Science.gov

Sample records for bohr exciton radius

  1. Placing molecules with Bohr radius resolution using DNA origami.

    PubMed

    Funke, Jonas J; Dietz, Hendrik

    2016-01-01

    Molecular self-assembly with nucleic acids can be used to fabricate discrete objects with defined sizes and arbitrary shapes. It relies on building blocks that are commensurate to those of biological macromolecular machines and should therefore be capable of delivering the atomic-scale placement accuracy known today only from natural and designed proteins. However, research in the field has predominantly focused on producing increasingly large and complex, but more coarsely defined, objects and placing them in an orderly manner on solid substrates. So far, few objects afford a design accuracy better than 5 nm, and the subnanometre scale has been reached only within the unit cells of designed DNA crystals. Here, we report a molecular positioning device made from a hinged DNA origami object in which the angle between the two structural units can be controlled with adjuster helices. To test the positioning capabilities of the device, we used photophysical and crosslinking assays that report the coordinate of interest directly with atomic resolution. Using this combination of placement and analysis, we rationally adjusted the average distance between fluorescent molecules and reactive groups from 1.5 to 9 nm in 123 discrete displacement steps. The smallest displacement step possible was 0.04 nm, which is slightly less than the Bohr radius. The fluctuation amplitudes in the distance coordinate were also small (±0.5 nm), and within a factor of two to three of the amplitudes found in protein structures. PMID:26479026

  2. Placing molecules with Bohr radius resolution using DNA origami

    NASA Astrophysics Data System (ADS)

    Funke, Jonas J.; Dietz, Hendrik

    2016-01-01

    Molecular self-assembly with nucleic acids can be used to fabricate discrete objects with defined sizes and arbitrary shapes. It relies on building blocks that are commensurate to those of biological macromolecular machines and should therefore be capable of delivering the atomic-scale placement accuracy known today only from natural and designed proteins. However, research in the field has predominantly focused on producing increasingly large and complex, but more coarsely defined, objects and placing them in an orderly manner on solid substrates. So far, few objects afford a design accuracy better than 5 nm, and the subnanometre scale has been reached only within the unit cells of designed DNA crystals. Here, we report a molecular positioning device made from a hinged DNA origami object in which the angle between the two structural units can be controlled with adjuster helices. To test the positioning capabilities of the device, we used photophysical and crosslinking assays that report the coordinate of interest directly with atomic resolution. Using this combination of placement and analysis, we rationally adjusted the average distance between fluorescent molecules and reactive groups from 1.5 to 9 nm in 123 discrete displacement steps. The smallest displacement step possible was 0.04 nm, which is slightly less than the Bohr radius. The fluctuation amplitudes in the distance coordinate were also small (±0.5 nm), and within a factor of two to three of the amplitudes found in protein structures.

  3. A New Contribution for WYP 2005: The Golden Ratio, Bohr Radius, Planck's Constant, Fine-Structure Constant and g-Factors

    NASA Astrophysics Data System (ADS)

    Heyrovska, R.; Narayan, S.

    2005-10-01

    Recently, the ground state Bohr radius (aB) of hydrogen was shown to be divided into two Golden sections, aB,p = aB/ø2 and aB,e = aB/ø at the point of electrical neutrality, where ø = 1.618 is the Golden ratio (R. Heyrovska, Molecular Physics 103: 877-882, and the literature cited therein). The origin of the difference of two energy terms in the Rydberg equation was thus shown to be in the ground state energy itself, as shown below: EH = (1/2)e2/(κaB) = (1/2)(e2/κ) [(1/aB,p - (1/aB,e)] (1). This work brings some new results that 1) a unit charge in vacuum has a magnetic moment, 2) (e2/2κ) in eq. (1) is an electromagnetic condenser constant, 3) the de Broglie wavelengths of the proton and electron correspond to the Golden arcs of a circle with the Bohr radius, 4) the fine structure constant (α) is the ratio of the Planck's constants without and with the interaction of light with matter, 5) the g-factors of the electron and proton, ge/2 and gp/2 divide the Bohr radius at the magnetic center and 6) the ``mysterious'' value (137.036) of α -1 = (360/ø2) - (2/ø3), where (2/ø3) arises from the difference, (gp - ge).

  4. Exciton mapping at subwavelength scales in two-dimensional materials.

    PubMed

    Tizei, Luiz H G; Lin, Yung-Chang; Mukai, Masaki; Sawada, Hidetaka; Lu, Ang-Yu; Li, Lain-Jong; Kimoto, Koji; Suenaga, Kazu

    2015-03-13

    Spatially resolved electron-energy-loss spectroscopy (EELS) is performed at diffuse interfaces between MoS2 and MoSe2 single layers. With a monochromated electron source (20 meV) we successfully probe excitons near the interface by obtaining the low loss spectra at the nanometer scale. The exciton maps clearly show variations even with a 10 nm separation between measurements; consequently, the optical band gap can be measured with nanometer-scale resolution, which is 50 times smaller than the wavelength of the emitted photons. By performing core-loss EELS at the same regions, we observe that variations in the excitonic signature follow the chemical composition. The exciton peaks are observed to be broader at interfaces and heterogeneous regions, possibly due to interface roughness and alloying effects. Moreover, we do not observe shifts of the exciton peak across the interface, possibly because the interface width is not much larger than the exciton Bohr radius. PMID:25815966

  5. Presenting the Bohr Atom.

    ERIC Educational Resources Information Center

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  6. Hydrogen-like Wannier-Mott Excitons in Single Crystal of Methylammonium Lead Bromide Perovskite.

    PubMed

    Tilchin, Jenya; Dirin, Dmitry N; Maikov, Georgy I; Sashchiuk, Aldona; Kovalenko, Maksym V; Lifshitz, Efrat

    2016-06-28

    A thorough investigation of exciton properties in bulk CH3NH3PbBr3 perovskite single crystals was carried out by recording the reflectance, steady-state and transient photoluminescence spectra of submicron volumes across the crystal. The study included an examination of the spectra profiles at various temperatures and laser excitation fluencies. The results resolved the first and second hydrogen-like Wannier-Mott exciton transitions at low temperatures, from which the ground-state exciton's binding energy of 15.33 meV and Bohr radius of ∼4.38 nm were derived. Furthermore, the photoluminescence temperature dependence suggested dominance of delayed exciton emission at elevated temperatures, originating from detrapping of carriers from shallow traps or/and from retrapping of electron-hole pairs into exciton states. The study revealed knowledge about several currently controversial issues that have an impact on functionality of perovskite materials in optoelectronic devices. PMID:27249335

  7. The Bohr paradox

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-05-01

    In his book Niels Bohr's Times, the physicist Abraham Pais captures a paradox in his subject's legacy by quoting three conflicting assessments. Pais cites Max Born, of the first generation of quantum physics, and Werner Heisenberg, of the second, as saying that Bohr had a greater influence on physics and physicists than any other scientist. Yet Pais also reports a distinguished younger colleague asking with puzzlement and scepticism "What did Bohr really do?".

  8. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  9. The quadratic Zeeman effect used for state-radius determination in neutral donors and donor bound excitons in Si:P

    NASA Astrophysics Data System (ADS)

    Litvinenko, K. L.; Li, Juerong; Stavrias, N.; Meaney, A. J.; Christianen, P. C. M.; Engelkamp, H.; Homewood, K. P.; Pidgeon, C. R.; Murdin, B. N.

    2016-04-01

    We have measured the near-infrared photoluminescence spectrum of phosphorus doped silicon (Si:P) and extracted the donor-bound exciton (D0X) energy at magnetic fields up to 28 T. At high field the Zeeman effect is strongly nonlinear because of the diamagnetic shift, also known as the quadratic Zeeman effect (QZE). The magnitude of the QZE is determined by the spatial extent of the wave-function. High field data allows us to extract values for the radius of the neutral donor (D0) ground state, and the light and heavy hole D0X states, all with more than an order of magnitude better precision than previous work. Good agreement was found between the experimental state radius and an effective mass model for D0. The D0X results are much more surprising, and the radius of the m J = ±3/2 heavy hole is found to be larger than that of the m J = ±1/2 light hole.

  10. Multiple Exciton Generation in Colloidal Silicon Nanocrystals

    SciTech Connect

    Beard, M. C.; Knutsen, K. P.; Yu, P.; Luther, J. M.; Song, Q.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. M.

    2007-01-01

    Multiple exciton generation (MEG) is a process whereby multiple electron-hole pairs, or excitons, are produced upon absorption of a single photon in semiconductor nanocrystals (NCs) and represents a promising route to increased solar conversion efficiencies in single-junction photovoltaic cells. We report for the first time MEG yields in colloidal Si NCs using ultrafast transient absorption spectroscopy. We find the threshold photon energy for MEG in 9.5 nm diameter Si NCs (effective band gap {identical_to} Eg = 1.20 eV) to be 2.4 {+-} 0.1E{sub g} and find an exciton-production quantum yield of 2.6 {+-} 0.2 excitons per absorbed photon at 3.4E{sub g}. While MEG has been previously reported in direct-gap semiconductor NCs of PbSe, PbS, PbTe, CdSe, and InAs, this represents the first report of MEG within indirect-gap semiconductor NCs. Furthermore, MEG is found in relatively large Si NCs (diameter equal to about twice the Bohr radius) such that the confinement energy is not large enough to produce a large blue-shift of the band gap (only 80 meV), but the Coulomb interaction is sufficiently enhanced to produce efficient MEG. Our findings are of particular importance because Si dominates the photovoltaic solar cell industry, presents no problems regarding abundance and accessibility within the Earth's crust, and poses no significant environmental problems regarding toxicity.

  11. Einstein, Bohr, and Bell

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    The final form of quantum physics, in the particular case of wave mechanics, was established in the years 1925-1927 by Heisenberg, Schrödinger, Born and others, but the synthesis was the work of Bohr who gave an epistemological interpretation of all the technicalities built up over those years; this interpretation will be examined briefly in Chapter 10. Although Einstein acknowledged the success of quantum mechanics in atomic, molecular and solid state physics, he disagreed deeply with Bohr's interpretation. For many years, he tried to find flaws in the formulation of quantum theory as it had been more or less accepted by a large majority of physicists, but his objections were brushed away by Bohr. However, in an article published in 1935 with Podolsky and Rosen, universally known under the acronym EPR, Einstein thought he had identified a difficulty in the by then standard interpretation. Bohr's obscure, and in part beyond the point, answer showed that Einstein had hit a sensitive target. Nevertheless, until 1964, the so-called Bohr-Einstein debate stayed uniquely on a philosophical level, and it was actually forgotten by most physicists, as the few of them aware of it thought it had no practical implication. In 1964, the Northern Irish physicist John Bell realized that the assumptions contained in the EPR article could be tested experimentally. These assumptions led to inequalities, the Bell inequalities, which were in contradiction with quantum mechanical predictions: as we shall see later on, it is extremely likely that the assumptions of the EPR article are not consistent with experiment, which, on the contrary, vindicates the predictions of quantum physics. In Section 3.2, the origin of Bell's inequalities will be explained with an intuitive example, then they will be compared with the predictions of quantum theory in Section 3.3, and finally their experimental status will be reviewed in Section 3.4. The debate between Bohr and Einstein goes much beyond a

  12. Rutherford-Bohr atom

    NASA Astrophysics Data System (ADS)

    Heilbron, J. L.

    1981-03-01

    Bohr used to introduce his attempts to explain clearly the principles of the quantum theory of the atom with an historical sketch, beginning invariably with the nuclear model proposed by Rutherford. That was sound pedagogy but bad history. The Rutherford-Bohr atom stands in the middle of a line of work initiated by J.J. Thomson and concluded by the invention of quantum mechanics. Thompson's program derived its inspiration from the peculiar emphasis on models characteristic of British physics of the 19th century. Rutherford's atom was a late product of the goals and conceptions of Victorian science. Bohr's modifications, although ultimately fatal to Thomson's program, initially gave further impetus to it. In the early 1920s the most promising approach to an adequate theory of the atom appeared to be the literal and detailed elaboration of the classical mechanics of multiply periodic orbits. The approach succeeded, demonstrating in an unexpected way the force of an argument often advanced by Thomson: because a mechanical model is richer in implications than the considerations for which it was advanced, it can suggest new directions of research that may lead to important discoveries.

  13. A subtle point about Bohr

    NASA Astrophysics Data System (ADS)

    Dotson, Allen

    2013-07-01

    Jon Cartwright's interesting and informative article on quantum philosophy ("The life of psi", May pp26-31) mischaracterizes Niels Bohr's stance as anti-realist by suggesting (in the illustration on p29) that Bohr believed that "quantum theory [does not] describe an objective reality, independent of the observer".

  14. Revisiting Bohr's semiclassical quantum theory.

    PubMed

    Ben-Amotz, Dor

    2006-10-12

    Bohr's atomic theory is widely viewed as remarkable, both for its accuracy in predicting the observed optical transitions of one-electron atoms and for its failure to fully correspond with current electronic structure theory. What is not generally appreciated is that Bohr's original semiclassical conception differed significantly from the Bohr-Sommerfeld theory and offers an alternative semiclassical approximation scheme with remarkable attributes. More specifically, Bohr's original method did not impose action quantization constraints but rather obtained these as predictions by simply matching photon and classical orbital frequencies. In other words, the hydrogen atom was treated entirely classically and orbital quantized emerged directly from the Planck-Einstein photon quantization condition, E = h nu. Here, we revisit this early history of quantum theory and demonstrate the application of Bohr's original strategy to the three quintessential quantum systems: an electron in a box, an electron in a ring, and a dipolar harmonic oscillator. The usual energy-level spectra, and optical selection rules, emerge by solving an algebraic (quadratic) equation, rather than a Bohr-Sommerfeld integral (or Schroedinger) equation. However, the new predictions include a frozen (zero-kinetic-energy) state which in some (but not all) cases lies below the usual zero-point energy. In addition to raising provocative questions concerning the origin of quantum-chemical phenomena, the results may prove to be of pedagogical value in introducing students to quantum mechanics. PMID:17020371

  15. Exciton-Phonon Interaction Effects in II-Vi Compound Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    Pelekanos, Nikolaos Themelis

    1992-01-01

    In this thesis, we report on two specific examples of exciton-LO phonon Frohlich interaction effects, namely, hot carrier relaxation and temperature dependent exciton linewidth broadening. These phenomena are considered in the context of quasi-two dimensional excitons in strongly polar II-VI semiconductor quantum wells. Hot-exciton luminescence phenomena are investigated in a single quantum well of ZnTe/MnTe where tunneling through thin MnTe barrier layers suppresses the formation of thermalized luminescence. For near resonant photoexcitation, the secondary emission spectrum is modulated by distinct LO-phonon peaks, which, for sufficiently high order of scattering ( >=4), behave like hot luminescence (HPL) as opposed to resonant Raman scattering. This is confirmed by time-resolved spectroscopy as well as by steady-state characteristics such as linewidth broadening and lack of polarization memory. Several novel observations are made: (1) The LO-phonon intermediated energy relaxation involves Coulomb-correlated pairs, i.e. hot excitons, as opposed to independently-relaxing free electrons and holes. (2) The additional weak disorder originating from QW thickness fluctuations plays a major role in the details of the HPL spectra. The major contribution to the ground state exciton linewidth at room temperature originates from LO phonon -intermediated exciton scattering to higher exciton states. A measure of the effect is given by the parameter Gamma_{LO} which increases with the polarity of the material and is independent of dimensionality provided that the LO phonon energy is greater than the exciton binding energy. Measurements of Gamma_{LO} are performed in two quantum well systems: CdTe/MnTe and (Zn,Cd)Se/ZnSe. In the latter system, a strong reduction of Gamma _{LO} is observed as the quantum well width becomes comparable to the three-dimensional exciton Bohr radius. This is explained in terms of a model where quasi-2D confinement effects increase the exciton binding

  16. The BOHR Effect before Perutz

    ERIC Educational Resources Information Center

    Brunori, Maurizio

    2012-01-01

    Before the outbreak of World War II, Jeffries Wyman postulated that the "Bohr effect" in hemoglobin demanded the oxygen linked dissociation of the imidazole of two histidines of the polypeptide. This proposal emerged from a rigorous analysis of the acid-base titration curves of oxy- and deoxy-hemoglobin, at a time when the information on the…

  17. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  18. Exciton-dominated dielectric function of atomically thin MoS2 films

    DOE PAGESBeta

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; Van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong -Wei; et al

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function maymore » dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.« less

  19. Exciton-dominated dielectric function of atomically thin MoS2 films

    SciTech Connect

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; Van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong -Wei; Cao, Linyou

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.

  20. Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films

    PubMed Central

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; Van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong-Wei; Cao, Linyou

    2015-01-01

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. The knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters. PMID:26598075

  1. Photonic Crystal Architecture for Room-Temperature Equilibrium Bose-Einstein Condensation of Exciton Polaritons

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Hua; John, Sajeev

    2014-07-01

    We describe photonic crystal microcavities with very strong light-matter interaction to realize room-temperature, equilibrium, exciton-polariton Bose-Einstein condensation (BEC). This goal is achieved through a careful balance between strong light trapping in a photonic band gap (PBG) and large exciton density enabled by a multiple quantum-well (QW) structure with a moderate dielectric constant. This approach enables the formation of a long-lived, dense 10-μm-1-cm- scale cloud of exciton polaritons with vacuum Rabi splitting that is roughly 7% of the bare exciton-recombination energy. We introduce a woodpile photonic crystal made of Cd0.6 Mg0.4Te with a 3D PBG of 9.2% (gap-to-central-frequency ratio) that strongly focuses a planar guided optical field on CdTe QWs in the cavity. For 3-nm QWs with 5-nm barrier width, the exciton-photon coupling can be as large as ℏΩ=55 meV (i.e., a vacuum Rabi splitting of 2ℏΩ=110 meV). The exciton-recombination energy of 1.65 eV corresponds to an optical wavelength of 750 nm. For N =106 QWs embedded in the cavity, the collective exciton-photon coupling per QW (ℏΩ/√N =5.4 meV) is much larger than the state-of-the-art value of 3.3 meV, for the CdTe Fabry-Pérot microcavity. The maximum BEC temperature is limited by the depth of the dispersion minimum for the lower polariton branch, over which the polariton has a small effective mass of approximately 10-5m0, where m0 is the electron mass in vacuum. By detuning the bare exciton-recombination energy above the planar guided optical mode, a larger dispersion depth is achieved, enabling room-temperature BEC. The BEC transition temperature ranges as high as 500 K when the polariton density per QW is increased to (11aB)-2, where aB≃3.5 nm is the exciton Bohr radius and the exciton-cavity detuning is increased to 30 meV. A high-quality PBG can suppress exciton radiative decay and enhance the polariton lifetime to beyond 150 ps at room temperature, sufficient for thermal

  2. Bohr's 1913 molecular model revisited

    PubMed Central

    Svidzinsky, Anatoly A.; Scully, Marlan O.; Herschbach, Dudley R.

    2005-01-01

    It is generally believed that the old quantum theory, as presented by Niels Bohr in 1913, fails when applied to few electron systems, such as the H2 molecule. Here, we find previously undescribed solutions within the Bohr theory that describe the potential energy curve for the lowest singlet and triplet states of H2 about as well as the early wave mechanical treatment of Heitler and London. We also develop an interpolation scheme that substantially improves the agreement with the exact ground-state potential curve of H2 and provides a good description of more complicated molecules such as LiH, Li2, BeH, and He2. PMID:16103360

  3. Bohr's 1913 molecular model revisited.

    PubMed

    Svidzinsky, Anatoly A; Scully, Marlan O; Herschbach, Dudley R

    2005-08-23

    It is generally believed that the old quantum theory, as presented by Niels Bohr in 1913, fails when applied to few electron systems, such as the H(2) molecule. Here, we find previously undescribed solutions within the Bohr theory that describe the potential energy curve for the lowest singlet and triplet states of H(2) about as well as the early wave mechanical treatment of Heitler and London. We also develop an interpolation scheme that substantially improves the agreement with the exact ground-state potential curve of H(2) and provides a good description of more complicated molecules such as LiH, Li(2), BeH, and He(2). PMID:16103360

  4. Bohr-like black holes

    SciTech Connect

    Corda, Christian

    2015-03-10

    The idea that black holes (BHs) result in highly excited states representing both the “hydrogen atom” and the “quasi-thermal emission” in quantum gravity is today an intuitive but general conviction. In this paper it will be shown that such an intuitive picture is more than a picture. In fact, we will discuss a model of quantum BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. The model is completely consistent with existing results in the literature, starting from the celebrated result of Bekenstein on the area quantization.

  5. The Bohr effect before Perutz.

    PubMed

    Brunori, Maurizio

    2012-01-01

    Before the outbreak of World War II, Jeffries Wyman postulated that the Bohr effect in hemoglobin demanded the oxygen linked dissociation of the imidazole of two histidines of the polypeptide. This proposal emerged from a rigorous analysis of the acid-base titration curves of oxy- and deoxy-hemoglobin, at a time when the information on the chemistry and structure of the protein was essentially nil. The magnetochemical properties of hemoglobin led Linus Pauling to hypothesize that the (so called) Bohr histidines were coordinated to the heme iron in the fifth and sixth positions; and Wyman shared this opinion. However, this structural hypothesis was abandoned in 1951 when J. Wyman and D. W. Allen proposed the pK shift of the oxygen linked histidines to be the result of "...a change of configuration of the hemoglobin molecule as a whole accompanying oxygenation." This shift in paradigm, that was published well before the 3D structure of hemoglobin was solved by M.F. Perutz, paved the way to the concept of allostery. After 1960 the availability of the crystallographic structure opened new horizons to the interpretation of the allosteric properties of hemoglobin. PMID:22987550

  6. Timing and Impact of Bohr's Trilogy

    NASA Astrophysics Data System (ADS)

    Jeong, Yeuncheol; Wang, Lei; Yin, Ming; Datta, Timir

    2014-03-01

    In their article- Genesis of the Bohr Atom Heilbron and Kuhn asked - what suddenly turned his [Bohr's] attention, to atom models during June 1912- they were absolutely right; during the short period in question Bohr had made an unexpected change in his research activity, he has found a new interest ``atom'' and would soon produce a spectacularly successful theory about it in his now famous trilogy papers in the Phil Mag (1913). We researched the trilogy papers, Bohr`s memorandum, his own correspondence from that time in question and activities by Moseley (Manchester), Henry and Lawrence Bragg. Our work suggests that Bohr, also at Manchester that summer, was likely to have been inspired by Laue's sensational discovery in April 1912, of X-ray interference from atoms in crystals. The three trilogy papers include sixty five distinct (numbered) references from thirty one authors. The publication dates of the cited works range from 1896 to 1913. Bohr showed an extraordinary skill in navigating thru the most important and up-to date works. Eleven of the cited authors (Bohr included, but not John Nicholson) were recognized by ten Noble prizes, six in physics and four in chemistry.

  7. [Christian Bohr and the Seven Little Devils].

    PubMed

    Gjedde, Albert

    2004-01-01

    The author explores novel lessons emerging from the oxygen diffusion controversy between Christian Bohr on one side and August and Marie Krogh on the other. THe controversy found its emphatic expression in August and Marie Krogh's "Seven Little Devils", a series of papers published back-to-back in the 1910 volume of Skandinavisches Archiv für Physiologie. The Devils unjustifiably sealed the fate of Christian Bohr's theory of active cellular participation in the transport of oxygen from the lungs to the pulmonary circulation. The author's renewed examination of the original papers of Bohr and the Kroghs reveals that Bohr's concept of active cellular participation in diffusion is entirely compatible with the mechanism of capillary recruitment, for the discovery of which Krogh was later awarded Nobel's Prize, years after Bohr's untimely and unexpected death in 1911. PMID:15685764

  8. What classicality? Decoherence and Bohr's classical concepts

    NASA Astrophysics Data System (ADS)

    Schlosshauer, Maximilian; Camilleri, Kristian

    2011-03-01

    Niels Bohr famously insisted on the indispensability of what he termed "classical concepts." In the context of the decoherence program, on the other hand, it has become fashionable to talk about the "dynamical emergence of classicality" from the quantum formalism alone. Does this mean that decoherence challenges Bohr's dictum—for example, that classical concepts do not need to be assumed but can be derived? In this paper we'll try to shed some light down the murky waters where formalism and philosophy cohabitate. To begin, we'll clarify the notion of classicality in the decoherence description. We'll then discuss Bohr's and Heisenberg's take on the quantum—classical problem and reflect on different meanings of the terms "classicality" and "classical concepts" in the writings of Bohr and his followers. This analysis will allow us to put forward some tentative suggestions for how we may better understand the relation between decoherence-induced classicality and Bohr's classical concepts.

  9. The Influence of Bohr on Delbruck

    NASA Astrophysics Data System (ADS)

    Holladay, Wendell

    2000-11-01

    The book by Robert Lagemann on the history of physics and astronomy at Vanderbilt University contains a chapter on Max Delbruck, a member of the Vanderbilt physics department from 1940 - 1947, where he did seminal work in establishing microbial genetics, for which he received the Nobel prize in physiology in 1969. Delbruck, a Ph.D. in physics for work with Max Born in Gottingen, had been inspired by Niels Bohr's suggestion of a complementary relation between biology and atomic physics to work in biology. We will explore exactly what Bohr said in this connection and argue that Delbruck's own work leads to a conclusion in opposition to Bohr's suggestion, namely that the existence of life is reducible to molecular physics, through the remarkable properties of DNA. The lesson for scientific methodology to be learned from this example is that science can lead to truth even if motivated by an ideology pushing in the opposite direction.

  10. Niels Bohr as philosopher of experiment: Does decoherence theory challenge Bohr's doctrine of classical concepts?

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian; Schlosshauer, Maximilian

    2015-02-01

    Niels Bohr's doctrine of the primacy of "classical concepts" is arguably his most criticized and misunderstood view. We present a new, careful historical analysis that makes clear that Bohr's doctrine was primarily an epistemological thesis, derived from his understanding of the functional role of experiment. A hitherto largely overlooked disagreement between Bohr and Heisenberg about the movability of the "cut" between measuring apparatus and observed quantum system supports the view that, for Bohr, such a cut did not originate in dynamical (ontological) considerations, but rather in functional (epistemological) considerations. As such, both the motivation and the target of Bohr's doctrine of classical concepts are of a fundamentally different nature than what is understood as the dynamical problem of the quantum-to-classical transition. Our analysis suggests that, contrary to claims often found in the literature, Bohr's doctrine is not, and cannot be, at odds with proposed solutions to the dynamical problem of the quantum-classical transition that were pursued by several of Bohr's followers and culminated in the development of decoherence theory.

  11. Excitonic effects in GeC hybrid: Many-body Green's function calculations

    NASA Astrophysics Data System (ADS)

    Drissi, L. B.; Ramadan, F. Z.

    2015-11-01

    Many-body effects on the electronic and optical absorption properties of a GeC sheet are studied by means of first principle many-body Green's function and Bethe-Salpeter equation formalism. The absence of soft modes in the phonon-spectrum indicates the stability of the system. The inclusion of quasiparticle corrections increases significantly the band gap. The local field effects induce significant change in the absorption spectra for the out-plane polarization rendering the GeC monolayer transparent below 7 eV. The excitonic effects are significant on the optical absorption properties. A detailed analysis of the spectrum shows a strong binding energy of 1.82 eV assigned to the lowest-energy bound excitons that is characterized by an effective mass of 1.68m0 and a Bohr radius of 2 Å. The results of this study hold the promise for potential applications of the GeC hybrid in optoelectronics.

  12. Niels Bohr and the Third Quantum Revolution

    NASA Astrophysics Data System (ADS)

    Goldhaber, Alfred

    2013-04-01

    In the history of science few developments can rival the discovery of quantum mechanics, with its series of abrupt leaps in unexpected directions stretching over a quarter century. The result was a new world, even more strange than any previously imagined subterranean (or in this case submicroscopic) kingdom. Niels Bohr made the third of these leaps (following Planck and Einstein) when he realized that still-new quantum ideas were essential to account for atomic structure: Rutherford had deduced, using entirely classical-physics principles, that the positive charge in an atom is contained in a very small kernel or nucleus. This made the atom an analogue to the solar system. Classical physics implied that negatively charged electrons losing energy to electromagnetic radiation would ``dive in'' to the nucleus in a very short time. The chemistry of such tiny atoms would be trivial, and the sizes of solids made from these atoms would be much too small. Bohr initially got out of this dilemma by postulating that the angular momentum of an electron orbiting about the nucleus is quantized in integer multiples of the reduced quantum constant ℏ = h/2 π. Solving for the energy of such an orbit in equilibrium immediately produces the famous Balmer formula for the frequencies of visible light radiated from hydrogen as an electron jumps from any particular orbit to another of lower energy. There remained mysteries requiring explanation or at least exploration, including two to be discussed here: 1. Rutherford used classical mechanics to compute the trajectory and hence the scattering angle of an α particle impinging on a small positively charged target. How could this be consistent with Bohr's quantization of particle orbits about the nucleus? 2. Bohr excluded for his integer multiples of ℏ the value 0. How can one justify this exclusion, necessary to bar tiny atoms of the type mentioned earlier?

  13. Niels Bohr and the Third Quantum Revolution

    NASA Astrophysics Data System (ADS)

    Scharff Goldhaber, Alfred

    2013-04-01

    In the history of science few developments can rival the discovery of quantum mechanics, with its series of abrupt leaps in unexpected directions stretching over a quarter century. The result was a new world, even more strange than any previously imagined subterranean (or in this case submicroscopic) kingdom. Niels Bohr made the third of these leaps (following Planck and Einstein) when he realized that still-new quantum ideas were essential to account for atomic structure: Rutherford had deduced, using entirely classical-physics principles, that the positive charge in an atom is contained in a very small kernel or nucleus. This made the atom an analogue to the solar system. Classical physics implied that negatively charged electrons losing energy to electromagnetic radiation would ``dive in'' to the nucleus in a very short time. The chemistry of such tiny atoms would be trivial, and the sizes of solids made from these atoms would be much too small. Bohr initially got out of this dilemma by postulating that the angular momentum of an electron orbiting about the nucleus is quantized in integer multiples of the reduced quantum constant = h/2π. Solving for the energy of such an orbit in equilibrium immediately produces the famous Balmer formula for the frequencies of visible light radiated from hydrogen as an electron jumps from any particular orbit to another of lower energy. There remained mysteries requiring explanation or at least exploration, including two to be discussed here: 1. Rutherford used classical mechanics to compute the trajectory and hence the scattering angle of an α particle impinging on a small positively charged target. How could this be consistent with Bohr's quantization of particle orbits about the nucleus? 2. Bohr excluded for his integer multiples of the value 0. How can one justify this exclusion, necessary to bar tiny atoms of the type mentioned earlier?

  14. Energy Transfer of Excitons Between Quantum Wells Separated by a Wide Barrier

    SciTech Connect

    LYO,SUNGKWUN K.

    1999-12-06

    We present a microscopic theory of the excitonic Stokes and anti-Stokes energy transfer mechanisms between two widely separated unequal quantum wells with a large energy mismatch ({Delta}) at low temperatures (T). Exciton transfer through dipolar coupling, photon-exchange coupling and over-barrier ionization of the excitons through exciton-exciton Auger processes are examined. The energy transfer rate is calculated as a function of T and the center-to-center distance d between the two wells. The rates depend sensitively on T for plane-wave excitons. For located excitons, the rates depend on T only through the T-dependence of the localization radius.

  15. Epistemological Dimensions in Niels Bohr's Conceptualization of Complementarity

    NASA Astrophysics Data System (ADS)

    Derry, Gregory

    2008-03-01

    Contemporary explications of quantum theory are uniformly ahistorical in their accounts of complementarity. Such accounts typically present complementarity as a physical principle that prohibits simultaneous measurements of certain dynamical quantities or behaviors, attributing this principle to Niels Bohr. This conceptualization of complementarity, however, is virtually devoid of content and is only marginally related to Bohr's actual writing on the topic. Instead, what Bohr presented was a subtle and complex epistemological argument in which complementarity is a shorthand way to refer to an inclusive framework for the logical analysis of ideas. The important point to notice, historically, is that Bohr's work involving complementarity is not intended to be an improvement or addition to a particular physical theory (quantum mechanics), which Bohr regarded as already complete. Bohr's work involving complementarity is actually an argument related to the goals, meaning, and limitations of physical theory itself, grounded in deep epistemological considerations stemming from the fundamental discontinuity of nature on a microscopic scale.

  16. Bohr's Creation of his Quantum Atom

    NASA Astrophysics Data System (ADS)

    Heilbron, John

    2013-04-01

    Fresh letters throw new light on the content and state of Bohr's mind before and during his creation of the quantum atom. His mental furniture then included the atomic models of the English school, the quantum puzzles of Continental theorists, and the results of his own studies of the electron theory of metals. It also included the poetry of Goethe, plays of Ibsen and Shakespeare, novels of Dickens, and rhapsodies of Kierkegaard and Carlyle. The mind that held these diverse ingredients together oscillated between enthusiasm and dejection during the year in which Bohr took up the problem of atomic structure. He spent most of that year in England, which separated him for extended periods from his close-knit family and friends. Correspondence with his fianc'ee, Margrethe Nørlund, soon to be published, reports his ups and downs as he adjusted to J.J. Thomson, Ernest Rutherford, the English language, and the uneven course of his work. In helping to smooth out his moods, Margrethe played an important and perhaps an enabling role in his creative process.

  17. Bohr's Principle of Complementarity and Beyond

    NASA Astrophysics Data System (ADS)

    Jones, R.

    2004-05-01

    All knowledge is of an approximate character and always will be (Russell, Human Knowledge, 1948, pg 497,507). The laws of nature are not unique (Smolin, Three Roads to Quantum Gravity, 2001, pg 195). There may be a number of different sets of equations which describe our data just as well as the present known laws do (Mitchell, Machine Learning, 1997, pg 65-66 and Cooper, Machine Learning, Vol. 9, 1992, pg 319) In the future every field of intellectual study will possess multiple theories of its domain and scientific work and engineering will be performed based on the ensemble predictions of ALL of these. In some cases the theories may be quite divergent, differing greatly one from the other. The idea can be considered an extension of Bohr's notions of complementarity, "...different experimental arrangements.. described by different physical concepts...together and only together exhaust the definable information we can obtain about the object" (Folse, The Philosophy of Niels Bohr, 1985, pg 238). This idea is not postmodernism. Witchdoctor's theories will not form a part of medical science. Objective data, not human opinion, will decide which theories we use and how we weight their predictions.

  18. The two-level model of the excitonic Aharonov-Bohm effect in strained self-assembled semiconductor nanorings

    NASA Astrophysics Data System (ADS)

    Tadić, M.; Arsoski, V.; Čukarić, N.; Peeters, F. M.

    2013-12-01

    The excitonic Aharonov-Bohm oscillations in type-I nanorings are found to be caused by anticrossings between exciton states. These anticrossings are analyzed by a tight-binding-like model of exciton states. The criteria for the existence of the excitonic Aharonov-Bohm oscillations are formulated. For nanorings of realistic width and height, the range of values of the inner radius where the excitonic Aharonov-Bohm oscillations exist is found.

  19. 100th anniversary of Bohr's model of the atom.

    PubMed

    Schwarz, W H Eugen

    2013-11-18

    In the fall of 1913 Niels Bohr formulated his atomic models at the age of 27. This Essay traces Bohr's fundamental reasoning regarding atomic structure and spectra, the periodic table of the elements, and chemical bonding. His enduring insights and superseded suppositions are also discussed. PMID:24123759

  20. Davidson potential and SUSYQM in the Bohr Hamiltonian

    SciTech Connect

    Georgoudis, P. E.

    2013-06-10

    The Bohr Hamiltonian is modified through the Shape Invariance principle of SUper-SYmmetric Quantum Mechanics for the Davidson potential. The modification is equivalent to a conformal transformation of Bohr's metric, generating a different {beta}-dependence of the moments of inertia.

  1. Extension of the radiative lifetime of Wannier-Mott excitons in semiconductor nanoclusters

    SciTech Connect

    Kukushkin, V. A.

    2015-01-15

    The purpose of the study is to calculate the radiative lifetime of Wannier-Mott excitons in three-dimensional potential wells formed of direct-gap narrow-gap semiconductor nanoclusters in wide-gap semiconductors and assumed to be large compared to the exciton radius. Calculations are carried out for the InAs/GaAs heterosystem. It is shown that, as the nanocluster dimensions are reduced to values on the order of the exciton radius, the exciton radiative lifetime becomes several times longer compared to that in a homogeneous semiconductor. The increase in the radiative lifetime is more pronounced at low temperatures. Thus, it is established that the placement of Wannier-Mott excitons into direct-gap semiconductor nanoclusters, whose dimensions are of the order of the exciton radius, can be used for considerable extension of the exciton radiative lifetime.

  2. Resisting the Bohr Atom: The Early British Opposition

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2011-03-01

    When Niels Bohr's theory of atomic structure appeared in the summer and fall of 1913, it quickly attracted attention among British physicists. While some of the attention was supportive, others was critical. I consider the opposition to Bohr's theory from 1913 to about 1915, including attempts to construct atomic theories on a classical basis as alternatives to Bohr's. I give particular attention to the astrophysicist John W. Nicholson, who was Bohr's most formidable and persistent opponent in the early years. Although in the long run Nicholson's objections were inconsequential, for a short period of time his atomic theory was considered to be a serious rival to Bohr's. Moreover, Nicholson's theory is of interest in its own right.

  3. Theory of core excitons

    SciTech Connect

    Dow, J. D.; Hjalmarson, H. P.; Sankey, O. F.; Allen, R. E.; Buettner, H.

    1980-01-01

    The observation of core excitons with binding energies much larger than those of the valence excitons in the same material has posed a long-standing theoretical problem. A proposed solution to this problem is presented, and Frenkel excitons and Wannier excitons are shown to coexist naturally in a single material. (GHT)

  4. Paul Ehrenfest, Niels Bohr, and Albert Einstein: Colleagues and Friends

    NASA Astrophysics Data System (ADS)

    Klein, Martin J.

    2010-09-01

    In May 1918 Paul Ehrenfest received a monograph from Niels Bohr in which Bohr had used Ehrenfest's adiabatic principle as an essential assumption for understanding atomic structure. Ehrenfest responded by inviting Bohr, whom he had never met, to give a talk at a meeting in Leiden in late April 1919, which Bohr accepted; he lived with Ehrenfest, his mathematician wife Tatyana, and their young family for two weeks. Albert Einstein was unable to attend this meeting, but in October 1919 he visited his old friend Ehrenfest and his family in Leiden, where Ehrenfest told him how much he had enjoyed and profited from Bohr's visit. Einstein first met Bohr when Bohr gave a lecture in Berlin at the end of April 1920, and the two immediately proclaimed unbounded admiration for each other as physicists and as human beings. Ehrenfest hoped that he and they would meet at the Third Solvay Conference in Brussels in early April 1921, but his hope was unfulfilled. Einstein, the only physicist from Germany who was invited to it in this bitter postwar atmosphere, decided instead to accompany Chaim Weizmann on a trip to the United States to help raise money for the new Hebrew University in Jerusalem. Bohr became so overworked with the planning and construction of his new Institute for Theoretical Physics in Copenhagen that he could only draft the first part of his Solvay report and ask Ehrenfest to present it, which Ehrenfest agreed to do following the presentation of his own report. After recovering his strength, Bohr invited Ehrenfest to give a lecture in Copenhagen that fall, and Ehrenfest, battling his deep-seated self-doubts, spent three weeks in Copenhagen in December 1921 accompanied by his daughter Tanya and her future husband, the two Ehrenfests staying with the Bohrs in their apartment in Bohr's new Institute for Theoretical Physics. Immediately after leaving Copenhagen, Ehrenfest wrote to Einstein, telling him once again that Bohr was a prodigious physicist, and again

  5. Niels Bohr and the dawn of quantum theory

    NASA Astrophysics Data System (ADS)

    Weinberger, P.

    2014-09-01

    Bohr's atomic model, one of the very few pieces of physics known to the general public, turned a hundred in 2013: a very good reason to revisit Bohr's original publications in the Philosophical Magazine, in which he introduced this model. It is indeed rewarding to (re-)discover what ideas and concepts stood behind it, to see not only 'orbits', but also 'rings' and 'flat ellipses' as electron trajectories at work, and, in particular, to admire Bohr's strong belief in the importance of Planck's law.

  6. Solutions of the Bohr Hamiltonian, a compendium

    NASA Astrophysics Data System (ADS)

    Fortunato, L.

    2005-10-01

    The Bohr Hamiltonian, also called collective Hamiltonian, is one of the cornerstones of nuclear physics and a wealth of solutions (analytic or approximated) of the associated eigenvalue equation have been proposed over more than half a century (confining ourselves to the quadrupole degree of freedom). Each particular solution is associated with a peculiar form for the V(β,γ) potential. The large number and the different details of the mathematical derivation of these solutions, as well as their increased and renewed importance for nuclear structure and spectroscopy, demand a thorough discussion. It is the aim of the present monograph to present in detail all the known solutions in γ-unstable and γ-stable cases, in a taxonomic and didactical way. In pursuing this task we especially stressed the mathematical side leaving the discussion of the physics to already published comprehensive material. The paper contains also a new approximate solution for the linear potential, and a new solution for prolate and oblate soft axial rotors, as well as some new formulae and comments. The quasi-dynamical SO(2) symmetry is proposed in connection with the labeling of bands in triaxial nuclei.

