Science.gov

Sample records for body posture evaluation

  1. Body posture evaluations in subjects with internal temporomandibular joint derangement.

    PubMed

    Munhoz, Wagner Cesar; Marques, Amélia Pasqual

    2009-10-01

    The aim of this study was to verify possible relationships between global body posture and temporomandibular joint internal derangement (TMJ-id), by comparing 30 subjects presenting typical TMJ-id signs to 20 healthy subjects. Body posture was assessed using the analysis of muscle chains on several photographs. Results show a higher frequency of lifted shoulders (p=0.04) and of changes in the antero-internal hip chain (p=0.02) in the test group, but no further differences were found significant between the control and test groups. The test group was then divided into three subgroups according to the Helkimo index of temporomandibular disorder severity. Again, no significant differences were found between the subgroups. However, there was a trend noticed in the group with the most severe dysfunction, to present a forward head and shoulders posture. Results are discussed in light of previous studies using the same sample. PMID:19891257

  2. Evaluation of body posture in individuals with internal temporomandibular joint derangement.

    PubMed

    Munhoz, Wagner Cesar; Marques, Amélia Pasqual; de Siqueira, José Tadeu Tesseroli

    2005-10-01

    Temporomandibular dysfunctions (TMD) comprise a great number of disruptions that may affect the temporomandibular joint (TMJ), the masticatory muscles, or both. TMJ internal derangement is a specific type of TMD, of which the etiology and physiopathology are broadly unknown, but have been suggested to be linked to head, neck, and body posture factors. This study aimed at verifying possible relationships between body posture and TMJ internal derangements (TMJ-id), by comparing 30 subjects presenting typical TMJ-id signs to 20 healthy subjects. Subjects' clinical evaluations included anamnesis, stomatognatic system evaluation, and plotting analysis on body posture photographs. No statistically significant differences were found between the groups. Results do not support the assertion that body posture plays a role in causing or enhancing TMD; however, these results should be cautiously considered because of the small number of subjects evaluated and the many posture variables submitted to statistical procedures that lead to high standard deviations. PMID:16353467

  3. Evaluation of Neutral Body Posture on Shuttle Mission STS-57 (SPACEHAB-1). Revision

    NASA Technical Reports Server (NTRS)

    Mount, Frances E.; Whitmore, Mihriban; Stealey, Sheryl L.

    2003-01-01

    Research has shown that the space environment induces physiological changes in the human body, such as fluid shifts in the upper body and chest cavity, spinal lengthening, muscular atrophy, space motion sickness, cardiopulmonary deconditioning, and bone mass loss, as well as some changes in visual perception. These require a period of adaptation and can substantially affect both crew member performance and posture. These physiological effects, when work activities are conducted, have been known to impact the body's center of gravity, reach, flexibility, and dexterity. All these aspects of posture must be considered to safely and efficiently design space systems and hardware. NASA has documented its microgravity body posture in the Man-Systems Integration Standards (MSIS); the space community uses the MSIS posture to design workstations and tools for space application. However, the microgravity body posture should be further investigated for several reasons, including small sample size in previous studies, possible imprecision, and lack of detail. JSC undertook this study to investigate human body posture exhibited under microgravity conditions. STS-57 crew members were instructed to assume a relaxed posture that was not oriented to any work area or task. Crew members were asked to don shorts and tank tops and to be blindfolded while data were recorded. Video data were acquired once during the mission from each of the six crew members. No one crew member exhibited the typical NBP called out in the MSIS; one composite posture is not adequate. A range of postures may be more constructive for design purposes. Future evaluations should define precise posture requirements for workstation, glove box, maintenance, foot-restraint, and handhold activities.

  4. Evaluation of ergonomic factors and postures that cause muscle pains in dentistry students’ bodies

    PubMed Central

    Shirzaei, Masoumeh; Khaje-Alizade, Ali; Mohammadi, Mahdi

    2015-01-01

    Background Work-related musculoskeletal disorders commonly experienced by dental professionals are one of the main occupational health problem affecting their health and well-being.This study was conducted to evaluate ergonomic factors and profession-related postures and also investigate relationship between demographic factors and work condition with pain in dental students. Material and Methods 60 freshman and sophomore dentistry students were randomly chosen as the subjects of control group, and 60 of 5th and 6th-year students were selected as the members of exposure group. Data related to the subjects such as sex, doing exercise, severity of musculoskeletal pain were obtained through questionnaire. Students’ postures were directly observed while treating patients and they were scored by REBA method. Data were analyzed by SPSS software using Man-Whitney, Kruskal-Wallis, Spearman and Kendall correlation tests. Results 80.8% of the subjects were not aware of the correct ergonomic postures for dental procedures. Severity of musculoskeletal pain in the exposure group (15.9± 4.2) was significantly higher than the control group (10.5 ±3.2), (p <0.001). Risk of the most subjects (84%) was at the medium level. Students who were more involved in clinical activities experienced more muscular pains. Conclusions The musculoskeletal disorders are probable prolonged in working hours in static positions, incorrect work postures, implying more force and even tools and instruments. Therefore, students who are aware of ergonomic principals of their own profession would be able to maintain their health through activities and lifelong. Key words:Posture, dentistry, students, musculoskeletal pain. PMID:26330941

  5. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  6. Body Posture Facilitates Retrieval of Autobiographical Memories

    ERIC Educational Resources Information Center

    Dijkstra, Katinka; Kaschak, Michael P.; Zwaan, Rolf A.

    2007-01-01

    We assessed potential facilitation of congruent body posture on access to and retention of autobiographical memories in younger and older adults. Response times were shorter when body positions during prompted retrieval of autobiographical events were similar to the body positions in the original events than when body position was incongruent.…

  7. Emotion expression in body action and posture.

    PubMed

    Dael, Nele; Mortillaro, Marcello; Scherer, Klaus R

    2012-10-01

    Emotion communication research strongly focuses on the face and voice as expressive modalities, leaving the rest of the body relatively understudied. Contrary to the early assumption that body movement only indicates emotional intensity, recent studies have shown that body movement and posture also conveys emotion specific information. However, a deeper understanding of the underlying mechanisms is hampered by a lack of production studies informed by a theoretical framework. In this research we adopted the Body Action and Posture (BAP) coding system to examine the types and patterns of body movement that are employed by 10 professional actors to portray a set of 12 emotions. We investigated to what extent these expression patterns support explicit or implicit predictions from basic emotion theory, bidimensional theory, and componential appraisal theory. The overall results showed partial support for the different theoretical approaches. They revealed that several patterns of body movement systematically occur in portrayals of specific emotions, allowing emotion differentiation. Although a few emotions were prototypically expressed by one particular pattern, most emotions were variably expressed by multiple patterns, many of which can be explained as reflecting functional components of emotion such as modes of appraisal and action readiness. It is concluded that further work in this largely underdeveloped area should be guided by an appropriate theoretical framework to allow a more systematic design of experiments and clear hypothesis testing. PMID:22059517

  8. Changes in the body posture of women occurring with age

    PubMed Central

    2013-01-01

    Background A current topic in the field of geriatrics still needing a great deal of study is the changes in body posture occurring with age. Symptoms of these changes can be observed starting between the ages of 40–50 years with a slow progression that increases after 60 years of age. The aims of this study were to evaluate parameters characterizing the posture of women over the age of 60 years compared with a control group and to determine the dynamics of body posture changes in the following decades. Methods The study included 260 randomly selected women. The study group consisted of 130 women between the ages of 60–90 years (Older Women). The control group (Younger Women) consisted of 130 women between the ages of 20–25 years (posture stabilization period). The photogrammetric method was used to evaluate body posture using the phenomenon of the projection chamber. The study was conducted according to generally accepted principles. Results In the analysis of parameters characterizing individual slope curves, results were varied among different age groups. The lumbar spine slope did not show significant differences between different age groups (p = 0.6952), while statistically significant differences (p = 0.0000) were found in the thoracic-lumbar spine slope (p = 0.0033) and upper thoracic spine slope. Body angle was shown to increase with age (p = 0.0000). Thoracic kyphosis depth significantly deepened with age (p = 0.0002), however, the thoracic kyphosis angle decreased with age (p = 0.0000). An increase in asymmetries was noticed, provided by a significantly higher angle of the shoulder line (p = 0.0199) and the difference in height of the lower shoulder blade angle (p = 0.0007) measurements in the group of older women. Conclusions Changes in the parameters describing body posture throughout consecutive decades were observed. Therapy for women over the age of 60 years should involve strengthening of the erector spinae

  9. Turning Configural Processing Upside Down: Part and Whole Body Postures

    ERIC Educational Resources Information Center

    Reed, Catherine L.; Stone, Valerie E.; Grubb, Jefferson D.; McGoldrick, John E.

    2006-01-01

    Like faces, body postures are susceptible to an inversion effect in untrained viewers. The inversion effect may be indicative of configural processing, but what kind of configural processing is used for the recognition of body postures must be specified. The information available in the body stimulus was manipulated. The presence and magnitude of…

  10. Emotional and movement-related body postures modulate visual processing.

    PubMed

    Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E; Avenanti, Alessio; Bertini, Caterina

    2015-08-01

    Human body postures convey useful information for understanding others' emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213

  11. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size

    PubMed Central

    Kubo, Tai; Kubo, Mugino O.

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope’s rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna. PMID:26790003

  12. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    PubMed

    Kubo, Tai; Kubo, Mugino O

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna. PMID:26790003

  13. The Relationship Between the Stomatognathic System and Body Posture

    PubMed Central

    Cuccia, Antonino; Caradonna, Carola

    2009-01-01

    In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system’s proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553

  14. The relationship between the stomatognathic system and body posture.

    PubMed

    Cuccia, Antonino; Caradonna, Carola

    2009-01-01

    In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system's proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553

  15. Functional asymmetry of posture and body system regulation

    NASA Technical Reports Server (NTRS)

    Boloban, V. N.; Otsupok, A. P.

    1980-01-01

    The manifestation of functional asymmetry during the regulation of an athlete's posture and a system of bodies and its effect on the execution of individual and group acrobatic exercises were studied. Functional asymmetry of posture regulation was recorded in acrobats during the execution of individual and group exercises. It was shown that stability is maintained at the expense of bending and twisting motions. It is important to consider whether the functional asymmetry of posture regulation is left or right sided in making up pairs and groups of acrobats.

  16. First-Person Perspective Virtual Body Posture Influences Stress: A Virtual Reality Body Ownership Study

    PubMed Central

    Bergström, Ilias; Kilteni, Konstantina; Slater, Mel

    2016-01-01

    In immersive virtual reality (IVR) it is possible to replace a person’s real body by a life-sized virtual body that is seen from first person perspective to visually substitute their own. Multisensory feedback from the virtual to the real body (such as the correspondence of touch and also movement) can also be present. Under these conditions participants typically experience a subjective body ownership illusion (BOI) over the virtual body, even though they know that it is not their real one. In most studies and applications the posture of the real and virtual bodies are as similar as possible. Here we were interested in whether the BOI is diminished when there are gross discrepancies between the real and virtual body postures. We also explored whether a comfortable or uncomfortable virtual body posture would induce feelings and physiological responses commensurate with the posture. We carried out an experiment with 31 participants in IVR realized with a wide field-of-view head-mounted display. All participants were comfortably seated. Sixteen of them were embodied in a virtual body designed to be in a comfortable posture, and the remainder in an uncomfortable posture. The results suggest that the uncomfortable body posture led to lesser subjective BOI than the comfortable one, but that participants in the uncomfortable posture experienced greater awareness of their autonomic physiological responses. Moreover their heart rate, heart rate variability, and the number of mistakes in a cognitive task were associated with the strength of their BOI in the uncomfortable posture: greater heart rate, lower heart rate variability and more mistakes were associated with higher levels of the BOI. These findings point in a consistent direction—that the BOI over a body that is in an uncomfortable posture can lead to subjective, physiological and cognitive effects consistent with discomfort that do not occur with the BOI over a body in a comfortable posture. PMID:26828365

  17. First-Person Perspective Virtual Body Posture Influences Stress: A Virtual Reality Body Ownership Study.

    PubMed

    Bergström, Ilias; Kilteni, Konstantina; Slater, Mel

    2016-01-01

    In immersive virtual reality (IVR) it is possible to replace a person's real body by a life-sized virtual body that is seen from first person perspective to visually substitute their own. Multisensory feedback from the virtual to the real body (such as the correspondence of touch and also movement) can also be present. Under these conditions participants typically experience a subjective body ownership illusion (BOI) over the virtual body, even though they know that it is not their real one. In most studies and applications the posture of the real and virtual bodies are as similar as possible. Here we were interested in whether the BOI is diminished when there are gross discrepancies between the real and virtual body postures. We also explored whether a comfortable or uncomfortable virtual body posture would induce feelings and physiological responses commensurate with the posture. We carried out an experiment with 31 participants in IVR realized with a wide field-of-view head-mounted display. All participants were comfortably seated. Sixteen of them were embodied in a virtual body designed to be in a comfortable posture, and the remainder in an uncomfortable posture. The results suggest that the uncomfortable body posture led to lesser subjective BOI than the comfortable one, but that participants in the uncomfortable posture experienced greater awareness of their autonomic physiological responses. Moreover their heart rate, heart rate variability, and the number of mistakes in a cognitive task were associated with the strength of their BOI in the uncomfortable posture: greater heart rate, lower heart rate variability and more mistakes were associated with higher levels of the BOI. These findings point in a consistent direction--that the BOI over a body that is in an uncomfortable posture can lead to subjective, physiological and cognitive effects consistent with discomfort that do not occur with the BOI over a body in a comfortable posture. PMID:26828365

  18. Remote monitoring of soldier safety through body posture identification using wearable sensor networks

    NASA Astrophysics Data System (ADS)

    Biswas, Subir; Quwaider, Muhannad

    2008-04-01

    The physical safety and well being of the soldiers in a battlefield is the highest priority of Incident Commanders. Currently, the ability to track and monitor soldiers rely on visual and verbal communication which can be somewhat limited in scenarios where the soldiers are deployed inside buildings and enclosed areas that are out of visual range of the commanders. Also, the need for being stealth can often prevent a battling soldier to send verbal clues to a commander about his or her physical well being. Sensor technologies can remotely provide various data about the soldiers including physiological monitoring and personal alert safety system functionality. This paper presents a networked sensing solution in which a body area wireless network of multi-modal sensors can monitor the body movement and other physiological parameters for statistical identification of a soldier's body posture, which can then be indicative of the physical conditions and safety alerts of the soldier in question. The specific concept is to leverage on-body proximity sensing and a Hidden Markov Model (HMM) based mechanism that can be applied for stochastic identification of human body postures using a wearable sensor network. The key idea is to collect relative proximity information between wireless sensors that are strategically placed over a subject's body to monitor the relative movements of the body segments, and then to process that using HMM in order to identify the subject's body postures. The key novelty of this approach is a departure from the traditional accelerometry based approaches in which the individual body segment movements, rather than their relative proximity, is used for activity monitoring and posture detection. Through experiments with body mounted sensors we demonstrate that while the accelerometry based approaches can be used for differentiating activity intensive postures such as walking and running, they are not very effective for identification and

  19. The Effect of Body Posture on Brain Glymphatic Transport

    PubMed Central

    Lee, Hedok; Xie, Lulu; Yu, Mei; Kang, Hongyi; Feng, Tian; Deane, Rashid; Logan, Jean; Nedergaard, Maiken

    2015-01-01

    The glymphatic pathway expedites clearance of waste, including soluble amyloid β (Aβ) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF–interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of Aβ, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by “retention” of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and Aβ clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans. SIGNIFICANCE STATEMENT The rodent brain removes waste better during sleep or anesthesia compared with the awake state. Animals exhibit different body posture during the awake and sleep states, which might affect the brain's waste removal efficiency. We investigated the influence of body posture on

  20. Evaluation of postural stability in children with hemiplegic cerebral palsy

    PubMed Central

    Kenis-Coskun, Ozge; Giray, Esra; Eren, Beyhan; Ozkok, Ozlem; Karadag-Saygi, Evrim

    2016-01-01

    [Purpose] Postural stability is the ability of to maintain the position of the body within the support area. This function is affected in cerebral palsy. The aim of the present study was to compare static and dynamic postural stability between children with hemiplegic cerebral palsy and healthy controls. [Subjects and Methods] Thirty-seven children between the ages of 5 and 14 diagnosed with hemiplegic cerebral palsy (19 right, 18 left) and 23 healthy gender- and age-matched controls were included in the study. Postural stability was evaluated in both of the groups using a Neurocom Balance. Sway velocity was measured both with the eyes open and closed. Sit to stand and turning abilities were also assessed. [Results] The sway velocities with the eyes open and closed were significantly different between the groups. The weight transfer time in the Sit to Stand test was also significantly slower in children with cerebral palsy. Children with cerebral palsy also showed slower turning times and greater sway velocities during the Step and Quick Turn test on a force plate compared with their healthy counterparts. [Conclusion] Both static and dynamic postural stability parameters are affected in hemiplegic cerebral palsy. Further research is needed to define rehabilitation interventions to improve these parameters in patients. PMID:27313338

  1. Intricate Correlation between Body Posture, Personality Trait and Incidence of Body Pain: A Cross-Referential Study Report

    PubMed Central

    Guimond, Sylvain; Massrieh, Wael

    2012-01-01

    Objective Occupational back pain is a disorder that commonly affects the working population, resulting in disability, health-care utilization, and a heavy socioeconomic burden. Although the etiology of occupational pain remains largely unsolved, anecdotal evidence exists for the contribution of personality and posture to long-term pain management, pointing to a direct contribution of the mind-body axis. In the current study, we have conducted an extensive evaluation into the relationships between posture and personality. Method We have sampled a random population of 100 subjects (50 men and 50 women) in the age range of 13–82 years based on their personality and biomechanical profiles. All subjects were French-Canadian, living in Canada between the Québec and Sorel-Tracy areas. The Biotonix analyses and report were used on the subjects being tested in order to distinguish postural deviations. Personality was determined by using the Myers-Briggs Type Indicator questionnaire. Results We establish a correlation between ideal and kyphosis-lordosis postures and extraverted personalities. Conversely, our studies establish a correlative relationship between flat back and sway-back postures with introverted personalities. Conclusion Overall, our studies establish a novel correlative relationship between personality, posture and pain. PMID:22624034

  2. Trait dominance promotes reflexive staring at masked angry body postures.

    PubMed

    Hortensius, Ruud; van Honk, Jack; de Gelder, Beatrice; Terburg, David

    2014-01-01

    It has been shown that dominant individuals sustain eye-contact when non-consciously confronted with angry faces, suggesting reflexive mechanisms underlying dominance behaviors. However, dominance and submission can be conveyed and provoked by means of not only facial but also bodily features. So far few studies have investigated the interplay of body postures with personality traits and behavior, despite the biological relevance and ecological validity of these postures. Here we investigate whether non-conscious exposure to bodily expressions of anger evokes reflex-like dominance behavior. In an interactive eye-tracking experiment thirty-two participants completed three social dominance tasks with angry, happy and neutral facial, bodily and face and body compound expressions that were masked from consciousness. We confirmed our predictions of slower gaze-aversion from both non-conscious bodily and compound expressions of anger compared to happiness in high dominant individuals. Results from a follow-up experiment suggest that the dominance behavior triggered by exposure to bodily anger occurs with basic detection of the category, but not recognition of the emotional content. Together these results suggest that dominant staring behavior is reflexively driven by non-conscious perception of the emotional content and triggered by not only facial but also bodily expression of anger. PMID:25549321

  3. Modelling resonances of the standing body exposed to vertical whole-body vibration: Effects of posture

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

    2008-10-01

    Lumped parameter mathematical models representing anatomical parts of the human body have been developed to represent body motions associated with resonances of the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the human body standing in five different postures: 'upright', 'lordotic', 'anterior lean', 'knees bent', and 'knees more bent'. The inertial and geometric parameters of the models were determined from published anthropometric data. Stiffness and damping parameters were obtained by comparing model responses with experimental data obtained previously. The principal resonance of the vertical apparent mass, and the first peak in the fore-and-aft cross-axis apparent mass, of the standing body in an upright posture (at 5-6 Hz) corresponded to vertical motion of the viscera in phase with the vertical motion of the entire body due to deformation of the tissues at the soles of the feet, with pitch motion of the pelvis out of phase with pitch motion of the upper body above the pelvis. Upward motion of the body was in phase with the forward pitch motion of the pelvis. Changing the posture of the upper body had minor effects on the mode associated with the principal resonances of the apparent mass and cross-axis apparent mass, but the mode changed significantly with bending of the legs. In legs-bent postures, the principal resonance (at about 3 Hz) was attributed to bending of the legs coupled with pitch motion of the pelvis in phase with pitch motion of the upper body. In this mode, extension of the legs was in phase with the forward pitch motion of the upper body and the upward vertical motion of the viscera.

  4. Perceived body discomfort and trunk muscle activity in three prolonged sitting postures

    PubMed Central

    Waongenngarm, Pooriput; Rajaratnam, Bala S.; Janwantanakul, Prawit

    2015-01-01

    [Purpose] This study aimed to investigate the perceived discomfort and trunk muscle activity in three different 1-hour sitting postures. [Subjects] A repeated-measures design study was conducted on 10 healthy subjects. [Methods] Each subject sat for an hour in three sitting postures (i.e., upright, slumped, and forward leaning sitting postures). Subjects rated perceived body discomfort using Borg’s CR-10 scale at the beginning and after 1 hour sitting. The electromyographic activity of the trunk muscle activity was recorded during the 1-hour period of sitting. [Results] The forward leaning sitting posture led to higher Borg scores in the low back than those in the upright (p = 0.002) and slumped sitting postures (p < 0.001). The forward leaning posture was significantly associated with increased iliocostalis lumborum pars thoracis (ICL) and superficial lumbar multifidus (MF) muscle activity compared with the upright and slumped sitting postures. The upright sitting posture was significantly associated with increased internal oblique (IO)/transversus abdominis (TrA) and ICL muscle activity compared with the slumped sitting posture. [Conclusion] The sitting posture with the highest low back discomfort after prolonged sitting was the forward leaning posture. Sitting in an upright posture is recommended because it increases IO/TrA muscle activation and induces only relatively moderate ICL and MF muscle activation. PMID:26311951

  5. Postural effects on intracranial pressure: modeling and clinical evaluation.

    PubMed

    Qvarlander, Sara; Sundström, Nina; Malm, Jan; Eklund, Anders

    2013-11-01

    The physiological effect of posture on intracranial pressure (ICP) is not well described. This study defined and evaluated three mathematical models describing the postural effects on ICP, designed to predict ICP at different head-up tilt angles from the supine ICP value. Model I was based on a hydrostatic indifference point for the cerebrospinal fluid (CSF) system, i.e., the existence of a point in the system where pressure is independent of body position. Models II and III were based on Davson's equation for CSF absorption, which relates ICP to venous pressure, and postulated that gravitational effects within the venous system are transferred to the CSF system. Model II assumed a fully communicating venous system, and model III assumed that collapse of the jugular veins at higher tilt angles creates two separate hydrostatic compartments. Evaluation of the models was based on ICP measurements at seven tilt angles (0-71°) in 27 normal pressure hydrocephalus patients. ICP decreased with tilt angle (ANOVA: P < 0.01). The reduction was well predicted by model III (ANOVA lack-of-fit: P = 0.65), which showed excellent fit against measured ICP. Neither model I nor II adequately described the reduction in ICP (ANOVA lack-of-fit: P < 0.01). Postural changes in ICP could not be predicted based on the currently accepted theory of a hydrostatic indifference point for the CSF system, but a new model combining Davson's equation for CSF absorption and hydrostatic gradients in a collapsible venous system performed well and can be useful in future research on gravity and CSF physiology. PMID:24052030

  6. Dynamic Postural Control in Female Athletes and Nonathletes After a Whole-Body Fatigue Protocol.

    PubMed

    Baghbani, Fatemeh; Woodhouse, Linda J; Gaeini, Abbas A

    2016-07-01

    Baghbani, F, Woodhouse, LJ, and Gaeini, AA. Dynamic postural control in female athletes and nonathletes after a whole-body fatigue protocol. J Strength Cond Res 30(7): 1942-1947, 2016-Postural control is a crucial element in regular training of athletes, development of complex technical movement, and injury prevention; however, distributing factor of the postural control such as fatigue has been neglected by athletic trainers in novice and inexperienced athletes. The objective of this study was to compare changes in dynamic postural control of young female athletes and nonathletes after a fatigue protocol. Thirty females (15 athletes and 15 nonathletes) with no orthopedic problems were recruited to participate in this study. All participants completed the pre-SEBT (star excursion balance test) in 8 directions at baseline; then, they performed a 20-minute fatigue protocol after which post-SEBT was measured. Rating of perceived exertion was measured using the Borg scale immediately before, mid-way through (i.e., after the third station), and after performing the fatigue protocol (i.e., immediately before the post-SEBT). Female nonathlete groups had significant differences in dynamic balance performance after fatigue in the medial, posteromedial, and posterior directions (p < 0.01) measured by SEBT. Athletes, however, showed no significant changes after the fatigue protocol. Our results indicates the importance of evaluation and monitoring of dynamic postural control of the novice with progressing the exercise time. Our findings could also help coaches to develop trainings focused on the 3 directions of medial, posteromedial, and posterior directions and aimed at exercises increasing fatigue resistance. PMID:27328275

  7. Use of Video Analysis System for Working Posture Evaluations

    NASA Technical Reports Server (NTRS)

    McKay, Timothy D.; Whitmore, Mihriban

    1994-01-01

    In a work environment, it is important to identify and quantify the relationship among work activities, working posture, and workplace design. Working posture may impact the physical comfort and well-being of individuals, as well as performance. The Posture Video Analysis Tool (PVAT) is an interactive menu and button driven software prototype written in Supercard (trademark). Human Factors analysts are provided with a predefined set of options typically associated with postural assessments and human performance issues. Once options have been selected, the program is used to evaluate working posture and dynamic tasks from video footage. PVAT has been used to evaluate postures from Orbiter missions, as well as from experimental testing of prototype glove box designs. PVAT can be used for video analysis in a number of industries, with little or no modification. It can contribute to various aspects of workplace design such as training, task allocations, procedural analyses, and hardware usability evaluations. The major advantage of the video analysis approach is the ability to gather data, non-intrusively, in restricted-access environments, such as emergency and operation rooms, contaminated areas, and control rooms. Video analysis also provides the opportunity to conduct preliminary evaluations of existing work areas.

  8. Error analysis of rigid body posture measurement system based on circular feature points

    NASA Astrophysics Data System (ADS)

    Huo, Ju; Cui, Jishan; Yang, Ning

    2015-02-01

    For monocular vision pose parameters determine the problem, feature-based target feature points on the plane quadrilateral, an improved two-stage iterative algorithm is proposed to improve the optimization of rigid body posture measurement calculating model. Monocular vision rigid body posture measurement system is designed; experimentally in each coordinate system determined coordinate a unified method to unify the each feature point measure coordinates; theoretical analysis sources of error from rigid body posture measurement system simulation experiments. Combined with the actual experimental analysis system under the condition of simulation error of pose accuracy of measurement, gives the comprehensive error of measurement system, for improving measurement precision of certain theoretical guiding significance.

  9. An Evaluation of the Effectiveness of an Automated Observation and Feedback System on Safe Sitting Postures

    ERIC Educational Resources Information Center

    Yu, Eunjeong; Moon, Kwangsu; Oah, Shezeen; Lee, Yohaeng

    2013-01-01

    This study evaluated the effectiveness of an automated observation and feedback system in improving safe sitting postures. Participants were four office workers. The dependent variables were the percentages of time participants spent in five safe body positions during experimental sessions. We used a multiple-baseline design counterbalanced across…

  10. Motor expertise modulates the unconscious processing of human body postures.

    PubMed

    Güldenpenning, Iris; Koester, Dirk; Kunde, Wilfried; Weigelt, Matthias; Schack, Thomas

    2011-09-01

    Little is known about the cognitive background of unconscious visuomotor control of complex sports movements. Therefore, we investigated the extent to which novices and skilled high-jump athletes are able to identify visually presented body postures of the high jump unconsciously. We also asked whether or not the manner of processing differs (qualitatively or quantitatively) between these groups as a function of their motor expertise. A priming experiment with not consciously perceivable stimuli was designed to determine whether subliminal priming of movement phases (same vs. different movement phases) or temporal order (i.e. natural vs. reversed movement order) affects target processing. Participants had to decide which phase of the high jump (approach vs. flight phase) a target photograph was taken from. We found a main effect of temporal order for skilled athletes, that is, faster reaction times for prime-target pairs that reflected the natural movement order as opposed to the reversed movement order. This result indicates that temporal-order information pertaining to the domain of expertise plays a critical role in athletes' perceptual capacities. For novices, data analyses revealed an interaction between temporal order and movement phases. That is, only the reversed movement order of flight-approach pictures increased processing time. Taken together, the results suggest that the structure of cognitive movement representation modulates unconscious processing of movement pictures and points to a functional role of motor representations in visual perception. PMID:21769547

  11. Evaluating sensory conflict and postural instability. Theories of motion sickness.

    PubMed

    Warwick-Evans, L A; Symons, N; Fitch, T; Burrows, L

    1998-11-15

    Two experiments were carried out to evaluate the sensory conflict and the postural instability theories of motion sickness. The central hypothesis of sensory conflict theory is that motion sickness is caused by conflict between the current pattern of sensory inputs about self-movement and the pattern that is expected on the basis of previous experience. A subsidiary hypothesis is that the degree of motion sickness is proportional to the magnitude of sensory conflict. The central hypothesis of postural instability theory is that motion sickness is caused by loss of postural control. A subsidiary hypothesis is that the degree of motion sickness is proportional to amount of postural instability, which can be manipulated by physical restraint. In both experiments there were two levels of sensory conflict and two levels of postural restraint. Dependent variables were latency of onset and severity of motion sickness. The widespread occurrence of motion sickness in both experiments clearly confirmed the main hypothesis of sensory conflict theory. The results from Experiment 1, that there was significantly more motion sickness in the restrained condition, and from Experiment 2, that there was no significant difference in symptoms between the two restraint conditions, provide no support for the subsidiary hypothesis of postural instability theory. Evidence relating to the subsidiary proposition of sensory conflict theory was inconsistent. PMID:10052575

  12. Quantification of Inflight Physical Changes: Anthropometry and Neutral Body Posture (Body Measures)

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Young, Karen; Reid, Chris; Dirlich, Tom

    2014-01-01

    The goal of this study is to gather preliminary data to better understand the magnitude and variability of microgravity changes on the body. To do this, we aim to gather and document microgravity effects on body measurements. Lengths, Breadths, Depths ? Circumferences, Joint angles. To determine if/how the Neutral Body Posture (NBP) is influenced by the above factors. This will be the first time these proposed measures are collected in space. It is anticipated that body measurements will change due to microgravity and fluid shifts. This data is important so that the changes that may occur during long-duration space flight can be identified and applied to suit fit, suit sizing, workstation design, etc. for future missions in order to prevent injury and reduce crew time for altering or adjusting suits, workstations, etc.

  13. Does body posture influence hand preference in an ancestral primate model?

    PubMed Central

    2011-01-01

    Background The origin of human handedness and its evolution in primates is presently under debate. Current hypotheses suggest that body posture (postural origin hypothesis and bipedalism hypothesis) have an important impact on the evolution of handedness in primates. To gain insight into the origin of manual lateralization in primates, we studied gray mouse lemurs, suggested to represent the most ancestral primate condition. First, we investigated hand preference in a simple food grasping task to explore the importance of hand usage in a natural foraging situation. Second, we explored the influence of body posture by applying a forced food grasping task with varying postural demands (sit, biped, cling, triped). Results The tested mouse lemur population did not prefer to use their hands alone to grasp for food items. Instead, they preferred to pick them up using a mouth-hand combination or the mouth alone. If mouth usage was inhibited, they showed an individual but no population level handedness for all four postural forced food grasping tasks. Additionally, we found no influence of body posture on hand preference in gray mouse lemurs. Conclusion Our results do not support the current theories of primate handedness. Rather, they propose that ecological adaptation indicated by postural habit and body size of a given species has an important impact on hand preference in primates. Our findings suggest that small-bodied, quadrupedal primates, adapted to the fine branch niche of dense forests, prefer mouth retrieval of food and are less manually lateralized than large-bodied species which consume food in a more upright, and less stable body posture. PMID:21356048

  14. Effect of mat pilates exercise on postural alignment and body composition of middle-aged women.

    PubMed

    Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun

    2016-06-01

    [Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment. PMID:27390396

  15. Effect of mat pilates exercise on postural alignment and body composition of middle-aged women

    PubMed Central

    Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun

    2016-01-01

    [Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment. PMID:27390396

  16. LUBA: an assessment technique for postural loading on the upper body based on joint motion discomfort and maximum holding time.

