence to suggest that the YSOs associated with the bubbles are any more luminous than the rest of the RMS YSO population, which suggests that the triggering process does not produce a top-heavy luminosity function or initial mass function. We suggest that it is likely that the YSOs were triggered by the expansion of the bubbles and estimate that the fraction of massive stars in the Milky Way formed by this process could be between 14 and 30 per cent.

  10. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  11. A multi-wavelength interferometric study of the massive young stellar object IRAS 13481-6124

    NASA Astrophysics Data System (ADS)

    Boley, Paul A.; Kraus, Stefan; de Wit, Willem-Jan; Linz, Hendrik; van Boekel, Roy; Henning, Thomas; Lacour, Sylvestre; Monnier, John D.; Stecklum, Bringfried; Tuthill, Peter G.

    2016-02-01

    We present new mid-infrared interferometric observations of the massive young stellar object IRAS 13481-6124, using VLTI/MIDI for spectrally-resolved, long-baseline measurements (projected baselines up to ~120 m) and GSO/T-ReCS for aperture-masking interferometry in five narrow-band filters (projected baselines of ~1.8-6.4 m) in the wavelength range of 7.5-13μm. We combine these measurements with previously-published interferometric observations in the K and N bands in order to assemble the largest collection of infrared interferometric observations for a massive YSO to date. Using a combination of geometric and radiative-transfer models, we confirm the detection at mid-infrared wavelengths of the disk previously inferred from near-infrared observations. We show that the outflow cavity is also detected at both near- and mid-infrared wavelengths, and in fact dominates the mid-infrared emission in terms of total flux. For the disk, we derive the inner radius (~1.8 mas or ~6.5 AU at 3.6 kpc), temperature at the inner rim (~1760 K), inclination (~48°) and position angle (~107°). We determine that the mass of the disk cannot be constrained without high-resolution observations in the (sub-)millimeter regime or observations of the disk kinematics, and could be anywhere from ~10-3 to 20M⊙. Finally, we discuss the prospects of interpreting the spectral energy distributions of deeply-embedded massive YSOs, and warn against attempting to infer disk properties from the spectral energy distribution. Based in part on observations with the Very Large Telescope Interferometer of the European Southern Observatory, under program IDs 384.C-0625, 086.C-0543, 091.C-0357.

  12. MASSIVE YOUNG STELLAR OBJECTS IN THE GALACTIC CENTER. I. SPECTROSCOPIC IDENTIFICATION FROM SPITZER INFRARED SPECTROGRAPH OBSERVATIONS

    SciTech Connect

    An, Deokkeun; RamIrez, Solange V.; Boogert, A. C. Adwin; Sellgren, Kris; Arendt, Richard G.; Schultheis, Mathias; Cotera, Angela S.; Stolovy, Susan R.

    2011-08-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic center (GC). Our sample of 107 YSO candidates was selected based on Infrared Array Camera (IRAC) colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone, which spans the central {approx}300 pc region of the Milky Way. We obtained IRS spectra over 5-35 {mu}m using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 {mu}m shoulder on the absorption profile of 15 {mu}m CO{sub 2} ice, suggestive of CO{sub 2} ice mixed with CH{sub 3}OH ice on grains. This 15.4 {mu}m shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that nine massive YSOs also reveal molecular gas-phase absorption from CO{sub 2}, C{sub 2}H{sub 2}, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8-23 M{sub sun}, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of {approx}0.07 M{sub sun} yr{sup -1} at the GC.

  13. Heterogeneity in 12CO/13CO Abundance Ratios toward Solar-type Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Smith, Rachel L.; Pontoppidan, Klaus M.; Young, Edward D.; Morris, Mark R.

    2015-11-01

    This study reports an unusual heterogeneity in [12C16O]/[13C16O] abundance ratios of carbon monoxide observed in the gas phase toward seven ˜solar-mass young stellar objects (YSOs) and three dense foreground clouds in the nearby star-forming regions, Ophiuchus, Corona Australis, Orion, and Vela, and an isolated core, L43. Robust isotope ratios were derived using infrared absorption spectroscopy of the 4.7 μm fundamental and 2.3 μm overtone rovibrational bands of CO at very high spectral resolution (λ/Δλ ≈ 95,000), observed with the Cryogenic Infrared Echelle Spectrograph (CRIRES) on the Very Large Telescope. We find [12C16O]/[13C16O] values ranging from ˜85 to 165, significantly higher than those of the local interstellar medium (ISM) (˜65-69). These observations are evidence for isotopic heterogeneity in carbon reservoirs in solar-type YSO environments, and encourage the need for refined galactic chemical evolution models to explain the 12C/13C discrepancy between the solar system and local ISM. The oxygen isotope ratios are consistent with isotopologue-specific photodissociation by CO self-shielding toward the disks, VV CrA N and HL Tau, further substantiating models predicting CO self-shielding on disk surfaces. However, we find that CO self-shielding is an unlikely general explanation for the high [12C16O]/[13C16O] ratios observed in this study. Comparison of the solid CO against gas-phase [12C16O]/[13C16O] suggests that interactions between CO ice and gas reservoirs need to be further investigated as at least a partial explanation for the unusually high [12C16O]/[13C16O] observed.

  14. Multi-Sensory Approach to Search for Young Stellar Objects in CG4

    NASA Astrophysics Data System (ADS)

    Hoette, Vivian L.; Rebull, L. M.; McCarron, K.; Johnson, C. H.; Gartner, C.; VanDerMolen, J.; Gamble, L.; Matche, L.; McCartney, A.; Doering, M.; Crump, R.; Laorr, A.; Mork, K.; Steinbergs, E.; Wigley, E.; Caruso, S.; Killingstad, N.; McCanna, T.

    2011-01-01

    Individuals with disabilities - specifically individuals who are deaf or hard of hearing (DHH) and/or blind and visually-impaired (BVI) - have traditionally been underrepresented in the fields of Science, Technology, Engineering, and Math (STEM). The low incidence rate of these populations, coupled with geographic isolation, creates limited opportunities for students to work with and receive mentoring by professionals who not only have specialty knowledge in disability areas but also work in STEM fields. Yerkes Observatory scientists, along with educators from the Wisconsin School for the Deaf, the Wisconsin Center for the Blind and Visually Impaired, Breck School, and Oak Park and River Forest High School, are engaged in active research with a Spitzer Science Center (SSC) scientist. Our ultimate goals are threefold; to engage DHH and BVI students with equal success as their sighted and hearing peers, to share our techniques to make astronomy more accessible to DHH and BVI youth, and to generate a life-long interest which will lead our students to STEM careers. This poster tracks our work with an SSC scientist during the spring, summer, and fall of 2010. The group coauthored another AAS poster on finding Young Stellar Objects (YSO) in the CG4 Nebula in Puppis. During the project, the students, scientists and teachers developed a number of techniques for learning the necessary science as well as doing the required data acquisition and analysis. Collaborations were formed between students with disabilities and their non-disabled peers to create multi-media projects. Ultimately, the projects created for our work with NITARP will be disseminated through our professional connections in order to ignite a passion for astronomy in all students - with and without disabilities. This research was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.

  15. ICE CHEMISTRY IN EMBEDDED YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Oliveira, J. M.; Van Loon, J. Th.; Chen, C.-H. R.; Indebetouw, R.; Tielens, A. G. G. M.; Sloan, G. C.; Woods, P. M.; Kemper, F.; Gordon, K. D.; Boyer, M. L.; Shiao, B.; Meixner, M.; Madden, S.; Speck, A. K.; Marengo, M.

    2009-12-20

    We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program. We analyze the two prominent ice bands in the IRS spectral range: the bending mode of CO{sub 2} ice at 15.2 mum and the ice band between 5 and 7 mum that includes contributions from the bending mode of water ice at 6 mum among other ice species. The 5-7 mum band is difficult to identify in our LMC sample due to the conspicuous presence of polycyclic aromatic hydrocarbon emission superimposed onto the ice spectra. We identify water ice in the spectra of two sources; the spectrum of one of those sources also exhibits the 6.8 mum ice feature attributed in the literature to ammonium and methanol. We model the CO{sub 2} band in detail, using the combination of laboratory ice profiles available in the literature. We find that a significant fraction (approx>50%) of CO{sub 2} ice is locked in a water-rich component, consistent with what is observed for Galactic sources. The majority of the sources in the LMC also require a pure-CO{sub 2} contribution to the ice profile, evidence of thermal processing. There is a suggestion that CO{sub 2} production might be enhanced in the LMC, but the size of the available sample precludes firmer conclusions. We place our results in the context of the star formation environment in the LMC.

  16. NEAR-INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN THE STAR FORMATION REGION CYGNUS OB7

    SciTech Connect

    Wolk, Scott J.; Rice, Thomas S.; Aspin, Colin

    2013-08-20

    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 Degree-Sign Multiplication-Sign 1 Degree-Sign region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer, we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field Imaging Camera on the United Kingdom Infrared Telescope, we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J Almost-Equal-To 17. We study detailed light curves and color trajectories of {approx}50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on timescales of a few years. We divide the variability into four observational classes: (1) stars with periodic variability stable over long timescales, (2) variables which exhibit short-lived cyclic behavior, (3) long-duration variables, and (4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of <1 Myr, with at least one individual, wildly varying source {approx}100, 000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.

  17. High-energy processes in Young Stellar Objects -- the radio--X-ray (dis)connection

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Wolk, Scott; Osten, Rachel

    2009-09-01

    Low-mass young stellar objects show high levels of magnetic activity in a wide spectral range. Powerful flares have been observed from X-ray to radio wavelengths. It has been expected that radio and X-ray emission from YSOs are correlated if magnetic fields close to the star are responsible for both nonthermal radio emission (usually gyrosynchrotron radiation) and thermal hot-plasma X-ray emission (see Guedel & Benz 1994). These high-energy processes strongly influence the surroundings of the YSOs, including irradiation of their disks. A deeper understanding of these processes requires taking into account their manifestations in different spectral ranges. However, the strong variability of YSOs ideally necessitates simultaneous multi-wavelength observations or at least a large sample of sources. While a general correlation of radio and X-ray luminosities of phenomena ranging from solar flares to active stars has been found for more evolved stars, it remains unclear to what degree it applies to YSOs -- particularly their earliest evolutionary stages. Drawing from the latest simultaneous X-ray and radio observations of star-forming regions as well as on archival data from the Chandra Orion Ultra-deep project, we present an update on the question of whether and how the radio and X-ray properties of YSOs are correlated and what this tells us about high-energy processes in YSOs compared to other classes of active stars. We mostly find a very limited relation between the X-ray and radio fluxes indicating a non-magnetic origin for some of the radio or X-ray emission.

  18. A CORRELATION BETWEEN SURFACE DENSITIES OF YOUNG STELLAR OBJECTS AND GAS IN EIGHT NEARBY MOLECULAR CLOUDS

    SciTech Connect

    Gutermuth, R. A.; Pipher, J. L.; Megeath, S. T.; Allen, T. S.; Myers, P. C.; Allen, L. E.

    2011-10-01

    We report the discovery and characterization of a power-law correlation between the local surface densities of Spitzer-identified, dusty young stellar objects (YSOs) and the column density of gas (as traced by near-IR extinction) in eight molecular clouds within 1 kpc and with 100 or more known YSOs. This correlation, which appears in data smoothed over size scales of {approx}1 pc, varies in quality from cloud to cloud; those clouds with tight correlations, MonR2 and Ophiuchus, are fit with power laws of slope 2.67 and 1.87, respectively. The spread in the correlation is attributed primarily to local gas disruption by stars that formed there or to the presence of very young subregions at the onset of star formation. We explore the ratio of the number of Class II to Class I sources, a proxy for the star formation age of a region, as a function of gas column density; this analysis reveals a declining Class II to Class I ratio with increasing column density. We show that the observed star-gas correlation is consistent with a star formation law where the star formation rate per area varies with the gas column density squared. We also propose a simple picture of thermal fragmentation of dense gas in an isothermal, self-gravitating layer as an explanation for the power law. Finally, we briefly compare the star-gas correlation and its implied star formation law with other recent proposed of star formation laws at similar and larger size scales from nearby star-forming regions.

  19. Complex organic molecules in organic-poor massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith C.; Öberg, Karin I.; Garrod, Robin T.; van Dishoeck, Ewine F.; Bisschop, Suzanne E.

    2015-04-01

    Context. Massive young stellar objects (MYSOs) with hot cores are classic sources of complex organic molecules. The origins of these molecules in such sources, as well as the small- and large-scale differentiation between nitrogen- and oxygen-bearing complex species, are poorly understood. Aims: We aim to use complex molecule abundances toward a chemically less explored class of MYSOs with weak hot organic emission lines to constrain the impact of hot molecular cores and initial ice conditions on the chemical composition toward MYSOs. Methods: We use the IRAM 30 m and the Submillimeter Array to search for complex organic molecules over 8-16 GHz in the 1 mm atmospheric window toward three MYSOs with known ice abundances, but without luminous molecular hot cores. Results: Complex molecules are detected toward all three sources at comparable abundances with respect to CH3OH to classical hot core sources. The relative importance of CH3CHO, CH3CCH, CH3OCH3, CH3CN, and HNCO differ between the organic-poor MYSOs and hot cores, however. Furthermore, the N-bearing molecules are generally concentrated toward the source centers, while most O- and C-bearing molecules are present both in the center and in the colder envelope. Gas-phase HNCO/CH3OH ratios are tentatively correlated with the ratios of NH3 ice over CH3OH ice in the same lines of sight, which is consistent with new gas-grain model predictions. Conclusions: Hot cores are not required to form complex organic molecules, and source temperature and initial ice composition both seem to affect complex organic distributions toward MYSOs. To quantify the relative impact of temperature and initial conditions requires, however, a larger spatially resolved survey of MYSOs with ice detections.

  20. Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2015-12-01

    We have carried out a search for optically visible post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contaminants with unique spectra such as M stars, C stars, planetary nebulae, quasi-stellar objects and background galaxies. Subsequently, we performed a detailed spectroscopic analysis of the remaining candidates to estimate their stellar parameters such as effective temperature, surface gravity (log g), metallicity ([Fe/H]), reddening and their luminosities. This resulted in a sample of 35 likely post-AGB candidates with late-G to late-A spectral types, low log g, and [Fe/H] < -0.5. Furthermore, our study confirmed the existence of the dusty post-red giant branch (post-RGB) stars, discovered previously in our Small Magellanic Cloud survey, by revealing 119 such objects in the LMC. These objects have mid-IR excesses and stellar parameters (Teff, log g, [Fe/H]) similar to those of post-AGB stars except that their luminosities (< 2500 L⊙), and hence masses and radii, are lower. These post-RGB stars are likely to be products of binary interaction on the RGB. The post-AGB and post-RGB objects show spectral energy distribution properties similar to the Galactic post-AGB stars, where some have a surrounding circumstellar shell, while some others have a surrounding stable disc similar to the Galactic post-AGB binaries. This study also resulted in a new sample of 162 young stellar objects, identified based on a robust log g criterion. Other interesting outcomes include objects with an UV continuum and an emission line spectrum; luminous supergiants; hot main-sequence stars; and 15 B[e] star candidates, 12 of which are newly discovered in this study.

  1. THE PALOMAR TRANSIENT FACTORY ORION PROJECT: ECLIPSING BINARIES AND YOUNG STELLAR OBJECTS

    SciTech Connect

    Van Eyken, Julian C.; Ciardi, David R.; Akeson, Rachel L.; Beichman, Charles A.; Von Braun, Kaspar; Gelino, Dawn M.; Kane, Stephen R.; Plavchan, Peter; RamIrez, Solange V.; Rebull, Luisa M.; Stauffer, John R.; Hoard, D. W.; Howell, Steve B.; Bloom, Joshua S.; Cenko, S. Bradley; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Law, Nicholas M.; Nugent, Peter E.

    2011-08-15

    The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3.{sup 0}5 x 2.{sup 0}3) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 {+-} 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known

  2. HIGH- AND INTERMEDIATE-MASS YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Gruendl, Robert A.; Chu, Y.-H. E-mail: chu@astro.illinois.edu

    2009-09-01

    Archival Spitzer Infrared Array Camera (IRAC) and MIPS observations of the Large Magellanic Cloud (LMC) have been used to search for young stellar objects (YSOs). We have carried out independent aperture photometry of these data and merged the results from different passbands to produce a photometric catalog. To verify our methodology we have also analyzed the data from the SAGE and SWIRE Legacy programs; our photometric measurements are in general agreement with the photometry released by these programs. A detailed completeness analysis for our photometric catalog of the LMC shows that the 90% completeness limits are, on average, 16.0, 15.0, 14.3, 13.1, and 9.2 mag at 3.6, 4.5, 5.8, 8.0, and 24 {mu}m, respectively. Using our mid-infrared photometric catalogs and two simple selection criteria, [4.5]-[8.0]>2.0 to exclude normal and evolved stars and [8.0]>14-([4.5]-[8.0]) to exclude background galaxies, we have identified a sample of 2910 sources in the LMC that could potentially be YSOs. We then used the Spitzer observations complemented by optical and near-infrared data to carefully assess the nature of each source. To do so we simultaneously considered multiwavelength images and photometry to assess the source morphology, spectral energy distribution (SED) from the optical through the mid-infrared wavelengths, and the surrounding interstellar environment to determine the most likely nature of each source. From this examination of the initial sample, we suggest that 1172 sources are most likely YSOs. We have also identified 1075 probable background galaxies, consistent with the expected number estimated from the SWIRE survey. Spitzer IRS observations of 269 of the brightest YSOs from our sample have confirmed that {approx}>95% are indeed YSOs. An examination of color-color and color-magnitude diagrams shows no simple criteria in color-magnitude space that can unambiguously separate the LMC YSOs from all asymptotic giant branch (AGB)/post-AGB stars, planetary

  3. EC 19314 - 5915 - A bright, eclipsing cataclysmic variable from the Edinburgh-Cape Blue Object Survey

    NASA Technical Reports Server (NTRS)

    Buckley, D. A. H.; O'Donoghue, D.; Kilkenny, D.; Stobie, R. S.; Remillard, R. A.