  7. Bohr model and dimensional scaling analysis of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Svidzinsky, Anatoly; Chen, Goong; Chin, Siu; Kim, Moochan; Ma, Dongxia; Murawski, Robert; Sergeev, Alexei; Scully, Marlan; Herschbach, Dudley

    It is generally believed that the old quantum theory, as presented by Niels Bohr in 1913, fails when applied to few electron systems, such as the H2 molecule. Here we review recent developments of the Bohr model that connect it with dimensional scaling procedures adapted from quantum chromodynamics. This approach treats electrons as point particles whose positions are determined by optimizing an algebraic energy function derived from the large-dimension limit of the Schrödinger equation. The calculations required are simple yet yield useful accuracy for molecular potential curves and bring out appealing heuristic aspects. We first examine the ground electronic states of H2, HeH, He2, LiH, BeH and Li2. Even a rudimentary Bohr model, employing interpolation between large and small internuclear distances, gives good agreement with potential curves obtained from conventional quantum mechanics. An amended Bohr version, augmented by constraints derived from Heitler-London or Hund-Mulliken results, dispenses with interpolation and gives substantial improvement for H2 and H3. The relation to D-scaling is emphasized. A key factor is the angular dependence of the Jacobian volume element, which competes with interelectron repulsion. Another version, incorporating principal quantum numbers in the D-scaling transformation, extends the Bohr model to excited S states of multielectron atoms. We also discuss kindred Bohr-style applications of D-scaling to the H atom subjected to superstrong magnetic fields or to atomic anions subjected to high frequency, superintense laser fields. In conclusion, we note correspondences to the prequantum bonding models of Lewis and Langmuir and to the later resonance theory of Pauling, and discuss prospects for joining D-scaling with other methods to extend its utility and scope.

  8. Ligand-dependent Bohr effect of Chrionomus hemoglobins.

    PubMed

    Steffens, G; Buse, G; Wollmer, A

    1977-01-01

    The O2 and CO Bohr effects of monomeric and dimeric hemoglobins of the insect Chironomus thummi thummi were determined as proton releases upon ligation. For the O2 Bohr effect of the monomeric hemoglobin III a maximum value of 0.20 H+/heme was obtained at pH 7.5. Upon ligation with CO, however, only 0.04 H+/heme were released at the same pH. In agreement with this finding isoelectric focusing experiments revealed different isoelectric points for O2-liganded and CO-liganded states of hemoglobin III. Analogous results were obtained in the cases of the monomeric hemoglobin IV and the dimeric hemoglobins of Chironomus thummi thummi; here O2 Bohr effects of 0.43 and 0.86 H+/heme were observed. For the corresponding CO Bohr effects values of 0.08 and 0.31 H+/heme were obtained respectively. On the basis of the available structural data the reduced CO Bohr effect in hemoglobin III is discussed as arising from a steric hindrance of the CO ligand by the side chain of isoleucine-E11, obstructing the movement of the heme-iron upon reaction with carbon monoxide. It should, however, be noted that ligands, according to their different electron donor and acceptor properties, may generally induce different conformational changes and thus different Bohr effects, in those hemoglobins in which distinct tertiary and/or quaternary constraints have not evolved. The general utilization of CO instead of O2 as allosteric effector is ruled out by the results reported here. PMID:12977

  9. Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2

    NASA Astrophysics Data System (ADS)

    Wang, Haining; Zhang, Changjian; Chan, Weimin; Manolatou, Christina; Tiwari, Sandip; Rana, Farhan

    2016-01-01

    We present results on the radiative lifetimes of excitons and trions in a monolayer of metal dichalcogenide MoS2. The small exciton radius and the large exciton optical oscillator strength result in radiative lifetimes in the 0.18-0.30 ps range for excitons that have small in-plane momenta and couple to radiation. Average lifetimes of thermally distributed excitons depend linearly on the exciton temperature and can be in the few picoseconds range at small temperatures and more than a nanosecond near room temperature. Localized excitons exhibit lifetimes in the same range and the lifetime increases as the localization length decreases. The radiative lifetimes of trions are in the hundreds of picosecond range and increase with the increase in the trion momentum. Average lifetimes of thermally distributed trions increase with the trion temperature as the trions acquire thermal energy and larger momenta. We expect our theoretical results to be applicable to most other 2D transition metal dichalcogenides.

  10. Exciton diffusion and relaxation in methyl-substituted polyparaphenylene polymer films

    NASA Astrophysics Data System (ADS)

    Gulbinas, V.; Minevičiutė, I.; Hertel, D.; Wellander, R.; Yartsev, A.; Sundström, V.

    2007-10-01

    Exciton diffusion in ladder-type methyl-substituted polyparaphenylene film and solution was investigated by means of femtosecond pump-probe spectroscopy using a combined approach, analyzing exciton-exciton annihilation, and transient absorption depolarization properties. We show that the different views on the exciton dynamics offered by anisotropy decay and annihilation are required in order to obtain a correct picture of the energy transfer dynamics. Comparison of the exciton diffusion coefficient and exciton diffusion radius obtained for polymer film with the two techniques reveals that there is substantial short-range order in the film. Also in isolated chains there is considerable amount of order, as revealed from only partial anisotropy decay, which shows that only a small fraction of the excitons move to differently oriented polymer segments. It is further concluded that interchain energy transfer is faster than intrachain transfer, mainly as a result of shorter interchain distances between chromophoric units.

  11. "Bohr and Einstein": A Course for Nonscience Students

    ERIC Educational Resources Information Center

    Schlegel, Richard

    1976-01-01

    A study of the concepts of relativity and quantum physics through the work of Bohr and Einstein is the basis for this upper level course for nonscience students. Along with their scientific philosophies, the political and moral theories of the scientists are studied. (CP)

  12. Optically programmable excitonic traps

    PubMed Central

    Alloing, Mathieu; Lemaître, Aristide; Galopin, Elisabeth; Dubin, François

    2013-01-01

    With atomic systems, optically programmed trapping potentials have led to remarkable progress in quantum optics and quantum information science. Programmable trapping potentials could have a similar impact on studies of semiconductor quasi-particles, particularly excitons. However, engineering such potentials inside a semiconductor heterostructure remains an outstanding challenge and optical techniques have not yet achieved a high degree of control. Here, we synthesize optically programmable trapping potentials for indirect excitons of bilayer heterostructures. Our approach relies on the injection and spatial patterning of charges trapped in a field-effect device. We thereby imprint in-situ and on-demand electrostatic traps into which we optically inject cold and dense ensembles of excitons. This technique creates new opportunities to improve state-of-the-art technologies for the study of collective quantum behavior of excitons and also for the functionalisation of emerging exciton-based opto-electronic circuits. PMID:23546532

  13. Exciton-polariton laser

    NASA Astrophysics Data System (ADS)

    Moskalenko, S. A.; Tiginyanu, I. M.

    2016-05-01

    We present a review of the investigations realized in the last decades of the phenomenon of the Bose-Einstein condensation (BEC) in the system of two-dimensional cavity polaritons in semiconductor nanostructures. The conditions at which the excitons interacting with cavity photons form new type of quasiparticles named as polaritons are described. Since polaritons can form in a microcavity a weakly interacting Bose gas, similarly to the exciton gas in semiconductors, the microcavity exciton-polariton BEC emerged in the last decades as a new direction of the exciton BEC in solids, promising for practical applications. The high interest in BEC of exciton-polaritons in semiconductor microcavities is related to the ultra-low threshold lasing which has been demonstrated, in particular, for an electrically injected polariton laser based on bulk GaN microcavity diode working at room temperature.

  14. Bohr and Ehrenfest: transformations and correspondences in the early 1920s

    NASA Astrophysics Data System (ADS)

    Pérez, Enric; Pié i Valls, Blai

    2016-04-01

    We analyze the collaboration between Bohr and Ehrenfest on the quantum theory in the early 1920s (1920-1923). We focus on their reflections and developments around the adiabatic principle and the correspondence principle, the two pillars of Bohr's quantum theory of 1922-23. We argue that the evolution of Bohr's ideas after 1918 brought the two principles closer, subordinating the former to the latter. The examination of the weight Bohr attributed to each principle along the years illustrates very clearly the vicissitudes of Bohr's theory before the emergence of quantum mechanics, especially with regards to its rejection/inclusion of mechanics.

  15. Large mode radius resonators

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.

    1987-01-01

    Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

  16. Bohr model and dimensional scaling analysis of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Urtekin, Kerim

    It is generally believed that the old quantum theory, as presented by Niels Bohr in 1913, fails when applied to many-electron systems, such as molecules, and nonhydrogenic atoms. It is the central theme of this dissertation to display with examples and applications the implementation of a simple and successful extension of Bohr's planetary model of the hydrogenic atom, which has recently been developed by an atomic and molecular theory group from Texas A&M University. This "extended" Bohr model, which can be derived from quantum mechanics using the well-known dimentional scaling technique is used to yield potential energy curves of H2 and several more complicated molecules, such as LiH, Li2, BeH, He2 and H3, with accuracies strikingly comparable to those obtained from the more lengthy and rigorous "ab initio" computations, and the added advantage that it provides a rather insightful and pictorial description of how electrons behave to form chemical bonds, a theme not central to "ab initio" quantum chemistry. Further investigation directed to CH, and the four-atom system H4 (with both linear and square configurations), via the interpolated Bohr model, and the constrained Bohr model (with an effective potential), respectively, is reported. The extended model is also used to calculate correlation energies. The model is readily applicable to the study of molecular species in the presence of strong magnetic fields, as is the case in the vicinities of white dwarfs and neutron stars. We find that magnetic field increases the binding energy and decreases the bond length. Finally, an elaborative review of doubly coupled quantum dots for a derivation of the electron exchange energy, a straightforward application of Heitler-London method of quantum molecular chemistry, concludes the dissertation. The highlights of the research are (1) a bridging together of the pre- and post quantum mechanical descriptions of the chemical bond (Bohr-Sommerfeld vs. Heisenberg-Schrodinger), and

  17. Neutral and positively charged excitons in narrow quantum ring

    SciTech Connect

    Porras Monroy, L. C.; Rodríguez-Prada, F. A.; Mikhailov, I. D.

    2014-05-15

    We study theoretically quantized states of a neutral and a positively charged exciton (trion X{sup +}) confined in a heterostructure with the ring-like geometry. In order to assess the experimentally relevant domain of parameters, we adopt a simple model of a narrow ring when 3D wave equations for the neutral and positively charged excitons can be separated. By using the Fourier series method, we have calculated the energy spectra of excitons complexes in a quantum ring as a function of the electron-to-hole mass ratio, the ring radius, and the magnetic field strength. The quantum-size effect and the size-dependent magnetic oscillations of energy levels of excitons' complexes spectra have been revealed.

  18. Neutral and positively charged excitons in narrow quantum ring

    NASA Astrophysics Data System (ADS)

    Porras Monroy, L. C.; Rodríguez-Prada, F. A.; Mikhailov, I. D.

    2014-05-01

    We study theoretically quantized states of a neutral and a positively charged exciton (trion X+) confined in a heterostructure with the ring-like geometry. In order to assess the experimentally relevant domain of parameters, we adopt a simple model of a narrow ring when 3D wave equations for the neutral and positively charged excitons can be separated. By using the Fourier series method, we have calculated the energy spectra of excitons complexes in a quantum ring as a function of the electron-to-hole mass ratio, the ring radius, and the magnetic field strength. The quantum-size effect and the size-dependent magnetic oscillations of energy levels of excitons' complexes spectra have been revealed.

  19. Anomalous magnetization of a carbon nanotube as an excitonic insulator

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo

    2014-11-01

    We show theoretically that an undoped carbon nanotube might be an excitonic insulator—the long-sought phase of matter proposed by Keldysh, Kohn, and others fifty years ago. We predict that the condensation of triplet excitons, driven by intervalley exchange interaction, spontaneously occurs at equilibrium if the tube radius is sufficiently small. The signatures of exciton condensation are its sizable contributions to both the energy gap and the magnetic moment per electron. The increase of the gap might have already been measured, albeit with a different explanation [V. V. Deshpande, B. Chandra, R. Caldwell, D. S. Novikov, J. Hone, and M. Bockrath, Science 323, 106 (2009), 10.1126/science.1165799]. The enhancement of the quasiparticle magnetic moment is a pair-breaking effect that counteracts the weak paramagnetism of the ground-state condensate of excitons. This property could rationalize the anomalous magnitude of magnetic moments recently observed in different devices close to charge neutrality.

  20. Electronic properties of exciton and biexciton in a CdTe/ZnTe nano-heterostructure

    SciTech Connect

    Sujanah, P.; Peter, A. John

    2015-06-24

    Energy eigen values and the binding energies of exciton and biexciton in a CdTe/ZnTe quantum dot are studied with the geometrical confinement effect. The single exciton binding energy and the biexciton binding energy are calculated as a function of dot radius. Overlap integral of the exciton and the biexciton is found in the CdTe/ZnTe quantum dot. The electron and hole potentials are calculated from the Poisson equations. Self-consistent method is to compute the energy eigenvalues of the exciton and the biexciton. The Hartree potential is employed to obtain the Coulomb interaction energy.

  1. Analytical solutions of the Bohr Hamiltonian with the Morse potential

    SciTech Connect

    Boztosun, I.; Inci, I.; Bonatsos, D.

    2008-04-15

    Analytical solutions of the Bohr Hamiltonian are obtained in the {gamma}-unstable case, as well as in an exactly separable rotational case with {gamma}{approx_equal}0, called the exactly separable Morse (ES-M) solution. Closed expressions for the energy eigenvalues are obtained through the asymptotic iteration method (AIM), the effectiveness of which is demonstrated by solving the relevant Bohr equations for the Davidson and Kratzer potentials. All medium mass and heavy nuclei with known {beta}{sub 1} and {gamma}{sub 1} bandheads have been fitted by using the two-parameter {gamma}-unstable solution for transitional nuclei and the three-parameter ES-M for rotational ones. It is shown that bandheads and energy spacings within the bands are well reproduced for more than 50 nuclei in each case.

  2. Bohr-Sommerfeld Lagrangians of moduli spaces of Higgs bundles

    NASA Astrophysics Data System (ADS)

    Biswas, Indranil; Gammelgaard, Niels Leth; Logares, Marina

    2015-08-01

    Let X be a compact connected Riemann surface of genus at least two. Let MH(r, d) denote the moduli space of semistable Higgs bundles on X of rank r and degree d. We prove that the compact complex Bohr-Sommerfeld Lagrangians of MH(r, d) are precisely the irreducible components of the nilpotent cone in MH(r, d) . This generalizes to Higgs G-bundles and also to the parabolic Higgs bundles.

  3. The Proton Radius Puzzle

    NASA Astrophysics Data System (ADS)

    Downie, E. J.

    2016-03-01

    The proton radius puzzle is the difference between the proton radius as measured with electron scattering and in the excitation spectrum of atomic hydrogen, and that measured with muonic hydrogen spectroscopy. Since the inception of the proton radius puzzle in 2010 by the measurement of Pohl et al.[1], many possible resolutions to the puzzle have been postulated, but, to date, none has been generally accepted. New data are therefore necessary to resolve the issue. We briefly review the puzzle, the proposed solutions, and the new electron scattering and spectroscopy experiments planned and underway. We then introduce the MUSE experiment, which seeks to resolve the puzzle by simultaneously measuring elastic electron and muon scattering on the proton, in both charge states, thereby providing new information to the puzzle. MUSE addresses issues of two-photon effects, lepton universality and, possibly, new physics, while providing simultaneous form factor, and therefore radius, measurements with both muons and electrons.

  4. Ground state energy of an exciton in a spherical quantum dot in the presence of an external magnetic field

    SciTech Connect

    Jahan K, Luhluh Boda, Aalu; Chatterjee, Ashok

    2015-05-15

    The problem of an exciton trapped in a three dimensional Gaussian quantum dot is studied in the presence of an external magnetic field. A variational method is employed to obtain the ground state energy of the exciton as a function of the quantum dot size, the confinement strength and the magnetic field. It is also shown that the variation of the size of the exciton with the radius of the quantum dot.

  5. Two-dminensional exciton states in monolayer semiconducting phosphorus alotropes

    NASA Astrophysics Data System (ADS)

    Rocha, Alexandre R.; Villegas, Cesar E. P.

    During the last decade, novel two-dimensional (2D) semiconducting materials have been synthesized and characterised. As a result, there have been several theoretical and experimental proposals to incorporate 2D materials for designing next generation electronic and optoelectronics devices. In particular, it has been demonstrated that light absorption in phosphorus-based monolayers can span the whole visible spectrum, suggesting they could be used for optolectronic applications. A key ingredient for optolectronic applications is the presence of excitons and their subsequent diffusion along a donor material. This is influenced by the character of the different excitations taking place, as well as, the exciton binding energy. Therefore, In this work we use accurate many-body corrected density functional theory by means of GW-BSE methodology to elucidate the most important optical transitions, exciton energy spectrum as well as exciton extension in different types of phosphorene materials. In addition, we solve the Schrodinger equation for different 2D screened potentials and estimate the 2D exciton energy levels and radius extension. Finally, in order to assess further studies based on these systems, we provide a simple analityc expression for estimating 2D exciton energy levels. Research funded by FAPESP-Brazil.

  6. Bohr Hamiltonian with Eckart potential for triaxial nuclei

    NASA Astrophysics Data System (ADS)

    Naderi, L.; Hassanabadi, H.

    2016-05-01

    In this paper, the Bohr Hamiltonian has been solved using the Eckart potential for the β-part and a harmonic oscillator for the γ-part of the Hamiltonian. The approximate separation of the variables has been possible by choosing the convenient form for the potential V(β,γ). Using the Nikiforov-Uvarov method the eigenvalues and eigenfunctions of the eigenequation for the β-part have been derived. An expression for the total energy of the levels has been represented.

  7. Excitonic surface lattice resonances

    NASA Astrophysics Data System (ADS)

    Humphrey, A. D.; Gentile, M. J.; Barnes, W. L.

    2016-08-01

    Electromagnetic resonances are important in controlling light at the nanoscale. The most studied such resonance is the surface plasmon resonance that is associated with metallic nanostructures. Here we explore an alternative resonance, the surface exciton-polariton resonance, one based on excitonic molecular materials. Our study is based on analytical and numerical modelling. We show that periodic arrays of suitable molecular nanoparticles may support surface lattice resonances that arise as a result of coherent interactions between the particles. Our results demonstrate that excitonic molecular materials are an interesting alternative to metals for nanophotonics; they offer the prospect of both fabrication based on supramolecular chemistry and optical functionality arising from the way the properties of such materials may be controlled with light.

  8. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.

    PubMed

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory. PMID:26803911

  9. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  10. Bohr's correspondence principle: The cases for which it is exact

    SciTech Connect

    Makowski, Adam J.; Gorska, Katarzyna J.

    2002-12-01

    Two-dimensional central potentials leading to the identical classical and quantum motions are derived and their properties are discussed. Some of zero-energy states in the potentials are shown to cancel the quantum correction Q=(-({Dirac_h}/2{pi}){sup 2}/2m){delta}R/R to the classical Hamilton-Jacobi equation. The Bohr's correspondence principle is thus fulfilled exactly without taking the limits of high quantum numbers, of ({Dirac_h}/2{pi}){yields}0, or of the like. In this exact limit of Q=0, classical trajectories are found and classified. Interestingly, many of them are represented by closed curves. Applications of the found potentials in many areas of physics are briefly commented.

  11. Exciton Fine Structure in Single CdSe Nanorods

    NASA Astrophysics Data System (ADS)

    Le Thomas, N.; Herz, E.; Schöps, O.; Woggon, U.; Artemyev, M. V.

    2005-01-01

    We study the optical properties of excitons in one-dimensional (1D) nanostructures at low temperatures. In single CdSe/ZnS core-shell nanorods we observe a fine structure splitting and explain it by exchange interaction. Two peaks are observed with different degrees of linear polarization of DLP<0.85 and DLP>0.95. For small nanorod radii R≤aB/2, an increase in the photoluminescence decay time is found when the temperature increases from 10 to 80K. The observations are explained by a radius-dependent change in the symmetry of the 1D-exciton ground state which transforms from a dark state into bright states below a critical radius of Rcrit≈3.7 nm.

  12. Monolayer excitonic laser

    NASA Astrophysics Data System (ADS)

    Ye, Yu; Wong, Zi Jing; Lu, Xiufang; Ni, Xingjie; Zhu, Hanyu; Chen, Xianhui; Wang, Yuan; Zhang, Xiang

    2015-11-01

    Two-dimensional van der Waals materials have opened a new paradigm for fundamental physics exploration and device applications because of their emerging physical properties. Unlike gapless graphene, monolayer transition-metal dichalcogenides (TMDCs) are two-dimensional semiconductors that undergo an indirect-to-direct bandgap transition, creating new optical functionalities for next-generation ultra-compact photonics and optoelectronics. Although the enhancement of spontaneous emission has been reported on TMDC monolayers integrated with photonic crystals and distributed Bragg reflector microcavities, coherent light emission from a TMDC monolayer has not been demonstrated. Here, we report the realization of a two-dimensional excitonic laser by embedding monolayer WS2 in a microdisk resonator. Using a whispering gallery mode with a high quality factor and optical confinement, we observe bright excitonic lasing at visible wavelengths. This demonstration of a two-dimensional excitonic laser marks a major step towards two-dimensional on-chip optoelectronics for high-performance optical communication and computing applications.

  13. Excitons in asymmetric quantum wells

    NASA Astrophysics Data System (ADS)

    Grigoryev, P. S.; Kurdyubov, A. S.; Kuznetsova, M. S.; Ignatiev, I. V.; Efimov, Yu. P.; Eliseev, S. A.; Petrov, V. V.; Lovtcius, V. A.; Shapochkin, P. Yu.

    2016-09-01

    Resonance dielectric response of excitons is studied for the high-quality InGaAs/GaAs heterostructures with wide asymmetric quantum wells (QWs). To highlight effects of the QW asymmetry, we have grown and studied several heterostructures with nominally square QWs as well as with triangle-like QWs. Several quantum confined exciton states are experimentally observed as narrow exciton resonances. A standard approach for the phenomenological analysis of the profiles is generalized by introducing different phase shifts for the light waves reflected from the QWs at different exciton resonances. Good agreement of the phenomenological fit to the experimentally observed exciton spectra for high-quality structures allowed us to reliably obtain parameters of the exciton resonances: the exciton transition energies, the radiative broadenings, and the phase shifts. A direct numerical solution of the Schrödinger equation for the heavy-hole excitons in asymmetric QWs is used for microscopic modeling of the exciton resonances. Remarkable agreement with the experiment is achieved when the effect of indium segregation is taken into account. The segregation results in a modification of the potential profile, in particular, in an asymmetry of the nominally square QWs.

  14. Exciton Transport in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Menke, Stephen Matthew

    Photovoltaic cells based on organic semiconductors are attractive for their use as a renewable energy source owing to their abundant feedstock and compatibility with low-cost coating techniques on flexible substrates. In contrast to photovoltaic cells based traditional inorganic semiconductors, photon absorption in an organic semiconductor results in the formation of a coulombically bound electron-hole pair, or exciton. The transport of excitons, consequently, is of critical importance as excitons mediate the interaction between charge and light in organic photovoltaic cells (OPVs). In this dissertation, a strong connection between the fundamental photophysical parameters that control nanoscopic exciton energy transfer and the mesoscopic exciton transport is established. With this connection in place, strategies for enhancing the typically short length scale for exciton diffusion (L D) can be developed. Dilution of the organic semiconductor boron subphthalocyanine chloride (SubPc) is found to increase the LD for SubPc by 50%. In turn, OPVs based on dilute layers of SubPc exhibit a 30% enhancement in power conversion efficiency. The enhancement in power conversion efficiency is realized via enhancements in LD, optimized optical spacing, and directed exciton transport at an exciton permeable interface. The role of spin, energetic disorder, and thermal activation on L D are also addressed. Organic semiconductors that exhibit thermally activated delayed fluorescence and efficient intersystem and reverse intersystem crossing highlight the balance between singlet and triplet exciton energy transfer and diffusion. Temperature dependent measurements for LD provide insight into the inhomogeneously broadened exciton density of states and the thermal nature of exciton energy transfer. Additional topics include energy-cascade OPV architectures and broadband, spectrally tunable photodetectors based on organic semiconductors.

  15. Excitonic condensation in bilayer systems

    NASA Astrophysics Data System (ADS)

    Su, Jung-Jung

    Among the many examples of Bose condensation considered in physics, electron-hole-pair (exciton) condensation has maintained special interest because it has been difficult to realize experimentally, and because of controversy about condensate properties. In this thesis, we studied the various aspects of spontaneous symmetry broken state of exciton in bilayer using mean field theory. We calculated the photoluminescence of excitonic condensation created by laser. We developed a one-dimensional toy model of excitonic supercurrent using mean field theory plus non-equilibrium Green's function (NEGF) which give qualitatively consistent results with experiments. We proposed graphene bilayer as a novel system for excitonic condensation to occur and estimate it to exist even at temperature as high as room temperature.

  16. Memories of Crisis: Bohr, Kuhn, and the Quantum Mechanical ``Revolution''

    NASA Astrophysics Data System (ADS)

    Seth, Suman

    2013-04-01

    ``The history of science, to my knowledge,'' wrote Thomas Kuhn, describing the years just prior to the development of matrix and wave mechanics, ``offers no equally clear, detailed, and cogent example of the creative functions of normal science and crisis.'' By 1924, most quantum theorists shared a sense that there was much wrong with all extant atomic models. Yet not all shared equally in the sense that the failure was either terribly surprising or particularly demoralizing. Not all agreed, that is, that a crisis for Bohr-like models was a crisis for quantum theory. This paper attempts to answer four questions: two about history, two about memory. First, which sub-groups of the quantum theoretical community saw themselves and their field in a state of crisis in the early 1920s? Second, why did they do so, and how was a sense of crisis related to their theoretical practices in physics? Third, do we regard the years before 1925 as a crisis because they were followed by the quantum mechanical revolution? And fourth, to reverse the last question, were we to call into the question the existence of a crisis (for some at least) does that make a subsequent revolution less revolutionary?

  17. Niels Bohr on the wave function and the classical/quantum divide

    NASA Astrophysics Data System (ADS)

    Zinkernagel, Henrik

    2016-02-01

    It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr's interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr's view on the classical/quantum divide, arguing that the relation between the two theories is that of mutual dependence. An important element in this clarification consists in distinguishing Bohr's idea of the wave function as symbolic from both a purely epistemic and an ontological interpretation. Together with new evidence concerning Bohr's conception of the wave function collapse, this sets his interpretation apart from both standard versions of the Copenhagen interpretation, and from some of the reconstructions of his view found in the literature. I conclude with a few remarks on how Bohr's ideas make much sense also when modern developments in quantum gravity and early universe cosmology are taken into account.

  18. Momentum dependence of the excitons in pentacene

    SciTech Connect

    Roth, Friedrich; Schuster, Roman; Koenig, Andreas; Knupfer, Martin; Berger, Helmuth

    2012-05-28

    We have carried out electron energy-loss investigations of the lowest singlet excitons in pentacene at 20 K. Our studies allow to determine the full exciton band structure in the a*, b* reciprocal lattice plane. The lowest singlet exciton can move coherently within this plane, and the resulting exciton dispersion is highly anisotropic. The analysis of the energetically following (satellite) features indicates a strong admixture of charge transfer excitations to the exciton wave function.

  19. Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?

    PubMed

    Niaz, Mansoor; Cardellini, Liberato

    2011-12-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses. PMID:24061142

  20. Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem

    NASA Astrophysics Data System (ADS)

    Webb, William

    2013-04-01

    Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!

  1. Plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites

    NASA Astrophysics Data System (ADS)

    Bityurin, N.; Ermolaev, N.; Smirnov, A. A.; Afanasiev, A.; Agareva, N.; Koryukina, T.; Bredikhin, V.; Kamensky, V.; Pikulin, A.; Sapogova, N.

    2016-03-01

    UV irradiation of materials consisting of a polymer matrix that possesses precursors of different kinds can result in creation of nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonic applications due to the strong alteration of their optical properties compared to initial non-irradiated materials. We report our results on the synthesis and investigation of plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites. Plasmonic nanocomposites contain metal nanoparticles of noble metals with a pronounced plasmon resonance. Excitonic nanocomposites possess semiconductor nanoclusters (quantum dots). We consider the CdS-Au pair because the luminescent band of CdS nanoparticles enters the plasmon resonance band of gold nanoparticles. The obtaining of such particles within the same composite materials is promising for the creation of media with exciton-plasmon resonance. We demonstrate that it is possible to choose appropriate precursor species to obtain the initially transparent poly(methyl methacrylate) (PMMA) films containing both types of these molecules either separately or together. Proper irradiation of these materials by a light-emitting diode operating at the wavelength of 365 nm provides material alteration demonstrating light-induced optical absorption and photoluminescent properties typical for the corresponding nanoparticles. Thus, an exciton-plasmonic photoinduced nanocomposite is obtained. It is important that here we use the precursors that are different from those usually employed.

  2. Distal radius fractures: current concepts.

    PubMed

    Schneppendahl, Johannes; Windolf, Joachim; Kaufmann, Robert A

    2012-08-01

    Despite the frequency of distal radius fractures, the optimal treatment remains without consensus opinion. A trend toward increased distal radius fracture open reduction and internal fixation has been identified, with biomechanical and clinical studies suggesting treatment advantages of certain fixation methods over others. Well-controlled patient trials are still missing to lend objective findings to management algorithms. This article reviews the literature over the past 5 years to guide our management regarding this common upper-extremity injury. PMID:22763062

  3. Excitons and charged excitons in semiconductor quantum wells

    SciTech Connect

    Riva, C.; Peeters, F. M.; Varga, K.

    2000-05-15

    A variational calculation of the ground-state energy of neutral excitons and of positively and negatively charged excitons (trions) confined in a single-quantum well is presented. We study the dependence of the correlation energy and of the binding energy on the well width and on the hole mass. The conditional probability distribution for positively and negatively charged excitons is obtained, providing information on the correlation and the charge distribution in the system. A comparison is made with available experimental data on trion binding energies in GaAs-, ZnSe-, and CdTe-based quantum well structures, which indicates that trions become localized with decreasing quantum well width. (c) 2000 The American Physical Society.

  4. Talbot Effect for Exciton Polaritons.

    PubMed

    Gao, T; Estrecho, E; Li, G; Egorov, O A; Ma, X; Winkler, K; Kamp, M; Schneider, C; Höfling, S; Truscott, A G; Ostrovskaya, E A

    2016-08-26

    We demonstrate, experimentally and theoretically, a Talbot effect for hybrid light-matter waves-an exciton-polariton condensate formed in a semiconductor microcavity with embedded quantum wells. The characteristic "Talbot carpet" is produced by loading the exciton-polariton condensate into a microstructured one-dimensional periodic array of mesa traps, which creates an array of phase-locked sources for coherent polariton flow in the plane of the quantum wells. The spatial distribution of the Talbot fringes outside the mesas mimics the near-field diffraction of a monochromatic wave on a periodic amplitude and phase grating with the grating period comparable to the wavelength. Despite the lossy nature of the polariton system, the Talbot pattern persists for distances exceeding the size of the mesas by an order of magnitude. Thus, our experiment demonstrates efficient shaping of the two-dimensional flow of coherent exciton polaritons by a one-dimensional "flat lens." PMID:27610883

  5. Exciton coupling in molecular crystals

    NASA Technical Reports Server (NTRS)

    Ake, R. L.

    1976-01-01

    The implications of perfect exciton coupling and molecular vibrations were investigated, as well as the effect they have on the lifetime of singlet and triplet excitons coupled in a limiting geometry. Crystalline bibenzyl, Cl4Hl4, provided a situation in which these mechanisms involving exciton coupling can be studied in the limit of perfect coupling between units due to the crystal's geometry. This geometry leads to a coupling between the two halves of the molecule resulting in a splitting of the molecular excited states. The study reported involves an experimental spectroscopic approach and begins with the purification of the bibenzyl. The principal experimental apparatus was an emission spectrometer. A closed cycle cryogenic system was used to vary the temperature of the sample between 20 K and 300 K. The desired results are the temperature-dependent emission spectra of the bibenzyl; in addition, the lifetimes and quantum yields measured at each temperature reveal the effect of competing radiationless processes.

  6. Exciton-photon correlations in bosonic condensates of exciton-polaritons

    PubMed Central

    Kavokin, Alexey V.; Sheremet, Alexandra S.; Shelykh, Ivan A.; Lagoudakis, Pavlos G.; Rubo, Yuri G.

    2015-01-01

    Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the rate of incoherent exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers. PMID:26153979

  7. Exciton-photon correlations in bosonic condensates of exciton-polaritons.

    PubMed

    Kavokin, Alexey V; Sheremet, Alexandra S; Shelykh, Ivan A; Lagoudakis, Pavlos G; Rubo, Yuri G

    2015-01-01

    Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the rate of incoherent exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers. PMID:26153979

  8. Emergence of complementarity and the Baconian roots of Niels Bohr's method

    NASA Astrophysics Data System (ADS)

    Perovic, Slobodan

    2013-08-01

    I argue that instead of a rather narrow focus on N. Bohr's account of complementarity as a particular and perhaps obscure metaphysical or epistemological concept (or as being motivated by such a concept), we should consider it to result from pursuing a particular method of studying physical phenomena. More precisely, I identify a strong undercurrent of Baconian method of induction in Bohr's work that likely emerged during his experimental training and practice. When its development is analyzed in light of Baconian induction, complementarity emerges as a levelheaded rather than a controversial account, carefully elicited from a comprehensive grasp of the available experimental basis, shunning hasty metaphysically motivated generalizations based on partial experimental evidence. In fact, Bohr's insistence on the "classical" nature of observations in experiments, as well as the counterintuitive synthesis of wave and particle concepts that have puzzled scholars, seem a natural outcome (an updated instance) of the inductive method. Such analysis clarifies the intricacies of early Schrödinger's critique of the account as well as Bohr's response, which have been misinterpreted in the literature. If adequate, the analysis may lend considerable support to the view that Bacon explicated the general terms of an experimentally minded strand of the scientific method, developed and refined by scientists in the following three centuries.

  9. Quantum Explorers: Bohr, Jordan, and Delbrück Venturing into Biology

    NASA Astrophysics Data System (ADS)

    Joaquim, Leyla; Freire, Olival; El-Hani, Charbel N.

    2015-09-01

    This paper disentangles selected intertwined aspects of two great scientific developments: quantum mechanics and molecular biology. We look at the contributions of three physicists who in the 1930s were protagonists of the quantum revolution and explorers of the field of biology: Niels Bohr, Pascual Jordan, and Max Delbrück. Their common platform was the defense of the Copenhagen interpretation in physics and the adoption of the principle of complementarity as a way of looking at biology. Bohr addressed the problem of how far the results reached in physics might influence our views about life. Jordan and Delbrück were followers of Bohr's ideas in the context of quantum mechanics and also of his tendency to expand the implications of the Copenhagen interpretation to biology. We propose that Bohr's perspective on biology was related to his epistemological views, as Jordan's was to his political positions. Delbrück's propensity to migrate was related to his transformation into a key figure in the history of twentieth-century molecular biology.

  10. Why We Should Teach the Bohr Model and How to Teach it Effectively

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2008-01-01

    Some education researchers have claimed that we should not teach the Bohr model of the atom because it inhibits students' ability to learn the true quantum nature of electrons in atoms. Although the evidence for this claim is weak, many have accepted it. This claim has implications for how to present atoms in classes ranging from elementary school…

  11. What Can the Bohr-Sommerfeld Model Show Students of Chemistry in the 21st Century?

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Cardellini, Liberato

    2011-01-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. To increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study aims to elaborate a framework…

  12. EPR before EPR: A 1930 Einstein-Bohr thought Experiment Revisited

    ERIC Educational Resources Information Center

    Nikolic, Hrvoje

    2012-01-01

    In 1930, Einstein argued against the consistency of the time-energy uncertainty relation by discussing a thought experiment involving a measurement of the mass of the box which emitted a photon. Bohr seemingly prevailed over Einstein by arguing that Einstein's own general theory of relativity saves the consistency of quantum mechanics. We revisit…

  13. Laser differential confocal radius measurement.

    PubMed

    Zhao, Weiqian; Sun, Ruoduan; Qiu, Lirong; Sha, Dingguo

    2010-02-01

    A new laser differential confocal radius measurement (DCRM) is proposed for high precision measurement of radius. Based on the property of an axial intensity curve that the absolute zero precisely corresponds to the focus of the objective in a differential confocal system (DCS), DCRM uses the zero point of the DCS axial intensity curve to precisely identify the cat's-eye and confocal positions of the test lens, and measures the accurate distance between the two positions to achieve the high-precision measurement of radius of curvature (ROC). In comparison with the existing measurement methods, DCRM proposed has a high measurement precision, a strong environmental anti-interference capability and a low cost. The theoretical analyses and preliminary experimental results indicate that DCRM has a relative measurement error of better than 5 ppm. PMID:20174065

  14. Exciton size and quantum transport in nanoplatelets

    SciTech Connect

    Pelzer, Kenley M. Gray, Stephen K.; Darling, Seth B.; Schaller, Richard D.

    2015-12-14

    Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.

  15. Exciton size and quantum transport in nanoplatelets.

    PubMed

    Pelzer, Kenley M; Darling, Seth B; Gray, Stephen K; Schaller, Richard D

    2015-12-14

    Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport. PMID:26671357

  16. Exciton size and quantum transport in nanoplatelets

    NASA Astrophysics Data System (ADS)

    Pelzer, Kenley M.; Darling, Seth B.; Gray, Stephen K.; Schaller, Richard D.

    2015-12-01

    Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.

  17. Excitonic effects in ZnO nanowires and hollow nanotubes

    NASA Astrophysics Data System (ADS)

    Willander, M.; Lozovik, Y. E.; Zhao, Q. X.; Nur, O.; Hu, Q.-H.; Klason, P.

    2007-02-01

    Energy levels and wave functions of ground and excited states of an exciton are calculated by the method of imaginary time. Energy levels as functions of radius of single and double wall nanotube are studied. Asymptotic behavior of energy levels at large and small values of the radius using perturbation theory and adiabatic approximation is considered. Spatially indirect exciton in semiconductor nanowire is also investigated. Experimental result from high quality reproducible ZnO nanowires grown by low temperature chemical engineering is presented. State of the art high brightness white light emitting diodes (HB-LEDs) are demonstrated from the grown ZnO nano-wires. The color temperature and color rendering index (CRI) of the HB-LEDs values was found to be (3250 K, 82), and (14000 K, 93), for the best LEDs, which means that the quality of light is superior to one obtained from GaN LEDs available on the market today. The role of V Zn and V ° on the emission responsible for the white light band as well as the peak position of this important wide band is thoroughly investigated in a systematic way.

  18. Exciton dynamics at a single dislocation in GaN probed by picosecond time-resolved cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Liu, W.; Carlin, J.-F.; Grandjean, N.; Deveaud, B.; Jacopin, G.

    2016-07-01

    We investigate the dynamics of donor bound excitons (D°XA) at T = 10 K around an isolated single edge dislocation in homoepitaxial GaN, using a picosecond time-resolved cathodoluminescence (TR-CL) setup with high temporal and spatial resolutions. An ˜ 1.3 meV dipole-like energy shift of D°XA is observed around the dislocation, induced by the local strain fields. By simultaneously recording the variations of both the exciton lifetime and the CL intensity across the dislocation, we directly assess the dynamics of excitons around the defect. Our observations are well reproduced by a diffusion model. It allows us to deduce an exciton diffusion length of ˜24 nm as well as an effective area of the dislocation with a radius of ˜95 nm, where the recombination can be regarded as entirely non-radiative.

  19. Stark Effect of Excitons in a Quantum Nano-rod with Parabolic Confinement

    NASA Astrophysics Data System (ADS)

    Lyo, S. K.

    2013-03-01

    We study the exciton binding energy and the oscillator strength as a function of a DC electric field in a quasi-one-dimensional quantum dot (i.e., nano rod) with parabolic confinements in the conduction and valence bands. The relative importance of the quantum confinement and electron-hole interaction is examined by varying the the linear confinement length (i.e., rod length). We find an abrupt decrease of the oscillator strength, loss of exciton binding energy, and a sudden increase of the root-mean-square average of electron-hole separation as the excitons are dissociated at the threshold field. The field dependence of the effects are also investigated as a function of the rod length and the radius of the nano rod. The numerical results are applied to GaAs and CdSe rods. This work was supported by DOE/BES under Contract No.DE-AC04-94AL85000.

  20. Schrödinger's interpretation of quantum mechanics and the relevance of Bohr's experimental critique

    NASA Astrophysics Data System (ADS)

    Perovic, Slobodan

    E. Schrödinger's ideas on interpreting quantum mechanics have been recently re-examined by historians and revived by philosophers of quantum mechanics. Such recent re-evaluations have focused on Schrödinger's retention of space-time continuity and his relinquishment of the corpuscularian understanding of microphysical systems. Several of these historical re-examinations claim that Schrödinger refrained from pursuing his 1926 wave-mechanical interpretation of quantum mechanics under pressure from the Copenhagen and Göttingen physicists, who misinterpreted his ideas in their dogmatic pursuit of the complementarity doctrine and the principle of uncertainty. My analysis points to very different reasons for Schrödinger's decision and, accordingly, to a rather different understanding of the dialogue between Schrödinger and N. Bohr, who refuted Schrödinger's arguments. Bohr's critique of Schrödinger's arguments predominantly focused on the results of experiments on the scattering of electrons performed by Bothe and Geiger, and by Compton and Simon. Although he shared Schrödinger's rejection of full-blown classical entities, Bohr argued that these results demonstrated the corpuscular nature of atomic interactions. I argue that it was Schrödinger's agreement with Bohr's critique, not the dogmatic pressure, which led him to give up pursuing his interpretation for 7 yr. Bohr's critique reflected his deep understanding of Schrödinger's ideas and motivated, at least in part, his own pursuit of his complementarity principle. However, in 1935 Schrödinger revived and reformulated the wave-mechanical interpretation. The revival reflected N. F. Mott's novel wave-mechanical treatment of particle-like properties. R. Shankland's experiment, which demonstrated an apparent conflict with the results of Bothe-Geiger and Compton-Simon, may have been additional motivation for the revival. Subsequent measurements have proven the original experimental results accurate, and I argue

  1. Rate limiting processes in the bohr shift in human red cells

    PubMed Central

    Forster, R. E.; Steen, J. B.