    PubMed

    Kee, D; Karwowski, W

    2001-08-01

    This paper presents a technique for postural loading on the upper body assessment (LUBA). The proposed method is based on the new experimental data for composite index of perceived discomfort (ratio values) for a set of joint motions, including the hand, arm, neck and back, and the corresponding maximum holding times in static postures. Twenty male subjects participated in the experiment designed to measure perceived joint discomforts. The free modulus technique of the magnitude estimation method was employed to obtain subjects' discomforts for varying joint motions. The developed postural classification scheme was based on the angular deviation levels from the neutral position for each joint motion. These were divided into groups with the same degree of discomforts based on the statistical analysis. Each group was assigned a numerical discomfort score relative to the perceived discomfort value of elbow flexion, which exhibited the lowest level among all joint motions investigated in this study, and, therefore, was set as a reference point. The criteria for evaluating stresses of working postures were proposed based on the four distinct action categories, in order to enable practitioners to apply appropriate corrective actions. The proposed scheme can be used for evaluating and redesigning static working postures in industry. PMID:11461037

  17. The influence of anthropometric factors on postural balance: the relationship between body composition and posturographic measurements in young adults

    PubMed Central

    Alonso, Angélica Castilho; Luna, Natália Mariana S; Mochizuki, Luis; Barbieri, Fábio; Santos, Sileno; Greve, Julia Maria D'Andréia

    2012-01-01

    OBJECTIVE: The aim of the present study was to evaluate the influence of anthropometric characteristics and gender on postural balance in adults. One hundred individuals were examined (50 males, 50 females; age range 20-40 years). METHODS: The following body composition measurements were collected (using bone densitometry measurements): fat percentage (% fat), tissue (g), fat (g), lean mass (g), bone mineral content (g), and bone mineral density (g/cm2). In addition, the following anthropometric measurements were collected: body mass (kg), height (cm), length of the trunk-cephalic region (cm), length of the lower limbs (cm) and length of the upper limbs (cm). The following indices were calculated: body mass index (kg/m2), waist-hip ratio and the support base (cm2). Also, a postural balance test was performed using posturography variables with open and closed eyes. RESULTS: The analysis revealed poor correlations between postural balance and the anthropometric variables. A multiple linear regression analysis demonstrated that the whole group (female and male) height explained 12% of the medial-lateral displacement, 10% of the speed of oscillation, and 11% of the displacement area. The length of the trunk-cephalic length explained 6% of the displacement in the anteroposterior direction. With eyes closed, the support base and height explained 18% of the medial displacement, and the lateral height explained 10% of the displacement speed and 5% of the scroll area. CONCLUSION: Measured using posturography, the postural balance was only slightly influenced by the anthropometric variables, both with open and closed eyes. Height was the anthropometric variable that most influenced postural balance, both in the whole group and separately for each gender. Postural balance was more influenced by anthropometric factors in males than females. PMID:23295598

  18. Changes in postural sway frequency and complexity in altered sensory environments following whole body vibrations.

    PubMed

    Dickin, D Clark; McClain, Matthew A; Hubble, Ryan P; Doan, Jon B; Sessford, David

    2012-10-01

    Studies assessing whole body vibration (WBV) have produced largely positive effects, with some neutral, on postural control with frequencies between 25 and 40 Hz. However no conclusive evidence indicates that 25-40 Hz elicits the optimal beneficial effects. To address this issue, a larger range of vibration intensity (10-50 Hz at peak-to-peak amplitudes of 2 and 5mm) was employed while increasing the postural complexity (altered somatosensory and/or visual information) to assess acute effects of 4-min of WBV on postural control. Twelve healthy young adults underwent postural assessment at four time intervals (prior to, immediately following and 10 and 20 min post WBV). Findings revealed both postural sway frequency and sway complexity/regularity were affected by WBV. Baseline posture demonstrated increased sway frequency (p=.04) following WBV with no changes in sway complexity. When the support surface was altered, changes in both the frequency and complexity of sway were elicited (p=.027, .002, respectively). When both somatosensory and visual information were altered delayed improvements in postural control were elicited (p=.05 and .01, for frequency and complexity, respectively). Given the differential acute effects as a function of postural task complexity, future longitudinal studies could determine the overall training effect on sway frequency and complexity. PMID:22516837

  19. Relationships between Malocclusion, Body Posture, and Nasopharyngeal Pathology in Pre-Orthodontic Children

    PubMed Central

    Šidlauskienė, Monika; Smailienė, Dalia; Lopatienė, Kristina; Čekanauskas, Emilis; Pribuišienė, Rūta; Šidlauskas, Mantas

    2015-01-01

    Background Malocclusion, body posture, and breathing pattern may be correlated, but this issue is still controversial. The aim of the study was to examine the relationship between the type of malocclusion, body posture, and nasopharyngeal obstruction in children aged 7–14 years. Material/Methods The study group comprised 94 patients aged 7–14 years (mean±SD: 11.9±2.1 years); 44 (46.8%) males and 50 (53.2%) females. All patients passed an examination performed by the same orthodontist (study model and cephalometric radiograph analysis), orthopedic surgeon (body posture examined from the front, side, and back), and otorhinolaryngologist (anterior and posterior rhinoscopy and pharyngoscopy) in a blind manner. Results Postural disorders were observed in 72 (76.6%) patients. Hypertrophy of the adenoids was diagnosed in 54 (57.4%) patients, hypertrophy of the tonsils in 85 (90.3%), nasal septum deviation in 51 (54.3%), and allergic rhinitis in 19 (20.2%) patients. There was a statistically significant correlation between presence of kyphotic posture and a reduction in the SNB angle, representing sagittal position of the mandible. Also, there was a statistically significant association between kyphotic posture and nasopharyngeal obstruction (54.1% of patients with nasopharyngeal obstruction were kyphotic, compared with 25% of patients with no nasopharyngeal obstruction; p=0.02). Kyphotic posture and reduced SNB angle were more common among males. Conclusions We concluded that: 1) there was a significant association between the sagittal position of the mandible (SNB angle) and a kyphotic posture; 2) kyphotic posture was significantly more common among patients with nasopharyngeal obstruction. PMID:26086193

  20. Body posture measurement in a context of example-based teaching

    NASA Astrophysics Data System (ADS)

    Benoit, Eric; Perrin, Stephane; Coquin, Didier

    2015-02-01

    This paper presents a measurement process of body postures operated in a context of humanoid robot learning. The basic measured quantities are the angle joints of a human skeleton and the angle joints of a humanoid robot. Due to the differences between the two mechanical structures, the measurement results are expressed into a common representation space by the way of fuzzy scales. This paper shows how the common representation space can be defined, and presents a method to match weakly defined postures with uncertain measurements of a human posture.

  1. Kinematid Parameters of Corrective Postural Responses Differ between Upper and Lower Body Perturbations

    NASA Technical Reports Server (NTRS)

    Sayenko, G.

    2004-01-01

    Balance control is disrupted following prolonged microgravity exposure, and to better understand this, both upper and lower body perturbations have been used to study postural control in space flight crewmembers. However, differences between several postural response indicators observed using the two techniques suggest that different sensory systems may be involved in organizing responses to these different perturbation approaches. The present study sought to compare differences in parameters of corrective postural responses between upper body perturbations (pushes to the chest) and forward translations of the support surface. Nine subjects participated in this study. Forward translations were performed using a NeuroCom EquiTest(TM) CDP system, which was synchronized with a Northern Digital OptoTrak motion tracking system (3 subjects). Chest pushes were applied using a hand-held force transducer device and were performed using a stabilometric system (6 subjects). Analysis of EMG has shown that: i) the earliest response of the leg muscles was registered significantly later during forward translation of the support surface than during chest pushes, and ii) there was a tendency for the different order of leg muscles activation during the translation tests. Analysis of the kinematic data showed a significant difference in the subject's body segments inclinations during corrective postural responses to upper and lower body perturbations. It appears that upper body perturbations likely engage the vestibular system more rapidly, while lower body perturbations likely engage somatosensory systems more rapidly. These differences must be taken into account when choosing the type of perturbation for testing postural function.

  2. Do bimanual coordination, tool use, and body posture contribute equally to hand preferences in bonobos?

    PubMed

    Bardo, Ameline; Pouydebat, Emmanuelle; Meunier, Hélène

    2015-05-01

    Approximately 90% of the human population is right-handed. The emergence of this hand preference in humans is thought to be linked to the ability to execute complex tasks and habitual bipedalism. In order to test these hypotheses, the present study explored, for the first time, hand preference in relation to both body posture (seated and bipedal) and task complexity (bimanual coordination and two tool use tasks of different complexity) in bonobos (Pan paniscus). Few studies have explored the effects of both posture and task complexity on handedness, and investigations with bonobos are scarce, particularly studies on tool use. Our study aims to overcome such a gap by addressing two main questions: 1) Does a bipedal posture increase the strength of hand preference and/or create a directional bias to the use of the right hand? 2) Independent of body posture, does task complexity increase the strength of the hand preference and/or create a directional bias to the use of the right hand? Our results show that independent of body posture, the more complex the task, the more lateralization occurred. Moreover, subjects tended to be right-handed for tasks involving tool use. However, posture had no significant effect on hand preference in the tasks tested here. Therefore, for a given task, bonobos were not more lateralized in a bipedal posture than in a seated one. Task complexity might thus have contributed more than bipedal posture to the emergence of human lateralization and the preponderance of right-handedness, although a larger sample size and more data are needed to be conclusive. PMID:25870160

  3. Body appendages fine-tune posture and moments in freely manoeuvring fruit flies.

    PubMed

    Berthé, Ruben; Lehmann, Fritz-Olaf

    2015-10-01

    The precise control of body posture by turning moments is key to elevated locomotor performance in flying animals. Although elevated moments for body stabilization are typically produced by wing aerodynamics, animals also steer using drag on body appendages, shifting their centre of body mass, and changing moments of inertia caused by active alterations in body shape. To estimate the instantaneous contribution of each of these components for posture control in an insect, we three-dimensionally reconstructed body posture and movements of body appendages in freely manoeuvring fruit flies (Drosophila melanogaster) by high-speed video and experimentally scored drag coefficients of legs and body trunk at low Reynolds number. The results show that the sum of leg- and abdomen-induced yaw moments dominates wing-induced moments during 17% of total flight time but is, on average, 7.2-times (roll, 3.4-times) smaller during manoeuvring. Our data reject a previous hypothesis on synergistic moment support, indicating that drag on body appendages and mass-shift inhibit rather than support turning moments produced by the wings. Numerical modelling further shows that hind leg extension alters the moments of inertia around the three main body axes of the animal by not more than 6% during manoeuvring, which is significantly less than previously reported for other insects. In sum, yaw, pitch and roll steering by body appendages probably fine-tune turning behaviour and body posture, without providing a significant advantage for posture stability and moment support. Motion control of appendages might thus be part of the insect's trimming reflexes, which reduce imbalances in moment generation caused by unilateral wing damage and abnormal asymmetries of the flight apparatus. PMID:26347566

  4. Longitudinal Study Evaluating Postural Balance of Young Athletes.

    PubMed

    Steinberg, Nili; Nemet, Dan; Pantanowitz, Michal; Zeev, Aviva; Hallumi, Monder; Sindiani, Mahmood; Meckel, Yoav; Eliakim, Alon

    2016-02-01

    Repeated anaerobic conditions during athletic performance may cause general and local fatigue that result in postural balance deficit. Evidence suggests that improved postural balance during athletic training may decrease the risk for fallings and traumatic injuries among athletes. Twenty athletes (12 girls, 8 boys) and 20 controls (12 girls, 8 boys) ages 10-15 years participated in the current study. All athletes were active in an 8-month physical activity program, 3 times per week for 90 min., specific to basketball, soccer, or athletic training. The control children participated in physical education at school only, with no involvement in organized extracurricular sports. All participants were evaluated for postural balance in three assessments over one year (at 4-mo intervals); the Interactive Balance System machine (Tetrax device) was used to assess balance at three test times (pre-, post-, and 10 min) after a session of a repeated sprint anaerobic test, consisting of 12 × 20 m run starting every 20 sec. The athletes had better postural balance than controls. There were different group patterns of change over the sessions; a significant interaction of session and group indicated that postural balance of the groups differed. The contribution of low sway frequencies (F1) and high sway frequencies (F6) differed between the controls and the athletes group. Results suggested that although athletes had better postural balance, improvement should be encouraged during training over the sessions and seasons, with special awareness of the balance deficit that occurs immediately after anaerobic stress and at the end of the season, to decrease the risk of injuries. PMID:27420320

  5. Posture evaluations of tethering and loose-housing systems in dairy farms.

    PubMed

    Hwang, Jaejin; Kong, Yong-Ku; Jung, Myung-Chul

    2010-12-01

    The purpose of this study was to evaluate the most common simultaneous and individual segment postures in terms of body and finger posture classifications. Observations were made at three dairy farms. One employed a tethering system and the other two used loose-housing systems. The evaluations of the tethering system were performed through six processes that were subdivided into 11 operations, whereas only one process of 'milking' was investigated in loose-housing systems. Generally, farmers who worked in both systems bent and/or twisted their upper-body segments and continuously used a power grasp to wrap an object with all five fingers. Posture analyses of the tethering system revealed that 'moving corn' seemed less stressful, whereas 'cleaning udders,' 'attaching the machine,' 'washing the machine,' and 'sweeping the floor' were more stressful than other operations. Postural workloads on the trunk and head were greater in the tethering system than in the loose-housing systems due to differences in implements, the working height, and the working distance. PMID:20427034

  6. Sad or Fearful? The Influence of Body Posture on Adults' and Children's Perception of Facial Displays of Emotion

    ERIC Educational Resources Information Center

    Mondloch, Catherine J.

    2012-01-01

    The current research investigated the influence of body posture on adults' and children's perception of facial displays of emotion. In each of two experiments, participants categorized facial expressions that were presented on a body posture that was congruent (e.g., a sad face on a body posing sadness) or incongruent (e.g., a sad face on a body…

  7. Evaluation of Postural Control in Glaucoma Patients Using a Virtual 1 Reality Environment

    PubMed Central

    Diniz-Filho, Alberto; Boer, Erwin R.; Gracitelli, Carolina P. B.; Abe, Ricardo Y.; van Driel, Nienke; Yang, Zhiyong; Medeiros, Felipe A.

    2015-01-01

    Purpose To evaluate postural control using a dynamic virtual reality environment and the relationship between postural metrics and history of falls in glaucoma patients. Design Cross-sectional study. Participants The study involved 42 glaucoma patients with repeatable visual field defects on standard automated perimetry (SAP) and 38 control healthy subjects. Methods Patients underwent evaluation of postural stability by a force platform during presentation of static and dynamic visual stimuli on stereoscopic head-mounted goggles. The dynamic visual stimuli presented rotational and translational ecologically valid peripheral background perturbations. Postural stability was also tested in a completely dark field to assess somatosensory and vestibular contributions to postural control. History of falls was evaluated by a standard questionnaire. Main Outcome Measures Torque moments around the center of foot pressure on the force platform were measured and the standard deviations (STD) of these torque moments were calculated as a measurement of postural stability and reported in Newton meter (Nm). The association with history of falls was investigated using Poisson regression models. Age, gender, body mass index, severity of visual field defect, best-corrected visual acuity, and STD on dark field condition were included as confounding factors. Results Glaucoma patients had larger overall STD than controls during both translational (5.12 ± 2.39 Nm vs. 3.85 ± 1.82 Nm, respectively; P = 0.005) as well as rotational stimuli (5.60 ± 3.82 Nm vs. 3.93 ± 2.07 Nm, respectively; P = 0.022). Postural metrics obtained during dynamic visual stimuli performed better in explaining history of falls compared to those obtained in static and dark field condition. In the multivariable model, STD values in the mediolateral direction during translational stimulus were significantly associated with history of falls in glaucoma patients (incidence-rate ratio = 1.85; 95% CI: 1.30 – 2

  8. Human Body 3D Posture Estimation Using Significant Points and Two Cameras

    PubMed Central

    Juang, Chia-Feng; Chen, Teng-Chang; Du, Wei-Chin

    2014-01-01

    This paper proposes a three-dimensional (3D) human posture estimation system that locates 3D significant body points based on 2D body contours extracted from two cameras without using any depth sensors. The 3D significant body points that are located by this system include the head, the center of the body, the tips of the feet, the tips of the hands, the elbows, and the knees. First, a linear support vector machine- (SVM-) based segmentation method is proposed to distinguish the human body from the background in red, green, and blue (RGB) color space. The SVM-based segmentation method uses not only normalized color differences but also included angle between pixels in the current frame and the background in order to reduce shadow influence. After segmentation, 2D significant points in each of the two extracted images are located. A significant point volume matching (SPVM) method is then proposed to reconstruct the 3D significant body point locations by using 2D posture estimation results. Experimental results show that the proposed SVM-based segmentation method shows better performance than other gray level- and RGB-based segmentation approaches. This paper also shows the effectiveness of the 3D posture estimation results in different postures. PMID:24883422

  9. Pelvic Morphology, Body Posture and Standing Balance Characteristics of Adolescent Able-Bodied and Idiopathic Scoliosis Girls

    PubMed Central

    Stylianides, Georgios A.; Dalleau, Georges; Begon, Mickaël; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds system. Standing balance was measured using a force plate to identify the center of pressure (COP), and its anteroposterior (AP) and mediolateral (ML) displacements. A multivariate analysis of variance (MANOVA) was performed to determine differences between the two groups. A factor analysis was used to identify factors that best describe both groups. Statistical differences were identified between the groups for each of the parameter types. While spatial orientation of the pelvis was similar in both groups, five of the eight trunk postural variables of the scoliotic group were significantly different that the able-bodied group. Also, five out of the seven standing balance variables were higher in the scoliotic girls. Approximately 60% of the variation is supported by 4 factors that can be associated with a set of variables; standing balance variables (factor 1), body posture variables (factor 2), and pelvic morphology variables (factors 3 and 4). Pelvic distortion, body posture asymmetry, and standing imbalance are more pronounced in scoliotic girls, when compared to able-bodied girls. These findings may be beneficial when addressing balance and ankle proprioception exercises for the scoliotic population. PMID:23875021

  10. Evaluation of validity and reliability of a methodology for measuring human postural attitude and its relation to temporomandibular joint disorders

    PubMed Central

    Fernández, Ramón Fuentes; Carter, Pablo; Muñoz, Sergio; Silva, Héctor; Venegas, Gonzalo Hernán Oporto; Cantin, Mario; Ottone, Nicolás Ernesto

    2016-01-01

    INTRODUCTION Temporomandibular joint disorders (TMJDs) are caused by several factors such as anatomical, neuromuscular and psychological alterations. A relationship has been established between TMJDs and postural alterations, a type of anatomical alteration. An anterior position of the head requires hyperactivity of the posterior neck region and shoulder muscles to prevent the head from falling forward. This compensatory muscular function may cause fatigue, discomfort and trigger point activation. To our knowledge, a method for assessing human postural attitude in more than one plane has not been reported. Thus, the aim of this study was to design a methodology to measure the external human postural attitude in frontal and sagittal planes, with proper validity and reliability analyses. METHODS The variable postures of 78 subjects (36 men, 42 women; age 18–24 years) were evaluated. The postural attitudes of the subjects were measured in the frontal and sagittal planes, using an acromiopelvimeter, grid panel and Fox plane. RESULTS The method we designed for measuring postural attitudes had adequate reliability and validity, both qualitatively and quantitatively, based on Cohen’s Kappa coefficient (> 0.87) and Pearson’s correlation coefficient (r = 0.824, > 80%). CONCLUSION This method exhibits adequate metrical properties and can therefore be used in further research on the association of human body posture with skeletal types and TMJDs. PMID:26768173

  11. Towards a Mechanistic Understanding of the Effects of Body Posture on Facial Emotion Categorization.

    PubMed

    Civile, Ciro; Obhi, Sukhvinder S

    2015-01-01

    This study investigated the causes of the face-body congruence effect (FBCE), which refers to the advantage in performance when participants are asked to categorize emotional faces compounded with emotional matching body postures (congruent) compared with incongruent face-body compound stimuli (body postures mismatching the facial emotions). Experiment 1 showed that manipulations aiming to alter holistic processing significantly reduced the FBCE. In particular, the disruption of holistic processing affected significantly the performance for congruent composites. However, no effect was obtained on the incongruent stimuli. In Experiment 2, the inversion manipulation showed a clear disadvantage for incongruent stimuli brought by the disruption of the single feature orientation information. Thus, we found confirmation of the different processing involved in perceiving congruent and incongruent stimuli. Finally, Experiment 3 confirmed that we are able to reduce entirely the FBCE when the orientation of the units (the face and the body) constituting the incongruent composites is matched. PMID:26442343

  12. Effects of body posture on the interpretation of biomedical data obtained from manned missions

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld; Leach-Huntoon, Carolyn; Charles, John; Pool, Sam; Leonard, Joel I.

    1989-01-01

    The role that different body postures may have on the interpretation of inflight results is studied. The cardiovascular measurements taken in the upright position more closely approximated the findings from space flight in the short-duration missions. However, the supine position most approximated the long-duration missions.

  13. Brief Report: Perception of Body Posture--What Individuals with Autism Spectrum Disorder Might Be Missing

    ERIC Educational Resources Information Center

    Reed, Catherine L.; Beall, Paula M.; Stone, Valerie E.; Kopelioff, Lila; Pulham, Danielle J.; Hepburn, Susan L.

    2007-01-01

    Autism has been associated with atypical face and configural processing, as indicated by the lack of a face inversion effect (better recognition of upright than inverted faces). We investigated whether such atypical processing was restricted to the face or extended to social information found in body postures. An inversion paradigm compared…

  14. Imitation of Body Postures and Hand Movements in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Marton, Klara

    2009-01-01

    Within the domain-general theory of language impairment, this study examined body posture and hand movement imitation in children with specific language impairment (SLI) and in their age-matched peers. Participants included 40 children with SLI (5 years 3 months to 6 years 10 months of age) and 40 children with typical language development (5…

  15. Whole body vibration may have immediate adverse effects on the postural sway of stroke patients

    PubMed Central

    Hwang, Ki Jin; Ryu, Young Uk

    2016-01-01

    [Purpose] This study applied whole body vibration (WBV) at different vibration frequencies to chronic stroke patients and examined its immediate effect on their postural sway. [Subjects and Methods] A total of 14 (5 males, 9 females) stroke patients participated. The subjects were randomly assigned to one of the two vibration frequency groups (10 Hz and 40 Hz). Right before and after the application of WBV, the subjects performed quiet standing for 30 seconds, and COP parameters (range, total distance, and mean velocity) were analyzed. [Results] The 10 Hz WBV did not affect the postural sway of stroke patients. The 40 Hz WBV increased postural sway in the ML direction. [Conclusion] The results suggest that WBV application to stroke patients in the clinical field may have adverse effects and therefore caution is necessary. PMID:27064678

  16. Whole body vibration may have immediate adverse effects on the postural sway of stroke patients.

    PubMed

    Hwang, Ki Jin; Ryu, Young Uk

    2016-01-01

    [Purpose] This study applied whole body vibration (WBV) at different vibration frequencies to chronic stroke patients and examined its immediate effect on their postural sway. [Subjects and Methods] A total of 14 (5 males, 9 females) stroke patients participated. The subjects were randomly assigned to one of the two vibration frequency groups (10 Hz and 40 Hz). Right before and after the application of WBV, the subjects performed quiet standing for 30 seconds, and COP parameters (range, total distance, and mean velocity) were analyzed. [Results] The 10 Hz WBV did not affect the postural sway of stroke patients. The 40 Hz WBV increased postural sway in the ML direction. [Conclusion] The results suggest that WBV application to stroke patients in the clinical field may have adverse effects and therefore caution is necessary. PMID:27064678

  17. A Wireless Accelerometer-Based Body Posture Stability Detection System and Its Application for Meditation Practitioners

    PubMed Central

    Chang, Kang-Ming; Chen, Sih-Huei; Lee, Hsin-Yi; Ching, Congo Tak-Shing; Huang, Chun-Lung

    2012-01-01

    The practice of meditation has become an interesting research issue in recent decades. Meditation is known to be beneficial for health improvement and illness reduction and many studies on meditation have been made, from both the physiological and psychological points of view. It is a fundamental requirement of meditation practice to be able to sit without body motion. In this study, a novel body motion monitoring and estimation system has been developed. A wireless tri-axis accelerometer is used to measure body motion. Both a mean and maximum motion index is derived from the square summation of three axes. Two experiments were conducted in this study. The first experiment was to investigate the motion index baseline among three leg-crossing postures. The second experiment was to observe posture dynamics for thirty minute’s meditation. Twenty-six subjects participated in the experiments. In one experiment, thirteen subjects were recruited from an experienced meditation group (meditation experience > 3 years); and the other thirteen subjects were beginners (meditation experience < 1 years). There was a significant posture stability difference between both groups in terms of either mean or maximum parameters (p < 0.05), according to the results of the experiment. Results from another experiment showed that the motion index is different for various postures, such as full-lotus < half-lotus < non-lotus. PMID:23250281

  18. Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position

    NASA Astrophysics Data System (ADS)

    Rahmatalla, Salam; DeShaw, Jonathan

    2011-12-01

    Seat-to-head transmissibility is a biomechanical measure that has been widely used for many decades to evaluate seat dynamics and human response to vibration. Traditionally, transmissibility has been used to correlate single-input or multiple-input with single-output motion; it has not been effectively used for multiple-input and multiple-output scenarios due to the complexity of dealing with the coupled motions caused by the cross-axis effect. This work presents a novel approach to use transmissibility effectively for single- and multiple-input and multiple-output whole-body vibrations. In this regard, the full transmissibility matrix is transformed into a single graph, such as those for single-input and single-output motions. Singular value decomposition and maximum distortion energy theory were used to achieve the latter goal. Seat-to-head transmissibility matrices for single-input/multiple-output in the fore-aft direction, single-input/multiple-output in the vertical direction, and multiple-input/multiple-output directions are investigated in this work. A total of ten subjects participated in this study. Discrete frequencies of 0.5-16 Hz were used for the fore-aft direction using supported and unsupported back postures. Random ride files from a dozer machine were used for the vertical and multiple-axis scenarios considering two arm postures: using the armrests or grasping the steering wheel. For single-input/multiple-output, the results showed that the proposed method was very effective in showing the frequencies where the transmissibility is mostly sensitive for the two sitting postures and two arm positions. For multiple-input/multiple-output, the results showed that the proposed effective transmissibility indicated higher values for the armrest-supported posture than for the steering-wheel-supported posture.

  19. Body posture changes in women with migraine with or without temporomandibular disorders

    PubMed Central

    Ferreira, Mariana C.; Bevilaqua-Grossi, Débora; Dach, Fabíola É.; Speciali, José G.; Gonçalves, Maria C.; Chaves, Thais C.

    2014-01-01

    Background Migraine and temporomandibular disorders (TMDs) are reported to be associated. However, there are no reports on the association among migraines, TMDs and changes in body posture. Objectives To assess changes in body posture in women suffering migraines with or without TMD compared with a control group. Method Sixty-six women with a mean age of 18 to 45 years participated in this study. The groups were composed of 22 volunteers with migraine and TMD (MTMD), 22 volunteers with migraines without TMD (MG) and 22 women in the control group (CG). Static posture was assessed by photogrammetry, and 19 angles were measured. Results Postural asymmetry was observed in the face for 4 angles measured on the frontal plane in the MG group and for 4 angles of the trunk in the MG and MTMD groups with respect to CG. However, for comparisons between MTMD and CG, clinical relevance was identified for two angles of the sagittal plane (Cervical and Lumbar Lordosis, Effect Size - ES - moderate: 0.53 and 0.60). For comparisons between the MG and CG, the clinical relevance/potential was verified for three angles with moderate ES (ES>0.42). The clinical relevance when comparing MTMD and CG was identified for four angles of facial symmetry head inclination (ES>0.54) and for two angles between MG and CG (ES>0.48). Conclusion The results demonstrated the presence of postural changes compared with a control group in women with migraines with or without TMD, and there were similar clinically relevant postural changes among the patients with migraines with and without TMD. PMID:24675909

  20. Pain communication through body posture: the development and validation of a stimulus set.

    PubMed

    Walsh, Joseph; Eccleston, Christopher; Keogh, Edmund

    2014-11-01

    Pain can be communicated nonverbally through facial expressions, vocalisations, and bodily movements. Most studies have focussed on the facial display of pain, whereas there is little research on postural display. Stimulus sets for facial and vocal expressions of pain have been developed, but there is no equivalent for body-based expressions. Reported here is the development of a new stimulus set of dynamic body postures that communicate pain and basic emotions. This stimulus set is designed to facilitate research into the bodily communication of pain. We report a 3-phase development and validation study. First 16 actors performed affective body postures for pain, as well as happiness, sadness, fear, disgust, surprise, anger, and neutral expressions. Second, 20 observers independently selected the best image stimuli based on the accuracy of emotion identification and valence/arousal ratings. Third, to establish reliability, this accuracy and valence rating procedure was repeated with a second independent group of 40 participants. A final set of 144 images with good reliability was established and is made available. Results demonstrate that pain, along with basic emotions, can be communicated through body posture. Cluster analysis demonstrates that pain and emotion are recognised with a high degree of specificity. In addition, pain was rated as the most unpleasant (negative valence) of the expressions, and was associated with a high level of arousal. For the first time, specific postures communicating pain are described. The stimulus set is provided as a tool to facilitate the study of nonverbal pain communication, and its possible uses are discussed. PMID:25168671

  1. Quantification of In-flight Physical Changes: Anthropometry and Neutral Body Posture

    NASA Technical Reports Server (NTRS)

    Young, K. S.; Reid, C. R.; Rajulu, S.

    2014-01-01

    Currently, NASA does not have sufficient in-flight anthropometric data gathered to assess the impact of physical body shape and size changes on suit sizing. For developing future planetary and reduced gravity suits, NASA needs to quantify the impacts of microgravity on anthropometry, body posture, and neutral body postures (NBP) to ensure optimal crew performance, fit, and comfort. To obtain these impacts, anthropometric data, circumference, length, height, breadth, and depth for body segments (i.e. chest, waist, bicep, thigh, calf) from astronauts for pre, in-, and postflight conditions needs to be collected. Once this data has been collected, a comparison between pre, in-, and postflight anthropometric values will be analyzed, yielding microgravity factors. The NBP will be used to determined body posture (joint angle) changes between subjects throughout the duration of a mission. Data collection, starting with Increments 37/38, is still in progress with the completion of 3 out of 12 subjects. NASA suit engineers and NASA's Extravehicular Activity (EVA) Project Office have identified that suit fit in microgravity could become an issue. It has been noted that crewmembers often need to adjust their suit sizing once they are in orbit. This adjustment could be due to microgravity effects on anthropometry and postural changes, and is necessary to ensure optimal crew performance, fit, and comfort in space. To date, the only data collected to determine the effects of microgravity on physical human changes have been during Skylab, STS-57, and a recent HRP study on seated height changes due to spinal elongation (Spinal Elongation, Master Task List [MTL] #221). The Skylab and the STS-57 studies found that there is a distinct neutral body posture (NBP) based on photographs. The still photographs showed that there is a distinguishable posture with the arms raised and the shoulder abducted; and, in addition, the knees were flexed with noticeable hip flexion and the foot

  2. Swimming fundamentals: turning performance of leopard sharks (Triakis semifasciata) is predicted by body shape and postural reconfiguration.

    PubMed

    Porter, Marianne E; Roque, Cassandra M; Long, John H

    2011-12-01

    Turns are essential maneuvers that sharks employ when foraging, feeding, and migrating. How well any individual performs in turning is determined, in part, by the static form and postural reconfiguration of its body. Since the importance of postural reconfiguration in determining turning performance is not well understood, our goal was to examine how body form and posture correlate with turning performance in juvenile leopard sharks, Triakis semifasciata. From videos of sharks turning laterally in yaw, performance was measured as turning radius, turning angle, angular speed of the head, and translational speed of the body along its path. Body form variables included the body's length, mass, width, second moment of area, and mass moment of inertia. Postural variables included body-bending coefficient, body flexion at different longitudinal positions, and lag time between body flexion and turning of the center of rotation. Using step-wise linear regression followed by multiple regression, each performance variable was regressed onto three pools of independent variables: (i) all form variables alone, (ii) all postural variables alone, and (iii) a combination of all form and postural variables. From these correlations, it appears that turning performance may be controlled primarily by the magnitude and timing of the flexion of the body. In other words, sharks alter how they turn by changing the pattern in which they bend their bodies; the body acts as a dynamically reconfiguring rudder. PMID:21982409

  3. Visually guided adjustments of body posture in the roll plane.

    PubMed

    Tarnutzer, A A; Bockisch, C J; Straumann, D

    2013-05-01

    Body position relative to gravity is continuously updated to prevent falls. Therefore, the brain integrates input from the otoliths, truncal graviceptors, proprioception and vision. Without visual cues estimated direction of gravity mainly depends on otolith input and becomes more variable with increasing roll-tilt. Contrary, the discrimination threshold for object orientation shows little modulation with varying roll orientation of the visual stimulus. Providing earth-stationary visual cues, this retinal input may be sufficient to perform self-adjustment tasks successfully, with resulting variability being independent of whole-body roll orientation. We compared conditions with informative (earth-fixed) and non-informative (body-fixed) visual cues. If the brain uses exclusively retinal input (if earth-stationary) to solve the task, trial-to-trial variability will be independent from the subject's roll orientation. Alternatively, central integration of both retinal (earth-fixed) and extra-retinal inputs will lead to increasing variability when roll-tilted. Subjects, seated on a motorized chair, were instructed to (1) align themselves parallel to an earth-fixed line oriented earth-vertical or roll-tilted 75° clockwise; (2) move a body-fixed line (aligned with the body-longitudinal axis or roll-tilted 75° counter-clockwise to it) by adjusting their body position until the line was perceived earth-vertical. At 75° right-ear-down position, variability increased significantly (p < 0.05) compared to upright in both paradigms, suggesting that, despite the earth-stationary retinal cues, extra-retinal input is integrated. Self-adjustments in the roll-tilted position were significantly (p < 0.01) more precise for earth-fixed cues than for body-fixed cues, underlining the importance of earth-stable visual cues when estimates of gravity become more variable with increasing whole-body roll. PMID:23535837

  4. Quantification of ln-Flight Physical Changes: Anthropometry and Neutral Body Posture

    NASA Technical Reports Server (NTRS)

    Young, K. S.; Amick, R.; Rajulu, S.