    1992-01-01

    A deeply eclipsing cataclysmic variable, with an orbital period of 4.75 hr, has been discovered in the southern Edinburgh-Cape Blue Object Survey. The star, EC 19314 - 5915, lies close to the positional constraints of a previously unidentified HEAO-1 hard X-ray source, 1H1930 - 5989. Its optical spectrum is unusual in that it shows, apart from the emission lines characteristic of a novalike, or dwarf nova cataclysmic variable (Balmer, He I and He II), metallic absorption lines typical of a late-G star. The individual time-resolved spectra, with the tertiary absorption lines removed, show absorption reversals in the Balmer emission lines, increasing in strength for the higher series. The Balmer emission radial velocities are therefore severely distorted in comparison to the He II 4686-A emission and He I 4471-A absorption radial velocity curves. An independent distance estimate of about 600 pc is derived for EC19314 - 5915, from the spectroscopic parallax of the third star.

  4. Stellar Vampires Unmasked

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Astronomers have found possible proofs of stellar vampirism in the globular cluster 47 Tucanae. Using ESO's Very Large Telescope, they found that some hot, bright, and apparently young stars in the cluster present less carbon and oxygen than the majority of their sisters. This indicates that these few stars likely formed by taking their material from another star. "This is the first detection of a chemical signature clearly pointing to a specific scenario to form so-called 'Blue straggler stars' in a globular cluster", said Francesco Ferraro, from the Astronomy Department of Bologna University (Italy) and lead-author of the paper presenting the results. Blue stragglers are unexpectedly young-looking stars found in stellar aggregates, such as globular clusters, which are known to be made up of old stars. These enigmatic objects are thought to be created in either direct stellar collisions or through the evolution and coalescence of a binary star system in which one star 'sucks' material off the other, rejuvenating itself. As such, they provide interesting constraints on both binary stellar evolution and star cluster dynamics. To date, the unambiguous signatures of either stellar traffic accidents or stellar vampirism have not been observed, and the formation mechanisms of Blue stragglers are still a mystery. The astronomers used ESO's Very Large Telescope to measure the abundance of chemical elements at the surface of 43 Blue straggler stars in the globular cluster 47 Tucanae [1]. They discovered that six of these Blue straggler stars contain less carbon and oxygen than the majority of these peculiar objects. Such an anomaly indicates that the material at the surface of the blue stragglers comes from the deep interiors of a parent star [2]. Such deep material can reach the surface of the blue straggler only during the mass transfer process occurring between two stars in a binary system. Numerical simulations indeed show that the coalescence of stars should not

  5. Chemistry of massive young stellar objects with a disk-like structure

    NASA Astrophysics Data System (ADS)

    Isokoski, K.; Bottinelli, S.; van Dishoeck, E. F.

    2013-06-01

    Aims: Our goal is to take an inventory of complex molecules in three well-known high-mass protostars for which disks or toroids have been claimed and to study the similarities and differences with a sample of massive young stellar objects (YSOs) without evidence of such flattened disk-like structures. With a disk-like geometry, UV radiation can escape more readily and potentially affect the ice and gas chemistry on hot-core scales. Methods: A partial submillimeter line survey, targeting CH3OH, H2CO, C2H5OH, HCOOCH3, CH3OCH3, CH3CN, HNCO, NH2CHO, C2H5CN, CH2CO, HCOOH, CH3CHO, and CH3CCH, was made toward three massive YSOs with disk-like structures, IRAS 20126+4104, IRAS 18089-1732, and G31.41+0.31. Rotation temperatures and column densities were determined by the rotation diagram method, as well as by independent spectral modeling. The molecular abundances were compared with previous observations of massive YSOs without evidence of any disk structure, targeting the same molecules with the same settings and using the same analysis method. Results: Consistent with previous studies, different complex organic species have different characteristic rotation temperatures and can be classified either as warm (>100 K) or cold (<100 K). The excitation temperatures and abundance ratios are similar from source to source and no significant difference can be established between the two source types. Acetone, CH3COCH3, is detected for the first time in G31.41+0.31 and IRAS 18089-1732. Temperatures and abundances derived from the two analysis methods generally agree within factors of a few. Conclusions: The lack of chemical differentiation between massive YSOs with and without observed disks suggest either that the chemical complexity is already fully established in the ices in the cold prestellar phase or that the material experiences similar physical conditions and UV exposure through outflow cavities during the short embedded lifetime. Appendices are available in electronic form

  6. Young Stellar Objects in the Magellanic Clouds: Herschel spectroscopy first results

    NASA Astrophysics Data System (ADS)

    Oliveira, Joana M.; Theodorus van Loon, Jacco; Sewilo, Marta

    2015-08-01

    As the nearest gas-rich galaxies, the Large and Small Magellanic Clouds (LMC and SMC) offer the opportunity to bridge the gap between star formation processes on large galactic-wide scales and on the small scales of individual Young Stellar Objects (YSOs). These metal-deficient galaxies (Z ~ 0.2-0.4 Z⊙) also provide an invaluable window into a region of parameter space hitherto observationally unexplored. Metallicity reveals itself in at least two ways: abundances of gas-phase carbon and oxygen (and their molecular products), and abundance and properties of dust grains. The most efficient cooling mechanisms during the early collapse stages are via radiation through fine structure lines of C and O, as well as rotational transitions in abundant molecules such as CO and H2O. Furthermore, dust grains are crucial in driving molecular cloud chemistry, as dust opacity shields cores from radiation, and icy mantles on grain surfaces enable chemical reactions to occur that would not happen in the gas phase.We present the first results of a programme using spectroscopy obtained with PACS and SPIRE onboard the Herschel Space Observatory. The sample of massive SMC and LMC YSOs is well characterised at mid-IR wavelengths, and includes both deeply embedded sources and compact HII regions. We measure the strengths of key gas-phase cooling species ([OI], [CII], H2O, CO, OH), in order to estimate temperature, density, ionisation state and abundances. This analysis directly probes the potential metallicity effect, since it quantifies the relative luminosities of the species that promote envelope cooling and thus constrain the cooling budget of the YSO envelopes. Preliminary results indicate that while [OI], [CII] and CO emission is widely detected, H2O and OH is weak or absent in most YSOs. Does this re-enforce the scarcity of H2O hypothesized by Oliveira et al. (2011,2013), now in the gas-phase? We also use the extension and morphology of the [OI], [CII] and [OIII] emission to

  7. PHOTOELECTRIC CHARGING OF DUST GRAINS IN THE ENVIRONMENT OF YOUNG STELLAR OBJECTS

    SciTech Connect

    Pedersen, Andreas; Gomez de Castro, Ana I.

    2011-10-20

    The evolution of disks around young stellar objects (YSOs) is deeply affected by the YSOs' ultraviolet (UV) radiation field especially in the 500-1100 A spectral range. The two dominant processes are: the photodissociation of H{sub 2} molecules in the Werner and Lyman bands, and the emission of photoelectrons from dust grains when high energy photons are absorbed. Photoelectrons are an important source of gas heating. In this paper, dust grain charging when exposed to various possible UV fields in the YSOs' environment is investigated. Numerical simulations of the evolution of photoelectrons in the electric field created by the charged dust grains are carried out to obtain the charging profile of dust grains. From the simulations it appears that the different spectra produce significant quantitative and qualitative differences in the charging processes. Both the UV background and the Ae-Herbig star radiation field produce a relatively slow charging of dust grains due to the low fraction of sufficiently energetic photons. The radiation field of T Tauri stars (TTSs) is harder due to the release of magnetic energy in the dense magnetospheric environment. These numerical results have been used to propose a new simple analytical model for grain charging in the atmosphere of protostellar disks around TTSs susceptible to be used in any disk modeling. It has been found that the yield decreases exponentially with the dust charge and that two populations of photoelectrons are produced: a low energy population with mean kinetic energy E = 2.5 eV and a high energy population with E = 5.5-6 eV; the energy dispersion within the populations is {approx}1.3 eV (T {approx} 1.5 x 10{sup 4} K). The high energy population is susceptible of dissociating the H{sub 2} and ionizing some low ionization potential species, such as the Mg. These results add an additional role to dust on the chemistry of the layers just below the H{sub 2} photoionization front. This photoelectic yield has been

  8. Resolved 24.5 micron emission from massive young stellar objects

    NASA Astrophysics Data System (ADS)

    de Wit, W. J.; Hoare, M. G.; Fujiyoshi, T.; Oudmaijer, R. D.; Honda, M.; Kataza, H.; Miyata, T.; Okamoto, Y. K.; Onaka, T.; Sako, S.; Yamashita, T.

    2009-01-01

    Context: Massive young stellar objects (MYSO) are surrounded by massive dusty envelopes, whose physical structure and geometry are determined by the star formation process. Aims: Our principal aim is to establish the density structure of MYSO envelopes on scales of ~1000 AU. This constitutes an increase of a factor ~10 in angular resolution compared to similar studies performed in the (sub)mm. Methods: We have obtained diffraction-limited (0.6´´) 24.5 μm images (field of view of 40 arcsec×30 arcsec) of 14 well-known massive star formation regions with the COMICS instrument mounted on the 8.2 m Subaru telescope. We construct azimuthally averaged intensity profiles of the resolved MYSO envelopes and build spectral energy distributions (SEDs) from archival data and the COMICS 24.5 μm flux density. The SEDs range from near-infrared to millimeter wavelengths. Self-consistent 1-D radiative transfer models described by a density dependence of the form n(r) ∝ r-p are used to simultaneously compare the intensity profiles and SEDs to model predictions. Results: The images reveal the presence of discrete MYSO sources which are resolved on arcsecond scales, and, to first-order, the observed emission is circular on the sky. For many sources, the spherical models are capable of satisfactorily reproducing the 24.5 μm intensity profile, the 24.5 μm flux density, the 9.7 μm silicate absorption feature, and the submm emission. They are described by density distributions with p =1.0±0.25. Such distributions are shallower than those found on larger scales probed with single-dish (sub)mm studies. Other sources have density laws that are shallower/steeper than p=1.0 and there is evidence that these are viewed near edge-on or near face-on respectively. In these cases spherical models fail to provide good fits to the data. The images also reveal a diffuse component tracing somewhat larger scale structures, particularly visible in the regions S 140, AFGL 2136, IRAS 20126

  9. On the radio-X-ray connection in young stellar objects in the Orion nebula cluster

    NASA Astrophysics Data System (ADS)

    Forbrich, J.; Wolk, S. J.

    2013-03-01

    Context. Both X-ray and radio observations offer insight into the high-energy processes of young stellar objects (YSOs). The observed thermal X-ray emission can be accompanied by both thermal and nonthermal radio emission. Due to variability, simultaneous X-ray and radio observations are a priori required, but only a comparably small number of YSOs have been studied in this way. Results have been inconclusive due to the even smaller number of YSOs that were simultaneously detected in X-ray and radio observations. Aims: We use archival X-ray and radio observations of the Orion nebula cluster (ONC) to significantly enlarge the sample size of known YSOs with both X-ray and radio detections. Methods: We study the ONC using multi-epoch non-simultaneous archival Chandra X-ray and NRAO Very Large Array (VLA) single-band radio data. The multiple epochs allow us to reduce the impact of variability by obtaining approximated quiescent fluxes. Results: We find that only a small fraction of the X-ray sources (7%) have radio counterparts, even if 60% of the radio sources have X-ray counterparts. YSOs with detections in both bands thus constitute a small minority of the cluster. The radio flux density is typically too low to distinguish thermal and nonthermal radio sources. Only a small fraction of the YSOs with detections in both bands are compatible with the empirical "Güdel-Benz" (GB) relation. Most of the sources not compatible with the GB relation are proplyds, and thus likely thermal sources, but only a fraction of the proplyds is detected in both bands, such that the role of these sources is inconclusive. Conclusions: While the radio sources appear to be globally unrelated to the X-ray sources, the X-ray dataset clearly is much more sensitive than the radio data. We find tentative evidence that known non-thermal radio sources and saturated X-ray sources are indeed close to the empirical relation, even if skewed to higher radio luminosities, as they are expected to be

  10. Envelope structure of deeply embedded young stellar objects in the Serpens Molecular Cloud

    NASA Technical Reports Server (NTRS)

    Hogerheijde, M. R.; van Dishoeck, E. F.; Salverda, J. M.; Blake, G. A.

    1999-01-01

    Aperture-synthesis and single-dish (sub-) millimeter molecular-line and continuum observations reveal in great detail the envelope structure of deeply embedded young stellar objects (SMM 1 = FIRS 1, SMM 2, SMM 3, SMM 4) in the densely star-forming Serpens Molecular Cloud. SMM 1, 3, and 4 show partially resolved (>2" = 800 AU) continuum emission in the beam of the Owens Valley Millimeter Array at lambda = 3.4-1.4 mm. The continuum visibilities accurately constrain the density structure in the envelopes, which can be described by a radial power law with slope -2.0 +/- 0.5 on scales of 300 to 8000 AU. Inferred envelope masses within a radius of 8000 AU are 8.7, 3.0, and 5.3 Msolar for SMM 1, 3, and 4, respectively. A point source with 20%-30% of the total flux at 1.1 mm is required to fit the observations on long baselines, corresponding to warm envelope material within approximately 100 AU or a circumstellar disk. No continuum emission is detected interferometrically toward SMM 2, corresponding to an upper limit of 0.2 Msolar assuming Td = 24 K. The lack of any compact dust emission suggests that the SMM 2 core does not contain a central protostar. Aperture-synthesis observations of the 13CO, C18O, HCO+, H13CO+, HCN, H13CN, N2H+ 1-0, SiO 2-1, and SO 2(2)-1(1) transitions reveal compact emission toward SMM 1, 3, and 4. SMM 2 shows only a number of clumps scattered throughout the primary field of view, supporting the conclusion that this core does not contain a central star. The compact molecular emission around SMM 1, 3, and 4 traces 5"-10" (2000-4000 AU) diameter cores that correspond to the densest regions of the envelopes, as well as material directly associated with the molecular outflow. Especially prominent are the optically thick HCN and HCO+ lines that show up brightly along the walls of the outflow cavities. SO and SiO trace shocked material, where their abundances may be enhanced by 1-2 orders of magnitude over dark-cloud values. A total of 31 molecular

  11. Envelope structure of deeply embedded young stellar objects in the Serpens Molecular Cloud.

    PubMed

    Hogerheijde, M R; van Dishoeck, E F; Salverda, J M; Blake, G A

    1999-03-01

    Aperture-synthesis and single-dish (sub-) millimeter molecular-line and continuum observations reveal in great detail the envelope structure of deeply embedded young stellar objects (SMM 1 = FIRS 1, SMM 2, SMM 3, SMM 4) in the densely star-forming Serpens Molecular Cloud. SMM 1, 3, and 4 show partially resolved (>2" = 800 AU) continuum emission in the beam of the Owens Valley Millimeter Array at lambda = 3.4-1.4 mm. The continuum visibilities accurately constrain the density structure in the envelopes, which can be described by a radial power law with slope -2.0 +/- 0.5 on scales of 300 to 8000 AU. Inferred envelope masses within a radius of 8000 AU are 8.7, 3.0, and 5.3 Msolar for SMM 1, 3, and 4, respectively. A point source with 20%-30% of the total flux at 1.1 mm is required to fit the observations on long baselines, corresponding to warm envelope material within approximately 100 AU or a circumstellar disk. No continuum emission is detected interferometrically toward SMM 2, corresponding to an upper limit of 0.2 Msolar assuming Td = 24 K. The lack of any compact dust emission suggests that the SMM 2 core does not contain a central protostar. Aperture-synthesis observations of the 13CO, C18O, HCO+, H13CO+, HCN, H13CN, N2H+ 1-0, SiO 2-1, and SO 2(2)-1(1) transitions reveal compact emission toward SMM 1, 3, and 4. SMM 2 shows only a number of clumps scattered throughout the primary field of view, supporting the conclusion that this core does not contain a central star. The compact molecular emission around SMM 1, 3, and 4 traces 5"-10" (2000-4000 AU) diameter cores that correspond to the densest regions of the envelopes, as well as material directly associated with the molecular outflow. Especially prominent are the optically thick HCN and HCO+ lines that show up brightly along the walls of the outflow cavities. SO and SiO trace shocked material, where their abundances may be enhanced by 1-2 orders of magnitude over dark-cloud values. A total of 31 molecular

  12. Linking low- to high-mass young stellar objects with Herschel-HIFI observations of water

    NASA Astrophysics Data System (ADS)

    San José-García, I.; Mottram, J. C.; van Dishoeck, E. F.; Kristensen, L. E.; van der Tak, F. F. S.; Braine, J.; Herpin, F.; Johnstone, D.; van Kempen, T. A.; Wyrowski, F.

    2016-01-01

    Context. Water probes the dynamics in young stellar objects (YSOs) effectively, especially shocks in molecular outflows. It is therefore a key molecule for exploring whether the physical properties of low-mass protostars can be extrapolated to massive YSOs, an important step in understanding the fundamental mechanisms regulating star formation. Aims: As part of the WISH key programme, we investigate excited water line properties as a function of source luminosity, in particular the dynamics and the excitation conditions of shocks along the outflow cavity wall. Methods: Velocity-resolved Herschel-HIFI spectra of the H2O 202-111 (988 GHz), 211-202 (752 GHz) and 312-303 (1097 GHz) lines were analysed, together with 12CO J = 10-9 and 16-15, for 52 YSOs with bolometric luminosities ranging from <1 to >105 L⊙. The H2O and 12CO line profiles were decomposed into multiple Gaussian components which are related to the different physical structures of the protostellar system. The non-LTE radiative transfer code radex was used to constrain the excitation conditions of the shocks along the outflow cavity. Results: The profiles of the three excited water lines are similar, indicating that they probe the same gas. Two main emission components are seen in all YSOs: a broad component associated with non-dissociative shocks in the outflow cavity wall ("cavity shocks") and a narrow component associated with the quiescent envelope material. More than 60% of the total integrated intensity in the excited water lines comes from the broad cavity shock component, while the remaining emission comes mostly from the envelope for low-mass Class I, intermediate- and high-mass objects, and dissociative "spot shocks" for low-mass Class 0 protostars. The widths of the water lines are surprisingly similar from low- to high-mass YSOs, whereas 12CO J = 10-9 line widths increase slightly with Lbol. The excitation analysis of the cavity shock component shows stronger 752 GHz emission for high

  13. A Possible Origin of the H-H Objects in Young Stellar Outflows

    NASA Astrophysics Data System (ADS)

    de Gouveia dal Pino, E.; Opher, R.