    1968-01-01

    1. The rates of the Bohr shift of human red cells and some of its constituent reactions have been studied with a modified Hartridge—Roughton rapid reaction apparatus using an oxygen electrode to measure the progress of the reaction. 2. The rate of the Bohr shift was compatible with the hypothesis that the transfer of H+ across the membrane by means of CO2 exchange and reaction with buffers is generally the rate-limiting step. (a) When the Bohr off-reaction was produced by a marked increase in PCO2 around the cells, the half-time at 37° C was 0·12 sec. In this case CO2 was available initially to diffuse into the cells, the process being predominantly limited by the rate of intracellular CO2 hydration. (b) When the Bohr off-shift was produced by an increase of [H+] outside the cell, PCO2 being low and equal within and outside the cells, the half time became 0·31 sec. In this case, even at the start, the H2CO3 formed by the almost instantaneous neutralization reaction of H+ and HCO3- had to dehydrate to form CO2 and this in turn had to diffuse into and react within the red cell before the [HbO2] could change. When a carbonic anhydrase inhibitor was added to slow the CO2 reaction inside the cell, the half-time rose to 10 sec. (c) The Bohr off-shift in a haemolysed cell suspension produced by an increase in PCO2 appeared to be limited by the rate at which the CO2 could hydrate to form H+. 3. The Bohr off-shift has an average Q10 of 2·5 between 42·5 and 28° C with an activation energy of 8000 cal. 4. The pronounced importance of the CO2-bicarbonate system for rapid intracellular pH changes is discussed in connexion with some physiological situations. PMID:5664232

  2. Spatially indirect excitons in coupled quantum wells

    SciTech Connect

    Lai, Chih-Wei Eddy

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were

  3. Exciton formation in monolayer transition metal dichalcogenides.

    PubMed

    Ceballos, Frank; Cui, Qiannan; Bellus, Matthew Z; Zhao, Hui

    2016-06-01

    Two-dimensional transition metal dichalcogenides provide a unique platform to study excitons in confined structures. Recently, several important aspects of excitons in these materials have been investigated in detail. However, the formation process of excitons from free carriers has yet to be understood. Here we report time-resolved measurements on the exciton formation process in monolayer samples of MoS2, MoSe2, WS2, and WSe2. The free electron-hole pairs, injected by an ultrashort laser pulse, immediately induce a transient absorption signal of a probe pulse tuned to the exciton resonance. The signal quickly drops by about a factor of two within 1 ps and is followed by a slower decay process. In contrast, when excitons are resonantly injected, the fast decay component is absent. Based both on its excitation excess energy and intensity dependence, this fast decay process is attributed to the formation of excitons from the electron-hole pairs. This interpretation is also consistent with a model that shows how free electron-hole pairs can be about twice more effective than excitons in altering the exciton absorption strength. From our measurements and analysis of our results, we determined that the exciton formation times in these monolayers to be shorter than 1 ps. PMID:27219022

  4. Contrastive analysis of multiple exciton generation theories

    NASA Astrophysics Data System (ADS)

    Tan, Hengyu; Chang, Qing

    2015-10-01

    Multiple exciton generation (MEG) is an effect that semiconductor nanocrystals (NCs) quantum dots (QDs) generate multiple excitons (electron-hole pairs) through absorbing a single high energy photon. It can translate the excess photon energy of bandgap (Eg) into new excitons instead of heat loss and improve the photovoltaic performance of solar cells. However, the theories of MEG are not uniform. The main MEG theories can be divided into three types. The first is impact ionization. It explains MEG through a conventional way that a photogenerated exciton becomes multiple excitons by Coulomb interactions between carriers. The Second is coherent superposition of excitonic states. Multiple excitons are generated by the coherent superposition of single photogenerated exciton state with enough excess momentum and the two-exciton state with the same momentum. The third is excitation via virtual excitonic states. The nanocrystals vacuum generates a virtual biexciton by coulomb coupling between two valence band electrons. The virtual biexciton absorbing a photon with an intraband optical transition is converted into a real biexciton. This paper describes the MEG influence on solar photoelectric conversion efficiency, concludes and analyzes the fundamentals of different MEG theories, the MEG experimental measure, their merits and demerits, calculation methods of generation efficiency.

  5. Coherent Exciton Dynamics in Atomically Thin Semiconductors

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqin (Elaine)

    The near band-edge optical response of an emerging class of semiconductors, known as the transitional metal dichalcogenides (TMDs), is dominated by tightly-bound excitons and charged excitons (i.e. trions). A fundamental property of these quasiparticles (excitons and trions) is quantum decoherence time, which reflects irreversible quantum dissipation arising from system (excitons and trions) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Dephasing time is also equivalent to the intrinsic homogeneous linewidth of exciton resonance. In addition, excitons in TMDs are localized at the corners of the Brillouin zone and provide a convenient way to optical manipulate the valley degree of freedom, which may act as a useful information carrier analogous to electronic charge or spin. Direct measurement of valley coherence time is challenging because it corresponds to a non-radiative coherence between two degenerate states. Using ultrafast multi-dimensional optical spectroscopy, we investigate the intrinsic homogeneous linewidth of excitons, exciton valley coherence as well as coupling between excitons and trions. Our studies reveal coherent electronic dynamics on the order of ~100 fs in monolayer TMDs. We gratefully acknowledge financial support from NSF, AFOSR, and the Welch Foundation.

  6. Exciton formation in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Ceballos, Frank; Cui, Qiannan; Bellus, Matthew Z.; Zhao, Hui

    2016-06-01

    Two-dimensional transition metal dichalcogenides provide a unique platform to study excitons in confined structures. Recently, several important aspects of excitons in these materials have been investigated in detail. However, the formation process of excitons from free carriers has yet to be understood. Here we report time-resolved measurements on the exciton formation process in monolayer samples of MoS2, MoSe2, WS2, and WSe2. The free electron-hole pairs, injected by an ultrashort laser pulse, immediately induce a transient absorption signal of a probe pulse tuned to the exciton resonance. The signal quickly drops by about a factor of two within 1 ps and is followed by a slower decay process. In contrast, when excitons are resonantly injected, the fast decay component is absent. Based both on its excitation excess energy and intensity dependence, this fast decay process is attributed to the formation of excitons from the electron-hole pairs. This interpretation is also consistent with a model that shows how free electron-hole pairs can be about twice more effective than excitons in altering the exciton absorption strength. From our measurements and analysis of our results, we determined that the exciton formation times in these monolayers to be shorter than 1 ps.

  7. Two-exciton excited states of J-aggregates in the presence of exciton-exciton annihilation

    NASA Astrophysics Data System (ADS)

    Levinsky, B.; Fainberg, B. D.; Nesterov, L. A.; Rosanov, N. N.

    2016-07-01

    We study decay of two-exciton states of a J-aggregate that is collective in nature. We use mathematical formalism based on effective non-Hermitian Hamiltonian suggested in nuclear theory. We show that decay of two-exciton states is strongly affected by the interference processes in the exciton-exciton annihilation. Our evaluations of the imaginary part of the effective Hamiltonian show that it exceeds the spacing between real energies of the two-exciton states that gives rise to the transition to the regime of overlapping resonances supplying the system by the new collectivity - the possibility of coherent decay in the annihilation channel. The decay of two-exciton states varies from twice bimolecular decay rate to the much smaller values that is associated with population trapping. We have also considered the corresponding experiment in the framework of our approach, the picture of which appears to be more complex and richer than it was reasoned before.

  8. The cognitive nexus between Bohr's analogy for the atom and Pauli's exclusion schema.

    PubMed

    Ulazia, Alain

    2016-03-01

    The correspondence principle is the primary tool Bohr used to guide his contributions to quantum theory. By examining the cognitive features of the correspondence principle and comparing it with those of Pauli's exclusion principle, I will show that it did more than simply 'save the phenomena'. The correspondence principle in fact rested on powerful analogies and mental schemas. Pauli's rejection of model-based methods in favor of a phenomenological, rule-based approach was therefore not as disruptive as some historians have indicated. Even at a stage that seems purely phenomenological, historical studies of theoretical development should take into account non-formal, model-based approaches in the form of mental schemas, analogies and images. In fact, Bohr's images and analogies had non-classical components which were able to evoke the idea of exclusion as a prohibition law and as a preliminary mental schema. PMID:26803549

  9. Darwinism in disguise? A comparison between Bohr's view on quantum mechanics and QBism.

    PubMed

    Faye, Jan

    2016-05-28

    The Copenhagen interpretation is first and foremost associated with Niels Bohr's philosophy of quantum mechanics. In this paper, I attempt to lay out what I see as Bohr's pragmatic approach to science in general and to quantum physics in particular. A part of this approach is his claim that the classical concepts are indispensable for our understanding of all physical phenomena, and it seems as if the claim is grounded in his reflection upon how the evolution of language is adapted to experience. Another, recent interpretation, QBism, has also found support in Darwin's theory. It may therefore not be surprising that sometimes QBism is said to be of the same breed as the Copenhagen interpretation. By comparing the two interpretations, I conclude, nevertheless, that there are important differences. PMID:27091172

  10. Conceptual objections to the Bohr atomic theory — do electrons have a "free will" ?

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2011-11-01

    The atomic model introduced by Bohr in 1913 dominated the development of the old quantum theory. Its main features, such as the radiationless stationary states and the discontinuous quantum jumps between the states, were hard to swallow for contemporary physicists. While acknowledging the empirical power of the theory, many scientists criticized its foundation or looked for ways to reconcile it with classical physics. Among the chief critics were A. Crehore, J.J. Thomson, E. Gehrcke and J. Stark. This paper examines from a historical perspective the conceptual objections to Bohr's atom, in particular the stationary states (where electrodynamics was annulled by fiat) and the mysterious, apparently teleological quantum jumps. Although few of the critics played a constructive role in the development of the old quantum theory, a history neglecting their presence would be incomplete and distorted.

  11. On Quasi-Normal Modes, Area Quantization and Bohr Correspondence Principle

    NASA Astrophysics Data System (ADS)

    Corda, Christian

    2015-10-01

    In (Int. Journ. Mod. Phys. D 14, 181 2005), the author Khriplovich verbatim claims that "the correspondence principle does not dictate any relation between the asymptotics of quasinormal modes and the spectrum of quantized black holes" and that "this belief is in conflict with simple physical arguments". In this paper we analyze Khriplovich's criticisms and realize that they work only for the original proposal by Hod, while they do not work for the improvements suggested by Maggiore and recently finalized by the author and collaborators through a connection between Hawking radiation and black hole (BH) quasi-normal modes (QNMs). This is a model of quantum BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. Thus, QNMs can be really interpreted as BH quantum levels (the "electrons" of the "Bohr-like BH model").Our results have also important implications on the BH information puzzle.

  12. Quantum Humor: The Playful Side of Physics at Bohr's Institute for Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Halpern, Paul

    2012-09-01

    From the 1930s to the 1950s, a period of pivotal developments in quantum, nuclear, and particle physics, physicists at Niels Bohr's Institute for Theoretical Physics in Copenhagen took time off from their research to write humorous articles, letters, and other works. Best known is the Blegdamsvej Faust, performed in April 1932 at the close of one of the Institute's annual conferences. I also focus on the Journal of Jocular Physics, a humorous tribute to Bohr published on the occasions of his 50th, 60th, and 70th birthdays in 1935, 1945, and 1955. Contributors included Léon Rosenfeld, Victor Weisskopf, George Gamow, Oskar Klein, and Hendrik Casimir. I examine their contributions along with letters and other writings to show that they offer a window into some issues in physics at the time, such as the interpretation of complementarity and the nature of the neutrino, as well as the politics of the period.

  13. Excitonic transport in ZnO

    NASA Astrophysics Data System (ADS)

    Noltemeyer, Martin; Bertram, Frank; Hempel, Thomas; Bastek, Barbara; Christen, Juergen; Brandt, Matthias; Lorenz, Michael; Grundmann, Marius

    2012-02-01

    The temperature dependence of diffusion length and lifetime or diffusivity of the free exciton is measured in a commercial ZnO-substrate and in an epitaxial ZnO quantum well using nm-spatially and ps-time resolved cathodoluminescence (CL) spectroscopy. The characteristic temperature dependence of the exciton mobility is a fingerprint of the underlying excitonic scattering processes. Since excitons are neutral particles scattering at ionized impurities should be not effective. With decreasing temperature diffusion lengths and lifetimes give rise to a monotonous increase of the excitonic mobility. Two different methods for determining the excitonic transport parameters will be presented. On the one hand we are able to perform completely pulsed excitation experiments and on the other hand a combination of cw- and pulsed excitation in two independent measurements are needed.

  14. Exciton Seebeck effect in molecular systems

    SciTech Connect

    Yan, Yun-An; Cai, Shaohong

    2014-08-07

    We investigate the exciton dynamics under temperature difference with the hierarchical equations of motion. Through a nonperturbative simulation of the transient absorption of a heterogeneous trimer model, we show that the temperature difference causes exciton population redistribution and affects the exciton transfer time. It is found that one can reproduce not only the exciton population redistribution but also the change of the exciton transfer time induced by the temperature difference with a proper tuning of the site energies of the aggregate. In this sense, there exists a site energy shift equivalence for any temperature difference in a broad range. This phenomenon is similar to the Seebeck effect as well as spin Seebeck effect and can be named as exciton Seebeck effect.

  15. Electric quadrupole transitions of the Bohr Hamiltonian with the Morse potential

    SciTech Connect

    Inci, I.; Bonatsos, D.; Boztosun, I.

    2011-08-15

    Eigenfunctions of the collective Bohr Hamiltonian with the Morse potential have been obtained by using the asymptotic iteration method (AIM) for both {gamma}-unstable and rotational structures. B(E2) transition rates have been calculated and compared to experimental data. Overall good agreement is obtained for transitions within the ground-state band, while some interband transitions appear to be systematically underpredicted in {gamma}-unstable nuclei and overpredicted in rotational nuclei.

  16. How Sommerfeld extended Bohr's model of the atom (1913-1916)

    NASA Astrophysics Data System (ADS)

    Eckert, Michael

    2014-04-01

    Sommerfeld's extension of Bohr's atomic model was motivated by the quest for a theory of the Zeeman and Stark effects. The crucial idea was that a spectral line is made up of coinciding frequencies which are decomposed in an applied field. In October 1914 Johannes Stark had published the results of his experimental investigation on the splitting of spectral lines in hydrogen (Balmer lines) in electric fields, which showed that the frequency of each Balmer line becomes decomposed into a multiplet of frequencies. The number of lines in such a decomposition grows with the index of the line in the Balmer series. Sommerfeld concluded from this observation that the quantization in Bohr's model had to be altered in order to allow for such decompositions. He outlined this idea in a lecture in winter 1914/15, but did not publish it. The First World War further delayed its elaboration. When Bohr published new results in autumn 1915, Sommerfeld finally developed his theory in a provisional form in two memoirs which he presented in December 1915 and January 1916 to the Bavarian Academy of Science. In July 1916 he published the refined version in the Annalen der Physik. The focus here is on the preliminary Academy memoirs whose rudimentary form is better suited for a historical approach to Sommerfeld's atomic theory than the finished Annalen-paper. This introductory essay reconstructs the historical context (mainly based on Sommerfeld's correspondence). It will become clear that the extension of Bohr's model did not emerge in a singular stroke of genius but resulted from an evolving process.

  17. Closed analytical solutions of Bohr Hamiltonian with Manning-Rosen potential model

    NASA Astrophysics Data System (ADS)

    Chabab, M.; Lahbas, A.; Oulne, M.

    2015-11-01

    In the present paper, we have obtained closed analytical expressions for eigenvalues and eigenfunctions of the Bohr Hamiltonian with the Manning-Rosen potential for γ-unstable nuclei as well as exactly separable rotational ones with γ ≈ 0. Some heavy nuclei with known β and γ bandheads have been fitted by using two parameters in the γ-unstable case and three parameters in the axially symmetric prolate deformed one. A good agreement with experimental data has been achieved.

  18. Localized Excitons in Carbon Nanotubes.

    NASA Astrophysics Data System (ADS)

    Adamska, Lyudmyla; Doorn, Stephen K.; Tretiak, Sergei

    2015-03-01

    It has been historically known that unintentional defects in carbon nanotubes (CNTs) may fully quench the fluorescence. However, some dopants may enhance the fluorescence by one order of magnitude thus turning the CNTs, which are excellent light absorbers, in good emitters. We have correlated the experimentally observed photoluminescence spectra to the electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the lowest bright exciton peak. Our simulations suggest an association of these peaks with deep trap states tied to different specific chemical adducts. While the wave functions of excitons in undoped CNTs are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with the experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from scattering of acoustic phonons on localized excitons. Our work lays the foundation to utilize doping as a generalized route for wave function engineering and direct control of carrier dynamics in SWCNTs toward enhanced light emission properties for photonic applications.

  19. Bohr Hamiltonian with a deformation-dependent mass term: physical meaning of the free parameter

    NASA Astrophysics Data System (ADS)

    Bonatsos, Dennis; Minkov, N.; Petrellis, D.

    2015-09-01

    Embedding the five-dimensional (5D) space of the Bohr Hamiltonian with a deformation-dependent mass (DDM) into a six-dimensional (6D) space shows that the free parameter in the dependence of the mass on the deformation is connected to the curvature of the 5D space, with the special case of constant mass corresponding to a flat 5D space. Comparison of the DDM Bohr Hamiltonian to the 5D classical limit of Hamiltonians of the 6D interacting boson model (IBM), shows that the DDM parameter is proportional to the strength of the pairing interaction in the U(5) (vibrational) symmetry limit, while it is proportional to the quadrupole-quadrupole interaction in the SU(3) (rotational) symmetry limit, and to the difference of the pairing interactions among s, d bosons and d bosons alone in the O(6) (γ-soft) limit. The presence of these interactions leads to a curved 5D space in the classical limit of IBM, in contrast to the flat 5D space of the original Bohr Hamiltonian, which is made curved by the introduction of the DDM.

  20. The theory of the Bohr-Weisskopf effect in the hyperfine structure

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2015-09-01

    Description of the Bohr-Wesskopf effect in the hyperfine structure of few-electron heavy ions is a challenging problem, which can be used as a test of both QED and atomic calculations. However, for twenty years the research has actually been going in a wrong direction, aimed at fighting the Bohr-Weisskopf effect through its cancellation in specific differences. Alternatively, we propose the constructive model-independent way, which enables the nuclear radii and their momenta to be retrieved from the hyper-fine splitting (HFS). The way is based on analogy of HFS to internal conversion coefficients, and the Bohr-Weisskopf effect - to the anomalies in the internal conversion coefficients. It is shown that the parameters which can be extracted from the data are the even nuclear momenta of the magnetization distribution. The radii R2 and - for the first time - R4 are obtained in this way by analysis of the experimental HFS values for the H- and Li-like ions of 209Bi. The critical prediction concerning the HFS for the 2p1/2 state is made. The present analysis shows high sensitivity of the method to the QED effects, which offers a way of precision test of QED. Experimental recommendations are given, which are aimed at retrieving data on the HFS values for a set of a few-electron configurations of each atom.

  1. Exciton Binding Energy of Monolayer WS2

    PubMed Central

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-01-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 ± 0.01 eV around K valley in the Brillouin zone. PMID:25783023

  2. Charge-transfer excitons in DNA.

    PubMed

    Conwell, E M; McLaughlin, P M; Bloch, S M

    2008-02-21

    There have been a number of theoretical treatments of excitons in DNA, most neglecting both the intrachain and interchain wavefunction overlaps of the electron and hole, treating them as Frenkel excitons. Recently, the importance of the intrachain and interchain coupling has been highlighted. Experiments have shown that in (dA)n oligomers and in duplex (dA)n.(dT)n, to be abbreviated (A/T), where A is adenine and T is thymine, the exciton wavefunction is delocalized over several bases. In duplexes it is possible to have charge-transfer (CT) excitons. Theoretical calculations have suggested that CT excitons in DNA may have lower energy than single chain excitons. In all the calculations of excitons in DNA, the polarization of the surrounding water has been neglected. Calculations have shown, however, that polarization of the water by an excess electron or a hole in DNA lowers its energy by approximately 1/2 eV, causing it to become a polaron. It is therefore to be expected that polarization charge induced in the surrounding water has a significant effect on the properties of the exciton. In what follows, we present calculations of some properties CT excitons would have in an A/T duplex taking into account the wavefunction overlaps, the effect of the surrounding water, which results in the electron and hole becoming polarons, and the ions in the water. As expected, the CT exciton has lowest energy when the electron and hole polarons are directly opposite each other. By appropriate choice of the dielectric constant, we can obtain a CT exciton delocalized over the number of sites found in photoinduced absorption experiments. The absorption threshold that we then calculate for CT exciton creation in A/T is in reasonable agreement with the lowest singlet absorption deduced from available data. PMID:18232682

  3. Distinct exciton dissociation behavior of organolead trihalide perovskite and excitonic semiconductors studied in a same device

    DOE PAGESBeta

    Hu, Miao; Bi, Cheng; Yuan, Yongbo; Xiao, Zhengguo; Dong, Qingfeng; Shao, Yuchuan; Huang, Jinsong

    2015-01-15

    The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. Moreover, it is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.

  4. Cross-polarized excitons in carbon nanotubes.

    PubMed

    Kilina, Svetlana; Tretiak, Sergei; Doorn, Stephen K; Luo, Zhengtang; Papadimitrakopoulos, Fotios; Piryatinski, Andrei; Saxena, Avadh; Bishop, Alan R

    2008-05-13

    Polarization of low-lying excitonic bands in finite-size semiconducting single-walled carbon nanotubes (SWNTs) is studied by using quantum-chemical methodologies. Our calculations elucidate properties of cross-polarized excitons, which lead to the transverse optical absorption of nanotubes and presumably couple to intermediate-frequency modes recently observed in resonance Raman excitation spectroscopy. We identify up to 12 distinct excitonic transitions below the second fundamental band associated with the E(22) van Hove singularity. Calculations for several chiral SWNTs distinguish the optically active "bright" excitonic band polarized parallel to the tube axis and several optically "weak" cross-polarized excitons. The rest are optically (near) forbidden "dark" transitions. An analysis of the transition density matrices related to excitonic bands provides detailed information about delocalization of excitonic wavefunction along the tube. Utilization of the natural helical coordinate system accounting for the tube chirality allows one to disentangle longitudinal and circumferential components. The distribution of the transition density matrix along a tube axis is similar for all excitons. However, four parallel-polarized excitons associated with the E(11) transition are more localized along the circumference of a tube, compared with others related to the E(12) and E(21) cross-polarized transitions. Calculated splitting between optically active parallel- and cross-polarized transitions increases with tube diameter, which compares well with experimental spectroscopic data. PMID:18463293

  5. Exciton spin dynamics in GaSe

    SciTech Connect

    Tang, Yanhao; Xie, Wei; McGuire, John A. Lai, Chih Wei; Mandal, Krishna C.

    2015-09-21

    We analyze exciton spin dynamics in GaSe under nonresonant circularly polarized optical pumping with an exciton spin-flip rate-equation model. The model reproduces polarized time-dependent photoluminescence measurements in which the initial circular polarization approaches unity even when pumping with 0.15 eV excess energy. At T = 10 K, the exciton spin relaxation exhibits a biexponential decay with sub-20 ps and >500 ps time constants, which are also reproduced by the rate-equation model assuming distinct spin-relaxation rates for hot (nonequilibrium) and cold band-edge excitons.

  6. Plasmon and Exciton Coupling and Purcell Enhancement

    NASA Astrophysics Data System (ADS)

    Rice, Quinton; Rigo, Maria Veronica; Fudala, Rafal; Cho, Hyoyeong; Kim, Wan-Joong; Rich, Ryan; Tabibi, Bagher; Gryczynski, Zygmunt; Gryczynski, Ignacy; Yu, William; Seo, Jaetae

    2014-05-01

    The photoluminescence from plasmon-coupled exciton is of great interest for optoelectronic applications, because of the large quantum yield with localized field enhancement and reduced nonradiative transition. The Coulomb interaction through plasmon-exciton coupling results in the Purcell enhancement of quantum dots (QDs) in the vicinity of metal nanoparticles (MNPs). With plasmon-exciton coupling, the radiative and non-radiative decay rates and the coupling rates compete with each other. The coupling rate is closely related to the coupling distance between QDs and MNPs. The optimized coupling distance scales the re-excitation density of localized fields and the plasmon-exciton coupling rates. If the plasmon-exciton coupling rate is much faster than the radiative and non-radiative transitions of excitons, the re-excitations of excitons by the localized plasmonic field and the reduction of non-radiative transitions may occur. This presentation includes plasmon-exciton coupling dynamics, large enhancement and temporal properties of PL, and dipole-PL polarization fidelity of hybrid optical materials of plasmonic nanometals and excitonic semiconductor QDs. The work at Hampton University was supported by the National Science Foundation (NSF HRD-1137747), and Army Research Office (ARO W911NF-11-1-0177). The work at University of North Texas was supported by National Institutes of Health (NIH R01EB12003, and 5R21CA14897 (Z.G.)).

  7. Cross-polarized excitons in carbon nanotubes

    PubMed Central

    Kilina, Svetlana; Tretiak, Sergei; Doorn, Stephen K.; Luo, Zhengtang; Papadimitrakopoulos, Fotios; Piryatinski, Andrei; Saxena, Avadh; Bishop, Alan R.

    2008-01-01

    Polarization of low-lying excitonic bands in finite-size semiconducting single-walled carbon nanotubes (SWNTs) is studied by using quantum-chemical methodologies. Our calculations elucidate properties of cross-polarized excitons, which lead to the transverse optical absorption of nanotubes and presumably couple to intermediate-frequency modes recently observed in resonance Raman excitation spectroscopy. We identify up to 12 distinct excitonic transitions below the second fundamental band associated with the E22 van Hove singularity. Calculations for several chiral SWNTs distinguish the optically active “bright” excitonic band polarized parallel to the tube axis and several optically “weak” cross-polarized excitons. The rest are optically (near) forbidden “dark” transitions. An analysis of the transition density matrices related to excitonic bands provides detailed information about delocalization of excitonic wavefunction along the tube. Utilization of the natural helical coordinate system accounting for the tube chirality allows one to disentangle longitudinal and circumferential components. The distribution of the transition density matrix along a tube axis is similar for all excitons. However, four parallel-polarized excitons associated with the E11 transition are more localized along the circumference of a tube, compared with others related to the E12 and E21 cross-polarized transitions. Calculated splitting between optically active parallel- and cross-polarized transitions increases with tube diameter, which compares well with experimental spectroscopic data. PMID:18463293

  8. Ground state energy of N Frenkel excitons

    NASA Astrophysics Data System (ADS)

    Pogosov, W.; Combescot, M.

    2009-03-01

    By using the composite many-body theory for Frenkel excitons we have recently developed, we here derive the ground state energy of N Frenkel excitons in the Born approximation through the Hamiltonian mean value in a state made of N identical Q = 0 excitons. While this quantity reads as a density expansion in the case of Wannier excitons, due to many-body effects induced by fermion exchanges between N composite particles, we show that the Hamiltonian mean value for N Frenkel excitons only contains a first order term in density, just as for elementary bosons. Such a simple result comes from a subtle balance, difficult to guess a priori, between fermion exchanges for two or more Frenkel excitons appearing in Coulomb term and the ones appearing in the N exciton normalization factor - the cancellation being exact within terms in 1/Ns where Ns is the number of atomic sites in the sample. This result could make us naively believe that, due to the tight binding approximation on which Frenkel excitons are based, these excitons are just bare elementary bosons while their composite nature definitely appears at various stages in the precise calculation of the Hamiltonian mean value.

  9. From correspondence to complementarity: The emergence of Bohr's Copenhagen interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Tanona, Scott Daniel

    I develop a new analysis of Niels Bohr's Copenhagen interpretation of quantum mechanics by examining the development of his views from his earlier use of the correspondence principle in the so-called 'old quantum theory' to his articulation of the idea of complementarity in the context of the novel mathematical formalism of quantum mechanics. I argue that Bohr was motivated not by controversial and perhaps dispensable epistemological ideas---positivism or neo-Kantianism, for example---but by his own unique perspective on the difficulties of creating a new working physics of the internal structure of the atom. Bohr's use of the correspondence principle in the old quantum theory was associated with an empirical methodology that used this principle as an epistemological bridge to connect empirical phenomena with quantum models. The application of the correspondence principle required that one determine the validity of the idealizations and approximations necessary for the judicious use of classical physics within quantum theory. Bohr's interpretation of the new quantum mechanics then focused on the largely unexamined ways in which the developing abstract mathematical formalism is given empirical content by precisely this process of approximation. Significant consistency between his later interpretive framework and his forms of argument with the correspondence principle indicate that complementarity is best understood as a relationship among the various approximations and idealizations that must be made when one connects otherwise meaningless quantum mechanical symbols to empirical situations or 'experimental arrangements' described using concepts from classical physics. We discover that this relationship is unavoidable not through any sort of a priori analysis of the priority of classical concepts, but because quantum mechanics incorporates the correspondence approach in the way in which it represents quantum properties with matrices of transition probabilities, the

  10. Features of exciton dynamics in molecular nanoclusters (J-aggregates): Exciton self-trapping (Review Article)

    NASA Astrophysics Data System (ADS)

    Malyukin, Yu. V.; Sorokin, A. V.; Semynozhenko, V. P.

    2016-06-01

    We present thoroughly analyzed experimental results that demonstrate the anomalous manifestation of the exciton self-trapping effect, which is already well-known in bulk crystals, in ordered molecular nanoclusters called J-aggregates. Weakly-coupled one-dimensional (1D) molecular chains are the main structural feature of J-aggregates, wherein the electron excitations are manifested as 1D Frenkel excitons. According to the continuum theory of Rashba-Toyozawa, J-aggregates can have only self-trapped excitons, because 1D excitons must adhere to barrier-free self-trapping at any exciton-phonon coupling constant g = ɛLR/2β, wherein ɛLR is the lattice relaxation energy, and 2β is the half-width of the exciton band. In contrast, very often only the luminescence of free, mobile excitons would manifest in experiments involving J-aggregates. Using the Urbach rule in order to analyze the low-frequency region of the low-temperature exciton absorption spectra has shown that J-aggregates can have both a weak (g < 1) and a strong (g > 1) exciton-phonon coupling. Moreover, it is experimentally demonstrated that under certain conditions, the J-aggregate excited state can have both free and self-trapped excitons, i.e., we establish the existence of a self-trapping barrier for 1D Frenkel excitons. We demonstrate and analyze the reasons behind the anomalous existence of both free and self-trapped excitons in J-aggregates, and demonstrate how exciton-self trapping efficiency can be managed in J-aggregates by varying the values of g, which is fundamentally impossible in bulk crystals. We discuss how the exciton-self trapping phenomenon can be used as an alternate interpretation of the wide band emission of some J-aggregates, which has thus far been explained by the strongly localized exciton model.

  11. Josephson effects in condensates of excitons and exciton polaritons

    SciTech Connect

    Shelykh, I. A.; Solnyshkov, D. D.; Pavlovic, G.; Malpuech, G.

    2008-07-15

    We analyze theoretically the phenomena related to the Josephson effect for exciton and polariton condensates, taking into account their specific spin degrees of freedom. We distinguish between two types of Josephson effects: the extrinsic effect, related to the coherent tunneling of particles with the same spin between two spatially separated potential traps, and the intrinsic effect, related to the 'tunneling' between different spinor components of the condensate within the same trap. We show that the Josephson effect in the nonlinear regime can lead to nontrivial polarization dynamics and produce spontaneous separation of the condensates with opposite polarization in real space.

  12. DNA-mediated excitonic upconversion FRET switching

    NASA Astrophysics Data System (ADS)

    Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; Davis, Paul H.; Graugnard, Elton; Lee, Jeunghoon; Yurke, Bernard; Knowlton, William B.

    2015-11-01

    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy upconversion via upconversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based upconversion has been demonstrated, it suffers from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an upconversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy upconversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy upconversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.

  13. DNA-mediated excitonic upconversion FRET switching

    SciTech Connect

    Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; Davis, Paul H.; Graugnard, Elton; Lee, Jeunghoon; Yurke, Bernard; Knowlton, William B.

    2015-11-17

    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffers from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.

  14. DNA-mediated excitonic upconversion FRET switching

    DOE PAGESBeta

    Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; Davis, Paul H.; Graugnard, Elton; Lee, Jeunghoon; Yurke, Bernard; Knowlton, William B.

    2015-11-17

    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffersmore » from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.« less

  15. Excitonic superconductivity in copper oxides

    SciTech Connect

    Tesanovic, Z.; Bishop, A.R.; Martin, R.L.; Harris, C.

    1988-01-01

    We discuss the possibility of excitonic superconductivity in high T/sub c/ copper oxides. The Hamiltonians describing CuO/sub 2/ planes supports both antiferromagnetism and low-lying Cu /longleftrightarrow/ O intra- and interband charge fluctuations. One crosses from one regime to another as the number of holes per unit cell increases. The high T/sub c/ superconductivity takes place at hole concentrations most favorable for intraband charge transfer excitations. The dynamic polarizability of the environment surrounding CuO/sub 2/ planes plays an important role in enhancing T/sub c/. 15 refs., 4 figs.

  16. Radius of curvature controlled mirror

    DOEpatents

    Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.

    2006-01-17

    A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.

  17. Treatment of distal radius fractures.

    PubMed

    Lichtman, David M; Bindra, Randipsingh R; Boyer, Martin I; Putnam, Matthew D; Ring, David; Slutsky, David J; Taras, John S; Watters, William C; Goldberg, Michael J; Keith, Michael; Turkelson, Charles M; Wies, Janet L; Haralson, Robert H; Boyer, Kevin M; Hitchcock, Kristin; Raymond, Laura

    2010-03-01

    The clinical practice guideline is based on a systematic review of published studies on the treatment of distal radius fractures in adults. None of the 29 recommendations made by the work group was graded as strong; most are graded as inconclusive or consensus; seven are graded as weak. The remaining five moderate-strength recommendations include surgical fixation, rather than cast fixation, for fractures with postreduction radial shortening >3 mm, dorsal tilt >10 degrees , or intra-articular displacement or step-off >2 mm; use of rigid immobilization rather than removable splints for nonsurgical treatment; making a postreduction true lateral radiograph of the carpus to assess dorsal radial ulnar joint alignment; beginning early wrist motion following stable fixation; and recommending adjuvant treatment with vitamin C to prevent disproportionate pain. PMID:20190108

  18. The Structure and Dynamics of Molecular Excitons

    NASA Astrophysics Data System (ADS)

    Bardeen, Christopher J.

    2014-04-01

    The photophysical behavior of organic semiconductors is governed by their excitonic states. In this review, I classify the three different exciton types (Frenkel singlet, Frenkel triplet, and charge transfer) typically encountered in organic semiconductors. Experimental challenges that arise in the study of solid-state organic systems are discussed. The steady-state spectroscopy of intermolecular delocalized Frenkel excitons is described, using crystalline tetracene as an example. I consider the problem of a localized exciton diffusing in a disordered matrix in detail, and experimental results on conjugated polymers and model systems suggest that energetic disorder leads to subdiffusive motion. Multiexciton processes such as singlet fission and triplet fusion are described, emphasizing the role of spin state coherence and magnetic fields in studying singlet -- triplet pair interconversion. Singlet fission provides an example of how all three types of excitons (triplet, singlet, and charge transfer) may interact to produce useful phenomena for applications such as solar energy conversion.

  19. Thermodynamic efficiency limit of excitonic solar cells

    SciTech Connect

    Giebink, Noel C.; Wiederrecht, Gary P.; Wasielewski, Michael R.; Forrest, Stephen R.

    2011-01-01

    Excitonic solar cells, comprised of materials such as organic semiconductors, inorganic colloidal quantum dots, and carbon nanotubes, are fundamentally different than crystalline, inorganic solar cells in that photogeneration of free charge occurs through intermediate, bound exciton states. Here, we show that the Second Law of Thermodynamics limits the maximum efficiency of excitonic solar cells below the maximum of 31% established by Shockley and Queisser [J. Appl. Phys. 32, 510 (1961)] for inorganic solar cells (whose exciton-binding energy is small). In the case of ideal heterojunction excitonic cells, the free energy for charge transfer at the interface, ΔG, places an additional constraint on the limiting efficiency due to a fundamental increase in the recombination rate, with typical -ΔG in the range 0.3 to 0.5 eV decreasing the maximum efficiency to 27% and 22%, respectively.

  20. Excitons and optical spectra of phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Nourbakhsh, Zahra; Asgari, Reza

    2016-07-01

    On the basis of many-body ab initio calculations, using the single-shot G0W0 method and Bethe-Salpeter equation, we study phosphorene nanoribbons (PNRs) in the two typical zigzag and armchair directions. The electronic structure, optical absorption, electron-hole (exciton) binding energy, exciton exchange splitting, and exciton wave functions are calculated for different sizes of PNRs. The typically strong splitting between singlet and triplet excitonic states make PNRs favorable systems for optoelectronic applications. Quantum confinement occurs in both kinds of PNRs, and it is stronger in the zPNRs, which behave like quasi-zero-dimensional systems. Scaling laws are investigated for the size-dependent behaviors of PNRs. The first bright excitonic state in PNRs is explored in detail.

  1. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice.

    PubMed

    Jensen, Birgitte; Storz, Jay F; Fago, Angela

    2016-05-01

    An important means of physiological adaptation to environmental hypoxia is an increased oxygen (O2) affinity of the hemoglobin (Hb) that can help secure high O2 saturation of arterial blood. However, the trade-off associated with a high Hb-O2 affinity is that it can compromise O2 unloading in the systemic capillaries. High-altitude deer mice (Peromyscus maniculatus) have evolved an increased Hb-O2 affinity relative to lowland conspecifics, but it is not known whether they have also evolved compensatory mechanisms to facilitate O2 unloading to respiring tissues. Here we investigate the effects of pH (Bohr effect) and temperature on the O2-affinity of high- and low-altitude deer mouse Hb variants, as these properties can potentially facilitate O2 unloading to metabolizing tissues. Our experiments revealed that Bohr factors for the high- and low-altitude Hb variants are very similar in spite of the differences in O2-affinity. The Bohr factors of deer mouse Hbs are also comparable to those of other mammalian Hbs. In contrast, the high- and low-altitude variants of deer mouse Hb exhibited similarly low temperature sensitivities that were independent of red blood cell anionic cofactors, suggesting an appreciable endothermic allosteric transition upon oxygenation. In conclusion, high-altitude deer mice have evolved an adaptive increase in Hb-O2 affinity, but this is not associated with compensatory changes in sensitivity to changes in pH or temperature. Instead, it appears that the elevated Hb-O2 affinity in high-altitude deer mice is compensated by an associated increase in the tissue diffusion capacity of O2 (via increased muscle capillarization), which promotes O2 unloading. PMID:26808972

  2. Atomistic model for excitons: Capturing Strongly Bound Excitons in Monolayer Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Tseng, Frank; Simsek, Ergun; Gunlycke, Daniel

    2015-03-01

    Monolayer transition-metal dichalcogenides form a direct bandgap predicted in the visible regime making them attractive host materials for various electronic and optoelectronic applications. Due to a weak dielectric screening in these materials, strongly bound electron-hole pairs or excitons have binding energies up to at least several hundred meV's. While the conventional wisdom is to think of excitons as hydrogen-like quasi-particles, we show that the hydrogen model breaks down for these experimentally observed strongly bound, room-temperature excitons. To capture these non-hydrogen-like photo-excitations, we introduce an atomistic model for excitons that predicts both bright excitons and dark excitons, and their broken degeneracy in these two-dimensional materials. For strongly bound exciton states, the lattice potential significantly distorts the envelope wave functions, which affects predicted exciton peak energies. The combination of large binding energies and non-degeneracy of exciton states in monolayer transition metal dichalogendies may furthermore be exploited in room temperature applications where prolonged exciton lifetimes are necessary. This work has been funded by the Office of Naval Research (ONR), directly and through the Naval Research Laboratory (NRL). F.T and E.S acknowledge support from NRL through the NRC Research Associateship Program and ONR Summer Faculty Program, respectively.

  3. Electric quadrupole transitions of the Bohr Hamiltonian with Manning-Rosen potential

    NASA Astrophysics Data System (ADS)

    Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M.

    2016-09-01

    Analytical expressions of the wave functions are derived for a Bohr Hamiltonian with the Manning-Rosen potential in the cases of γ-unstable nuclei and axially symmetric prolate deformed ones with γ ≈ 0. By exploiting the results we have obtained in a recent work on the same theme Ref. [1], we have calculated the B (E 2) transition rates for 34 γ-unstable and 38 rotational nuclei and compared to experimental data, revealing a qualitative agreement with the experiment and phase transitions within the ground state band and showing also that the Manning-Rosen potential is more appropriate for such calculations than other potentials.