    2016-01-01

    Currently, NASA does not have sufficient in-flight anthropometric data to assess the impact of changes in body shape and size. For developing future planetary and reduced-gravity suits, NASA needs to quantify the impacts of microgravity on anthropometry and body posture to ensure optimal crew performance, fit, and comfort. To obtain data on these changes, circumference, length, height, breadth, and depth for body segments (chest, waist, bicep, thigh, calf) from astronauts for preflight, in-flight, and post-flight conditions needs to be collected. Once these data have been collected, pre-flight, in-flight, and post-flight anthropometric values will be compared, yielding microgravity factors. The neutral body posture (NBP) will also be measured, to determine body posture (joint angle) changes between subjects throughout the duration of a mission. Data collection, starting with Increments 37/38, is still in progress but has been completed for 6 out of 9 subjects. NASA suit engineers and NASA's Extravehicular Activity (EVA) Project Office have identified that suit fit in microgravity could become an issue. It has been noted that crewmembers often need to adjust their suit sizing once they are in orbit. This adjustment could be due to microgravity effects on anthropometry and postural changes, and is necessary to ensure optimal crew performance, fit, and comfort in space. To date, the only data collected to determine the effects of microgravity on physical human changes were collected during Skylab 4, the Apollo-Soyuz Test Project (ASTP), Space Shuttle mission STS-57, and a recent HRP study on seated height changes due to spinal elongation (Spinal Elongation, Master Task List [MTL] #221). The Skylab 4, ASTP, and the STS-57 studies found that, according to photographs, a distinct NBP exists. The still photographs showed a distinguishable posture with the arms raised and the shoulders abducted; in addition, the knees are flexed, with noticeable hip flexion, and the foot

  5. Dental occlusion, body posture and temporomandibular disorders: where we are now and where we are heading for.

    PubMed

    Manfredini, D; Castroflorio, T; Perinetti, G; Guarda-Nardini, L

    2012-06-01

    The aim of this investigation was to perform a review of the literature dealing with the issue of relationships between dental occlusion, body posture and temporomandibular disorders (TMD). A search of the available literature was performed to determine what the current evidence is regarding: (i) The physiology of the dental occlusion-body posture relationship, (ii) The relationship of these two topics with TMD and (iii) The validity of the available clinical and instrumental devices (surface electromyography, kinesiography and postural platforms) to measure the dental occlusion-body posture-TMD relationship. The available posturographic techniques and devices have not consistently found any association between body posture and dental occlusion. This outcome is most likely due to the many compensation mechanisms occurring within the neuromuscular system regulating body balance. Furthermore, the literature shows that TMD are not often related to specific occlusal conditions, and they also do not have any detectable relationships with head and body posture. The use of clinical and instrumental approaches for assessing body posture is not supported by the wide majority of the literature, mainly because of wide variations in the measurable variables of posture. In conclusion, there is no evidence for the existence of a predictable relationship between occlusal and postural features, and it is clear that the presence of TMD pain is not related with the existence of measurable occluso-postural abnormalities. Therefore, the use instruments and techniques aiming to measure purported occlusal, electromyographic, kinesiographic or posturographic abnormalities cannot be justified in the evidence-based TMD practice. PMID:22435603

  6. A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering

    PubMed Central

    Su, Jian-Yuan; Ting, Shang-Chieh; Chang, Yu-Hung; Yang, Jing-Tang

    2012-01-01

    We demonstrate experimentally that a passerine exploits tail spreading to intercept the downward flow induced by its wings to facilitate the recovery of its posture. The periodic spreading of its tail by the White-eye bird exhibits a phase correlation with both wingstroke motion and body oscillation during hovering flight. During a downstroke, a White-eye's body undergoes a remarkable pitch-down motion, with the tail undergoing an upward swing. This pitch-down motion becomes appropriately suppressed at the end of the downstroke; the bird's body posture then recovers gradually to its original status. Employing digital particle-image velocimetry, we show that the strong downward flow induced by downstroking the wings serves as an external jet flow impinging upon the tail, providing a depressing force on the tail to counteract the pitch-down motion of the bird's body. Spreading of the tail enhances a rapid recovery of the body posture because increased forces are experienced. The maximum force experienced by a spread tail is approximately 2.6 times that of a non-spread tail. PMID:22258552

  7. Development of low postural tone compensatory patterns - predicted dysfunction patterns in lower part of the body.

    PubMed

    Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej

    2014-01-01

    Lower postural tone is not always associated with central nervous system structural damage. There is such kind of tone that stays within the broadly defined normal range, but is characterized by distinct decrease of tone of the deep muscles responsible for stabilization. External syndromes are features of active or passive compensation observed in the postural and motor patterns. Active compensation of the lower muscle tone is associated with excessive use of the superficial muscles for stabilization that leads to limitation of motion in the joints and to functional shortening of some muscles. Active compensation mechanisms in the lower part of the body cause decreased anterior pelvic tilt, functional shortening of the hamstring muscles and pes cavus (spastoidal type). Passive compensation is initiated in case of decreased tone of both deep and superficial muscles. Stabilization is kept with considerable participation of the spatial shape of bones, ligaments, meniscus and passive properties of the muscles. Tendency to hypermobility of the periarthritis elements is observed, which is manifested by increase of the physiological range of motion in the joints. As a result in the lower part of the body postural faults develop, which are characterized by increased lumbar lordosis, anterior pelvic tilt, valgus knee and feet (atetoidal type). Observations indicate that lower tone of the muscles responsible for stabilization triggers off the sequence of compensatory mechanisms that ultimately lead to specific postural faults. PMID:25182405

  8. Development of low postural tone compensatory patterns - predicted dysfunction patterns in upper part of the body.

    PubMed

    Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej

    2014-01-01

    Lower postural tone is not always associated with central nervous system structures damage. There is a such kind of tone that stays within the broadly defined normal range, but is characterized by distinct decrease of tone of the deep muscles responsible for stabilization. External syndromes are features of active or passive compensation observed in the postural and motor patterns. Active compensation of the lower muscle tone is associated with excessive use of the superficial muscles for stabilization that leads to limitation of motion in the joints and to functional shortening of some muscles. Active compensation mechanisms in the upper part of the body cause translation of the head before the line of the shoulders, high alignment of the shoulder girdle and increase of the thoracic kyphosis (spastoidal type). Passive compensation is initiated in case of decreased tone of both deep and superficial muscles. Stabilization is kept with considerable participation of the spatial shape of bones, ligaments, meniscus and passive properties of the muscles. Tendency to hypermobility of the periarthritis elements is observed, which is manifested by the increase of the physiological range of motion in the joints. As a result in the upper part of the body postural faults develop, which are characterized by decreased thoracic kyphosis and sunken chest (atetoidal type). These observations indicate that lower tone of the muscles responsible for stabilization triggers off the sequence of compensatory mechanisms that ultimately lead to specific postural faults. PMID:25182404

  9. Whole body vibration and posture as risk factors for low back pain among forklift truck drivers

    NASA Astrophysics Data System (ADS)

    Hoy, J.; Mubarak, N.; Nelson, S.; Sweerts de Landas, M.; Magnusson, M.; Okunribido, O.; Pope, M.

    2005-06-01

    A cross-sectional study was conducted to investigate the risks from whole-body vibration and posture demands for low back pain (LBP) among forklift truck (forklift) drivers. Using a validated questionnaire, information about health history was obtained over a period of two weeks in face-to-face interviews. The forklift drivers were observed in respect of their sitting posture, including frequency with which different positions were adopted (bending, leaning and twisting) and postural analyses were conducted using the OWAS and RULA techniques. Forklift vibrations at the seat (exposure) were measured in the three orthogonal axes ( x-fore and aft, y-lateral and z-vertical) under actual working conditions according to the recommendations of ISO 2631-1. The results showed that LBP was more prevalent amongst forklift drivers than among non-drivers and driving postures in which the trunk is considerably twisted or bent forward associated with greatest risk. Furthermore, forklift drivers showed to be exposed to acceptable levels of vibration in the x- and y-directions (i.e., below the EU Physical Agents Directive on Vibration Exposure recommended action level—0.5 m/s 2), but not in the z-direction. There were indications that whole-body vibration acts associatively with other factors (not independently) to precipitate LBP.

  10. Do malocclusion and Helkimo Index ≥ 5 correlate with body posture?

    PubMed

    Perillo, L; Femminella, B; Farronato, D; Baccetti, T; Contardo, L; Perinetti, G

    2011-04-01

    Whether there are correlations between the stomatognathic system and body posture remains controversial. Here, we have investigated whether malocclusal traits and having a Helkimo Index ≥ 5 show detectable correlations with body-posture alterations in children and young adults. A total of 1178 11- to 19-year-old subjects were divided into four groups: (i) controls; (ii) malocclusion; (iii) Helkimo Index ≥ 5 and (iv) malocclusion + Helkimo Index ≥ 5. Dental occlusion assessment included the following: overbite, overjet, posterior crossbite, scissorbite, mandibular crowding and dental class. Subsequently, body-posture assessments were performed through static analyses of body inclination and trunk asymmetry, and according to the dynamic Fukuda stepping test. Univariate and multivariate statistical analyses were performed. Although at the univariate level both the trunk asymmetry and Fukuda stepping test showed significant differences among the groups, the multivariate level revealed that age and gender were mostly responsible for this. The only significant correlation that was seen was for the malocclusion + Helkimo Index ≥ 5 group: these subjects had a positive (worse) trunk asymmetry and a negative (better) Fukuda stepping test performance. At the further multivariate analyses of each single malocclusal trait ⁄Helkimo Index ≥ 5 (irrespective of the groups), only an increased overbite showed a statistically significant association with a slightly better Fukuda stepping test performance. Given the small number of significant associations seen and their limited entities, this study does not support the existence of clinically relevant correlations for malocclusal traits and Helkimo Index ≥ 5 with body posture in children and young adults. PMID:21070327

  11. Measurement of three-dimensional posture and trajectory of lower body during standing long jumping utilizing body-mounted sensors.

    PubMed

    Ibata, Yuki; Kitamura, Seiji; Motoi, Kosuke; Sagawa, Koichi

    2013-01-01

    The measurement method of three-dimensional posture and flying trajectory of lower body during jumping motion using body-mounted wireless inertial measurement units (WIMU) is introduced. The WIMU is composed of three-dimensional (3D) accelerometer and gyroscope of two kinds with different dynamic range and one 3D geomagnetic sensor to adapt to quick movement. Three WIMUs are mounted under the chest, right thigh and right shank. Thin film pressure sensors are connected to the shank WIMU and are installed under right heel and tiptoe to distinguish the state of the body motion between grounding and jumping. Initial and final postures of trunk, thigh and shank at standing-still are obtained using gravitational acceleration and geomagnetism. The posture of body is determined using the 3D direction of each segment updated by the numerical integration of angular velocity. Flying motion is detected from pressure sensors and 3D flying trajectory is derived by the double integration of trunk acceleration applying the 3D velocity of trunk at takeoff. Standing long jump experiments are performed and experimental results show that the joint angle and flying trajectory agree with the actual motion measured by the optical motion capture system. PMID:24110831

  12. Evaluation of Postural Asymmetry and Gross Joint Mobility in Elite Female Volleyball Athletes

    PubMed Central

    Vařeková, Renata; Vařeka, Ivan; Janura, Miroslav; Svoboda, Zdenek; Elfmark, Milan

    2011-01-01

    The purpose of the study was to evaluate marked postural asymmetry and gross joint mobility in elite female volleyball athletes. Sixty-two Czech and Slovak elite female volleyball athletes (age 20.7±2.03 years, body mass 71.1±6.18 kg, body height 1.804±.0618 m, BMI 21.8±1.78) were examined by an experienced rehabilitation physician. The set of tests included the frontal posture gross examination, the forward bending test from the standing position and the deep squat test. The spiking hand and the presence of any lower extremity injury were estimated by interview. The proportion test, Mann-Whitney test and t-test were used to evaluate statistical significance (p<0.05). Fifty subjects (80.6%) exhibited “typical” frontal plane posture in which the acromion, scapula and the iliac crest were in a higher position on the left side than on the right, significantly more frequently than all the other patterns (proportion test, p<0.0001). Ninety-eight percent of the subjects with the “LLL pattern” preferred the right arm for spiking (proportion test, p<0.0001). Forty-one subjects (66%) exhibited hypermobility in the forward bending test, significantly more frequently than twenty-one subjects (34%) with normal results (proportion test, p=0.0003). Thirty-four subjects (55%) did not succeed in the deep squat test and hypermobility in the forward bending test paradoxically prevailed in them significantly (proportion test, p=0.004). Restriction in the deep squat test was not linked to obesity, age (t-test, p=0.081) nor knee (proportion test, p=0.85) and ankle injury (Mann-Whitney test, p=0.36) in the past. Significant prevalence of hypermobility in the forward bending test was not surprising because of general body composition and the performance of regular stretching exercises in elite female volleyball athletes. On the other hand, surprisingly, more than half of the subjects did not succeed in the deep squat test. The cause of poor results in the deep squat test

  13. The dominant foot affects the postural control mechanism: examination by body tracking test

    PubMed Central

    Ikemiyagi, Fuyuko; Ikemiyagi, Yoshihiro; Tanaka, Tositake; Yamamoto, Masahiko; Suzuki, Mitsuya

    2014-01-01

    Conclusion The antero-posterior (AP) body tracking test (BTT) showed that the dominant foot could affect the tilt angle of the sway movement, delineated by primary component analysis. Differences associated with the dominant foot could represent the difference in space perception of each person. Objectives To examine whether the dominant foot could affect the postural control mechanism using the BTT. Methods Ninety-seven healthy participants enrolled in the study were classified into right-foot and left-foot dominance groups, and their performances were compared. For the BTT, each participant stood on a stabilometer and caught the movement of a visual target moving vertically (anterior-posterior) or horizontally by the center of pressure movement, displayed on a 14-inch screen monitor at 100 cm in front of the subject. The mean displacement angle of the obtained stabilogram was evaluated by principal component analysis. Results The AP BTT in the right-foot dominance group showed a clockwise tilt with a mean displacement angle of 3.022 ± 3.761°, whereas the group with left-foot dominance had a modest counter-clockwise tilt with a mean displacement angle of –0.694 ± 4.497°. This difference was found to be significant by the independent t test (p < 0.0001). In the lateral BTT, the mean displacement angles were not significant. PMID:25252704

  14. Effect of lower-body positive pressure on postural fluid shifts in men

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.; Kravik, S. E.; Greenleaf, J. E.

    1988-01-01

    The effect of the lower-body positive pressure (LBPP) on the orthostatic fluid and protein shifts were investigated in five men during combined tilt-table/antigravity suit inflation and deflation experiments. Changes in the mass densities of venous blood and plasma were measured and the values were used to calculate the densities of erythrocytes, whole-body blood, and shifted fluid. It was found that the application of 60 mm Hg LBPP during 60-deg head-up tilt prevented about half of the postural hemoconcentration occurring during passive head-up tilt.

  15. Evaluation of Novel EMG Biofeedback for Postural Correction During Computer Use.

    PubMed

    Gaffney, Brecca M; Maluf, Katrina S; Davidson, Bradley S

    2016-06-01

    Postural correction is an effective rehabilitation technique used to treat chronic neck and shoulder pain, and is aimed toward reducing the load on the surrounding muscles by adopting a neutral posture. The objective of this investigation was to evaluate the effectiveness of real-time high-density surface EMG (HDsEMG) biofeedback for postural correction during typing. Twenty healthy participants performed a typing task with two forms of postural feedback: (1) verbal postural coaching and (2) verbal postural coaching plus HDsEMG biofeedback. The interface used activity from two HDsEMG arrays placed over the trapezius designed to shift trapezius muscle activity inferiorly. The center of gravity across both arrays was used to quantify the spatial distribution of trapezius activity. Planar angles taken from upper extremity reflective markers quantified cervicoscapular posture. During the biofeedback condition, trapezius muscle activity was located 12.74 ± 3.73 mm more inferior, the scapula was 2.58 ± 1.18° more adducted and 0.23 ± 0.24° more depressed in comparison to verbal postural coaching alone. The results demonstrate the short-term effectiveness of a real-time HDsEMG biofeedback intervention to achieve postural correction, and may be more effective at creating an inferior shift in trapezius muscle activity in comparison to verbal postural coaching alone. PMID:26718205

  16. Body position alters human resting-state: Insights from multi-postural magnetoencephalography.

    PubMed

    Thibault, Robert T; Lifshitz, Michael; Raz, Amir

    2016-09-01

    Neuroimaging researchers tacitly assume that body-position scantily affects neural activity. However, whereas participants in most psychological experiments sit upright, many modern neuroimaging techniques (e.g., fMRI) require participants to lie supine. Sparse findings from electroencephalography and positron emission tomography suggest that body position influences cognitive processes and neural activity. Here we leverage multi-postural magnetoencephalography (MEG) to further unravel how physical stance alters baseline brain activity. We present resting-state MEG data from 12 healthy participants in three orthostatic conditions (i.e., lying supine, reclined at 45°, and sitting upright). Our findings demonstrate that upright, compared to reclined or supine, posture increases left-hemisphere high-frequency oscillatory activity over common speech areas. This proof-of-concept experiment establishes the feasibility of using MEG to examine the influence of posture on brain dynamics. We highlight the advantages and methodological challenges inherent to this approach and lay the foundation for future studies to further investigate this important, albeit little-acknowledged, procedural caveat. PMID:26409469

  17. Long-range tactile masking occurs in the postural body schema.

    PubMed

    D'Amour, Sarah; Harris, Laurence R

    2016-02-01

    Long-range tactile masking has been reported between mirror symmetric body locations. This suggests a general principle of contralateral inhibition between corresponding points on each side of the body that may serve to enhance distinguishing touches on the two halves of the body. Do such effects occur before or after posture is added to the body schema? Here, we address this question by exploring the effect of arm position on long-range tactile masking. The influence of arm position was investigated using different positions of both the test and masking arms. Tactile sensitivity was measured on one forearm, while vibrotactile-masking stimulation was applied to the opposite arm or to a control site on the shoulder. No difference was found in sensitivity when test arm position was varied. Physical contact between the arms significantly increased the effectiveness of a masking stimulus applied to the other arm. Long-range masking between the arms was strongest when the arms were held parallel to each other and was abolished if the position of either the test arm or the masking arm was moved from this position. Modulation of the effectiveness of masking by the position of both the test and masking arms suggests that these effects occur after posture information is added to the body's representation in the brain. PMID:26553240

  18. Upper body balance control strategy during continuous 3D postural perturbation in young adults.

    PubMed

    Amori, V; Petrarca, M; Patané, F; Castelli, E; Cappa, P

    2015-01-01

    We explored how changes in vision and perturbation frequency impacted upright postural control in healthy adults exposed to continuous multiaxial support-surface perturbation. Ten subjects were asked to maintain equilibrium in standing stance with eyes open (EO) and eyes closed (EC) during sinusoidal 3D rotations at 0.25 (L) and 0.50 Hz (H). We measured upper-body kinematics--head, trunk, and pelvis--and analyzed differences in horizontal displacements and roll, pitch, and yaw sways. The presence of vision significantly decreased upper-body displacements in the horizontal plane, especially at the head level, while in EC the head was the most unstable segment. H trials produced a greater segment stabilization compared to L ones in EO and EC. Analysis of sways showed that in EO participants stabilized their posture by reducing the variability of trunk angles; in H trials a sway decrease for the examined segments was observed in the yaw plane and, for the pelvis only, in the pitch plane. Our results suggest that, during continuous multiaxial perturbations, visual information induced: (i) in L condition, a continuous reconfiguration of multi-body-segments orientation to follow the perturbation; (ii) in H condition, a compensation for the ongoing perturbation. These findings were not confirmed in EC where the same strategy--that is, the use of the pelvis as a reference frame for the body balance was adopted both in L and H. PMID:25205381

  19. A Scott bench with ergonomic thorax stabilisation pad improves body posture during preacher arm curl exercise.

    PubMed

    Biscarini, Andrea; Benvenuti, Paolo; Busti, Daniele; Zanuso, Silvano

    2016-05-01

    We assessed whether the use of an ergonomic thorax stabilisation pad, during the preacher arm curl exercise, could significantly reduce the excessive shoulder protraction and thoracic kyphosis induced by the standard flat pad built into the existing preacher arm curl equipment. A 3D motion capture system and inclinometers were used to measure shoulder protraction and thoracic kyphosis in 15 subjects performing preacher arm curl with a plate-loaded machine provided with the standard flat pad. The same measures were repeated after replacing the flat pad with a new ergonomic pad, specifically designed to accommodate the thorax profile and improve body posture. Pad replacement significantly (p < 0.001) reduced shoulder protraction (from [Formula: see text] to [Formula: see text]) and thoracic kyphosis (from [Formula: see text] to [Formula: see text]), enabling postural and functional improvements within the entire spine, shoulder girdle and rib cage. The ergonomic pad may potentially allow a more effective training, prevent musculoskeletal discomfort and reduce the risk of injury. Practitioner summary: We have designed an ergonomic thorax stabilisation pad for the preacher arm curl exercise. The new ergonomic pad improves the poor posture conditions induced by the standard flat pad and may potentially allow a more effective training, prevent musculoskeletal discomfort, improve the breathing function and reduce the risk of injury. PMID:26226165

  20. Power absorbed during whole-body vertical vibration: Effects of sitting posture, backrest, and footrest

    NASA Astrophysics Data System (ADS)

    Nawayseh, Naser; Griffin, Michael J.

    2010-07-01

    Previous studies have quantified the power absorbed in the seated human body during exposure to vibration but have not investigated the effects of body posture or the power absorbed at the back and the feet. This study investigated the effects of support for the feet and back and the magnitude of vibration on the power absorbed during whole-body vertical vibration. Twelve subjects were exposed to four magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 rms) of random vertical vibration (0.25-20 Hz) while sitting on a rigid seat in four postures (feet hanging, maximum thigh contact, average thigh contact, and minimum thigh contact) both with and without a rigid vertical backrest. Force and acceleration were measured at the seat, the feet, and the backrest to calculate the power absorbed at these three locations. At all three interfaces (seat, feet, and back) the absorbed power increased in proportion to the square of the magnitude of vibration, with most power absorbed from vibration at the seat. Supporting the back with the backrest decreased the power absorbed at the seat at low frequencies but increased the power absorbed at high frequencies. Supporting the feet with the footrest reduced the total absorbed power at the seat, with greater reductions with higher footrests. It is concluded that contact between the thighs and the seat increases the power absorbed at the seat whereas a backrest can either increase or decrease the power absorbed at the seat.

  1. Revisiting the body-schema concept in the context of whole-body postural-focal dynamics.

    PubMed

    Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo

    2015-01-01

    The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory-motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability. PMID:25741274

  2. Revisiting the Body-Schema Concept in the Context of Whole-Body Postural-Focal Dynamics

    PubMed Central

    Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo

    2015-01-01

    The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory–motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability. PMID:25741274

  3. A model-based approach for analysis of intracellular resistance variations due to body posture on bioimpedance measurements

    NASA Astrophysics Data System (ADS)

    Weyer, Sören; Ulbrich, Mark; Leonhardt, Steffen

    2013-04-01

    Bioimpedance spectroscopy is a known option for measuring body fluid volume. However, it is prone to a variety of influence factors which prevent a wider use. One of these influencing factors is the body posture. It could be shown that the average intracellular resistance percentage changes when the subject changes position from lying to standing. Most authors explain this phenomenon by fluid shifts. Another possible reason is the stray capacitance between the body and the ground, because if a certain fraction of the injected current follows other paths than between the potential electrodes, the result will be wrong. This paper analyses the influence of different body postures on the measured intracellular resistance and the posture depending capacity. For this purpose, FEM simulations are used. Subsequently, an electrical equivalent model with capacitances was developed. With this model, it is possible to correct the measured impedance and to neglect the influence of the stray capacitance.

  4. Predictive discomfort of non-neutral head-neck postures in fore-aft whole-body vibration.

    PubMed

    Rahmatalla, Salam; Deshaw, Jonathan

    2011-03-01

    It seems obvious that human head-neck posture in whole-body vibration (WBV) contributes to discomfort and injury risk. While current mechanical measures such as transmissibility have shown good correlation with the subjective-reported discomfort, they showed difficulties in predicting discomfort for non-neutral postures. A new biomechanically based methodology is introduced in this work to predict discomfort due to non-neutral head-neck postures. Altogether, 10 seated subjects with four head-neck postures--neutral, head-up, head-down and head-to-side--were subjected to WBV in the fore-aft direction using discrete sinusoidal frequencies of 2, 3, 4, 5, 6, 7 and 8 Hz and their subjective responses were recorded using the Borg CR-10 scale. All vibrations were run at constant acceleration of 0.8 m/s² and 1.15 m/s². The results have shown that the subjective-reported discomfort increases with head-down and decreases with head-up and head-to-side postures. The proposed predictive discomfort has closely followed the reported discomfort measures for all postures and rides under investigation. STATEMENT OF RELEVANCE: Many occupational studies have shown strong relevance between non-neutral postures, discomfort and injury risk in WBV. With advances in computer human modelling, the proposed predictive discomfort may provide efficient ways for developing reliable biodynamic models. It may also be used to assess discomfort and modify designs inside moving vehicles. PMID:21390956

  5. Asymmetries of Influence: Differential Effects of Body Postures on Perceptions of Emotional Facial Expressions

    PubMed Central

    Mondloch, Catherine J.; Nelson, Nicole L.; Horner, Matthew

    2013-01-01

    The accuracy and speed with which emotional facial expressions are identified is influenced by body postures. Two influential models predict that these congruency effects will be largest when the emotion displayed in the face is similar to that displayed in the body: the emotional seed model and the dimensional model. These models differ in whether similarity is based on physical characteristics or underlying dimensions of valence and arousal. Using a 3-alternative forced-choice task in which stimuli were presented briefly (Exp 1a) or for an unlimited time (Exp 1b) we provide evidence that congruency effects are more complex than either model predicts; the effects are asymmetrical and cannot be accounted for by similarity alone. Fearful postures are especially influential when paired with facial expressions, but not when presented in a flanker task (Exp 2). We suggest refinements to each model that may account for our results and suggest that additional studies be conducted prior to drawing strong theoretical conclusions. PMID:24039996

  6. Evaluation of Q angle in differents static postures

    PubMed Central

    Sanchez, Hugo Machado; Sanchez, Eliane Gouveia de Morais; Baraúna, Mario Antonio; Canto, Roberto Sérgio de Tavares

    2014-01-01

    OBJECTIVE: To compare the value of Q angle in different positions, in the external and internal rotations of lower limbs. METHODS: This is a descriptive cross-sectional study. We have evaluated 62 volunteers, 32 women and 30 men in the following positions: supine positions with parallel feet, supine with abduction (external rotation of lower limbs), and standing position with parallel feet and with external rotation. All the participants were sedentary and without previous history of acute injury or complaints regarding lower limbs. In order to calculate the Q angle we used computerized biophotogrammetry through ALC image 2.1(r) program. RESULTS: The results of the comparisons showed significant difference between the standing position with feet parallel and orthostatic positions with abductees feet on the left side for both genders (p = 0.000). We also found a significant difference between supine and standing position with abducted feet and with feet parallel on the left side (p = 0.046) in females. CONCLUSION: From these results, we can conclude that there are significant differences in the standing position with abducted feet and parallel to the left leg, and symmetry between the lower limbs independent of rotation of limbs in the supine posture. Level of Evidence II, Diagnostic Studies Investigating a Diagnostic Test. PMID:25538480

  7. The perception of body verticality (subjective postural vertical) in peripheral and central vestibular disorders.

    PubMed

    Bisdorff, A R; Wolsley, C J; Anastasopoulos, D; Bronstein, A M; Gresty, M A

    1996-10-01

    The perception of body verticality (subjective postural vertical, SPV) was assessed in normal subjects and in patients with peripheral and central vestibular lesions and the data were compared with conventional neuro-otological assessments. Subjects were seated with eyes closed in a motorized gimbal which executed cycles of tilt at low constant speed (1.5 degrees s-1), both in the frontal (roll) and sagittal (pitch) planes. Subjects indicated with a joystick when they entered and left verticality, thus defining a sector of subjective uprightness in each plane. The mean angle of tilt (identifying a bias of the SPV) and the width of the sector (defining sensitivity of the SPV) were then determined. In normal subjects, the angle of the "verticality' sector was 5.9 degrees for pitch and roll. Patients with bilateral absence of vestibular function, patients with vertigo, i.e. acute unilateral lesions, benign paroxysmal positional vertigo (BPPV) and Ménière's disease, and patients with positionally modulated up-/downbeat nystagmus all had enlarged sectors (i.e. loss in sensitivity). Mean sector angle in these groups ranged from 7.8 to 11 degrees and the abnormality was present both in pitch and roll, regardless of the direction of nystagmus or body sway. Patients with chronic unilateral peripheral vestibular lesions and those with position-independent vertical nystagmus had normal sensitivities. No significant bias of the SPV was found in any patient group, not even those with acute unilateral vestibular lesions who had marked tilts of the subjective visual vertical (SVV). Complementary experiments in normal subjects tested under galvanic vestibular or roll-plane optokinetic stimulation also failed to show biases of the SPV. In contrast, a significant bias in the SPV could be induced in normal subjects by asymmetric cycles of gimbals tilt, presumably by proprioceptive adaptation. The following conclusions can be drawn. (i) The perception of body verticality whilst

  8. The effect of body posture on long-range time-to-contact estimation.

    PubMed

    Baurès, Robin; Hecht, Heiko

    2011-01-01

    On Earth, gravity accelerates freely moving objects downward, whereas upward-moving objects are being decelerated. Do humans take internalised knowledge of gravity into account when estimating time-to-contact (TTC, the time remaining before the moving object reaches the observer)? To answer this question, we created a motion-prediction task in which participants saw the initial part of an object's trajectory moving on a collision course prior to an occlusion. Observers had to judge when the object would make contact with them. The visual scene was presented with a head-mounted display. Participants lay either supine (looking up) or prone (looking down), suggestive of the ball either rising up or falling down toward them. Results showed that body posture had a significant effect on time-to-contact estimation, but only when occlusion times were long (2.5 s). The effect was also rather small. This lack of immediacy in the posture effect suggests that TTC estimation is initially robust toward the effect of gravity, which comes to bear only as more time is allowed for post-processing of the visual information. PMID:21936296

  9. Using frequency analysis to improve the precision of human body posture algorithms based on Kalman filters.

    PubMed

    Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, G

    2016-05-01

    With the advent of miniaturized inertial sensors many systems have been developed within the last decade to study and analyze human motion and posture, specially in the medical field. Data measured by the sensors are usually processed by algorithms based on Kalman Filters in order to estimate the orientation of the body parts under study. These filters traditionally include fixed parameters, such as the process and observation noise variances, whose value has large influence in the overall performance. It has been demonstrated that the optimal value of these parameters differs considerably for different motion intensities. Therefore, in this work, we show that, by applying frequency analysis to determine motion intensity, and varying the formerly fixed parameters accordingly, the overall precision of orientation estimation algorithms can be improved, therefore providing physicians with reliable objective data they can use in their daily practice. PMID:26337122

  10. The Influence of Motor Imagery on Postural Sway: Differential Effects of Type of Body Movement and Person Perspective

    PubMed Central

    Stins, John F.; Schneider, Iris K.; Koole, Sander L.; Beek, Peter J.