    1990-11-01

    RESUMEN. La presencIa de flujos coljmados asocjados con objetos estelares j6venes es un fen6meno comun en reglones de formacI6n estelar. Estos chorros frecuentemente muestran una cadena de reglones de lineas de emjsI6n, a varIas de las cuales se les conoce desde bace mucho tlempo objetos HerbIg-Haro (HAl). En el presente trabajo examjnamos la poslbIlI dad de que estos nudos sean condensaciones producIdas por inestabilidad termica en un plasma que se se expande sujeto a `bremsstrahlung' reco - binaci6n y perdida por radjacj5n en lineas de emjsj6n. Nostramos que el valor minimo de = P0/PN0 bajo condjcjones Isobaricas para el crecimien to de la inestabilidad termica es = (6/5) [9/(STc\\)e) - 3/2]; en donde P0 es la presi6n de particulas, PM0 la presi6n magnetica, `)e la tasa de expansI5n y Tc el tiempo de enfriatniento radiativo en el flujo (3eI plasma ambiente. Haciendo calculos no lineales, encontratnos que l9s flujos colitnados de temperatura K, tasas de perdida de masa `4 = 10-6 - lO 8 Ne y velocidades de flujo VJ = 100-400 km/s, resultan favorables para la formacl6n de condensaciones por inestabilidad termica con contrastes de densidad Pp/ .3 -2.0 creados en intervalos de tiempo mas cortos que el tiempo estirnado de expansl6n en los chorros, en donde Pp(Po) es la densidad en la regi5n (ambiente) perturbada. ABSTRACT. The presence of collimated outflows associated with young stellar objects is a common phenomenon in star-fortning regions. These jets frequently show a chain of emission-line regions several of which have long been known as Herbig-Haro (H-H) objects. In this paper we examine the possibility that these knots are condensations produced by thermal instability in an expanding plasma , recombination and emission-line radiation losses. We show that the minimum value of = P /PNo under isobaric conditions for the growth of a thermal instability 0is = (6/5)1 [9/(STcN)e) - 3/2]; where P0 is the particle pressure, NQ tWe magnetic pressure, N) the expansion rate

  14. YOUNG STELLAR OBJECT SEARCH TOWARD THE BOUNDARY OF THE CENTRAL MOLECULAR ZONE WITH NEAR-INFRARED POLARIMETRY

    SciTech Connect

    Yoshikawa, Tatsuhito; Nagata, Tetsuya; Nishiyama, Shogo; Kwon, Jungmi; Tamura, Motohide E-mail: nagata@kusastro.kyoto-u.ac.jp

    2014-08-01

    We have carried out near-infrared polarimetry toward the boundary of the Central Molecular Zone, in the field of (–1.°4 ≲ l ≲ –0.°3 and 1.°0 ≲ l ≲ 2.°9, |b| ≲ 0.°1), using the near-infrared polarimetric camera SIRPOL on the 1.4 m Infrared Survey Facility telescope. We have selected 112 intrinsically polarized sources on the basis of the estimate of interstellar polarization on Stokes Q/I – U/I planes. The selected sources are brighter than K{sub S} = 14.5 mag and have polarimetric uncertainty δP < 1%. Ten of these distinctive polarized sources are fit well with spectral energy distributions of young stellar objects when using the photometry in the archive of the Spitzer Space Telescope mid-infrared data. However, many sources have spectral energy distributions of normal stars suffering from heavy interstellar extinction; these might be stars behind dark clouds. Due to the small number of distinctive polarized sources and candidates of young stellar objects, we cannot judge if they are declining in number outside the Central Molecular Zone. Many massive candidates for young stellar objects in the literature have only small intrinsic polarization. This might suggest that their masses are 4-15 M {sub ☉}, whose intrinsic polarization has been expected to be small.

  15. The role of stellar mass and environment for cluster blue fraction, AGN fraction and star formation indicators from a targeted analysis of Abell 1691

    NASA Astrophysics Data System (ADS)

    Pimbblet, Kevin A.; Jensen, Peter C.

    2012-10-01

    We present an analysis of the galaxy population of the intermediate X-ray luminosity galaxy cluster, Abell 1691, from Sloan Digital Sky Survey (SDSS) and Galaxy Zoo data to elucidate the relationships between environment and galaxy stellar mass for a variety of observationally important cluster populations that include the Butcher-Oemler blue fraction, the active galactic nucleus (AGN) fraction and other spectroscopic classifications of galaxies. From 342 cluster members, we determine a cluster recession velocity of 21257 ± 54 km s-1 and velocity dispersion of 1009-36+40 km s-1 and show that although the cluster is fed by multiple filaments of galaxies it does not possess significant sub-structure in its core. We identify the AGN population of the cluster from a Baldwin, Phillips & Terlevich diagram and show that there is a mild increase in the AGN fraction with radius from the cluster centre that appears mainly driven by high-mass galaxies [log(stellar mass) > 10.8]. Although the cluster blue fraction follows the same radial trend, it is caused primarily by lower mass galaxies [log(stellar mass) < 10.8]. Significantly, the galaxies that have undergone recent starbursts or are presently starbursting but dust-shrouded [spectroscopic e(a) class galaxies] are also nearly exclusively driven by low-mass galaxies. We therefore suggest that the Butcher-Oemler effect may be a mass-dependent effect. We also examine red and passive spiral galaxies and show that the majority are massive galaxies, much like the rest of the red and spectroscopically passive cluster population. We further demonstrate that the velocity dispersion profiles of low- and high-mass cluster galaxies are different. Taken together, we infer that the duty cycle of high- and low-mass cluster galaxies is markedly different, with a significant departure in star formation and specific star formation rates observed beyond r200 and we discuss these findings.

  16. MEASURING THE ABUNDANCE OF SUB-KILOMETER-SIZED KUIPER BELT OBJECTS USING STELLAR OCCULTATIONS

    SciTech Connect

    Schlichting, Hilke E.; Ofek, Eran O.; Gal-Yam, Avishay; Sari, Re'em; Nelan, Edmund P.; Livio, Mario; Wenz, Michael; Muirhead, Philip; Javanfar, Nikta

    2012-12-20

    We present here the analysis of about 19,500 new star hours of low ecliptic latitude observations (|b| {<=} 20 Degree-Sign ) obtained by the Hubble Space Telescope's Fine Guidance Sensors over a time span of more than nine years, which is in addition to the {approx}12, 000 star hours previously analyzed by Schlichting et al. Our search for stellar occultations by small Kuiper Belt Objects (KBOs) yielded one new candidate event corresponding to a body with a 530 {+-} 70 m radius at a distance of about 40 AU. Using bootstrap simulations, we estimate a probability of Almost-Equal-To 5% that this event is due to random statistical fluctuations within the new data set. Combining this new event with the single KBO occultation reported by Schlichting et al. we arrive at the following results: (1) the ecliptic latitudes of 6. Degree-Sign 6 and 14. Degree-Sign 4 of the two events are consistent with the observed inclination distribution of larger, 100-km-sized KBOs. (2) Assuming that small, sub-kilometer-sized KBOs have the same ecliptic latitude distribution as their larger counterparts, we find an ecliptic surface density of KBOs with radii larger than 250 m of N(r > 250 m) = 1.1{sup +1.5}{sub -0.7} Multiplication-Sign 10{sup 7} deg{sup -2}; if sub-kilometer-sized KBOs have instead a uniform ecliptic latitude distribution for -20 Degree-Sign < b < 20 Degree-Sign then N(r > 250 m) = 4.4{sup +5.8}{sub -2.8} Multiplication-Sign 10{sup 6} deg{sup -2}. This is the best measurement of the surface density of sub-kilometer-sized KBOs to date. (3) Assuming the KBO size distribution can be well described by a single power law given by N(> r){proportional_to}r{sup 1-q}, where N(> r) is the number of KBOs with radii greater than r, and q is the power-law index, we find q = 3.8 {+-} 0.2 and q = 3.6 {+-} 0.2 for a KBO ecliptic latitude distribution that follows the observed distribution for larger, 100-km-sized KBOs and a uniform KBO ecliptic latitude distribution for -20 Degree

  17. VARIATIONS IN THE MASS FUNCTIONS OF CLUSTERED AND ISOLATED YOUNG STELLAR OBJECTS

    SciTech Connect

    Kirk, Helen; Myers, Philip C.

    2012-02-01

    We analyze high-quality, complete stellar catalogs for four young (roughly 1 Myr) and nearby (within {approx}300 pc) star-forming regions: Taurus, Lupus3, ChaI, and IC348, which have been previously shown to have stellar groups whose properties are similar to those of larger clusters such as the Orion Nebula Cluster (ONC). We find that stars at higher stellar surface densities within a region or belonging to groups tend to have a relative excess of more massive stars, over a wide range of masses. We find statistically significant evidence for this result in Taurus and IC348 as well as in the ONC. These differences correspond to having typically a {approx}10%-20% higher mean mass in the more clustered environment. Stars in ChaI show no evidence for a trend with either surface density or grouped status, and there are too few stars in Lupus3 to make any definitive interpretation. Models of clustered star formation do not typically extend to sufficiently low masses or small group sizes in order for their predictions to be tested, but our results suggest that this regime is important to consider.

  18. Wide-field infrared survey explorer observations of young stellar objects in the Lynds 1509 dark cloud in Auriga

    SciTech Connect

    Liu, Wilson M.; McCollum, Bruce; Fajardo-Acosta, Sergio; Padgett, Deborah L.; Terebey, Susan; Angione, John; Rebull, Luisa M.; Leisawitz, David

    2014-06-01

    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4 μm, 4.6 μm, 12 μm, and 22 μm, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.

  19. Wide-Field Infrared Survey Explorer Observations of Young Stellar Objects in the Lynds 1509 Dark Cloud in Auriga

    NASA Technical Reports Server (NTRS)

    Liu, Wilson M.; Padgett, Deborah L.; Terebey, Susan; Angione, John; Rebull, Luisa M.; McCollum, Bruce; Fajardo-Acosta, Sergio; Leisawitz, David

    2015-01-01

    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4, 4.6, 12, and 22 microns, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.

  20. STELLAR ROTATION PERIODS OF THE KEPLER OBJECTS OF INTEREST: A DEARTH OF CLOSE-IN PLANETS AROUND FAST ROTATORS

    SciTech Connect

    McQuillan, A.; Mazeh, T.; Aigrain, S.

    2013-09-20

    We present a large sample of stellar rotation periods for Kepler Objects of Interest, based on three years of public Kepler data. These were measured by detecting periodic photometric modulation caused by star spots, using an algorithm based on the autocorrelation function of the light curve, developed recently by McQuillan, Aigrain and Mazeh (2013). Of the 1919 main-sequence exoplanet hosts analyzed, robust rotation periods were detected for 737. Comparing the detected stellar periods to the orbital periods of the innermost planet in each system reveals a notable lack of close-in planets around rapid rotators. It appears that only slowly spinning stars with rotation periods longer than 5-10 days host planets on orbits shorter than 2 or 3 days, although the mechanism(s) that lead(s) to this is not clear.

  1. Compact object mergers: observations of supermassive binary black holes and stellar tidal disruption events

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Zensus, J. A.

    2016-02-01

    The capture and disruption of stars by supermassive black holes (SMBHs), and the formation and coalescence of binaries, are inevitable consequences of the presence of SMBHs at the cores of galaxies. Pairs of active galactic nuclei (AGN) and binary SMBHs are important stages in the evolution of galaxy mergers, and an intense search for these systems is currently ongoing. In the early and advanced stages of galaxy merging, observations of the triggering of accretion onto one or both BHs inform us about feedback processes and BH growth. Identification of the compact binary SMBHs at parsec and sub-parsec scales provides us with important constraints on the interaction processes that govern the shrinkage of the binary beyond the ``final parsec''. Coalescing binary SMBHs are among the most powerful sources of gravitational waves (GWs) in the universe. Stellar tidal disruption events (TDEs) appear as luminous, transient, accretion flares when part of the stellar material is accreted by the SMBH. About 30 events have been identified by multi-wavelength observations by now, and they will be detected in the thousands in future ground-based or space-based transient surveys. The study of TDEs provides us with a variety of new astrophysical tools and applications, related to fundamental physics or astrophysics. Here, we provide a review of the current status of observations of SMBH pairs and binaries, and TDEs, and discuss astrophysical implications.

  2. Bipolar Flows and X-ray Emission from Young Stellar Object

    NASA Technical Reports Server (NTRS)

    Uchida, Y.; Shibata, K.

    1985-01-01

    Production of both the large scale CO bipolar flows and the small scale optical bipolar jets from the star-forming regions is given interpretation in terms of a magnetic mechanism related to accretion model. It is shown by an axisymmetric 2.5-dimensional simulation that the large scale cold bipolar flow may be produced in the relaxation of the magnetic twist which is created by the rotational winding-up of the magnetic field in the contracting disk. In contrast, the small scale warm bipolar jets may be driven by the recoiling shocks which are produced in the crash at the stellar surface of the infalling material released from the inner edge of the disk through magnetic reconnections.

  3. Outflow-Induced Dynamical and Radiative Instability in Stellar Envelopes with an Application to Luminous Blue Variables and Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Hansen, James E. (Technical Monitor)

    2002-01-01

    Theoretical models of the remnants of massive stars in a very hot, post-red-supergiant phase display no obvious instability if standard assumptions are made. However, the brightest observed classical luminous blue variables (LBVs) may well belong to such a phase. A simple time-dependent theory of moving stellar envelopes is developed in order to treat deep hydrodynamical disturbances caused by surface mass loss and to test the moving envelopes for dynamical instability. In the case of steady-state outflow, the theory reduces to the equivalent of the Castor, Abbott, and Klein formulation for optically thick winds at distances well above the sonic point. The time-dependent version indicates that the brightest and hottest LBVs are both dynamically and radiatively unstable, as a result of the substantial lowering of the generalized Eddington luminosity limit by the mass-loss acceleration. It is suggested that dynamical instability, by triggering secular cycles of mass loss, is primarily what differentiates LBVs from the purely radiatively unstable Wolf-Rayet stars. Furthermore, when accurate main-sequence mass-loss rates are used to calculate the evolutionary tracks, the predicted surface hydrogen and nitrogen abundances of the blue remnants agree much better with observations of the brightest LBVs than before.

  4. X-Ray Flares of Sun-like Young Stellar Objects and Their Effects on Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Glassgold, A. E.; Feigelson, E. D.; Montmerle, T.; Wolk, S.

    2005-12-01

    Astronomical observations of flares from analogs of the early Sun have the potential to give critical insights into the high energy irradiation environment of protoplanetary disks. Solar-mass young stellar objects are significantly more X-ray luminous than the typical low-mass T Tauri star. They undergo frequent strong flaring on a several day time scale. Very powerful flares also occur, but on a longer time frame. The hard X-ray spectrum of these stars become even harder during flaring. The X-rays from these Sun-like young stellar objects have the potential to ionize circumstellar material at a level greater than galactic cosmic rays out to distances ˜104 AU. Their characteristic hard spectra imply that, on encountering this material, they penetrate to fairly large surface densities of the order of 1 g psqcm or more. Three specific illustrations are given of the effects of the X-rays: The physics and chemistry of the atmospheres of the inner accretion disks; the ionization level at the disk midplane, important for the viability of the magnetorotational instability; and the nuclear fluence in the irradiation zone just interior to the inner edge of the disk, important in local irradiation scenarios for producing the short-lived radionuclides found in meteorites.

  5. The accretion/ejection paradigm in young stellar objects: from HST and Herschel to JWST

    NASA Astrophysics Data System (ADS)

    Podio, Linda

    2012-07-01

    Stellar jets and molecular outflows are observed in association with young accreting stars and are believed to play a key role in the star formation process. In this talk I will show how current and future space missions are of crucial importance to investigate the origin of stellar jets and their link to the accretion process. Thanks to its high angular (˜0.1") resolution, HST has been the first telescope allowing us to investigate the jet physics at optical/UV wavelengths down to the heart of the launching mechanism. We recently analysed a datacube of the jet emitted by the T Tauri star DG Tau obtaining spatio-kinematical maps of the hot atomic gas in the jet and of its physical conditions (Maurri et al., submitted). These data confirm the predictions of theoretical models including the fact that jets may extract the excess angular momentum from the system. In the last two years Herschel has further improved our comprehension of the ejection process observing the far infrared counterpart of fast and collimated atomic jets. PACS and HIFI observations, acquired within the GASPS (GAS in Protoplanetary Systems) Open Time Key Project (PI: B. Dent), show that T Tauri stars driving optical jets are also associated with a warm gas component emitting not only atomic ([OI], [CII]) but also molecular (high-J CO, H_2O, OH) lines. The comparison with Class 0 outflows highlights a clear evolutionary trend: the emission associated with evolved Class I/II sources is fainter and more compact and the estimated mass loss rates and lines cooling are one to two orders of magnitudes lower (Podio et al., to be submitted). The arrival of JWST will fill-in the gap between HST and Herschel opening a new window in the near and mid-infrared range at unprecedented angular resolution (down to 0.03"). This will allow resolving the emission in both atomic (e.g., [FeII]) and molecular (e.g., H_2) lines and understanding if the molecular gas is entrained by the atomic jet or launched with it

  6. Periodic Disk Eclipsing Stars: A New Class of Variable Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Plavchan, Peter; Laohakunakorn, N.; Seifahrt, A.; Staplefeldt, K.; Gee, A. H.

    2010-01-01

    We present the discovery of 92.6 day periodic near-infrared flu variability for the Class I T Tauri star YLW 16A. Our data are from the 2MASS Calibration Point Source Working Database and constitute 1582 observations in J, H and Ks of a field in Rho Ophiuchus used to calibrate the 2MASS All-Sky Survey. We identify a light curve that brightens from a quiescent faint state by 0.4 mag for only 20% of the period. The long period cannot be explained by stellar rotation. We propose that YLW 16A is a triple YSO system, with an inner binary orbital period of 92.6 days. We postulate that we are observing a component of the binary being eclipsed by a circumbinary disk with respect to our line of site. YLW 16A joins WL 4 and KH-15D as a third member of a new class of disk-eclipsing young stars. Both YLW 16A and WL 4 have been identified to have tertiary companions with projected separations of 20--50 AU. We propose that the tertiary companion can warp the inner circumbinary disk to produce the disk eclipses. We present NIRSPEC observations of WL 4 that suggest three distinct radial velocity components, and present a model SED for YLW 16A. These systems will be useful in investigating terrestrial-zone YSO disk properties and dynamics at 1 Myr.