  4. The divine clockwork: Bohr's correspondence principle and Nelson's stochastic mechanics for the atomic elliptic state

    SciTech Connect

    Durran, Richard; Neate, Andrew; Truman, Aubrey

    2008-03-15

    We consider the Bohr correspondence limit of the Schroedinger wave function for an atomic elliptic state. We analyze this limit in the context of Nelson's stochastic mechanics, exposing an underlying deterministic dynamical system in which trajectories converge to Keplerian motion on an ellipse. This solves the long standing problem of obtaining Kepler's laws of planetary motion in a quantum mechanical setting. In this quantum mechanical setting, local mild instabilities occur in the Keplerian orbit for eccentricities greater than (1/{radical}(2)) which do not occur classically.

  5. AGU's historical records move to the Niels Bohr Library and Archives

    NASA Astrophysics Data System (ADS)

    Harper, Kristine C.

    2012-11-01

    As scientists, AGU members understand the important role data play in finding the answers to their research questions: no data—no answers. The same holds true for the historians posing research questions concerning the development of the geophysical sciences, but their data are found in archival collections comprising the personal papers of geophysicists and scientific organizations. Now historians of geophysics—due to the efforts of the AGU History of Geophysics Committee, the American Institute of Physics (AIP), and the archivists of the Niels Bohr Library and Archives at AIP—have an extensive new data source: the AGU manuscript collection.

  6. Treatment of distal radius fractures.

    PubMed

    Murray, Jayson; Gross, Leeaht

    2013-08-01

    The American Academy of Orthopaedic Surgeons has developed Appropriate Use Criteria (AUC) for treating distal radius fractures (DRF). Evidence-based information, in conjunction with the clinical expertise of physicians, was used to develop the criteria to improve patient care and obtain best outcomes while considering the subtleties and distinctions necessary in making clinical decisions. The DRF AUC clinical patient scenarios were derived from patient indications that generally accompany a DRF, as well as from current evidence-based clinical practice guidelines and supporting literature. The 216 indications and 10 treatments were developed by the Writing Panel, a group of clinicians who are specialists in this AUC topic. Next, the Review Panel, a separate group of volunteer physicians, independently reviewed these materials to ensure that they were representative of patient scenarios that clinicians are likely to encounter in daily practice. Finally, the multidisciplinary Voting Panel (made up of specialists and nonspecialists) rated the appropriateness of treatment of each patient scenario using a 9-point scale to designate a treatment as Appropriate (median rating, 7 to 9), May Be Appropriate (median rating, 4 to 6), or Rarely Appropriate (median rating, 1 to 3). PMID:23908256

  7. The effect of the initial exciton numbers on {sup 54,56}Fe(p, xp) Pre-Equilibrium Reactions

    SciTech Connect

    Boeluekdemir, M. H.; Tel, E.; Ayd Latin-Small-Letter-Dotless-I n, A.; Okuducu, S.; Kaplan, A.

    2011-02-15

    In pre-equilibrium nuclear reactions, the geometry-dependent hybrid model is applied with the use of the neutron and proton densities to investigate the effect of initial exciton numbers on the nucleon emission spectra. The initial exciton numbers calculated with the theoretical neutron and proton densities have been obtained within the Skryme-Hartree-Fock method with SKM* and SLy4 forces on target nuclei in the {sup 54,56}Fe(p, xp) reaction at 61.5-MeV incident proton energy by using a new calculationmethod of Tel et al. Also, the differences between the initial exciton numbers for protons and neutrons as a function of nuclear radius, focusing on systematic discrepancies correlated to differences in the proton and neutron densities have been investigated.

  8. Orbital diamagnetic susceptibility in excitonic condensation phase

    NASA Astrophysics Data System (ADS)

    Sugimoto, Koudai; Ohta, Yukinori

    2016-08-01

    We study the orbital diamagnetic susceptibility in excitonic condensation phase using the mean-field approximation for a two-band model defined on a square lattice. We find that, in semiconductors, the excitonic condensation acquires a finite diamagnetic susceptibility due to spontaneous hybridization between the valence and the conduction bands, whereas in semimetals, the diamagnetic susceptibility in the normal phase is suppressed by the excitonic condensation. We also study the orbital diamagnetic and Pauli paramagnetic susceptibilities of Ta2NiSe5 using a two-dimensional three-band model and find that the calculated temperature dependence of the magnetic susceptibility is in qualitative agreement with experiment.

  9. Excitons in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-09-01

    Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.

  10. Exciton effects in strained armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jia, Yonglei; Liu, Junlin

    2016-01-01

    The exciton effects in 1-nm-wide armchair graphene nanoribbons (AGNRs) under the uniaxial strain were studied within the nonorthogonal tight-binding (TB) model, supplemented by the long-range Coulomb interactions. The obtained results show that both the excitation energy and exciton binding energy are modulated by the uniaxial strain. The variation of these energies depends on the ribbon family. In addition, the results show that the variation of the exciton binding energy is much weaker than the variation of excitation energy. Our results provide new guidance for the design of optomechanical systems based on graphene nanoribbons.

  11. Exciton Regeneration at Polymeric Semiconductor Heterojunctions

    NASA Astrophysics Data System (ADS)

    Morteani, Arne C.; Sreearunothai, Paiboon; Herz, Laura M.; Friend, Richard H.; Silva, Carlos

    2004-06-01

    Control of the band-edge offsets at heterojunctions between organic semiconductors allows efficient operation of either photovoltaic or light-emitting diodes. We investigate systems where the exciton is marginally stable against charge separation and show via E-field-dependent time-resolved photoluminescence spectroscopy that excitons that have undergone charge separation at a heterojunction can be efficiently regenerated. This is because the charge transfer produces a geminate electron-hole pair (separation 2.2 3.1nm) which may collapse into an exciplex and then endothermically (EA=100 200 meV) back transfer towards the exciton.

  12. Clinical management of patients with ASXL1 mutations and Bohring-Opitz syndrome, emphasizing the need for Wilms tumor surveillance.

    PubMed

    Russell, Bianca; Johnston, Jennifer J; Biesecker, Leslie G; Kramer, Nancy; Pickart, Angela; Rhead, William; Tan, Wen-Hann; Brownstein, Catherine A; Kate Clarkson, L; Dobson, Amy; Rosenberg, Avi Z; Vergano, Samantha A Schrier; Helm, Benjamin M; Harrison, Rachel E; Graham, John M

    2015-09-01

    Bohring-Opitz syndrome is a rare genetic condition characterized by distinctive facial features, variable microcephaly, hypertrichosis, nevus flammeus, severe myopia, unusual posture (flexion at the elbows with ulnar deviation, and flexion of the wrists and metacarpophalangeal joints), severe intellectual disability, and feeding issues. Nine patients with Bohring-Opitz syndrome have been identified as having a mutation in ASXL1. We report on eight previously unpublished patients with Bohring-Opitz syndrome caused by an apparent or confirmed de novo mutation in ASXL1. Of note, two patients developed bilateral Wilms tumors. Somatic mutations in ASXL1 are associated with myeloid malignancies, and these reports emphasize the need for Wilms tumor screening in patients with ASXL1 mutations. We discuss clinical management with a focus on their feeding issues, cyclic vomiting, respiratory infections, insomnia, and tumor predisposition. Many patients are noted to have distinctive personalities (interactive, happy, and curious) and rapid hair growth; features not previously reported. PMID:25921057

  13. The boundary conditions for Bohr's law: when is reacting faster than acting?

    PubMed

    Pinto, Yaïr; Otten, Marte; Cohen, Michael A; Wolfe, Jeremy M; Horowitz, Todd S

    2011-02-01

    In gunfights in Western movies, the hero typically wins, even though the villain draws first. Niels Bohr (Gamow, The great physicists from Galileo to Einstein. Chapter: The law of quantum, 1988) suggested that this reflected a psychophysical law, rather than a dramatic conceit. He hypothesized that reacting is faster than acting. Welchman, Stanley, Schomers, Miall, and Bülthoff (Proceedings of the Royal Society of London B: Biological Sciences, 277, 1667-1674, 2010) provided empirical evidence supporting "Bohr's law," showing that the time to complete simple manual actions was shorter when reacting than when initiating an action. Here we probe the limits of this effect. In three experiments, participants performed a simple manual action, which could either be self-initiated or executed following an external visual trigger. Inter-button time was reliably faster when the action was externally triggered. However, the effect disappeared for the second step in a two-step action. Furthermore, the effect reversed when a choice between two actions had to be made. Reacting is faster than acting, but only for simple, ballistic actions. PMID:21264708

  14. Einstein-Bohr recoiling double-slit gedanken experiment performed at the molecular level

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jing; Miao, Quan; Gel'Mukhanov, Faris; Patanen, Minna; Travnikova, Oksana; Nicolas, Christophe; Ågren, Hans; Ueda, Kiyoshi; Miron, Catalin

    2015-02-01

    Double-slit experiments illustrate the quintessential proof for wave-particle complementarity. If information is missing about which slit the particle has traversed, the particle, behaving as a wave, passes simultaneously through both slits. This wave-like behaviour and corresponding interference is absent if ‘which-slit’ information exists. The essence of Einstein-Bohr's debate about wave-particle duality was whether the momentum transfer between a particle and a recoiling slit could mark the path, thus destroying the interference. To measure the recoil of a slit, the slits should move independently. We showcase a materialization of this recoiling double-slit gedanken experiment by resonant X-ray photoemission from molecular oxygen for geometries near equilibrium (coupled slits) and in a dissociative state far away from equilibrium (decoupled slits). Interference is observed in the former case, while the electron momentum transfer quenches the interference in the latter case owing to Doppler labelling of the counter-propagating atomic slits, in full agreement with Bohr's complementarity.

  15. Multiple Exciton Generation Solar Cells

    SciTech Connect

    Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.

    2012-01-01

    Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.

  16. Singlet exciton fission in solution

    NASA Astrophysics Data System (ADS)

    Walker, Brian J.; Musser, Andrew J.; Beljonne, David; Friend, Richard H.

    2013-12-01

    Singlet exciton fission, the spin-conserving process that produces two triplet excited states from one photoexcited singlet state, is a means to circumvent the Shockley-Queisser limit in single-junction solar cells. Although the process through which singlet fission occurs is not well characterized, some local order is thought to be necessary for intermolecular coupling. Here, we report a triplet yield of 200% and triplet formation rates approaching the diffusion limit in solutions of bis(triisopropylsilylethynyl (TIPS)) pentacene. We observe a transient bound excimer intermediate, formed by the collision of one photoexcited and one ground-state TIPS-pentacene molecule. The intermediate breaks up when the two triplets separate to each TIPS-pentacene molecule. This efficient system is a model for future singlet-fission materials and for disordered device components that produce cascades of excited states from sunlight.

  17. Singlet exciton fission in solution.

    PubMed

    Walker, Brian J; Musser, Andrew J; Beljonne, David; Friend, Richard H

    2013-12-01

    Singlet exciton fission, the spin-conserving process that produces two triplet excited states from one photoexcited singlet state, is a means to circumvent the Shockley-Queisser limit in single-junction solar cells. Although the process through which singlet fission occurs is not well characterized, some local order is thought to be necessary for intermolecular coupling. Here, we report a triplet yield of 200% and triplet formation rates approaching the diffusion limit in solutions of bis(triisopropylsilylethynyl (TIPS)) pentacene. We observe a transient bound excimer intermediate, formed by the collision of one photoexcited and one ground-state TIPS-pentacene molecule. The intermediate breaks up when the two triplets separate to each TIPS-pentacene molecule. This efficient system is a model for future singlet-fission materials and for disordered device components that produce cascades of excited states from sunlight. PMID:24256865

  18. Mirror with thermally controlled radius of curvature

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  19. Hybrid interlayer excitons with tunable dispersion relation

    NASA Astrophysics Data System (ADS)

    Skinner, Brian

    When two semiconducting materials are layered on top of each other, interlayer excitons can be formed by the Coulomb attraction of an electron in one layer to a hole in the opposite layer. The resulting exciton is a composite boson with a dispersion relation that is a hybrid between the dispersion relations of the electron and the hole separately. In this talk I show how such hybridization is particularly interesting when one layer has a ``Mexican hat''-shaped dispersion relation and the other has a conventional parabolic dispersion. In this case the interlayer exciton can have a range of qualitatively different dispersion relations, which can be continuously altered by an external field. This tunability in principle allows one to continuously tune a collection of interlayer excitons between different quantum many-body phases, including Bose-Einstein condensate, Wigner crystal, and fermion-like ``moat band'' phases.

  20. Topologically protected excitons in porphyrin thin films

    NASA Astrophysics Data System (ADS)

    Yuen-Zhou, Joel; Saikin, Semion K.; Yao, Norman Y.; Aspuru-Guzik, Alán

    2014-11-01

    The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov-Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.

  1. Topologically protected excitons in porphyrin thin films.

    PubMed

    Yuen-Zhou, Joel; Saikin, Semion K; Yao, Norman Y; Aspuru-Guzik, Alán

    2014-11-01

    The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov-Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials. PMID:25242533

  2. Triplet excitons: Bringing dark states to light

    NASA Astrophysics Data System (ADS)

    Bardeen, Christopher J.

    2014-11-01

    Semiconducting quantum dots have been used to harvest triplet excitons produced through singlet fission in organic semiconductors. These hybrid organic-inorganic materials may boost the efficiency of solar cells.

  3. Ultrafast exciton dynamics at molecular surfaces

    NASA Astrophysics Data System (ADS)

    Monahan, Nicholas R.

    Further improvements to device performance are necessary to make solar energy conversion a compelling alternative to fossil fuels. Singlet exciton fission and charge separation are two processes that can heavily influence the power conversion efficiency of a solar cell. During exciton fission one singlet excitation converts into two triplet excitons, potentially doubling the photocurrent generated by higher energy photons. There is significant discord over the singlet fission mechanism and of particular interest is whether the process involves a multiexciton intermediate state. I used time-resolved two-photon photoemission to investigate singlet fission in hexacene thin films, a model system with strong electronic coupling. My results indicate that a multiexciton state forms within 40 fs of photoexcitation and loses singlet character on a 280 fs timescale, creating two triplet excitons. This is concordant with the transient absorption spectra of hexacene single crystals and definitively proves that exciton fission in hexacene proceeds through a multiexciton state. This state is likely common to all strongly-coupled systems and my results suggest that a reassessment of the generally-accepted singlet fission mechanism is required. Charge separation is the process of splitting neutral excitons into carriers that occurs at donor-acceptor heterojunctions in organic solar cells. Although this process is essential for device functionality, there are few compelling explanations for why it is highly efficient in certain organic photovoltaic systems. To investigate the charge separation process, I used the model system of charge transfer excitons at hexacene surfaces and time-resolved two-photon photoemission. Charge transfer excitons with sufficient energy spontaneously delocalize, growing from about 14 nm to over 50 nm within 200 fs. Entropy drives this delocalization, as the density of states within the Coulomb potential increases significantly with energy. This charge

  4. Theory of Orbital Susceptibility on Excitonic Insulator

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroyasu; Ogata, Masao

    2016-09-01

    We study the temperature dependence of the orbital susceptibility of an excitonic insulator on the basis of a two-band model. It is shown that a drastic change (an anomalous enhancement) in susceptibility as a function of temperature occurs owing to the occurrence of additional orbital susceptibility due to the excitonic gap. We calculate explicitly the temperature dependence of orbital susceptibility for a model of Ta2NiSe5, and show that the result is consistent with experimental results.

  5. Exciton properties of selected aromatic hydrocarbon systems

    NASA Astrophysics Data System (ADS)

    Roth, Friedrich; Mahns, Benjamin; Hampel, Silke; Nohr, Markus; Berger, Helmuth; Büchner, Bernd; Knupfer, Martin

    2013-02-01

    We have examined the singlet excitons in two representatives of acene-type (tetracene and pentacene) and phenacene-type (chrysene and picene) molecular crystals, respectively, using electron energy-loss spectroscopy at low temperatures. We show that the excitation spectra of the two hydrocarbon families significantly differ. Moreover, close inspection of the data indicates that there is an increasing importance of charge-transfer excitons at lowest excitation energy with increasing length of the molecules.

  6. Exciton transport by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Rudolph, J.; Hey, R.; Santos, P. V.

    2007-05-01

    Long-range acoustic transport of excitons in GaAs quantum wells (QWs) is demonstrated. The mobile strain field of a surface acoustic wave creates a dynamic lateral type I modulation of the conduction and valence bands in a double-quantum-well (DQW) structure. This mobile potential modulation transports long-living indirect excitons in the DQW over several hundreds of μm.

  7. Orientation of luminescent excitons in layered nanomaterials

    NASA Astrophysics Data System (ADS)

    Schuller, Jon A.; Karaveli, Sinan; Schiros, Theanne; He, Keliang; Yang, Shyuan; Kymissis, Ioannis; Shan, Jie; Zia, Rashid

    2013-04-01

    In nanomaterials, optical anisotropies reveal a fundamental relationship between structural and optical properties. Directional optical properties can be exploited to enhance the performance of optoelectronic devices, optomechanical actuators and metamaterials. In layered materials, optical anisotropies may result from in-plane and out-of-plane dipoles associated with intra- and interlayer excitations, respectively. Here, we resolve the orientation of luminescent excitons and isolate photoluminescence signatures arising from distinct intra- and interlayer optical transitions. Combining analytical calculations with energy- and momentum-resolved spectroscopy, we distinguish between in-plane and out-of-plane oriented excitons in materials with weak or strong interlayer coupling--MoS2 and 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA), respectively. We demonstrate that photoluminescence from MoS2 mono-, bi- and trilayers originates solely from in-plane excitons, whereas PTCDA supports distinct in-plane and out-of-plane exciton species with different spectra, dipole strengths and temporal dynamics. The insights provided by this work are important for understanding fundamental excitonic properties in nanomaterials and designing optical systems that efficiently excite and collect light from exciton species with different orientations.

  8. Orientation of luminescent excitons in layered nanomaterials.

    PubMed

    Schuller, Jon A; Karaveli, Sinan; Schiros, Theanne; He, Keliang; Yang, Shyuan; Kymissis, Ioannis; Shan, Jie; Zia, Rashid

    2013-04-01

    In nanomaterials, optical anisotropies reveal a fundamental relationship between structural and optical properties. Directional optical properties can be exploited to enhance the performance of optoelectronic devices, optomechanical actuators and metamaterials. In layered materials, optical anisotropies may result from in-plane and out-of-plane dipoles associated with intra- and interlayer excitations, respectively. Here, we resolve the orientation of luminescent excitons and isolate photoluminescence signatures arising from distinct intra- and interlayer optical transitions. Combining analytical calculations with energy- and momentum-resolved spectroscopy, we distinguish between in-plane and out-of-plane oriented excitons in materials with weak or strong interlayer coupling-MoS₂ and 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA), respectively. We demonstrate that photoluminescence from MoS₂ mono-, bi- and trilayers originates solely from in-plane excitons, whereas PTCDA supports distinct in-plane and out-of-plane exciton species with different spectra, dipole strengths and temporal dynamics. The insights provided by this work are important for understanding fundamental excitonic properties in nanomaterials and designing optical systems that efficiently excite and collect light from exciton species with different orientations. PMID:23455984

  9. Exciton Resonances in Novel Silicon Carbide Polymers

    NASA Astrophysics Data System (ADS)

    Burggraf, Larry; Duan, Xiaofeng

    2015-05-01

    A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.

  10. Longitudinal Excitons in GaN

    NASA Astrophysics Data System (ADS)

    Reynolds, D. C.; Jogai, B.; Collins, T. C.

    2002-05-01

    Many of the previous investigations of longitudinal excitons have involved reflection and absorption measurements rather than emission. In these measurements it is more difficult to resolve the longitudinal exciton from the Γ5 and Γ6 free excitons in wurtzite material. The longitudinal excitons have energies and oscillator strengths that depend on the direction of propagation and they are not observable along the principal axis of the crystal. In the wurtzite structure, such as GaN, the Γ5 exciton is the pure transverse mode, whereas the longitudinal is a mixed mode going from pure longitudinal, for the propogation direction K perpendicular to C, to pure transverse for K parallel to C. If more than one orientation is present in the sample, it is clear that more than one longitudinal exciton may be seen since it is a mixed mode. In the current experiment we observe more than one mode, which we associate with more than one crystal orientation. This may result from the columnar growth often observed in GaN.

  11. Exciton formation and diffusion in OLEDs (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ingram, Grayson L.; Lu, Zheng-Hong

    2015-10-01

    This talk will discuss recent experiments designed to study the formation of excitons and their subsequent diffusions in OLEDs. These experimental results suggest that contrary to conventional wisdom, host singlet exciton diffusion can occur over long distances, while host triplet excitons are confined close to the exciton formation region for the archetype host and hole transport layer CBP. The exciton formation mechanism is studied and we show that the ratio of excitons formed on the host to excitons formed on the dopant varies strongly with the applied voltage. Refinements to models of efficiency roll off are discussed in light of the improved understanding of exciton formation and we suggest design guidelines to improve efficiency by engineering exciton formation.

  12. Interaction of Dirac Fermion excitons and biexciton-exciton cascade in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Ozfidan, Isil; Korkusinski, Marek; Hawrylak, Pawel

    2015-03-01

    We present a microscopic theory of interacting Dirac quasi-electrons and quasi-holes confined in graphene quantum dots. The single particle states of quantum dots are described using a tight binding model and screened direct, exchange, and scattering Coulomb matrix elements are computed using Slater pz orbitals. The many-body ground and excited states are expanded in a finite number of electron-hole pair excitations from the Hartree-Fock ground state and computed using exact diagonalization techniques. The resulting exciton and bi-exciton spectrum reflects the degeneracy of the top of the valence and bottom of the conduction band characteristic of graphene quantum dots with C3 symmetry. We study the interaction of multi-electron and hole complexes as a function of quantum dot size, shape and strength of Coulomb interactions. We identify two degenerate bright exciton (X) states and a corresponding biexciton (XX) state as XX-X cascade candidates, a source of entangled photon pairs. We next calculate the exciton to bi-exciton transitions detected in transient absorption experiments to extract the strength of exciton-exciton interactions and biexciton binding energies. We further explore the possibility of excitonic instability.

  13. Microscopic theories of excitons and their dynamics

    NASA Astrophysics Data System (ADS)

    Berkelbach, Timothy C.

    This thesis describes the development and application of microscopically-defined theories of excitons in a wide range of semiconducting materials. In Part I, I consider the topic of singlet exciton fission, an organic photophysical process which generates two spin-triplet excitons from one photoexcited spin-singlet exciton. I construct a theoretical framework that couples a realistic treatment of the static electronic structure with finite-temperature quantum relaxation techniques. This framework is applied separately, but consistently, to the problems of singlet fission in pentacene dimers, crystalline pentacene, and crystalline hexacene. Through this program, I am able to rationalize observed behaviors and make non-trivial predictions, some of which have been confirmed by experiment. In Part II, I present theoretical developments on the properties of neutral excitons and charged excitons (trions) in atomically thin transition metal dichalcogenides. This work includes an examination of material trends in exciton binding energies via an effective mass approach. I also present an experimental and theoretical collaboration, which links the unconventional disposition of excitons in the Rydberg series to the peculiar screening properties of atomically thin materials. The light-matter coupling in these materials is examined within low-energy models and is shown to give rise to bright and dark exciton states, which can be qualitatively labeled in analogy with the hydrogen series. In Part III, I explore theories of relaxation dynamics in condensed phase environments, with a focus on methodology development. This work is aimed towards biological processes, including resonant energy transfer in chromophore complexes and electron transfer in donor-bridge-acceptor systems. Specifically, I present a collaborative development of a numerically efficient but highly accurate hybrid approach to reduced dynamics, which exploits a partitioning of environmental degrees of freedom into

  14. Diffusive Insights: On the Disagreement of Christian Bohr and August Krogh at the Centennial of the Seven Little Devils

    ERIC Educational Resources Information Center

    Gjedde, Albert

    2010-01-01

    The year 2010 is the centennial of the publication of the "Seven Little Devils" in the predecessor of "Acta Physiologica". In these seven papers, August and Marie Krogh sought to refute Christian Bohr's theory that oxygen diffusion from the lungs to the circulation is not entirely passive but rather facilitated by a specific cellular activity…

  15. The Bohr Hamiltonian Solution with the Morse Potential for the {gamma}-unstable and the Rotational Cases

    SciTech Connect

    Inci, I.; Boztosun, I.; Bonatsos, D.

    2008-11-11

    Analytical solutions of the collective Bohr Hamiltonian with the Morse potential have been obtained for the U(5)-O(6) and U(5)-SU(3) transition regions through the Asymptotic Iteration Method (AIM). The obtained energy eigenvalue equations have been used to get the experimental excitation energy spectrum of Xe and Yb isotopes. The results are in good agreement with experimental data.

  16. Inspirations from the theories of Bohr and Mottelson: a Canadian perspective

    NASA Astrophysics Data System (ADS)

    Ward, D.; Waddington, J. C.; Svensson, C. E.

    2016-03-01

    The theories developed by Bohr and Mottelson have inspired much of the world-wide experimental investigation into the structure of the atomic nucleus. On the occasion of the 40th anniversary of the awarding of their Nobel prize, we reflect on some of the experimental developments made in understanding the structure of nuclei. We have chosen to focus on experiments performed in Canada, or having strong ties to Canada, and the work included here spans virtually the whole of the second half of the 20th century. The 8π Spectrometer, which figures prominently in this story, was a novel departure for funding science in Canada that involved an intimate collaboration between a Crown Corporation (Atomic Energy of Canada Ltd) and University research, and enabled many of the insights discussed here.

  17. Mass tensor in the Bohr Hamiltonian from the nondiagonal energy weighted sum rules

    SciTech Connect

    Jolos, R. V.; Brentano, P. von

    2009-04-15

    Relations are derived in the framework of the Bohr Hamiltonian that express the matrix elements of the deformation-dependent components of the mass tensor through the experimental data on the energies and the E2 transitions relating the low-lying collective states. These relations extend the previously obtained results for the intrinsic mass coefficients of the well-deformed axially symmetric nuclei on nuclei of arbitrary shape. The expression for the mass tensor is suggested, which is sufficient to satisfy the existing experimental data on the energy weighted sum rules for the E2 transitions for the low-lying collective quadrupole excitations. The mass tensor is determined for {sup 106,108}Pd, {sup 108-112}Cd, {sup 134}Ba, {sup 150}Nd, {sup 150-154}Sm, {sup 154-160}Gd, {sup 164}Dy, {sup 172}Yb, {sup 178}Hf, {sup 188-192}Os, and {sup 194-196}Pt.

  18. Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential

    SciTech Connect

    Bonatsos, Dennis; Georgoudis, P. E.; Lenis, D.; Minkov, N.; Quesne, C.

    2011-04-15

    Analytical expressions for spectra and wave functions are derived for a Bohr Hamiltonian, describing the collective motion of deformed nuclei, in which the mass is allowed to depend on the nuclear deformation. Solutions are obtained for separable potentials consisting of a Davidson potential in the {beta} variable, in the cases of {gamma}-unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual approximations in each case. The solution, called the deformation-dependent mass (DDM) Davidson model, is achieved by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape invariance condition. Spectra and B(E2) transition rates are compared to experimental data. The dependence of the mass on the deformation, dictated by SUSYQM for the potential used, reduces the rate of increase of the moment of inertia with deformation, removing a main drawback of the model.

  19. Molecular Basis of the Bohr Effect in Arthropod Hemocyanin*S⃞

    PubMed Central

    Hirota, Shun; Kawahara, Takumi; Beltramini, Mariano; Di Muro, Paolo; Magliozzo, Richard S.; Peisach, Jack; Powers, Linda S.; Tanaka, Naoki; Nagao, Satoshi; Bubacco, Luigi

    2008-01-01

    Flash photolysis and K-edge x-ray absorption spectroscopy (XAS) were used to investigate the functional and structural effects of pH on the oxygen affinity of three homologous arthropod hemocyanins (Hcs). Flash photolysis measurements showed that the well-characterized pH dependence of oxygen affinity (Bohr effect) is attributable to changes in the oxygen binding rate constant, kon, rather than changes in koff. In parallel, coordination geometry of copper in Hc was evaluated as a function of pH by XAS. It was found that the geometry of copper in the oxygenated protein is unchanged at all pH values investigated, while significant changes were observed for the deoxygenated protein as a function of pH. The interpretation of these changes was based on previously described correlations between spectral lineshape and coordination geometry obtained for model compounds of known structure (Blackburn, N. J., Strange, R. W., Reedijk, J., Volbeda, A., Farooq, A., Karlin, K. D., and Zubieta, J. (1989) Inorg. Chem.,28 ,1349 -1357). A pH-dependent change in the geometry of cuprous copper in the active site of deoxyHc, from pseudotetrahedral toward trigonal was assigned from the observed intensity dependence of the 1s → 4pz transition in x-ray absorption near edge structure (XANES) spectra. The structural alteration correlated well with increase in oxygen affinity at alkaline pH determined in flash photolysis experiments. These results suggest that the oxygen binding rate in deoxyHc depends on the coordination geometry of Cu(I) and suggest a structural origin for the Bohr effect in arthropod Hcs. PMID:18725416

  20. F4TCNQ-Induced Exciton Quenching Studied by Using in-situ Photoluminescence Measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lu, Min; Wu, Bo; Hou, Xiao-Yuan

    2012-09-01

    The role of F4TCNQ as an exciton quenching material in thin organic light-emitting films is investigated by means of in situ photoluminescence measurements. C60 was used as another quenching material in the experiment for comparison, with Alq3 as a common organic light-emitting material. The effect of the growth sequence of the materials on quenching was also examined. It is found that the radius of Förster energy transfer between F4TCNQ and Alq3 is close to 0 nm and Dexter energy transfer dominates in the quenching process.

  1. Chondromyxoid Fibroma of Radius: A Case Report

    PubMed Central

    Bagewadi, Rajakumar M.; Hippargi, Surekha B.

    2016-01-01

    Chondromyxoid fibroma (CMF) is a rare benign cartilaginous tumour accounting to less than 1% of bone tumours. It is most commonly seen in lower extremity involving tibia. CMF of radius is rare. We report a rare case of CMF of proximal radius in a 37-year-old female who presented with swelling and pain over right elbow. Wide local excision of proximal radius along with radial head was done and above elbow POP slab was applied for one month. Elbow range of movement exercises started after one month. PMID:27437232

  2. Chondromyxoid Fibroma of Radius: A Case Report.

    PubMed

    Bagewadi, Rajakumar M; Nerune, Savitri Mallikarjun; Hippargi, Surekha B

    2016-05-01

    Chondromyxoid fibroma (CMF) is a rare benign cartilaginous tumour accounting to less than 1% of bone tumours. It is most commonly seen in lower extremity involving tibia. CMF of radius is rare. We report a rare case of CMF of proximal radius in a 37-year-old female who presented with swelling and pain over right elbow. Wide local excision of proximal radius along with radial head was done and above elbow POP slab was applied for one month. Elbow range of movement exercises started after one month. PMID:27437232

  3. Management of Complications of Distal Radius Fractures

    PubMed Central

    Chung, Kevin C.; Mathews, Alexandra L.

    2015-01-01

    Synopsis Treating a fracture of the distal radius may require the surgeon to make a difficult decision between surgical treatment and nonsurgical management. The use of surgical fixation has recently increased owing to complications associated with conservative treatment. However, conservative action may be necessary depending on certain patient factors. The treating surgeon must be aware of the possible complications associated with distal radius fracture treatments to prevent their occurrence. Prevention can be achieved with a proper understanding of the mechanism of these complications. This article discusses the most recent evidence on how to manage and prevent complications following a fracture of the distal radius. PMID:25934197

  4. Photoinduced gap closure in an excitonic insulator

    NASA Astrophysics Data System (ADS)

    Golež, Denis; Werner, Philipp; Eckstein, Martin

    2016-07-01

    We study the dynamical phase transition out of an excitonic insulator phase after photoexcitation using a time-dependent extension of the self-consistent GW method. We connect the evolution of the photoemission spectra to the dynamics of the excitonic order parameter and identify two dynamical phase transition points marked by a slowdown in the relaxation: one critical point is connected with the trapping in a nonthermal state with reduced exciton density and the second corresponds to the thermal phase transition. The transfer of kinetic energy from the photoexcited carriers to the exciton condensate is shown to be the main mechanism for the gap melting. We analyze the low energy dynamics of screening, which strongly depends on the presence of the excitonic gap, and argue that it is difficult to interpret the static component of the screened interaction as the effective interaction of some low energy model. Instead we propose a phenomenological measure for the effective interaction which indicates that screening has minor effects on the low energy dynamics.

  5. Plasmon-Exciton Coupling Using DNA Templates.

    PubMed

    Roller, Eva-Maria; Argyropoulos, Christos; Högele, Alexander; Liedl, Tim; Pilo-Pais, Mauricio

    2016-09-14

    Coherent energy exchange between plasmons and excitons is a phenomenon that arises in the strong coupling regime resulting in distinct hybrid states. The DNA-origami technique provides an ideal framework to custom-tune plasmon-exciton nanostructures. By employing this well controlled self-assembly process, we realized hybrid states by precisely positioning metallic nanoparticles in a defined spatial arrangement with fixed nanometer-sized interparticle spacing. Varying the nanoparticle diameter between 30 nm and 60 nm while keeping their separation distance constant allowed us to precisely adjust the plasmon resonance of the structure to accurately match the energy frequency of a J-aggregate exciton. With this system we obtained strong plasmon-exciton coupling and studied far-field scattering at the single-structure level. The individual structures displayed normal mode splitting up to 170 meV. The plasmon tunability and the strong field confinement attained with nanodimers on DNA-origami renders an ideal tool to bottom-up assembly plasmon-exciton systems operating at room temperature. PMID:27531635

  6. Pairing interaction effects in exciton level densities

    SciTech Connect

    Fu, C.Y.

    1989-01-01

    Recent progress in pairing corrections for exciton state-density formulas used in pre-compound nuclear reaction theories is reviewed. These correction factors are, strictly speaking, dependent on the nuclear excitation energy U and the exciton number n. A simple formula for (U,n)-dependent pairing corrections has been derived, based on the BCS pairing equations for constant single-particle spacing, for the exciton state-density formula for one kind of Fermion. It has been shown that the constant-pairing-energy correction used in standard state-density formulas, such U{sub 0} in Gilbert and Cameron, is a limiting case of the general (U,n)-dependent results. Spin cutoff factors with pairing effects were also obtained using the same theory and parameterized into an explicit (U,n)-dependent function, thereby defining a simple exciton level-density formula for applications in quantum mechanical precompound theories. Preliminary results from extending such simple pairing-interaction representations to level-density formulas for two kinds of Fermions are summarized. The results show that the ratios in the exciton level densities in the one-Fermion and two-Fermion approaches vary with both U and n, thus likely leading to differences in calculated compound to precompound ratios. However, the differences in the spin cutoff factors in the two cases are found to be rather small. 12 refs., 3 figs.

  7. Attractive Coulomb interaction of two-dimensional Rydberg excitons

    NASA Astrophysics Data System (ADS)

    Shahnazaryan, V.; Shelykh, I. A.; Kyriienko, O.

    2016-06-01

    We analyze theoretically the Coulomb scattering processes of highly excited excitons in the direct-band-gap semiconductor quantum wells. We find that contrary to the interaction of ground-state excitons, the electron and hole exchange interaction between excited excitons has an attractive character both for s - and p -type two-dimensional (2D) excitons. Moreover, we show that similar to the three-dimensional highly excited excitons, the direct interaction of 2D Rydberg excitons exhibits van der Waals-type long-range interaction. The results predict the linear growth of the absolute value of exchange interaction strength with an exciton principal quantum number and point the way towards enhancement of optical nonlinearity in 2D excitonic systems.

  8. Exciton-Exciton Annihilation in Copper-Phthalocyanine Single-Crystal Nanowires

    SciTech Connect

    Ma, Yingzhong; Xiao, Kai; Shaw, Robert W

    2012-01-01

    Femtosecond one-color pump-probe spectroscopy was applied to study exciton dynamics in single-crystal copper-phthalocyanine (CuPc) nanowires grown on an opaque silicon substrate. The transient reflectance kinetics measured at different pump fluences exhibit a remarkable intensity-dependent decay behavior which accelerates significantly with increasing pump pulse intensity. All the kinetic decays can be satisfactorily described using a bi-exponential decay function with lifetimes of 22 and 204 ps, and corresponding relative amplitudes depending on the pump intensity. The accelerated decay behavior observed at high pump intensities arises from a nonlinear exciton-exciton annihilation process. While this phenomenon has been found previously in crystalline metallophthalocyanine (MPc) polymorphs such as colloidal particles and thin films, the results obtained using the CuPc nanowires are markedly distinct, namely, much longer decay times and a linear intensity dependence of the initial peak amplitudes. Despite these differences, detailed data analysis further shows that, as found for other metal-phthalocyanine polymorphs, exciton-exciton annihilation in the CuPc nanowires is one-dimensional (1D) diffusion-limited, which possibly involves intra-chain exciton diffusion along 1D molecular stacks. The significantly long-lived excitons of CuPc nanowires in comparison to those of other crystalline polymorphs make them particularly suitable for photovoltaic applications.

  9. Identification of effective exciton-exciton annihilation in squaraine-squaraine copolymers.

    PubMed

    Hader, Kilian; May, Volkhard; Lambert, Christoph; Engel, Volker

    2016-05-11

    Ultrafast time-resolved transient absorption spectroscopy is able to monitor the fate of the excited state population in molecular aggregates or polymers. Due to many competing decay processes, the identification of exciton-exciton annihilation (EEA) is difficult. Here, we use a microscopic model to describe exciton annihilation processes in squaraine-squaraine copolymers. Transient absorption time traces measured at different laser powers exhibit an unusual time-dependence. The analysis points towards dynamics taking place on three time-scales. Immediately after laser-excitation a localization of excitons takes place within the femtosecond time-regime. This is followed by exciton-exciton annihilation which is responsible for a fast decay of the exciton population. At later times, excitations being localized on units which are not directly connected remain so that diffusion dominates the dynamics and leads to a slower decay. We thus provide evidence for EEA tracked by time-resolved spectroscopy which has not been reported that clearly before. PMID:27120976

  10. Microscopic theory of two-dimensional spatially-indirect-exciton condensates and exciton-polariton condensates

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Wu, Feng Cheng; MacDonald, Allan

    BEC of excitons and polaritons have drawn attention in recent years because of the demonstration of their ability to host macroscopic quantum phenomena and because of their promise for applications. We study the case of a system containing two TMD monolayers that are separated and surrounded by h-BN. Under appropriate conditions this system is expected to support a spatially indirect thermal equilibrium exciton condensate. We combine a microscopic mean-field calculation and a weakly interacting boson model to explore the bilayer exciton condensates phase diagram. By varying the layer separation and exciton density, we find a phase transition occurs between states containing one and two condensate flavors. We also use a microscopic time-dependent mean-field theory to address condensate collective mode spectra and quantum fluctuations. Next we study the case of exciton-polariton formed by strong coupling between quantum well excitons and confined photon modes when the system is placed in a vertical microcavity. We build a microscopic mean-field theory starting from electrons and holes, and account for their coupling to coherent light field. We compare our model with the normal weakly interacting boson model that starts from weakly interacting excitons that are coupled to photons. This work was supported by the SRC and NIST under the Nanoelectronic Research Initiative (NRI) and SWAN, by the Welch Foundation under Grant No. F1473, and by the ARO Grant No. 26-3508-81.

  11. Large-Larmor-radius interchange instability

    SciTech Connect

    Ripin, B.H.; McLean, E.A.; Manka, C.K.; Pawley, C.; Stamper, J.A.; Peyser, T.A.; Mostovych, A.N.; Grun, J.; Hassam, A.B.; Huba, J.

    1987-11-16

    We observe linear and nonlinear features of a strong plasma/magnetic field interchange Rayleigh-Taylor instability in the limit of large ion Larmor radius. The instability undergoes rapid linear growth culminating in free-streaming flute tips.

  12. Arthroscopic management of distal radius fractures.

    PubMed

    Wiesler, Ethan R; Chloros, George D; Mahirogullari, Mahir; Kuzma, Gary R

    2006-11-01

    Arthroscopy has the advantage of providing a direct and accurate assessment of the articular surfaces and detecting the presence of injuries associated with distal radius fractures. Current indications, although numerous and potentially expanding, also are controversial. This report presents a global view of the current status of arthroscopy in the management of distal radius fractures. The rationale of arthroscopic treatment, the available evidence, and finally the diagnosis and treatment are discussed. PMID:17095385

  13. Theory of exciton linewidth in II VI semiconductor mixed crystals

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.

    1990-04-01

    The disorder-induced broadening of excitons in mixed crystals is discussed, using a novel expression for the relevant exciton volume. Earlier experimental data on CdS 1-xSe x are successfully explained. The exciton broadening in quantum wells due to well-width fluctuations is obtained along similar lines.

  14. Exciton dynamics in perturbed vibronic molecular aggregates

    PubMed Central

    Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.

    2015-01-01

    A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840

  15. Control of exciton transport using quantum interference

    NASA Astrophysics Data System (ADS)

    Lusk, Mark T.; Stafford, Charles A.; Zimmerman, Jeramy D.; Carr, Lincoln D.

    2015-12-01

    It is shown that quantum interference can be employed to create an exciton transistor. An applied potential gates the quasiparticle motion and also discriminates between quasiparticles of differing binding energy. When implemented within nanoscale assemblies, such control elements could mediate the flow of energy and information. Quantum interference can also be used to dissociate excitons as an alternative to using heterojunctions. A finite molecular setting is employed to exhibit the underlying discrete, two-particle, mesoscopic analog to Fano antiresonance. Selected entanglement measures are shown to distinguish regimes of behavior which cannot be resolved from population dynamics alone.