    2015-01-01

    The present study examined the differential effects of kinesthetic imagery (first person perspective) and visual imagery (third person perspective) on postural sway during quiet standing. Based on an embodied cognition perspective, the authors predicted that kinesthetic imagery would lead to activations in movement-relevant motor systems to a greater degree than visual imagery. This prediction was tested among 30 participants who imagined various motor activities from different visual perspectives while standing on a strain gauge plate. The results showed that kinesthetic imagery of lower body movements, but not of upper body movements, had clear effects on postural parameters (sway path length and frequency contents of sway). Visual imagery, in contrast, had no reliable effects on postural activity. We also found that postural effects were not affected by the vividness of imagery. The results suggest that during kinesthetic motor imagery participants partially simulated (re-activated) the imagined movements, leading to unintentional postural adjustments. These findings are consistent with an embodied cognition perspective on motor imagery. PMID:26421085

  11. Sagittal jaw position in relation to body posture in adult humans – a rasterstereographic study

    PubMed Central

    Lippold, Carsten; Danesh, Gholamreza; Schilgen, Markus; Drerup, Burkhard; Hackenberg, Lars

    2006-01-01

    Background The correlations between the sagittal jaw position and the cranio – cervical inclination are described in literature. Only few studies focus on the sagittal jaw position and the body posture using valid and objective orthopaedic examination methods. The aim of this study was to test the hypothesis that patients with malocclusions reveal significant differences in body posture compared to those without (upper thoracic inclination, kyphotic angle, lordotic angle and lower lumbar inclination). Methods Eighty-four healthy adult patients (with a mean age = 25.6 years and ranging from 16.1 to 55.8 years) were examined with informed consent. The orthodontic examination horizontal overjet (distance between upper and lower incisors) was determined by using an orthodontic digital sliding calliper. The subjects were subdivided in respect of the overjet with the following results: 18 revealed a normal overjet (Class I), 38 had an increased overjet (Class II) and 28 had an reversed overjet (Class III). Rasterstereography was used to carry out a three – dimensional back shape analysis. This method is based on photogrammetry. A three-dimensional shape was produced by analysing the distortion of parallel horizontal white light lines projected on the patient's back, followed by mathematical modelling. On the basis of the sagittal profile the upper thoracic inclination, the thoracic angle, the lordotic angle and the pelvic inclination were determined with a reported accuracy of 2.8° and the correlations to the sagittal jaw position were calculated by means of ANOVA, Scheffé and Kruskal-Wallis procedures. Results Between the different overjet groups, no statistically significant differences or correlations regarding the analysed back shape parameters could be obtained. However, comparing males and females there were statistically significant differences in view of the parameters 'lordotic angle' and 'pelvic inclination'. Conclusion No correlations between overjet and

  12. Reliability and validity of the Microsoft Kinect for evaluating static foot posture

    PubMed Central

    2013-01-01

    Background The evaluation of foot posture in a clinical setting is useful to screen for potential injury, however disagreement remains as to which method has the greatest clinical utility. An inexpensive and widely available imaging system, the Microsoft Kinect™, may possess the characteristics to objectively evaluate static foot posture in a clinical setting with high accuracy. The aim of this study was to assess the intra-rater reliability and validity of this system for assessing static foot posture. Methods Three measures were used to assess static foot posture; traditional visual observation using the Foot Posture Index (FPI), a 3D motion analysis (3DMA) system and software designed to collect and analyse image and depth data from the Kinect. Spearman’s rho was used to assess intra-rater reliability and concurrent validity of the Kinect to evaluate foot posture, and a linear regression was used to examine the ability of the Kinect to predict total visual FPI score. Results The Kinect demonstrated moderate to good intra-rater reliability for four FPI items of foot posture (ρ = 0.62 to 0.78) and moderate to good correlations with the 3DMA system for four items of foot posture (ρ = 0.51 to 0.85). In contrast, intra-rater reliability of visual FPI items was poor to moderate (ρ = 0.17 to 0.63), and correlations with the Kinect and 3DMA systems were poor (absolute ρ = 0.01 to 0.44). Kinect FPI items with moderate to good reliability predicted 61% of the variance in total visual FPI score. Conclusions The majority of the foot posture items derived using the Kinect were more reliable than the traditional visual assessment of FPI, and were valid when compared to a 3DMA system. Individual foot posture items recorded using the Kinect were also shown to predict a moderate degree of variance in the total visual FPI score. Combined, these results support the future potential of the Kinect to accurately evaluate static foot posture in a clinical

  13. Evidence for Impaired Verbal Identification but Intact Nonverbal Recognition of Fearful Body Postures in Asperger's Syndrome

    ERIC Educational Resources Information Center

    Doody, John P.; Bull, Peter

    2013-01-01

    While most studies of emotion recognition in Asperger's Syndrome (AS) have focused solely on the verbal decoding of affective states, the current research employed the novel technique of using both nonverbal matching and verbal labeling tasks to examine the decoding of emotional body postures and facial expressions. AS participants performed…

  14. Postural performance of vestibular loss patients under increased postural threat.

    PubMed

    Young, Laurence R; Bernard-Demanze, Laurence; Dumitrescu, Michel; Magnan, Jacques; Borel, Liliane; Lacour, Michel

    2012-01-01

    The effects of increasing postural task difficulty on balance control was investigated in 9 compensated vestibular loss patients whose results were compared to 11 healthy adults. Subjects were tested in static (stable support) and dynamic (sinusoidal translation of the support) conditions, both at floor level and at height (62 cm above the floor), and with and without vision, to create an additional postural threat. Wavelet analysis of the center of foot pressure displacement and motion analysis of the body segments were used to evaluate the postural performance. Evaluation questionnaires were used to examine the compensation level of the patients (DHI test), their general anxiety level (SAST), fear of height (subjective scale), and workload (NASA TLX test). (Vestibular loss patients rely more on vision and spend more energy maintaining balance than controls, but they use the same postural strategy as normals in both static and dynamic conditions.) Questionnaire data all showed differences in behavior and perceptions between the controls and the patients. However, at height and without vision, a whole body strategy leading to rigid posture replaces the head stabilization strategy found for standing at floor level. The effects of height on postural control can be attributable to an increase in postural threat and attention changes resulting from modifications in perception. PMID:23000612

  15. Impact of pregnancy on back pain and body posture in women

    PubMed Central

    Schröder, Guido; Kundt, Günther; Otte, Mandy; Wendig, Detlef; Schober, Hans-Christof

    2016-01-01

    [Purpose] The purpose of this single-center investigation was to study the impact of pregnancy on back pain and body posture. [Subjects] The subjects were 26 pregnant females. [Methods] Data were generated with a spine scanner (Diers® formetric 4D), trunk strength measurement (Diers® myoline), a numeric pain scale (0 to 10), and a biomechanical model. Parameters were compared during each trimester. [Results] The alteration in pain level at rest and lumbar lordosis angle in the females revealed a statistical trend during pregnancy. Spearman’s test showed positive correlations between body weight and trunk inclination during the second trimester, and between body weight and the kyphosis angle in the third trimester. The trunk inclination and the kyphosis angle revealed a negative correlation in the third trimester. Based on our analysis, the highest moments and muscle strength must be expended in the third trimester. The actual muscle strength is greatest in the second trimester. [Conclusion] Pain at rest must be given greater attention in pregnant females, and their increasing lumbar kyphosis must be counteracted. Exercising the deep segmental muscles may serve as a preventive measure. PMID:27190453

  16. Impact of pregnancy on back pain and body posture in women.

    PubMed

    Schröder, Guido; Kundt, Günther; Otte, Mandy; Wendig, Detlef; Schober, Hans-Christof

    2016-04-01

    [Purpose] The purpose of this single-center investigation was to study the impact of pregnancy on back pain and body posture. [Subjects] The subjects were 26 pregnant females. [Methods] Data were generated with a spine scanner (Diers(®) formetric 4D), trunk strength measurement (Diers(®) myoline), a numeric pain scale (0 to 10), and a biomechanical model. Parameters were compared during each trimester. [Results] The alteration in pain level at rest and lumbar lordosis angle in the females revealed a statistical trend during pregnancy. Spearman's test showed positive correlations between body weight and trunk inclination during the second trimester, and between body weight and the kyphosis angle in the third trimester. The trunk inclination and the kyphosis angle revealed a negative correlation in the third trimester. Based on our analysis, the highest moments and muscle strength must be expended in the third trimester. The actual muscle strength is greatest in the second trimester. [Conclusion] Pain at rest must be given greater attention in pregnant females, and their increasing lumbar kyphosis must be counteracted. Exercising the deep segmental muscles may serve as a preventive measure. PMID:27190453

  17. A single muscle's multifunctional control potential of body dynamics for postural control and running

    PubMed Central

    Sponberg, Simon; Spence, Andrew J.; Mullens, Chris H.; Full, Robert J.

    2011-01-01

    A neuromechanical approach to control requires understanding how mechanics alters the potential of neural feedback to control body dynamics. Here, we rewrite activation of individual motor units of a behaving animal to mimic the effects of neural feedback without concomitant changes in other muscles. We target a putative control muscle in the cockroach, Blaberus discoidalis (L.), and simultaneously capture limb and body dynamics through high-speed videography and a micro-accelerometer backpack. We test four neuromechanical control hypotheses. We supported the hypothesis that mechanics linearly translates neural feedback into accelerations and rotations during static postural control. However, during running, the same neural feedback produced a nonlinear acceleration control potential restricted to the vertical plane. Using this, we reject the hypothesis from previous work that this muscle acts primarily to absorb energy from the body. The conversion of the control potential is paralleled by nonlinear changes in limb kinematics, supporting the hypothesis that significant mechanical feedback filters the graded neural feedback for running control. Finally, we insert the same neural feedback signal but at different phases in the dynamics. In this context, mechanical feedback enables turning by changing the timing and direction of the accelerations produced by the graded neural feedback. PMID:21502129

  18. Biomechanical investigation of thoracolumbar spine in different postures during ejection using a combined finite element and multi-body approach.

    PubMed

    Du, Chengfei; Mo, Zhongjun; Tian, Shan; Wang, Lizhen; Fan, Jie; Liu, Songyang; Fan, Yubo

    2014-11-01

    The aim of this study is to investigate the dynamic response of a multi-segment model of the thoracolumbar spine and determine how the sitting posture affects the response under the impact of ejection. A nonlinear finite element model of the thoracolumbar-pelvis complex (T9-S1) was developed and validated. A multi-body dynamic model of a pilot was also constructed so an ejection seat restraint system could be incorporated into the finite element model. The distribution of trunk mass on each vertebra was also considered in the model. Dynamics analysis showed that ejection impact induced obvious axial compression and anterior flexion of the spine, which may contribute to spinal injuries. Compared with a normal posture, the relaxed posture led to an increase in stress on the cortical wall, endplate, and intradiscal pressure of 43%, 10%, 13%, respectively, and accordingly increased the risk of inducing spinal injuries. PMID:24827805

  19. Low back pain in drivers: The relative role of whole-body vibration, posture and manual materials handling

    NASA Astrophysics Data System (ADS)

    Okunribido, O. O.; Magnusson, M.; Pope, M. H.

    2006-12-01

    A cross-sectional study was conducted to investigate the relative role of whole-body vibration (WBV), posture and manual materials handling (MMH) as risk factors for low back pain (LBP). Using a validated questionnaire, information about health history, posture and MMH performed was obtained from 394 workers who drove vehicles as part of their job (according to seven predefined occupational groups) and 59 who did not. The intention was to reflect a wide range of exposures with the lower end of the exposure spectrum defined as that of non-manual workers who do not drive as part of their job. Based on the questionnaire responses and direct measurements of vibration exposure, personal aggregate measures of exposure were computed for each of the respondents, i.e., total vibration dose (TVD), posture score (PS) and manual handling score (MHS). Odds ratios (and 95% confidence intervals) for back pain were obtained from logistics regression models and log-linear backward elimination analysis was performed. The findings showed that 'combined exposure' due to posture and one or both of vibration and MMH, rather than the individual exposure to one of the three factors (WBV, posture, MMH) is the main contributor of the increased prevalence of LBP.

  20. Obese elderly women exhibit low postural stability: a novel three-dimensional evaluation system

    PubMed Central

    Carneiro, José Ailton O.; Santos-Pontelli, Taiza E.G.; Vilaça, Karla H.C.; Pfrimer, Karina; Colafêmina, José F.; Carneiro, Antonio Adilton O.; Ferriolli, Eduardo

    2012-01-01

    OBJECTIVE: The aim of this study was to evaluate the multisegmental static postural balance of active eutrophic and obese elderly women using a three-dimensional system under different sensory conditions. METHODS: A cross-sectional study was conducted on 31 elderly women (16 eutrophic and 15 obese) aged 65 to 75 years. The following anthropometric measurements were obtained: weight, height, waist and hip circumference, and handgrip strength. The physical activity level was evaluated using the International Physical Activity Questionnaire. Body composition was measured using the deuterium oxide dilution technique. The Polhemus® Patriot (three-dimensional) equipment was used to measure the parameters of postural balance along the anteroposterior and laterolateral axes. The data acquisition involved one trial of 60 s to test the limit of stability and four trials of 90 s each under the following conditions: (1) eyes open, stable surface; (2) eyes closed, stable surface; (3) eyes open, unstable surface; and (4) eyes closed, unstable surface. RESULTS: For the limit of stability, significant differences were observed in the maximum anteroposterior and laterolateral displacement (p<0.01) and in the parameter maximum anteroposterior displacement in the eyes closed stable surface condition (p<0.01) and maximum anteroposterior and laterolateral displacement in the eyes open unstable surface (p<0.01 and p = 0.03) and eyes closed unstable surface (p<0.01 and p<0.01) conditions. CONCLUSIONS: Obese elderly women exhibited a lower stability limit (lower sway area) compared with eutrophic women, leaving them more vulnerable to falls. PMID:22666792

  1. Parkinson's Disease-Related Impairments in Body Movement, Coordination and Postural Control Mechanisms When Performing 80° Lateral Gaze Shifts.

    PubMed

    Bonnet, Cédrick T; Delval, Arnaud; Defebvre, Luc

    2015-09-01

    We investigated early signs of Parkinson's disease-related impairment in mediolateral postural control. Thirty-six participants (18 Hoehn & Yahr stage 2 patients in the off-drug condition and 18 healthy controls) were studied in a stationary gaze condition and when performing 80° lateral gaze shifts at 0.125 and 0.25 Hz. Body sway, coordination and postural control mechanisms were analyzed. All participants performed the visual tasks adequately. The patients were not unstable in the stationary gaze condition. In both groups, mediolateral ankle- and hip-based postural control mechanisms were significantly more active under gaze shift conditions than under the stationary gaze condition. As expected, the patients exhibited significantly greater angular movements of the lower back and significantly lower angular movements of the head (relative to controls) when performing gaze shifts. When considering linear displacements (rather than angular movements), the patients exhibited significantly greater displacements of the lower back and lower, slower displacements of the head than controls under gaze shift conditions. Relative to controls, the patients performed "en block" body movements. Overall, our results show that the patients' ankle- and hip-based mediolateral postural control mechanisms did not adapt to the difficulty of the visual task being performed. PMID:25423653

  2. The effect of three ergonomics interventions on body posture and musculoskeletal disorders among stuff of Isfahan Province Gas Company

    PubMed Central

    Habibi, Ehsanollah; Soury, Shiva

    2015-01-01

    Background: Prevalence of work-related musculoskeletal disorders (WMSDs) is high among computer users. The study investigates the effect of three ergonomic interventions on the incidence of musculoskeletal disorders among the staff of Isfahan Province Gas Company, including training, sport, and installation of software. Materials and Methods: The study was performed in the summer of 2013 on 75 (52 men, 23 women) Isfahan Province Gas Company employees in three phases (phase 1: Evaluation of present situation, phase 2: Performing interventions, and phase 3: Re-evaluation). Participants were divided into three groups (training, exercise, and software). The Nordic Musculoskeletal Questionnaire (NMQ) and rapid upper limb assessment (RULA) were used. Data collected were analyzed using SPSS software and McNemar test, t-test, and Chi-square test. Results: Based on the evaluations, there was a decrease in musculoskeletal symptoms among the trained group participants after they received the training. McNemar test showed that the lower rate of pain in low back, neck, knee, and wrist was significant (P < 0.05). The results obtained from the RULA method for evaluation of posture showed an average 25 points decrease in the right side of the body and 20 points decrease in the left side of the body in the group subjected to training. Based on t-test, the decrease was significant. Conclusion: The study demonstrated that majority of the participants accepted interventions, which indicates that most of the people were unsatisfied with the work settings and seeking improvement at the workplace. Overall, the findings show that training, chair adjustment, and arrangement in workplace could decrease musculoskeletal disorders. PMID:26430692

  3. What is the most effective posture to conduct vibration from the lower to the upper extremities during whole-body vibration exercise?

    PubMed Central

    Tsukahara, Yuka; Iwamoto, Jun; Iwashita, Kosui; Shinjo, Takuma; Azuma, Koichiro; Matsumoto, Hideo

    2016-01-01

    Background Whole-body vibration (WBV) exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods Twelve healthy volunteers (age: 22–34 years) were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900) with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. PMID:26793008

  4. Dynamic fe Model of Sitting Man Adjustable to Body Height, Body Mass and Posture Used for Calculating Internal Forces in the Lumbar Vertebral Disks

    NASA Astrophysics Data System (ADS)

    Pankoke, S.; Buck, B.; Woelfel, H. P.

    1998-08-01

    Long-term whole-body vibrations can cause degeneration of the lumbar spine. Therefore existing degeneration has to be assessed as well as industrial working places to prevent further damage. Hence, the mechanical stress in the lumbar spine—especially in the three lower vertebrae—has to be known. This stress can be expressed as internal forces. These internal forces cannot be evaluated experimentally, because force transducers cannot be implementated in the force lines because of ethical reasons. Thus it is necessary to calculate the internal forces with a dynamic mathematical model of sitting man.A two dimensional dynamic Finite Element model of sitting man is presented which allows calculation of these unknown internal forces. The model is based on an anatomic representation of the lower lumbar spine (L3-L5). This lumber spine model is incorporated into a dynamic model of the upper torso with neck, head and arms as well as a model of the body caudal to the lumbar spine with pelvis and legs. Additionally a simple dynamic representation of the viscera is used. All these parts are modelled as rigid bodies connected by linear stiffnesses. Energy dissipation is modelled by assigning modal damping ratio to the calculated undamped eigenvalues. Geometry and inertial properties of the model are determined according to human anatomy. Stiffnesses of the spine model are derived from static in-vitro experiments in references [1] and [2]. Remaining stiffness parameters and parameters for energy dissipation are determined by using parameter identification to fit measurements in reference [3]. The model, which is available in 3 different postures, allows one to adjust its parameters for body height and body mass to the values of the person for which internal forces have to be calculated.

  5. Changes in apparent body orientation and sensory localization induced by vibration of postural muscles - Vibratory myesthetic illusions

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Levine, M. S.

    1979-01-01

    Human experiments are carried out which support the observation of Goodwin (1973) and Goodwin et al. (1972) that vibration of skeletal muscles can elicit illusory limb motion. These experiments extend the class of possible myesthetic illusions by showing that vibration of the appropriate muscles can produce illusory body motion in nearly any desired direction. Such illusory changes in posture occur only when visual information about body orientation is absent; these changes in apparent posture are sometimes accompanied by a slow-phase nystagmus that compensates for the direction of apparent body motion. During illusory body motion a stationary target light that is fixated will appear to move with the body at the same apparent velocity. However, this pattern of apparent body motion and conjoint visual - defined as propriogyral illusion - is suppressed if the subject is in a fully illuminated environment providing cues about true body orientation. Persuasive evidence is thus provided for the contribution of both muscle afferent and touch-pressure information to the supraspinal mechanisms that determine apparent orientation on the basis of ongoing patterns of interoceptive and exteroceptive activity.

  6. Kinect-Based Virtual Game for the Elderly that Detects Incorrect Body Postures in Real Time

    PubMed Central

    Saenz-de-Urturi, Zelai; Garcia-Zapirain Soto, Begonya

    2016-01-01

    Poor posture can result in loss of physical function, which is necessary to preserving independence in later life. Its decline is often the determining factor for loss of independence in the elderly. To avoid this, a system to correct poor posture in the elderly, designed for Kinect-based indoor applications, is proposed in this paper. Due to the importance of maintaining a healthy life style in senior citizens, the system has been integrated into a game which focuses on their physical stimulation. The game encourages users to perform physical activities while the posture correction system helps them to adopt proper posture. The system captures limb node data received from the Kinect sensor in order to detect posture variations in real time. The DTW algorithm compares the original posture with the current one to detect any deviation from the original correct position. The system was tested and achieved a successful detection percentage of 95.20%. Experimental tests performed in a nursing home with different users show the effectiveness of the proposed solution. PMID:27196903

  7. Kinect-Based Virtual Game for the Elderly that Detects Incorrect Body Postures in Real Time.

    PubMed

    Saenz-de-Urturi, Zelai; Garcia-Zapirain Soto, Begonya

    2016-01-01

    Poor posture can result in loss of physical function, which is necessary to preserving independence in later life. Its decline is often the determining factor for loss of independence in the elderly. To avoid this, a system to correct poor posture in the elderly, designed for Kinect-based indoor applications, is proposed in this paper. Due to the importance of maintaining a healthy life style in senior citizens, the system has been integrated into a game which focuses on their physical stimulation. The game encourages users to perform physical activities while the posture correction system helps them to adopt proper posture. The system captures limb node data received from the Kinect sensor in order to detect posture variations in real time. The DTW algorithm compares the original posture with the current one to detect any deviation from the original correct position. The system was tested and achieved a successful detection percentage of 95.20%. Experimental tests performed in a nursing home with different users show the effectiveness of the proposed solution. PMID:27196903

  8. Development of a computational framework to adjust the pre-impact spine posture of a whole-body model based on cadaver tests data.

    PubMed

    Poulard, David; Subit, Damien; Donlon, John-Paul; Kent, Richard W

    2015-02-26

    A method was developed to adjust the posture of a human numerical model to match the pre-impact posture of a human subject. The method involves pulling cables to prescribe the position and orientation of the head, spine and pelvis during a simulation. Six postured models matching the pre-impact posture measured on subjects tested in previous studies were created from a human numerical model. Posture scalars were measured on pre- and after applying the method to evaluate its efficiency. The lateral leaning angle θL defined between T1 and the pelvis in the coronal plane was found to be significantly improved after application with an average difference of 0.1±0.1° with the PMHS (4.6±2.7° before application). This method will be applied in further studies to analyze independently the contribution of pre-impact posture on impact response using human numerical models. PMID:25596635

  9. Evidence for a gene on chromosome 13 influencing postural systolic blood pressure change and body mass index.

    PubMed

    North, Kari E; Rose, Kathryn M; Borecki, Ingrid B; Oberman, Albert; Hunt, Steven C; Miller, Michael B; Blangero, John; Almasy, Laura; Pankow, James S

    2004-04-01

    Previous analysis in the Hypertension Genetic Epidemiology Network (HyperGEN) of the National Heart Lung and Blood Institute (NHLBI) Family Blood Pressure Program, a multicenter study of genetic and environmental factors related to hypertension, indicated regions of linkage for blood pressure traits together with several coincident regions for phenotypically correlated traits, including systolic blood pressure (SBP) response to a postural challenge and body mass index (BMI). Motivated by these findings and by our desire to better understand the physiology of these traits, we conducted bivariate linkage analysis of postural SBP change and BMI. Sibships in HyperGEN were recruited from 5 field centers in Massachusetts, North Carolina, Minnesota, Utah, and Alabama. All available affected siblings, their parents, and selected nonmedicated offspring were recruited. Among 1636 whites and 1747 blacks, we performed a maximum likelihood bivariate genome scan for quantitative trait loci influencing postural SBP change and BMI, similarly adjusted for race, study center, sex, age, and age-by-sex interactions. Genome scans were performed using SOLAR (version 2.0) and race-specific marker allele frequencies derived from founders. The maximum genome-wide logarithm of odds (LOD) score of 3.2 was detected on chromosome 13 at 24 cM. This marker (D13S493) lies within 20 cM of a marker previously linked to BMI in the Family Heart Study and is substantially higher than the univariate linkage for each trait (LOD scores for BMI and postural SBP change were 2.4 and 0.9, respectively). These findings suggest that a gene(s) on chromosome 13q jointly regulates the SBP response to postural change and BMI. PMID:14967843

  10. Low-back disorders in agricultural tractor drivers exposed to whole-body vibration and postural stress.

    PubMed

    Bovenzi, M; Betta, A

    1994-08-01

    The occurrence of low-back pain (LBP) was investigated in a population of 1155 tractor drivers exposed to whole-body vibration (WBV) and postural stress (response rate 91.2%) and in a control group of 220 office workers (response rate 92.2%). The subjects were questioned about several types of low-back symptom (LBP, sciatic pain, acute LBP, transient and chronic LBP) and various work- and individual-related risk factors, by using a standardized questionnaire. Vibration measurements were performed on a representative sample of the vehicles driven by the tractor drivers in the last ten years. Vibration magnitude and duration of exposure were used to calculate a vibration dose for each tractor driver. Perceived postural load was assessed in terms of frequency and/or duration of awkward postures at work. The prevalence of LBP was found to be greater in the tractor drivers than in the controls. After controlling for potential confounders by logistic modelling, low-back disorders were found to be significantly associated with both vibration dose and postural load. Back accidents and age were also significant predictors for LBP. Quantitative regression analysis indicated that vibration exposure and postural load were independent contributors to the increased risk for LBP according to a multiplicative model. The exposure levels for WBV recently recommended by a proposal of European Directive on physical agents seem to be more adequate to prevent long-term health effects on the lower back than the exposure limits suggested by the International Standard ISO 2631/1. PMID:15676973

  11. Are temporomandibular disorders associated with habitual sleeping body posture or nasal septal deviation?

    PubMed

    Yalçınkaya, Esin; Cingi, Cemal; Bayar Muluk, Nuray; Ulusoy, Seçkin; Hanci, Deniz

    2016-01-01

    Numerous factors can be considered for the etiology of temporomandibular disorders (TMD). The aim of the present study was to investigate whether the presence of both nasal septal deviation (NSD) and habitual prone sleeping posture (HPSP) predisposes TMD. We evaluated 200 subjects in 4 groups. Group I (NSD-, HPSP-/control group), Group II (NSD+, HPSP-), Group III (NSD-, HPSP+), Group IV (NSD+, HPSP+). All patients were examined according to the research diagnostic criteria to determine the presence of TMD. Group IV had the highest value for TMD incidence (44 %). Thus, we found that the presence of both NSD and HPSP parameters increased TMD incidence in Group IV compared to the control group (p = 0.000). Additionally, Group IV showed significantly higher values than Group II (p = 0.012) and Group III (p = 0.039). For Group III (NSD-, HPSP+), TMD was determined higher compared to the control group (p = 0.009). A statistically higher value of presence of TMD was determined in Group II (NSD+, HPSP-) than control group (p = 0.029). The incidence of TMD was significantly higher in women than men (p = 0.020). We concluded that one having an unilateral obstructive nasal septal deviation in addition to a habit of sleeping in prone position must be alert for potential TMD. PMID:25555606

  12. Postural Control in Dual-Task Situations: Does Whole-Body Fatigue Matter?

    PubMed Central

    Beurskens, Rainer; Haeger, Matthias; Kliegl, Reinhold; Roecker, Kai; Granacher, Urs

    2016-01-01

    Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment. PMID:26796320

  13. Photogrammetry as a tool for the postural evaluation of the spine: A systematic review

    PubMed Central

    Furlanetto, Tássia Silveira; Sedrez, Juliana Adami; Candotti, Cláudia Tarragô; Loss, Jefferson Fagundes

    2016-01-01

    AIM: To evaluate the use of photogrammetry and identify the mathematical procedures applied when evaluating spinal posture. METHODS: A systematic search using keywords was conducted in the PubMed, EMBASE, Scopus, Science and Medicine® databases. The following inclusion criteria adopted were: (1) the use of photogrammetry as a method to evaluate spinal posture; (2) evaluations of spinal curvature in the sagittal and/or frontal plane; (3) studies published within the last three decades; and (4) written entirely in English. The exclusion criteria were: (1) studies which objective involved the verification of some aspect of validation of instruments; (2) studies published as abstracts and those published in scientific events; and (3) studies using evaluation of the anteriorization of the head to determine the angular positioning of the cervical spine. The articles in this review were included and evaluated for their methodological quality, based on the Downs and Black scale, by two independent reviewers. RESULTS: Initially, 1758 articles were found, 76 of which were included upon reading the full texts and 29 were included in accordance with the predetermined criteria. In addition, after analyzing the references in those articles, a further six articles were selected, so that 35 articles were included in this review. This systematic review revealed that the photogrammetry has been using in observational studies. Furthermore, it was also found that, although the data collection methodologies are similar across the studies, in relation to aspects of data analysis, the methodologies are very different, especially regarding the mathematical routines employed to support different postural evaluation software. CONCLUSION: With photogrammetry, the aim of the assessment, whether it is for clinical, research or collective health purposes, must be considered when choosing which protocol to use to evaluate spinal posture. PMID:26925386

  14. Effects of body mass index on foot posture alignment and core stability in a healthy adult population

    PubMed Central

    AlAbdulwahab, Sami S.; Kachanathu, Shaji John

    2016-01-01

    Foot biomechanics and core stability (CS) play significant roles in the quality of standing and walking. Minor alterations in body composition may influence base support or CS strategies. The aim of this study was to investigate the effect of the body mass index (BMI) on the foot posture index (FPI) and CS in a healthy adult population. A total of 39 healthy adult subjects with a mean age of 24.3±6.4 years and over-weight BMI values between 25 and 29.9 kg/m2 (27.43±6.1 kg/m2) participated in this study. Foot biomechanics were analyzed using the FPI. CS was assessed using a plank test with a time-to-failure trial. The Spearman correlation coefficient indicated a significant correlation between BMI and both the FPI (r=0.504, P=0.001) and CS (r= −0.34, P=0.036). Present study concluded that an overweight BMI influences foot posture alignment and body stability. Consequently, BMI should be considered during rehabilitation management for lower extremity injuries and body balance. PMID:27419113

  15. Combined whole body vibration and balance training using Vibrosphere®: improvement of trunk stability, muscle tone, and postural control in stroke patients during early geriatric rehabilitation.

    PubMed

    Merkert, J; Butz, S; Nieczaj, R; Steinhagen-Thiessen, E; Eckardt, R

    2011-08-01

    Strokes are a leading cause of disability, immobility, and reduced ability to perform activities of daily living (ADLs) among the elderly. Balance and postural control are often affected in stroke patients. Physical therapy for the lower back to improve posture, mobility, and ADLs can be very time consuming. In this randomized, controlled study of 66 geriatric patients (mean age 74.5 years) with stroke-related paresis or hemiplegia, it was demonstrated that stroke patients may benefit more from 3 additional weeks of combined whole body vibration and balance training than from a comprehensive inpatient geriatric rehabilitation program in terms of trunk stability, postural control, and muscle tone. PMID:21505939

  16. The effects of body posture and temperament on heart rate variability in dairy cows.

    PubMed

    Frondelius, Lilli; Järvenranta, Kirsi; Koponen, Taija; Mononen, Jaakko

    2015-02-01

    Reactivity of cattle affects many aspects of animal production (e.g. reduced milk and meat production). Animals have individual differences in temperament and emotional reactivity, and these differences can affect how animals react to stressful and fear-eliciting events. Heart rate variability (HRV) is a good indicator of stress and balance of the autonomous nervous system, and low parasympathetic activity is connected with higher emotional reactivity. The study had two specific aims: (1) to compare HRV in dairy cows for standing and lying postures (no earlier results available), and (2) to assess whether dairy cows' emotional reactivity is connected to their HRV values. Eighteen dairy cows were subjected twice to a handling test (HT): morning (HT1) and afternoon (HT2), to evaluate emotional reactivity (avoidance score, AS). HRV was measured during HT (standing). HRV baseline values, both standing and lying down, were measured one week before HTs. HRV was analyzed with time and frequency domain analyses and with the Recurrence Quantification Analysis (RQA). Heart rate (HR), low-frequency/high-frequency band ratio (LH/HF), % determinism (%DET) and longest diagonal line segment in the recurrence plot (Lmax) were higher (p<0.05) while the cows were standing than when lying down, whereas the root mean square of successive R-R intervals (RMSSD) (p<0.05) and power of the high-frequency band (HF) (p<0.1) were higher while the animals were lying down. HR, the standard deviation of all interbeat intervals (SDNN), RMSSD, HF, power of the low-frequency band (LF), % recurrence (%REC), %DET, Shannon entropy (p<0.05), and HF (p<0.1) were higher during the handling test compared to standing baseline values. AS (i.e. tendency to avoid handling) correlated positively with SDNN (r=0.48, p<0.05), RMSSD (r=0.54, p<0.05), HF, RMSSD (r=0.46, p<0.1) and LF (r=0.57, p<0.05), and negatively with %DET (r=-0.53, p<0.05), entropy (r=-0.60, p<0.05) and Lmax (r=-0.55, p<0.05) in the baseline

  17. Postural Control and Automaticity in Dyslexic Children: The Relationship between Visual Information and Body Sway

    ERIC Educational Resources Information Center

    Barela, Jose A.; Dias, Josenaldo L.; Godoi, Daniela; Viana, Andre R.; de Freitas, Paulo B.