  7. Cataloged infrared sources in NIPSS data. I - The RSO 1 catalog. [Near Infrared Photographic Sky Survey Red Stellar Objects

    NASA Technical Reports Server (NTRS)

    Horner, V. M.; Craine, E. R.

    1980-01-01

    A small number of selected near-infrared and visual photographic pairs from the Steward Observatory Near Infrared Photographic Sky Survey have been examined for content of stars more red than (V-I) of about 2.5 magnitudes. A simple manual extraction of these objects was carried out as a part of a preliminary evaluation of survey data and techniques for reducing it; the resulting list has been compiled as the first installment of a Catalog of Red Stellar Objects (Craine et al. 1979). Results of a cross correlation of this catalog with the IRC, AFGL, and EIC infrared catalogs are here presented. The results indicate that these photographs may be particularly useful for purposes of optical identification of short-wavelength infrared sources to limits much fainter than represented by presently existing infrared catalogs.

  8. On the use of Video Camera Systems in the Detection of Kuiper Belt Objects by Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Subasinghe, Dilini

    2012-10-01

    Due to the distance between us and the Kuiper Belt, direct detection of Kuiper Belt Objects (KBOs) is not currently possible for objects less than 10 km in diameter. Indirect methods such as stellar occultations must be employed to remotely probe these bodies. The size, shape, as well as atmospheric properties and ring system information of a body (if any), can be collected through observations of stellar occultations. This method has been previously used with some success - Roques et al. (2006) detected 3 Trans-Neptunian objects; Schlichting et al. (2009) detected a single object in archival data. However, previous assessments of KBO occultation detection rates have been calculated only for telescopes - we extend this method to video camera systems. Building on Roques & Moncuquet (2000), we present a derivation that can be applied to any video camera system, taking into account camera specifications and diffraction effects. This allows for a determination of the number of observable KBO occultations per night. Example calculations are presented for some of the automated meteor camera systems currently in use at the University of Western Ontario. The results of this project will allow us to refine and improve our own camera system, as well as allow others to enhance their systems for KBO detection. Roques, F., Doressoundiram, A., Dhillon, V., Marsh, T., Bickerton, S., Kavelaars, J. J., Moncuquet, M., Auvergne, M., Belskaya, I., Chevreton, M., Colas, F., Fernandez, A., Fitzsimmons, A., Lecacheux, J., Mousis, O., Pau, S., Peixinho, N., & Tozzi, G. P. (2006). The Astronomical Journal, 132(2), 819-822. Roques, F., & Moncuquet, M. (2000). Icarus, 147(2), 530-544. Schlichting, H. E., Ofek, E. O., Wenz, M., Sari, R., Gal-Yam, A., Livio, M., Nelan, E., & Zucker, S. (2009). Nature, 462(7275), 895-897.

  9. Observation and Analysis of a Single-Chord Stellar Occultation by Kuiper Belt Object (50000) Quaoar

    NASA Astrophysics Data System (ADS)

    Davis, Allen B.; Pasachoff, J. M.; Babcock, B. A.; Person, M. J.; Zuluaga, C. A.; Bosh, A. S.; Levine, S.; Naranjo, O. A.; Navas, G. R.; Gulbis, A.; Winters, J. G.; Bianco, F.

    2014-01-01

    The Williams-MIT collaboration (www.stellaroccultations.info) predicted and observed a stellar occultation of 2UCAC 26260847 (mag 14.35) by KBO 50000 Quaoar (mag 18.9) on 8/9 July 2013. Observations were attempted from a total of five sites in Chile, Venezuela, and Massachusetts. Only one site, Llano del Hato National Astronomical Observatory in Venezuela, had a positive detection of the occultation, giving us a single chord on Quaoar. All other sites were cloudy. The light curve from the 8/9 July 2013 event has been analyzed with the assumption that Quaoar is ellipsoidal or spherical, placing bounds on some of Quaoar’s properties: diameter (> 1138 ± 25 km), density (< 1.82 ± 0.28 g cm-3), and albedo (< 0.14 ± 0.10). An independent prediction of the occultation’s shadow path by Fraser, Gwyn, et al. (2013) suggests that the chord is near-equatorial, which means that our bounds on Quaoar’s properties are closer to estimates. We will compare our result with that of the 11 February 2011 single-chord occultation detected by Sallum et al. (2011) and Person et al. (2011). A subsequent attempt to observe a second Quaoar occultation, that of 12/13 July 2013 in South Africa, failed because of cloudy weather. This work was supported in part by NASA Planetary Astronomy grants NNX08AO50G and NNH11ZDA001N to Williams College, NNX10AB27G to MIT, and USRA grant #8500-98-003 to Lowell Observatory. We thank Steven P. Souza at Williams, and other collaborators in planning and carrying out the various observations: including Libardo Zerpa, Joresly Villarreal, Richard Rojas, and Jorge Moreno at Llano del Hato, and Patricio Rojo and Matias Jones at Cerro Calan/U. Chile.

  10. Differential binding of colors to objects in memory: red and yellow stick better than blue and green.

    PubMed

    Kuhbandner, Christof; Spitzer, Bernhard; Lichtenfeld, Stephanie; Pekrun, Reinhard

    2015-01-01

    Both evolutionary considerations and recent research suggest that the color red serves as a signal indicating an object's importance. However, until now, there is no evidence that this signaling function of red is also reflected in human memory. To examine the effect of red on memory, we conducted four experiments in which we presented objects colored in four different colors (red, green, blue, and yellow) and measured later memory for the presence of an object and for the color of an object. Across experiments, we varied the type of objects (words vs. pictures), task complexity (single objects vs. multiple objects in visual scenes), and intentionality of encoding (intentional vs. incidental learning). Memory for the presence of an object was not influenced by color. However, in all four experiments, memory for the color of an object depended on color type and was particularly high for red and yellow-colored objects and particularly low for green-colored objects, indicating that the binding of colors into object memory representations varies as a function of color type. Analyzing the observers' confidence in their color memories revealed that color not only influenced objective memory performance but also subjective confidence. Subjective confidence judgments differentiated well between correct and incorrect color memories for red-colored objects, but poorly for green-colored objects. Our findings reveal a previously unknown color effect which may be of considerable interest for both basic color research and applied settings like eyewitness testimony in which memory for color features is relevant. Furthermore, our results indicate that feature binding in memory is not a uniform process by which any attended feature is automatically bound into unitary memory representations. Rather, memory binding seems to vary across different subtypes of features, a finding that supports recent research showing that object features are stored in memory rather independently from

  11. Application of USNO-B1.0 towards selecting objects with displaced blue and red components

    NASA Astrophysics Data System (ADS)

    Jayson, Joel S.

    2016-03-01

    We have conducted a feasibility study to determine the effectiveness of using USNO-B1.0 data to preferentially detect objects with displaced red and blue components. A procedure was developed to search catalogue entries for such objects, which include M dwarfs paired with white dwarfs or with earlier main-sequence stars, and galaxies with asymmetric colour distributions. Residual differences between red and blue and infrared and blue scanned emulsion images define vectors, which, when appropriately aligned and of sufficient length, signal potential candidates. Test sample sets were analysed to evaluate the effective discrimination of the technique. Over 91 000 USNO-B1.0 catalogue entries at points throughout the celestial sphere were then filtered for acceptable combinations of entry observations and magnitudes and the resulting total of about 17 000 entries was winnowed down to a little more than 200 objects of interest. These were screened by visual examination of photo images to a final total of 146 candidates. About one quarter of these candidates coincide with SDSS (Sloan Digital Sky Survey) data. Those constituents fall into two groups, single and paired objects. SDSS identified several galaxies in the first group. Regarding the second group, at least half of its members were tentatively identified as main-sequence pairs, the greater portion being of widely separated spectral types. Two white dwarf-main-sequence pairs were also identified. Most importantly, the vectors formed from USNO-B1.0 residuals were in alignment with corresponding SDSS pair position angles, thereby supporting this work's central thesis.

  12. A single sub-kilometre Kuiper belt object from a stellar occultation in archival data.

    PubMed

    Schlichting, H E; Ofek, E O; Wenz, M; Sari, R; Gal-Yam, A; Livio, M; Nelan, E; Zucker, S

    2009-12-17

    The Kuiper belt is a remnant of the primordial Solar System. Measurements of its size distribution constrain its accretion and collisional history, and the importance of material strength of Kuiper belt objects. Small, sub-kilometre-sized, Kuiper belt objects elude direct detection, but the signature of their occultations of background stars should be detectable. Observations at both optical and X-ray wavelengths claim to have detected such occultations, but their implied abundances are inconsistent with each other and far exceed theoretical expectations. Here we report an analysis of archival data that reveals an occultation by a body with an approximately 500-metre radius at a distance of 45 astronomical units. The probability of this event arising from random statistical fluctuations within our data set is about two per cent. Our survey yields a surface density of Kuiper belt objects with radii exceeding 250 metres of 2.1(-1.7)(+4.8) x 10(7) deg(-2), ruling out inferred surface densities from previous claimed detections by more than 5sigma. The detection of only one event reveals a deficit of sub-kilometre-sized Kuiper belt objects compared to a population extrapolated from objects with radii exceeding 50 kilometres. This implies that sub-kilometre-sized objects are undergoing collisional erosion, just like debris disks observed around other stars. PMID:20016596

  13. The interactions of winds from massive young stellar objects: X-ray emission, dynamics and cavity evolution

    NASA Astrophysics Data System (ADS)

    Parkin, E. R.; Pittard, J. M.; Hoare, M. G.; Wright, N. J.; Drake, J. J.

    2009-12-01

    Two-dimensional axis-symmetric hydrodynamical simulations are presented which explore the interaction of stellar and disc winds with surrounding infalling cloud material. The star and its accompanying disc blow winds inside a cavity cleared out by an earlier jet. The collision of the winds with their surroundings generates shock-heated plasma which reaches temperatures up to ~108K. Attenuated X-ray spectra are calculated from solving the equation of radiative transfer along lines of sight. This process is repeated at various epochs throughout the simulations to examine the evolution of the intrinsic and attenuated fluxes. We find that the dynamic nature of the wind-cavity interaction fuels intrinsic variability in the observed emission on time-scales of several hundred years. This is principally due to variations in the position of the reverse shock which is influenced by changes in the shape of the cavity wall. The collision of the winds with the cavity wall can cause clumps of cloud material to be stripped away. Mixing of these clumps into the winds mass-loads the flow and enhances the X-ray emission measure. The position and shape of the reverse shock play a key role in determining the strength and hardness of the X-ray emission. In some models the reverse shock is oblique to much of the stellar and disc outflows, whereas in others it is closely normal over a wide range of polar angles. For reasonable stellar and disc wind parameters, the integrated count rate and spatial extent of the intensity peak for X-ray emission agree with Chandra observations of the deeply embedded massive young stellar objects (MYSOs) S106 IRS 4, Mon R2 IRS 3A and AFGL 2591. The evolution of the cavity is heavily dependent on the ratio of the inflow to outflow ram pressures. The cavity closes up if the inflow is too strong and rapidly widens if the outflowing winds are too strong. The velocity shear between the respective flows creates Kelvin-Helmholtz instabilities which corrugate the

  14. Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer Observations of the GLIMPSE9 Stellar Cluster

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Figer, Donald F.; Davies, Ben; Kudritzki, R. P.; Rich, R. Michael; MacKenty, John; Trombley, Christine

    2010-01-01

    We present Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H - KS = ~1 mag, indicating an interstellar extinction A _K_s = 1.6 ± 0.2 mag. The spectra of the three brightest stars show deep CO band heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2 ± 0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600 ± 400 M sun, integrated down to 1 M sun. In the vicinity of GLIMPSE9 are several H II regions and supernova remnants, all of which (including GLIMPSE9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.

  15. Differential binding of colors to objects in memory: red and yellow stick better than blue and green

    PubMed Central

    Kuhbandner, Christof; Spitzer, Bernhard; Lichtenfeld, Stephanie; Pekrun, Reinhard

    2015-01-01

    Both evolutionary considerations and recent research suggest that the color red serves as a signal indicating an object’s importance. However, until now, there is no evidence that this signaling function of red is also reflected in human memory. To examine the effect of red on memory, we conducted four experiments in which we presented objects colored in four different colors (red, green, blue, and yellow) and measured later memory for the presence of an object and for the color of an object. Across experiments, we varied the type of objects (words vs. pictures), task complexity (single objects vs. multiple objects in visual scenes), and intentionality of encoding (intentional vs. incidental learning). Memory for the presence of an object was not influenced by color. However, in all four experiments, memory for the color of an object depended on color type and was particularly high for red and yellow-colored objects and particularly low for green-colored objects, indicating that the binding of colors into object memory representations varies as a function of color type. Analyzing the observers’ confidence in their color memories revealed that color not only influenced objective memory performance but also subjective confidence. Subjective confidence judgments differentiated well between correct and incorrect color memories for red-colored objects, but poorly for green-colored objects. Our findings reveal a previously unknown color effect which may be of considerable interest for both basic color research and applied settings like eyewitness testimony in which memory for color features is relevant. Furthermore, our results indicate that feature binding in memory is not a uniform process by which any attended feature is automatically bound into unitary memory representations. Rather, memory binding seems to vary across different subtypes of features, a finding that supports recent research showing that object features are stored in memory rather independently

  16. X-shooter spectroscopy of young stellar objects. V. Slow winds in T Tauri stars

    NASA Astrophysics Data System (ADS)

    Natta, A.; Testi, L.; Alcalá, J. M.; Rigliaco, E.; Covino, E.; Stelzer, B.; D'Elia, V.

    2014-09-01

    Disks around T Tauri stars are known to lose mass, as best shown by the profiles of the forbidden emission lines of low-ionization species. At least two separate kinematic components have been identified, one characterized by velocity shifts of tens to hundreds of km s-1 (HVC) and one with a much lower velocity of a few km s-1 (LVC). The HVC are convincingly associated to the emission of jets, but the origin of the LVC is still unknown. In this paper we analyze the forbidden line spectrum of a sample of 44 mostly low-mass young stars in Lupus and σ Ori observed with the X-shooter ESO spectrometer. We detect forbidden line emission of O i, O ii, S ii, N i, and N ii, and characterize the line profiles as LVC, blueshifted HVC, and redshifted HVC. We focus our study on the LVC. We show that there is a good correlation between line luminosity and both Lstar and the accretion luminosity (or the mass accretion rate) over a large interval of values (Lstar~ 10-2-1 L⊙; Lacc~ 10-5-10-1 L⊙; Ṁacc~ 10-11 - 10-7 M⊙/yr). The lines show the presence of a slow wind (Vpeak< 20 km s-1) that is dense (nH> 108 cm-3), warm (T ~ 5000-10 000 K), mostly neutral. We estimate the mass of the emitting gas and provide a value for the maximum volume it occupies. Both quantities increase steeply with the stellar mass, from ~ 10-12 M⊙ and ~0.01 AU3 for Mstar~ 0.1 M⊙, to ~ 3 × 10-10 M⊙ and ~1 AU3 for Mstar~ 1 M⊙, respectively. These results provide quite stringent constraints to wind models in low-mass young stars, that need to be explored further. Based on observations collected at the European Souther Observatory at Paranal, under programs 084.C-0269(A), 085.C-0238(A), 086.C-0173(A), 087.C-0244(A) and 089.C-0143(A).Appendices are available in electronic form at http://www.aanda.org

  17. The evolution of accretion in young stellar objects: Strong accretors at 3-10 Myr

    SciTech Connect

    Ingleby, Laura; Calvet, Nuria; Hartmann, Lee; Miller, Jon; McClure, Melissa; Hernández, Jesus; Briceno, Cesar; Espaillat, Catherine E-mail: ncalvet@umich.edu

    2014-07-20

    While the rate of accretion onto T Tauri stars is predicted to decline with age, objects with strong accretion have been detected at ages of up to 10 Myr. We analyze a sample of these old accretors, identified by having a significant U band excess and infrared emission from a circumstellar disk. Objects were selected from the ∼3 Myr σ Ori, 4-6 Myr Orion OB1b, and 7-10 Myr Orion OB1a star forming associations. We use high-resolution spectra from the Magellan Inamori Kyocera Echelle to estimate the veiling of absorption lines and calculate extinction for our T Tauri sample. We also use observations obtained with the Magellan Echellette and, in a few cases, the SWIFT Ultraviolet and Optical Telescope to estimate the excess produced in the accretion shock, which is then fit with accretion shock models to estimate the accretion rate. We find that even objects as old as 10 Myr may have high accretion rates, up to ∼10{sup –8} M{sub ☉} yr{sup –1}. These objects cannot be explained by viscous evolution models, which would deplete the disk in shorter timescales unless the initial disk mass is very high, a situation that is unstable. We show that the infrared spectral energy distribution of one object, CVSO 206, does not reveal evidence of significant dust evolution, which would be expected during the 10 Myr lifetime. We compare this object to predictions from photoevaporation and planet formation models and suggest that neither of these processes have had a strong impact on the disk of CVSO 206.

  18. [Searching for Rare Celestial Objects Automatically from Stellar Spectra of the Sloan Digital Sky Survey Data Release Eight].