  16. Multiple Exciton Generation in Silicon QD arrays

    NASA Astrophysics Data System (ADS)

    Kryjevski, Andrei; Kilin, Dmitri

    2014-03-01

    We use Density Functional Theory (DFT) combined with the many body perturbation theory to calculate multiple exciton generation (MEG) in several semiconductor nanosystems. Hydrogen-passivated Si29H36 quantum dots (QDs) with crystalline and amorphous core structures, the quasi one dimensional (1-D) arrays constructed from these QDs, as well as crystalline and amorphous Si nanowires have been studied. Quantum efficiency, the average number of excitons created by a single photon, has been calculated in these nanoparticles to the leading order in the screened Coulomb interaction. Amorphous nanostructures are predicted to have more effective carrier multiplication.

  17. Exciton dynamics in perturbed vibronic molecular aggregates.

    PubMed

    Brüning, C; Wehner, J; Hausner, J; Wenzel, M; Engel, V

    2016-07-01

    A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840

  18. Excitonic processes and their contribution to nonproportionality observed in the light yield of inorganic scintillators

    NASA Astrophysics Data System (ADS)

    Singh, Jai; Koblov, Alexander

    2013-02-01

    Using the derived expression for the light yield in a scintillator, the influence of linear radiative and non-radiative (quenching) rates on the nonproportionality in light yield is studied. It is found that if the excitation created within the electron track initiated by a γ-photon incident on a scintillator remains mainly excitonic, then nonproportionality can be minimised by inventing a scintillator material with linear radiative rate >107 s-1, linear quenching rate <106 s-1 and track radius ≥70 nm along with maintaining the rates of other nonlinear processes as discovered earlier. If one can increase the linear radiative rate to 109 s-1, then the nonproportionality can be eliminated at a track radius >20 nm.

  19. Ligth-hole exciton in cylindrical microtube with two quantum wells

    NASA Astrophysics Data System (ADS)

    González, J. D.; Gonzalez, J. E.; Barba-Ortega, J.

    2014-03-01

    We report on microtube with double quantum well and large radius of curvature. Method for calculating the ground-state energy of light hole exciton and density of states confined in a square potential model that consist of a narrow well, which is produced by a symmetrical structure. The exciton trial function is taken as a product of the ground state wave functions of both the unbound electron and hole in the heterostructure, with an arbitrary correlation function that depends only on electron-hole separation. A renormalized Schrödinger equation for the correlation function is derived and coincides with the corresponding equation for a hydrogen atom in an effective and space-isotropic homogeneous. The binding energy of the ground state to an exciton in this heterostructure, the contribution to the energy given by the sublevels and the density of states is determined as a function of the width of the well, the aluminum concentration and confinement potential profile is obtained by solving the equation calculated by the variational model proposed.

  20. Bright and dark excitons in semiconductor carbon nanotubes

    SciTech Connect

    Tretiak, Sergei

    2008-01-01

    We report electronic structure calculations of finite-length semiconducting carbon nanotubes using the time dependent density functional theory (TD-DFT) and the time dependent Hartree Fock (TD-HF) approach coupled with semiempirical AM1 and ZINDO Hamiltonians. We specifically focus on the energy splitting, relative ordering, and localization properties of the optically active (bright) and optically forbidden (dark) states from the lowest excitonic band of the nanotubes. These excitonic states are very important in competing radiative and non-radiative processes in these systems. Our analysis of excitonic transition density matrices demonstrates that pure DFT functionals overdelocalize excitons making an electron-hole pair unbound; consequently, excitonic features are not presented in this method. In contrast, the pure HF and A111 calculations overbind excitons inaccurately predicting the lowest energy state as a bright exciton. Changing AM1 with ZINDO Hamiltonian in TD-HF calculations, predicts the bright exciton as the second state after the dark one. However, in contrast to AM1 calculations, the diameter dependence of the excitation energies obtained by ZINDO does not follow the experimental trends. Finally, the TD-DFT approach incorporating hybrid functions with a moderate portion of the long-range HF exchange, such as B3LYP, has the most generality and predictive capacity providing a sufficiently accurate description of excitonic structure in finite-size nanotubes. These methods characterize four important lower exciton bands. The lowest state is dark, the upper band is bright, and the two other dark and nearly degenerate excitons lie in-between. Although the calculated energy splittings between the lowest dark and the bright excitons are relatively large ({approx}0.1 eV), the dense excitonic manifold below the bright exciton allows for fast non-radiative relaxation leasing to the fast population of the lowest dark exciton. This rationalizes the low

  1. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers.

    PubMed

    Rao, Akshay; Wilson, Mark W B; Hodgkiss, Justin M; Albert-Seifried, Sebastian; Bässler, Heinz; Friend, Richard H

    2010-09-15

    Organic photovoltaic devices are currently studied due to their potential suitability for flexible and large-area applications, though efficiencies are presently low. Here we study pentacene/C(60) bilayers using transient optical absorption spectroscopy; such structures exhibit anomalously high quantum efficiencies. We show that charge generation primarily occurs 2-10 ns after photoexcitation. This supports a model where charge is generated following the slow diffusion of triplet excitons to the heterojunction. These triplets are shown to be present from early times (<200 fs) and result from the fission of a spin-singlet exciton to form two spin-triplet excitons. These results elucidate exciton and charge generation dynamics in the pentacene/C(60) system and demonstrate that the tuning of the energetic levels of organic molecules to take advantages of singlet fission could lead to greatly enhanced photocurrent in future OPVs. PMID:20735067

  2. Exciton-exciton annihilation and relaxation pathways in semiconducting carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chmeliov, Jevgenij; Narkeliunas, Jonas; Graham, Matt W.; Fleming, Graham R.; Valkunas, Leonas

    2016-01-01

    We present a thorough analysis of one- and two-color transient absorption measurements performed on single- and double-walled semiconducting carbon nanotubes. By combining the currently existing models describing exciton-exciton annihilation--the coherent and the diffusion-limited ones--we are able to simultaneously reproduce excitation kinetics following both E11 and E22 pump conditions. Our simulations revealed the fundamental photophysical behavior of one-dimensional coherent excitons and non-trivial excitation relaxation pathways. In particular, we found that after non-linear annihilation a doubly-excited exciton relaxes directly to its E11 state bypassing the intermediate E22 manifold, so that after excitation resonant with the E11 transition, the E22 state remains unpopulated. A quantitative explanation for the observed much faster excitation kinetics probed at E22 manifold, comparing to those probed at the E11 band, is also provided.

  3. Topological aspects of nonlinear excitonic processes in noncentrosymmetric crystals

    NASA Astrophysics Data System (ADS)

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-07-01

    We study excitonic processes second order in the electric fields in noncentrosymmetric crystals. We derive formulas for shift current and second harmonic generation produced by exciton creation, by using the Floquet formalism combined with the Keldysh Green's function method. It is shown that (i) the steady dc shift current flows by exciton creation without dissociation into free carriers and (ii) second harmonic generation is enhanced at the exciton resonance. The obtained formulas clarify topological aspects of these second order excitonic processes which are described by Berry connections of the relevant valence and conduction bands.

  4. Photoluminescence properties and exciton dynamics in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Yan, Tengfei; Qiao, Xiaofen; Liu, Xiaona; Tan, Pingheng; Zhang, Xinhui

    2014-09-01

    In this work, comprehensive temperature and excitation power dependent photoluminescence and time-resolved photoluminescence studies are carried out on monolayer WSe2 to reveal its properties of exciton emissions and related excitonic dynamics. Competitions between the localized and delocalized exciton emissions, as well as the exciton and trion emissions are observed, respectively. These competitions are suggested to be responsible for the abnormal temperature and excitation intensity dependent photoluminescence properties. The radiative lifetimes of both excitons and trions exhibit linear dependence on temperature within the temperature regime below 260 K, providing further evidence for two-dimensional nature of monolayer material.

  5. Exciton localization and drift in tailored-potential quantum nanowires

    SciTech Connect

    Szeszko, J. Rudra, A.; Kapon, E.; Belykh, V. V.; Sibeldin, N. N.

    2014-06-30

    Exciton recombination dynamics in tailored-potential, site-controlled AlGaAs quantum wires (QWRs) are studied. Time-resolved photoluminescence spectra evidence exciton localization in weakly disordered “uniform” QWRs, whereas deterministic bandgap grading is shown to suppress localization and promote exciton drift along the potential gradient. Measured exciton transit times between two quantum dot probes placed at opposite ends of the potential gradient yield the effective 1D exciton mobility as >1300 cm{sup 2}/(eVs).

  6. On γ-rigid regime of the Bohr-Mottelson Hamiltonian in the presence of a minimal length

    NASA Astrophysics Data System (ADS)

    Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M.

    2016-07-01

    A prolate γ-rigid regime of the Bohr-Mottelson Hamiltonian within the minimal length formalism, involving an infinite square well like potential in β collective shape variable, is developed and used to describe the spectra of a variety of vibrational-like nuclei. The effect of the minimal length on the energy spectrum and the wave function is duly investigated. Numerical calculations are performed for some nuclei revealing a qualitative agreement with the available experimental data.

  7. electric dipole superconductor in bilayer exciton system

    NASA Astrophysics Data System (ADS)

    Sun, Qing-Feng; Jiang, Qing-Dong; Bao, Zhi-Qiang; Xie, X. C.

    Recently, it was reported that the bilayer exciton systems could exhibit many new phenomena, including the large bilayer counterflow conductivity, the Coulomb drag, etc. These phenomena imply the formation of exciton condensate superfluid state. On the other hand, it is now well known that the superconductor is the condensate superfluid state of the Cooper pairs, which can be viewed as electric monopoles. In other words, the superconductor state is the electric monopole condensate superfluid state. Thus, one may wonder whether there exists electric dipole superfluid state. In this talk, we point out that the exciton in a bilayer system can be considered as a charge neutral electric dipole. And we derive the London-type and Ginzburg-Landau-type equations of electric dipole superconductivity. From these equations, we discover the Meissner-type effect (against spatial variation of magnetic fields), and the dipole current Josephson effect. The frequency in the AC Josephson effect of the dipole current is equal to that in the normal (monopole) superconductor. These results can provide direct evidence for the formation of exciton superfluid state in the bilayer systems and pave new ways to obtain the electric dipole current. We gratefully acknowledge the financial support by NBRP of China (2012CB921303 and 2015CB921102) and NSF-China under Grants Nos. 11274364 and 11574007.

  8. Bias activated dielectric response of excitons and excitonic Mott transition in quantum confined lasers structures.

    NASA Astrophysics Data System (ADS)

    Bhunia, Amit; Bansal, Kanika; Datta, Shouvik; Alshammari, Marzook S.; Henini, Mohamed

    In contrast to the widely reported optical techniques, there are hardly any investigations on corresponding electrical signatures of condensed matter physics of excitonic phenomena. We studied small signal steady state capacitance response in III-V materials based multi quantum well (AlGaInP) and MBE grown quantum dot (InGaAs) laser diodes to identify signatures of excitonic presence. Conductance activation by forward bias was probed using frequency dependent differential capacitance response (fdC/df), which changes characteristically with the onset of light emission indicating the occurrence of negative activation energy. Our analysis shows that it is connected with a steady state population of exciton like bound states. Calculated average energy of this bound state matches well with the binding energy of weakly confined excitons in this type of structures. Further increase in charge injection decreases the differential capacitive response in AlGaInP based diodes, indicating a gradual Mott transition of excitonic states into electron hole plasma. This electrical description of excitonic Mott transition is fully supplemented by standard optical spectroscopic signatures of band gap renormalization and phase space filling effects.

  9. Indirect excitons in a potential energy landscape created by a perforated electrode

    NASA Astrophysics Data System (ADS)

    Dorow, C. J.; Kuznetsova, Y. Y.; Leonard, J. R.; Chu, M. K.; Butov, L. V.; Wilkes, J.; Hanson, M.; Gossard, A. C.

    2016-02-01

    We report on the principle and realization of an excitonic device: a ramp that directs the transport of indirect excitons down a potential energy gradient created by a perforated electrode at a constant voltage. The device provides an experimental proof of principle for controlling exciton transport with electrode density gradients. We observed that the exciton transport distance along the ramp increases with increasing exciton density. This effect is explained in terms of disorder screening by repulsive exciton-exciton interactions.

  10. Dynamics of the excitonic coupling in organic crystals.

    PubMed

    Aragó, Juan; Troisi, Alessandro

    2015-01-16

    We show that the excitonic coupling in molecular crystals undergoes a very large fluctuation at room temperature as a result of the combined thermal motions of the nuclei. This observation dramatically affects the description of exciton transport in organic crystals and any other phenomenon (like singlet fission or exciton dissociation) that originates from an exciton in a molecular crystal or thin film. This unexpected result is due to the predominance of the short-range excitonic coupling mechanisms (exchange, overlap, and charge-transfer mediated) over the Coulombic excitonic coupling for molecules in van der Waals contact. To quantify this effect we develop a procedure to evaluate accurately the short-range excitonic coupling (via a diabatization scheme) along a molecular dynamics trajectory of the representative molecular crystals of anthracene and tetracene. PMID:25635554

  11. Dynamics of the Excitonic Coupling in Organic Crystals

    NASA Astrophysics Data System (ADS)

    Aragó, Juan; Troisi, Alessandro

    2015-01-01

    We show that the excitonic coupling in molecular crystals undergoes a very large fluctuation at room temperature as a result of the combined thermal motions of the nuclei. This observation dramatically affects the description of exciton transport in organic crystals and any other phenomenon (like singlet fission or exciton dissociation) that originates from an exciton in a molecular crystal or thin film. This unexpected result is due to the predominance of the short-range excitonic coupling mechanisms (exchange, overlap, and charge-transfer mediated) over the Coulombic excitonic coupling for molecules in van der Waals contact. To quantify this effect we develop a procedure to evaluate accurately the short-range excitonic coupling (via a diabatization scheme) along a molecular dynamics trajectory of the representative molecular crystals of anthracene and tetracene.

  12. Ultrafast dynamics of exciton fission in polycrystalline pentacene.

    PubMed

    Wilson, Mark W B; Rao, Akshay; Clark, Jenny; Kumar, R Sai Santosh; Brida, Daniele; Cerullo, Giulio; Friend, Richard H

    2011-08-10

    We use ultrafast transient absorption spectroscopy with sub-20 fs time resolution and broad spectral coverage to directly probe the process of exciton fission in polycrystalline thin films of pentacene. We observe that the overwhelming majority of initially photogenerated singlet excitons evolve into triplet excitons on an ∼80 fs time scale independent of the excitation wavelength. This implies that exciton fission occurs at a rate comparable to phonon-mediated exciton localization processes and may proceed directly from the initial, delocalized, state. The singlet population is identified due to the brief presence of stimulated emission, which is emitted at wavelengths which vary with the photon energy of the excitation pulse, a violation of Kasha's Rule that confirms that the lowest-lying singlet state is extremely short-lived. This direct demonstration that triplet generation is both rapid and efficient establishes multiple exciton generation by exciton fission as an attractive route to increased efficiency in organic solar cells. PMID:21755937

  13. Temperature dependence of free excitons in GaN

    NASA Astrophysics Data System (ADS)

    Reynolds, D. C.; Hoelscher, J.; Litton, C. W.; Collins, T. C.

    2002-11-01

    The excitons involved in this study are the longitudinal and the Gamma5 and Gamma6 free excitons, as well as the donor bound exciton (D0),X. The temperature dependence of the energy positions of the Gamma5, Gamma6, and (D0),X excitons are well accounted for by the Varshni equation (Y. P. Varshni, Physica (Amsterdam) 34, 149 (1967)). In the same temperature range, the energy positions of the longitudinal excitons depart from the predictions of the Varshni equation. The separation between the longitudinal- and transverse-mode free excitons has been previously reported. One component of this separation is the polarizability, which has a temperature dependence. The longitudinal exciton therefore has a band-gap temperature dependence, predicted by the Varshni equation, as well as an additional dependence due to polarizability. This temperature dependence has been accounted for by the Varshni equation, plus an additional linear and a quadratic temperature dependent term.

  14. An investigation of the nature of Bohr, Root, and Haldane effects in Octopus dofleini hemocyanin.

    PubMed

    Miller, K I; Mangum, C P

    1988-01-01

    1. The pH dependence of Octopus dofleini hemocyanin oxygenation is so great that below pH 7.0 the molecule does not become fully oxygenated, even in pure O2 at 1 atm pressure. However, the curves describing percent oxygenation as a function of PO2 appear to be gradually increasing in oxygen saturation, rather than leveling out at less than full saturation. Hill plots indicate that at pH 6.6 and below the molecule is stabilized in its low affinity conformation. Thus, the low saturation of this hemocyanin in air is due to the very large Bohr shift, and not to the disabling of one or more functionally distinct O2 binding sites on the native molecule. 2. Experiments in which pH was monitored continuously while oxygenation was manipulated in the presence of CO2 provide no evidence of O2 linked binding of CO2. While CO2 does influence O2 affinity independently of pH, its effect may be due to high levels of HCO3- and CO3-, rather than molecular CO2, and it may entail a lowering of the activities of the allosteric effectors Mg2+ and Ca2+. PMID:3150406

  15. What is complementarity?: Niels Bohr and the architecture of quantum theory

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2014-12-01

    This article explores Bohr’s argument, advanced under the heading of ‘complementarity,’ concerning quantum phenomena and quantum mechanics, and its physical and philosophical implications. In Bohr, the term complementarity designates both a particular concept and an overall interpretation of quantum phenomena and quantum mechanics, in part grounded in this concept. While the argument of this article is primarily philosophical, it will also address, historically, the development and transformations of Bohr’s thinking, under the impact of the development of quantum theory and Bohr’s confrontation with Einstein, especially their exchange concerning the EPR experiment, proposed by Einstein, Podolsky and Rosen in 1935. Bohr’s interpretation was progressively characterized by a more radical epistemology, in its ultimate form, which was developed in the 1930s and with which I shall be especially concerned here, defined by his new concepts of phenomenon and atomicity. According to this epistemology, quantum objects are seen as indescribable and possibly even as inconceivable, and as manifesting their existence only in the effects of their interactions with measuring instruments upon those instruments, effects that define phenomena in Bohr’s sense. The absence of causality is an automatic consequence of this epistemology. I shall also consider how probability and statistics work under these epistemological conditions.

  16. Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger: the origins of the principles of uncertainty and complementarity

    SciTech Connect

    Mehra, J.

    1987-05-01

    In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger during 1920-1927 are treated. From the formulation of quantum mechanics in 1925-1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory - formulated in fall 1926 by Dirac, London, and Jordan - Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publicly enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of quantum mechanics and of physical theory as such - formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930 - were continued during the next decades. All these aspects are briefly summarized.

  17. Efficiency of the coherent biexciton admixture mechanism for multiple exciton generation in InAs nanocrystals

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr; Machnikowski, Paweł

    2015-12-01

    We study the coherent mixing between two-particle (single exciton) and four-particle (biexciton) states of a semiconductor nanocrystal resulting from the Coulomb coupling between states with different numbers of electron-hole pairs. Using a simple model of the nanocrystal wave functions and an envelope function approach, we estimate the efficiency of the multiple exciton generation (MEG) process resulting from such coherent admixture mechanism, including all the relevant states in a very broad energy interval. We show that in a typical ensemble of nanocrystals with an average radius of 3nm, the onset of the MEG process appears about 1 eV above the lower edge of the biexciton density of states. This is due to the angular momentum conservation that imposes selection rules and limits the available MEG pathways, thus taking over the role of momentum conservation that hinders this process in bulk. The efficiency of the MEG process reaches 50% for photon energies around 5 eV. The MEG onset shifts to lower energies and therefore the efficiency increases in a certain energy range as the radius grows. The energy dependence of the MEG efficiency differs considerably between ensembles with small and large inhomogeneity of nanocrystal sizes.

  18. Mass and radius of cosmic balloons

    NASA Technical Reports Server (NTRS)

    Wang, Yun

    1994-01-01

    Cosmic balloons are spherical domain walls with relativistic particles trapped inside. We derive the exact mass and radius relations for a static cosmic balloon using Gauss-Codazzi equations. The cosmic balloon mass as a function of its radius, M(R), is found to have a functional form similar to that of fermion soliton stars, with a fixed point at 2GM(R)/R approximately or equal to 0.486 which corresponds to the limit of infinite central density. We derive a simple analytical approximation for the mass density of a spherically symmetric relativistic gas star. When applied to the computation of the mass and radius of a cosmic balloon, the analytical approximation yields fairly good agreement with the exact numerical solutions.

  19. A Maximum Radius for Habitable Planets.

    PubMed

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope. PMID:26159097

  20. Inside the Bondi radius of M87

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; Fabian, A. C.; McNamara, B. R.; Broderick, A. E.

    2015-07-01

    Chandra X-ray observations of the nearby brightest cluster galaxy M87 resolve the hot gas structure across the Bondi accretion radius of the central supermassive black hole (SMBH), a measurement possible in only a handful of systems but complicated by the bright nucleus and jet emission. By stacking only short frame-time observations to limit pileup, and after subtracting the nuclear point spread function, we analysed the X-ray gas properties within the Bondi radius at 0.12-0.22 kpc (1.5-2.8 arcsec), depending on the black hole mass. Within 2 kpc radius, we detect two significant temperature components, which are consistent with constant values of 2 and 0.9 keV down to 0.15 kpc radius. No evidence was found for the expected temperature increase within ˜ 0.25 kpc due to the influence of the SMBH. Within the Bondi radius, the density profile is consistent with ρ ∝ r-1. The lack of a temperature increase inside the Bondi radius suggests that the hot gas structure is not dictated by the SMBH's potential and, together with the shallow density profile, shows that the classical Bondi rate may not reflect the accretion rate on to the SMBH. If this density profile extends in towards the SMBH, the mass accretion rate on to the SMBH could be at least two orders of magnitude less than the Bondi rate, which agrees with Faraday rotation measurements for M87. We discuss the evidence for outflow from the hot gas and the cold gas disc and for cold feedback, where gas cooling rapidly from the hot atmosphere could feed the cirumnuclear disc and fuel the SMBH. At 0.2 kpc radius, the cooler X-ray temperature component represents ˜20 per cent of the total X-ray gas mass and, by losing angular momentum to the hot gas component, could provide a fuel source of cold clouds within the Bondi radius.

  1. Exposure of the forearm and distal radius.

    PubMed

    Klausmeyer, Melissa A; Mudgal, Chaitanya

    2014-11-01

    Approaches to the forearm use internervous planes to allow adequate bone exposure and prevent muscle denervation. The Henry approach utilizes the plane between muscles supplied by the median and radial nerves. The Thompson approach utilizes the plane between muscles supplied by the radial and posterior interosseous nerves. The distal radius may be approached volarly. The extended flexor carpi radialis approach is useful for intraarticular fractures, subacute fractures, and malunions. The distal radius can be approached dorsally by releasing the third dorsal compartment and continuing the dissection subperiosteally. Choice of approach depends on the injury pattern and the need for exposure. PMID:25440071

  2. Distal radius fracture: diagnosis, treatment, and controversies.

    PubMed

    Tang, Jin Bo

    2014-07-01

    This article presents the diagnosis and treatment of distal radius fractures with emphasis on (1) current common principles, (2) the author's current practices, and (3) controversies. The author emphasizes that displaced distal radius fractures should be approached first with a trial of closed reduction, with or without percutaneous pinning. If this reduction is unstable or unsuccessful, open reduction is indicated. Early treatments include percutaneous pinning through the distal radioulnar joint, early or delayed reattachment/repair of the avulsed dorsal periphery of the triangular fibrocartilage complex (TFCC), reattachment of the TFCC to the ulna fovea, and late reconstruction. PMID:24996466

  3. The Tidal Radius of the Arches Cluster

    NASA Astrophysics Data System (ADS)

    Hosek, Matthew; Lu, Jessica R.; Anderson, Jay; Ghez, Andrea; Morris, Mark; Clarkson, William

    2015-08-01

    At a projected distance of just ˜26 pc from the center of the Milky Way, the Arches cluster allows us to examine the structure of a young massive cluster in the strong tidal environment of the Galactic center (GC). We use the HST WFC3IR camera to conduct an astrometric and photometric study of the outer region of the Arches cluster (R > 6.25”) in order to measure its radial profile. Using proper motions we separate cluster members from field stars down to F153M = 20 mag (˜2.5 M_sun) over a 120” x 120” field of view, covering an area 144 times larger than previous proper motion studies. This is a significant improvement over photometrically-determined cluster membership, which is complicated by the high degree of differential reddening across the field. Using cluster membership probabilities, a derived extinction map, and extensive completeness simulations, we construct the radial profile of the Arches cluster to a radius of ˜80” (˜3.1 pc assuming a distance of 8 kpc). Evidence of mass segregation out to this radius is observed, and no significant tidal tail structure is apparent. We find that the projected radial extent of the Arches cluster is significantly larger than its expected tidal radius. This result suggests either that the cluster is not as close to the GC as previously thought or that it is inflated beyond its nominal tidal radius.

  4. Proton radius from electron scattering data

    NASA Astrophysics Data System (ADS)

    Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent; Meekins, David; Norum, Blaine; Sawatzky, Brad

    2016-05-01

    Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon, and Stanford. Methods: We make use of stepwise regression techniques using the F test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. Results: Starting with the precision, low four-momentum transfer (Q2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q2 data on GE to select functions which extrapolate to high Q2, we find that a Padé (N =M =1 ) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, GE(Q2) =(1+Q2/0.66 GeV2) -2 . Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extremely-low-Q2 data or by use of the Padé approximant for extrapolation using a larger

  5. Exciton radiative lifetime in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B.; Marie, X.

    2016-05-01

    We have investigated the exciton dynamics in transition metal dichalcogenide monolayers using time-resolved photoluminescence experiments performed with optimized time resolution. For MoS e2 monolayer, we measure τrad0=1.8 ±0.2 ps at T =7 K that we interpret as the intrinsic radiative recombination time. Similar values are found for WS e2 monolayers. Our detailed analysis suggests the following scenario: at low temperature (T ≲50 K ), the exciton oscillator strength is so large that the entire light can be emitted before the time required for the establishment of a thermalized exciton distribution. For higher lattice temperatures, the photoluminescence dynamics is characterized by two regimes with very different characteristic times. First the photoluminescence intensity drops drastically with a decay time in the range of the picosecond driven by the escape of excitons from the radiative window due to exciton-phonon interactions. Following this first nonthermal regime, a thermalized exciton population is established gradually yielding longer photoluminescence decay times in the nanosecond range. Both the exciton effective radiative recombination and nonradiative recombination channels including exciton-exciton annihilation control the latter. Finally the temperature dependence of the measured exciton and trion dynamics indicates that the two populations are not in thermodynamical equilibrium.

  6. The Orientation of Luminescent Excitons in Layered Organic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Schuller, Jon; Karavelli, Sinan; He, Keliang; Yang, Shyuan; Shan, Jie; Kymissis, John; Zia, Rashid

    2012-02-01

    A fundamental understanding of optoelectronics in organic semiconductors is complicated by the diversity of excitons which can exist within a single material system. Measurements that distinguish between different exciton types are crucial for a complete understanding of organic materials. By fitting experimental curves of angle-, polarization-, and energy-dependent PL to analytical Purcell calculations we quantify the relative dipole moments for in-plane and out-of-plane oriented excitons in organic and inorganic layered nanomaterials. In mono- and bi-layers of Molybdenum Disulfide (MoS2) and Graphene Oxide the luminescence arises only from in-plane oriented excitons. In the perylene derivative PTCDA, however, we show that PL arises from both in-plane and out-of-plane excitons. We observe a difference in emission frequency between the dipole orientations which indicates the existence of two distinct exciton species: an in-plane oriented Frenkel exciton and an out-of-plane oriented Charge Transfer exciton. Based on these results we devise and implement a method for isolating luminescence from either exciton species. We observe different temporal dynamics for the two distinct excitons, highlighting the power of this technique for fundamental studies of organic materials.

  7. On solar radius measurements with PICARD

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Hauchecorne, A.; Corbard, T.; Hochedez, J. F.

    2014-12-01

    Solar diameter measurements performed from the ground for several decades seem to indicate a relation between the solar diameter and the solar activity. If this relationship is confirmed, it would be possible to use measurements of solar diameter as a proxy of solar activity in the past since the 1715 solar eclipses, and to use this input for the reconstruction of solar irradiance in climate models. However the interpretation of ground observations is controversial, ground-based measurements being affected by refraction, by atmospheric turbulence, and perhaps by atmospheric aerosols scattering. The only way to be free from atmospheric effects is to measure from space. This is the reason why, since the beginning, the PICARD program included a space and a ground component set up at the Calern site of the Observatoire de la Côte dAzur. During the last 4 years, the PICARD space mission has been used for observing the apparent solar diameter. First results of the astrometry program include a study of the June 2012 Venus transit for solar diameter determination. From this, the value of the solar radius from one astronomical unit was found to be equal to 959.86 arc-seconds at 607.1 nm. However, concerning observed variations in time of the solar radius, instrumental effects affect the results. Space is known to represent a harsh environment for optical instruments. Nevertheless, we can use the PICARD data to monitor the solar radius variation. PICARD aims to perpetuate historical series of the solar radius measurements, in particular during the solar cycle 24. This paper presents solar radius measurements obtained with PICARD.

  8. Optical properties of MgZnO alloys: Excitons and exciton-phonon complexes

    SciTech Connect

    Neumann, M. D.; Cobet, C.; Esser, N.; Laumer, B.; Wassner, T. A.; Eickhoff, M.; Feneberg, M.; Goldhahn, R.

    2011-07-01

    The characteristics of the excitonic absorption and emission around the fundamental bandgap of wurtzite Mg{sub x}Zn{sub 1-x}O grown on c-plane sapphire substrates by plasma assisted molecular beam epitaxy with Mg contents between x = 0 and x = 0.23 are studied using spectroscopic ellipsometry and photoluminescence (PL) measurements. The ellipsometric data were analyzed using a multilayer model yielding the dielectric function (DF). The imaginary part of the DF for the alloys exhibits a pronounced feature which is attributed to exciton-phonon coupling (EPC) similar to the previously reported results for ZnO. Thus, in order to determine reliable transition energies, the spectral dependence is analyzed by a model which includes free excitonic lines, the exciton continuum, and the enhanced absorption due to EPC. A line shape analysis of the temperature-dependent PL spectra yielded in particular the emission-related free excitonic transition energies, which are compared to the results from the DF line-shape analysis. The PL linewidth is discussed within the framework of an alloy disorder model.

  9. Interlayer excitons with tunable dispersion relation

    NASA Astrophysics Data System (ADS)

    Skinner, Brian

    2016-06-01

    Interlayer excitons, comprising an electron in one material bound by Coulomb attraction to a hole in an adjacent material, are composite bosons that can assume a variety of many-body phases. The phase diagram of the bosonic system is largely determined by the dispersion relation of the bosons, which itself arises as a combination of the dispersion relations of the electron and hole separately. Here I show that in situations where either the electron or the hole has a nonmonotonic, "Mexican hat-shaped" dispersion relation, the exciton dispersion relation can have a range of qualitatively different forms, each corresponding to a different many-body phase at low temperature. This diversity suggests a platform for continuously tuning between different quantum phases using an external field.

  10. MASS-RADIUS RELATIONSHIPS FOR EXOPLANETS

    SciTech Connect

    Swift, D. C.; Eggert, J. H.; Hicks, D. G.; Hamel, S.; Caspersen, K.; Schwegler, E.; Collins, G. W.; Nettelmann, N.; Ackland, G. J.

    2012-01-01

    For planets other than Earth, particularly exoplanets, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key, relevant materials whose equation of state (EOS) is reasonably well established, and for differentiated Fe/rock. We find that variations in the EOS, such as may arise when extrapolating from low-pressure data, can have significant effects on predicted mass-radius relations and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets, broadly supporting recent inferences about exoplanet structures. Kepler-10b is apparently 'Earth-like', likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H{sub 2}O and CH{sub 4}, suggesting an 'icy' composition with a relatively large core or a relatively large proportion of H{sub 2}O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5{sup +1.2}{sub -1.0} TPa. The central pressure in CoRoT-7b is probably close to 0.8 TPa, though may be up to 2 TPa. These pressures are accessible by planar

  11. Do Hydrogen Bonds Influence Excitonic Splittings?

    PubMed

    Balmer, Franziska A; Ottiger, Philipp; Leutwyler, Samuel

    2016-01-01

    The excitonic splitting and vibronic quenching of the inversion-symmetric homodimers of benzonitrile, (BN)2, and meta-cyanophenol, (mCP)2, are investigated by two-color resonant two-photon ionization spectroscopy. These systems have very different hydrogen bond strengths: the OH···N≡C bonds in (mCP)2 are ∼10 times stronger than the CH···N≡C hydrogen bonds in (BN)2. In (BN)2 the S0((1)Ag) → S1((1)Ag) transition is electric-dipole forbidden, while the S0((1)Ag) → S2((1)Bu) transition is allowed. The opposite holds for (mCP)2 due to the different transition dipole moment vector alignment. The S0 → S1S2 spectra of the dimers are compared and their excitonic splittings and vibronic quenchings are investigated by measuring the (13)C-substituted heterodimer isotopomers, for which the centrosymmetry is broken and both transitions are allowed. The excitonic splittings are determined as Δexc = 2.1 cm(-1) for (BN)2 and Δexc = 7.3 cm(-1) for (mCP)2. The latter exhibits a much stronger vibronic quenching, as the purely electronic splitting resulting from ab initio calculations is determined to be Δcalc = 179 cm-1, while in (BN)2 the calculated splitting is Δcalc = 10 cm(-1). The monomer site-shifts upon dimerization and comparing certain vibrations that deform the hydrogen bonds confirm that the OH···N≡C hydrogen bond is much stronger than the CH···N≡C bond. We show that the H-bonds have large effects on the spectral shifts, but little or no influence on the excitonic splitting. PMID:27131115

  12. Nanotransformation and current fluctuations in exciton condensate junctions.

    PubMed

    Soller, H; Dolcini, F; Komnik, A

    2012-04-13

    We analyze the nonlinear transport properties of a bilayer exciton condensate that is contacted by four metallic leads by calculating the full counting statistics of electron transport for arbitrary system parameters. Despite its formal similarity to a superconductor the transport properties of the exciton condensate turn out to be completely different. We recover the generic features of exciton condensates such as counterpropagating currents driven by excitonic Andreev reflections and make predictions for nonlinear transconductance between the layers as well as for the current (cross)correlations and generalized Johnson-Nyquist relationships. Finally, we explore the possibility of connecting another mesoscopic system (in our case a quantum point contact) to the bottom layer of the exciton condensate and show how the excitonic Andreev reflections can be used for transforming voltage at the nanoscale. PMID:22587267

  13. Ultrafast dynamics of excitons in tetracene single crystals

    NASA Astrophysics Data System (ADS)

    Birech, Zephania; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens; Schwoerer, Heinrich

    2014-03-01

    Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states Sn on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S1 on a 40 ps timescale. The high energy Davydov component of the S1 exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

  14. Ultrafast dynamics of excitons in tetracene single crystals.

    PubMed

    Birech, Zephania; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens; Schwoerer, Heinrich

    2014-03-21

    Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S(n) on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S1 on a 40 ps timescale. The high energy Davydov component of the S1 exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale. PMID:24655187

  15. Exciton states and optical properties of carbon nanotubes.

    PubMed

    Ajiki, Hiroshi

    2012-12-01

    Exciton states and related optical properties of a single-walled carbon nanotube are reviewed, primarily from a theoretical viewpoint. The energies and wavefunctions of excitons are discussed using a screened Hartree-Fock approximation with an effective-mass or k·p approximation. The close relationship between a long-range electron-hole exchange interaction and a depolarization effect is clarified. I discuss optical properties including the radiative lifetime of excitons, absorption spectra and radiation force. To describe these properties in a unified scheme, a self-consistent method is introduced for calculating the scattering light and induced current density due to excitons. I also briefly review experimental results on the Aharonov-Bohm effect in excitons and quasi-dark excitons excited by light polarized perpendicular to the tube axis. PMID:23139202

  16. Excitonic gap formation and condensation in the bilayer graphene structure

    NASA Astrophysics Data System (ADS)

    Apinyan, V.; Kopeć, T. K.

    2016-09-01

    We have studied the excitonic gap formation in the Bernal Stacked, bilayer graphene (BLG) structures at half-filling. Considering the local Coulomb interaction between the layers, we calculate the excitonic gap parameter and we discuss the role of the interlayer and intralayer Coulomb interactions and the interlayer hopping on the excitonic pair formation in the BLG. Particularly, we predict the origin of excitonic gap formation and condensation, in relation to the furthermost interband optical transition spectrum. The general diagram of excitonic phase transition is given, explaining different interlayer correlation regimes. The temperature dependence of the excitonic gap parameter is shown and the role of the chemical potential, in the BLG, is discussed in details.

  17. Singlet Exciton Fission in Nanostructured Organic Solar Cells

    SciTech Connect

    Jadhav, P. J.; Mohanty, A.; Sussman, J.; Baldo, Marc

    2011-04-13

    Singlet exciton fission is an efficient multiexciton generation process in organic molecules. But two concerns must be satisfied before it can be exploited in low-cost solution-processed organic solar cells. Fission must be combined with longer wavelength absorption in a structure that can potentially surpass the single junction limit, and its efficiency must be demonstrated in nanoscale domains within blended devices. Here, we report organic solar cells comprised of tetracene, copper phthalocyanine, and the buckyball C{sub 6}0. Short wavelength light generates singlet excitons in tetracene. These are subsequently split into two triplet excitons and transported through the phthalocyanine. In addition, the phthalocyanine absorbs photons below the singlet exciton energy of tetracene. To test tetracene in nanostructured blends, we fabricate coevaporated bulk heterojunctions and multilayer heterojunctions of tetracene and C{sub 60}. We measure a singlet fission efficiency of (71 ± 18)%, demonstrating that exciton fission can efficiently compete with exciton dissociation on the nanoscale.

  18. Wannier-Mott excitons in semiconductors with a superlattice

    SciTech Connect

    Suris, R. A.

    2015-06-15

    The effect of the motion of a Wannier-Mott exciton in semiconductors with a superlattice formed by heterojunctions on the exciton binding energy and wave function is analyzed. This effect arises as a result of the fact that the dispersion laws of the electron and hole that form an exciton in a superlattice differ from the quadratic law. The investigated one-dimensional superlattice consists of alternating semiconductor layers with different energy positions of the conduction and valence bands, i.e., with one-dimensional wells and barriers. The exciton state in a superlattice consisting of quantum dots is analyzed. It is demonstrated that the closer the electron and hole effective masses, the greater the dependence of the binding energy on the exciton quasi-momentum. The possibility of replacing the tunneling excitation transfer between superlattice cells with the dipole-dipole one at certain exciton quasi-wave vector values is investigated.

  19. Fluorescence spectroscopy, exciton dynamics, and photochemistry of single allophycocyanin trimers

    SciTech Connect

    Ying, L.; Sie, X.S.

    1998-12-10

    The authors report a study of the allophycocyanin trimer (APC), a light-harvesting protein complex from cyanobacteria, by room-temperature single-molecule measurements of fluorescence spectra, lifetimes, intensity trajectories, and polarization modulation. Emission spectra of individual APC trimers are found to be homogeneous on the time scale of seconds. In contrast, their emission lifetimes are found to be widely distributed because of generation of long-lived exciton traps during the course of measurements. The intensity trajectories and polarization modulation experiments indicate reversible exciton trap formation within the three quasi-independent pairs of strong interacting {alpha}84 and {beta}84 chromophores in APC, as well as photobleaching of individual chromophores. Comparison experiments under continuous-wave and pulsed excitation reveal a two-photon mechanism for generating exciton traps and/or photobleaching, which involves exciton-exciton annihilation. These single-molecule experiments provide new insights into the spectroscopy, exciton dynamics, and photochemistry of light-harvesting complexes.

  20. Ultrafast dynamics of excitons in tetracene single crystals

    SciTech Connect

    Birech, Zephania; Schwoerer, Heinrich; Schwoerer, Markus; Schmeiler, Teresa; Pflaum, Jens

    2014-03-21

    Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S{sub n} on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S{sub 1} on a 40 ps timescale. The high energy Davydov component of the S{sub 1} exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

  1. Size-dependent decoherence of excitonic states in semiconductor microcrystallites

    SciTech Connect

    Liu Yuxi; Miranowicz, Adam; Oezdemir, Sahin K.; Koashi, Masato; Imoto, Nobuyuki

    2003-03-01

    The size-dependent decoherence of the exciton states, resulting from the spontaneous emission, is investigated in a semiconductor spherical microcrystallite under the condition a{sub B}<excitonic coherent states, the coherence time depends on both the overlap of two excitonic coherent states and the size of the microcrystallite. When the system with fixed size is initially in the even or odd coherent state, the larger average number of the excitons corresponds to the faster decoherence. When the average number of the excitons is given, the bigger size of the microcrystallite corresponds to the faster decoherence. The decoherence of the exciton states for the materials GaAs and CdS is numerically studied by our theoretical analysis.

  2. Fractional Solitons in Excitonic Josephson Junctions

    PubMed Central

    Hsu, Ya-Fen; Su, Jung-Jung

    2015-01-01

    The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 – until ϕ0 > π – then the alternative group of solitons with Q = ϕ0/2π − 1 takes place and switches the polarity of CPR. PMID:26511770

  3. Fractional Solitons in Excitonic Josephson Junctions.

    PubMed

    Hsu, Ya-Fen; Su, Jung-Jung

    2015-01-01

    The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 - until ϕ0 > π - then the alternative group of solitons with Q = ϕ0/2π - 1 takes place and switches the polarity of CPR. PMID:26511770

  4. Fractional Solitons in Excitonic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Hsu, Ya-Fen; Su, Jung-Jung

    2015-10-01

    The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 - until ϕ0 > π - then the alternative group of solitons with Q = ϕ0/2π - 1 takes place and switches the polarity of CPR.