    2011-01-01

    Difficulty with literacy acquisition is only one of the symptoms of developmental dyslexia. Dyslexic children also show poor motor coordination and postural control. Those problems could be associated with automaticity, i.e., difficulty in performing a task without dispending a fair amount of conscious efforts. If this is the case, dyslexic…

  18. Does whole-body vibration training have acute residual effects on postural control ability of elderly women?

    PubMed

    Carlucci, Flaminia; Mazzà, Claudia; Cappozzo, Aurelio

    2010-12-01

    The purpose of this study was to investigate acute residual effects of a single vibration session on balance control in a group of elderly women. Several studies, in fact, have shown that whole-body vibration (WBV) training may improve balance in the elderly, but possible side effects of acute exposure to WBV, such as temporary reduction of balance control ability because of perturbations of the vestibular system, have not been investigated. Twenty-two healthy elderly women (71.8 ± 4.7 years of age) were trained with a 9.5-minute bout of static and dynamic knee-extensor exercises executed on a vibrating platform (Well-net Vibe Revolution). The vibration frequency was set at 35 Hz. A subgroup of 14 subjects performed the same exercise protocol also without the vibrations to discriminate between vibration and exercise effects. Balance control ability was assessed through computerized posturography: a force plate (Bertec Co, Columbus, OH, USA) was used to measure the center of pressure trajectories during 4 different experimental trials: before, immediately after, 15 minutes after, and 60 minutes after the training. A set of postural parameters, typically adopted to assess elderly subjects, was then computed and 2-way analysis of variance was used to determine differences between values found in the 4 postural tests (level of significance p = 0.05) in the 2 groups. The results showed no significant variations in the postural parameters recorded during the 4 sessions. A significant group effect was found for 2 postural parameters, with no interaction between the 2 factors. In conclusion, the proposed single bout of WBV does not induce dangerous acute effects on elderly women balance control ability and could be safely administered as part of a long-term intervention program. PMID:21088549

  19. Age-dependency of posture parameters in children and adolescents

    PubMed Central

    Ludwig, Oliver; Mazet, Carola; Mazet, Dirk; Hammes, Annette; Schmitt, Eduard

    2016-01-01

    [Purpose] Poor posture in children and adolescents is a well-known problem. Therefore, early detection of incorrect posture is important. Photometric posture analysis is a cost-efficient and easy method, but needs reliable reference values. As children’s posture changes as they grow, the assessment needs to be age-specific. This study aimed to investigate the development of both one-dimensional posture parameter (body inclination angle) and complex parameter (posture index) in different age groups (childhood to adolescence). [Subjects and Methods] The participants were 372 symptom-free children and adolescents (140 girls and 232 boys aged 6–17). Images of their habitual posture were obtained in the sagittal plane. High-contrast marker points and marker spheres were placed on anatomical landmarks. Based on the marker points, the body inclination angle (INC) and posture index (PI) were calculated using the Corpus concepts software. [Results] The INC angle significantly increased with age. The PI did not change significantly among the age groups. No significant differences between the corresponding age groups were found for PI and INC for both sexes. [Conclusion] When evaluating posture using the body inclination angle, the age of the subject needs to be considered. Posture assessment with an age-independent parameter may be more suitable. PMID:27313382

  20. An evaluation of backpack harness systems in non-neutral torso postures.

    PubMed

    Southard, Stephanie A; Mirka, Gary A

    2007-09-01

    Much of the research on backpack design has been focused on spinal loading/biomechanics while the wearer is in a neutral/upright trunk posture, such as those employed by outdoor enthusiasts and schoolchildren. This research has led to some important harness design improvements that reduce trunk muscle exertions, fatigue and improve overall comfort. There are number of occupations, however, wherein workers wear back-mounted packs/devices (e.g. air tanks) while working in non-neutral trunk postures. The objective of the current study was to evaluate the effects of these non-neutral postures on biomechanical loading and then reconsider the backpack system design recommendations. Fifteen participants were asked to support a 18.2 kg load on their back while assuming static forward flexed postures of the torso (15 degrees , 30 degrees , 45 degrees , and 60 degrees of sagittal bend). The mass on the back was attached to the participant through two different harness mechanisms: a basic harness design (as seen on college student backpacks) and a more advanced design containing lateral stiffness rods and a weight-bearing hip belt (as seen on backpacks for hikers). While performing these static, posture maintenance tasks, the activation levels of the bilateral trapezius, erector spinae, and rectus abdominis were collected. Participants also provided subjective ratings of comfort. The results showed that there was a significant interaction between harness type and forward flexion angle for the trapezius and the erector spinae muscles. The normalized EMG for the trapezius muscles showed a 14% and 11% reduction in muscle activity at 15 degrees and 30 degrees , respectively, with the advanced design but these positive effects of the advanced design were not found at the greater flexion angles. Likewise the erector spinae muscles showed a 24% and 14% reduction in muscle activity at 15 degrees and 30 degrees , respectively, with the advanced design harness but these effects of the

  1. Evaluation of a hybrid system for three-dimensional measurement of trunk posture in motion.

    PubMed

    Plamondon, A; Delisle, A; Larue, C; Brouillette, D; McFadden, D; Desjardins, P; Larivière, C

    2007-11-01

    Ambulatory assessment of trunk posture is important in improving our understanding of the risk of low back injury. Recently, small inertial sensors combining accelerometers, gyroscopes and magnetometers were developed and appear to be promising for measuring human movement. However, the validity of such sensors for assessing three-dimensional (3D) trunk posture in motion has not been documented. The purpose of this study was to evaluate a hybrid system (HS) composed of two inertial sensors for the 3D measurement of trunk posture. A secondary purpose was to explore the utility of adding another source of information, a potentiometer, to measure the relative rotation between both sensors in order to improve the validity of the system. The first sensor was placed over the sacrum and the second on the upper part of the thorax. Both sensors were linked by a flexible rod with a potentiometer. A complementary quaternion filter algorithm was used to estimate trunk orientation by taking advantage of the nine components of each sensor and the potentiometer. The HS's orientations were compared to those obtained from a 3D optoelectronic system. Validation of the HS was performed in three steps in which six subjects had to perform manual handling tasks in: (1) static postures; (2) dynamic motions of short duration (30s); and (3) dynamic motions of long duration (30min). The results showed that the root mean square (RMS) error of the HS was generally below 3 degrees for the flexion and lateral bending axes, and less than 6 degrees for the torsion axis, and that this error was lower for the short-duration tests compared to the long-duration one. The potentiometer proved to be an essential addition, particularly when the magnetometer signals were corrupted and only the gyroscope and accelerometer could be combined. It is concluded that the HS can be a useful tool for quantifying 3D trunk posture in motion. PMID:17382283

  2. The influence of body posture, arm movement, and work stress on trapezius activity during computer work.

    PubMed

    Mork, Paul Jarle; Westgaard, Rolf H

    2007-11-01

    The study aimed to determine the influence of arm posture and movement on trapezius activity of computer workers, considering the full workday. A second aim was to investigate if work periods perceived as stressful were associated with elevated or more sustained muscle activity pattern. Twenty-six computer workers performing call-center (n=11), help desk (n=7), or secretarial (n=8) work tasks participated. Bilateral trapezius surface electromyographic (sEMG) activity and heart rate was recorded throughout the workday. Simultaneous inclinometer recordings from left thigh and upper arms identified periods with sitting, standing, and walking, as well as arm posture and movement. Perceived work stress and tension were recorded on visual analog scales (VAS) every hour. Trapezius sEMG activity was low in seated posture [group median 1.8 and 0.9% of activity at maximal voluntary contraction (%EMGmax) for dominant and non-dominant side] and was elevated in standing (3.0 and 2.5% EMGmax) and walking (3.9 and 3.4% EMGmax). In seated posture (mean duration 79% of workday) arm movement consistently influenced trapezius activity, accounting for approximately 20% of intra-individual variation in trapezius activity. Arm elevation was on average not associated with trapezius activity when seated; however, considerable individual variation was observed. There was no indication of increase in trapezius activity or more sustained activity pattern, nor in heart rate, in high-stress versus low-stress periods, comparing periods with seated posture for the subjects reporting contrasts of at least two VAS units in stress (n=16) or tension (n=14) score. PMID:17653757

  3. Recommendations for Standardizing Validation Procedures Assessing Physical Activity of Older Persons by Monitoring Body Postures and Movements

    PubMed Central

    Lindemann, Ulrich; Zijlstra, Wiebren; Aminian, Kamiar; Chastin, Sebastien F.M.; de Bruin, Eling D.; Helbostad, Jorunn L.; Bussmann, Johannes B.J.

    2014-01-01

    Physical activity is an important determinant of health and well-being in older persons and contributes to their social participation and quality of life. Hence, assessment tools are needed to study this physical activity in free-living conditions. Wearable motion sensing technology is used to assess physical activity. However, there is a lack of harmonisation of validation protocols and applied statistics, which make it hard to compare available and future studies. Therefore, the aim of this paper is to formulate recommendations for assessing the validity of sensor-based activity monitoring in older persons with focus on the measurement of body postures and movements. Validation studies of body-worn devices providing parameters on body postures and movements were identified and summarized and an extensive inter-active process between authors resulted in recommendations about: information on the assessed persons, the technical system, and the analysis of relevant parameters of physical activity, based on a standardized and semi-structured protocol. The recommended protocols can be regarded as a first attempt to standardize validity studies in the area of monitoring physical activity. PMID:24434881

  4. Postural illusions experienced during Z-axis recumbent rotation and their dependence upon somatosensory stimulation of the body surface

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1978-01-01

    A blindfolded recumbent subject experiences a variety of postural illusions when rotated about his Z axis. Initially, during the acceleratory phase of rotation, turning about his Z axis is experienced; but, as rotary velocity increases, a spiraling of the body outward in the direction opposite to true rotation is experienced as well. Above 15-20 rpm, only orbital motion of the body is experienced, with the subject feeling that he is always facing in the same direction. One cycle of the apparent orbit is completed each time the subject actually rotates 360 deg. The reverse sequence of illusory motion is experienced during deceleration. The illusory motion all subjects experience during Z-axis recumbent rotation is shown to depend upon the touch and pressure stimulation of the body surface generated by contact forces of support.

  5. Fluid Shifts: Otoacoustical Emission Changes in Response to Posture and Lower Body Negative Pressure

    NASA Technical Reports Server (NTRS)

    Melgoza, R.; Kemp, D.; Ebert, D.; Danielson, R.; Stenger, M.; Hargens, A.; Dulchavsky, S.

    2016-01-01

    INTRODUCTION: The purpose of the NASA Fluid Shifts Study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to correlate these findings with vision changes and other elements of the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. Due to the invasive nature of direct measures of ICP, a noninvasive technique of monitoring ICP is desired for use during spaceflight. The phase angle and amplitude of otoacoustic emissions (OAEs) have been shown to be sensitive to posture change and ICP (1, 2), therefore use of OAEs is an attractive option. OAEs are low-level sounds produced by the sensory cells of the cochlea in response to auditory stimulation. These sounds travel peripherally from the cochlea, through the oval window, to the ear canal where they can be recorded. OAE transmission is sensitive to changes in the stiffness of the oval window, occurring as a result of changes in cochlear pressure. Increased stiffness of the oval window largely affects the transmission of sound from the cochlea at frequencies between 800 Hz and 1600 Hz. OAEs can be self-recorded in the laboratory or on the ISS using a handheld device. Our primary objectives regarding OAE measures in this experiment were to 1) validate this method during preflight testing of each crewmember (while sitting, supine and in head-down tilt position), and 2) determine if OAE measures (and presumably ICP) are responsive to lower body negative pressure and to spaceflight. METHODS: Distortion-product otoacoustic emissions (DPOAEs) and transient evoked otoacoustic emissions (TEOAEs) were recorded preflight using the Otoport Advance OAE system (Otodynamics Ltd., Hatfield, UK). Data were collected in four conditions (seated

  6. Myoelectric Response of Back Muscles to Vertical Random Whole-Body Vibration with Different Magnitudes at Different Postures

    NASA Astrophysics Data System (ADS)

    BLÜTHNER, R.; SEIDEL, H.; HINZ, B.

    2002-05-01

    Back muscle forces contribute essentially to the whole-body vibration-induced spinal load. The electromyogram (EMG) can help to estimate these forces during whole-body vibration (WBV). Thirty-eight subjects were exposed to identical random low-frequency WBV (0·7, 1·0 and 1·4 m/s-2 r.m.s. weighted acceleration) at a relaxed, erect and bent forward postures. The acceleration of the seat and the force between the seat and the buttocks were measured. Six EMGs were derived from the right side of the m. trapezius pars descendens, m. ileocostalis lumborum pars thoracis, m. ileocostalis lumborum pars lumborum; m. longissimus thoracis pars thoracis, m. longissimus thoracis pars lumborum, and lumbar multifidus muscle. All data were filtered for anti-aliasing and sampled with 1000 Hz. Artefacts caused by the ECG in the EMG were identified and eliminated in the time domain using wavelets. The individually rectified and normalized EMGs were averaged across subjects. The EMGs without WBV exhibited characteristic patterns for the three postures examined. The coherence and transfer functions indicated characteristic myoelectric responses to random WBV with several effects of posture and WBV magnitude. A comprehensive set of transfer functions from the seat acceleration or the mean normalized input force to the mean processed EMG was presented.The results can be used for the development of more sophisticated models with a separate control of various back muscle groups. However, the EMG-force relationship under dynamic conditions needs to be examined in more detail before the results can be implemented. Since different reflex mechanisms depending on the frequency of WBV are linked with different types of active muscle fibres, various time delays between the EMG and muscle force may be necessary.

  7. Cross-cultural examination of the semantic dimensions of body postures.

    PubMed

    Kudoh, T; Matsumoto, D

    1985-06-01

    In two studies, we examined the cross-cultural validity of the dimensional structures with which postures are judged. In Study 1, 686 Japanese subjects rated 40 posture expressions on sixteen 5-point semantic differential scale items. Subjects inferred an encoder's attitude towards oneself (i.e., the decoding subject) in hypothetical dyadic situations. A principal-component factor analysis yielded evidence for three independent dimensions resembling those proposed by Schlosberg (1954), Osgood (1966), and Williams and Sundene (1965). These three factors were named self-fulfillment, interpersonal positiveness, and interpersonal consciousness. In Study 2, 336 Japanese students again rated the 40 posture expressions on the sixteen 5-point differential items, but an attempt was made to control for the status of the hypothetical encoder. The results of this study essentially replicated those of Study 1. One interesting finding was that although we found the same factors as those found in studies conducted in the West, the order of the factors in our studies was the reverse of the order found in these previous studies. The findings are discussed in terms of proposed cultural differences in the maintenance of human relations. PMID:4020606

  8. Evidence for subjective values guiding posture and movement coordination in a free-endpoint whole-body reaching task

    PubMed Central

    Hilt, P. M.; Berret, B.; Papaxanthis, C.; Stapley, P. J.; Pozzo, T.

    2016-01-01

    When moving, humans must overcome intrinsic (body centered) and extrinsic (target-related) redundancy, requiring decisions when selecting one motor solution among several potential ones. During classical reaching studies the position of a salient target determines where the participant should reach, constraining the associated motor decisions. We aimed at investigating implicit variables guiding action selection when faced with the complexity of human-environment interaction. Subjects had to perform whole body reaching movements towards a uniform surface. We observed little variation in the self-chosen motor strategy across repeated trials while movements were variable across subjects being on a continuum from a pure ‘knee flexion’ associated with a downward center of mass (CoM) displacement to an ‘ankle dorsi-flexion’ associated with an upward CoM displacement. Two optimality criteria replicated these two strategies: a mix between mechanical energy expenditure and joint smoothness and a minimization of the amount of torques. Our results illustrate the presence of idiosyncratic values guiding posture and movement coordination that can be combined in a flexible manner as a function of context and subject. A first value accounts for the reach efficiency of the movement at the price of selecting possibly unstable postures. The other predicts stable dynamic equilibrium but requires larger energy expenditure and jerk. PMID:27053508

  9. Evidence for subjective values guiding posture and movement coordination in a free-endpoint whole-body reaching task.

    PubMed

    Hilt, P M; Berret, B; Papaxanthis, C; Stapley, P J; Pozzo, T

    2016-01-01

    When moving, humans must overcome intrinsic (body centered) and extrinsic (target-related) redundancy, requiring decisions when selecting one motor solution among several potential ones. During classical reaching studies the position of a salient target determines where the participant should reach, constraining the associated motor decisions. We aimed at investigating implicit variables guiding action selection when faced with the complexity of human-environment interaction. Subjects had to perform whole body reaching movements towards a uniform surface. We observed little variation in the self-chosen motor strategy across repeated trials while movements were variable across subjects being on a continuum from a pure 'knee flexion' associated with a downward center of mass (CoM) displacement to an 'ankle dorsi-flexion' associated with an upward CoM displacement. Two optimality criteria replicated these two strategies: a mix between mechanical energy expenditure and joint smoothness and a minimization of the amount of torques. Our results illustrate the presence of idiosyncratic values guiding posture and movement coordination that can be combined in a flexible manner as a function of context and subject. A first value accounts for the reach efficiency of the movement at the price of selecting possibly unstable postures. The other predicts stable dynamic equilibrium but requires larger energy expenditure and jerk. PMID:27053508

  10. Effect of an Ergonomics-Based Educational Intervention Based on Transtheoretical Model in Adopting Correct Body Posture Among Operating Room Nurses

    PubMed Central

    Moazzami, Zeinab; Dehdari, Tahere; Taghdisi, Mohammad Hosein; Soltanian, Alireza

    2016-01-01

    Background: One of the preventive strategies for chronic low back pain among operating room nurses is instructing proper body mechanics and postural behavior, for which the use of the Transtheoretical Model (TTM) has been recommended. Methods: Eighty two nurses who were in the contemplation and preparation stages for adopting correct body posture were randomly selected (control group = 40, intervention group = 42). TTM variables and body posture were measured at baseline and again after 1 and 6 months after the intervention. A four-week ergonomics educational intervention based on TTM variables was designed and conducted for the nurses in the intervention group. Results: Following the intervention, a higher proportion of nurses in the intervention group moved into the action stage (p < 0.05). Mean scores of self-efficacy, pros, experimental processes and correct body posture were also significantly higher in the intervention group (p < 0.05). No significant differences were found in the cons and behavioral processes, except for self-liberation, between the two groups (p > 0.05) after the intervention. Conclusions: The TTM provides a suitable framework for developing stage-based ergonomics interventions for postural behavior.

  11. What is brain fog? An evaluation of the symptom in postural tachycardia syndrome

    PubMed Central

    Ross, Amanda J.; Medow, Marvin S.; Rowe, Peter C.

    2013-01-01

    Purpose Adolescents with postural tachycardia syndrome (POTS) often experience ill-defined cognitive impairment referred to by patients as “brain fog.” The objective of this study was to evaluate the symptom of brain fog as a means of gaining further insight into its etiology and potential palliative interventions. Methods Eligible subjects who reported having been diagnosed with POTS were recruited from social media web sites. Subjects were asked to complete a 38-item questionnaire designed for this study, and the Wood mental fatigue inventory (WMFI). Results Responses were received from 138 subjects with POTS (88 % female), ranging in age from 14 to 29 years; 132 subjects reported brain fog. WMFI scores correlated with brain fog frequency and severity (P < 0.001). The top ranked descriptors of brain fog were “forgetful,” “cloudy,” and “difficulty focusing, thinking and communicating.” The most frequently reported brain fog triggers were fatigue (91 %), lack of sleep (90 %), prolonged standing (87 %), dehydration (86 %), and feeling faint (85 %). Although aggravated by upright posture, brain fog was reported to persist after assuming a recumbent posture. The most frequently reported interventions for the treatment of brain fog were intravenous saline (77 %), stimulant medications (67 %), salt tablets (54 %), intra-muscular vitamin B-12 injections (48 %), and midodrine (45 %). Conclusions Descriptors for “brain fog” are most consistent with it being a cognitive complaint. Factors other than upright posture may play a role in the persistence of this symptom. Subjects reported a number of therapeutic interventions for brain fog not typically used in the treatment of POTS that may warrant further investigation. PMID:23999934

  12. Decorticate posture

    MedlinePlus

    Decorticate posture is an abnormal posturing in which a person is stiff with bent arms, clenched fists, and legs ... Decorticate posture is a sign of damage to the nerve pathway between the brain and spinal cord. Although it ...

  13. Embodying approach motivation: body posture influences startle eyeblink and event-related potential responses to appetitive stimuli.

    PubMed

    Price, Tom F; Dieckman, Laurtiz W; Harmon-Jones, Eddie

    2012-07-01

    Past research suggested that the motivational significance of images influences reflexive and electrocortical responses to those images (Briggs and Martin, 2009; Gard et al., 2007; Schupp et al., 2004), with erotica often exerting the largest effects for appetitive pictures (Grillon and Baas, 2003; Weinberg and Hajcak, 2010). This research paradigm, however, compares responses to different types of images (e.g., erotica vs. exciting sports scenes). This past motivational interpretation, therefore, would be further supported by experiments wherein appetitive picture content is held constant and motivational states are manipulated with a different method. In the present experiment, we tested the hypothesis that changes in physical postures associated with approach motivation influences reflexive and electrocortical responses to appetitive stimuli. Past research has suggested that bodily manipulations (e.g., facial expressions) play a role in emotion- and motivation-related physiology (Ekman and Davidson, 1993; Levenson et al., 1990). Extending these results, leaning forward (associated with a heightened urge to approach stimuli) relative to reclining (associated with less of an urge to approach stimuli) caused participants to have smaller startle eyeblink responses during appetitive, but not neutral, picture viewing. Leaning relative to reclining also caused participants to have larger LPPs to appetitive but not neutral pictures, and influenced ERPs as early as 100ms into stimulus viewing. This evidence suggests that body postures associated with approach motivation causally influence basic reflexive and electrocortical reactions to appetitive emotive stimuli. PMID:22522185

  14. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle.

    PubMed

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-01

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm. PMID:25479377

  15. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle

    NASA Astrophysics Data System (ADS)

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-01

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver’s seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.

  16. Spatial cognition, body representation and affective processes: the role of vestibular information beyond ocular reflexes and control of posture

    PubMed Central

    Mast, Fred W.; Preuss, Nora; Hartmann, Matthias; Grabherr, Luzia

    2014-01-01

    A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: (1) Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths), body rotation (changing the input from the semicircular canals), in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. (2) Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. (3) Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are—at least in part—associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood. PMID:24904327

  17. Wide Eyes and Drooping Arms: Adult-Like Congruency Effects Emerge Early in the Development of Sensitivity to Emotional Faces and Body Postures

    ERIC Educational Resources Information Center

    Mondloch, Catherine J.; Horner, Matthew; Mian, Jasmine

    2013-01-01

    Adults' and 8-year-old children's perception of emotional faces is disrupted when faces are presented in the context of incongruent body postures (e.g., when a sad face is displayed on a fearful body) if the two emotions are highly similar (e.g., sad/fear) but not if they are highly dissimilar (e.g., sad/happy). The current research investigated…

  18. The effect of body weight and posture on acceleration of platform vibrating plate

    NASA Astrophysics Data System (ADS)

    Kozłowska, Roksana; Niewiadomski, Wiktor; Leonarcik, Rafał; Żyliński, Marek; Cybulski, Gerard

    2013-10-01

    The purpose of this study was to examine the effect the body weight and position on the mechanical output of vibration platform measured as maximal acceleration of vertical sinusoidal oscillations of vibrating plate. We examined five subjects applying the frequencies 20, 25, 30, 35, 40 Hz and different amplifier's voltage output fed to mechanical vibration generator. We found that at given frequency and voltage the greatest vibration of vibrating plate has been observed when subject stood on the forefoot; this effect was more distinctly pronounced at lower frequencies. The effect of body mass was less consistently evident. The effect of foot placement on the oscillations of vibration platform may be caused by different absorption of the mechanical energy by the body. We believe that in order to explain effect observed a mathematical model which accounts for body position on absorption of vibration along the trunk and mechanical properties of the platform should be constructed by combining already existing models of human body.

  19. Effects of a Pilates exercise program on muscle strength, postural control and body composition: results from a pilot study in a group of post-menopausal women.

    PubMed

    Bergamin, M; Gobbo, S; Bullo, V; Zanotto, T; Vendramin, B; Duregon, F; Cugusi, L; Camozzi, V; Zaccaria, M; Neunhaeuserer, D; Ermolao, A

    2015-12-01

    Participation in exercise programs is heartily recommended for older adults since the level of physical fitness directly influences functional independence. The aim of this present study was to investigate the effects of supervised Pilates exercise training on the physical function, hypothesizing that a period of Pilates exercise training (PET) can increase overall muscle strength, body composition, and balance, during single and dual-task conditions, in a group of post-menopausal women. Twenty-five subjects, aged 59 to 66 years old, were recruited. Eligible participants were assessed prior and after 3 months of PET performed twice per week. Muscular strength was evaluated with handgrip strength (HGS) test, 30-s chair sit-to-stand test (30CST), and abdominal strength (AST) test. Postural control and dual-task performance were measured through a stabilometric platform while dynamic balance with 8 ft up and go test. Finally, body composition was assessed by means of dual-energy X-ray absorptiometry. Statistically significant improvements were detected on HGS (+8.22%), 30CST (+23.41%), 8 ft up and go test (-5.95%), AST (+30.81%), medio-lateral oscillations in open eyes and dual-task condition (-22.03% and -10.37%). Pilates was effective in increasing upper body, lower body, and abdominal muscle strength. No changes on body composition were detected. Results on this investigation indicated also that 12-week of mat Pilates is not sufficient to determine a clinical meaningful improvement on static balance in single and dual-task conditions. PMID:26578458

  20. Power absorbed during whole-body fore-and-aft vibration: Effects of sitting posture, backrest, and footrest

    NASA Astrophysics Data System (ADS)

    Nawayseh, Naser; Griffin, Michael J.

    2012-01-01

    Although the discomfort or injury associated with whole-body vibration cannot be predicted directly from the power absorbed during exposure to vibration, the absorbed power may contribute to understanding of the biodynamics involved in such responses. From measurements of force and acceleration at the seat, the feet, and the backrest, the power absorbed at these three locations was calculated for subjects sitting in four postures (feet hanging, maximum thigh contact, average thigh contact, and minimum thigh contact) both with and without a rigid vertical backrest while exposed to four magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 rms) of random fore-and-aft vibration. The power absorbed by the body at the supporting seat surface when there was no backrest showed a peak around 1 Hz and another peak between 3 and 4 Hz. Supporting the back with the backrest decreased the power absorbed at the seat at low frequencies but increased the power absorbed at high frequencies. Foot support influenced both the magnitude and the frequency of the peaks in the absorbed power spectra as well as the total absorbed power. The measurements of absorbed power are consistent with backrests being beneficial during exposure to low frequency fore-and-aft vibration but detrimental with high frequency fore-and-aft vibration.

  1. The Evaluation of Head and Craniocervical Posture among Patients with and without Temporomandibular Joint Disorders- A Comparative Study

    PubMed Central

    Saddu, Shweta Channavir; Dyasanoor, Sujatha; Ravi, Beena Varma

    2015-01-01

    Introduction Temporomandibular disorders (TMD) are the most common non-dental cause of orofacial pain with a multifactorial aetiology. Aim To evaluate the head and craniocervical posture between individuals with and without TMD and its sub types by photographic and radiographic method. Materials and Methods Thirty four TMD patients diagnosed according to Research Diagnostic Criteria for TMD’s (RDC/TMD) and were divided into 2 groups: Group I (muscle disorder), Group II (disc displacement). Control group comprised of 34 age and sex matched subjects without TMD. Lateral view photographs were taken and the head posture angle was measured. Craniocervical posture was assessed on lateral skull radiograph with two angles (Craniocervical Angle, Cervical Curvature Angle) and two distances (Suboccipital Space, Atlas-Axis Distance). To compare the results, t-test was used with significance level of 0.05. Results Head posture showed no statistical significant difference (p > 0.05) between Group I, II and control group in both photographic and radiographic methods. The cervical curvature angle showed significant difference (p = 0.045) in Group I only. Atlas-Axis Distance was statistically significant in Group II (p = 0.001). Conclusion The present study confirmed that there is a negative association of head posture and TMD whereas, cervical lordosis was present in Group I only. PMID:26436048

  2. Postural Control during Upper Body Locomotor-Like Movements: Similar Synergies Based on Dissimilar Muscle Modes

    PubMed Central

    Danna-Dos-Santos, Alessander; Shapkova, Elena Yu.; Shapkova, Alexandra L.; Degani, Adriana M.; Latash, Mark L.

    2009-01-01

    We studied the organization of leg and trunk muscles into groups (M-modes) and co-variation of M-mode involvement (M-mode synergies) during whole-body tasks associated with large variations of the moment of force about the vertical body axis. Our major questions were: (1) Can muscle activation patterns during such tasks be described with a few M-modes common across tasks and subjects? (2) Do these modes form the basis for synergies stabilizing MZ time pattern? (3) Will this organization differ between an explicit body rotation task and a task associated with locomotor-like alternating arm movements? Healthy subjects stood barefoot on the force platform and performed two motor tasks while paced by the metronome at 0.7, 1.0, and 1.4 Hz: Cyclic rotation of the upper body about the vertical body axis (body rotation task), and alternating rhythmic arm movements imitating those during running or quick walking (arm movement task). Principal component analysis was used to identify three M-modes within the space of integrated indices of muscle activity. The M-mode vectors showed clustering neither across subjects nor across frequencies. Variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect the average value of MZ shift ("good variance") and the other that did. An index was computed reflecting the relative amount of the "good variance"; positive values of this index have been interpreted as reflecting a multi-M-mode synergy stabilizing the MZ trajectory. On average, the index was positive for both tasks and across all frequencies studied. However, the magnitude of the index was smaller for the intermediate frequency (1 Hz). The results show that the organization of muscles into groups during relatively complex whole-body tasks can differ significantly across both task variations and subjects. Nevertheless, the central nervous system seems to be able to build MZ stabilizing synergies based on different sets of M

  3. Posture modulates implicit hand maps.

    PubMed

    Longo, Matthew R

    2015-11-01

    Several forms of somatosensation require that afferent signals be informed by stored representations of body size and shape. Recent results have revealed that position sense relies on a highly distorted body representation. Changes of internal hand posture produce plastic alterations of processing in somatosensory cortex. This study therefore investigated how such postural changes affect implicit body representations underlying position sense. Participants localised the knuckles and tips of each finger in external space in two postures: the fingers splayed (Apart posture) or pressed together (Together posture). Comparison of the relative locations of the judgments of each landmark were used to construct implicit maps of represented hand structure. Spreading the fingers apart produced increases in the implicit representation of hand size, with no apparent effect on hand shape. Thus, changes of internal hand posture produce rapid modulation of how the hand itself is represented, paralleling the known effects on somatosensory cortical processing. PMID:26117153

  4. Automatic and Interactive Key Posture Design by Combing the PIK with Parametric Posture Splicing

    NASA Astrophysics Data System (ADS)

    Li, Shilei; Wu, Bing; Liang, Jiahong; Su, Jiongming

    Key posture design is commonly needed in computer animation. This paper presents an automatic and interactive whole body posture designing technique by combining the PIK (prioritized inverse kinematics) with the proposed parametric human posture splicing technique. The key feature of PIK is that the user can design a posture by adding high level constraints with different priorities. However, the PIK is essentially a numerical IK algorithm which relies on the iterative optimization starting from a good enough initial posture to get the final result. To speed up the running efficiency and ensure the lifelikeness of the final posture, the parametric posture splicing technique is proposed to generate the initial guess of the PIK. According to the set of the high level constraints, the whole body is divided into some partial parts, whose postures are then generated by the parametric posture synthesis from a single posture database. Then an initial posture guess with some main characteristics of the finally acceptable posture can be generated approximately by splicing these partial body postures together. Starting from this initial guess and with all constraints considered at different priority levels, the PIK can be initialized with a bias defined by this particularly initial guess and iterated step by step to get a final posture. The total process of the whole body posture generation is automatic and interactive. The experimental results show that this combination method can not only improve the computation efficiency of the PIK but also can simultaneously ensure the naturalness of the final posture.

  5. Evaluation of Cranio-cervical Posture in Children with Bruxism Before and After Bite Plate Therapy: A Pilot Project

    PubMed Central

    Bortoletto, Carolina Carvalho; Cordeiro da Silva, Fernanda; Silva, Paula Fernanda da Costa; Leal de Godoy, Camila Haddad; Albertini, Regiane; Motta, Lara J; Mesquita-Ferrari, Raquel Agnelli; Fernandes, Kristianne Porta Santos; Romano, Renata; Bussadori, Sandra Kalil

    2014-01-01

    [Purpose] The aim of the present study was to evaluate the effect of a biteplate on the cranio-cervical posture of children with bruxism. [Subjects and Methods] Twelve male and female children aged six to 10 years with a diagnosis of bruxism participated in this study. The children used a biteplate during sleep for 30 days and were submitted to three postural evaluations: initial, immediately following placement of the biteplate, and at the end of treatment. Posture analysis was performed with the aid of the Alcimagem® 2.1 program. Data analysis (IBM SPSS Statistics 2.0) involved descriptive statistics and the Student’s t-test. [Results] A statistically significant difference was found between the initial cranio-cervical angle and the angle immediately following placement of the biteplate. However, no statistically significant difference was found between the initial angle and the angle after one month of biteplate usage. [Conclusion] No significant change in the cranio-cervical posture of the children was found one month of biteplate usage. However, a reduction occurred in the cranio-cervical angle when the biteplate was in position. PMID:25140110

  6. The effects of working height and manipulated weights on subjective strain, body posture and muscular activity of milking parlor operatives--laboratory study.

    PubMed

    Jakob, Martina; Liebers, Falk; Behrendt, Sylvia

    2012-07-01

    The incidence of work-related musculoskeletal disorders among milking parlor operatives has increased while milking parlors were getting bigger. At the same time parlor design was improved regarding the physical load as well as body postures. In contrast to former studies on workload in parlor milking this project was designed and performed as an experimental study in a laboratory setting including 6 female subjects. Motion analysis and psycho-physiological analysis (EMG, heart rate, subjective perceived strain index) were carried out. Intra-individual comparisons were made for the different settings using general linear models for repeated measurements. The effects of working height and weight of milking unit during parlor milking were investigated regarding the impact on muscular load and body posture. The results showed that the optimal working height for attaching the cluster is having the teats at shoulder level of the parlor operative. Another important workload reduction was achieved by reducing the weight of the milking cluster. The named discomfort, localized fatigue and the body posture analysis provide evidence that the changes in modern milking parlors due to mechanization still bear the risk of overburden for the worker. PMID:22153204

  7. Emotional Voice and Emotional Body Postures Influence Each Other Independently of Visual Awareness

    PubMed Central

    Stienen, Bernard M. C.; Tanaka, Akihiro; de Gelder, Beatrice

    2011-01-01

    Multisensory integration may occur independently of visual attention as previously shown with compound face-voice stimuli. We investigated in two experiments whether the perception of whole body expressions and the perception of voices influence each other when observers are not aware of seeing the bodily expression. In the first experiment participants categorized masked happy and angry bodily expressions while ignoring congruent or incongruent emotional voices. The onset between target and mask varied from −50 to +133 ms. Results show that the congruency between the emotion in the voice and the bodily expressions influences audiovisual perception independently of the visibility of the stimuli. In the second experiment participants categorized the emotional voices combined with masked bodily expressions as fearful or happy. This experiment showed that bodily expressions presented outside visual awareness still influence prosody perception. Our experiments show that audiovisual integration between bodily expressions and affective prosody can take place outside and independent of visual awareness. PMID:22003396

  8. Emotional voice and emotional body postures influence each other independently of visual awareness.

    PubMed

    Stienen, Bernard M C; Tanaka, Akihiro; de Gelder, Beatrice

    2011-01-01

    Multisensory integration may occur independently of visual attention as previously shown with compound face-voice stimuli. We investigated in two experiments whether the perception of whole body expressions and the perception of voices influence each other when observers are not aware of seeing the bodily expression. In the first experiment participants categorized masked happy and angry bodily expressions while ignoring congruent or incongruent emotional voices. The onset between target and mask varied from -50 to +133 ms. Results show that the congruency between the emotion in the voice and the bodily expressions influences audiovisual perception independently of the visibility of the stimuli. In the second experiment participants categorized the emotional voices combined with masked bodily expressions as fearful or happy. This experiment showed that bodily expressions presented outside visual awareness still influence prosody perception. Our experiments show that audiovisual integration between bodily expressions and affective prosody can take place outside and independent of visual awareness. PMID:22003396

  9. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios.