    PubMed

    Si, Jian-min; Luo, A-li; Wu, Fu-zhao; Wu, Yi-hong

    2015-03-01

    There are many valuable rare and unusual objects in spectra dataset of Sloan Digital Sky Survey (SDSS) Data Release eight (DR8), such as special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on, so it is extremely significant to search for rare and unusual celestial objects from massive spectra dataset. A novel algorithm based on Kernel dense estimation and K-nearest neighborhoods (KNN) has been presented, and applied to search for rare and unusual celestial objects from 546 383 stellar spectra of SDSS DR8. Their densities are estimated using Gaussian kernel density estimation, the top 5 000 spectra in descend order by their densities are selected as rare objects, and the top 300 000 spectra in ascend order by their densities are selected as normal objects. Then, KNN were used to classify the rest objects, and simultaneously K nearest neighbors of the 5 000 rare spectra are also selected as rare objects. As a result, there are totally 21 193 spectra selected as initial rare spectra, which include error spectra caused by deletion, redden, bad calibration, spectra consisting of different physically irrelevant components, planetary nebulas, QSOs, special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on. By cross identification with SIMBAD, NED, ADS and major literature, it is found that three DZ white dwarfs, one WDMS, two CVs with company of G-type star, three CVs candidates, six DC white dwarfs, one DC white dwarf candidate and one BL Lacertae (BL lac) candidate are our new findings. We also have found one special DA white dwarf with emission lines of Ca II triple and Mg I, and one unknown object whose spectrum looks like a late M star with emission lines and its image looks like a galaxy or nebula. PMID:26117907

  19. Stellar encounters as the origin of distant Solar System objects in highly eccentric orbits.

    PubMed

    Kenyon, Scott J; Bromley, Benjamin C

    2004-12-01

    The Kuiper belt extends from the orbit of Neptune at 30 au to an abrupt outer edge about 50 au from the Sun. Beyond the edge is a sparse population of objects with large orbital eccentricities. Neptune shapes the dynamics of most Kuiper belt objects, but the recently discovered planet 2003 VB12 (Sedna) has an eccentric orbit with a perihelion distance of 70 au, far beyond Neptune's gravitational influence. Although influences from passing stars could have created the Kuiper belt's outer edge and could have scattered objects into large, eccentric orbits, no model currently explains the properties of Sedna. Here we show that a passing star probably scattered Sedna from the Kuiper belt into its observed orbit. The likelihood that a planet at 60-80 au can be scattered into Sedna's orbit is about 50 per cent; this estimate depends critically on the geometry of the fly-by. Even more interesting is the approximately 10 per cent chance that Sedna was captured from the outer disk of the passing star. Most captures have very high inclination orbits; detection of such objects would confirm the presence of extrasolar planets in our own Solar System. PMID:15577903

  20. MID-INFRARED SIZE SURVEY OF YOUNG STELLAR OBJECTS: DESCRIPTION OF KECK SEGMENT-TILTING EXPERIMENT AND BASIC RESULTS

    SciTech Connect

    Monnier, J. D.; Tannirkulam, A.; Tuthill, P. G.; Ireland, M.; Cohen, R.; Perrin, M. D.

    2009-07-20

    The mid-infrared properties of pre-planetary disks are sensitive to the temperature and flaring profiles of disks for the regions where planet formation is expected to occur. In order to constrain theories of planet formation, we have carried out a mid-infrared ({lambda} = 10.7 {mu}m) size survey of young stellar objects using the segmented Keck telescope in a novel configuration. We introduced a customized pattern of tilts to individual mirror segments to allow efficient sparse-aperture interferometry, allowing full aperture synthesis imaging with higher calibration precision than traditional imaging. In contrast to previous surveys on smaller telescopes and with poorer calibration precision, we find that most objects in our sample are partially resolved. Here, we present the main observational results of our survey of five embedded massive protostars, 25 Herbig Ae/Be stars, 3 T Tauri stars, 1 FU Ori system, and five emission-line objects of uncertain classification. The observed mid-infrared sizes do not obey the size-luminosity relation found at near-infrared wavelengths and a companion paper will provide further modeling analysis of this sample. In addition, we report imaging results for a few of the most resolved objects, including complex emission around embedded massive protostars, the photoevaporating circumbinary disk around MWC 361A, and the subarcsecond binaries T Tau, FU Ori, and MWC 1080.

  1. VizieR Online Data Catalog: Faint Blue Objects at High Galactic Latitude (Warnock+ 1982-1990)

    NASA Astrophysics Data System (ADS)

    Warnock, A., III; Usher, P. D.

    2007-02-01

    The data set of Faint Blue Objects at High Galactic Latitude is a catalog of objects selected according to relative ultraviolet excess from ubv three-color 1.2-m Palomar Schmidt plates. Five selected area fields centered on SA28, SA29, SA55, SA57 and SA94 are included. The data consist of color classifications, B magnitudes, 1950 equatorial coordinates and remarks; the current file contains 3678 objects. Three selected area fields were included originally, centered on SA57 (Usher 1981), SA29 (Usher, Mattson and Warnock 1982) and SA28 (Usher and Mitchell 1982). Areas centered on SA55 and SA94 were added in 1984; areas centered on SA71 (Usher et al., Paper V, 1988ApJS...66....1U) and SA82 (Usher & Mitchell, Paper VI, 1990ApJS...74..885U) were added in 2007 by CDS. (1 data file).

  2. H2O masers in a jet-driven bowshock: Episodic ejection from a massive young stellar object

    NASA Astrophysics Data System (ADS)

    Burns, R. A.; Handa, T.; Nagayama, T.; Sunada, K.; Omodaka, T.

    2016-04-01

    We report the results of VERA multi-epoch VLBI 22 GHz water maser observations of S255IR-SMA1, a massive young stellar object located in the S255 star forming region. By annual parallax the source distance was measured as D = 1.78^{+0.12}_{-0.11} kpc and the source systemic motion was (μαcos δ, μδ) = (-0.13 ± 0.20, -0.06 ± 0.27) mas yr-1. Masers appear to trace a U-shaped bow shock whose morphology and proper motions are well reproduced by a jet-driven outflow model with a jet radius of about 6 AU. The maser data, in the context of other works in the literature, reveal ejections from S255IR-SMA1 to be episodic, operating on timescales of ˜1000 years.

  3. H2O masers in a jet-driven bow shock: episodic ejection from a massive young stellar object

    NASA Astrophysics Data System (ADS)

    Burns, R. A.; Handa, T.; Nagayama, T.; Sunada, K.; Omodaka, T.

    2016-07-01

    We report the results of VERA multi-epoch VLBI 22 GHz water maser observations of S255IR-SMA1, a massive young stellar object located in the S255 star forming region. By annual parallax the source distance was measured as D = 1.78 +-0.12 kpc and the source systemic motion was (u alpha cos d, u d) = (-0.13 +- 0.20, -0.06 +- 0.27) mas yr-1. Masers appear to trace a U-shaped bow shock whose morphology and proper motions are well reproduced by a jet-driven outflow model with a jet radius of about 6 AU. The maser data, in the context of other works in the literature, reveal ejections from S255IR-SMA1 to be episodic, operating on timescales of ~1000 years.

  4. First Keck Nulling Observations of a Young Stellar Object: Probing the Circumstellar Environment of the Herbig Ae star MWC 325

    NASA Technical Reports Server (NTRS)

    Ragland, S.; Ohnaka, K.; Hillenbrand, L.; Ridgway, S. T.; Colavita, M. M.; Akeson, R. L.; Cotton, W.; Danichi, W. C.; Hrynevych, M.; Milan-Gabet, R.; Traub, W. A.

    2012-01-01

    We present the first N-band nulling plus K- and L-band V(sup 2) observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 micrometer wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the Lband and N-band, respectively, compared to that in the K-band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 micron) and "micron" (2 micron) grains of a 50:50 ratio of silicate and graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting a wide variety in the disk properties among Herbig Ae/Be stars.

  5. FIRST KECK NULLING OBSERVATIONS OF A YOUNG STELLAR OBJECT: PROBING THE CIRCUMSTELLAR ENVIRONMENT OF THE HERBIG Ae STAR MWC 325

    SciTech Connect

    Ragland, S.; Hrynevich, M.; Ohnaka, K.; Hillenbrand, L.; Ridgway, S. T.; Colavita, M. M.; Traub, W. A.; Akeson, R. L.; Millan-Gabet, R.; Cotton, W.; Danchi, W. C.

    2012-02-20

    We present the first N-band nulling plus K- and L-band V{sup 2} observations of a young stellar object, MWC 325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L, and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 {mu}m wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over a broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.4 and 2.2 larger in the L band and N band, respectively, compared to that in the K band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat disk model, with only slight flaring in the outer regions of the disk, consisting of representative 'sub-micron' (0.1 {mu}m) and 'micron' (2 {mu}m) grains of a 50:50 ratio of silicate and graphite. This is in marked contrast to the disks previously found in other Herbig Ae/Be stars, suggesting a wide variety in the disk properties among Herbig Ae/Be stars.

  6. First Keck Nulling Observations of a Young Stellar Object: Probing the Circumstellar Environment of the Herbig Ae Star MWC325

    NASA Technical Reports Server (NTRS)

    Ragland, S.; Ohnaka, K.; Hillenbrand, L.; Ridgway, S. T.; Colavita, M. M.; Akeson, R. L.; Cotton, W.; Danchi, W. C.; Hrynevich, M.; Millan-Gabet, R.; Traub, W. A.

    2012-01-01

    We present the first N-band nulling plus K- and L-band V(sup 2) observations of a young stellar object, MWC 325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L, and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with . geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases 'monotonically with wavelength in the 2-12/Lm wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over a broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.4 and 2.2 larger in the L band and N band, respectively, compared to that in the K band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 micron) and "micron" (2 micron) grains of a 50:50 ratio of silicate and graphite. This is in marked contrast io the disks previously found in other Herbig Ae/Be stars, suggesting a wide variety in the disk properties among Herbig Ae/Be stars.

  7. ALMA Early Science Observations of Outbursting Stellar Systems:Disk Masses for FU Ori and EXor Objects

    NASA Astrophysics Data System (ADS)

    Cieza, Lucas A.; Prieto, Jose Luis; Zhu, Zhaohuan; Tobin, John J.; Williams, Jonathan P.; Hales, Antonio; Casassus, Simon; Principe, David; Schreiber, Matthias R.

    2016-01-01

    It is believed that low-mass stars build a significant fraction of their total mass during short outbursts of enhanced accretion (up to 10E-4 MSOLAR /yr). The most dramatic episodic accretion events known in Young Stellar Objects (YSOs) are FU Ori and EXor outbursts. FU Ori objects are characterized by a sudden brightening of 5 magnitudes or more within one year and remain bright for decades. EXor objects have lower amplitude outbursts on shorter timescales (months to years). Here we present an ALMA 230 GHz (1.3 mm / band-6) mini-survey of 8 outbursting sources (three FU Ori and ve EXor objects) in Orion with 1" (450 AU) resolution. We present continuum, 12CO, 13CO, and C18O line images and derive dust and (when possible) gas disk masses. The disk masses derived from the line observations are systematically lower (by factors of 3-5) than those calculated from the continuum and adopting the standard gas-to-dust ratio of 100, which agrees with results on T Tauri disks in Taurus. After beam deconvolution, we nd that the disks are remarkably compact (r = 70-150 AU). The 1.3 mm fuxes of the outbursting sources span over three orders of magnitude, but the FU Ori objects are signi cantly brighter than the EXor objects. The inferred disk masses for the brightest objects are > 0.1 Msolar , rendering gravitational instability a likely outburst mechanism. On the other hand, the inferred disk masses for the faintest targets are ~ 1-5 MJUP , and thus an alternative mechanism must be responsible for their outbursts.

  8. A Mid-Infrared Imaging Survey of Embedded Young Stellar Objects in the (rho) Ophiuchi Cloud Core

    NASA Technical Reports Server (NTRS)

    Barsony, Mary; Ressler, Michael E.; Marsh, Kenneth A.

    2005-01-01

    Results of a comprehensive, new, ground-based mid-infrared imaging survey of the young stellar population of the (rho) Ophiuchi cloud are presented. Data were acquired at the Palomar 5m and at the Keck 10m telescopes with the MIRLIN and LWS instruments, at 0'.5 and 0'.25 resolutions, respectively. Of 172 survey objects, 85 were detected. Among the 22 multiple systems observed, 15 were resolved and their individual component fluxes determined. A plot of the frequency distribution of the detected objects with SED spectral slope shows that YSOs spend approx.4 x 10(exp 5) yr in the flat-spectrum phase, clearing out their remnant infall envelopes. Mid-infrared variability is found among a significant fraction of the surveyed objects and is found to occur for all SED classes with optically thick disks. Large-amplitude near-infrared variability, also found for all SED classes with optically thick disks, seems to occur with somewhat higher frequency at the earlier evolutionary stages. Although a general trend of mid-infrared excess and near-infrared veiling exists progressing through SED classes, with Class I objects generally exhibiting r(sub K) >= 1, flat-spectrum objects with r(sub K) >= 0.58, and Class III objects with r(sub K) =0, Class II objects exhibit the widest range of r(sub K) values, ranging from 0 <= r(sub K) <= 4.5. However, the highly variable value of veiling that a single source can exhibit in any of the SED classes in which active disk accretion can take place is striking and is direct observational evidence for highly time-variable accretion activity in disks. Finally, by comparing mid-infrared versus near-infrared excesses in a subsample with well-determined effective temperatures and extinction values, disk-clearing mechanisms are explored. The results are consistent with disk clearing proceeding from the inside out.

  9. From Infall to Rotation around Young Stellar Objects: A Transitional Phase with a 2000 AU Radius Contracting Disk?

    NASA Astrophysics Data System (ADS)

    Hogerheijde, Michiel R.

    2001-06-01

    Evidence for a transitional stage in the formation of a low-mass star is reported, intermediate between the fully embedded and the T Tauri phases. Millimeter aperture synthesis observations in the HCO+ J=1-0 and 3-2, HCN 1-0, 13CO 1-0, and C18O 1-0 transitions reveal distinctly different velocity fields around two embedded, low-mass young stellar objects. The 0.6 Msolar of material around TMC 1 (IRAS 04381+2517) closely follows inside-out collapse in the presence of a small amount of rotation (~3 km s-1 pc-1), while L1489 IRS (IRAS 04016+2610) is surrounded by a 2000 AU radius, flared disk containing 0.02 Msolar. This disk shows Keplerian rotation around a ~0.65 Msolar star and infall at 1.3(r/100 AU)-0.5 km s-1, or, equivalently, sub-Keplerian motions around a central object between 0.65 and 1.4 Msolar. Its density is characterized by a radial power law and an exponential vertical scale height. The different relative importance of infall and rotation around these two objects suggests that rotationally supported structures grow from collapsing envelopes over a few times 105 yr to sizes of a few thousand AU, and then decrease over a few times 104 yr to several hundred AU typical for T Tauri disks. In this scenario, L1489 IRS represents a transitional phase between embedded young stellar objects and T Tauri stars with disks. The expected duration of this phase of ~5% of the embedded stage is consistent with the current lack of other known objects like L1489 IRS. Alternative explanations cannot explain L1489 IRS's large disk, such as formation from a cloud core with an unusually large velocity gradient or a binary companion that prevents mass accretion onto small scales. It follows that the transfer and dissipation of angular momentum is key to understanding the formation of disks from infalling envelopes.

  10. The Herschel Gould Belt Survey in Chamaeleon II. Properties of cold dust in disks around young stellar objects

    NASA Astrophysics Data System (ADS)

    Spezzi, L.; Cox, N. L. J.; Prusti, T.; Merín, B.; Ribas, Á.; Alves de Oliveira, C.; Winston, E.; Kóspál, Á.; Royer, P.; Vavrek, R.; André, Ph.; Pilbratt, G. L.; Testi, L.; Bressert, E.; Ricci, L.; Men'shchikov, A.; Könyves, V.

    2013-07-01

    Context. We report on the Herschel Gould Belt survey (HGBS) of the Chamaeleon II (Cha II) star-forming region, focusing on the detection of Class I to III young stellar objects (YSOs). Aims: We aim at characterizing the circumstellar material around these YSOs and at understanding which disk parameters are most likely constrained by the new HGBS data, which are expected to be crucial for studying the transition from optically thick disks to evolved debris-type disks. Methods: We recovered 29 of the 63 known YSOs in Cha II with a detection in at least one of the PACS/SPIRE pass-bands: 3 Class I YSOs (i.e.,100%), 1 flat source (i.e., 50%), 21 Class II objects (i.e., 55%), 3 Class III objects (i.e, 16%), and the unclassified far-infrared source IRAS 12522-7640. We explored PACS/SPIRE colors of this sample and modeled their spectral energy distributions (SEDs) from the optical to Herschel's wavelengths with the RADMC-2D radiative transfer code. Results: We find that YSO colors are typically confined to the following ranges: -0.7 ≲ log (F70 / F160) ≲ 0.5, -0.5 ≲ log (F160 / F250) ≲ 0.6, 0.05 ≲ log (F250 / F350) ≲ 0.25 and -0.1 ≲ log (F350 / F500) ≲ 0.5. These color ranges are expected to be only marginally contaminated by extragalactic sources and field stars and, hence, provide a useful YSO selection tool when applied together. We were able to model the SED of 26 of the 29 detected YSOs. We discuss the degeneracy/limitations of our SED fitting results and adopted the Bayesian method to estimate the probability of different values for the derived disk parameters. The Cha II YSOs present typical disk inner radii ≲0.1 AU, as previously estimated in the literature on the basis of Spitzer data. Our probability analysis shows that, thanks to the new Herschel data, the lower limits to the disk mass (Mdisk) and characteristic radius (RC) are well constrained, while the flaring angle (1 + φ) is only marginally constrained. The lower limit to RC is typically

  11. The gas environment of the young stellar object GL 2591 studied by infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Mitchell, George F.; Curry, Charles; Maillard, Jean-Pierre; Allen, Mark

    1989-01-01

    High-resolution M band (4.6 microns) spectroscopy of GL 2591 is presented. Physical structures noted include an absorption feature with an outflow velocity of about 17 km/s, cold gas (identified with the core of the molecular cloud within which the object is embedded), and very broad C-12O lines formed in a neutral wind. The detection of hot low-velocity gas together with warm high-velocity gas suggests the scenario of a warm neutral wind accelerating from an accretion disk.

  12. The gas environment of the young stellar object GL 2591 studied by infrared spectroscopy

    SciTech Connect

    Mitchell, G.F.; Curry, C.; Maillard, J.; Allen, M.; CNR, Institut d'Astrophysique, Paris; California Institute of Technology, Pasadena )

    1989-06-01

    High-resolution M band (4.6 microns) spectroscopy of GL 2591 is presented. Physical structures noted include an absorption feature with an outflow velocity of about 17 km/s, cold gas (identified with the core of the molecular cloud within which the object is embedded), and very broad C-12O lines formed in a neutral wind. The detection of hot low-velocity gas together with warm high-velocity gas suggests the scenario of a warm neutral wind accelerating from an accretion disk. 32 refs.