  5. Valley excitons in two-dimensional semiconductors

    DOE PAGESBeta

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less

  6. Valley excitons in two-dimensional semiconductors

    SciTech Connect

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibit remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.

  7. Excitonic effects in oxyhalide scintillating host compounds

    SciTech Connect

    Shwetha, G.; Kanchana, V.; Valsakumar, M. C.

    2014-10-07

    Ab-initio calculations based on density functional theory have been performed to study the electronic, optical, mechanical, and vibrational properties of scintillator host compounds YOX (X = F, Cl, Br, and I). Semiempirical dispersion correction schemes are used to find the effect of van der Waals forces on these layered compounds and we found this effect to be negligible except for YOBr. Calculations of phonons and elastic constants showed that all the compounds studied here are both dynamically and mechanically stable. YOF and YOI are found to be indirect band gap insulators while YOCl and YOBr are direct band gap insulators. The band gap is found to decrease as we move from fluorine to iodine, while the calculated refractive index shows the opposite trend. As the band gap decreases on going down the periodic table from YOF to YOI, the luminescence increases. The excitonic binding energy calculated, within the effective mass approximation, is found to be more for YOF than the remaining compounds, suggesting that the excitonic effect to be more in YOF than the other compounds. The optical properties are calculated within the Time-Dependent Density Functional Theory (TDDFT) and compared with results obtained within the random phase approximation. The TDDFT calculations, using the newly developed bootstrap exchange-correlation kernel, showed significant excitonic effects in all the compounds studied here.

  8. The Epidemiology of Distal Radius Fractures

    PubMed Central

    Nellans, Kate W.; Kowalski, Evan; Chung, Kevin C.

    2012-01-01

    Distal radius fractures are one of the most common types of fractures, accounting for around 25% of fractures in the pediatric population and up to 18% of all fractures in the elderly age group. Although the pediatric and elderly populations are at the greatest risk for this injury, distal radius fractures still have a significant impact on the health and well-being of young adults. Data from the past 40 years has documented a trend towards an overall increase in the prevalence of this injury. For the pediatric population, this increase can likely be attributed to a surge in sports related activities. The growth of the elderly population and a rise in the number of active elderly are directly responsible for the increase seen in this age group. Understanding the epidemiology of this fracture is an important step towards the improvement of the treatment strategies and preventative measures which target this debilitating injury. PMID:22554654

  9. Running with the radius in RS1

    NASA Astrophysics Data System (ADS)

    Lewandowski, Adam; May, Michael J.; Sundrum, Raman

    2003-01-01

    We derive a renormalization group formalism for the Randall-Sundrum scenario, where the renormalization scale is set by a floating compactification radius. While inspired by the AdS-CFT conjecture, our results are derived concretely within higher-dimensional effective field theory. Matching theories with different radii leads to running hidden brane couplings. The hidden brane Lagrangian consists of four-dimensional local operators constructed from the induced value of the bulk fields on the brane. We find hidden Lagrangians which are nontrivial fixed points of the RG flow. Calculations in RS1 can be greatly simplified by “running down” the effective theory to a small radius. We demonstrate these simplifications by studying the Goldberger-Wise stabilization mechanism. In this paper, we focus on the classical and tree-level quantum field theory of bulk scalar fields, which demonstrates the essential features of the RG in the simplest context.

  10. Surgical exposures of the radius and ulna.

    PubMed

    Catalano, Louis W; Zlotolow, Dan A; Hitchcock, Phillip B; Shah, Suparna N; Barron, O Alton

    2011-07-01

    The forearm contains many muscles, nerves, and vascular structures that change position on forearm rotation. Exposure of the radial shaft is best achieved with the Henry (volar) or Thompson (dorsal) approach. The volar flexor carpi radialis approaches are used increasingly for exposure of the distal radius. Although the dorsal approach is a safe utilitarian option with many applications, its use for managing fracture of the distal radius has waned. Potential complications associated with radial exposure include injury to the superficial branch of the radial nerve, the lateral antebrachial cutaneous nerve, and the cephalic vein. Dorsal and ulnar proximal radial exposures are associated with increased risk of injury to the posterior interosseous nerve. With surgical exposure of the ulna, care is required to avoid injuring the dorsal cutaneous branch of the ulnar nerve. PMID:21724922

  11. Description of the Adsorption and Exciton Delocalizing Properties of p-Substituted Thiophenols on CdSe Quantum Dots.

    PubMed

    Aruda, Kenneth O; Amin, Victor A; Thompson, Christopher M; Lau, Bryan; Nepomnyashchii, Alexander B; Weiss, Emily A

    2016-04-12

    This work describes the quantitative characterization of the interfacial chemical and electronic structure of CdSe quantum dots (QDs) coated in one of five p-substituted thiophenolates (X-TP, X = NH2, CH3O, CH3, Cl, or NO2), and the dependence of this structure on the p-substituent X. (1)H NMR spectra of mixtures of CdSe QDs and X-TPs yield the number of X-TPs bound to the surface of each QD. The binding data, in combination with the shift in the energy of the first excitonic peak of the QDs as a function of the surface coverage of X-TP and Raman and NMR analysis of the mixtures, indicate that X-TP binds to CdSe QDs in at least three modes, two modes that are responsible for exciton delocalization and a third mode that does not affect the excitonic energy. The first two modes involve displacement of OPA from the QD core, whereas the third mode forms cadmium-thiophenolate complexes that are not electronically coupled to the QD core. Fits to the data using the dual-mode binding model also yield the values of Δr1, the average radius of exciton delocalization due to binding of the X-TP in modes 1 and 2. A 3D parametrized particle-in-a-sphere model enables the conversion of the measured value of Δr1 for each X-TP to the height of the potential barrier that the ligand presents for tunneling of excitonic hole into the interfacial region. The height of this barrier increases from 0.3 to 0.9 eV as the substituent, X, becomes more electron-withdrawing. PMID:27002248

  12. Exciton-exciton annihilation and biexciton stimulated emission in graphene nanoribbons.

    PubMed

    Soavi, Giancarlo; Dal Conte, Stefano; Manzoni, Cristian; Viola, Daniele; Narita, Akimitsu; Hu, Yunbin; Feng, Xinliang; Hohenester, Ulrich; Molinari, Elisa; Prezzi, Deborah; Müllen, Klaus; Cerullo, Giulio

    2016-01-01

    Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron-hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton-exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of ≈ 250 meV, in very good agreement with theoretical results from quantum Monte Carlo simulations. These observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics. PMID:26984281

  13. Exciton-exciton annihilation and biexciton stimulated emission in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Soavi, Giancarlo; Dal Conte, Stefano; Manzoni, Cristian; Viola, Daniele; Narita, Akimitsu; Hu, Yunbin; Feng, Xinliang; Hohenester, Ulrich; Molinari, Elisa; Prezzi, Deborah; Müllen, Klaus; Cerullo, Giulio

    2016-03-01

    Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron-hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton-exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of ~250 meV, in very good agreement with theoretical results from quantum Monte Carlo simulations. These observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics.

  14. Solar Radius Measurements at Mount Wilson

    NASA Astrophysics Data System (ADS)

    Lefebvre, S.; Bertello, L.; Ulrich, R. K.; Boyden, J. E.; Rozelot, J.

    2004-12-01

    Variations of the solar radius are not only important for solar physics but they also play a fundamental role in the research of terrestrial climate. In fact, changes in the apparent size of the Sun could account for a significant fraction of the total irradiance variations, and solar irradiance is known to be a primary force in driving atmospheric circulation. While the MDI instrument aboard SOHO is likely to provide the most accurate constraint on possible solar radius variations, the radius measurements obtained from ground base observations represent a unique resource due to their long temporal coverage. Since 1970, the Mount Wilson synoptic programme of solar magnetic observations carried out at the 150-foot tower scans the solar disk using the radiation in the neutral iron line at 525.0 nm. For these images, the radius has been determined and results are presented on this paper. We show first the temporal behavior of these measurements. Secondly, if data are gathered by heliolatitude, the shape of the Sun differs from a perfect ellipsoid and shows solar distortions. We compare these results with others obtained with the heliometer at the Pic du Midi observatory in France. The comparison show a similitude in the shape with a bulge near the equator extending on 20-30 degrees followed by a depression at higher latitude near 60-70 degrees. These solar distortions needs to be confirmed by future space measurements (PICARD microsatellite) but it already raises the problem of a better understanding of the physics in the sub-surface layers.

  15. Fractures of distal radius: an overview.

    PubMed

    Meena, Sanjay; Sharma, Pankaj; Sambharia, Abhishek Kumar; Dawar, Ashok

    2014-01-01

    Fractures of distal radius account for up to 20% of all fractures treated in emergency department. Initial assessment includes a history of mechanism of injury, associated injury and appropriate radiological evaluation. Treatment options include conservative management, internal fixation with pins, bridging and non-bridging external fixation, dorsal or volar plating with/without arthroscopy assistance. However, many questions regarding these fractures remain unanswered and good prospective randomized trials are needed. PMID:25657938

  16. Fractures of Distal Radius: An Overview

    PubMed Central

    Meena, Sanjay; Sharma, Pankaj; Sambharia, Abhishek Kumar; Dawar, Ashok

    2014-01-01

    Fractures of distal radius account for up to 20% of all fractures treated in emergency department. Initial assessment includes a history of mechanism of injury, associated injury and appropriate radiological evaluation. Treatment options include conservative management, internal fixation with pins, bridging and non-bridging external fixation, dorsal or volar plating with/without arthroscopy assistance. However, many questions regarding these fractures remain unanswered and good prospective randomized trials are needed. PMID:25657938

  17. Ulnar Shortening Osteotomy for Distal Radius Malunion

    PubMed Central

    Kamal, Robin N.; Leversedge, Fraser J.

    2014-01-01

    Background Malunion is a common complication of distal radius fractures. Ulnar shortening osteotomy (USO) may be an effective treatment for distal radius malunion when appropriate indications are observed. Methods The use of USO for treatment of distal radius fracture malunion is described for older patients (typically patients >50 years) with dorsal or volar tilt less than 20 degrees and no carpal malalignment or intercarpal or distal radioulnar joint (DRUJ) arthritis. Description of Technique Preoperative radiographs are examined to ensure there are no contraindications to ulnar shortening osteotomy. The neutral posteroanterior (PA) radiograph is used to measure ulnar variance and to estimate the amount of ulnar shortening required. An ulnar, mid-sagittal incision is used and the dorsal sensory branch of the ulnar nerve is preserved. An USO-specific plating system with cutting jig is used to create parallel oblique osteotomies to facilitate shortening. Intraoperative fluoroscopy and clinical range of motion are checked to ensure adequate shortening and congruous reduction of the ulnar head within the sigmoid notch. Results Previous outcomes evaluation of USO has demonstrated improvement in functional activities, including average flexion-extension and pronosupination motions, and patient reported outcomes. Conclusion The concept and technique of USO are reviewed for the treatment of distal radius malunion when specific indications are observed. Careful attention to detail related to surgical indications and to surgical technique typically will improve range of motion, pain scores, and patient-reported outcomes and will reduce the inherent risks of the procedure, such as ulnar nonunion or the symptoms related to unrecognized joint arthritis. Level of Evidence: Level IV PMID:25097811

  18. Measurement of the Radius of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien

    2012-07-01

    A physical understanding of the behavior of cold ultra-dense matter -- at and above nuclear density -- can only be achieved by the study of neutron stars. The recent 1.97+/-0.04 Msun measurement for PSR 1614-2230 suggests that strange quark matter and hyperons/kaons condensate equations of state (EoSs) are disfavored, in favor of hadronic EoSs. Over much of the neutron star mass-radius parameter space, the latter EoSs produce lines of nearly constant radii (within about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass x-ray binaries where we require the radius to be the same among all neutron stars analyzed. Our (preliminary) results suggest a neutron star radius much smaller than previously reported, in the range 7.5-10 km (90% confidence). The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to unmodelled spectrally hard components.

  19. Measurement of the Radius of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien; Rutledge, R. E.; Servillat, M.; Webb, N.

    2013-01-01

    A physical understanding of the behavior of cold ultra dense matter - at and above nuclear density - can only be achieved by the study of neutron stars. The recent 1.97 ± 0.04 M⊙ measurement for PSR 1614-2230 suggests that strange quark matter and hyperons/kaons condensate equations of state (EoSs) are disfavored, in favor of hadronic EoSs. Over much of the neutron star mass-radius parameter space, the latter EoSs produce lines of nearly constant radii (within about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass X-ray binaries where we require the radius to be the same among all neutron stars analyzed. Our (preliminary) results suggest a neutron star radius much smaller than previously reported, in the range 7.5-10 km (90% confidence). The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to unmodeled spectrally hard components.

  20. Solar radius change between 1925 and 1979

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Dunham, D. W.; Dunham, J. B.; Fiala, A. D.

    1983-01-01

    From an analysis of numerous reports from different locations on the duration of totality of the solar eclipses on January 24, 1925, and February 26, 1979, it is found that the solar radius at the earlier date was 0.5 arcsec (or 375 km) larger than at the later date. The correction to the standard solar radius found for each eclipse is different when different subsets of the observations are used (for example, edge of path of totality timings compared with central timings). This is seen as suggesting the existence of systematic inaccuracies in our knowledge of the lunar figure. The differences between the corrections for both eclipses, however, are very similar for all subsets considered, indicating that changes of the solar size may be reliably inferred despite the existence of the lunar figure errors so long as there is proper consideration of the distribution of the observations. These results are regarded as strong evidence in support of the occurrence of solar radius changes on shorter than evolutionary time scales.

  1. Upconverted photoluminescence induced by radiative coupling between excitons

    NASA Astrophysics Data System (ADS)

    Matsuda, Takuya; Yokoshi, Nobuhiko; Ishihara, Hajime

    2016-04-01

    We propose an unconventional scheme of photoluminescence in a semiconductor thin film, where the nonlocal correlation between an excitonic wave and light wave prominently enhances the interaction between different excitonic states via radiation beyond the long-wavelength approximation (the so-called excitonic superradiance regime). On the basis of the developed method extending input-output theory, we elucidate atypical photoluminescence effects due to the strong wave-wave correlation. In particular, the upconverted photoluminescence based on the coherent quantum superposition of excitons is found to be highly efficient, i.e., it can be realized by weak pumping without auxiliary systems such as cavities or photonic antennas.

  2. Superradiance of High Density Frenkel Excitons at Room Temperature

    NASA Astrophysics Data System (ADS)

    Wang, H. Z.; Zheng, X. G.; Zhao, F. L.; Gao, Z. L.; Yu, Z. X.

    1995-05-01

    Superradiance of high density Frenkel excitons in an R-phycoerythrin single crystal is observed at room temperature for the first time. No fluorescence is observed except the emission at the sharp exciton band when the superradiance of excitons occurs, and the higher the pump density, the sharper the emission bandwidth. A redshift and a blueshift are observed at the rise time and the fall time of the emission pulse, respectively. The experimental results also imply deformed-boson properties of high density Frenkel excitons.

  3. Polarization-dependent exciton dynamics in tetracene single crystals.

    PubMed

    Zhang, Bo; Zhang, Chunfeng; Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

    2014-12-28

    We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors. PMID:25554147

  4. Exciton dynamics in organic molecular crystals and nanostructures

    NASA Astrophysics Data System (ADS)

    Bardeen, Chris

    2014-03-01

    The photophysical behavior of organic semiconductors is governed by their excitonic states. In this talk, we classify the three different exciton types (Frenkel singlet, Frenkel triplet, and charge-transfer) typically encountered in organic semiconductors. The availability of several different exciton bands provides the possibility of interband processes. One such process is singlet fission, where an initially excited singlet exciton can spontaneously split into a pair of spin-entangled triplet excitons. We analyze this phenomenon in detail, emphasizing the role of spin state coherence and magnetic fields in studying singlet <-- --> triplet pair interconversion. Singlet fission provides an example of how all three types of excitons (triplet, singlet, and charge-transfer) interact to generate unique nonlinear excitonic processes in molecular systems. These processes may be useful for applications like solar energy conversion, where the generation of two excitons per absorbed photon could lead to significant enhancements in the efficiency of single junction photovoltaic cells. Finally, we will briefly describe how excitons can also be used to initiate photochemical reactions in molecular crystal nanostructures, resulting in large shape changes and deformations.

  5. Triplet diffusion in singlet exciton fission sensitized pentacene solar cells

    NASA Astrophysics Data System (ADS)

    Tabachnyk, Maxim; Ehrler, Bruno; Bayliss, Sam; Friend, Richard H.; Greenham, Neil C.

    2013-10-01

    Singlet fission sensitized photovoltaics have the potential to surpass the Shockley-Queisser limit for a single-junction structure. We investigate the dynamics of triplet excitons resulting from singlet fission in pentacene and their ionization at a C60 heterojunction. We model the generation and diffusion of excitons to predict the spectral response. We find the triplet diffusion length in polycrystalline pentacene to be 40 nm. Poly(3-hexylthiophene) between the electrode and pentacene works both to confine triplet excitons and also to transfer photogenerated singlet excitons into pentacene with 30% efficiency. The lower bound for the singlet fission quantum efficiency in pentacene is 180 ± 15%.

  6. Polarization-dependent exciton dynamics in tetracene single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Chunfeng; Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

    2014-12-01

    We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors.

  7. Localization length scales of triplet excitons in singlet fission materials

    NASA Astrophysics Data System (ADS)

    Bayliss, Sam L.; Thorley, Karl J.; Anthony, John E.; Bouchiat, Hélène; Greenham, Neil C.; Chepelianskii, Alexei D.

    2015-09-01

    We measure the dielectric confinement length scales of triplet excitons in organic semiconductors by jointly measuring their microwave-domain electric and magnetic susceptibilities. We apply this technique to characterize triplet excitons in two singlet fission materials with distinct solid-state packing and correlate the extracted localization length scales with the role of the excitonic environment. By using the magnetic susceptibility simultaneously determined through our experiments, we compare the independently extracted dielectric and spin-spin localization length scales, highlighting the role of local anisotropy on the properties of excitonic triplet states.

  8. Revealing and Characterizing Dark Excitons through Coherent Multidimensional Spectroscopy.

    PubMed

    Tollerud, Jonathan O; Cundiff, Steven T; Davis, Jeffrey A

    2016-08-26

    Dark excitons are of fundamental importance in a broad range of contexts but are difficult to study using conventional optical spectroscopy due to their weak interaction with light. We show how coherent multidimensional spectroscopy can reveal and characterize dark states. Using this approach, we identify parity-forbidden and spatially indirect excitons in InGaAs/GaAs quantum wells and determine details regarding lifetimes, homogeneous and inhomogeneous linewidths, broadening mechanisms, and coupling strengths. The observations of coherent coupling between these states and bright excitons hint at a role for a multistep process by which excitons in the barrier can relax into the quantum wells. PMID:27610881

  9. Valley-Polarized Interlayer Excitons in 2D Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Rivera, Pasqual; Seyler, Kyle; Yu, Hongyi; Schaibley, John; Yan, Jiaqiang; Mandrus, David; Xu, Xiaodong

    Vertically stacked monolayers of MoSe2 and WSe2 feature a type-II band alignment causing the formation of interlayer excitons, where the Coulomb bound hole and electron reside in different layers. This species of exciton has lifetime many orders of magnitude longer than intralayer valley excitons, providing a unique and advantageous system for investigating valley exciton physics. Here, we optically pump the MoSe2-WSe2 heterostructure with circularly polarized light, creating interlayer valley excitons with gate-tunable spin-valley polarization lifetime up to 40 ns. This long valley lifetime enables the diffusion of the interlayer valley exciton gas to be visualized. Under increasing excitation power we observe the formation of a ring in the spatial distribution of the valley polarization, a manifestation of significant valley-selective exchange interactions at high exciton densities. The combination of long valley polarization and spatial diffusion makes the interlayer exciton in semiconductor heterostructures an exciting platform for studies of valley exciton physics.

  10. Disorder-enhanced exciton delocalization in an extended dendrimer.

    PubMed

    Pouthier, Vincent

    2014-08-01

    The exciton dynamics in a disordered extended dendrimer is investigated numerically. Because a homogeneous dendrimer exhibits few highly degenerate energy levels, a dynamical localization arises when the exciton is initially located on the periphery. However, it is shown that the disorder lifts the degeneracy and favors a delocalization-relocalization transition. Weak disorder enhances the delocalized nature of the exciton and improves any quantum communication, whereas strong disorder prevents the exciton from propagating in accordance with the well-known Anderson theory. PMID:25215792

  11. Binding energies of indirect excitons in double quantum well systems

    NASA Astrophysics Data System (ADS)

    Rossokhaty, Alex; Schmult, Stefan; Dietsche, Werner; von Klitzing, Klaus; Kukushkin, Igor

    2011-03-01

    A prerequisite towards Bose-Einstein condensation is a cold and dense system of bosons. Indirect excitons in double GaAs/AlGaAs quantum wells (DQWs) are believed to be suitable candidates. Indirect excitons are formed in asymmetric DQW structures by mass filtering, a method which does not require external electric fields. The exciton density and the electron-hole balance can be tuned optically. Binding energies are measured by a resonant microwave absorption technique. Our results show that screening of the indirect excitons becomes already relevant at densities as low as ~ 5 × 109 cm-2 and results in their destruction.

  12. Simulations of singlet exciton diffusion in organic semiconductors: a review

    SciTech Connect

    Bjorgaard, Josiah A.; Kose, Muhammet Erkan

    2014-12-22

    Our review describes the various aspects of simulation strategies for exciton diffusion in condensed phase thin films of organic semiconductors. Several methods for calculating energy transfer rate constants are discussed along with procedures for how to account for energetic disorder. Exciton diffusion can be modelled by using kinetic Monte-Carlo methods or master equations. Recent literature on simulation efforts for estimating exciton diffusion lengths of various conjugated polymers and small molecules are introduced. Moreover, these studies are discussed in the context of the effects of morphology on exciton diffusion and the necessity of accurate treatment of disorder for comparison of simulation results with those of experiment.

  13. Surface photovoltage in exciton absorption range in CdS

    NASA Technical Reports Server (NTRS)

    Morawski, A.; Banisch, R.; Lagowski, J.

    1977-01-01

    The high resolution, intrinsic spectra of surface photovoltage are reported for semiconducting n-type CdS single crystals. At reduced temperatures (120-160 K) the spectra exhibit three sharp maxima due to A, B and C free exciton transitions. Energy positions of these lines and valence band parameters (spin-orbit and crystal field splittings) estimated from surface photovoltage are in good agreement with values obtained by other methods. The excitonic transitions are very sensitive to surface treatment, i.e. polishing, etching, background illumination and surface doping. The mechanism of direct interaction of free excitons with surface states is proposed to explain exciton lines in surface photovoltage.

  14. Exciton annihilation in dye-sensitized nanocrystalline semiconductor films

    NASA Astrophysics Data System (ADS)

    Namekawa, Akihiro; Katoh, Ryuzi

    2016-08-01

    Exciton annihilation in dye-sensitized nanocrystalline semiconductor (Al2O3) films has been studied through laser-induced fluorescence spectroscopy. The relative quantum yield of the fluorescence decreases with increasing excitation light intensity, the indication being that exciton annihilation occurred. The rate constants of the annihilation were estimated for three dyes, N719, D149, and MK2, that are known to be sensitizing dyes for efficient dye-sensitized solar cells. The hopping time between dye molecules and the diffusion length of excitons within their lifetime were also estimated to facilitate discussion of the relevance of exciton annihilation to primary processes in dye-sensitized solar cells.

  15. Measurement of Exciton Binding Energy of Monolayer WS2

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhu, Bairen; Cui, Xiaodong

    Excitonic effects are prominent in monolayer crystal of transition metal dichalcogenides (TMDCs) because of spatial confinement and reduced Coulomb screening. Here we use linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE) to measure the exciton binding energy of monolayer WS2. Peaks for excitonic absorptions of the direct gap located at K valley of the Brillouin zone and transitions from multiple points near Γ point of the Brillouin zone, as well as trion side band are shown in the linear absorption spectra of WS2. But there is no gap between distinct excitons and the continuum of the interband transitions. Strong electron-phonon scattering, overlap of excitons around Γ point and the transfer of the oscillator strength from interband continuum to exciton states make it difficult to resolve the electronic interband transition edge even down to 10K. The gap between excited states of the band-edge exciton and the single-particle band is probed by TP-PLE measurements. And the energy difference between 1s exciton and the single-particle gap gives the exciton binding energy of monolayer WS2 to be about 0.71eV. The work is supported by Area of excellency (AoE/P-04/08), CRF of Hong Kong Research Grant Council (HKU9/CRF/13G) and SRT on New Materials of The University of Hong Kong.

  16. Polarization-dependent exciton dynamics in tetracene single crystals

    SciTech Connect

    Zhang, Bo; Zhang, Chunfeng Xu, Yanqing; Wang, Rui; He, Bin; Liu, Yunlong; Zhang, Shimeng; Wang, Xiaoyong; Xiao, Min

    2014-12-28

    We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors.

  17. Electrode radius predicts lesion radius during radiofrequency energy heating. Validation of a proposed thermodynamic model

    SciTech Connect

    Haines, D.E.; Watson, D.D.; Verow, A.F. )

    1990-07-01

    Myocardial heating by transcatheter delivery of radiofrequency (RF) energy has been proposed as an effective means of arrhythmia ablation. A thermodynamic model describing the radial temperature gradient at steady state during RF-induced heating is proposed. If one assumes that RF power output is adjusted to maintain a constant electrode-tissue interface temperature at all times, then this thermodynamic model predicts that the radius of the RF-induced lesion will be directly proportional to the electrode radius. A total of 76 RF-induced lesions were created in a model of isolated canine right ventricular free wall perfused and superfused with oxygenated Krebs-Henseleit buffer. Electrode radius was varied between 0.75 and 2.25 mm. RF energy (500 kHz) was delivered for 90 seconds, and the power output was adjusted to maintain a constant electrode-tissue interface temperature of 60 degrees C. A strong linear correlation was observed between electrode radius and lesion radius in two dimensions: transverse (p = 0.0001, r = 0.85) and transmural (p = 0.0001, r = 0.89). With these data, the temperature correlation with irreversible myocardial injury in this model was calculated at 46.6-48.8 degrees C. Therefore, the proposed thermodynamic model closely predicts the observed relation between electrode radius and lesion size during RF myocardial heating.

  18. The Kopenhagen operation of the Soviet KGB. The Kopenahagen interview of Niels Bohr by a Soviet scientist and KGB

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Kozhevnikov, A. B.; Yavelov, Boris E.

    The authors describes the Soveit KGB operation of interviewing Niels Bohr by soviet scientist Yakov. P. Terletskii(1912-1993) and KGB kolonel Lev Petrovich Vasilevskii (b. 1903) on 24 september 1945-20 november 1945 concerning the American Nuclear weapons (Manhattan project)undertaken under the project of the Soviet KGB Lieder Lavrentij P. Berija and supervised by Soviet KGB generals Pavel A. Sudoplatov (b. 1907) and Nikolay S. Sazykin (1910-1985) after the detailed magnetophone interview of Professor Ya. P. Terletskij before his die in Moscow.

  19. Influence of Effects of Self-Polarization and Exciton-Phonon Interactions on the Exciton Energy in Lead Iodide Nanofilms

    NASA Astrophysics Data System (ADS)

    Kramar, V. M.; Pugantseva, O. V.

    2014-08-01

    In the approximation of effective masses for electronic and phononic - dielectric continuum - systems, the influence of spatial bounding, self-polarization, and exciton-phonon interactions on the exciton state in a flat double nanoheterostructure (a nanofilm) - lead iodide in a polymer matrix -is theoretically investigated for the model of a single infinitely deep quantum well. It is demonstrated that the dominating factor determining the energy of the bottom of the ground exciton band and its binding energy is spatial bounding. The relationship between two other effects depends on the nanofilm thickness, namely, the influence of the self-polarization effect in ultrathin films significantly exceeds that of exciton-phonon interaction.

  20. External fixation of distal radius fractures.

    PubMed

    Slutsky, David J

    2007-12-01

    External fixation has been used for the treatment of distal radius fractures for more than 50 years. Although the fixator configurations have undergone considerable modification over time, the type of fixator itself is not as important as the underlying principles that provide the foundation for external fixation. Although volar plate fixation is currently in vogue, the indications for external fixation remain largely unchanged. Newer fixator designs have also expanded the traditional usage to include nonbridging applications that allow early wrist motion. The following discussion focuses on the myriad uses for external fixation as well as the shortcomings and potential pitfalls. PMID:18070654

  1. Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates

    NASA Astrophysics Data System (ADS)

    Schröter, M.; Ivanov, S. D.; Schulze, J.; Polyutov, S. P.; Yan, Y.; Pullerits, T.; Kühn, O.

    2015-03-01

    The influence of exciton-vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein-pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton-vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton-vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton-vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton-vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system-bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM) method will be

  2. Excitonic luminescence upconversion in a two-dimensional semiconductor

    NASA Astrophysics Data System (ADS)

    Jones, Aaron M.; Yu, Hongyi; Schaibley, John R.; Yan, Jiaqiang; Mandrus, David G.; Taniguchi, Takashi; Watanabe, Kenji; Dery, Hanan; Yao, Wang; Xu, Xiaodong

    2016-04-01

    Photon upconversion is an elementary light-matter interaction process in which an absorbed photon is re-emitted at higher frequency after extracting energy from the medium. This phenomenon lies at the heart of optical refrigeration in solids, where upconversion relies on anti-Stokes processes enabled either by rare-earth impurities or exciton-phonon coupling. Here, we demonstrate a luminescence upconversion process from a negatively charged exciton to a neutral exciton resonance in monolayer WSe2, producing spontaneous anti-Stokes emission with an energy gain of 30 meV. Polarization-resolved measurements find this process to be valley selective, unique to monolayer semiconductors. Since the charged exciton binding energy closely matches the 31 meV A1' optical phonon, we ascribe the spontaneous excitonic anti-Stokes to doubly resonant Raman scattering, where the incident and outgoing photons are in resonance with the charged and neutral excitons, respectively. In addition, we resolve a charged exciton doublet with a 7 meV splitting, probably induced by exchange interactions, and show that anti-Stokes scattering is efficient only when exciting the doublet peak resonant with the phonon, further confirming the excitonic doubly resonant picture.

  3. Ultrafast exciton relaxation in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Thilagam, A.

    2016-04-01

    We examine a mechanism by which excitons undergo ultrafast relaxation in common monolayer transition metal dichalcogenides. It is shown that at densities ≈1 × 1011 cm-2 and temperatures ≤60 K, excitons in well known monolayers (MoS2, MoSe2, WS2, and WSe2) exist as point-like structureless electron-hole quasi-particles. We evaluate the average rate of exciton energy relaxation due to acoustic phonons via the deformation potential and the piezoelectric coupling mechanisms and examine the effect of spreading of the excitonic wavefunction into the region perpendicular to the monolayer plane. Our results show that the exciton relaxation rate is enhanced with increase in the exciton temperature, while it is decreased with increase in the lattice temperature. Good agreements with available experimental data are obtained when the calculations are extrapolated to room temperatures. A unified approach taking into account the deformation potential and piezoelectric coupling mechanisms shows that exciton relaxation induced by phonons is as significant as defect assisted scattering and trapping of excitons by surface states in monolayer transition metal dichalcogenides.

  4. Measuring and Modeling Exciton Dynamics in Multichromophore Macromolecules

    NASA Astrophysics Data System (ADS)

    Weingarten, Daniel; Hu, Nan; Lacount, Michael; Ferguson, Andrew; Dessau, Daniel; Walba, David; Vandelagemaat, Jao; Lusk, Mark; Rumbles, Garry; Shaheen, Sean

    2014-03-01

    Attaining specific control over the dynamics of exciton movement in organic photovoltaics (OPV) has, thus far, been a largely unachieved goal of OPV design. Such an understanding of exciton transfer dynamics would allow for the design of macromolecules whose energetics, bandgaps, and conformational properties allow for control of exciton flow toward specific reaction site chromophores, potentially enabling non-linear improvements in energy harvesting. To better understand exciton movement we synthesized and characterized a multi-chromophoric macromolecule and measured the dynamics of exciton transfer across coupled chromophores. Our model system is a hexabenzocoronene molecule attached to six oligothiophene. We developed a kinetic model and by fitting it to the decay rates of excited states measured via time-correlated single photon counting, we were able to extract rates for exciton transfer between chromophores. Since this macromolecule exhibits liquid crystalline aggregation behavior, observing the dependence of exciton transfer rates on solution concentration yields an improved understanding of exciton movement within a single molecule as well as the dependence of that transfer process on local material structure.

  5. Spin injection effects on exciton distributions in conjugated organic semiconductors

    NASA Astrophysics Data System (ADS)

    Yunus, Mohammad; Ruden, P. Paul; Smith, Darryl

    2008-03-01

    Conjugated organic semiconductors are under rapid development as the active material in organic light emitting diodes (OLEDs). Electrons and holes injected into the organic semiconductor form bound singlet or triplet excitons. Singlet excitons may recombine radiatively giving rise to light emission whereas triplet excitons do not recombine radiatively. Thus the quantum efficiency of OLEDs is limited by the fraction of singlet excitons, χS. In this work, we explore theoretically an approach to control χS through spin-polarized electron and hole injection from ferromagnetic contacts. Conventional ferromagnetic transition metals and half-metallic materials, such as LSMO, are considered as candidate electrode materials. Electron and hole transport in the organic semiconductor is treated through the conventional device equations with the formation of excitons described by a Langevin process. Once formed, the excitons may recombine or diffuse. Triplet excitons have a lower recombination probability and hence a longer diffusion length. The model calculations yield steady state spatial profiles for singlet and triplet exciton densities in the organic semiconductor.

  6. Storing excitons in transition-metal dichalcogenides using dark states

    NASA Astrophysics Data System (ADS)

    Gunlycke, Daniel; Tseng, Frank; Simsek, Ergun

    Monolayer transition-metal dichalcogenides exhibit strongly bound excitons confined to two dimensions. One challenge in exploiting these excitons is that they have a finite life time and collapse through electron-hole recombination. We propose that the exciton life time could be extended by transitioning the exciton population into dark states. The symmetry of these dark states require the electron and hole to be spatially separated, which not only causes these states to be optically inactive but also inhibits electron-hole recombination. Based on an atomistic model we call the Triangular Lattice Exciton (3ALE) model, we derive transition matrix elements and approximate selection rules showing that excitons could be transitioned into and out of dark states using a pulsed infrared laser. For illustration, we also present exciton population scenarios based on different recombination decay constants. Longer exciton lifetimes could make these materials candidates for applications in energy management and quantum information processing. This work was supported by the Office of Naval Research, directly and through the Naval Research Laboratory.

  7. Mapping the exciton diffusion in semiconductor nanocrystal solids.

    PubMed

    Kholmicheva, Natalia; Moroz, Pavel; Bastola, Ebin; Razgoniaeva, Natalia; Bocanegra, Jesus; Shaughnessy, Martin; Porach, Zack; Khon, Dmitriy; Zamkov, Mikhail

    2015-03-24

    Colloidal nanocrystal solids represent an emerging class of functional materials that hold strong promise for device applications. The macroscopic properties of these disordered assemblies are determined by complex trajectories of exciton diffusion processes, which are still poorly understood. Owing to the lack of theoretical insight, experimental strategies for probing the exciton dynamics in quantum dot solids are in great demand. Here, we develop an experimental technique for mapping the motion of excitons in semiconductor nanocrystal films with a subdiffraction spatial sensitivity and a picosecond temporal resolution. This was accomplished by doping PbS nanocrystal solids with metal nanoparticles that force the exciton dissociation at known distances from their birth. The optical signature of the exciton motion was then inferred from the changes in the emission lifetime, which was mapped to the location of exciton quenching sites. By correlating the metal-metal interparticle distance in the film with corresponding changes in the emission lifetime, we could obtain important transport characteristics, including the exciton diffusion length, the number of predissociation hops, the rate of interparticle energy transfer, and the exciton diffusivity. The benefits of this approach to device applications were demonstrated through the use of two representative film morphologies featuring weak and strong interparticle coupling. PMID:25682881

  8. Temperature Dependence of the Free Excitons in GaN

    NASA Astrophysics Data System (ADS)

    Reynolds, D. C.; Collins, T. C.

    2002-03-01

    We are presenting the temperature dependence of the photoluminescence (PL) of the free excitons and donor bound exciton ( D^circ ,X) in GaN. The excitons involved are the longitudinal, the Γ5 and the Γ6 excitons as well as D^circ ,X. The temperature dependence of the energy positions of Γ_5, Γ_6, and D^circ ,X are well mapped out using the Varshni equation in a temperature range of 0 -- 60 K. In this temperature range, the energy positions of the longitudinal excitons depart from the predictions of the Varshni equation used for the other excitons. If more than one columnar structural direction is present, then in PL, more than one longitudinal mode might be observed. The sample being investigated shows two longitudinal modes. The energy separation between the longitudinal and transverse modes has been reported by Hopfield and Thomas. One component in the separation is the polarizability, which has some temperature dependence. The longitudinal exciton then has a band gap temperature dependence, which is predicted by the Varshni equation and an additional temperature dependence due to the polarizability. We have used the Varshni equation plus a linear and quadratic temperature dependence term to map the energy positions of the longitudinal excitons.

  9. Excitons in atomically thin black phosphorus

    NASA Astrophysics Data System (ADS)

    Surrente, A.; Mitioglu, A. A.; Galkowski, K.; Tabis, W.; Maude, D. K.; Plochocka, P.

    2016-03-01

    Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in situ on the same flake as the photoluminescence measurements, demonstrates the single layer character of the investigated samples. The emission spectra, dominated by excitonic effects, display the expected in-plane anisotropy. The emission energy depends on the type of substrate on which the flake is placed due to the different dielectric screening. Finally, the blueshift of the emission with increasing temperature is well described using a two-oscillator model for the temperature dependence of the band gap.

  10. Electro-optical properties of Rydberg excitons

    NASA Astrophysics Data System (ADS)

    Zielińska-Raczyńska, Sylwia; Ziemkiewicz, David; Czajkowski, Gerard

    2016-07-01

    We show how to compute the electro-optical functions (absorption, reflection, and transmission) when Rydberg exciton-polaritons appear, including the effect of the coherence between the electron-hole pair and the electromagnetic field. With the use of the real density matrix approach, numerical calculations applied for the Cu2O crystal are performed. We also examine in detail and explain the dependence of the resonance displacement on the state number and applied electric field strength. We report a fairly good agreement with recently published experimental data.

  11. Feasibility study of a nuclear exciton laser

    NASA Astrophysics Data System (ADS)

    ten Brinke, Nicolai; Schützhold, Ralf; Habs, Dietrich

    2013-05-01

    Nuclear excitons known from Mössbauer spectroscopy describe coherent excitations of a large number of nuclei—analogous to Dicke states (or Dicke super-radiance) in quantum optics. In this paper, we study the possibility of constructing a laser based on these coherent excitations. In contrast to the free-electron laser (in its usual design), such a device would be based on stimulated emission and thus might offer certain advantages, e.g., regarding energy-momentum accuracy. Unfortunately, inserting realistic parameters, the window of operability is probably not open (yet) to present-day technology; but our design should be feasible in the UV regime, for example.

  12. Exciton Transport and Perfect Coulomb Drag

    NASA Astrophysics Data System (ADS)

    Nandi, Debaleena

    2013-03-01

    Exciton condensation is realized in closely-spaced bilayer quantum Hall systems at νT = 1 when the total density in the two 2D electron layers matches the Landau level degeneracy. In this state, electrons in one layer become tightly bound to holes in the other layer, forming a condensate similar to the Cooper pairs in a superconductor. Being charge neutral, these excitons ought to be free to move throughout the bulk of the quantum Hall fluid. One therefore expects that electron current driven in one layer would spontaneously generate a ``hole'' current in the other layer, even in the otherwise insulating bulk of the 2D system. We demonstrate precisely this effect, using a Corbino geometry to defeat edge state transport. Our sample contains two essentially identical two-dimensional electron systems (2DES) in GaAs quantum wells separated by a thin AlGaAs barrier. It is patterned into an annulus with arms protruding from each rim that provide contact to each 2DES separately. A current drag geometry is realized by applying a drive voltage between the outer and inner rim on one 2DES layer while the two rims on the opposite layer are connected together in a closed loop. There is no direct electrical connection between the two layers. At νT = 1 the bulk of the Corbino annulus becomes insulating owing to the quantum Hall gap and net charge transport across the bulk is suppressed. Nevertheless, we find that in the drag geometry appreciable currents do flow in each layer. These currents are almost exactly equal magnitude but, crucially, flow in opposite directions. This phenomenon reflects exciton transport within the νT = 1 condensate, rather than its quasiparticle excitations. We find that quasiparticle transport competes with exciton transport at elevated temperatures, drive levels, and layer separations. This work represents a collaboration with A.D.K. Finck, J.P. Eisenstein, L.N. Pfeiffer and K.W. West. This work is supported by the NSF under grant DMR-1003080.

  13. Entangled exciton states in quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  14. [Arthroscopic treatment of distal radius fracture].