    PubMed

    Schmid, Gernot; Hirtl, Rene

    2016-06-21

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the

  10. On the importance of body posture and skin modelling with respect to in situ electric field strengths in magnetic field exposure scenarios

    NASA Astrophysics Data System (ADS)

    Schmid, Gernot; Hirtl, Rene

    2016-06-01

    The reference levels and maximum permissible exposure values for magnetic fields that are currently used have been derived from basic restrictions under the assumption of upright standing body models in a standard posture, i.e. with arms laterally down and without contact with metallic objects. Moreover, if anatomical modelling of the body was used at all, the skin was represented as a single homogeneous tissue layer. In the present paper we addressed the possible impacts of posture and skin modelling in scenarios of exposure to a 50 Hz uniform magnetic field on the in situ electric field strength in peripheral tissues, which must be limited in order to avoid peripheral nerve stimulation. We considered different body postures including situations where body parts form large induction loops (e.g. clasped hands) with skin-to-skin and skin-to-metal contact spots and compared the results obtained with a homogeneous single-layer skin model to results obtained with a more realistic two-layer skin representation consisting of a low-conductivity stratum corneum layer on top of a combined layer for the cellular epidermis and dermis. Our results clearly indicated that postures with loops formed of body parts may lead to substantially higher maximum values of induced in situ electric field strengths than in the case of standard postures due to a highly concentrated current density and in situ electric field strength in the skin-to-skin and skin-to-metal contact regions. With a homogeneous single-layer skin, as is used for even the most recent anatomical body models in exposure assessment, the in situ electric field strength may exceed the basic restrictions in such situations, even when the reference levels and maximum permissible exposure values are not exceeded. However, when using the more realistic two-layer skin model the obtained in situ electric field strengths were substantially lower and no violations of the basic restrictions occurred, which can be explained by the

  11. Skeletal and body composition evaluation

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.

    1983-01-01

    Research on radiation detectors for absorptiometry; analysis of errors affective single photon absorptiometry and development of instrumentation; analysis of errors affecting dual photon absorptiometry and development of instrumentation; comparison of skeletal measurements with other techniques; cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals; studies of postmenopausal osteoporosis; organization of scientific meetings and workshops on absorptiometric measurement; and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  12. The altered vestibular-evoked myogenic and whole-body postural responses in old men during standing.

    PubMed

    Dalton, Brian H; Blouin, Jean-Sébastien; Allen, Matti D; Rice, Charles L; Inglis, J Timothy

    2014-12-01

    Age-related decrements within the sensorimotor system may lead to alterations and impairments in postural control, but a link to a vestibular mechanism is unclear. The purpose of the present study was to determine whether vestibular control of standing balance is altered with adult aging. Eight old (~77 years) and eight young (~26 years) men stood without aids on a commercially available force plate with their head turned to the right, arms relaxed at their sides and eyes closed while receiving stochastic vestibular stimuli (0-25 Hz, root mean square amplitude=0.85 mA). Surface electromyography signals were sampled from the left soleus, medial gastrocnemius and tibialis anterior. Whole-body balance, as measured by the anteroposterior forces and muscle responses, was quantified using frequency (coherence and gain functions) and time (cumulant density function) domain correlations with the vestibular stimuli. Old men exhibited a compressed frequency response of the vestibular reflex with a greater relative gain at lower frequencies for the plantar flexors and anteroposterior forces than young. In the time domain, the peak amplitude of the short latency response was 45-64% lower for the plantar flexors and anteroposterior forces (p≤0.05) in the old than young, but not for the tibialis anterior (p=0.21). The old men had a 190% and 31% larger medium latency response for only the tibialis anterior and anteroposterior forces, respectively, than young (p≤0.01). A strong correlation between the tibialis anterior and the force response was also detected (r=0.80, p<0.01). In conclusion, net vestibular-evoked muscle responses led to smaller short and larger medium latency peak amplitudes in anteroposterior forces for the old. The present results likely resulted from a compressed and lower operational frequency range of the vestibular reflexes and the activation of additional muscles (tibialis anterior) to maintain standing balance. PMID:25456846

  13. Assessment of postural balance function.

    PubMed

    Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz

    2009-01-01

    Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers. PMID:20698188

  14. Galvanic vestibular stimulation for analysis of postural adaptation and stability.

    PubMed

    Johansson, R; Magnusson, M; Fransson, P A

    1995-03-01

    Human postural dynamics was investigated in 12 normal subjects by means of a force platform recording body sway, induced by bipolar transmastoid galvanic stimulation of the vestibular nerve and labyrinth. The model adopted was that of an inverted segmented pendulum, the dynamics of postural control being assumed to be reflected in the stabilizing forces actuated by the feet as a result of complex muscular activity subject to state feedback of body sway and position. Time-series analysis demonstrates that a transfer function from stimulus to sway-force response with specific parameters can be identified. In addition, adaptation to the vestibular stimulus is demonstrated to exist, and we describe this phenomenon using quantification in terms of a postural adaptation time constant in the range of 40-50 s. The results suggest means to evaluate adaptive behavior and postural control in the erect human being which may be useful in the rehabilitation of individuals striving to regain upright stance. PMID:7698784

  15. Body image inflexibility mediates the relationship between body image evaluation and maladaptive body image coping strategies.

    PubMed

    Mancuso, Serafino G

    2016-03-01

    Body image inflexibility, the unwillingness to experience negative appearance-related thoughts and emotions, is associated with negative body image and eating disorder symptoms. The present study investigated whether body image inflexibility mediated the relationship between body image evaluation and maladaptive body image coping strategies (appearance-fixing and experiential avoidance) in a college and community sample comprising 156 females aged 18-51 years (M=22.76, SD=6.96). Controlling for recruitment source (college vs. community), body image inflexibility fully mediated the relationship between body image evaluation and maladaptive body image coping strategies. Results indicated that an unwillingness to experience negative appearance-related thoughts and emotions is likely responsible for negative body image evaluation's relationship to appearance-fixing behaviours and experiential avoidance. Findings support extant evidence that interventions that explicitly target body image inflexibility, such as Acceptance and Commitment Therapy, may have utility in treating body dissatisfaction in nonclinical populations. PMID:26595857

  16. Evaluation and management of corneal foreign bodies.

    PubMed

    Keeney, A H

    1975-10-01

    Insults from corneal foreigh bodies range from trivial windblown debris through destructive chemicals, penetrating wounds, and severe secondary infection. History and preliminary examination should begin concurrently, particularly in the case of chemically active compounds. Needed auxiliaries are topical anesthetics, oblique light, magnification, sterile sodium fluorescein for diagnostic staining of surface breaks, removal instruments, and topical antibiotics to reduce the potential of secondary infection. A steadied, seated position for the physician, resting posture with hands supported on the face, and an oblique approach tend to reduce the likelihood of unwanted perforations or scars. An irrigating stream of sterile saline delivered through a 25 gauge short needle on a 5 cc syringe will dislodge most recent foreign bodies. The sterile needle is also available as a spud. Corneal thickness varies from slightly above 1 mm in the periphery to less than 0.5 mm centrally. Therefore, it is essential to have clear visualization of the foreign body in relation to corneal depth. Dislodgment into the anterior chamber or incidental perforation of the cornea generally require hospitalization, intensive antibiotics, and steroid therapy. PMID:1206368

  17. Evaluation of Two New Indices of Blood Pressure Variability Using Postural Change in Older Fallers

    PubMed Central

    Goh, Choon-Hian; Ng, Siew-Cheok; Kamaruzzaman, Shahrul B.; Chin, Ai-Vyrn; Poi, Philip J. H.; Chee, Kok Han; Imran, Z. Abidin; Tan, Maw Pin

    2016-01-01

    Abstract To evaluate the utility of blood pressure variability (BPV) calculated using previously published and newly introduced indices using the variables falls and age as comparators. While postural hypotension has long been considered a risk factor for falls, there is currently no documented evidence on the relationship between BPV and falls. A case-controlled study involving 25 fallers and 25 nonfallers was conducted. Systolic (SBPV) and diastolic blood pressure variability (DBPV) were assessed using 5 indices: standard deviation (SD), standard deviation of most stable continuous 120 beats (staSD), average real variability (ARV), root mean square of real variability (RMSRV), and standard deviation of real variability (SDRV). Continuous beat-to-beat blood pressure was recorded during 10 minutes’ supine rest and 3 minutes’ standing. Standing SBPV was significantly higher than supine SBPV using 4 indices in both groups. The standing-to-supine-BPV ratio (SSR) was then computed for each subject (staSD, ARV, RMSRV, and SDRV). Standing-to-supine ratio for SBPV was significantly higher among fallers compared to nonfallers using RMSRV and SDRV (P = 0.034 and P = 0.025). Using linear discriminant analysis (LDA), 3 indices (ARV, RMSRV, and SDRV) of SSR SBPV provided accuracies of 61.6%, 61.2%, and 60.0% for the prediction of falls which is comparable with timed-up and go (TUG), 64.4%. This study suggests that SSR SBPV using RMSRV and SDRV is a potential predictor for falls among older patients, and deserves further evaluation in larger prospective studies. PMID:27175670

  18. Evaluation of Body Composition: Why and How?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of human body composition in vivo remains a critical component in the assessment of nutritional status of an individual.Whereas traditional measurements of standing height and body weight provide information on body mass index and, hence, the risk of some chronic diseases, advanced techno...

  19. Real-time posture reconstruction for Microsoft Kinect.

    PubMed

    Shum, Hubert P H; Ho, Edmond S L; Jiang, Yang; Takagi, Shu

    2013-10-01

    The recent advancement of motion recognition using Microsoft Kinect stimulates many new ideas in motion capture and virtual reality applications. Utilizing a pattern recognition algorithm, Kinect can determine the positions of different body parts from the user. However, due to the use of a single-depth camera, recognition accuracy drops significantly when the parts are occluded. This hugely limits the usability of applications that involve interaction with external objects, such as sport training or exercising systems. The problem becomes more critical when Kinect incorrectly perceives body parts. This is because applications have limited information about the recognition correctness, and using those parts to synthesize body postures would result in serious visual artifacts. In this paper, we propose a new method to reconstruct valid movement from incomplete and noisy postures captured by Kinect. We first design a set of measurements that objectively evaluates the degree of reliability on each tracked body part. By incorporating the reliability estimation into a motion database query during run time, we obtain a set of similar postures that are kinematically valid. These postures are used to construct a latent space, which is known as the natural posture space in our system, with local principle component analysis. We finally apply frame-based optimization in the space to synthesize a new posture that closely resembles the true user posture while satisfying kinematic constraints. Experimental results show that our method can significantly improve the quality of the recognized posture under severely occluded environments, such as a person exercising with a basketball or moving in a small room. PMID:23981562

  20. The interaction of wearing multifocal lenses with head posture and pain.

    PubMed

    Willford, C H; Kisner, C; Glenn, T M; Sachs, L

    1996-03-01

    Chronic placement of the head anterior to the body's center of gravity can be a component in the development of neurovascular and musculoskeletal dysfunction. In order to evaluate and treat dysfunction and pain, physical therapists need to be aware of variables that can affect head position. The objectives of this study were to investigate the interaction between wearing multifocal lenses and head posture; to determine the interaction of forward head posture and upper quarter pain; and to determine the intratester reliability of a head posture gauge. Head posture and self-reported pain were collected on 25 randomly chosen multifocal lens wearers between the ages of 40 and 50 and compared with a similar group of nonmultifocal lens wearers. The mean forward head posture in the two groups were significantly different (t = 2.06, one-tailed, p = 0.023). Subjects wearing multifocal lenses had a greater degree of forward head posture when compared with nonmultifocal lens wearers. A one-way analysis of variance was used to compare forward head posture with pain. In this sample, mean forward head posture levels did not differ significantly according to level of pain (p = 0.15). Intratester reliability of the head posture gauge was demonstrated to be high through the use of the intraclass correlation coefficient (ICC = 0.99). Wearing multifocal lenses may influence a person to hold his/her head in a position more forward than the ideal postural alignment. PMID:8919398

  1. The Effect of a Short-Term and Long-Term Whole-Body Vibration in Healthy Men upon the Postural Stability

    PubMed Central

    Piecha, Magdalena; Juras, Grzegorz; Król, Piotr; Sobota, Grzegorz; Polak, Anna; Bacik, Bogdan

    2014-01-01

    The study aimed to establish the short-term and long-term effects of whole-body vibration on postural stability. The sample consisted of 28 male subjects randomly allocated to four comparative groups, three of which exercised on a vibration platform with parameters set individually for the groups. The stabilographic signal was recorded before the test commenced, after a single session of whole-body vibration, immediately after the last set of exercises of the 4-week whole-body vibration training, and one week after the training ended. The subjects were exposed to vibrations 3 times a week for 4 weeks. Long-term vibration training significantly shortened the rambling and trembling paths in the frontal plane. The path lengths were significantly reduced in the frontal plane one week after the training end date. Most changes in the values of the center of pressure (COP) path lengths in the sagittal and frontal plane were statistically insignificant. We concluded that long-term vibration training improves the postural stability of young healthy individuals in the frontal plane. PMID:24520362

  2. Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects

    PubMed Central

    Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura

    2015-01-01

    The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with2 types of parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP),and inage-matched control subjects standing under perturbed conditions implementedby the Sensory Organization Test (SOT).Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measuredthe amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). Results showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions.PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use ofinertial sensors on the upper and lower body segments, isa promising and unobtrusive toolto characterize postural strategies performed to attain balance. PMID:24656713

  3. Evaluating Behavioral Self-Monitoring with Accuracy Training for Changing Computer Work Postures

    ERIC Educational Resources Information Center

    Gravina, Nicole E.; Loewy, Shannon; Rice, Anna; Austin, John

    2013-01-01

    The primary purpose of this study was to replicate and extend a study by Gravina, Austin, Schroedter, and Loewy (2008). A similar self-monitoring procedure, with the addition of self-monitoring accuracy training, was implemented to increase the percentage of observations in which participants worked in neutral postures. The accuracy training…

  4. Decerebrate posture

    MedlinePlus

    ... Brain problem due to drugs, poisoning, or infection Head injury Brain problem due to liver failure Increased pressure ... of posture? Is there any history of a head injury or other condition? What other symptoms came before ...

  5. Postural stress analysis in industry.

    PubMed

    Genaidy, A M; Al-Shedi, A A; Karwowski, W

    1994-04-01

    Both observational and instrumentation-based techniques have been used to conduct postural stress analysis in industry. As observational methods are more widespread than instrumentation-based techniques and can be used as a practical tool in the workplace, this study reviews and assesses the scientific literature on observational techniques. Techniques are classified into macropostural, micropostural and postural-work activity. The basis for each classification is outlined and evaluated. Postural recording is performed either continuously or intermittently. Intermittent postural recording procedures lack the criteria for determining the optimum number of observations for low and high repetitive jobs. Research is warranted to examine the sources and magnitudes of errors associated with postural classification. Such information is required to train job analysts in the ergonomics of working postures. PMID:15676953

  6. Muscle spindle responses to horizontal support surface perturbation in the anesthetized cat: insights into the role of autogenic feedback in whole body postural control.

    PubMed

    Honeycutt, Claire F; Nardelli, Paul; Cope, Timothy C; Nichols, T Richard

    2012-09-01

    Intact cats and humans respond to support surface perturbations with broadly tuned, directionally sensitive muscle activation. These muscle responses are further sensitive to initial stance widths (distance between feet) and perturbation velocity. The sensory origins driving these responses are not known, and conflicting hypotheses are prevalent in the literature. We hypothesize that the direction-, stance-width-, and velocity-sensitive muscle response during support surface perturbations is driven largely by rapid autogenic proprioceptive pathways. The primary objective of this study was to obtain direct evidence for our hypothesis by establishing that muscle spindle receptors in the intact limb can provide appropriate information to drive the muscle response to whole body postural perturbations. Our second objective was to determine if spindle recordings from the intact limb generate the heightened sensitivity to small perturbations that has been reported in isolated muscle experiments. Maintenance of this heightened sensitivity would indicate that muscle spindles are highly proficient at detecting even small disturbances, suggesting they can provide efficient feedback about changing postural conditions. We performed intraaxonal recordings from muscle spindles in anesthetized cats during horizontal, hindlimb perturbations. We indeed found that muscle spindle afferents in the intact limb generate broadly tuned but directionally sensitive activation patterns. These afferents were also sensitive to initial stance widths and perturbation velocities. Finally, we found that afferents in the intact limb have heightened sensitivity to small perturbations. We conclude that muscle spindle afferents provide an array of important information about biomechanics and perturbation characteristics highlighting their potential importance in generating appropriate muscular response during a postural disturbance. PMID:22673334

  7. Factors affecting the perception of whole-body vibration of occupational drivers: an analysis of posture and manual materials handling and musculoskeletal disorders

    PubMed Central

    Raffler, Nastaran; Ellegast, Rolf; Kraus, Thomas; Ochsmann, Elke

    2016-01-01

    Due to the high cost of conducting field measurements, questionnaires are usually preferred for the assessment of physical workloads and musculoskeletal disorders (MSDs). This study compares the physical workloads of whole-body vibration (WBV) and awkward postures by direct field measurements and self-reported data of 45 occupational drivers. Manual materials handling (MMH) and MSDs were also investigated to analyse their effect on drivers' perception. Although the measured values for WBV exposure were very similarly distributed among the drivers, the subjects' perception differed significantly. Concerning posture, subjects seemed to estimate much better when the difference in exposure was significantly large. The percentage of measured awkward trunk and head inclination were significantly higher for WBV-overestimating subjects than non-overestimators; 77 and 80% vs. 36 and 33%. Health complaints in terms of thoracic spine, cervical spine and shoulder–arm were also significantly more reported by WBV-overestimating subjects (42, 67, 50% vs. 0, 25, 13%, respectively). Although more MMH was reported by WBV-overestimating subjects, there was no statistical significance in this study. PMID:26114619

  8. Factors affecting the perception of whole-body vibration of occupational drivers: an analysis of posture and manual materials handling and musculoskeletal disorders.

    PubMed

    Raffler, Nastaran; Ellegast, Rolf; Kraus, Thomas; Ochsmann, Elke

    2016-01-01

    Due to the high cost of conducting field measurements, questionnaires are usually preferred for the assessment of physical workloads and musculoskeletal disorders (MSDs). This study compares the physical workloads of whole-body vibration (WBV) and awkward postures by direct field measurements and self-reported data of 45 occupational drivers. Manual materials handling (MMH) and MSDs were also investigated to analyse their effect on drivers' perception. Although the measured values for WBV exposure were very similarly distributed among the drivers, the subjects' perception differed significantly. Concerning posture, subjects seemed to estimate much better when the difference in exposure was significantly large. The percentage of measured awkward trunk and head inclination were significantly higher for WBV-overestimating subjects than non-overestimators; 77 and 80% vs. 36 and 33%. Health complaints in terms of thoracic spine, cervical spine and shoulder-arm were also significantly more reported by WBV-overestimating subjects (42, 67, 50% vs. 0, 25, 13%, respectively). Although more MMH was reported by WBV-overestimating subjects, there was no statistical significance in this study. PMID:26114619

  9. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population

    PubMed Central

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B.; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  10. Comparison of Standing Posture Bioelectrical Impedance Analysis with DXA for Body Composition in a Large, Healthy Chinese Population.

    PubMed

    Chen, Kuen-Tsann; Chen, Yu-Yawn; Wang, Chia-Wei; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Lu, Hsueh-Kuan; Dwyer, Gregory B; Chao, Shu-Ping; Shih, Ming-Kuei; Hsieh, Kuen-Chang

    2016-01-01

    Bioelectrical impedance analysis (BIA) is a common method for assessing body composition in research and clinical trials. BIA is convenient but when compared with other reference methods, the results have been inconclusive. The level of obesity degree in subjects is considered to be an important factor affecting the accuracy of the measurements. A total of 711 participants were recruited in Taiwan and were sub-grouped by gender and levels of adiposity. Regression analysis and Bland-Altman analysis were used to evaluate the agreement of the measured body fat percentage (BF%) between BIA and DXA. The BF% measured by the DXA and BIA methods (Tanita BC-418) were expressed as BF%DXA and BF%BIA8, respectively. A one-way ANOVA was used to test the differences in BF% measurements by gender and levels of adiposity. The estimated BF%BIA8 and BF%DXA in the all subjects, male and female groups were all highly correlated (r = 0.934, 0.901, 0.916, all P< 0.001). The average estimated BF%BIA8 (22.54 ± 9.48%) was significantly lower than the average BF%DXA (26.26 ± 11.18%). The BF%BIA8 was overestimated in the male subgroup (BF%DXA< 15%), compared to BF%DXA by 0.45%, respectively. In the other subgroups, the BF%BIA8 values were all underestimated. Standing BIA estimating body fat percentage in Chinese participants have a high correlation, but underestimated on normal and high obesity degree in both male and female subjects. PMID:27467065

  11. Postural Stability During Single-Leg Stance: A Preliminary Evaluation of Noncontact Lower Extremity Injury Risk.

    PubMed

    Dingenen, Bart; Malfait, Bart; Nijs, Stefaan; Peers, Koen H E; Vereecken, Styn; Verschueren, Sabine M P; Janssens, Luc; Staes, Filip F

    2016-08-01

    Study Design Controlled laboratory study with a prospective cohort design. Background Postural stability deficits during single-leg stance have been reported in persons with anterior cruciate ligament (ACL) injury, ACL reconstruction, and chronic ankle instability. It remains unclear whether impaired postural stability is a consequence or cause of these injuries. Objectives To prospectively investigate whether postural stability deficits during single-leg stance predict noncontact lower extremity injuries. Methods Fifty injury-free female athletes performed a transition task from double-leg stance to single-leg stance with eyes closed. Center-of-pressure displacement, the main outcome variable, was measured during the first 3 seconds after the time to a new stability point was reached during single-leg stance. Noncontact lower extremity injuries were recorded at a 1-year follow-up. Results Six participants sustained a noncontact ACL injury or ankle sprain. Center-of-pressure displacement during the first 3 seconds after the time to a new stability point was significantly increased in the injured (P = .030) and noninjured legs (P = .009) of the injured group compared to the respective matched legs of the noninjured group. The area under the receiver operating characteristic curve (AUC) analysis revealed significant discriminative accuracy between groups for the center-of-pressure displacement during the first 3 seconds after the time to a new stability point of the injured (AUC = 0.814, P = .015) and noninjured legs (AUC = 0.897, P = .004) of the injured group compared to the matched legs of the noninjured group. Conclusion This preliminary study suggests that postural stability measurements during the single-leg stance phase of the double- to single-leg stance transition task may be a useful predictor of increased risk of noncontact lower extremity injury. Further research is indicated. Level of Evidence Prognosis, level 4. J Orthop Sports PhysTher 2016

  12. Postural Variables in Girls Practicing Volleyball

    ERIC Educational Resources Information Center

    Grabara, Malgorzata; Hadzik, Andrzej

    2009-01-01

    Study aim: To assess body posture of young female volleyball players in relation to their untrained mates. Material and methods: A group of 42 volleyball players and another of 43 untrained girls, all aged 13-16 years were studied with respect to their body posture indices by using computer posturography. Spinal angles and curvatures were…

  13. Evaluation of postural stability in workers exposed to lead at a secondary lead smelter.

    PubMed

    Dick, R B; Pinkerton, L E; Krieg, E F; Biagini, R E; Deddens, J A; Brightwell, W S; Grubb, P L; Taylor, B T; Russo, J M

    1999-08-01

    Postural sway testing was carried out on a group of 145 workers exposed to lead in a secondary lead smelter and 84 workers not exposed to lead in a hinge manufacturing plant. All workers were measured for blood lead levels (BLL) and erythrocyte zinc protoporphyrin (ZPP) concentrations at the time of testing and both a total cumulative and a time-weighted average BLL value was constructed for the lead exposed workers. The lead exposed workers mean BLL at the time of testing was 38.9 microg/dl and the non-exposed workers mean was 2.3 microg/dl. ZPP levels averaged 55.2 microg/dl for exposed workers and 18.9 microg/dl for non-exposed workers. Total cumulative BLL averaged 83476 microg/dl days for the exposed workers, with a mean time-weighted average BLL of 35.1 microg/dl. Six tests of postural stability, four two leg conditions and two single leg conditions were administered to all subjects using a force platform to produce measurements of sway for comparison purposes. The two leg conditions also manipulated the visual and proprioceptive systems. A statistically significant association was observed for sway measurements and the current BLL for all workers, but not with the current BLL of only the lead exposed workers. No statistically significant associations were present with the cumulative measures of long-term exposure. Of the six tests of sway, only the single leg conditions showed significant exposure effects. The results suggest effects of lead exposure among those with average BLL near 40.0 microg/dl, but only in the most challenging one leg conditions. PMID:10499358

  14. Postural Stability is Altered by Blood Shift

    NASA Astrophysics Data System (ADS)

    Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.

    2008-06-01

    Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.

  15. A nonlinear dynamic approach for evaluating postural control: new directions for the management of sport-related cerebral concussion.

    PubMed

    Cavanaugh, James T; Guskiewicz, Kevin M; Stergiou, Nicholas

    2005-01-01

    Recent research suggests that traditional biomechanical models of postural stability do not fully characterise the nonlinear properties of postural control. In sports medicine, this limitation is manifest in the postural steadiness assessment approach, which may not be sufficient for detecting the presence of subtle physiological change after injury. The limitation is especially relevant given that return-to-play decisions are being made based on assessment results. This update first reviews the theoretical foundation and limitations of the traditional postural stability paradigm. It then offers, using the clinical example of athletes recovering from cerebral concussion, an alternative theoretical proposition for measuring changes in postural control by applying a nonlinear dynamic measure known as 'approximate entropy'. Approximate entropy shows promise as a valuable means of detecting previously unrecognised, subtle physiological changes after concussion. It is recommended as an important supplemental assessment tool for determining an athlete's readiness to resume competitive activity. PMID:16271008

  16. Effects of adiposity on postural control and cognition.

    PubMed

    Meng, Hao; O'Connor, Daniel P; Lee, Beom-Chan; Layne, Charles S; Gorniak, Stacey L

    2016-01-01

    In the U.S., it is estimated that over one-third of adults are obese (Body Mass Index (BMI)>30kg/m(2)). Previous studies suggest that obesity may be associated with deficits in cognitive performance and postural control. Increased BMI may challenge cognitive and postural performance in a variety of populations; however, most relevant studies have classified participants based on BMI values, which cannot be used to accurately assess the effects of adiposity on cognitive performance and postural control. The objective of the current study was to examine motor and cognitive responses for overweight and obese adults compared to normal weight individuals by using both BMI and adiposity measures. Ten normal weight (BMI=18-24.9kg/m(2)), ten overweight (BMI=25-29.9kg/m(2)), and ten obese (BMI=30-40kg/m(2)) adults were evaluated (age: 24±4 years). Participants were classified into three groups based on BMI values at the onset of the study, prior to body composition analysis. Participants performed (1) working memory task while maintaining upright stance, and (2) a battery of sensorimotor evaluations. Working memory reaction times, response accuracy, center-of-pressure (COP) path length, velocity, migration area, time to boundary values in anterior-posterior direction, and ankle-hip strategy-scores were calculated to evaluate cognitive-motor performance. No significant deficits in working memory performance were observed. Overall, measures of motor function deteriorated as BMI and body fat percentage increased. The relationship between deteriorating postural performance indices and body fat percentage were greater than those found between BMI and postural performance indices. PMID:26669948

  17. Evaluation of body composition. Current issues.

    PubMed

    Heyward, V H

    1996-09-01

    In the selection of body composition field methods and prediction equations, exercise and health practitioners must consider their clients' demographics. Factors, such as age, gender, level of adiposity, physical activity and ethnicity influence the choice of method and equation. Also, it is important to evaluate the relative worth of prediction equations in terms of the criterion method used to derive reference measures of body composition for equation development. Given that hydrodensitometry, hydrometry and dual-energy x-ray absorptiometry are subject to measurement error and violation of basic assumptions underlying their use, none of these should be considered as a 'gold standard' method for in vivo body composition assessment. Reference methods, based on whole-body, 2-component body composition models, are limited, particularly for individuals whose fat-free body (FFB) density and hydration differ from values assumed for 2-component models. Use of field method prediction equations developed from 2-component model (Siri equation) reference measures of body composition will systematically underestimate relative body fatness of American Indian women, Black men and women, and Hispanic women because the average FFB density of these ethnic groups exceeds the assumed value (1.1 g/ml). Thus, some researchers have developed prediction equations based on multicomponent model estimates of body composition that take into account interindividual variability in the water, mineral, and protein content of the FFB. One multicomponent model approach adjusts body density (measured via hydrodensitometry) for total body water (measured by hydrometry) and/or total body mineral estimated from bone mineral (measured via dual-energy x-ray absorptiometry). Skinfold (SKF), bioelectrical impedance analysis (BIA), and near-infrared interactance (NIR) are 3 body composition methods used in clinical settings. Unfortunately, the overwhelming majority of field method prediction equations

  18. Effects of an adapted physical activity program in a group of elderly subjects with flexed posture: clinical and instrumental assessment

    PubMed Central

    Benedetti, Maria Grazia; Berti, Lisa; Presti, Chiara; Frizziero, Antonio; Giannini, Sandro

    2008-01-01

    Background Flexed posture commonly increases with age and is related to musculoskeletal impairment and reduced physical performance. The purpose of this clinical study was to systematically compare the effects of a physical activity program that specifically address the flexed posture that marks a certain percentage of elderly individuals with a non specific exercise program for 3 months. Methods Participants were randomly divided into two groups: one followed an Adapted Physical Activity program for flexed posture and the other one completed a non-specific physical activity protocol for the elderly. A multidimensional clinical assessment was performed at baseline and at 3 months including anthropometric data, clinical profile, measures of musculoskeletal impairment and disability. The instrumental assessment of posture was realized using a stereophotogrammetric system and a specific biomechanical model designed to describe the reciprocal position of the body segments on the sagittal plane in a upright posture. Results The Adapted Physical Activity program determined a significant improvement in several key parameters of the multidimensional assessment in comparison to the non-specific protocol: decreased occiput-to-wall distance, greater lower limb range of motion, better flexibility of pectoralis, hamstrings and hip flexor muscles, increased spine extensor muscles strength. Stereophotogrammetric analysis confirmed a reduced protrusion of the head and revealed a reduction in compensative postural adaptations to flexed posture characterized by knee flexion and ankle dorsiflexion in the participants of the specific program. Conclusion The Adapted Physical Activity program for flexed posture significantly improved postural alignment and musculoskeletal impairment of the elderly. The stereophotogrammetric evaluation of posture was useful to measure the global postural alignment and especially to analyse the possible compensatory strategies at lower limbs in flexed

  19. Simulating Non-Specific Influences of Body Posture and Temperature on Thigh-Bioimpedance Spectroscopy during Continuous Monitoring Applications

    NASA Astrophysics Data System (ADS)

    Ismail, A. H.; Leonhardt, S.

    2013-04-01

    Application of bioimpedance spectroscopy (BIS) for continuous monitoring of body fluid volumes is gaining considerable importance in personal health care. Unless laboratory conditions are applied, both whole-body or segmental BIS configurations are subject to nonspecific influences (e.g. temperature and change in body position) reducing the method's accuracy and reproducibility. In this work, a two-compartment mathematical model, which describes the thigh segment, has been adapted to simulate fluid and solute kinetics during change in body position or variation in skin temperature. The model is an improved version of our previous one offering a good tradeoff between accuracy and simplicity. It represents the kinetics of fluid redistribution, sodium-, potassium-, and protein-concentrations based on simple equations to predict the time course of BIS variations. Validity of the model was verified in five subjects (following a sequence of 7 min supine, 20 min standing, and 40 min supine). The output of the model may reduce possible influences on BIS by up to 80%.

  20. Evaluation of two methodologies for lameness detection in dairy cows based on postural and gait abnormalities observed during milking and while restrained at headlock stanchions.

    PubMed

    García-Muñoz, A; Vidal, G; Singh, N; Silva-Del-Río, N

    2016-06-01

    Lameness is a critical issue on dairies with an impact on production and animal welfare. Early lameness detection followed by effective treatments could improve prognosis and cure rate of lame cows. Current methods for lameness detection are based on locomotion score (LS) that requires observation of cows walking, preferably at the exit of the milking parlor. This is a time-consuming task that is difficult to implement on large dairies. Therefore, a common methodology for lameness detection is based on milkers' and cow pushers' observations of cows walking to the milking parlor or standing at the milking stall (MPP). Observation of postural abnormalities predictive of lameness while cows are locked at stanchions (S) can be used as an alternative detection method. The objective of this research was to study the association between postural and gait abnormalities observed with S and MPP methodologies and lameness using LS≥3 as the reference method, as well as to evaluate the epidemiological characteristics of those methods as a diagnostic test for lameness. A secondary objective was to describe the type of hoof lesions observed with postural and gait abnormalities detected with LS, MPP, and S methodologies. A cross-sectional study design was performed on 2274 cows from one farm in California (US). Arched back, cow-hocked, wide-stance, and favored-limb postures as well as uneven gait were observed. Both lameness detection methodologies, S and MPP, indicated that arched back and favored-limb were postural abnormalities associated with lameness. However, the epidemiological test characteristics for each of the postures evaluated as a diagnostic test for lameness indicated that both detection methods, S and MPP, had good specificity (>0.91) but poor sensitivity (0.04-0.39). A convenience sample of 104 cows, selected based on LS>3, favored-limb, presence of two or more abnormal postures, and gait anomalies with either S or MPP methods, received a hoof examination

  1. Analysis of the risk factors of musculoskeletal disease among dentists induced by work posture.

    PubMed

    Park, Hyun-Suk; Kim, Jin; Roh, Hyo-Lyun; Namkoong, Seung

    2015-12-01

    [Purpose] The purpose of this study was to ergonomically evaluate the work posture of dentists to examine their subsequent risk of developing musculoskeletal diseases. [Subjects and Methods] Scenes in which the three dentists performed procedures at their dental clinics were videotaped. The videotapes of the dentists' work postures were evaluated and analyzed by using the Rapid Upper Limb Assessment (RULA) and Quick Exposure Check (QEC). [Results] The RULA analysis of the dentists' work posture indicated, "improvement required" in the posture used to treat the anterior and "instant improvement required" in the posture used to treat the maxillary second molar. Of all the work postures studied, the risk was considered particularly high in the lower back and neck, implying prominent problems in these body parts. The QEC analysis showed that the worst work posture was that required to treat the maxillary second molar, which led to a high risk of neck problems and vibrations. [Conclusion] The neck area has the highest risk of developing musculoskeletal disease. Hence, regular rests and the provision of information regarding muscle strengthening exercise for the neck are necessary. PMID:26834324

  2. Analysis of the risk factors of musculoskeletal disease among dentists induced by work posture

    PubMed Central

    Park, Hyun-Suk; Kim, Jin; Roh, Hyo-Lyun; Namkoong, Seung

    2015-01-01

    [Purpose] The purpose of this study was to ergonomically evaluate the work posture of dentists to examine their subsequent risk of developing musculoskeletal diseases. [Subjects and Methods] Scenes in which the three dentists performed procedures at their dental clinics were videotaped. The videotapes of the dentists’ work postures were evaluated and analyzed by using the Rapid Upper Limb Assessment (RULA) and Quick Exposure Check (QEC). [Results] The RULA analysis of the dentists’ work posture indicated, “improvement required” in the posture used to treat the anterior and “instant improvement required” in the posture used to treat the maxillary second molar. Of all the work postures studied, the risk was considered particularly high in the lower back and neck, implying prominent problems in these body parts. The QEC analysis showed that the worst work posture was that required to treat the maxillary second molar, which led to a high risk of neck problems and vibrations. [Conclusion] The neck area has the highest risk of developing musculoskeletal disease. Hence, regular rests and the provision of information regarding muscle strengthening exercise for the neck are necessary. PMID:26834324

  3. Common postural defects among music students.

    PubMed

    Blanco-Piñeiro, Patricia; Díaz-Pereira, M Pino; Martínez, Aurora

    2015-07-01

    Postural quality during musical performance affects both musculoskeletal health and the quality of the performance. In this study we examined the posture of 100 students at a Higher Conservatory of Music in Spain. By analysing video tapes and photographs of the students while performing, a panel of experts extracted values of 11 variables reflecting aspects of overall postural quality or the postural quality of various parts of the body. The most common postural defects were identified, together with the situations in which they occur. It is concluded that most students incur in unphysiological postures during performance. It is hoped that use of the results of this study will help correct these errors. PMID:26118530

  4. Dynamic Control of Posture Across Locomotor Tasks

    PubMed Central

    Earhart, Gammon M.