  13. Short-term optical variability of high-redshift quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Bachev, R.; Strigachev, A.; Semkov, E.

    2005-04-01

    In this paper we present the results of a search for short-term variability in the optical band of selected high-luminosity, high-redshift radio-quiet quasars. Each quasar has been monitored typically for 2-4 h with a time resolution of 2-5 min and a photometric accuracy of about 0.01-0.02 mag. As a result of the significant redshift (z > 2), the covered wavelength range falls into the ultraviolet region (typically 1500-2500 Å). We have found no statistical evidence for any continuum variations larger than 0.01-0.02 mag for any of the monitored objects. Our results suggest that the presence of a short-term variability in radio-quiet quasars is unlikely even in the ultraviolet region, contrary to reports by other authors. This conclusion holds true at least for high-luminosity (large black hole mass and accretion rate?) objects. The results are consistent with the idea that significant short-term (less than 1 h) variations in active galactic nuclei, where observed, should be attributed primarily to processes in a relativistic jet.

  14. X-Ray Spectrum of a Narrow Line Quasi-Stellar Object

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1996-01-01

    This AO-3 observation of a new narrow-line QSO was motivated by our extensive study of the unclassified X-ray sources from the ROSAT/IRAS survey of Boller et al. IRAS 2018.1-2244 was observed to have Balmer lines and forbidden lines of roughly equal width. There are possibly weak broad wings on the H-alpha line. One of the questions to be addressed by hard X-ray spectroscopy is whether or not these wings are to be interpreted as scattered or weakly transmitted flux from a hidden broad-line region. The optical spectrum of this QSO also has very weak permitted Fe II lines, possibly indicative of a hidden broad line region. A new wrinkle on the concept of the narrow-line QSO is the gradual realization that luminous objects with very strong but narrow Fe II lines are showing up preferentially in soft X-ray surveys. The AO-1 objective was to detect the Geminga Pulsar and to interpret its 2-10 keV spectrum and pulse profile in terms of its X-ray emission spectra. Also, the AO-1 observed the Seyfert galaxy NGC 3516 to obtain a high signal-to-noise ratio spectrum. We expected NGC 3516 to be one of the best candidates for a successful demonstration of the details of the warm-absorber model.

  15. Insights into stellar and binary evolution from gravitational-wave observations of merging compact objects

    NASA Astrophysics Data System (ADS)

    Stevenson, Simon

    2016-07-01

    Advanced LIGO finished its first observing run (O1) at the begining of 2016, at a sensitivity ~3 times that of the initial LIGO detectors. This increased sensitivity makes the possibility of detecting gravitational-waves a realistic prospect over the next few years. One of the most promising sources for advanced gravitational-wave detectors is the merger of two compact objects; neutron stars or black holes. These objects are formed as the end point of the evolution of massive stars in close binaries. There remain many poorly understood processes in the lives of massive stars and the evolution of close binary systems. These processes include the distribution of kicks received by black holes at birth, the amount of angular momentum lost from a system during a mass transfer episode, and the common envelope event. One way of attempting to understand these processes is to attempt to constrain them observationally using eventual gravitational-wave observations of compact binary mergers. Here we present recent work on this front.

  16. VizieR Online Data Catalog: South Galactic cap MCT blue objects (Lamontagne+, 2000)

    NASA Astrophysics Data System (ADS)

    Lamontagne, R.; Demers, S.; Wesemael, F.; Fontaine, G.; Irwin, M. J.

    2016-07-01

    A detailed description of the first part of our survey, namely, the photographic observations (including plate scanning, photometric calibrations, and candidate selection), has been presented by Demers et al. (1986AJ.....92..878D). Briefly summarized, the MCT survey consists of 430 doubly exposed U and B plates, taken with the Curtis Schmidt telescope at the Cerro Tololo Inter-American Observatory (CTIO) and covering 6750 deg2 (~15% of the whole sky) in a region defined by 19h<~RA<~7h and -90°<=DE<=0°. Our survey blankets most of the south Galactic cap of our Galaxy accessible from CTIO, up to b=-30°. The bulk of our spectroscopic material was gathered at CTIO with the 1.5m and 4m telescopes in the course of several observing runs since 1985. We have identified all 228 selected blue candidates [(U-B)pg<=-0.6] brighter than Bpg=16.5 in this region of the sky. (1 data file).

  17. Long-term study of water maser emission associated with young stellar objects. I. The database

    NASA Astrophysics Data System (ADS)

    Valdettaro, R.; Palla, F.; Brand, J.; Cesaroni, R.; Comoretto, G.; Felli, M.; Palagi, F.

    2002-01-01

    We present the results of more than 10 years of monitoring of the water vapor maser emission in 14 star forming regions obtained with the Medicina 32-m radiotelescope. The sample of objects covers a large range of luminosities of the associated FIR sources. In order to present in a compact and representative way the large amount of data available, we give for each source: a time-velocity-flux density plot, the time dependent integrated flux, the lower and upper envelopes of the maser emission, the frequency of the maser occurrence as a function of velocity, and the mean velocity averaged over the observing period. A brief morphological description of the environment of the maser source is also given. The present data form the basis for a discussion of the main properties of the water vapor maser emission to be presented in a forthcoming paper.

  18. First results from the Edinburgh-Cape faint blue object survey - Normal stars at high galactic latitudes

    NASA Astrophysics Data System (ADS)

    Kilkenny, D.; O'Donoghue, D.; Stobie, R. S.

    1991-02-01

    A simple analysis using low-dispersion Reticon spectroscopy and Stromgren photometry is presented for a sample of 20 apparently normal early-type stars detected in the Edinburgh-Cape faint blue object survey of high galactic latitudes. Four stars are not normal, showing high gravity or helium abundance anomalies; 12 stars appear to be at moderate distances from the galactic plane and four stars have derived z-distances greater than about 5 kpc. The sample was selected from 33 survey fields completed to B = 16.5 mag and indicates that the total galactic population of 'very high-z' B stars is only of the order 100-1000. The Dyson and Hartquist (1983) model for the formation of such objects by cloudlet-cloudlet collisions within high-velocity clouds cannot therefore be ruled out on the basis of star formation rates.

  19. Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime

    NASA Astrophysics Data System (ADS)

    Filippazzo, Joe; Rice, Emily L.; Faherty, Jacqueline K.; Cruz, Kelle L.; Godfrey, Paige A.; BDNYC

    2016-01-01

    The physical and atmospheric properties of ultracool dwarfs are deeply entangled due to the degenerate effects of mass, age, metallicity, clouds and dust, activity, rotation, and possibly even formation mechanism on observed spectra. Accurate determination of fundamental parameters for a wide diversity of objects at the low end of the IMF is thus crucial to testing stellar and planetary formation theories. To determine these quantities, we constructed and flux calibrated nearly-complete spectral energy distributions (SEDs) for 221 M, L, T, and Y dwarfs using published parallaxes and 0.3-40 μm spectra and photometry. From these homogeneous SEDs, we calculated bolometric luminosity (Lbol), effective temperature (Teff), mass, surface gravity, radius, spectral indexes, synthetic photometry, and bolometric corrections (BCs) for each object. We used these results to derive Lbol, Teff, and BC polynomial relations across the entire very-low-mass star/brown dwarf/planetary mass regime. We use a subsample of objects with age constraints based on nearby young moving group membership, companionship with a young star, or spectral signatures of low surface gravity to define new age-sensitive diagnostics and characterize the reddening of young substellar atmospheres as a redistribution of flux from the near-infrared into the mid-infrared. Consequently we find the SED flux pivots at Ks band, making BCKs as a function of spectral type a tight and age independent relationship. We find that young L dwarfs are systematically 300 K cooler than field age objects of the same spectral type and up to 600 K cooler than field age objects of the same absolute H magnitude. Finally, we present preliminary comparisons of these empirical results to best fit parameters from four different model atmosphere grids via Markov-Chain Monte Carlo analysis in order to create prescriptions for the reliable and efficient characterization of new ultracool dwarfs.

  20. Micro-tidal Disruption Events by Stellar Compact Objects and the Production of Ultra-long GRBs

    NASA Astrophysics Data System (ADS)

    Perets, Hagai B.; Li, Zhuo; Lombardi, James C., Jr.; Milcarek, Stephen R., Jr.

    2016-06-01

    We explore full/partial tidal disruption events (TDEs) of stars/planets by stellar compact objects (black holes (BHs) or neutron stars (NSs)), which we term micro-TDEs. Disruption of a star/planet with mass M ⋆ may lead to the formation of a debris disk around the BH/NS. Efficient accretion of a fraction ({f}{acc}=0.1 of the debris may then give rise to bright, energetic, long (103–104 s), X-ray/gamma-ray flares, with total energies of up to ({f}{acc}/0.1)× {10}52 ({M}\\star /0.6 {M}ȯ ) erg, possibly resembling ultra-long gamma-ray bursts (GRBs)/X-ray flashes (XRFs). The energy of such flares depends on the poorly constrained accretion processes. Significantly fainter flares might be produced if most of the disk mass is blown away through strong outflows. We suggest three dynamical origins for such disruptions. In the first, a star/planet is tidally disrupted following a close random encounter with a BH/NS in a dense cluster. We estimate the BH (NS) micro-TDE rates from this scenario to be a few × {10}-6 (a few × {10}-7) {{{yr}}}-1 per Milky Way galaxy. Another scenario involves the interaction of wide companions due to perturbations by stars in the field, likely producing comparable but lower rates. Finally, a third scenario involves a BH/NS that gains a natal velocity kick at birth, leading to a close encounter with a binary companion and the tidal disruption of that companion. Such events could be associated with a supernova, or even with a preceding GRB/XRF event, and would likely occur hours to days after the prompt explosion; the rates of such events could be larger than those obtained from the other scenarios, depending on the preceding complex binary stellar evolution.

  1. CCS and NH3 Emission Associated with Low-Mass Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    de Gregorio-Monsalvo, Itziar; Gómez, José F.; Suárez, Olga; Kuiper, Thomas B. H.; Rodríguez, Luis F.; Jiménez-Bailón, Elena

    2006-05-01

    In this work we present a sensitive and systematic single-dish survey of CCS emission (complemented with ammonia observations) at 1 cm, toward a sample of low- and intermediate-mass young star-forming regions known to harbor water maser emission, made with NASA's 70 m antenna at Robledo de Chavela, Spain. Out of the 40 star-forming regions surveyed in the CCS (21-10) line, only six low-mass sources show CCS emission: one transitional object between the prestellar and protostellar Class 0 phase (GF9-2), three Class 0 protostars (L1448-IRS3, L1448C, and B1-IRS), a Class I source (L1251A), and a young T Tauri star (NGC 2071 North). Since CCS is considered an ``early-time'' (<~105 yr) molecule, we explain these results by either proposing a revision of the classification of the age of NGC 2071 North and L1251A, or suggesting the possibility that the particular physical conditions and processes of each source affect the destruction/production of the CCS. No statistically significant relationship was found between the presence of CCS and parameters of the molecular outflows and their driving sources. Nevertheless, we found a significant relationship between the detectability of CCS and the ammonia peak intensity (higher in regions with CCS), but not with its integrated intensity. This tendency may suggest that the narrower ammonia line widths in the less turbulent medium associated with younger cores may compensate for the differences in ammonia peak intensity, rendering differences in integrated intensity negligible. From the CCS detection rate we derive a lifetime of this molecule of ~=(0.7-3)×104 yr in low-mass star-forming regions.

  2. Nature versus nurture: Luminous blue variable nebulae in and near massive stellar clusters at the galactic center

    SciTech Connect

    Lau, R. M.; Herter, T. L.; Adams, J. D.; Morris, M. R.

    2014-04-20

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical 'twins' that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s{sup –1}) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ∼ 35 Å) having a total dust mass of 0.03 M {sub ☉}, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 10{sup 5} L {sub ☉}. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M {sub ☉}. The total IR luminosity of the G0

  3. Nature versus Nurture: Luminous Blue Variable Nebulae in and near Massive Stellar Clusters at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Herter, T. L.; Morris, M. R.; Adams, J. D.

    2014-04-01

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical "twins" that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s-1) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ~ 35 Å) having a total dust mass of 0.03 M ⊙, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 105 L ⊙. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M ⊙. The total IR luminosity of the G0.120-0.048 nebula is ~105 L ⊙. From

  4. OPTICAL/NEAR-INFRARED SELECTION OF RED QUASI-STELLAR OBJECTS: EVIDENCE FOR STEEP EXTINCTION CURVES TOWARD GALACTIC CENTERS?

    SciTech Connect

    Fynbo, J. P. U.; Krogager, J.-K.; Vestergaard, M.; Geier, S.; Venemans, B.; Noterdaeme, P.; Moller, P.; Ledoux, C.

    2013-01-15

    We present the results of a search for red QSOs using a selection based on optical imaging from the Sloan Digital Sky Survey (SDSS) and near-infrared imaging from UKIDSS. Our main goal with the selection is to search for QSOs reddened by foreground dusty absorber galaxies. For a sample of 58 candidates (including 20 objects fulfilling our selection criteria that already have spectra in the SDSS), 46 (79%) are confirmed to be QSOs. The QSOs are predominantly dust-reddened except for a handful at redshifts z {approx}> 3.5. However, the dust is most likely located in the QSO host galaxies (and for two, the reddening is primarily caused by Galactic dust) rather than in the intervening absorbers. More than half of the QSOs show evidence of associated absorption (BAL absorption). Four (7%) of the candidates turned out to be late-type stars, and another four (7%) are compact galaxies. We could not identify the remaining four objects. In terms of their optical spectra, these QSOs are similar to the QSOs selected in the FIRST-2MASS Red Quasar Survey except they are on average fainter, more distant, and only two are detected in the FIRST survey. As per the usual procedure, we estimate the amount of extinction using the SDSS QSO template reddened by Small-Magellanic-Cloud-(SMC) like dust. It is possible to get a good match to the observed (rest-frame ultraviolet) spectra, but it is not possible to match the observed near-IR photometry from UKIDSS for nearly all the reddened QSOs. The most likely reasons are that the SDSS QSO template is too red at optical wavelengths due to contaminating host galaxy light and because the assumed SMC extinction curve is too shallow. Three of the compact galaxies display old stellar populations with ages of several Gyr and masses of about 10{sup 10} M{sub Sun} (based on spectral energy distribution modeling). The inferred stellar densities in these galaxies exceed 10{sup 10} M{sub Sun} kpc{sup -2}, which is among the highest measured for early

  5. Nested object watermarking: comparison of block-luminance and blue channel LSB wet paper code image watermarking

    NASA Astrophysics Data System (ADS)

    Vielhauer, Claus; Dittmann, Jana

    2007-02-01

    Annotation watermarking (sometimes also called caption or illustration watermarking) denotes a specific application of watermarks, which embeds supplementary information directly in the media, so that additional information is intrinsically linked to media content and does not get separated from the media by non-malicious processing steps such as image cropping or compression. Recently, nested object annotation watermarking (NOAWM) has been introduced as a specialized annotation watermarking domain, whereby hierarchical object information is embedded in photographic images. In earlier work, the Hierarchical Graph Concept (HGC) has been suggested as a first approach to model object relations, which are defined by users during editing processes, into a hierarchical tree structure. The original HGC method uses a code-book decomposition of the annotation tree and a block-luminance algorithm for embedding. In this article, two new approaches for embedding nested object annotations are presented and experimentally compared to the original HGC approach. The first one adopts the code-book scheme of HGC using an alternative embedding based on Wet Paper Codes in blue-channel LSB domain, whereas the second suggests a new method based on the concept of intrinsic signal inheritance by sub-band energy and phase modulation of image luminance blocks. A comparative experimental evaluation based on more than 100 test images is presented in the paper, whereby aspects of transparency and robustness with respect to the most relevant image modifications to annotations, cropping and JPEG compression, are discussed comparatively for the two code-book schemes and the novel inheritance approach.

  6. A ‘Water Spout’ Maser Jet in the S235AB-MIR Massive Young Stellar Object

    NASA Astrophysics Data System (ADS)

    Burns, Ross Alexander; Toshihiro, Handa; Imai, Hiroshi; Toshihiro, Omodaka; Nagayama, Takumi; Nakagawa, Akiharu

    2015-08-01

    We report on annual parallax and proper motion observations of H2O masers in S235AB-MIR, whichis a massive young stellar object in the Perseus Arm. Using multi-epoch VLBI astrometry we measureda parallax of π = 0.63 ± 0.03 mas, corresponding to a trigonometric distance of D = 1.56+-0.09 kpc. Water masers trace a highly collimated jet of radius 20 AU which exhibits a definite velocity gradient perpendicular to its axis. 3D maser kinematics were well modelled by a rotating cylinder with physical parameters: vout = 55 km/s, vrot = 9 km/s, i = 36 degrees, which are the outflow velocity, tangental rotation velocity and line-of-sight inclination, respectively. One maser feature exhibited steady acceleration which may be related to the jet rotation. During our 21 month VLBI programme there were three ‘maser bursts’ events caught ‘in the act’ which were induced by the overlapping of masers along the line of sight.

  7. H2O masers from low and intermediate luminosity young stellar objects: H2O masers and YSOs

    NASA Astrophysics Data System (ADS)

    Persi, P.; Palagi, F.; Felli, M.

    1994-11-01

    We have used the Medicina 32-m radiotelescope to search for H2O 22.2 GHz maser emission from a sample of 68 red peculiar nebulosities associated with low luminosity (LIR less than 103 solar luminosity)) and intermediate luminosity (LIR approximately 104 solar luminosity) Young Stellar Objects (YSOs). H2O maser emission was detected in 9 sources, with a new detection in IRAS 18265+0028. Comparison with other samples indicates that YSOs have a higher probability of hosting an H2O maser, when they are associated with red peculiar nebulosities. Seven of the detected sources are associated with molecular outflows, which confirms that these two phenomena are strictly correlated. The maser sources associated with the Class I YSOs (IRAS 03225+3034, and IRAS 03245+3002, in the dark clouds L1448 and L1455 respectively) appear overluminous with respect to their IR luminosity. The maser emission shows a remarkable variability on time scales of months and years, which tends to be larger for lower luminosity sources. This is indicative of unsaturated emission in low luminosity sources.