    PubMed

    Lindau, T

    2006-11-01

    The orthopaedic surgeons cannot predict the functional results after a distal intra articular radius fracture. The intra-articular incongruity of more than 1 mm is associated with the development of secondary osteoarthrosis. The wrist arthroscopy became an essential help for the reduction of these fractures. The hand is normally in an upright position with a traction of approximately 4-5 kg which facilitates the reduction of the extra-articular fracture component. It is possible to use a technique of horizontal traction. The arthroscopy allows the reduction and control of the fixing of the various fragments, but also the treatment associated lesions associated. One randomized study, which compared 34 arthroscopically treated fractures with 48 openly treated, concluded that the arthroscopy-treated group had better outcome, better reduction, better grip strength and better range of motion than the openly treated group. The treatment of intra articular distal radius fractures with arthroscopic assistance is thus the guaranteeing of the most anatomical reduction of articular surface. It allows the diagnosis and the treatment of the associated lesions, decreases the peripheral fibrous scars of soft tissues by avoiding initially extensive approaches and finally gives better functional results. PMID:17361885

  15. [Arthroscopic treatment of distal radius fracture.

    PubMed

    Lindau, T

    2006-11-01

    The orthopaedic surgeons cannot predict the functional results after a distal intra articular radius fracture. The intra-articular incongruity of more than 1 mm is associated with the development of secondary osteoarthrosis. The wrist arthroscopy became an essential help for the reduction of these fractures. The hand is normally in an upright position with a traction of approximately 4-5 kg which facilitates the reduction of the extra-articular fracture component. It is possible to use a technique of horizontal traction. The arthroscopy allows the reduction and control of the fixing of the various fragments, but also the treatment associated lesions associated. One randomized study, which compared 34 arthroscopically treated fractures with 48 openly treated, concluded that the arthroscopy-treated group had better outcome, better reduction, better grip strength and better range of motion than the openly treated group. The treatment of intra articular distal radius fractures with arthroscopic assistance is thus the guaranteeing of the most anatomical reduction of articular surface. It allows the diagnosis and the treatment of the associated lesions, decreases the peripheral fibrous scars of soft tissues by avoiding initially extensive approaches and finally gives better functional results. PMID:17349390

  16. Charge-transfer excitons at organic semiconductor surfaces and interfaces.

    PubMed

    Zhu, X-Y; Yang, Q; Muntwiler, M

    2009-11-17

    When a material of low dielectric constant is excited electronically from the absorption of a photon, the Coulomb attraction between the excited electron and the hole gives rise to an atomic H-like quasi-particle called an exciton. The bound electron-hole pair also forms across a material interface, such as the donor/acceptor interface in an organic heterojunction solar cell; the result is a charge-transfer (CT) exciton. On the basis of typical dielectric constants of organic semiconductors and the sizes of conjugated molecules, one can estimate that the binding energy of a CT exciton across a donor/acceptor interface is 1 order of magnitude greater than k(B)T at room temperature (k(B) is the Boltzmann constant and T is the temperature). How can the electron-hole pair escape this Coulomb trap in a successful photovoltaic device? To answer this question, we use a crystalline pentacene thin film as a model system and the ubiquitous image band on the surface as the electron acceptor. We observe, in time-resolved two-photon photoemission, a series of CT excitons with binding energies < or = 0.5 eV below the image band minimum. These CT excitons are essential solutions to the atomic H-like Schrodinger equation with cylindrical symmetry. They are characterized by principal and angular momentum quantum numbers. The binding energy of the lowest lying CT exciton with 1s character is more than 1 order of magnitude higher than k(B)T at room temperature. The CT(1s) exciton is essentially the so-called exciplex and has a very low probability of dissociation. We conclude that hot CT exciton states must be involved in charge separation in organic heterojunction solar cells because (1) in comparison to CT(1s), hot CT excitons are more weakly bound by the Coulomb potential and more easily dissociated, (2) density-of-states of these hot excitons increase with energy in the Coulomb potential, and (3) electronic coupling from a donor exciton to a hot CT exciton across the D

  17. Exciton complexes in low dimensional transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Thilagam, A.

    2014-08-01

    We examine the excitonic properties of layered configurations of low dimensional transition metal dichalcogenides (LTMDCs) using the fractional dimensional space approach. The binding energies of the exciton, trion, and biexciton in LTMDCs of varying layers are analyzed, and linked to the dimensionality parameter α, which provides insight into critical electro-optical properties (relative oscillator strength, absorption spectrum, exciton-exciton interaction) of the material systems. The usefulness of α is highlighted by its independence of the physical mechanisms underlying the confinement effects of geometrical structures. Our estimates of the binding energies of exciton complexes for the monolayer configuration of transition metal dichalcogenides suggest a non-collinear structure for the trion and a positronium-molecule-like square structure for the biexciton.

  18. Exciton complexes in low dimensional transition metal dichalcogenides

    SciTech Connect

    Thilagam, A.

    2014-08-07

    We examine the excitonic properties of layered configurations of low dimensional transition metal dichalcogenides (LTMDCs) using the fractional dimensional space approach. The binding energies of the exciton, trion, and biexciton in LTMDCs of varying layers are analyzed, and linked to the dimensionality parameter α, which provides insight into critical electro-optical properties (relative oscillator strength, absorption spectrum, exciton-exciton interaction) of the material systems. The usefulness of α is highlighted by its independence of the physical mechanisms underlying the confinement effects of geometrical structures. Our estimates of the binding energies of exciton complexes for the monolayer configuration of transition metal dichalcogenides suggest a non-collinear structure for the trion and a positronium-molecule-like square structure for the biexciton.

  19. High efficiency organic multilayer photodetectors based on singlet exciton fission

    NASA Astrophysics Data System (ADS)

    Lee, J.; Jadhav, P.; Baldo, M. A.

    2009-07-01

    We employ an exciton fission process that converts one singlet exciton into two triplet excitons to increase the quantum efficiency of an organic multilayer photodetector beyond 100%. The photodetector incorporates ultrathin alternating donor-acceptor layers of pentacene and C60, respectively. By comparing the quantum efficiency after separate pentacene and C60 photoexcitation we find that singlet exciton fission in pentacene enhances the quantum efficiency by (45±7)%. In quantitative agreement with this result, we also observe that the photocurrent generated from pentacene excitons is decreased by (2.7±0.2)% under an applied magnetic field of H =0.4 T, while the C60 photocurrent is relatively unchanged.

  20. Temperature effects in excitonic condensation driven by the lattice distortion

    NASA Astrophysics Data System (ADS)

    Do, Thi-Hong-Hai; Nguyen, Huu-Nha; Nguyen, Thi-Giang; Phan, Van-Nham

    2016-06-01

    The stability of the excitonic condensation at low temperature driven by a coupling of electrons to vibrational degrees of freedom in semimetal two-dimensional electronic system is discussed. In the framework of the unrestricted Hartree-Fock approximation, we derive a set of equations to determine both the excitonic condensate order parameter and lattice displacement self-consistently. By lowering temperature we find out a semimetal-insulator transition in the system if the coupling is large enough. The insulating state typifies an excitonic condensation accompanied by a finite lattice distortion. Increasing temperature, both excitonic condensate order parameter and the lattice distortion decrease and then disappear in the same manner. Microscopic analysis in momentum space strongly specifies that the excitonic condensate driven by the lattice distortion favours the BCS type.

  1. Probing excitonic dark states in single-layer tungsten disulphide

    NASA Astrophysics Data System (ADS)

    Ye, Ziliang; Cao, Ting; O'Brien, Kevin; Zhu, Hanyu; Yin, Xiaobo; Wang, Yuan; Louie, Steven G.; Zhang, Xiang

    2014-09-01

    Transition metal dichalcogenide (TMDC) monolayers have recently emerged as an important class of two-dimensional semiconductors with potential for electronic and optoelectronic devices. Unlike semi-metallic graphene, layered TMDCs have a sizeable bandgap. More interestingly, when thinned down to a monolayer, TMDCs transform from indirect-bandgap to direct-bandgap semiconductors, exhibiting a number of intriguing optical phenomena such as valley-selective circular dichroism, doping-dependent charged excitons and strong photocurrent responses. However, the fundamental mechanism underlying such a strong light-matter interaction is still under intensive investigation. First-principles calculations have predicted a quasiparticle bandgap much larger than the measured optical gap, and an optical response dominated by excitonic effects. In particular, a recent study based on a GW plus Bethe-Salpeter equation (GW-BSE) approach, which employed many-body Green's-function methodology to address electron-electron and electron-hole interactions, theoretically predicted a diversity of strongly bound excitons. Here we report experimental evidence of a series of excitonic dark states in single-layer WS2 using two-photon excitation spectroscopy. In combination with GW-BSE theory, we prove that the excitons are of Wannier type, meaning that each exciton wavefunction extends over multiple unit cells, but with extraordinarily large binding energy (~0.7 electronvolts), leading to a quasiparticle bandgap of 2.7 electronvolts. These strongly bound exciton states are observed to be stable even at room temperature. We reveal an exciton series that deviates substantially from hydrogen models, with a novel energy dependence on the orbital angular momentum. These excitonic energy levels are experimentally found to be robust against environmental perturbations. The discovery of excitonic dark states and exceptionally large binding energy not only sheds light on the importance of many

  2. Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing.

    PubMed

    Era, Masanao; Komatsu, Yumeko; Sakamoto, Naotaka

    2016-04-01

    Spin-coated films of a lead halide, PbX: X = I and Br, layered perovskites having cyclohexenylethyl ammonium molecule as an organic layer, which were mixed with other metal halide-based layered perovskites consisting of various divalent metal halides (for example, Ca2, Cdl2, FeI2, SnBr2 and so on), were prepared. The results of X-ray diffraction measurements exhibited that solid solution formation between PbX-based layered perovskite and other divalent metal halide-based layered perovskites was observed up to very high molar concentration of 50 molar% in the mixed film samples when divalent cations having ionic radius close to that of Pb2+ were employed. In the solid solution films, the exciton emission was much enhanced at room temperature. Exciton emission intensity of Pbl-based layered perovskite mixed with Cal-based layered perovskite (20 molar%) is about 5 times large that of the pristine Pbl-based layered perovskite, and that of PbBr-based layered perovskite mixed with SnBr-based layered perovskite (20 molar%) was also about 5 times large that of the pristine PbBr-based layered perovskite at room temperature. PMID:27451628

  3. Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching.

    PubMed

    Trofymchuk, Kateryna; Prodi, Luca; Reisch, Andreas; Mély, Yves; Altenhöner, Kai; Mattay, Jochen; Klymchenko, Andrey S

    2015-06-18

    Photoswitching of bright fluorescent nanoparticles opens new possibilities for bioimaging with superior temporal and spatial resolution. However, efficient photoswitching of nanoparticles is hard to achieve using Förster resonance energy transfer (FRET) to a photochromic dye, because the particle size is usually larger than the Förster radius. Here, we propose to exploit the exciton diffusion within the FRET donor dyes to boost photoswitching efficiency in dye-doped polymer nanoparticles. To this end, we utilized bulky hydrophobic counterions that prevent self-quenching and favor communication of octadecyl rhodamine B dyes inside a polymer matrix of poly(D,L-lactide-co-glycolide). Among tested counterions, only perfluorinated tetraphenylborate that favors the exciton diffusion enables high photoswitching efficiency (on/off ratio ∼20). The switching improves with donor dye loading and requires only 0.1-0.3 wt % of a diphenylethene photochromic dye. Our nanoparticles were validated both in solution and at the single-particle level. The proposed concept paves the way to new efficient photoswitchable nanomaterials. PMID:26266601

  4. Ultrasound-Assisted Distal Radius Fracture Reduction

    PubMed Central

    Socransky, Steve; Skinner, Andrew; Bromley, Mark; Smith, Andrew; Anawati, Alexandre; Middaugh, Jeff; Ross, Peter

    2016-01-01

    Introduction Closed reduction of distal radius fractures (CRDRF) is a commonly performed emergency department (ED) procedure. The use of point-of-care ultrasound (PoCUS) to diagnose fractures and guide reduction has previously been described. The primary objective of this study was to determine if the addition of PoCUS to CRDRF changed the perception of successful initial reduction. This was measured by the rate of further reduction attempts based on PoCUS following the initial clinical determination of achievement of best possible reduction. Methods  We performed a multicenter prospective cohort study, using a convenience sample of adult ED patients presenting with a distal radius fracture to five Canadian EDs. All study physicians underwent standardized PoCUS training for fractures. Standard clinically-guided best possible fracture reduction was initially performed. PoCUS was then used to assess the reduction adequacy. Repeat reduction was performed if deemed indicated. A post-reduction radiograph was then performed. Clinician impression of reduction adequacy was scored on a 5 point Likert scale following the initial clinically-guided reduction and following each PoCUS scan and the post-reduction radiograph. Results  There were 131 patients with 132 distal radius fractures. Twelve cases were excluded prior to analysis. There was no significant difference in the assessment of the initial reduction status by PoCUS as compared to the clinical exam (mean score: 3.8 vs. 3.9; p = 0.370; OR 0.89; 95% CI 0.46 to 1.72; p = 0.87). Significantly fewer cases fell into the uncertain category with PoCUS than with clinical assessment (2 vs 12; p = 0.008). Repeat reduction was performed in 49 patients (41.2%). Repeat reduction led to a significant improvement (p < 0.001) in the PoCUS determined adequacy of reduction (mean score: 4.3 vs 3.1; p < 0.001). In this group, the odds ratio for adequate vs. uncertain or inadequate reduction assessment using PoCUS was 12.5 (95% CI 3

  5. Ultrasound-Assisted Distal Radius Fracture Reduction.

    PubMed

    Socransky, Steve; Skinner, Andrew; Bromley, Mark; Smith, Andrew; Anawati, Alexandre; Middaugh, Jeff; Ross, Peter; Atkinson, Paul

    2016-01-01

    Introduction Closed reduction of distal radius fractures (CRDRF) is a commonly performed emergency department (ED) procedure. The use of point-of-care ultrasound (PoCUS) to diagnose fractures and guide reduction has previously been described. The primary objective of this study was to determine if the addition of PoCUS to CRDRF changed the perception of successful initial reduction. This was measured by the rate of further reduction attempts based on PoCUS following the initial clinical determination of achievement of best possible reduction. Methods  We performed a multicenter prospective cohort study, using a convenience sample of adult ED patients presenting with a distal radius fracture to five Canadian EDs. All study physicians underwent standardized PoCUS training for fractures. Standard clinically-guided best possible fracture reduction was initially performed. PoCUS was then used to assess the reduction adequacy. Repeat reduction was performed if deemed indicated. A post-reduction radiograph was then performed. Clinician impression of reduction adequacy was scored on a 5 point Likert scale following the initial clinically-guided reduction and following each PoCUS scan and the post-reduction radiograph. Results  There were 131 patients with 132 distal radius fractures. Twelve cases were excluded prior to analysis. There was no significant difference in the assessment of the initial reduction status by PoCUS as compared to the clinical exam (mean score: 3.8 vs. 3.9; p = 0.370; OR 0.89; 95% CI 0.46 to 1.72; p = 0.87). Significantly fewer cases fell into the uncertain category with PoCUS than with clinical assessment (2 vs 12; p = 0.008). Repeat reduction was performed in 49 patients (41.2%). Repeat reduction led to a significant improvement (p < 0.001) in the PoCUS determined adequacy of reduction (mean score: 4.3 vs 3.1; p < 0.001). In this group, the odds ratio for adequate vs. uncertain or inadequate reduction assessment using PoCUS was 12.5 (95% CI 3

  6. Exciton Correlations in Intramolecular Singlet Fission.

    PubMed

    Sanders, Samuel N; Kumarasamy, Elango; Pun, Andrew B; Appavoo, Kannatassen; Steigerwald, Michael L; Campos, Luis M; Sfeir, Matthew Y

    2016-06-15

    We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases. PMID:27183040

  7. Excitons and charges at organic semiconductor heterojunctions.

    PubMed

    Friend, Richard H; Phillips, Matthew; Rao, Akshay; Wilson, Mark W B; Li, Zhe; McNeill, Christopher R

    2012-01-01

    All-organic heterojunction solar cells now provide very high quantum efficiencies for charge generation and rapidly-improving power conversion efficiencies. Charge generation and separation however, must overcome the strong Coulomb interactions between electrons and holes in these materials that is manifest also through the large exchange energies usually observed. We show for a polymer-polymer system with low charge generation efficiency that this arises through intersystem crossing from the photogenerated charge-transfer state to a lower lying triplet state, mediated by the proton hyperfine interaction, and that the activation barrier for full separation of electrons and holes is of the order of 250 meV. We observe, using transient optical spectroscopy, the processes of charge separation, recombination and sweep-out in efficient polymer-fullerene devices. We report also on the process of singlet exciton fission to form a pair of triplet excitons in pentacene that can later be dissociated against a heterojunction formed with C60. PMID:22470984

  8. Robust excitons inhabit soft supramolecular nanotubes

    PubMed Central

    Eisele, Dörthe M.; Arias, Dylan H.; Fu, Xiaofeng; Bloemsma, Erik A.; Steiner, Colby P.; Jensen, Russell A.; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A.; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.

    2014-01-01

    Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials. PMID:25092336

  9. Exciton Dynamics in Semiconducting Carbon Nanotubes

    SciTech Connect

    Graham, Matt; Chmeliov, Javgenij; Ma, Yingzhong; Shinohara, Nori; Green, Alexander A.; Hersam, Mark C.; Valkunas, Leonas; Fleming, Graham

    2010-01-01

    We report femtosecond transient absorption spectroscopic study on the (6, 5) single-walled carbon nanotubes and the (7, 5) inner tubes of a dominant double-walled carbon nanotube species. We found that the dynamics of exciton relaxation probed at the first transition-allowed state (E11) of a given tube type exhibits a markedly slower decay when the second transition-allowed state (E22) is excited than that measured by exciting its first transition-allowed state (E11). A linear intensity dependence of the maximal amplitude of the transient absorption signal is found for the E22 excitation, whereas the corresponding amplitude scales linearly with the square root of the E11 excitation intensity. Theoretical modeling of these experimental findings was performed by developing a continuum model and a stochastic model with explicit consideration of the annihilation of coherent excitons. Our detailed numerical simulations show that both models can reproduce reasonably well the initial portion of decay kinetics measured upon the E22 and E11 excitation of the chosen tube species, but the stochastic model gives qualitatively better agreement with the intensity dependence observed experimentally than those obtained with the continuum model.

  10. Robust excitons inhabit soft supramolecular nanotubes.

    PubMed

    Eisele, Dörthe M; Arias, Dylan H; Fu, Xiaofeng; Bloemsma, Erik A; Steiner, Colby P; Jensen, Russell A; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G

    2014-08-19

    Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature's efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature's complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders' soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions--prerequisites for efficient energy transport--are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature's high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials. PMID:25092336

  11. Robust excitons inhabit soft supramolecular nanotubes

    NASA Astrophysics Data System (ADS)

    Eisele, Dörthe M.; Arias, Dylan H.; Fu, Xiaofeng; Bloemsma, Erik A.; Steiner, Colby P.; Jensen, Russell A.; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A.; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.

    2014-08-01

    Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature's efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature's complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders' soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions-prerequisites for efficient energy transport-are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature's high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials.

  12. [Distal radius fractures: conservative or surgical treatment?].

    PubMed

    Mark, G; Ryf, C

    1993-07-01

    The "classical" Colles fracture of the distal radius is the most common fracture in the adult. In order to reduce the still rather high rate of permanent disability, this fracture involving a functionally important joint requires accurate reduction. The AO-fracture classification introduced by Müller not only defines the severity of an injury, but also allows for decision-making as to the most adequate treatment. Besides the purely conservative management by closed reduction and plaster cast for the type-A fractures, we have a number of other treatment modalities for the more complex-B and C-type fractures, such as closed reduction and percutaneous K-wire application or the use of the small external fixator as well as open reduction and internal fixation by plates and screws for a few selected indications. PMID:8211844

  13. Theory of exciton transfer and diffusion in conjugated polymers

    SciTech Connect

    Barford, William; Tozer, Oliver Robert

    2014-10-28

    We describe a theory of Förster-type exciton transfer between conjugated polymers. The theory is built on three assumptions. First, we assume that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, and described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω < J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. The resulting expression for the exciton transfer rate has a familiar form, being a function of the exciton transfer integral and the effective Franck-Condon factors. The effective Franck-Condon factors are functions of the effective Huang-Rhys parameters, which are inversely proportional to the chromophore size. The Born-Oppenheimer expressions were checked against DMRG calculations, and are found to be within 10% of the exact value for a tiny fraction of the computational cost. This theory of exciton transfer is then applied to model exciton migration in conformationally disordered poly(p-phenylene vinylene). Key to this modeling is the assumption that the donor and acceptor chromophores are defined by local exciton ground states (LEGSs). Since LEGSs are readily determined by the exciton center-of-mass wavefunction, this theory provides a quantitative link between polymer conformation and exciton migration. Our Monte Carlo simulations indicate that the exciton diffusion length depends weakly on the conformation of the polymer, with the diffusion length increasing slightly as the chromophores became straighter and longer. This is largely a geometrical effect: longer and straighter chromophores extend over larger distances. The calculated diffusion lengths of ∼10 nm are in good agreement with experiment. The spectral

  14. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition

    SciTech Connect

    Lopez, Eric D.; Fortney, Jonathan J.

    2014-09-01

    Transiting planet surveys like Kepler have provided a wealth of information on the distribution of planetary radii, particularly for the new populations of super-Earth- and sub-Neptune-sized planets. In order to aid in the physical interpretation of these radii, we compute model radii for low-mass rocky planets with hydrogen-helium envelopes. We provide model radii for planets 1-20 M {sub ⊕}, with envelope fractions 0.01%-20%, levels of irradiation 0.1-1000 times Earth's, and ages from 100 Myr to 10 Gyr. In addition we provide simple analytic fits that summarize how radius depends on each of these parameters. Most importantly, we show that at fixed H/He envelope fraction, radii show little dependence on mass for planets with more than ∼1% of their mass in their envelope. Consequently, planetary radius is to a first order a proxy for planetary composition, i.e., H/He envelope fraction, for Neptune- and sub-Neptune-sized planets. We recast the observed mass-radius relationship as a mass-composition relationship and discuss it in light of traditional core accretion theory. We discuss the transition from rocky super-Earths to sub-Neptune planets with large volatile envelopes. We suggest ∼1.75 R {sub ⊕} as a physically motivated dividing line between these two populations of planets. Finally, we discuss these results in light of the observed radius occurrence distribution found by Kepler.

  15. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  16. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  17. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  18. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  19. Exciton Transfer in Carbon Nanotube Aggregates for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Davoody, Amirhossein; Karimi, Farhad; Knezevic, Irena

    Carbon nanotubes (CNTs) are promising building blocks for organic photovoltaic devices, owing to their tunable band gap, mechanical and chemical stability. We study intertube excitonic energy transfer between pairs of CNTs with different orientations and band gaps. The optically bright and dark excitonic states in CNTs are calculated by solving the Bethe-Salpeter equation. We calculate the exciton transfer rates due to the direct and exchange Coulomb interactions, as well as the second-order phonon-assisted processes. We show the importance of phonons in calculating the transfer rates that match the measurements. In addition, we discuss the contribution of optically inactive excited states in the exciton transfer process, which is difficult to determine experimentally. Furthermore, we study the effects of sample inhomogeneity, impurities, and temperature on the exciton transfer rate. The inhomogeneity in the CNT sample dielectric function can increase the transfer rate by about a factor of two. We show that the exciton confinement by impurities has a detrimental effect on the transfer rate between pairs of similar CNTs. The exciton transfer rate increases monotonically with increasing temperature. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.

  20. Dynamical fermion mass generation and exciton spectra in graphene

    SciTech Connect

    Zhang Chunxu; Liu Guozhu; Huang Mingqiu

    2011-03-15

    The Coulomb interaction between massless Dirac fermions may induce dynamical chiral symmetry breaking by forming excitonic pairs in clean graphene, leading to semimetal-insulator transition. If the Dirac fermions have zero bare mass, an exact continuous chiral symmetry is dynamically broken and thus there are massless Goldstone excitons. If the Dirac fermions have a small bare mass, an approximate continuous chiral symmetry is dynamically broken and the resultant Goldstone-type excitons become massive, which is analogous to what happens in QCD. In this paper, after solving the Dyson-Schwinger gap equation in the presence of a small bare fermion mass, we found a remarkable reduction of the critical Coulomb interaction strength for excitonic pair formation and a strong enhancement of dynamical fermion mass. We then calculate the masses of Goldstone-type excitons using the Shifman-Vainshtein-Zakharov sum-rule method and operator product expansion technique developed in QCD and find that the exciton masses are much larger than bare fermion mass but smaller than the width of dynamical fermion mass gap. We also study the spin susceptibilities and estimate the masses of non-Goldstone-type excitons using the same tools.

  1. Novel exciton systems in 2D TMD monolayers and heterobilayers

    NASA Astrophysics Data System (ADS)

    Yu, Hongyi

    In this talk, two exciton systems in transition metal dichalcogenides (TMDs) monolayer and heterobilayer will be discussed. In TMD monolayers, the strong e-h Coulomb exchange interaction splits the exciton and trion dispersions into two branches with zero and finite gap, respectively. Each branch is a center-of-mass wave vector dependent coherent superposition of the two valleys, which leads to a valley-orbit coupling and possibly a trion valley Hall effect. The exchange interaction also eliminates the linear polarization of the negative trion PL emission. In TMD heterobilayers with a type-II band alignment, the low energy exciton has an interlayer configuration with the e and h localized in opposite layers. Because of the inevitable twist or/and lattice mismatch between the two layers, the bright interlayer excitons are located at finite center-of-mass velocities with a six-fold degeneracy. The corresponding photon emission is elliptically polarized, with the major axis locked to the direction of exciton velocity, and helicity determined by the valley indices of the e and h. Some experimental results on the interlayer excitons in the WSe2-MoSe2 heterobilayers will also be presented. The interlayer exciton exhibits a long lifetime as well as a long depolarization time, which facilitate the observation of a PL polarization ring pattern due to the valley dependent exciton-exciton interaction induced expansion. The works were supported by the Research Grant Council of Hong Kong (HKU17305914P, HKU705513P), the Croucher Foundation, and the HKU OYRA and ROP.

  2. Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes.

    PubMed

    Hofmann, Matthias S; Noé, Jonathan; Kneer, Alexander; Crochet, Jared J; Högele, Alexander

    2016-05-11

    We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wall defects. Our results establish disorder-induced crossover from the diffusive to the localized regime of nanotube excitons at cryogenic temperatures as a ubiquitous phenomenon in micelle-encapsulated and as-grown carbon nanotubes. PMID:27105355

  3. Josephson oscillations between exciton condensates in electrostatic traps

    SciTech Connect

    Rontani, Massimo

    2009-08-15

    Technological advances allow for tunable lateral confinement of cold dipolar excitons in coupled quantum wells. We consider theoretically the Josephson effect between exciton condensates in two traps separated by a weak link. The flow of the exciton supercurrent is driven by the dipole-energy difference between the traps. The Josephson oscillations may be observed after ensemble average of the time correlation of photons separately emitted from the two traps. The fringe visibility is controlled by the trap coupling and is robust against quantum and thermal fluctuations.

  4. Controlling the dark exciton spin eigenstates by external magnetic field

    NASA Astrophysics Data System (ADS)

    Gantz, L.; Schmidgall, E. R.; Schwartz, I.; Don, Y.; Waks, E.; Bahir, G.; Gershoni, D.

    2016-07-01

    We study the dark exciton's behavior as a coherent physical two-level spin system (qubit) using an external magnetic field in the Faraday configuration. Our studies are based on polarization-sensitive intensity autocorrelation measurements of the optical transition resulting from the recombination of a spin-blockaded biexciton state, which heralds the dark exciton and its spin state. We demonstrate control over the dark exciton eigenstates without degrading its decoherence time. Our observations agree well with computational predictions based on a master equation model.

  5. Excitation of exciton states on a curved surface

    NASA Astrophysics Data System (ADS)

    Silotia, Poonam; Prasad, Vinod

    2016-05-01

    Excitonic transitions on the surface of a sphere have been studied in he presence of external static electric and laser fields. The spectrum and the various coupling matrix elements, <ψl,m | cosn ϑ |ψl‧,m‧ > (for n = 1 , 2 , 3), between few states of exciton have been evaluated in the absence and presence of excitonic Coulombic interaction with different values of dielectric constant. Variation of various physical quantities: energy eigenvalues, transition probability, orientational and alignment parameter, has been shown to have strong dependence on the laser field and static electric field.

  6. Exciton coupling of surface complexes on a nanocrystal surface.

    PubMed

    Xu, Xiangxing; Ji, Jianwei; Wang, Guan; You, Xiaozeng

    2014-08-25

    Exciton coupling may arise when chromophores are brought into close spatial proximity. Herein the intra-nanocrystal exciton coupling of the surface complexes formed by coordination of 8-hydroxyquinoline to ZnS nanocrystals (NCs) is reported. It is studied by absorption, photoluminescence (PL), PL excitation (PLE), and PL lifetime measurements. The exciton coupling of the surface complexes tunes the PL color and broadens the absorption and PLE windows of the NCs, and thus is a potential strategy for improving the light-harvesting efficiency of NC solar cells and photocatalysts. PMID:24863364

  7. Topological polaritons and excitons in garden-variety systems

    NASA Astrophysics Data System (ADS)

    Bardyn, Charles-Edouard; Karzig, Torsten; Refael, Gil; Liew, Timothy C. H.

    2015-04-01

    We present a practical scheme for creating topological polaritons in garden-variety systems based, for example, on zinc-blende semiconductor quantum wells. Our proposal requires a moderate magnetic field and a potential landscape which can be implemented, e.g., via surface acoustic waves or patterning. We identify indirect excitons in double quantum wells as an appealing alternative for topological states in exciton-based systems. Topological polaritons and indirect excitons open a new frontier for topological states in solid-state systems, which can be directly probed and manipulated while offering a system with nonlinear interactions.

  8. Confocal shift interferometry of coherent emission from trapped dipolar excitons

    SciTech Connect

    Repp, J.; Schinner, G. J.; Schubert, E.; Rai, A. K.; Wieck, A. D.; Reuter, D.; Wurstbauer, U.; Holleitner, A. W.; and others

    2014-12-15

    We introduce a confocal shift-interferometer based on optical fibers. The presented spectroscopy allows measuring coherence maps of luminescent samples with a high spatial resolution even at cryogenic temperatures. We apply the spectroscopy onto electrostatically trapped, dipolar excitons in a semiconductor double quantum well. We find that the measured spatial coherence length of the excitonic emission coincides with the point spread function of the confocal setup. The results are consistent with a temporal coherence of the excitonic emission down to temperatures of 250 mK.

  9. Excitonic AND Logic Gates on DNA Brick Nanobreadboards

    PubMed Central

    2015-01-01

    A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems. PMID:25839049

  10. Photocurrent, photoluminescence and exciton dynamics in rubrene molecular single crystals

    NASA Astrophysics Data System (ADS)

    Lyu, ByungGook

    This work discusses the photocurrent and photoluminescence that can be induced by short-pulse illumination in rubrene single crystals. The pulsed illumination excites a rubrene molecule from the ground state to its first optically accessible excited state, resulting in a singlet exciton state. In rubrene, a singlet exciton can transform into two triplet excitons - which together have a spin of zero - by an efficient spin-conserved fission process. On the other hand, two triplet excitons can interact to again form a singlet exciton by a fusion process. Quantitative modeling of the transformation of singlet excitons into triplet excitons and vice-versa shows that both photoconductivity dynamics and photocurrent dynamics after pulsed excitations can be understood within the same framework. The photoluminescence observed after pulsed excitation is only emitted upon radiative recombination of singlet excitons. A simple model of fission and fusion based on rate equations leads to a qualitatively different photoluminescence dynamics depending on the time scale. In particular, it predicts a fast exponential decay corresponding to the initial fission process, later a power-law (quadratic) decay corresponding to a regime when triplet-triplet interaction is dominant, and a final exponential decay with a time-constant which is half the triplet exciton lifetime. This last exponential decay corresponds to the case when only a lower density of triplet excitons is left. The same model can be used to predict the photocurrent dynamics after pulsed excitation. Experimental observations after pulsed illumination show that, for low excitation pulse energies, a large photocurrent grows exponentially with a time constant of the order of 100 microseconds. This photocurrent build-up time then becomes shorter at higher excitation energies, with the peak photocurrent also saturating. One finds that the observed photocurrent dynamics can be reproduced with the same model based on exciton

  11. Excitons and the lifetime of organic semiconductor devices

    PubMed Central

    Forrest, Stephen R.

    2015-01-01

    While excitons are responsible for the many beneficial optical properties of organic semiconductors, their non-radiative recombination within the material can result in material degradation due to the dumping of energy onto localized molecular bonds. This presents a challenge in developing strategies to exploit the benefits of excitons without negatively impacting the device operational stability. Here, we will briefly review the fundamental mechanisms leading to excitonic energy-driven device ageing in two example devices: blue emitting electrophosphorescent organic light emitting devices (PHOLEDs) and organic photovoltaic (OPV) cells. We describe strategies used to minimize or even eliminate this fundamental device degradation pathway. PMID:25987572

  12. Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes

    PubMed Central

    2016-01-01

    We present photoluminescence studies of individual semiconducting single-wall carbon nanotubes at room and cryogenic temperatures. From the analysis of spatial and spectral features of nanotube photoluminescence, we identify characteristic signatures of unintentional exciton localization. Moreover, we quantify the energy scale of exciton localization potentials as ranging from a few to a few tens of millielectronvolts and stemming from both environmental disorder and shallow covalent side-wall defects. Our results establish disorder-induced crossover from the diffusive to the localized regime of nanotube excitons at cryogenic temperatures as a ubiquitous phenomenon in micelle-encapsulated and as-grown carbon nanotubes. PMID:27105355

  13. Role of phonons in Josephson oscillations of excitonic and polaritonic condensates

    SciTech Connect

    Magnusson, E. B.; Flayac, H.; Malpuech, G.; Shelykh, I. A.

    2010-11-15

    We analyze theoretically the role of the exciton-phonon interactions in phenomena related to the Josephson effect between two spatially separated exciton and exciton-polariton condensates. We consider the role of the dephasing introduced by phonons in such phenomena as Josephson tunneling, self-trapping and spontaneous polarization separation. In the regime of cw pumping we find a remarkable bistability effect arising from exciton-exciton interactions as well as regimes of self-sustained regular and chaotic oscillations.

  14. Synthesis and Characterization of Quantum Dots: A Case Study Using PbS

    ERIC Educational Resources Information Center

    Pan, Yi; Li, Yue Ru; Zhao, Yu; Akins, Daniel L.

    2015-01-01

    A research project for senior undergraduates of chemistry has been developed to introduce syntheses of a series of monodispersed semiconductor PbS quantum dots (QDs) and their characterization methodologies. In this paper, we report the preparation of monodispersed semiconductor PbS QDs with sizes smaller than the exciton Bohr radius using a…

  15. Control of Exciton Photon Coupling in Nano-structures

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoze

    In this thesis, we study the interaction of excitons with photons and plasmons and methods to control and enhance this interaction. This study is categorized in three parts: light-matter interaction in microcavity structures, direct dipole-dipole interactions, and plasmon-exciton interaction in metal-semiconductor systems. In the microcavity structures, the light-matter interactions become significant when the excitonic energy is in resonance with microcavity photons. New hybrid quantum states named polariton states will be formed if the strong coupling regime is achieved, where the interaction rate is faster than the average decay rate of the excitons and photons. Polaritons have been investigated in zinc oxide (ZnO) nanoparticles based microcavity at room temperature and stimulated emission of the polaritons has also been observed with a low optical pump threshold. Exictons in organic semiconductors (modeled as Frenkel excitons) are tightly bound to molecular sites, and differ considerably from loosely bound hydrogen atom-like inorganic excitons (modeled as Wannier-Mott excitons). This fundamental difference results in distinct optoelectronic properties. Not only strongly coupled to Wannier-Mott excitons in ZnO, the microcavity photons have also been observed to be simultaneously coupled to Frenkel excitons in 3,4,7,8-naphthalene tetracarboxylic dianhydride (NTCDA). The photons here act like a glue combining Wannier-Mott and Frenkel excitons into new hybrid polaritons taking the best from both constituents. Two-dimensional (2D) excitons in monolayer transition metal dichalcogenides (TMDs) have emerged as a new and fascinating type of Wannier-Mott-like excitons due to direct bandgap transition, huge oscillator strength and large binding energy. Monolayer molybdenum disulfide (MoS2) has been incorporated into the microcavity structure and 2D exciton-polaritons have been observed for the first time with directional emission in the strong coupling regime. Valley

  16. Excitons in a surface quantum well

    NASA Astrophysics Data System (ADS)

    Arulmozhi, M.; Anitha, A.

    2014-11-01

    Binding energies of excitons in a Surface Quantum Well (SQW) composed of vacuum/GaAs/AlxGa1-xAs as a function of wellwidth are calculated. The effect of non-parabolicity is considered by using an energy dependent effective mass. The effect of mass anisotropy and the effect of image charges which arise due to the large dielectric discontinuity at the vacuum/GaAs interface are also considered. The average distances of the electron and the hole from the vacuum/GaAs interface, with and without image charges and the integrated probability of finding an electron and a hole inside the well are also calculated. The results agree well with the available experimental data.

  17. Optical properties of Rydberg excitons and polaritons

    NASA Astrophysics Data System (ADS)

    Zielińska-Raczyńska, Sylwia; Czajkowski, Gerard; Ziemkiewicz, David

    2016-02-01

    We show how to compute the optical functions when Rydberg excitons appear, including the effect of the coherence between the electron-hole pair and the electromagnetic field. We use the real density matrix approach (RDMA), which, combined with the Green's function method, enables one to derive analytical expressions for the optical functions. Choosing the susceptibility, we performed numerical calculations appropriate to a Cu20 crystal, being a semiconductor with an indirect gap. The effect of the coherence is displayed in the line shape. We also examine in detail and explain the dependence of the oscillator strength and the resonance placement on the state number. We report good agreement with recently published experimental data. We also show that the presented method can be applied to semiconductors with a direct gap.

  18. Photospheric Radius Expansion During Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Watts, Anna L.; Kouveliotou, Chryssa; van der Horst, Alexander J.; Göǧüş, Ersin; Kaneko, Yuki; van der Klis, Michiel; Wijers, Ralph A. M. J.; Harding, Alice K.; Baring, Matthew G.

    2010-08-01

    On 2008 August 24 the new magnetar SGR 0501+4516 (discovered by Swift) emitted a bright burst with a pronounced double-peaked structure in hard X-rays, reminiscent of the double-peaked temporal structure seen in some bright thermonuclear bursts on accreting neutron stars. In the latter case this is due to Photospheric Radius Expansion (PRE): when the flux reaches the Eddington limit, the photosphere expands and cools so that emission becomes softer and drops temporarily out of the X-ray band, re-appearing as the photosphere settles back down. We consider the factors necessary to generate double-peaked PRE events, and show that such a mechanism could plausibly operate in magnetar bursts despite the vastly different emission process. Identification of the magnetic Eddington limit in a magnetar would constrain magnetic field and distance and could, in principle, enable a measurement of gravitational redshift. It would also locate the emitting region at the neutron star surface, constraining the burst trigger mechanism. Conclusive confirmation of PRE events will require more detailed radiative models for bursts. However, for SGR 0501+4516 the predicted critical flux (using the magnetic field strength inferred from timing and the distance suggested by its probable location in the Perseus arm of our Galaxy) is consistent with that observed in the August 24 burst.

  19. Experimental study of finite Larmor radius effects

    SciTech Connect

    Struve, K.W.

    1980-08-01

    Linear Z-pinches in Ar, Kr, Xe, N/sub 2/, and He are experimentally studied in regimes where strong finite Larmor radius effects could provide a significant stabilizing effect. Scaling arguments show that for deuterium such a pinch has an electron line density of order 2 x 10/sup 15//cm. For higher Z plasmas a higher line density is allowed, the exact value of which depends on the average ion charge. The pinch is formed by puffing gas axially through the cathode towards the anode of an evacuated pinch chamber. When the gas reaches the anode, the pinch bank is fired. The pinch current rises in 2 to 3 ..mu..sec to a maximum of 100 to 200 kA. The pinch bank capacitance is 900 ..mu..F, and the external inductance is 100 nH. Additionally, the bank is fused to increase dI/dt. The primary diagnostics are a framing camera, a spatially resolved Mach-Zehnder interferometer, and X-ray absorption.

  20. Mechanism for radiative recombination in ZnCdO alloys

    SciTech Connect

    Buyanova, I. A.; Bergman, J. P.; Pozina, G.; Chen, W. M.; Rawal, S.; Norton, D. P.; Pearton, S. J.; Osinsky, A.; Dong, J. W.

    2007-06-25

    Temperature dependent cw- and time-resolved photoluminescence combined with absorption measurements are employed to evaluate the origin of radiative recombination in ZnCdO alloys grown by molecular-beam epitaxy. The near-band-edge emission is attributed to recombination of excitons localized within band tail states likely caused by nonuniformity in Cd distribution. Energy transfer between the tail states is argued to occur via tunneling of localized excitons. The transfer is shown to be facilitated by increasing Cd content due to a reduction of the exciton binding energy and, therefore, an increase of the exciton Bohr radius in the alloys with a high Cd content.