    2013-01-01

    Successful locomotion depends on postural control to establish and maintain appropriate postural orientation of body segments relative to one another and to the environment, and to ensure dynamic stability of the moving body. This paper provides a framework for considering dynamic postural control, highlighting the importance of coordination, consistency, and challenges to postural control posed by various locomotor tasks such as turning and backward walking. The impacts of aging and various movement disorders on postural control are discussed broadly in an effort to provide a general overview of the field and recommendations for assessment of dynamic postural control across different populations in both clinical and research settings. Suggestions for future research on dynamic postural control during locomotion are also provided and include discussion of opportunities afforded by new and developing technologies, the need for long-term monitoring of locomotor performance in everyday activities, gaps in our knowledge of how targeted intervention approaches modify dynamic postural control, and the relative paucity of literature regarding dynamic postural control in movement disorder populations other than Parkinson disease. PMID:24132838

  5. Working posture and its predictors in hospital operating room nurses

    PubMed Central

    Abdollahzade, Farahnaz; Mohammadi, Fariba; Dianat, Iman; Asghari, Elnaz; Asghari-Jafarabadi, Mohammad; Sokhanvar, Zahra

    2016-01-01

    Background: This study was conducted to evaluate working posture of operating room nurses and its relationship with demographic and job details of this group. Methods: This cross-sectional study was conducted among 147 operating room nurses in Tabriz, Iran using a questionnaire and the Rapid Entire Body Assessment (REBA) checklist. The data were analyzed with SPSS.16 using t test, Pearson correlation coefficient and analysis of variance (ANOVA) tests for univariate analysis and the linear regression test for multivariate analysis. Results: The mean (SD) of REBA score was 7.7 (1.9), which means a high risk level and highlights an urgent need to change the working postures of the studied nurses. There was significant relationship between working posture and age (P = 0.003), gender (P = 0.003), regular daily exercise (P = 0.048), work experience (P = 0.003), number of shifts per month (P = 0.006) and type of operating rooms (P < 0.001) in univariate analyses. Gender and type of operating room were the predictors of working posture of nurses in multivariate analysis. Conclusion: The findings highlight the need for ergonomic interventions and educational programs to improve working posture of this study population, which can consequently lead to promotion of health and well-being of this group. PMID:27123432

  6. Gravitational Effects upon Locomotion Posture

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Edwards, W. Brent; Perusek, Gail P.; Samorezov, Sergey

    2008-01-01

    Researchers use actual microgravity (AM) during parabolic flight and simulated microgravity (SM) obtained with horizontal suspension analogs to better understand the effect of gravity upon gait. In both environments, the gravitational force is replaced by an external load (EL) that returns the subject to the treadmill. However, when compared to normal gravity (N), researchers consistently find reduced ground reaction forces (GRF) and subtle kinematic differences (Schaffner et al., 2005). On the International Space Station, the EL is applied by elastic bungees attached to a waist and shoulder harness. While bungees can provide EL approaching body weight (BW), their force-length characteristics coupled with vertical oscillations of the body during gait result in a variable load. However, during locomotion in N, the EL is consistently equal to 100% body weight. Comparisons between AM and N have shown that during running, GRF are decreased in AM (Schaffner et al, 2005). Kinematic evaluations in the past have focussed on joint range of motion rather than joint posture at specific instances of the gait cycle. The reduced GRF in microgravity may be a result of differing hip, knee, and ankle positions during contact. The purpose of this investigation was to compare joint angles of the lower extremities during walking and running in AM, SM, and N. We hypothesized that in AM and SM, joints would be more flexed at heel strike (HS), mid-stance (MS) and toe-off (TO) than in N.

  7. Determining postural stability

    NASA Technical Reports Server (NTRS)

    Lieberman, Erez (Inventor); Forth, Katharine E. (Inventor); Paloski, William H. (Inventor)

    2011-01-01

    A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.

  8. Quantifying Postural Control during Exergaming Using Multivariate Whole-Body Movement Data: A Self-Organizing Maps Approach

    PubMed Central

    van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J.; Roerdink, Jos B. T. M; Verkerke, Gijsbertus J.; Lamoth, Claudine J. C.

    2015-01-01

    Background Exergames are becoming an increasingly popular tool for training balance ability, thereby preventing falls in older adults. Automatic, real time, assessment of the user’s balance control offers opportunities in terms of providing targeted feedback and dynamically adjusting the gameplay to the individual user, yet algorithms for quantification of balance control remain to be developed. The aim of the present study was to identify movement patterns, and variability therein, of young and older adults playing a custom-made weight-shifting (ice-skating) exergame. Methods Twenty older adults and twenty young adults played a weight-shifting exergame under five conditions of varying complexity, while multi-segmental whole-body movement data were captured using Kinect. Movement coordination patterns expressed during gameplay were identified using Self Organizing Maps (SOM), an artificial neural network, and variability in these patterns was quantified by computing Total Trajectory Variability (TTvar). Additionally a k Nearest Neighbor (kNN) classifier was trained to discriminate between young and older adults based on the SOM features. Results Results showed that TTvar was significantly higher in older adults than in young adults, when playing the exergame under complex task conditions. The kNN classifier showed a classification accuracy of 65.8%. Conclusions Older adults display more variable sway behavior than young adults, when playing the exergame under complex task conditions. The SOM features characterizing movement patterns expressed during exergaming allow for discriminating between young and older adults with limited accuracy. Our findings contribute to the development of algorithms for quantification of balance ability during home-based exergaming for balance training. PMID:26230655

  9. “What Women Like”: Influence of Motion and Form on Esthetic Body Perception

    PubMed Central

    Cazzato, Valentina; Siega, Serena; Urgesi, Cosimo

    2012-01-01

    Several studies have shown the distinct contribution of motion and form to the esthetic evaluation of female bodies. Here, we investigated how variations of implied motion and body size interact in the esthetic evaluation of female and male bodies in a sample of young healthy women. Participants provided attractiveness, beauty, and liking ratings for the shape and posture of virtual renderings of human bodies with variable body size and implied motion. The esthetic judgments for both shape and posture of human models were influenced by body size and implied motion, with a preference for thinner and more dynamic stimuli. Implied motion, however, attenuated the impact of extreme body size on the esthetic evaluation of body postures, while body size variations did not affect the preference for more dynamic stimuli. Results show that body form and action cues interact in esthetic perception, but the final esthetic appreciation of human bodies is predicted by a mixture of perceptual and affective evaluative components. PMID:22866044

  10. Influence of flexibility and gender on the posture of school children☆

    PubMed Central

    Coelho, Jerusa Jordão; Graciosa, Maylli Daiani; de Medeiros, Daiane Lazzeri; Pacheco, Sheila Cristina da Silva; da Costa, Leticia Miranda Resende; Ries, Lilian Gerdi Kittel

    2014-01-01

    Objective: To evaluate whether flexibility and gender influence students' posture. Method: Evaluation of 60 female and male students, aged 5 to 14 years, divided into two groups: normal flexibility (n=21) and reduced flexibility (n=39). Flexibility and posture were assessed by photogrammetry and by the elevation of the lower limbs in extension, considering the leg angle and the postural evaluation. Descriptive statistics (mean and standard deviation) were used for data analysis. Analysis of variance (ANOVA) was applied to assess the joint influence of flexibility and gender on the posture-dependent variables. After verifying an interactive effect between the variables of gender and flexibility, multiple comparisons using the t test were applied. Results: Flexibility influenced the symmetry angle of the knee (p<0.05) and anteroposterior body tilt (p<0.05). Gender did not influence postural angles (p>0.05). There was an interactive effect between the variables of gender and flexibility on the knee symmetry angle (p<0.02). Male students with reduced flexibility had greater asymmetry of the knee when compared to the other subgroups. Conclusion: Posture was influenced by an isolated effect of the variable of flexibility and by an interactive effect between gender and flexibility. PMID:25479853

  11. Skeletal and body composition evaluation. Final report

    SciTech Connect

    Mazess, R.B.

    1983-03-01

    Research on radiation detectors for absorptiometry analysis of errors affecting single photon absorptiometry and development of instrumentation, analysis of errors affecting dual photon absorptiometry and development of instrumentation, comparison of skeletal measurements with other techniques, cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals, studies of postmenopausal osteoporosis, organization of scientific meetings and workshops on absorptiometric measurement, and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  12. Take a stand on your decisions, or take a sit: posture does not affect risk preferences in an economic task

    PubMed Central

    O’Brien, Megan K.

    2014-01-01

    Physiological and emotional states can affect our decision-making processes, even when these states are seemingly insignificant to the decision at hand. We examined whether posture and postural threat affect decisions in a non-related economic domain. Healthy young adults made a series of choices between economic lotteries in various conditions, including changes in body posture (sitting vs. standing) and changes in elevation (ground level vs. atop a 0.8-meter-high platform). We compared three metrics between conditions to assess changes in risk-sensitivity: frequency of risky choices, and parameter fits of both utility and probability weighting parameters using cumulative prospect theory. We also measured skin conductance level to evaluate physiological response to the postural threat. Our results demonstrate that body posture does not significantly affect decision making. Secondly, despite increased skin conductance level, economic risk-sensitivity was unaffected by increased threat. Our findings indicate that economic choices are fairly robust to the physiological and emotional changes that result from posture or postural threat. PMID:25083345

  13. Influence of visual inputs on quasi-static standing postural steadiness in individuals with spinal cord injury.

    PubMed

    Lemay, Jean-François; Gagnon, Dany; Duclos, Cyril; Grangeon, Murielle; Gauthier, Cindy; Nadeau, Sylvie

    2013-06-01

    Postural steadiness while standing is impaired in individuals with spinal cord injury (SCI) and could be potentially associated with increased reliance on visual inputs. The purpose of this study was to compare individuals with SCI and able-bodied participants on their use of visual inputs to maintain standing postural steadiness. Another aim was to quantify the association between visual contribution to achieve postural steadiness and a clinical balance scale. Individuals with SCI (n = 15) and able-bodied controls (n = 14) performed quasi-static stance, with eyes open or closed, on force plates for two 45 s trials. Measurements of the centre of pressure (COP) included the mean value of the root mean square (RMS), mean COP velocity (MV) and COP sway area (SA). Individuals with SCI were also evaluated with the Mini-Balance Evaluation Systems Test (Mini BESTest), a clinical outcome measure of postural steadiness. Individuals with SCI were significantly less stable than able-bodied controls in both conditions. The Romberg ratios (eyes open/eyes closed) for COP MV and SA were significantly higher for individuals with SCI, indicating a higher contribution of visual inputs for postural steadiness in that population. Romberg ratios for RMS and SA were significantly associated with the Mini-BESTest. This study highlights the contribution of visual inputs in individuals with SCI when maintaining quasi-static standing posture. PMID:23332191

  14. Risk factors associated with structural postural changes in the spinal column of children and adolescents

    PubMed Central

    Sedrez, Juliana Adami; da Rosa, Maria Izabel Zaniratti; Noll, Matias; Medeiros, Fernanda da Silva; Candotti, Claudia Tarragô

    2015-01-01

    OBJECTIVE: To investigate the association between behavioral risk factors, specifically postural habits, with the presence of structural changes in the spinal column of children and adolescents. METHODS: 59 students were evaluated through the self-reporting Back Pain and Body Posture Evaluation Instrument and spinal panoramic radiographic examination. Spine curvatures were classified based on Cobb angles, as normal or altered in the saggital plane and as normal or scoliotic in the frontal plane. Data were analyzed using SPSS 18.0, based on descriptive statistics and chi-square association test (a=0,05). RESULTS: The prevalence of postural changes was 79.7% (n=47), of which 47.5% (n=28) showed frontal plane changes and 61% (n=36) sagital plane changes. Significant association was found between the presence of thoracic kyphosis and female gender, practice of physical exercises only once or twice a week, sleep time greater than 10 hours, inadequate postures when sitting on a seat and sitting down to write, and how school supplies are carried. Lumbar lordosis was associated with the inadequate way of carrying the school backpack (asymmetric); and scoliosis was associated wuth the practice of competitive sports and sleep time greater than 10 hours. CONCLUSIONS: Lifestyle may be associated with postural changes. It is important to develop health policies in order to reduce the prevalence of postural changes, by decreasing the associated risk factors. PMID:25623725

  15. Specificity of Postural Sway to the Demands of a Precision Task at Sea

    ERIC Educational Resources Information Center

    Chen, Fu-Chen; Stoffregen, Thomas A.

    2012-01-01

    Mariners actively adjust their body orientation in response to ship motion. On a ship at sea, we evaluated relations between standing postural activity and the performance of a precision aiming task. Standing participants (experienced mariners) maintained the beam from a handheld laser on a target. Targets were large or small, thereby varying the…

  16. Relation between the Sensory and Anthropometric Variables in the Quiet Standing Postural Control: Is the Inverted Pendulum Important for the Static Balance Control?

    PubMed Central

    Alonso, Angélica C.; Mochizuki, Luis; Silva Luna, Natália Mariana; Ayama, Sérgio; Canonica, Alexandra Carolina; Greve, Júlia M. D. A.

    2015-01-01

    The aim of this study was to evaluate the relation between the sensory and anthropometric variables in the quiet standing. Methods. One hundred individuals (50 men, 50 women; 20–40 years old) participated in this study. For all participants, the body composition (fat tissue, lean mass, bone mineral content, and bone mineral density) and body mass, height, trunk-head length, lower limb length, and upper limb length were measured. The center of pressure was measured during the quiet standing posture, the eyes opened and closed with a force platform. Correlation and regression analysis were run to analyze the relation among body composition, anthropometric data, and postural sway. Results. The correlation analysis showed low relation between postural sway and anthropometric variables. The multiple linear regression analyses showed that the height explained 12% of the mediolateral displacement and 11% of the center of pressure area. The length of the trunk head explained 6% of displacement in the anteroposterior postural sway. During eyes closed condition, the support basis and height explained 18% of mediolateral postural sway. Conclusion. The postural control depends on body composition and dimension. This relation is mediated by the sensory information. The height was the anthropometric variable that most influenced the postural sway. PMID:26539550

  17. Exercise and Posture

    MedlinePlus

    ... Info For Teens Message Boards & Forums Donate Shop Exercise & Posture About Spondylitis / Exercise & Posture Overview For The ... Diet Blood Work and Spondylitis Spondylitis Awareness Month Exercise Exercise is an integral part of any spondylitis ...

  18. Postural stability in children with hemiplegia estimated for three postural conditions: standing, sitting and kneeling.

    PubMed

    Szopa, Andrzej; Domagalska-Szopa, Małgorzata

    2015-04-01

    Postural control deficit is one of the most important problems in children with cerebral palsy (CP). The purpose of the presented study was to compare the effects of body posture asymmetry alone (i.e., in children with mild scoliosis) with the effects of body posture impairment (i.e., in children with hemiplegia) on postural stability. Forty-five outpatients with hemiplegia and 51 children with mild scoliosis were assessed using a posturography device. The examination comprised two parts: (1) analysis of the static load distribution; and (2) a posturographic test (CoP measurements) conducted in three postural conditions: standing, sitting and kneeling. Based on the asymmetry index of the unaffected/affected body sides while standing, the children with hemiplegia were divided into two different postural patterns: a pro-gravitational postural pattern (PGPP) and an anti-gravitational postural pattern (AGPP) (Domagalska-Szopa & Szopa (2013). BioMed Research International, 2013, 462094; (2014). Therapeutics and Clinical Risk Management, 10, 113). The group of children with mild scoliosis, considered as a standard for static body weight distribution, was used as the reference group. The results of present study only partially confirmed that children with hemiplegia have increased postural instability. Strong weight distribution asymmetry was found in children with an AGPP, which induced larger lateral-medial CoP displacements compared with children with scoliosis. In children with hemiplegia, distinguishing between their postural patterns may be useful to improve the guidelines for early therapy children with an AGPP before abnormal patterns of weight-bearing asymmetry are fully established. PMID:25677032

  19. Effect of visual stimulus using central and peripheral visual field on postural control of normal subjects

    PubMed Central

    Park, Du-Jin

    2016-01-01

    [Purpose] This study investigated the effects of visual stimulus using central and peripheral vision fields on postural control. [Subjects and Methods] The subjects consisted of 40 young adult volunteers (15 males, 25 females) who had been informed of the study purpose and procedure. The subjects were randomly divided into four groups of differing visual stimulus. Each group was given visual intervention in a standing position for 3 minutes. Postural control was evaluated before and after visual intervention. [Results] The results of the functional reach test and body sway test showed significant differences among the four groups. [Conclusion] The two-way peripheral vision-field group showed significantly more body sway after visual intervention than the other three groups. This finding may suggest two-way peripheral vision field is a more effective visual stimulus for training postural control and balance. PMID:27390412

  20. Exemplification of Movement Patterns and Their Influence on Body Posture in Younger School-Age Children on the Basis of an Authorial Program "I Take Care of My Spine".

    PubMed

    Brzek, Anna; Plinta, Ryszard

    2016-03-01

    Exemplification of movement patterns is most noticeable in the youngest pupils group. Generally, children do not know which patterns are correct and which ones are risk factors. After correcting and stabilizing some improper patterns, a child can perform their daily activities without constant cognizance of their appropriateness. The concept of this research is included in a paradigm for the quality research conducted as action-research, which assumed a quality and efficiency improvement of health education in Polish schools.The main aim of this study was to encourage pupils, their parents and teachers to perform pro-health behaviors oriented toward maintaining an appropriate body posture. First, the study aimed to assess the postures of children involved in the authorial program "I take care of my spine" in comparison with a group of children without diagnosed postural defects and not involved in the curriculum.The examinations covered a group of 144 children (group A) ages 7 to 9 years (mean 7.60 ± 0.64 years) with appropriate body postures recognized in the screening test, which was conducted at a school where the curriculum "I take care of my spine" was launched. The control group included 222 healthy children at a similar age who attended schools where the curriculum was not implemented. The examinations were performed 2 times, as follows: the first time occurred before the program "I take care of my spine" was launched (initial examination), and the second time after 9 to 10 months of full participation in the program's activities and after 1 year of observation of children from group B (final examination).A significant improvement of posturometric parameters in the main group and worsening of the parameters in the control group were noted. The results in examined groups of children and diversification of the results were linked to implementing the prevention program in the main group. In the group of children involved in the postural prevention program

  1. Exemplification of Movement Patterns and Their Influence on Body Posture in Younger School-Age Children on the Basis of an Authorial Program “I Take Care of My Spine”

    PubMed Central

    Brzek, Anna; Plinta, Ryszard

    2016-01-01

    Abstract Exemplification of movement patterns is most noticeable in the youngest pupils group. Generally, children do not know which patterns are correct and which ones are risk factors. After correcting and stabilizing some improper patterns, a child can perform their daily activities without constant cognizance of their appropriateness. The concept of this research is included in a paradigm for the quality research conducted as action-research, which assumed a quality and efficiency improvement of health education in Polish schools. The main aim of this study was to encourage pupils, their parents and teachers to perform pro-health behaviors oriented toward maintaining an appropriate body posture. First, the study aimed to assess the postures of children involved in the authorial program “I take care of my spine” in comparison with a group of children without diagnosed postural defects and not involved in the curriculum. The examinations covered a group of 144 children (group A) ages 7 to 9 years (mean 7.60 ± 0.64 years) with appropriate body postures recognized in the screening test, which was conducted at a school where the curriculum “I take care of my spine” was launched. The control group included 222 healthy children at a similar age who attended schools where the curriculum was not implemented. The examinations were performed 2 times, as follows: the first time occurred before the program “I take care of my spine” was launched (initial examination), and the second time after 9 to 10 months of full participation in the program's activities and after 1 year of observation of children from group B (final examination). A significant improvement of posturometric parameters in the main group and worsening of the parameters in the control group were noted. The results in examined groups of children and diversification of the results were linked to implementing the prevention program in the main group. In the group of children involved in the

  2. Inertia sensor-based guidance system for upperlimb posture correction.

    PubMed

    Ding, Z Q; Luo, Z Q; Causo, A; Chen, I M; Yue, K X; Yeo, S H; Ling, K V

    2013-02-01

    Stroke rehabilitation is labor-intensive and time-consuming. To assist patients and therapists alike, we propose a wearable system that measures orientation and corrects arm posture using vibrotactile actuators. The system evaluates user posture with respect to a reference and gives feedback in the form of vibration patterns. Users correct their arm posture, one DOF at a time, by following a protocol starting from the shoulder up to the forearm. Five users evaluated the proposed system by replicating ten different postures. Experimental results demonstrated system robustness and showed that some postures were easier to mimic depending on their naturalness. PMID:21978912

  3. Methods of Postural Assessment Used for Sports Persons

    PubMed Central

    Singla, Deepika

    2014-01-01

    Occurrence of postural defects has become very common now-a-days not only in general population but also in sports persons. There are various methods which can be used to assess these postural defects. These methods have evolved over a period of many years. This paper is first of its kind to summarize the methods of postural assessment which have been used and which can be used for evaluation of postural abnormalities in sports persons such as the visual observation, plumbline, goniometry, photographic, radiographic, photogrammetric, flexiruler, electromagnetic tracking device etc. We recommend more and more postural evaluation studies to be done in future based on the photogrammetric method. PMID:24959470

  4. Postural sway and perceived comfort in pointing tasks.

    PubMed

    Solnik, Stanislaw; Pazin, Nemanja; Coelho, Chase J; Rosenbaum, David A; Zatsiorsky, Vladimir M; Latash, Mark L

    2014-05-21

    In this study, we explored relations between indices of postural sway and perceived comfort during pointing postures performed by standing participants. The participants stood on a force plate, grasped a pointer with the dominant (right) hand, and pointed to targets located at four positions and at two distances from the body. We quantified postural sway over 60-s intervals at each pointing posture, and found no effects of target location or distance on postural sway indices. In contrast, comfort ratings correlated significantly with indices of one of the sway components, trembling. Our observations support the hypothesis that rambling and trembling sway components involve different neurophysiological mechanisms. They also suggest that subjective perception of comfort may be more important than the actual posture for postural sway. PMID:24686189

  5. Static and dynamic posture control in postlingual cochlear implanted patients: effects of dual-tasking, visual and auditory inputs suppression

    PubMed Central

    Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel

    2014-01-01

    Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well

  6. Geometric morphometrics as a tool for improving the comparative study of behavioural postures

    NASA Astrophysics Data System (ADS)

    Fureix, Carole; Hausberger, Martine; Seneque, Emilie; Morisset, Stéphane; Baylac, Michel; Cornette, Raphaël; Biquand, Véronique; Deleporte, Pierre

    2011-07-01

    Describing postures has always been a central concern when studying behaviour. However, attempts to compare postures objectively at phylogenetical, populational, inter- or intra-individual levels generally either rely upon a few key elements or remain highly subjective. Here, we propose a novel approach, based on well-established geometric morphometrics, to describe and to analyse postures globally (i.e. considering the animal's body posture in its entirety rather than focusing only on a few salient elements, such as head or tail position). Geometric morphometrics is concerned with describing and comparing variation and changes in the form (size and shape) of organisms using the coordinates of a series of homologous landmarks (i.e. positioned in relation to skeletal or muscular cues that are the same for different species for every variety of form and function and that have derived from a common ancestor, i.e. they have a common evolutionary ancestry, e.g. neck, wings, flipper/hand). We applied this approach to horses, using global postures (1) to characterise behaviours that correspond to different arousal levels, (2) to test potential impact of environmental changes on postures. Our application of geometric morphometrics to horse postures showed that this method can be used to characterise behavioural categories, to evaluate the impact of environmental factors (here human actions) and to compare individuals and groups. Beyond its application to horses, this promising approach could be applied to all questions involving the analysis of postures (evolution of displays, expression of emotions, stress and welfare, behavioural repertoires…) and could lead to a whole new line of research.

  7. An Evaluation of Upper and Lower Pharyngeal Airway Width, Tongue Posture and Hyoid Bone Position in Subjects with Different Growth Patterns

    PubMed Central

    Tarkar, Jaipal Singh; Parashar, Sandeep; Gupta, Garima; Bhardwaj, Preeti; Singh, Atul; Singh, Parul

    2016-01-01

    Introduction It is important to evaluate the position of the hyoid bone in relation to the tongue at the beginning of orthodontic treatment so that during the treatment, its position may be directed hence overall impact on airway could be assessed. Aim The aim of this study was to evaluate the upper and lower pharyngeal airway dimensions, posture of tongue and hyoid bone position in young adults with different growth patterns. Materials and Methods Sample size of the study included 90 post-adolescent subjects, within the age range of 18-32 years. Based on the different growth pattern of the face, subjects were divided into Group I (n=30; average growth pattern), Group II (n=30; horizontal growth pattern) and Group III (n=30; vertical growth pattern). Lateral cephalogram were traced and analysed manually by the same investigator for evaluation of upper and lower pharyngeal airway, tongue posture and hyoid bone position. The intergroup comparison of upper and lower pharyngeal airway dimensions, posture of tongue and hyoid bone was performed with one-way ANOVA test. Results The results showed that upper oropharyngeal widths were significantly different in different facial skeletal patterns (p=0.00). Subjects with vertical skeletal pattern have significantly narrower upper airways than those with horizontal skeletal pattern (p= 0.025). There was significantly higher difference in position of dorsum of the tongue in vertical growth pattern group (p=0.00). The hyoid bone was positioned farther from the mandibular symphysis in brachyfacial subjects, reflected by the larger H-RGN (Hyoid- retrognathion) values compared with the dolichofacial and normal subjects (p=0.044). Conclusion The upper oropharyngeal width was found to be narrower in subjects with vertical growth pattern. The dorsum of the tongue is seen to be placed higher in subjects with vertical growth pattern. The hyoid bone was more inferiorly and posteriorly positioned in subjects with horizontal growth pattern

  8. 42 CFR 8.5 - Periodic evaluation of accreditation bodies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROVISIONS CERTIFICATION OF OPIOID TREATMENT PROGRAMS Accreditation § 8.5 Periodic evaluation of... accreditation body are in compliance with the Federal opioid treatment standards. The evaluation will include...

  9. 42 CFR 8.5 - Periodic evaluation of accreditation bodies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROVISIONS CERTIFICATION OF OPIOID TREATMENT PROGRAMS Accreditation § 8.5 Periodic evaluation of... accreditation body are in compliance with the Federal opioid treatment standards. The evaluation will include...

  10. 42 CFR 8.5 - Periodic evaluation of accreditation bodies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROVISIONS CERTIFICATION OF OPIOID TREATMENT PROGRAMS Accreditation § 8.5 Periodic evaluation of... accreditation body are in compliance with the Federal opioid treatment standards. The evaluation will include...

  11. Adaptation of Postural Stability following Stroke.

    PubMed

    Di Fabio, R P

    1997-01-01

    Activities of daily living require both anticipatory and reactive postural adjustments. The influence of stroke on anticipatory and reactive balance behaviors is addressed in this article. Two primary deficits appear to underlie postural instability following stroke. The first deficit type is characterized by a loss of postural muscle recruitment in both lower extremities (not hyperactive stretch reflexes). The second deficit type is related specifically to the lack of limb stabilization on the paretic side of the body. These two categories of deficit might result from the disruption of geocentric and egocentric references for postural stability with cerebrovascular disease. Context-dependent postural responses are either relearned or retained following stroke, but deficits in the sequencing and timing of stabilizing neuromuscular responses appear to be resistant to adaptation. Prior knowledge of an impending balance disturbance improves the initiation of reactive postural adjustments in subjects with stroke but has no effect on the initiation of stabilizing responses associated with voluntary motion. The results suggest that reactive and anticipatory postural adjustments are controlled by different neural mechanisms and may require separate attention in a rehabilitation program. PMID:27620375

  12. Evaluation of a 433 MHz band body sensor network for biomedical applications.

    PubMed

    Kim, Saim; Brendle, Christian; Lee, Hyun-Young; Walter, Marian; Gloeggler, Sigrid; Krueger, Stefan; Leonhardt, Steffen

    2013-01-01

    Body sensor networks (BSN) are an important research topic due to various advantages over conventional measurement equipment. One main advantage is the feasibility to deploy a BSN system for 24/7 health monitoring applications. The requirements for such an application are miniaturization of the network nodes and the use of wireless data transmission technologies to ensure wearability and ease of use. Therefore, the reliability of such a system depends on the quality of the wireless data transmission. At present, most BSNs use ZigBee or other IEEE 802.15.4 based transmission technologies. Here, we evaluated the performance of a wireless transmission system of a novel BSN for biomedical applications in the 433MHz ISM band, called Integrated Posture and Activity NEtwork by Medit Aachen (IPANEMA) BSN. The 433MHz ISM band is used mostly by implanted sensors and thus allows easy integration of such into the BSN. Multiple measurement scenarios have been assessed, including varying antenna orientations, transmission distances and the number of network participants. The mean packet loss rate (PLR) was 0.63% for a single slave, which is comparable to IEEE 802.15.4 BSNs in the proximity of Bluetooth or WiFi networks. Secondly, an enhanced version is evaluated during on-body measurements with five slaves. The mean PLR results show a comparable good performance for measurements on a treadmill (2.5%), an outdoor track (3.4%) and in a climate chamber (1.5%). PMID:23344383

  13. Evaluation of a 433 MHz Band Body Sensor Network for Biomedical Applications

    PubMed Central

    Kim, Saim; Brendle, Christian; Lee, Hyun-Young; Walter, Marian; Gloeggler, Sigrid; Krueger, Stefan; Leonhardt, Steffen

    2013-01-01

    Body sensor networks (BSN) are an important research topic due to various advantages over conventional measurement equipment. One main advantage is the feasibility to deploy a BSN system for 24/7 health monitoring applications. The requirements for such an application are miniaturization of the network nodes and the use of wireless data transmission technologies to ensure wearability and ease of use. Therefore, the reliability of such a system depends on the quality of the wireless data transmission. At present, most BSNs use ZigBee or other IEEE 802.15.4 based transmission technologies. Here, we evaluated the performance of a wireless transmission system of a novel BSN for biomedical applications in the 433 MHz ISM band, called Integrated Posture and Activity NEtwork by Medit Aachen (IPANEMA) BSN. The 433 MHz ISM band is used mostly by implanted sensors and thus allows easy integration of such into the BSN. Multiple measurement scenarios have been assessed, including varying antenna orientations, transmission distances and the number of network participants. The mean packet loss rate (PLR) was 0.63% for a single slave, which is comparable to IEEE 802.15.4 BSNs in the proximity of Bluetooth or WiFi networks. Secondly, an enhanced version is evaluated during on-body measurements with five slaves. The mean PLR results show a comparable good performance for measurements on a treadmill (2.5%), an outdoor track (3.4%) and in a climate chamber (1.5%). PMID:23344383

  14. [Craniomandibular relations and anti-gravity posture: stabilometric study disclusion wedges].