  8. DYNAMICAL EVIDENCE FOR A MAGNETOCENTRIFUGAL WIND FROM A 20 M{sub Sun} BINARY YOUNG STELLAR OBJECT

    SciTech Connect

    Greenhill, L. J.; Goddi, C.; Humphreys, E. M. L.; Chandler, C. J.; Matthews, L. D.

    2013-06-20

    In Orion BN/KL, proper motions of {lambda}7 mm vibrationally excited SiO masers trace the rotation of a nearly edge-on disk and a bipolar wide-angle outflow 10-100 AU from radio source I, a binary young stellar object of {approx}20 M{sub Sun }. Here we map ground-state {lambda}7 mm SiO emission with the Very Large Array and track proper motions over 9 yr. The innermost and strongest emission lies in two extended arcs bracketing Source I. The proper motions trace a northeast-southwest bipolar outflow 100-1000 AU from Source I with a median three-dimensional motion of {approx}18 km s{sup -1}. An overlying distribution of {lambda}1.3 cm H{sub 2}O masers betrays similar flow characteristics. Gas dynamics and emission morphology traced by the masers suggest the presence of a magnetocentrifugal disk wind. Reinforcing evidence lies in the colinearity of the flow, apparent rotation across the flow parallel to the disk rotation, and recollimation that narrows the flow opening angle {approx}120 AU downstream. The arcs of ground-state SiO emission may mark the transition point to a shocked super-Alfvenic outflow.

  9. THE SIZE, SHAPE, ALBEDO, DENSITY, AND ATMOSPHERIC LIMIT OF TRANSNEPTUNIAN OBJECT (50000) QUAOAR FROM MULTI-CHORD STELLAR OCCULTATIONS

    SciTech Connect

    Braga-Ribas, F.; Vieira-Martins, R.; Camargo, J. I. B.; Sicardy, B.; Lellouch, E.; Lecacheux, J.; Ortiz, J. L.; Morales, N.; Tancredi, G.; Roland, S.; Bruzzone, S.; Assafin, M.; Vachier, F.; Colas, F.; Maury, A.; Emilio, M.; Amorim, A.; Unda-Sanzana, E.; Almeida, L. A.; and others

    2013-08-10

    We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation observed on 2012 October 15. If the timing of the five chords obtained in 2011 were correct, then Quaoar would possess topographic features (crater or mountain) that would be too large for a body of this mass. An alternative model consists in applying time shifts to some chords to account for possible timing errors. Satisfactory elliptical fits to the chords are then possible, yielding an equivalent radius R{sub equiv} = 555 {+-} 2.5 km and geometric visual albedo p{sub V} = 0.109 {+-} 0.007. Assuming that Quaoar is a Maclaurin spheroid with an indeterminate polar aspect angle, we derive a true oblateness of {epsilon}= 0.087{sup +0.0268}{sub -0.0175}, an equatorial radius of 569{sup +24}{sub -17} km, and a density of 1.99 {+-} 0.46 g cm{sup -3}. The orientation of our preferred solution in the plane of the sky implies that Quaoar's satellite Weywot cannot have an equatorial orbit. Finally, we detect no global atmosphere around Quaoar, considering a pressure upper limit of about 20 nbar for a pure methane atmosphere.

  10. Multi-Object Spectroscopy with the James Webb Space Telescope’s Near Infrared Spectrograph: Observing Resolved Stellar Populations

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Karakla, Diane M.; Beck, Tracy

    2015-08-01

    The James Webb Space Telescope’s (JWST) Near Infrared Spectrograph (NIRSpec) will provide a multi-object spectroscopy mode through the four Micro-Shutter Arrays (MSAs). Each MSA is a grid of contiguous shutters that can be configured to form slits on more than 100 astronomical targets simultaneously. The combination of JWST’s sensitivity and superb resolution in the infrared and NIRSpec’s full wavelength coverage from 0.6 to 5 μm will open new parameter space for studies of galaxies and resolved stellar populations alike. We describe a NIRSpec MSA observing scenario for obtaining spectroscopy of individual stars in an external galaxy, and investigate the technical challenges posed by this scenario. We examine the multiplexing capability of the MSA as a function of the possible MSA configuration design choices, and investigate the primary sources of error in velocity measurements and the prospects for minimizing them. We give examples of how this and other use cases are guiding development of the NIRSpec user interfaces, including proposal planning and pipeline calibrations.

  11. The Size, Shape, Albedo, Density, and Atmospheric Limit of Transneptunian Object (50000) Quaoar from Multi-chord Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Braga-Ribas, F.; Sicardy, B.; Ortiz, J. L.; Lellouch, E.; Tancredi, G.; Lecacheux, J.; Vieira-Martins, R.; Camargo, J. I. B.; Assafin, M.; Behrend, R.; Vachier, F.; Colas, F.; Morales, N.; Maury, A.; Emilio, M.; Amorim, A.; Unda-Sanzana, E.; Roland, S.; Bruzzone, S.; Almeida, L. A.; Rodrigues, C. V.; Jacques, C.; Gil-Hutton, R.; Vanzi, L.; Milone, A. C.; Schoenell, W.; Salvo, R.; Almenares, L.; Jehin, E.; Manfroid, J.; Sposetti, S.; Tanga, P.; Klotz, A.; Frappa, E.; Cacella, P.; Colque, J. P.; Neves, C.; Alvarez, E. M.; Gillon, M.; Pimentel, E.; Giacchini, B.; Roques, F.; Widemann, T.; Magalhães, V. S.; Thirouin, A.; Duffard, R.; Leiva, R.; Toledo, I.; Capeche, J.; Beisker, W.; Pollock, J.; Cedeño Montaña, C. E.; Ivarsen, K.; Reichart, D.; Haislip, J.; Lacluyze, A.

    2013-08-01

    We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation observed on 2012 October 15. If the timing of the five chords obtained in 2011 were correct, then Quaoar would possess topographic features (crater or mountain) that would be too large for a body of this mass. An alternative model consists in applying time shifts to some chords to account for possible timing errors. Satisfactory elliptical fits to the chords are then possible, yielding an equivalent radius R equiv = 555 ± 2.5 km and geometric visual albedo pV = 0.109 ± 0.007. Assuming that Quaoar is a Maclaurin spheroid with an indeterminate polar aspect angle, we derive a true oblateness of \\epsilon = 0.087^{+0.0268}_{-0.0175}, an equatorial radius of 569^{+24}_{-17} km, and a density of 1.99 ± 0.46 g cm-3. The orientation of our preferred solution in the plane of the sky implies that Quaoar's satellite Weywot cannot have an equatorial orbit. Finally, we detect no global atmosphere around Quaoar, considering a pressure upper limit of about 20 nbar for a pure methane atmosphere.

  12. Near-infrared multiwavelength imaging polarimetry of the low-mass proto-stellar object HL Tauri

    NASA Astrophysics Data System (ADS)

    Murakawa, K.; Oya, S.; Pyo, T.-S.; Ishii, M.

    2008-12-01

    We present the {JHK}-band high-resolution polarimetric images of the low-mass proto-stellar object HL Tau using the adaptive optics-equipped CIAO instrument on the Subaru telescope. Our polarization images show a butterfly-shaped polarization disk with an ˜0.9 arcsec × 3.0 arcsec extension. In the nebula, where polarization vectors are centro-symmetrically aligned, the polarization is as high as PJ ˜30%, P_H˜42%, and PK ˜55%. On the other hand, low polarizations of P<3% in the J, H, and K bands and a low color excess ratio of EJ-H/EH-K=1.1 compared to the standard cloud value of 1.75 are detected towards the central star. We estimated the upper limit of the grain sizes a_max to be 0.4 μm in the nebula and ⪆0.7 μm in the line of sight towards the central star. Our high-resolution polarimetric data, which spatially resolves the polarization disk, provides us with important information about grain growth in the region close to the central star.

  13. THE MYSTERIOUS SICKLE OBJECT IN THE CARINA NEBULA: A STELLAR WIND INDUCED BOW SHOCK GRAZING A CLUMP?

    SciTech Connect

    Ngoumou, Judith; Preibisch, Thomas; Ratzka, Thorsten; Burkert, Andreas

    2013-06-01

    Optical and near-infrared images of the Carina Nebula show a peculiar arc-shaped feature, which we call the ''Sickle'', next to the B-type star Trumpler 14 MJ 218. We use multi-wavelength observations to explore and constrain the nature and origin of the nebulosity. Using submillimeter data from APEX/LABOCA as well as Herschel far-infrared maps, we discovered a dense, compact clump with a mass of {approx}40 M{sub Sun} located close to the apex of the Sickle. We investigate how the B star MJ 218, the Sickle, and the clump are related. Our numerical simulations show that, in principle, a B-type star located near the edge of a clump can produce a crescent-shaped wind shock front, similar to the observed morphology. However, the observed proper motion of MJ 218 suggests that the star moves with high velocity ({approx}100 km s{sup -1}) through the ambient interstellar gas. We argue that the star is just about to graze along the surface of the clump, and the Sickle is a bow shock induced by the stellar wind, as the object moves supersonically through the density gradient in the envelope of the clump.

  14. THE INTERMEDIATE-MASS YOUNG STELLAR OBJECT 08576nr292: DISCOVERY OF A DISK-JET SYSTEM

    SciTech Connect

    Ellerbroek, Lucas E.; Kaper, Lex; De Koter, Alex; Sana, Hugues; Waters, Laurens B. F. M.; Bik, Arjan; Horrobin, Matthew; Puga, Elena

    2011-05-01

    We present observations of the embedded massive young stellar object (YSO) candidate 08576nr292, obtained with X-shooter and SINFONI on the ESO Very Large Telescope (VLT). The flux-calibrated, medium-resolution X-shooter spectrum (300-2500 nm) includes over 300 emission lines, but no (photospheric) absorption lines, and is consistent with a reddened disk spectrum. Among the emission lines are three hydrogen series and helium lines, both permitted and forbidden metal lines, and CO first-overtone emission. A representative sample of lines with different morphologies is presented. The H{alpha} and Ca II triplet lines are very strong, with profiles indicative of outflow and-possibly-infall, usually observed in accreting stars. These lines include a blueshifted absorption component at {approx}-125 km s{sup -1}. The He I and metal-line profiles are double peaked, with a likely origin in a circumstellar disk. The forbidden lines, associated with outflow, have a single blueshifted emission component centered at -125 km s{sup -1}, coinciding with the absorption components in H{alpha} and Ca II. SINFONI H- and K-band integral-field spectroscopy of the cluster environment demonstrates that the [Fe II] emission is produced by a jet originating at the location of 08576nr292. Because the spectral type of the central object cannot be determined, its mass remains uncertain. We argue that 08576nr292 is an intermediate-mass YSO with a high accretion rate ( M-dot{sub acc}{approx}10{sup -6}-10{sup -5} M{sub sun} yr{sup -1}). These observations demonstrate the potential of X-shooter and SINFONI to study in great detail an accretion disk-jet system, rarely seen around the more massive YSOs.

  15. A MULTI-EPOCH, SIMULTANEOUS WATER AND METHANOL MASER SURVEY TOWARD INTERMEDIATE-MASS YOUNG STELLAR OBJECTS

    SciTech Connect

    Bae, Jae-Han; Kim, Kee-Tae; Youn, So-Young; Kim, Won-Ju; Byun, Do-Young; Kang, Hyunwoo; Oh, Chung Sik E-mail: whorujh@kasi.re.kr

    2011-10-01

    We report a multi-epoch, simultaneous 22 GHz H{sub 2}O and 44 GHz Class I CH{sub 3}OH maser line survey toward 180 intermediate-mass young stellar objects, including 14 Class 0 and 19 Class I objects, and 147 Herbig Ae/Be stars. We detected H{sub 2}O and CH{sub 3}OH maser emission toward 16 (9%) and 10 (6%) sources with one new H{sub 2}O and six new CH{sub 3}OH maser sources. The detection rates of both masers rapidly decrease as the central (proto)stars evolve, which is contrary to the trends in high-mass star-forming regions. This suggests that the excitations of the two masers are closely related to the evolutionary stage of the central (proto)stars and the circumstellar environments. H{sub 2}O maser velocities deviate on average 9 km s{sup -1} from the ambient gas velocities whereas CH{sub 3}OH maser velocities match quite well with the ambient gas velocities. For both maser emissions, large velocity differences (|v{sub H{sub 2}O} - v{sub sys}| > 10kms{sup -1} and |v{sub CH3OH} - v{sub sys}| > 1kms{sup -1}) are mostly confined to Class 0 objects. The formation and disappearance of H{sub 2}O masers is frequent and their integrated intensities change by up to two orders of magnitude. In contrast, CH{sub 3}OH maser lines usually show no significant change in intensity, shape, or velocity. This is consistent with the previous suggestion that H{sub 2}O maser emission originates from the base of an outflow while 44 GHz Class I CH{sub 3}OH maser emission arises from the interaction region of the outflow with the ambient gas. The isotropic maser luminosities are well correlated with the bolometric luminosities of the central objects. The fitted relations are L{sub H2O}= 1.71x10{sup -9}(L{sub bol}){sup 0.97} and L{sub CH3OH}= 1.71x10{sup -10}(L{sub bol}){sup 1.22}.

  16. Star Formation in the Central 400 pc of the Milky Way: Evidence for a Population of Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Hewitt, J. W.; Arendt, R. G.; Whitney, B.; Rieke, G.; Wardle, M.; Hinz, J. L.; Stolovy, S.; Lang, C. C.; Burton, M. G.; Ramirez, S.

    2009-09-01

    The central kpc of the Milky Way might be expected to differ significantly from the rest of the Galaxy with regard to gasdynamics and the formation of young stellar objects (YSOs). We probe this possibility with mid-infrared observations obtained with Infrared Array Camera and Multiband Imaging Photometer on Spitzer and with Midcourse Space Experiment. We use color-color diagrams and spectral energy distribution (SED) fits to explore the nature of YSO candidates (including objects with 4.5 μm excesses possibly due to molecular emission). There is an asymmetry in the distribution of the candidate YSOs, which tend to be found at negative Galactic longitudes; this behavior contrasts with that of the molecular gas, approximately 2/3 of which is at positive longitudes. The small-scale height of these objects suggests that they are within the Galactic center region and are dynamically young. They lie between two layers of infrared dark clouds and may have originated from these clouds. We identify new sites for this recent star formation by comparing the mid-IR, radio, submillimeter, and methanol maser data. The methanol masers appear to be associated with young, embedded YSOs characterized by 4.5 μm excesses. We use the SEDs of these sources to estimate their physical characteristics; their masses appear to range from ~10 to ~20 M sun. Within the central 400 × 50 pc (|l| < 1fdg3 and |b| < 10') the star formation rate (SFR) based on the identification of Stage I evolutionary phase of YSO candidates is about 0.14 M sun yr-1. Given that the majority of the sources in the population of YSOs are classified as Stage I objects, we suggest that a recent burst of star formation took place within the last 105 yr. This suggestion is also consistent with estimates of SFRs within the last ~107 yr showing a peak around 105 yr ago. Lastly, we find that the Schmidt-Kennicutt Law applies well in the central 400 pc of the Galaxy. This implies that star formation does not appear to be

  17. A FEATURE MOVIE OF SiO EMISSION 20-100 AU FROM THE MASSIVE YOUNG STELLAR OBJECT ORION SOURCE I

    SciTech Connect

    Matthews, L. D.; Greenhill, L. J.; Goddi, C.; Humphreys, E. M. L.; Chandler, C. J.; Kunz, M. W.

    2010-01-01

    We present multi-epoch Very Long Baseline Array imaging of the {sup 28}SiO v = 1 and v = 2, J = 1-0 maser emission toward the massive young stellar object (YSO) Orion Source I. Both SiO transitions were observed simultaneously with an angular resolution of approx0.5 mas (approx0.2 AU for d = 414 pc) and a spectral resolution of approx0.2 km s{sup -1}. Here we explore the global properties and kinematics of the emission through two 19-epoch animated movies spanning 21 months (from 2001 March 19 to 2002 December 10). These movies provide the most detailed view to date of the dynamics and temporal evolution of molecular material within approx20-100 AU of a massive (approx>8 M{sub sun}) YSO. As in previous studies, we find that the bulk of the SiO masers surrounding Source I lie in an X-shaped locus; the emission in the south and east arms is predominantly blueshifted, and emission in the north and west is predominantly redshifted. In addition, bridges of intermediate-velocity emission are observed connecting the red and blue sides of the emission distribution. We have measured proper motions of over 1000 individual maser features and found that these motions are characterized by a combination of radially outward migrations along the four main maser-emitting arms and motions tangent to the intermediate-velocity bridges. We interpret the SiO masers as arising from a wide-angle bipolar wind emanating from a rotating, edge-on disk. The detection of maser features along extended, curved filaments suggests that magnetic fields may play a role in launching and/or shaping the wind. Our observations appear to support a picture in which stars with masses as high as at least 8 M{sub sun} form via disk-mediated accretion. However, we cannot yet rule out that the Source I disk may have been formed or altered following a recent close encounter.

  18. ADAPTIVE OPTICS IMAGING OF QUASI-STELLAR OBJECTS WITH DOUBLE-PEAKED NARROW LINES: ARE THEY DUAL ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Rosario, D. J.; McGurk, R. C.; Max, C. E.; Shields, G. A.; Smith, K. L.; Ammons, S. M. E-mail: mcgurk@ucsc.edu E-mail: shieldsga@mail.utexas.edu E-mail: ammons@as.arizona.edu

    2011-09-20

    Active galaxies hosting two accreting and merging supermassive black holes (SMBHs)-dual active galactic nuclei (AGNs)-are predicted by many current and popular models of black-hole-galaxy co-evolution. We present here the results of a program that has identified a set of probable dual AGN candidates based on near-infrared laser guide star adaptive optics imaging with the Keck II telescope. These candidates are selected from a complete sample of radio-quiet quasi-stellar objects (QSOs) drawn from the Sloan Digital Sky Survey (SDSS), which show double-peaked narrow AGN emission lines. Of the 12 AGNs imaged, we find 6 with double galaxy structure, of which four are in galaxy mergers. We measure the ionization of the two velocity components in the narrow AGN lines to test the hypothesis that both velocity components come from an active nucleus. The combination of a well-defined parent sample and high-quality imaging allows us to place constraints on the fraction of SDSS QSOs that host dual accreting black holes separated on kiloparsec scales: {approx}0.3%-0.65%. We derive from this fraction the time spent in a QSO phase during a typical merger and find a value that is much lower than estimates that arise from QSO space densities and galaxy merger statistics. We discuss possible reasons for this difference. Finally, we compare the SMBH mass distributions of single and dual AGNs and find little difference between the two within the limited statistics of our program, hinting that most SMBH growth happens in the later stages of a merger process.