    PubMed

    Decocq, Philippe; Honoré, Jacques; Auclair-Assaad, Catherine; Sequeira, Henrique; Bocquet, Emmanuelle

    2015-06-01

    Cephalometric parameters are thought to influence static posture. The present work evaluates the relationships between skeletal class or facial divergency, on one hand, and body posture, on the other hand. ANB and FMA angles were measured from profile cephalograms in twenty healthy adults. From each, stabilograms were recorded, with eyes open or shut, and with or without disclusion splints. Without splints, ANB and FMA proved to correlate with the accuracy of postural control. Adding splints changes the average position of the center of pressure exerted on the ground by the body, the anterior-posterior axis, and this effect is consistent with that of the typology. It also alters the displacement of the center of pressure on the same axis. These effects depend on whether the eyes are open or closed. The data reinforces the notion of the impact of cephalometric parameters and their mechanical changes on the static posture. They invite us to take greater account of postural impact of splints used in orthodontic practice. PMID:26337095

  15. Does Observation of Postural Imbalance Induce a Postural Reaction?

    PubMed Central

    Tia, Banty; Saimpont, Arnaud; Paizis, Christos; Mourey, France; Fadiga, Luciano; Pozzo, Thierry

    2011-01-01

    Background Several studies bring evidence that action observation elicits contagious responses during social interactions. However automatic imitative tendencies are generally inhibited and it remains unclear in which conditions mere action observation triggers motor behaviours. In this study, we addressed the question of contagious postural responses when observing human imbalance. Methodology/Principal Findings We recorded participants' body sway while they observed a fixation cross (control condition), an upright point-light display of a gymnast balancing on a rope, and the same point-light display presented upside down. Our results showed that, when the upright stimulus was displayed prior to the inverted one, centre of pressure area and antero-posterior path length were significantly greater in the upright condition compared to the control and upside down conditions. Conclusions/Significance These results demonstrate a contagious postural reaction suggesting a partial inefficiency of inhibitory processes. Further, kinematic information was sufficient to trigger this reaction. The difference recorded between the upright and upside down conditions indicates that the contagion effect was dependent on the integration of gravity constraints by body kinematics. Interestingly, the postural response was sensitive to habituation, and seemed to disappear when the observer was previously shown an inverted display. The motor contagion recorded here is consistent with previous work showing vegetative output during observation of an effortful movement and could indicate that lower level control facilitates contagion effects. PMID:21423622

  16. Postural Coordination during Socio-motor Improvisation

    PubMed Central

    Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193

  17. Postural Coordination during Socio-motor Improvisation.

    PubMed

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193

  18. Human posture experiments under water: ways of applying the findings to microgravity

    NASA Astrophysics Data System (ADS)

    Dirlich, Thomas

    differences between underwater and real microgravity environment were analyzed in greater detail: external forces (buoyancy and grav-ity), required fixation, postural changes by breathing and subject orientation to gravitational vector. Goal of this analysis was to understand the respective effects of each environmental influence on subjects posture observed. Each of the different influences was then quantified and the postural change induced by it calculated. These were then combined using a specially programmed multi-body-simulation tool, making it possible to recompute 3D posture data dy-namically to the environmental influences. The simulation is based on the volumetric 3D model of each subject, specific anthropometric data, such as body-fat or muscle ratio, combined with external forces such as gravity and buoyancy. The recomputed data can then be compared independent from the environmental influences. The recomputed 3D posture data can then be re-evaluated focussing again on possible inter-personal neutral posture archetypes in the subject group. Some examples of recomputed data and inter-personal findings will be given.

  19. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    PubMed

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. PMID:18506762

  20. A New Standing Posture Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation by Changing Their Standing Posture through a Commercial Wii Balance Board

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…

  1. Explicit vs. implicit body image evaluation in restrictive anorexia nervosa.

    PubMed

    Cserjési, Renáta; Vermeulen, Nicolas; Luminet, Olivier; Marechal, Clarisse; Nef, François; Simon, Yves; Lénárd, László

    2010-01-30

    In the present study we investigated the evaluation of body shapes in patients with restrictive anorexia nervosa (AN) on both automatic and controlled levels. The first aim of the study was to examine whether an ultra-thin ideal or negative attitudes toward overweight might be the motivation behind pathological restriction. The second aim was to investigate the relationship between body figure evaluations, eating disorder symptoms and mood. A Modified Affective Priming Test was used to measure implicit evaluations of body silhouettes, while a Likert scale was used to assess explicit evaluations. The study involved 35 women with restrictive anorexia nervosa and 35 age- and education-level-matched controls with normal body weight. In contrast to the control group, the patients did not show a positive attitude toward the ultra-thin body shape on the automatic level. The AN group both on the automatic and the self-reported levels evaluated the overweight body as negative. Depression and anxiety did not influence body evaluation. Strong negative evaluation of overweight appears to be a key issue in AN rather than positive evaluation of ultra-thin role models. PMID:19931183

  2. STEADFAST: Psychotherapeutic Intervention Improves Postural Strategy of Somatoform Vertigo and Dizziness

    PubMed Central

    Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E.; Eckhardt-Henn, Annegret; Dieterich, Marianne

    2015-01-01

    Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (QH/V), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: QH/V = 0.31 versus controls: QH/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles. PMID:26843786

  3. STEADFAST: Psychotherapeutic Intervention Improves Postural Strategy of Somatoform Vertigo and Dizziness.

    PubMed

    Best, Christoph; Tschan, Regine; Stieber, Nikola; Beutel, Manfred E; Eckhardt-Henn, Annegret; Dieterich, Marianne

    2015-01-01

    Patients with somatoform vertigo and dizziness (SVD) disorders often report instability of stance or gait and fear of falling. Posturographic measurements indeed indicated a pathological postural strategy. Our goal was to evaluate the effectiveness of a psychotherapeutic and psychoeducational short-term intervention (PTI) using static posturography and psychometric examination. Seventeen SVD patients took part in the study. The effects of PTI on SVD were evaluated with quantitative static posturography. As primary endpoint a quotient characterizing the relation between horizontal and vertical sway was calculated (Q H/V ), reflecting the individual postural strategy. Results of static posturography were compared to those of age- and gender-matched healthy volunteers (n = 28); baseline measurements were compared to results after PTI. The secondary endpoint was the participation-limiting consequences of SVD as measured by the Vertigo Handicap Questionnaire (VHQ). Compared to the healthy volunteers, the patients with SVD showed a postural strategy characterized by stiffening-up that resulted in a significantly reduced body sway quotient before PTI (patients: Q H/V = 0.31 versus controls: Q H/V = 0.38; p = 0.022). After PTI the postural behavior normalized, and psychological distress was reduced. PTI therefore appears to modify pathological balance behaviour. The postural strategy of patients with SVD possibly results from anxious anticipatory cocontraction of the antigravity muscles. PMID:26843786

  4. Seated postural hypotension.

    PubMed

    Gorelik, Oleg; Cohen, Natan

    2015-12-01

    Most studies of postural hypotension (PH) have focused on standing PH. Less is known about PH after transition from a supine to sitting position. Moreover, seated PH has not been previously reviewed in the English literature. The aim of this review was to provide current information regarding seating-induced PH. Seventeen studies were reviewed regarding prevalence, methods of evaluation, manifestations, predisposing factors, prognosis, and management of seated PH. Prevalence ranged from 8% among community-dwelling persons to 56% in elderly hospitalized patients. Dizziness and palpitations were the most frequent symptoms. Of a variety of factors that have been identified as predisposing and contributing to seated PH, aging, bed rest, and hypertension were most important. Because seated PH is a common, easily diagnosable and frequently symptomatic condition, especially in elderly inpatients, this disorder warrants attention. Moreover, seating-induced falls in blood pressure and the associated symptoms, may be largely prevented by nonpharmacologic interventions. PMID:26515671

  5. The influence of kayaking and rowing sports experience on postural response to optic flow.

    PubMed

    Chung, Hyun Chae

    2015-02-01

    This study investigated the postural response of kayakers and rowers to imposed optic flow. The athletes, with experience in unstable water environments, should have a specific postural response to optic flow. 12 male participants with kayaking and rowing experience and 12 with no specific sports experience were asked to stand still with and without room motion. This study varied the amplitude and frequency of room motion and evaluated the trajectory of the center of pressure. The kayaking and rowing group were less influenced by imposed optic flow, and body sway was more closely synchronized to the oscillating room compared to the Non-athlete group. These results suggest that postural adaptation occurs in association with experience in kayaking and rowing. PMID:25650510

  6. 42 CFR 8.5 - Periodic evaluation of accreditation bodies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 8.5 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... inspecting a selected sample of the OTPs accredited by the accrediting body and by evaluating the accreditation body's reports of surveys conducted, to determine whether the OTPs surveyed and accredited by...

  7. 42 CFR 8.5 - Periodic evaluation of accreditation bodies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 8.5 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL... inspecting a selected sample of the OTPs accredited by the accrediting body and by evaluating the accreditation body's reports of surveys conducted, to determine whether the OTPs surveyed and accredited by...

  8. An Evaluation of the Construct of Body Image.

    ERIC Educational Resources Information Center

    Banfield, Sophie S.; McCabe, Marita P.

    2002-01-01

    Evaluates the efficacy of a multidimensional model of body image that incorporated the dimensions of perception, affect, cognition, and behavior. Results did not support the hypothesized four-factor model, but rather a model that consisted of three factors. The results highlight the multidimensionality of the body image construct and the…

  9. A 3D reconstruction method of the body envelope from biplanar X-rays: Evaluation of its accuracy and reliability.

    PubMed

    Nérot, Agathe; Choisne, Julie; Amabile, Célia; Travert, Christophe; Pillet, Hélène; Wang, Xuguang; Skalli, Wafa

    2015-12-16

    The aim of this study was to propose a novel method for reconstructing the external body envelope from the low dose biplanar X-rays of a person. The 3D body envelope was obtained by deforming a template to match the surface profiles in two X-rays images in three successive steps: global morphing to adopt the position of a person and scale the template׳s body segments, followed by a gross deformation and a fine deformation using two sets of pre-defined control points. To evaluate the method, a biplanar X-ray acquisition was obtained from head to foot for 12 volunteers in a standing posture. Up to 172 radio-opaque skin markers were attached to the body surface and used as reference positions. Each envelope was reconstructed three times by three operators. Results showed a bias lower than 7mm and a confidence interval (95%) of reproducibility lower than 6mm for all body parts, comparable to other existing methods matching a template onto stereographic photographs. The proposed method offers the possibility of reconstructing body shape in addition to the skeleton using a low dose biplanar X-rays system. PMID:26592437

  10. Social Postural Coordination

    ERIC Educational Resources Information Center

    Varlet, Manuel; Marin, Ludovic; Lagarde, Julien; Bardy, Benoit G.

    2011-01-01

    The goal of the current study was to investigate whether a visual coupling between two people can produce spontaneous interpersonal postural coordination and change their intrapersonal postural coordination involved in the control of stance. We examined the front-to-back head displacements of participants and the angular motion of their hip and…

  11. Postural awareness among dental students in Jizan, Saudi Arabia

    PubMed Central

    Kanaparthy, Aruna; Kanaparthy, Rosaiah; Boreak, Nezar

    2015-01-01

    Objective: The study was conducted to assess the postural awareness of dental students in Jizan, Saudi Arabia. Materials and Methods: Close-ended, self-administered questionnaires were used for data collection in the survey. The questionnaire was prepared by observing the positions of students working in the clinics and the common mistakes they make with regard to their postures. The questionnaires were distributed among the dental students who were present and reported to work in the clinics. Levels of postural awareness and the relationship between postural awareness and the degree of musculoskeletal disorder (MSD) among the students was evaluated. This study was carried out in the College of Dental Sciences and Hospital, Jizan. Statistical Analysis: The level of knowledge of postural awareness was evaluated and correlated with the presence or absence of the MSDs. Categorical variables were compared using Chi-square test. P values of less than 0.05 were considered statistically significant. Results: A total of 162 dental students from the age group of 20–25 years were included in the survey, of which 134 dentists responded (83%). When their postural awareness was evaluated, results showed that 89% of the students had poor-to-medium levels of postural awareness. The relation between postural awareness and prevalence of MSDs indicated that 75% of the students with poor awareness, 49% of the students with average awareness, and 40% of the students with good awareness have MSDs. The results were statistically significant (0.002127, which is <0.005) stating that better awareness about proper postures while working helps to minimize the risk of MSDs. Conclusion: Evaluation of levels of postural awareness showed that 21% of the students had poor postural awareness, 67% had average awareness, and 11% had good postural awareness. The analysis of results showed that those students with low-to-average postural awareness had significantly greater prevalence of MSDs. PMID

  12. Potentially risky postural behaviors during worksite keyboard use

    PubMed Central

    Baker, Nancy A.; Redfern, Mark

    2016-01-01

    Objective This study describes the frequency and distribution of potentially risky postural behaviors of keyboard users. Method Forty-three subjects’ keyboard postural behaviors were rated with the Keyboard – Personal Computer Style instrument (K-PeCS) while they worked at their own workstations. The frequency and distribution of keyboard postural behaviors, and the associations and differences between the right and left sides were assessed. Results Generally, each static body posture had a single criterion that occurred most frequently, (e.g. elbow flexion posture 80 – 120 degrees), while dynamic postures of the wrists and hands were distributed throughout their criteria. Right and left side postural behaviors were significantly associated for shoulder flexion, elbow flexion, hand displacement, wrist extension, forearm rotation, isolated 5th digit, MCP hyperextension, and wrist support use, and significantly different for hand displacement, isolated thumb, number of digits used, and MCP hyperextension. Conclusion Potentially problematic keyboard postural behaviors are common among keyboard users. Our results suggest that occupational therapists must systematically assess body, arm, wrist, and hand postures on both the right and left sides to be able to develop the most effective intervention strategies. PMID:19708467

  13. Vestibular humanoid postural control.

    PubMed

    Mergner, Thomas; Schweigart, Georg; Fennell, Luminous

    2009-01-01

    Many of our motor activities require stabilization against external disturbances. This especially applies to biped stance since it is inherently unstable. Disturbance compensation is mainly reactive, depending on sensory inputs and real-time sensor fusion. In humans, the vestibular system plays a major role. When there is no visual space reference, vestibular-loss clearly impairs stance stability. Most humanoid robots do not use a vestibular system, but stabilize upright body posture by means of center of pressure (COP) control. We here suggest using in addition a vestibular sensor and present a biologically inspired vestibular sensor along with a human-inspired stance control mechanism. We proceed in two steps. First, in an introductory review part, we report on relevant human sensors and their role in stance control, focusing on own models of transmitter fusion in the vestibular sensor and sensor fusion in stance control. In a second, experimental part, the models are used to construct an artificial vestibular system and to embed it into the stance control of a humanoid. The robot's performance is investigated using tilts of the support surface. The results are compared to those of humans. Functional significance of the vestibular sensor is highlighted by comparing vestibular-able with vestibular-loss states in robot and humans. We show that a kinematic body-space sensory feedback (vestibular) is advantageous over a kinetic one (force cues) for dynamic body-space balancing. Our embodiment of human sensorimotor control principles into a robot is more than just bionics. It inspired our biological work (neurorobotics: 'learning by building', proof of principle, and more). We envisage a future clinical use in the form of hardware-in-the-loop simulations of neurological symptoms for improving diagnosis and therapy and designing medical assistive devices. PMID:19665555

  14. Improved positioning procedures for 6YO and 10YO ATDs based on child occupant postures.

    PubMed

    Reed, Matthew P; Ebert-Hamilton, Sheila M; Manary, Miriam A; Klinich, Kathleen D; Schneider, Lawrence W

    2006-11-01

    The outcomes of crash tests can be influenced by the initial posture and position of the anthropomorphic test devices (ATDs) used to represent human occupants. In previous work, positioning procedures for ATDs representing adult drivers and rear-seat passengers have been developed through analysis of posture data from human volunteers. The present study applied the same methodology to the development of positioning procedures for ATDs representing six-year-old and ten-year-old children sitting on vehicle seats and belt-positioning boosters. Data from a recent study of 62 children with body mass from 18 to 45 kg were analyzed to quantify hip and head locations and pelvis and head angles for both sitter-selected and standardized postures. In the present study, the 6YO and 10YO Hybrid-III ATDs were installed using FMVSS 213 procedures in six test conditions used previously with children. Data were gathered on a vehicle seat with and without a backless belt-positioning booster at 19-, 23-, and 27-degree seat back angles. The data analysis showed that children sat with their hips further forward and with more reclined pelvis orientations in the sitter-selected posture than in the standardized posture. On the booster, the 6YO ATD head and pelvis positions and orientations corresponded well to the data from similar-size children seated in the standardized posture on the booster, but the 6YO ATD pelvis was about 20 mm rearward of the expected location for similar size children on the booster in sitter-selected postures, and the ATD head was about 20 mm higher than the expected location. Without the booster, the average 6YO ATD hip location was 40 mm rearward of the expected location in sitter-selected postures and the ATD head was 40 mm above the heads of similar-size children. The trends for the 10YO ATD hip- and head-location trends were similar, but the 10YO head was substantially forward of the head locations of similar-size children. Based on these findings, the

  15. Improving postural control by applying mechanical noise to ankle muscle tendons.

    PubMed

    Borel, Liliane; Ribot-Ciscar, Edith

    2016-08-01

    The application of subthreshold mechanical vibrations with random frequencies (white mechanical noise) to ankle muscle tendons is known to increase muscle proprioceptive information and to improve the detection of ankle movements. The aim of the present study was to analyze the effect of this mechanical noise on postural control, its possible modulation according to the sensory strategies used for postural control, and the consequences of increasing postural difficulty. The upright stance of 20 healthy young participants tested with their eyes closed was analyzed during the application of four different levels of noise and compared to that in the absence of noise (control) in three conditions: static, static on foam, and dynamic (sinusoidal translation). The quiet standing condition was conducted with the eyes open and closed to determine the subjects' visual dependency to maintain postural stability. Postural performance was assessed using posturographic and motion analysis evaluations. The results in the static condition showed that the spectral power density of body sway significantly decreased with an optimal level of noise and that the higher the spectral power density without noise, the greater the noise effect, irrespective of visual dependency. Finally, noise application was ineffective in the foam and dynamic conditions. We conclude that the application of mechanical noise to ankle muscle tendons is a means to improve quiet standing only. These results suggest that mechanical noise stimulation may be more effective in more impaired populations. PMID:27021075

  16. Obesity Impact on the Attentional Cost for Controlling Posture

    PubMed Central

    Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent

    2010-01-01

    Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914

  17. Effect of absence of vision on posture.

    PubMed

    Alotaibi, Abdullah Z; Alghadir, Ahmad; Iqbal, Zaheen A; Anwer, Shahnawaz

    2016-04-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the resulting postural deficiencies, and strategies to correct and prevent them. [Subjects and Methods] Various electronic databases including PubMed, Medline, and Google scholar were examined using the words "body", "posture", "blind" and "absence of vision". References in the retrieved articles were also examined for cross-references. The search was limited to articles in the English language. [Results] A total of 74 papers were shortlisted for this review, most of which dated back to the 1950s and 60s. [Conclusion] Blind people exhibit consistent musculoskeletal deformities. Absence of vision leads to numerous abnormal sensory and motor interactions that often limit blind people in isolation. Rehabilitation of the blind is a multidisciplinary task. Specialists from different fields need to diagnose and treat the deficiencies of the blind together as a team. Before restoring the normal mechanics of posture and gait, the missing link with the external world should be reestablished. PMID:27190486

  18. Postural optimization during functional reach while kneeling and standing

    PubMed Central

    Fujisawa, Hiroyuki; Suzuki, Hiroto; Kawakami, Shingo; Murakami, Kenichi; Suzuki, Makoto

    2016-01-01

    [Purpose] The purpose of the present study was to examine the validity of functional reach models by comparing actual values with estimated values. [Subjects and Methods] Twenty-eight volunteers were included in this study (male: 14, female: 14, age: 21 ± 1 years, height: 166.8 ± 9.0 cm, and body mass: 60.1 ± 8.5 kg). The maximum forward fingertip position and joint angles were measured using the original equipment. In addition, the maximum forward fingertip position, shoulder joint angle, and knee or ankle joint angle were estimated using the functional reach model. [Results] The correlation coefficients between actual data and estimated data for the maximum forward fingertip position, shoulder joint angle, and ankle joint angle while standing were 0.93, 0.83, and 0.73, respectively. The correlation coefficients between actual data and estimated data for the maximum forward fingertip position, shoulder joint angle, and knee joint angle while kneeling were 0.86, 0.81, and 0.72, respectively. [Conclusion] The validity of both functional reach models in estimating optimal posture was confirmed. Therefore, the functional reach model is useful for evaluation of postural control and optimal postural control exercises.

  19. Reliability of photographic posture analysis of adolescents

    PubMed Central

    Hazar, Zeynep; Karabicak, Gul Oznur; Tiftikci, Ugur

    2015-01-01

    [Purpose] Postural problems of adolescents needs to be evaluated accurately because they may lead to greater problems in the musculoskeletal system as they develop. Although photographic posture analysis has been frequently used, more simple and accessible methods are still needed. The purpose of this study was to investigate the inter- and intra-rater reliability of photographic posture analysis using MB-ruler software. [Subjects and Methods] Subjects were 30 adolescents (15 girls and 15 boys, mean age: 16.4±0.4 years, mean height 166.3±6.7 cm, mean weight 63.8±15.1 kg) and photographs of their habitual standing posture photographs were taken in the sagittal plane. For the evaluation of postural angles, reflective markers were placed on anatomical landmarks. For angular measurements, MB-ruler (Markus Bader- MB Software Solutions, triangular screen ruler) was used. Photographic evaluations were performed by two observers with a repetition after a week. Test-retest and inter-rater reliability evaluations were calculated using intra-class correlation coefficients (ICC). [Results] Inter-rater (ICC>0.972) and test-retest (ICC>0.774) reliability were found to be in the range of acceptable to excellent. [Conclusion] Reference angles for postural evaluation were found to be reliable and repeatable. The present method was found to be an easy and non-invasive method and it may be utilized by researchers who are in search of an alternative method for photographic postural assessments. PMID:26644658

  20. Correlation between Trunk Posture and Neck Reposition Sense among Subjects with Forward Head Neck Postures

    PubMed Central

    Lee, Han Suk; Chung, Hyung Kuk; Park, Sun Wook

    2015-01-01

    Objective. To assess the correlation of abnormal trunk postures and reposition sense of subjects with forward head neck posture (FHP). Methods. In all, postures of 41 subjects were evaluated and the FHP and trunk posture including shoulder, scapular level, pelvic side, and anterior tilting degrees were analyzed. We used the head repositioning accuracy (HRA) test to evaluate neck position senses of neck flexion, neck extension, neck right and left side flexion, and neck right and left rotation and calculated the root mean square error in trials for each subject. Spearman's rank correlation coefficients and regression analysis were used to assess the degree of correlation between the trunk posture and HRA value, and a significance level of α = 0.05 was considered. Results. There were significant correlations between the HRA value of right side neck flexion and pelvic side tilt angle (p < 0.05). If pelvic side tilting angle increases by 1 degree, right side neck flexion increased by 0.76 degrees (p = 0.026). However, there were no significant correlations between other neck motions and trunk postures. Conclusion. Verifying pelvic postures should be prioritized when movement is limited due to the vitiation of the proprioceptive sense of neck caused by FHP. PMID:26583125

  1. Postural Tachycardia Syndrome (POTS)

    PubMed Central

    Low, Phillip A.; Sandroni, Paola; Joyner, Michael; Shen, Win-Kuang

    2014-01-01

    Introduction POTS is defined as the development of orthostatic symptoms associated with a heart rate (HR) increment ≥30, usually to ≥120 bpm without orthostatic hypotension. Symptoms of orthostatic intolerance are those due to brain hypoperfusion and those due to sympathetic overaction. Methods We provide a review of POTS based primarily on work from the Mayo Clinic. Results Females predominate over males by 5:1. Mean age of onset in adults is about 30 years and most patients are between the ages of 20–40 years. Pathophysiologic mechanisms (not mutually exclusive) include peripheral denervation, hypovolemia, venous pooling, β-receptor supersensitivity, psychologic mechanisms, and presumed impairment of brain stem regulation. Prolonged deconditioning may also interact with these mechanisms to exacerbate symptoms. The evaluation of POTS requires a focused history and examination, followed by tests that should include HUT, some estimation of volume status and preferably some evaluation of peripheral denervation and hyperadrenergic state. All patients with POTS require a high salt diet, copious fluids, and postural training. Many require β-receptor antagonists in small doses and low-dose vasoconstrictors. Somatic hypervigilance and psychologic factors are involved in a significant proportion of patients. Conclusions POTS is heterogeneous in presentation and mechanisms. Major mechanisms are denervation, hypovolemia, deconditioning, and hyperadrenergic state. Most patients can benefit from a pathophysiologically based regimen of management. PMID:19207771

  2. The dentist’s operating posture – ergonomic aspects

    PubMed Central

    Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C

    2014-01-01

    Abstract The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist’s physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture. PMID:25184007

  3. Evaluating the validity of using unverified indices of body condition

    USGS Publications Warehouse

    Schamber, J.L.; Esler, Daniel; Flint, P.L.

    2009-01-01

    Condition indices are commonly used in an attempt to link body condition of birds to ecological variables of interest, including demographic attributes such as survival and reproduction. Most indices are based on body mass adjusted for structural body size, calculated as simple ratios or residuals from regressions. However, condition indices are often applied without confirming their predictive value (i.e., without being validated against measured values of fat and protein), which we term 'unverified' use. We evaluated the ability of a number of unverified indices frequently found in the literature to predict absolute and proportional levels of fat and protein across five species of waterfowl. Among indices we considered, those accounting for body size never predicted absolute protein more precisely than body mass, however, some indices improved predictability of fat, although the form of the best index varied by species. Further, the gain in precision by using a condition index to predict either absolute or percent fat was minimal (rise in r2???0.13), and in many cases model fit was actually reduced. Our data agrees with previous assertions that the assumption that indices provide more precise indicators of body condition than body mass alone is often invalid. We strongly discourage the use of unverified indices, because subjectively selecting indices likely does little to improve precision and might in fact decrease predictability relative to using body mass alone. ?? 2009 The Authors.

  4. [Postural examination in daily occlusodontology].

    PubMed

    Serviere, F

    1989-03-01

    According to the osteopathic and chiropractic concepts, facing a TMJ problem, the practitioner has to determine if the trouble observed in the stomatognatic apparatus is the cause or the effect of the structural problems present anywhere else in the body. The postural examination allows to answer this question. Tow techniques can be used. First a static and dynamic posture test proposed by Bricot. The level of the cranium, the eyes, the shoulders, the wrists, the pelvis and the ankles is analysed, from a front view; from the side, the gravity line is inspected: vertex, auditory meatus, shoulder, hip joint, anterior side of the tibia, ankle joint. The vertical posture can be studied from the front: the arms are held straight and the antero-posterior length between the fingers is measured. From the back, one notes the recoil of the buttocks on one side. An ocular convergence test is performed. Then one uses a Romberg test (oscillation of the body when the eyes are closed), and a Fukuda stepping test. The patient is then asked to bite on a compress, and the same exams are redone. If no change occurs, we are dealing with an ascending problem: the origin of the problem is not the stomatognathic system. The second technique is the Meerssemann test that needs the practice of Applied Kinesiology muscle testing. The patient is lying supine and one tests: the dental occlusion, the two TMJs, the temporal muscles, masseters, pterygoids, sterno-cleido-mastoids, upper tapezius, left and right sacro-iliac joints, psoas muscles bilaterally.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2636023

  5. Fingertip contact influences human postural control

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Lackner, J. R.

    1994-01-01

    Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (< 0.98 N of force), and force contact (as much force as desired). Touch contact was as effective as force contact or sight of the surroundings in reducing postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.

  6. Effect of Different Insoles on Postural Balance: A Systematic Review

    PubMed Central

    Christovão, Thaluanna Calil Lourenço; Neto, Hugo Pasini; Grecco, Luanda André Collange; Ferreira, Luiz Alfredo Braun; Franco de Moura, Renata Calhes; Eliege de Souza, Maria; Franco de Oliveira, Luis Vicente; Oliveira, Claudia Santos

    2013-01-01

    [Purpose] The aim of the present study was to perform a systematic review of the literature on the effect of different insoles on postural balance. [Subjects and Methods] A systematic review was conducted of four databases. The papers retrieved were evaluated based on the following inclusion criteria: 1) design: controlled clinical trial; 2) intervention: insole; 3) outcome: change in static postural balance; and 4) year of publication: 2005 to 2012. [Results] Twelve controlled trials were found comparing the effects of different insoles on postural balance. The papers had methodological quality scores of 3 or 4 on the PEDro scale. [Conclusion] Insoles have benefits that favor better postural balance and control. PMID:24259792

  7. Development of low postural tone compensatory patterns in children - theoretical basis.

    PubMed

    Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej

    2014-01-01

    Neurological literature indicates the existence of children with low postural tone without association with central nervous system damage. This fact induces to think about mechanisms, which allow these children to maintain upright posture. There is a suspicion that compensatory mechanism included in this process, enables to achieve upright posture, but at expense of body posture quality. Observations of children's developmental stages caused determination of some postural tone area, which comprise both children with normotonia and with low postural tone without characteristics of central nervous system (CNS) damage. Set of specific qualities allows determination of two types of low postural tone: spastoidal and atetoidal type. Spastoidal type is characterized by deep trunk muscles (local) low postural tone compensated by excessive tension of superficial muscles (global). Atetoidal type includes children with low postural tone in both deep and superficial muscles. At inefficient active subsystem, verticalization proceeds at excessive use of passive subsystem qualities, that is meniscus, ligament, bone shape, and muscles passive features. From neurodevelopmental point of view compensatory mechanisms can be used in children with low postural tone in order to achieve upright posture, but at expense of body posture quality. PMID:25182403

  8. Changes in Habitual and Active Sagittal Posture in Children and Adolescents with and without Visual Input – Implications for Diagnostic Analysis of Posture

    PubMed Central

    Mazet, Carola; Mazet, Dirk; Hammes, Annette; Schmitt, Eduard

    2016-01-01

    Introduction Poor posture in children and adolescents has a prevalence of 22-65% and is suggested to be responsible for back pain. To assess posture, photometric imaging of sagittal posture is widely used, but usually only habitual posture positions (resting position with minimal muscle activity) are analysed. Aim The objective of this study was 1) to investigate possible changes in posture-describing parameters in the sagittal plane, when the subjects changed from a habitual passive posture to an actively corrected posture, and 2) to investigate the changes in posture parameters when an actively corrected posture was to be maintained with closed eyes. Materials and Methods In a group of 216 male children and adolescents (average 12.4 ± 2.5 years, range 7.0 – 17.6 years), six sagittal posture parameters (body tilt BT, trunk incline TI, posture index PI, horizontal distances between ear, shoulder and hip and the perpendicular to the ankle joint) were determined by means of photometric imaging in an habitual passive posture position, in an actively erect posture with eyes open, and in active stance with eyes closed. The change in these parameters during the transition between the posture positions was analysed statistically (dependent t-Test or Wilcoxon-Test) after Bonferroni correction (p<0.004). Results When moving from a habitual passive to an active posture BT, TI, PI, dEar, dShoulder, and dHip decreased significantly(p< 0.004). When the eyes were closed, only the perpendicular distances (dEar, dShoulder, and dHip) increased significantly. The parameters that describe the alignment of the trunk sections in relation to each other (BT, TI, PI), remained unchanged in both actively regulated posture positions. Conclusion Changes in sagittal posture parameters that occur when a habitual passive posture switches into an active posture or when an active posture is to be maintained while the eyes are closed can be used for diagnostic purposes regarding poor posture

  9. Postural alignment in children with Duchenne muscular dystrophy and its relationship with balance

    PubMed Central

    Baptista, Cyntia R. J. A.; Costa, Andreia A.; Pizzato, Tatiana M.; Souza, Francine B.; Mattiello-Sverzut, Ana C.

    2014-01-01

    Background In Duchenne muscular dystrophy, functional deficits seem to arise from body misalignment, deconditioning, and obesity secondary to weakness and immobility. The question remains about the effects of postural deviations on the functional balance of these children. Objectives To identify and quantify postural deviations in children with DMD in comparison to non-affected children (eutrophic and overweight/obese), exploring relationships between posture and function. Method This case-control study evaluated 29 participants aged 6 to 11 years: 10 DMD (DG), 10 eutrophic (EG), and 9 overweight/obese (OG). Digital photogrammetry and SAPo program were used to measure postural alignment and the Pediatric Balance Scale (PBS) was used to measure balance. The Kruskall-Wallis and Dunn post-hoc tests were used for inter-group comparison of posture and balance. Spearman's coefficient tested the correlation between postural and balance variables. Results The horizontal pelvic alignment data indicated that the anteversion of the DG was similar to that of the OG and twice that of the EG (p<0.05). Compared to the EG, the DG and OG showed an increased forward position of the center of mass (p<0.05). There was a moderate and weak correlation between the PBS score and horizontal pelvic alignment (0.58 and 0.47-left/right). The PBS showed a weak correlation with asymmetries in the sagittal plane (-0.39). The PBS scores for the OG and EG suggest that obesity did not have a deleterious effect on balance. Conclusions The balance deficit in children with DMD was accompanied by an increased forward position of the center of mass and significant pelvic anteversion that constitutes a compensatory strategy to guarantee similar performance to the children not affected by the disease. PMID:24838810

  10. Postural control--a comparison between patients with chronic anterior cruciate ligament insufficiency and healthy individuals.

    PubMed

    Lysholm, M; Ledin, T; Odkvist, L M; Good, L

    1998-12-01

    Postural control in the sagittal plane was evaluated in 22 patients with chronic anterior cruciate ligament (ACL) deficiency and the result was compared to that of a control group of 20 uninjured subjects. Measurement of the body sway was done on a fixed and sway-referenced force plate in both single-limb and two-limb stance, with the eyes open and closed, respectively. Further, an analysis of the postural reactions to perturbations backwards and forwards, respectively, was made in single-limb stance. The results demonstrated statistically significant deficits of the postural control in the patient group compared to the control group, but also within the patient group. There was a significantly higher body sway within the patient group when standing on a stable support surface on the injured limb than standing on the uninjured limb with the eyes open, but no difference with the eyes closed. When standing on a stable support surface, there was a significantly higher body sway in the patient group standing on the injured leg than in the control group, both with eyes open and closed. The patient group also showed a significantly impaired postural control compared to the control group when standing on the uninjured leg with the eyes closed. There was no difference between the groups in the two-limb stance. When standing on the sway-referenced support surface, the patient group had a significantly larger body sway than the control group when the eyes were open, but there was no significant difference between the groups with the eyes closed. The measurement of the postural corrective responses to perturbations backwards and forwards showed that the reaction time measured from the initiation of the force plate translation, and the amplitude of the body sway was significantly greater in the patient group than in the control group. We conclude that patients with a continuing chronic ACL insufficiency several years after injury have an impaired postural control in the antero