  19. Integral field spectroscopy of massive young stellar objects in the N113 H II region in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ward, J. L.; Oliveira, J. M.; van Loon, J. Th.; Sewiło, M.

    2016-01-01

    The Spitzer Surveying the Agents of Galaxy Evolution (SAGE) survey has allowed the identification and analysis of significant samples of Young Stellar Object (YSO) candidates in the Large Magellanic Cloud (LMC). However, the angular resolution of Spitzer is relatively poor meaning that at the distance of the LMC, it is likely that many of the Spitzer YSO candidates in fact contain multiple components. We present high-resolution K-band integral field spectroscopic observations of the three most prominent massive YSO candidates in the N113 H II region using Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared (VLT/SINFONI). We have identified six K-band continuum sources within the three Spitzer sources and we have mapped the morphology and velocity fields of extended line emission around these sources. Br γ, He I and H2 emission is found at the position of all six K-band sources; we discuss whether the emission is associated with the continuum sources or whether it is ambient emission. H2 emission appears to be mostly ambient emission and no evidence of CO emission arising in the discs of YSOs has been found. We have mapped the centroid velocities of extended Br γ emission and He I emission and found evidence of two expanding compact H II regions. One source shows compact and strong H2 emission suggestive of a molecular outflow. The diversity of spectroscopic properties observed is interpreted in the context of a range of evolutionary stages associated with massive star formation.

  20. Simultaneous X-Ray and Radio Observations of Young Stellar Objects in NGC 1333 and IC 348

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Osten, Rachel A.; Wolk, Scott J.

    2011-07-01

    Young stellar objects (YSOs) and in particular protostars are known to show a variety of high-energy processes. Observations in the X-ray and centimetric radio wavelength ranges are thought to constrain some of these processes, e.g., coronal-type magnetic activity. There is a well-known empirical correlation of radio and X-ray luminosities in active stars, the so-called Güdel-Benz (GB) relation. Previous evidence of whether YSOs are compatible with this relation remains inconclusive for the earliest evolutionary stages. The main difficulty is that due to the extreme variability of these sources, simultaneous observations are essential. Until now, only a few YSOs and only a handful of protostars have been observed simultaneously in the X-ray and radio range. To expand the sample, we have obtained such observations of two young clusters rich in protostars, NGC 1333 and IC 348. While the absolute sensitivity is lower for these regions than for more nearby clusters like CrA, we find that even in deep continuum observations carried out with the NRAO Very Large Array (VLA), the radio detection fraction for protostars in these clusters is much lower than the X-ray detection fraction. Very few YSOs are detected in both bands, and we find the radio and X-ray populations among YSOs to be largely distinct. We combine these new results with previous simultaneous Chandra and VLA observations of star-forming regions and find that YSOs with detections in both bands appear to be offset toward higher radio luminosities for given X-ray luminosities when compared with the GB relation, although even in this sensitive data set most sources are too weak for the radio detections to provide information on the emission processes. The considerably improved sensitivity of the Expanded VLA will provide a better census of the YSO radio population as well as better constraints on the emission mechanisms.

  1. Three-dimensional spectroscopy of local luminous compact blue galaxies: kinematic maps of a sample of 22 objects

    NASA Astrophysics Data System (ADS)

    Pérez-Gallego, J.; Guzmán, R.; Castillo-Morales, A.; Gallego, J.; Castander, F. J.; Garland, C. A.; Gruel, N.; Pisano, D. J.; Zamorano, J.

    2011-12-01

    We use three-dimensional optical spectroscopy observations of a sample of 22 local luminous compact blue galaxies (LCBGs) to create kinematic maps. By means of these, we classify the kinematics of these galaxies into three different classes: rotating disc (RD), perturbed rotation (PR) and complex kinematics (CK). We find 48 per cent are RDs, 28 per cent are PRs and 24 per cent are CKs. RDs show rotational velocities that range between ˜50 and ˜200 km s-1, and dynamical masses that range between ˜1 × 109 and ˜3 × 1010 M⊙. We also address the following two fundamental questions through the study of the kinematic maps: (i) What processes are triggering the current starburst in LCBGs? We search our maps of the galaxy velocity fields for signatures of recent interactions and close companions that may be responsible for the enhanced star formation in our sample. We find that 5 per cent of objects show evidence of a recent major merger, 10 per cent of a minor merger and 45 per cent of a companion. This argues in favour of ongoing interactions with close companions as a mechanism for the enhanced star formation activity in these galaxies. (ii) What processes may eventually quench the current starbust in LCBGs? Velocity and velocity width maps, together with emission line ratio maps, can reveal signatures of active galactic nuclei (AGNs) activity or supernova (SN)-driven galactic winds that could halt the current burst. We find only 5 per cent of objects with clear evidence of AGN activity and 27 per cent with kinematics consistent with SN-driven galactic winds. Therefore, a different mechanism may be responsible for quenching the star formation in LCBGs. Finally, from our analysis, we find that the velocity widths of RDs, rather than accounting exclusively for the rotational nature of these objects, may account as well for other kinematic components and may not be good tracers of their dynamical masses.

  2. Looking for high-mass young stellar objects: H2O and OH masers in ammonia cores

    NASA Astrophysics Data System (ADS)

    Codella, C.; Cesaroni, R.; López-Sepulcre, A.; Beltrán, M. T.; Furuya, R.; Testi, L.

    2010-02-01

    Context. The earliest stages of high-mass star formation have yet to be characterised well, because high-angular resolution observations are required to infer the properties of the molecular gas hosting the newly formed stars. Aims: We search for high-mass molecular cores in a large sample of 15 high-mass star-forming regions that are observed at high-angular resolution, extending a pilot survey based on a smaller number of objects. Methods: The sample was chosen from surveys of H2O and OH masers to favour the earliest phases of high-mass star formation. Each source was first observed with the 32-m single-dish Medicina antenna in the (1, 1) and (2, 2) inversion transitions at 1.3 cm of ammonia, which is an excellent tracer of dense gas. High-resolution maps in the NH3(2, 2) and (3, 3) lines and the 1.3 cm continuum were obtained successively with the VLA interferometer. Results: We detect continuum emission in almost all the observed star-forming regions, which corresponds to extended and UCHii regions created by young stellar objects with typical luminosities of ˜10^4~L⊙. However, only in three cases do we find a projected overlap between Hii regions and H2O and OH maser spots. On the other hand, the VLA images detect eight ammonia cores closely associated with the maser sources. The ammonia cores have sizes of ˜10^4 AU, and high masses (up to 104M⊙), and are very dense (from ˜10^6 to a few ×10^9 cm-3). The typical relative NH3 abundance is ≤10-7, in agreement with previous measurements in high-mass star-forming regions. Conclusions: The statistical analysis of the distribution between H2O and OH masers, NH3 cores, and Hii regions confirms that the earliest stages of high-mass star formation are characterised by high-density molecular cores with temperatures of on average ≥30 K, either without a detectable ionised region or associated with a hypercompact Hii region.

  3. Linking pre- and proto-stellar objects in the intermediate-/high-mass star forming region IRAS 05345+3157

    NASA Astrophysics Data System (ADS)

    Fontani, F.; Zhang, Q.; Caselli, P.; Bourke, T. L.

    2009-05-01

    Context: To better understand the initial conditions of the high-mass star formation process, it is crucial to study at high angular resolution the morphology, the kinematics, and the interactions of the coldest condensations associated with intermediate-/high-mass star forming regions. Aims: This paper studies the cold condensations in the intermediate-/high-mass proto-cluster IRAS 05345+3157, focusing on the interaction with the other objects in the cluster. Methods: We performed millimeter high-angular resolution observations, both in the continuum and several molecular lines, with the PdBI and the SMA. In a recent paper, we published part of these data. The main finding of that work was the detection of two cold and dense gaseous condensations, called N and S (masses ˜ 2 and ˜ 9 M_⊙), characterised by high values of deuterium fractionation (˜ 0.1 in both cores) obtained from the column density ratio N(N{2}D+)/N(N{2}H+). In this paper, we present a full report of the observations, and a complete analysis of the data obtained. Results: The millimeter maps reveal the presence of 3 cores inside the interferometer primary beam, called C1-a, C1-b and C2. None of them are associated with cores N and S. C1-b is very likely associated with a newly formed early-B ZAMS star embedded inside a hot core, while C1-a is more likely associated with a class 0 intermediate-mass protostar. The nature of C2 is unclear. Both C1-a and C1-b are good candidates as driving sources of a powerful 12CO outflow, which strongly interacts with N, as demonstrated by the velocity gradient of the gas along this condensation. The N{2}H+ linewidths are between ˜ 1 and 2 km s-1 in the region where the continuum cores are located, and smaller (˜ 0.5-1.5 km s-1) towards N and S, indicating that the gas in the deuterated condensations is more quiescent than that associated with the continuum sources. This is consistent with the fact that they are still in the pre-stellar phase and hence the

  4. Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stan

    A "stellar wind" is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star's radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M ⊙ evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in "superwinds" that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ˜ ​​ 1. 4M ⊙. The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star's hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star's own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or "bubbles" in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various

  5. On Be star candidates and possible blue pre-main sequence objects in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Mennickent, R. E.; Pietrzyński, G.; Gieren, W.; Szewczyk, O.

    2002-10-01

    Recently the OGLE experiment has provided accurate light curves and colours for about 2 millions stars in the Small Magellanic Cloud. We have examined this database for its content of Be stars, applying some selection criteria, and we have found a sample of ~ 1000 candidates. Some of these stars show beautiful light curves with amazing variations never observed in any Galactic variable. We find outbursts in 13% of the sample (type-1 stars), high and low states in 15%, periodic variations in 7%, and the usual variations seen in Galactic Be stars in 65% of the cases. The Galactic counterparts of type-1 objects could be the outbursting Be stars found by Hubert & Floquet (\\cite{Hubert}) after the analysis of Hipparcos photometry. We discuss the possibility that type-1 stars could correspond to Be stars with accreting white dwarf companions or alternatively, blue pre-main sequence stars surrounded by thermally unstable accretion disks. We provide coordinates and basic photometric information for these stars and some examples of light curves. The complete Tables 1, 3, 5 and 6 are available in electronic form at http://www.edpsciences.org

  6. A SUPER-DAMPED Ly{alpha} QUASI-STELLAR OBJECT ABSORBER AT z = 2.2

    SciTech Connect

    Kulkarni, Varsha P.; Som, Debopam; Meiring, Joseph; Peroux, Celine; York, Donald G.; Khare, Pushpa; Lauroesch, James T.

    2012-04-20

    We report the discovery of a 'super-damped' Ly{alpha} absorber at z{sub abs} = 2.2068 toward quasi-stellar object (QSO) Q1135-0010 in the Sloan Digital Sky Survey (SDSS) and follow-up Very Large Telescope (VLT) UVES spectroscopy. A Voigt profile fit to the damped Ly{alpha} (DLA) line indicates log N{sub Hi}= 22.05 {+-} 0.1. This is the second QSO DLA discovered to date with such high N{sub Hi}. We derive element abundances [Si/H] = -1.10 {+-} 0.10, [Zn/H] = -1.06 {+-} 0.10, [Cr/H] = -1.55 {+-} 0.10, [Ni/H] = -1.60 {+-} 0.10, [Fe/H] = -1.76 {+-} 0.10, [Ti/H] = -1.69 {+-} 0.11, [P/H] = -0.93 {+-} 0.23, and [Cu/H] = -0.75 {+-} 0.14. Our data indicate detection of Ly{alpha} emission in the DLA trough, implying a star formation rate (SFR) of {approx}10 M{sub Sun} yr{sup -1} in the absence of dust attenuation. C II* {lambda}1336 absorption is also detected, suggesting SFR surface density -2

  7. Physical and Chemical Properties of Protocluster Clumps and Massive Young Stellar Objects Associated to Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Gomez Gonzalez, Laura

    2012-01-01

    The study of high-mass stars is important not only because of the effects they produce in their environment through outflows, expanding HII regions, stellar winds, and eventually supernova shock waves, but also because they play a crucial role in estimating star formation rates in other galaxies. Although we have an accepted evolutionary scenario that explains (isolated) low-mass star formation, the processes that produce massive stars (M_star > 8 M_sol) and star clusters, especially their earliest stages, are not well understood. The newly discovered class of interstellar clouds now termed infrared dark clouds (IRDCs) represent excellent laboratories to study the earliest stages of high-mass star formation given that some of the clumps within them are known to have high masses (~100's M_sol), high densities (n > 10^5 cm^-3), and low temperatures (10-20K) as expected for the birthplaces of high-mass stars. Some questions remain unanswered: Do IRDCs harbor the very early stages of high-mass star formation, i.e., the pre-protocluster phase? If so, how do they compare with low-mass star formation sites? Is there chemical differentiation in IRDC clumps? What is the mass distribution of IRDCs? In this dissertation and for the first time, a catalog of 12529 IRDC candidates at 24 um has been created using archival data from the MIPSGAL/Spitzer survey, as a first step in searching for the massive pre-protocluster clumps. From this catalog, a sample of ~60 clumps has been selected in order to perform single-pointing observations with the IRAM 30m, Effelsberg 100m, and APEX 12m telescopes. One IRDC clump seems to be a promising candidate for being in the pre-protocluster phase. In addition, molecular line mapping observations have been performed on three clumps within IRDCs and a detailed chemical study of 10 molecular lines has been carried out. A larger difference in column densities and abundances has been found between these clumps and high-m! ass protostellar objects

  8. Envelope structure on 700 AU scales and the molecular outflows of low-mass young stellar objects

    NASA Technical Reports Server (NTRS)

    Hogerheijde, M. R.; van Dishoeck, E. F.; Blake, G. A.; van Langevelde, H. J.

    1998-01-01

    Aperture synthesis observations of HCO+ J = 1-0, 13CO 1-0, and C18O 1-0 obtained with the Owens Valley Millimeter Array are used to probe the small-scale (5" approximately 700 AU) structure of the molecular envelopes of a well-defined sample of nine embedded low-mass young stellar objects in Taurus. The interferometer results can be understood in terms of: (1) a core of radius approximately or less than 1000 AU surrounding the central star, possibly flattened and rotating; (2) condensations scattered throughout the envelope that may be left over from the inhomogeneous structure of the original cloud core or that may have grown during collapse; and (3) material within the outflow or along the walls of the outflow cavity. Masses of the central cores are 0.001-0.1 M (solar), and agree well with dust continuum measurements. Averaged over the central 20" (3000 AU) region, an HCO+ abundance of 4 x 10(-8) is inferred, with a spread of a factor of 3 between the different sources. Reanalysis of previously presented single-dish data yields an HCO+ abundance of (5.0 +/- 1.7) x 10(-9), which may indicate an average increase by a factor of a few on the smaller scales sampled by the interferometer. Part of this apparent abundance variation could be explained by contributions from extended cloud emission to the single-dish C18O lines, and uncertainties in the assumed excitation temperatures and opacities. The properties of the molecular envelopes and outflows are further investigated through single-dish observations of 12CO J = 6-5, 4-3, and 3-2, 13CO 6-5 and 3-2, and C18O 3-2 and 2-1, obtained with the James Clerk Maxwell and IRAM 30 m telescopes, along with the Caltech Submillimeter Observatory. Ratios of the mid-J CO lines are used to estimate the excitation temperature, with values of 25-80 K derived for the gas near line centre. The outflow wings show a similar range, although Tex is enhanced by a factor of 2-3 in at least two sources. In contrast to the well-studied L1551

  9. NEAR-INFRARED PROPERTIES OF THE X-RAY-EMITTING YOUNG STELLAR OBJECTS IN THE CARINA NEBULA

    SciTech Connect

    Preibisch, Thomas; Hodgkin, Simon; Irwin, Mike; Lewis, James R.; King, Robert R.; McCaughrean, Mark J.; Zinnecker, Hans; Townsley, Leisa; Broos, Patrick

    2011-05-01

    The Great Nebula in Carina (NGC 3372) is the best target to study in detail the process of violent massive star formation and the resulting feedback effects of cloud dispersal and triggered star formation. While the population of massive stars is rather well studied, the associated low-mass stellar population was largely unknown up to now. The near-infrared study in this paper builds on the results of the Chandra Carina Complex Project, that detected 14,368 X-ray sources in the 1.4 deg{sup 2} survey region, an automatic source classification study that classified 10,714 of these X-ray sources as very likely young stars in Carina, and an analysis of the clustering properties of the X-ray-selected Carina members. In order to determine physical properties of the X-ray-selected stars, most of which were previously unstudied, we used HAWK-I at the ESO Very Large Telescope to conduct a very deep near-IR survey with subarcsecond angular resolution, covering an area of about 1280 arcmin{sup 2}. The HAWK-I images reveal more than 600,000 individual infrared sources, whereby objects as faint as J {approx} 23, H {approx} 22, and K{sub s} {approx} 21 are detected at signal-to-noise ratio (S/N) {>=}3. While less than half of the Chandra X-ray sources have counterparts in the Two Micron All Sky Survey catalog, the {approx}5 mag deeper HAWK-I data reveal infrared counterparts to 6636 (=88.8%) of the 7472 Chandra X-ray sources in the HAWK-I field. We analyze near-infrared color-color and color-magnitude diagrams to derive information about the extinctions, infrared excesses (as tracers for circumstellar disks), ages, and masses of the X-ray-selected objects. The near-infrared properties agree well with the results of the automatic X-ray source classification, showing that the remaining contamination in the X-ray-selected sample of Carina members is very low ({approx}<7%). The shape of the K-band luminosity function of the X-ray-selected Carina members agrees well with that derived

  10. Suzaku Observation of Strong Fluorescent Iron Line Emission from the Young Stellar Object V1647 Ori during Its New X-ray Outburst

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael

    2009-01-01

    The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.