  1. Exciton-exciton interactions in CdWO{sub 4} irradiated by intense femtosecond vacuum ultraviolet pulses

    SciTech Connect

    Kirm, M.; Nagirnyi, V.; Feldbach, E.; De Grazia, M.; Carre, B.; Merdji, H.; Guizard, S.; Geoffroy, G.; Gaudin, J.; Fedorov, N.; Martin, P.; Vasil'ev, A.; Belsky, A.

    2009-06-15

    Exciton-exciton interaction is experimentally revealed and quantitatively analyzed in a wide band-gap scintillator material CdWO{sub 4}. Under high-intensity femtosecond vacuum ultraviolet excitation, the CdWO{sub 4} luminescence is quenched, while its decay becomes essentially nonexponential. We propose an analytical model, which successfully reproduces the decay kinetics recorded in a wide range of excitation densities. The dipole-dipole interaction between excitons leading to their nonradiative decay is shown to be the main cause of a nonproportional response common for many scintillators.

  2. Excitonic condensation in spatially separated one-dimensional systems

    SciTech Connect

    Abergel, D. S. L.

    2015-05-25

    We show theoretically that excitons can form from spatially separated one-dimensional ground state populations of electrons and holes, and that the resulting excitons can form a quasicondensate. We describe a mean-field Bardeen-Cooper-Schrieffer theory in the low carrier density regime and then focus on the core-shell nanowire giving estimates of the size of the excitonic gap for InAs/GaSb wires and as a function of all the experimentally relevant parameters. We find that optimal conditions for pairing include small overlap of the electron and hole bands, large effective mass of the carriers, and low dielectric constant of the surrounding media. Therefore, one-dimensional systems provide an attractive platform for the experimental detection of excitonic quasicondensation in zero magnetic field.

  3. Superconductivity in CuCl/Si superlattices: excitonic pairing?

    NASA Astrophysics Data System (ADS)

    Rhim, S. H.; Saniz, Rolando; Weinert, Michael; Freeman, A. J.

    2013-03-01

    Two-dimensional (2D) hetero-bonded semiconductor interfaces have been suggested as candidate geometries where excitonic superconductivity [2] - and the greatly enhanced where TC compared to phonon mechanisms mediation - can be realized. Among experimental efforts, epitaxially grown CuCl on Si (111) has reportedly exhibited excitonic superconductivity at 60 ~150 K. Our first-principles calculations confirm 2D metallicity at the interfaces due to charge transfer by valence mismatch. [3] The excitonic mechanism is investigated by calculating the kernel function, K (ω) , for the average of the electronic contributions to the effective interaction.[4] The attractive interaction found in the CuCl/Si superlattice indicates the feasibility of excitonic pairing for a certain frequency range. US Department of Energy (DE-FG02-05ER45372)

  4. Strong Quantum Coherence between Fermi Liquid Mahan Excitons

    NASA Astrophysics Data System (ADS)

    Paul, J.; Stevens, C. E.; Liu, C.; Dey, P.; McIntyre, C.; Turkowski, V.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2016-04-01

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.

  5. Exciton-polariton localized wave packets in a microcavity

    NASA Astrophysics Data System (ADS)

    Voronych, Oksana; Buraczewski, Adam; Matuszewski, MichałÂ; Stobińska, Magdalena

    2016-06-01

    We investigate the possibility of creating X waves, or localized wave packets, in resonantly excited exciton-polariton superfluids. We demonstrate the existence of X-wave traveling solutions in the coupled exciton-photon system past the inflection point, where the effective mass of lower polaritons is negative in the direction perpendicular to the wave vector of the pumping beam. Contrary to the case of bright solitons, X waves do not require nonlinearity for sustaining their shape. Nevertheless, we show that nonlinearity is important for their dynamics, as it allows for their spontaneous formation from an initial Gaussian wave packet. Unique properties of exciton-polaritons may lead to applications of their X waves in long-distance signal propagation inside novel integrated optoelectronic circuits based on excitons.

  6. Topological Polaritons and Excitons in Garden Variety Systems

    NASA Astrophysics Data System (ADS)

    Bardyn, Charles-Edouard; Karzig, Torsten; Refael, Gil; Liew, Tim

    2015-03-01

    Topological polaritons (aka topolaritons) present a new frontier for topological behavior in solid-state systems. They combine light and matter, which allows to probe and manipulate them in a variety of ways. They can also be made strongly interacting, due to their excitonic component. Here we present a scheme which allows to realize topolaritons in garden variety zinc-blende quantum wells. Our proposal requires a moderate magnetic field and a potential landscape which can be implemented, e.g., via surface acoustic waves or patterning. We identify indirect excitons in double quantum wells as a particularly appealing alternative for topological states in exciton-based systems. Indirect excitons are robust and long lived (with lifetimes up to milliseconds), and, therefore, provide a flexible platform for the realization, probing, and utilization of topological coupled light-matter states. Funded by: Institute for Quantum Information and Matter, Swiss National Science Foundation, Packard Foundation, NSF.

  7. Hopping approach towards exciton dissociation in conjugated polymers

    SciTech Connect

    Emelianova, E. V.; Auweraer, M. van der; Baessler, H.

    2008-06-14

    By employing random walk an analytic theory for the dissociation of singlet excitons in a random organic solid, for instance, a conjugated polymer, has been developed. At variance of conventional three-dimensional Onsager theory, it is assumed that an exciton with finite lifetime can first transfer endothermically an electron to an adjacent site, thereby generating a charge transfer state whose energy is above the energy of that of the initial exciton. In a second step the latter can fully dissociate in accordance with Onsager's concept Brownian motion. The results indicate that, depending of the energy required for the first jump, the first jump contributes significantly to the field dependence of the dissociation yield. Disorder weakens the temperature dependence of the yield dramatically and precludes extracting information on the exciton binding energy from it.

  8. Singlet exciton fission-sensitized infrared quantum dot solar cells.

    PubMed

    Ehrler, Bruno; Wilson, Mark W B; Rao, Akshay; Friend, Richard H; Greenham, Neil C

    2012-02-01

    We demonstrate an organic/inorganic hybrid photovoltaic device architecture that uses singlet exciton fission to permit the collection of two electrons per absorbed high-energy photon while simultaneously harvesting low-energy photons. In this solar cell, infrared photons are absorbed using lead sulfide (PbS) nanocrystals. Visible photons are absorbed in pentacene to create singlet excitons, which undergo rapid exciton fission to produce pairs of triplets. Crucially, we identify that these triplet excitons can be ionized at an organic/inorganic heterointerface. We report internal quantum efficiencies exceeding 50% and power conversion efficiencies approaching 1%. These findings suggest an alternative route to circumvent the Shockley-Queisser limit on the power conversion efficiency of single-junction solar cells. PMID:22257168

  9. Charge Transfer Excitons at van der Waals Interfaces.

    PubMed

    Zhu, Xiaoyang; Monahan, Nicholas R; Gong, Zizhou; Zhu, Haiming; Williams, Kristopher W; Nelson, Cory A

    2015-07-01

    The van der Waals interfaces of molecular donor/acceptor or graphene-like two-dimensional (2D) semiconductors are central to concepts and emerging technologies of light-electricity interconversion. Examples include, among others, solar cells, photodetectors, and light emitting diodes. A salient feature in both types of van der Waals interfaces is the poorly screened Coulomb potential that can give rise to bound electron-hole pairs across the interface, i.e., charge transfer (CT) or interlayer excitons. Here we address common features of CT excitons at both types of interfaces. We emphasize the competition between localization and delocalization in ensuring efficient charge separation. At the molecular donor/acceptor interface, electronic delocalization in real space can dictate charge carrier separation. In contrast, at the 2D semiconductor heterojunction, delocalization in momentum space due to strong exciton binding may assist in parallel momentum conservation in CT exciton formation. PMID:26001297

  10. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    PubMed

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics. PMID:26266593

  11. Excitons in ultrathin organic-inorganic perovskite crystals

    NASA Astrophysics Data System (ADS)

    Yaffe, Omer; Chernikov, Alexey; Norman, Zachariah M.; Zhong, Yu; Velauthapillai, Ajanthkrishna; van der Zande, Arend; Owen, Jonathan S.; Heinz, Tony F.

    2015-07-01

    We demonstrate the formation of large sheets of layered organic-inorganic perovskite (OIPC) crystals, as thin as a single unit cell, prepared by mechanical exfoliation. The resulting two-dimensional OIPC nanosheets of 2.4 nm thickness are direct semiconductors with an optical band gap of 2.4 eV. They exhibit unusually strong light-matter interaction with an optical absorption as high as 25% at the main excitonic resonance, as well as bright photoluminescence. We extract an exciton binding energy of 490 meV from measurement of the series of excited exciton states. The properties of the excitons are shown to be strongly influenced by the changes in the dielectric surroundings. The environmental sensitivity of these ultrathin OIPC sheets is further reflected in the strong suppression of a thermally driven phase transition present in the bulk crystals.

  12. Simulations of singlet exciton diffusion in organic semiconductors: a review

    DOE PAGESBeta

    Bjorgaard, Josiah A.; Kose, Muhammet Erkan

    2014-12-22

    Our review describes the various aspects of simulation strategies for exciton diffusion in condensed phase thin films of organic semiconductors. Several methods for calculating energy transfer rate constants are discussed along with procedures for how to account for energetic disorder. Exciton diffusion can be modelled by using kinetic Monte-Carlo methods or master equations. Recent literature on simulation efforts for estimating exciton diffusion lengths of various conjugated polymers and small molecules are introduced. Moreover, these studies are discussed in the context of the effects of morphology on exciton diffusion and the necessity of accurate treatment of disorder for comparison of simulationmore » results with those of experiment.« less

  13. Excitonic condensation in systems of strongly correlated electrons.

    PubMed

    Kuneš, Jan

    2015-08-26

    The idea of exciton condensation in solids was introduced in the 1960s with the analogy of superconductivity in mind. While exciton supercurrents have been realised only in artificial quantum-well structures so far, the application of the concept of excitonic condensation to bulk solids leads to a rich spectrum of thermodynamic phases with diverse physical properties. In this review we discuss recent developments in the theory of exciton condensation in systems described by Hubbard-type models. In particular, we focus on the connections to their various strong-coupling limits that have been studied in other contexts, e.g. cold atoms physics. One of our goals is to provide a 'dictionary' that would allow the reader to efficiently combine results obtained in these different fields. PMID:26218828

  14. Excitonic condensation in systems of strongly correlated electrons

    NASA Astrophysics Data System (ADS)

    Kuneš, Jan

    2015-08-01

    The idea of exciton condensation in solids was introduced in the 1960s with the analogy of superconductivity in mind. While exciton supercurrents have been realised only in artificial quantum-well structures so far, the application of the concept of excitonic condensation to bulk solids leads to a rich spectrum of thermodynamic phases with diverse physical properties. In this review we discuss recent developments in the theory of exciton condensation in systems described by Hubbard-type models. In particular, we focus on the connections to their various strong-coupling limits that have been studied in other contexts, e.g. cold atoms physics. One of our goals is to provide a ‘dictionary’ that would allow the reader to efficiently combine results obtained in these different fields.

  15. Electrical Activation of Dark Excitonic States in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Uda, Takushi; Yoshida, Masahiro; Ishii, Akihiro; Kato, Yuichiro K.

    Electrical activation of optical transitions to parity-forbidden dark excitonic states in individual carbon nanotubes is reported. We examine electric field effects on various excitonic states by simultaneously measuring both photocurrent and photoluminescence. As the applied field increases, we observe an emergence of new absorption peaks in the excitation spectra. From the diameter dependence of the energy separation between the new peaks and the ground state of E11 excitons, we attribute the peaks to the dark excited states which became optically active due to the applied field. A simple field-induced exciton dissociation model is introduced to explain the photocurrent threshold fields, and the edge of the E11 continuum states have been identified using this model. Work supported by JSPS (KAKENHI 24340066, 26610080), MEXT (Photon Frontier Network Program, Nanotechnology Platform), Canon Foundation, and Asahi Glass Foundation.

  16. Quantum confinement of excitons in wurtzite InP nanowires

    SciTech Connect

    Pemasiri, K.; Jackson, H. E.; Smith, L. M.; Wong, B. M.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.

    2015-05-21

    Exciton resonances are observed in photocurrent spectra of 80 nm wurtzite InP nanowire devices at low temperatures, which correspond to transitions between the A, B, and C valence bands and the lower conduction band. Photocurrent spectra for 30 nm WZ nanowires exhibit shifts of the exciton resonances to higher energy, which are consistent with finite element calculations of wavefunctions of the confined electrons and holes for the various bands.

  17. Tidal radius estimates for three open clusters

    NASA Astrophysics Data System (ADS)

    Danilov, V. M.; Loktin, A. V.

    2015-10-01

    A new method is developed for estimating tidal radii and masses of open star clusters (OCL) based on the sky-plane coordinates and proper motions and/or radial velocities of cluster member stars. To this end, we perform the correlation and spectral analysis of oscillations of absolute values of stellar velocity components relative to the cluster mass center along three coordinate planes and along each coordinate axis in five OCL models. Mutual correlation functions for fluctuations of absolute values of velocity field components are computed. The spatial Fourier transform of the mutual correlation functions in the case of zero time offset is used to compute wavenumber spectra of oscillations of absolute values of stellar velocity components. The oscillation spectra of these quantities contain series of local maxima at equidistant wavenumber k values. The ratio of the tidal radius of the cluster to the wavenumber difference Δ k of adjacent local maxima in the oscillation spectra of absolute values of velocity field components is found to be the same for all five OCL models. This ratio is used to estimate the tidal radii and masses of the Pleiades, Praesepe, and M67 based on the proper motions and sky-plane coordinates of the member stars of these clusters. The radial dependences of the absolute values of the tangential and radial projections of cluster star velocities computed using the proper motions relative to the cluster center are determined, along with the corresponding autocorrelation functions and wavenumber spectra of oscillations of absolute values of velocity field components. The Pleiades virial mass is estimated assuming that the cluster is either isolated or non-isolated. Also derived are the estimates of the Pleiades dynamical mass assuming that it is non-stationary and non-isolated. The inferred Pleiades tidal radii corresponding to these masses are reported.

  18. Simulation of Singlet Exciton Diffusion in Bulk Organic Materials.

    PubMed

    Kranz, Julian J; Elstner, Marcus

    2016-09-13

    We present a scheme for nonadiabatic direct dynamics simulation of Frenkel exciton diffusion in bulk molecular systems. The fluctuations of exciton couplings caused by the molecular motion can crucially influence exciton transport in such materials. This effect can be conveniently taken into account by computing the exciton couplings along molecular dynamics trajectories, as shown recently. In this work, we combine Molecular Dynamics simulations with a Frenkel Hamiltonian into a combined quantum-mechanical/molecular mechanics approach in order to allow for a simultaneous propagation of nuclear and electronic degrees of freedom using nonadiabatic dynamics propagation schemes. To reach the necessary time and length scales, we use classical force-fields and the semiempirical time-dependent density functional tight-binding method in combination with a fragmentation of the electronic structure. Fewest-switches surface-hopping, with adaptions to handle trivial crossings, and the Boltzmann-corrected Ehrenfest method are used to follow the excitonic quantum dynamics according to the classical evolution of the nuclei. As an application, we present the simulation of singlet exciton diffusion in crystalline anthracene, which allows us to address strengths and shortcomings of the presented methodology in detail. PMID:27434173

  19. Probing the origin of excitonic states in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Huang, Jiani; Hoang, Thang B.; Mikkelsen, Maiken H.

    2016-03-01

    Two-dimensional transition metal dichalcogenides (TMDCs) have spurred excitement for potential applications in optoelectronic and valleytronic devices; however, the origin of the dynamics of excitons, trions, and other localized states in these low dimensional materials is not well-understood. Here, we experimentally probed the dynamics of excitonic states in monolayer WSe2 by investigating the temperature and polarization dependent photoluminescence (PL) spectra. Four pronounced PL peaks were identified below a temperature of 60 K at near-resonant excitation and assigned to exciton, trion and localized states from excitation power dependence measurements. We find that the localized states vanish above 65 K, while exciton and trion emission peaks remain up to room temperature. This can be explained by a multi-level model developed for conventional semiconductors and applied to monolayer TMDCs for the first time here. From this model, we estimated a lower bound of the exciton binding energy of 198 meV for monolayer WSe2 and explained the vanishing of the localized states. Additionally, we observed a rapid decrease in the degree of circular polarization of the PL at increasing temperatures indicating a relatively strong electron-phonon coupling and impurity-related scattering. Our results reveal further insight into the excitonic states in monolayer WSe2 which is critical for future practical applications.

  20. Molecular packing determines singlet exciton fission in organic semiconductors.

    PubMed

    Kolata, Kolja; Breuer, Tobias; Witte, Gregor; Chatterjee, Sangam

    2014-07-22

    Carrier multiplication by singlet exciton fission enhances photovoltaic conversion efficiencies in organic solids. This decay of one singlet exciton into two triplet states allows the extraction of up to two electrons per harvested photon and, hence, promises to overcome the Shockley–Queisser limit. However, the microscopic mechanism of singlet exciton fission, especially the relation between molecular packing and electronic response, remains unclear, which therefore hampers the systematic improvement of organic photovoltaic devices. For the model system perfluoropentacene, we experimentally show that singlet exciton fission is greatly enhanced for a slip-stacked molecular arrangement by addressing different crystal axes featuring different packing schemes. This reveals that the fission process strongly depends on the intermolecular coupling: slip-stacking favors delocalization of excitations and allows for efficient exciton fission, while face-to-edge molecular orientations commonly found in the prevailing herringbone molecular stacking patterns even suppress it. Furthermore, we clarify the controversially debated role of excimer states as intermediary rather than competitive or precursory. Our detailed findings serve as a guideline for the design of next-generation molecular materials for application in future organic light-harvesting devices exploiting singlet exciton fission. PMID:24957197

  1. Singlet fission in pentacene through multi-exciton quantum states.

    PubMed

    Zimmerman, Paul M; Zhang, Zhiyong; Musgrave, Charles B

    2010-08-01

    Multi-exciton generation-the creation of multiple charge carrier pairs from a single photon-has been reported for several materials and may dramatically increase solar cell efficiency. Singlet fission, its molecular analogue, may govern multi-exciton generation in a variety of materials, but a fundamental mechanism for singlet fission has yet to be described. Here, we use sophisticated ab initio calculations to show that singlet fission in pentacene proceeds through rapid internal conversion of the photoexcited state into a dark state of multi-exciton character that efficiently splits into two triplets. We show that singlet fission to produce a pair of triplet excitons must involve an intermediate state that (i) has a multi-exciton character, (ii) is energetically accessible from the optically allowed excited state, and (iii) efficiently dissociates into multiple electron-hole pairs. The rational design of photovoltaic materials that make use of singlet fission will require similar ab initio analysis of multi-exciton states such as the dark state studied here. PMID:20651727

  2. Magnetic brightening of dark excitons in transitional metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Xiao; Lu, Zhengguang; Cao, Ting; Zhang, Fan; Hone, James; Louie, Steven G.; Li, Zhiqiang; Smirnov, Dmitry; Heinz, Tony

    Transitional metal dichalcogenides (TMDC) in the MX2 (M = Mo, W, X = S, Se) family represent an excellent platform to study of excitonic effects. At monolayer thickness, these materials exhibit both direct band-gap character and enhanced excitonic interactions. Theoretical studies suggest that both the valence and conduction bands are split and exhibit spin polarized character at the K/K' valleys. The lowest energy band-edge excitons are predicted to have different spin configurations for different materials in this family. When the lowest lying exciton has parallel electron and hole spin, radiative decay is forbidden and the state is dark. Here we demonstrate that by applying an in-plane magnetic field we can perturb the exciton spin configuration and brighten this state, allowing it to undergo radiative decay. We identify such a brightened dark state by the emergence of a new emission peak lying below the absorption peak, with a strength growing with applied in-plane magnetic field. On the other hand, for monolayer MoSe2, where no low-lying dark state is expected, we do not see the growth of a new emission feature under application of an in-plane magnetic field. Our experimental findings are in agreement with the calculated properties of dark excitons based on GW plus Bethe-Salpeter equation approach

  3. Probing the origin of excitonic states in monolayer WSe2

    PubMed Central

    Huang, Jiani; Hoang, Thang B.; Mikkelsen, Maiken H.

    2016-01-01

    Two-dimensional transition metal dichalcogenides (TMDCs) have spurred excitement for potential applications in optoelectronic and valleytronic devices; however, the origin of the dynamics of excitons, trions, and other localized states in these low dimensional materials is not well-understood. Here, we experimentally probed the dynamics of excitonic states in monolayer WSe2 by investigating the temperature and polarization dependent photoluminescence (PL) spectra. Four pronounced PL peaks were identified below a temperature of 60 K at near-resonant excitation and assigned to exciton, trion and localized states from excitation power dependence measurements. We find that the localized states vanish above 65 K, while exciton and trion emission peaks remain up to room temperature. This can be explained by a multi-level model developed for conventional semiconductors and applied to monolayer TMDCs for the first time here. From this model, we estimated a lower bound of the exciton binding energy of 198 meV for monolayer WSe2 and explained the vanishing of the localized states. Additionally, we observed a rapid decrease in the degree of circular polarization of the PL at increasing temperatures indicating a relatively strong electron-phonon coupling and impurity-related scattering. Our results reveal further insight into the excitonic states in monolayer WSe2 which is critical for future practical applications. PMID:26940069

  4. Femtosecond THz Studies of Intra-Excitonic Transitions

    SciTech Connect

    Huber, Rupert; Schmid, Ben A.; Kaindl, Robert A.; Chemla, Daniel S.

    2007-10-02

    Few-cycle THz pulses are employed to resonantly access the internal fine structure of photogenerated excitons in semiconductors, on the femtosecond time scale. This technique allows us to gain novel insight into many-body effects of excitons and reveal key quantum optical processes. We discuss experiments that monitor the density-dependent re?normalization of the binding energy of a high-density exciton gas in GaAs/AlGaAs quantum wells close to the Mott transition. In a dilute ensemble of 3p excitons in Cu2O, stimulated THz emission from internal transitions to the energetically lower 2s state is observed at a photon energy of 6.6 meV, with a cross section of 10-14 cm2. Simultaneous interband excitation of both exciton levels drives quantum beats, which cause efficient THz emission at the difference frequency. By extending this principle to various other exciton resonances, we develop a novel way of mapping the fine structure by two-dimensional THz emission spectroscopy.

  5. Probing the origin of excitonic states in monolayer WSe2.

    PubMed

    Huang, Jiani; Hoang, Thang B; Mikkelsen, Maiken H

    2016-01-01

    Two-dimensional transition metal dichalcogenides (TMDCs) have spurred excitement for potential applications in optoelectronic and valleytronic devices; however, the origin of the dynamics of excitons, trions, and other localized states in these low dimensional materials is not well-understood. Here, we experimentally probed the dynamics of excitonic states in monolayer WSe2 by investigating the temperature and polarization dependent photoluminescence (PL) spectra. Four pronounced PL peaks were identified below a temperature of 60 K at near-resonant excitation and assigned to exciton, trion and localized states from excitation power dependence measurements. We find that the localized states vanish above 65 K, while exciton and trion emission peaks remain up to room temperature. This can be explained by a multi-level model developed for conventional semiconductors and applied to monolayer TMDCs for the first time here. From this model, we estimated a lower bound of the exciton binding energy of 198 meV for monolayer WSe2 and explained the vanishing of the localized states. Additionally, we observed a rapid decrease in the degree of circular polarization of the PL at increasing temperatures indicating a relatively strong electron-phonon coupling and impurity-related scattering. Our results reveal further insight into the excitonic states in monolayer WSe2 which is critical for future practical applications. PMID:26940069

  6. Trapping and transport of indirect excitons in coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Wuenschell, Jeffrey K.

    Spatially indirect excitons are optically generated composite bosons with a radiative lifetime sufficient to reach thermal equilibrium. This work explores the physics of indirect excitons in coupled quantum wells in the GaAs/AlGaAs system, specifically in the low-temperature, high-density regime. Particular attention is paid to a technique whereby a spatially inhomogeneous strain field is used as a trapping potential. In the process of modeling the trapping profile in wide quantum wells, dramatic effects due to intersubband coupling were observed at high strain. Experimentally, this regime coincides with the abrupt appearance of a dark population of indirect excitons at trap center, an effect originally suspected to be related to Bose-Einstein condensation. Here, the role of band mixing due to the strain-induced distortion of the crystal symmetry will be explored in detail in the context of this effect. Experimental studies presented here and in the literature suggest that Bose-Einstein condensation in indirect exciton systems may be difficult to detect with optical means (e.g., coherence measurements, momentum-space narrowing), possibly due to the strong dipole interaction between indirect excitons. Due to similarities between this system and liquid helium, it may be more fruitful to look for transport-related signatures of condensation, such as super fluidity. Here, a method for performing transport measurements on optically generated indirect excitons is also outlined and preliminary results are presented.

  7. Monte Carlo Simulation of Exciton Dynamics in Supramolecular Semiconductor Architectures

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Beljonne, David; Herz, Laura; Hoeben, Freek

    2005-03-01

    Supramolecular chemistry is useful to construct molecular architectures with functional semiconductor properties. To explore the consequences of this approach in molecular electronics, we have carried out ultrafast measurements of exciton dynamics in supramolecular assemblies of an oligo-p-phenyl-ene-vinyl-ene derivative functionalized to form chiral stacks in dodecane solution in a thermotropically reversible manner. We apply a model of incoherent exciton hopping within a Monte Carlo scheme to extract microscopic physical quantities. The simulation first builds the chiral stacks with a Gaussian disorder of site energies and then simulates exciton hopping on the structure and exciton-exciton annihilation to reproduce ensemble-averaged experimental data. The exciton transfer rates are calculated beyond the point-dipole approximation using the so-called line-dipole approach in combination with the Förster expression. The model of incoherent hopping successfully reproduces the data and we extract a high diffusion coefficient illustrating the polymeric properties of such supramolecular assemblies. The scope and limitations of the line-dipole approximation as well as the resonance energy transfer concept in this system are discussed.

  8. Influence of dielectric environment on exciton and bi-exciton properties in colloidal, type II quantum dots

    NASA Astrophysics Data System (ADS)

    Miloszewski, Jacek M.; Walsh, Thomas; Tomić, Stanko

    2015-05-01

    We present theoretical calculations of type II CdSe/CdTe quantum dots systems. We use an 8-band k.p Hamiltonian that includes spin-orbit interaction, strain, and first order piezoelectric effects. Exciton and bi-exciton states are found using the configuration interaction (CI) method that explicitly includes the effects of the Coulomb interaction, as well as exchange and correlation effects between many-electron configurations. We study convergence of the CI Hamiltonian with respect to the number of single particle states used in creation of the Hamiltonian. We show that there is a very strong correlation between the dielectric constant of the environment and exciton and bi-exciton energies.

  9. Cooperative Singlet and Triplet Exciton Transport in Tetracene Crystals Visualized by Ultrafast Microscopys

    SciTech Connect

    Wan, Yan; Guo, Zhi; Zhu, Tong; Yan, Suxia; Johnson, Justin; Huang, Libai

    2015-09-14

    Singlet fission presents an attractive solution to overcome the Shockley–Queisser limit by generating two triplet excitons from one singlet exciton. Although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. We report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. Moreover, these measurements reveal a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.

  10. Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics

    NASA Astrophysics Data System (ADS)

    Sim, Sangwan; Park, Jusang; Song, Jeong-Gyu; In, Chihun; Lee, Yun-Shik; Kim, Hyungjun; Choi, Hyunyong

    2013-08-01

    We report ultrafast pump-probe spectroscopy examining exciton dynamics in atomically thin MoS2. Spectrally and temporally resolved measurements are performed to investigate the interaction dynamics of two important direct-gap excitons (A and B) and their associated broadening kinetics. The two excitons show strongly correlated interexcitonic dynamic, in which the transient blue-shifted excitonic absorption originates from the internal A-B excitonic interaction. The observed complex spectral response is determined by the exciton collision-induced linewidth broadening; the broadening of the B-exciton linewidth in turn lowers the peak spectral amplitude of the A exciton. Resonant excitation at the B-exciton energy reveals that interexcitonic scattering plays a more important role in determining the broadening kinetics than free-carrier scattering.

  11. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy.

    PubMed

    Wan, Yan; Guo, Zhi; Zhu, Tong; Yan, Suxia; Johnson, Justin; Huang, Libai

    2015-10-01

    Singlet fission presents an attractive solution to overcome the Shockley-Queisser limit by generating two triplet excitons from one singlet exciton. However, although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. Here, we report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. These measurements reveal a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion. PMID:26391077

  12. Exciton-dominant electroluminescence from a diode of monolayer MoS{sub 2}

    SciTech Connect

    Ye, Yu; Ye, Ziliang; Gharghi, Majid; Zhu, Hanyu; Wang, Yuan; Zhao, Mervin; Yin, Xiaobo; Zhang, Xiang

    2014-05-12

    In two-dimensional monolayer MoS{sub 2}, excitons dominate the absorption and emission properties. However, the low electroluminescent efficiency and signal-to-noise ratio limit our understanding of the excitonic behavior of electroluminescence. Here, we study the microscopic origin of the electroluminescence from a diode of monolayer MoS{sub 2} fabricated on a heavily p-type doped silicon substrate. Direct and bound-exciton related recombination processes are identified from the electroluminescence. At a high electron-hole pair injection rate, Auger recombination of the exciton-exciton annihilation of the bound exciton emission is observed at room temperature. Moreover, the efficient electrical injection demonstrated here allows for the observation of a higher energy exciton peak of 2.255 eV in the monolayer MoS{sub 2} diode, attributed to the excited exciton state of a direct-exciton transition.

  13. Room-Temperature Transport of Indirect Excitons in (Al ,Ga )N /GaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Fedichkin, F.; Guillet, T.; Valvin, P.; Jouault, B.; Brimont, C.; Bretagnon, T.; Lahourcade, L.; Grandjean, N.; Lefebvre, P.; Vladimirova, M.

    2016-07-01

    We report on the exciton propagation in polar (Al ,Ga )N /GaN quantum wells over several micrometers and up to room temperature. The key ingredient to achieve this result is the crystalline quality of GaN quantum wells grown on GaN substrate that limits nonradiative recombination. From the comparison of the spatial and temporal dynamics of photoluminescence, we conclude that the propagation of excitons under continuous-wave excitation is assisted by efficient screening of the in-plane disorder. Modeling within drift-diffusion formalism corroborates this conclusion and suggests that exciton propagation is still limited by the exciton scattering on defects rather than by exciton-exciton scattering so that improving interface quality can boost exciton transport further. Our results pave the way towards room-temperature excitonic devices based on gate-controlled exciton transport in wide-band-gap polar heterostructures.

  14. Contribution to the cloud droplet effective radius parameterization

    SciTech Connect

    Pontikis, C.; Hicks, E. )

    1992-11-01

    An analytic cloud droplet effective radius expression is derived and validated by using field experiment microphysical data. This expression shows that the effective radius depends simultaneously upon the cloud liquid water content, droplet concentration and droplet spectral dispersion. It further suggests that the variability in these parameters present at all scales, due to turbulent mixing and secondary droplet activation, could limit the accuracy of the effective radius parameterizations used in climate models. 12 refs.

  15. Discharge coefficients of cooling holes with radiused and chamfered inlets

    NASA Astrophysics Data System (ADS)

    Hay, N.; Spencer, A.

    1991-06-01

    The flow of cooling air within the internal passages of gas turbines is controlled and metered using holes in disks and casings. The effects of inlet radiusing and chamfering of these holes on the discharge coefficient are discussed. Experimental results for a range of radiusing and chamfering ratios for holes of different length to diameter ratios are presented, covering the range of pressure ratios of practical interest. The results indicate that radiusing and chamfering are both beneficial in increasing the discharge coefficient. Increases of 10-30 percent are possible. Chamfered holes give the more desirable performance characteristics in addition to being easier to produce than radiused holes.

  16. Improving optical bench radius measurements using stage error motion data

    SciTech Connect

    Schmitz, Tony L.; Gardner, Neil; Vaughn, Matthew; Medicus, Kate; Davies, Angela

    2008-12-20

    We describe the application of a vector-based radius approach to optical bench radius measurements in the presence of imperfect stage motions. In this approach, the radius is defined using a vector equation and homogeneous transformation matrix formulism. This is in contrast to the typical technique, where the displacement between the confocal and cat's eye null positions alone is used to determine the test optic radius. An important aspect of the vector-based radius definition is the intrinsic correction for measurement biases, such as straightness errors in the stage motion and cosine misalignment between the stage and displacement gauge axis, which lead to an artificially small radius value if the traditional approach is employed. Measurement techniques and results are provided for the stage error motions, which are then combined with the setup geometry through the analysis to determine the radius of curvature for a spherical artifact. Comparisons are shown between the new vector-based radius calculation, traditional radius computation, and a low uncertainty mechanical measurement. Additionally, the measurement uncertainty for the vector-based approach is determined using Monte Carlo simulation and compared to experimental results.

  17. Raman dispersion spectroscopy probes heme distortions in deoxyHb-trout IV involved in its T-state Bohr effect

    PubMed Central

    Schweitzer-Stenner, Reinhard; Bosenbeck, Michael; Dreybrodt, Wolfgang

    1993-01-01

    The depolarization ratios of heme protein Raman lines arising from vibrations of the heme group exhibit significant dependence on the excitation wavelength. From the analysis of this depolarization ratio dispersion, one obtains information about symmetry-lowering distortions δQΓ of the heme group that can be classified in terms of the symmetry races Γ = A1g, B1g, B2g, and A2g in D4h symmetry. The heme-protein interaction can be changed by the protonation of distinct amino acid side chains (i.e., for instance the Bohr groups in hemoglobin derivates), which gives rise to specific static heme distortions for each protonation state. From the Raman dispersion data, it is possible to obtain parameters by fitting to a theoretical expression of the Raman tensor, which provide information on these static distortions and also about the pK values of the involved titrable side chains. We have applied this method to the ν4 (1,355 cm-1) and ν10 (1,620 cm-1) lines of deoxygenated hemoglobin of the fourth component of trout and have measured their depolarization ratio dispersion as a function of pH between 6 and 9. From the pH dependence of the thus derived parameters, we obtain pK values identical to those of the Bohr groups, which were earlier derived from the corresponding O2-binding isotherms. These are pKα1 = pKα2 = 8.5 for the α and pKβ1 = 7.5, pKβ2 = 7.4 for the β chains. We also obtain the specific distortion parameters for each protonation state. As shown in earlier studies, the ν4 mode mainly probes distortions from interactions between the proximal histidine and atoms of the heme core (i.e., the nitrogens and the Cα atoms of the pyrroles). Group theoretical argumentation allows us to relate specific changes of the imidazole geometry as determined by its tilt and azimuthal angle and the iron-out-of-plane displacement to distinct variations of the normal distortions δQΓ derived from the Raman dispersion data. Thus, we found that the pH dependence of the

  18. Plasmon transmission through excitonic subwavelength gaps

    NASA Astrophysics Data System (ADS)

    Sukharev, Maxim; Nitzan, Abraham

    2016-04-01

    We study the transfer of electromagnetic energy across a subwavelength gap separating two co-axial metal nanorods. In the absence of spacer in the gap separating the rods, the system exhibits strong coupling behavior between longitudinal plasmons in the two rods. The nature and magnitude of this coupling are studied by varying various geometrical parameters. As a function of frequency, the transmission is dominated by a split longitudinal plasmon peak. The two hybrid modes are the dipole-like "bonding" mode characterized by a peak intensity in the gap and a quadrupole-like "antibonding" mode whose amplitude vanishes at the gap center. When the length of one rod is varied, this mode spectrum exhibits the familiar anti-crossing behavior that depends on the coupling strength determined by the gap width. When off-resonant 2-level emitters are placed in the gap, almost no effect on the frequency dependent transmission is observed. In contrast, when the molecular system is resonant with the plasmonic line shape, the transmission is strongly modified, showing characteristics of strong exciton-plasmon coupling. Most strongly modified is the transmission near the lower frequency "bonding" plasmon mode. The presence of resonant molecules in the gap affects not only the molecule-field interaction but also the spatial distribution of the field intensity and the electromagnetic energy flux across the junction.

  19. Photosynthetic light harvesting: excitons and coherence

    PubMed Central

    Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D.

    2014-01-01

    Photosynthesis begins with light harvesting, where specialized pigment–protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques. PMID:24352671

  20. Dark High Density Dipolar Liquid of Excitons.

    PubMed

    Cohen, Kobi; Shilo, Yehiel; West, Ken; Pfeiffer, Loren; Rapaport, Ronen

    2016-06-01

    The possible phases and the nanoscale particle correlations of two-dimensional interacting dipolar particles is a long-sought problem in many-body physics. Here we observe a spontaneous condensation of trapped two-dimensional dipolar excitons with internal spin degrees of freedom from an interacting gas into a high density, closely packed liquid state made mostly of dark dipoles. Another phase transition, into a bright, highly repulsive plasma, is observed at even higher excitation powers. The dark liquid state is formed below a critical temperature Tc ≈ 4.8 K, and it is manifested by a clear spontaneous spatial condensation to a smaller and denser cloud, suggesting an attractive part to the interaction which goes beyond the purely repulsive dipole-dipole forces. Contributions from quantum mechanical fluctuations are expected to be significant in this strongly correlated, long living dark liquid. This is a new example of a two-dimensional atomic-like interacting dipolar liquid, but where the coupling of light to its internal spin degrees of freedom plays a crucial role in the dynamical formation and the nature of resulting condensed dark ground state. PMID:27183418

  1. Benchmarking Calculations of Excitonic Couplings between Bacteriochlorophylls.

    PubMed

    Kenny, Elise P; Kassal, Ivan

    2016-01-14

    Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. Understanding these uncertainties can guard against striving for unrealistic precision; at the same time, detailed benchmarks can allow important qualitative questions-which do not depend on the precise values of the simulation parameters-to be addressed with greater confidence about the conclusions. PMID:26651217

  2. Plasmon transmission through excitonic subwavelength gaps.

    PubMed

    Sukharev, Maxim; Nitzan, Abraham

    2016-04-14

    We study the transfer of electromagnetic energy across a subwavelength gap separating two co-axial metal nanorods. In the absence of spacer in the gap separating the rods, the system exhibits strong coupling behavior between longitudinal plasmons in the two rods. The nature and magnitude of this coupling are studied by varying various geometrical parameters. As a function of frequency, the transmission is dominated by a split longitudinal plasmon peak. The two hybrid modes are the dipole-like "bonding" mode characterized by a peak intensity in the gap and a quadrupole-like "antibonding" mode whose amplitude vanishes at the gap center. When the length of one rod is varied, this mode spectrum exhibits the familiar anti-crossing behavior that depends on the coupling strength determined by the gap width. When off-resonant 2-level emitters are placed in the gap, almost no effect on the frequency dependent transmission is observed. In contrast, when the molecular system is resonant with the plasmonic line shape, the transmission is strongly modified, showing characteristics of strong exciton-plasmon coupling. Most strongly modified is the transmission near the lower frequency "bonding" plasmon mode. The presence of resonant molecules in the gap affects not only the molecule-field interaction but also the spatial distribution of the field intensity and the electromagnetic energy flux across the junction. PMID:27083741

  3. Singlet fission of hot excitons in π-conjugated polymers.

    PubMed

    Zhai, Yaxin; Sheng, Chuanxiang; Vardeny, Z Valy

    2015-06-28

    We used steady-state photoinduced absorption (PA), excitation dependence (EXPA(ω)) spectrum of the triplet exciton PA band, and its magneto-PA (MPA(B)) response to investigate singlet fission (SF) of hot excitons into two separated triplet excitons, in two luminescent and non-luminescent π-conjugated polymers. From the high energy step in the triplet EXPA(ω) spectrum of the luminescent polymer poly(dioctyloxy)phenylenevinylene (DOO-PPV) films, we identified a hot-exciton SF (HE-SF) process having threshold energy at E≈2E(T) (=2.8 eV, where ET is the energy of the lowest lying triplet exciton), which is about 0.8 eV above the lowest singlet exciton energy. The HE-SF process was confirmed by the triplet MPA(B) response for excitation at E>2E(T), which shows typical SF response. This process is missing in DOO-PPV solution, showing that it is predominantly interchain in nature. By contrast, the triplet EXPA(ω) spectrum in the non-luminescent polymer polydiacetylene (PDA) is flat with an onset at E=E(g) (≈2.25 eV). From this, we infer that intrachain SF that involves a triplet-triplet pair state, also known as the 'dark' 2A(g) exciton, dominates the triplet photogeneration in PDA polymer as E(g)>2E(T). The intrachain SF process was also identified from the MPA(B) response of the triplet PA band in PDA. Our work shows that the SF process in π-conjugated polymers is a much more general process than thought previously. PMID:25987576

  4. Singlet fission of hot excitons in π-conjugated polymers

    PubMed Central

    Zhai, Yaxin; Sheng, Chuanxiang; Vardeny, Z. Valy

    2015-01-01

    We used steady-state photoinduced absorption (PA), excitation dependence (EXPA(ω)) spectrum of the triplet exciton PA band, and its magneto-PA (MPA(B)) response to investigate singlet fission (SF) of hot excitons into two separated triplet excitons, in two luminescent and non-luminescent π-conjugated polymers. From the high energy step in the triplet EXPA(ω) spectrum of the luminescent polymer poly(dioctyloxy)phenylenevinylene (DOO-PPV) films, we identified a hot-exciton SF (HE-SF) process having threshold energy at E≈2ET (=2.8 eV, where ET is the energy of the lowest lying triplet exciton), which is about 0.8 eV above the lowest singlet exciton energy. The HE-SF process was confirmed by the triplet MPA(B) response for excitation at E>2ET, which shows typical SF response. This process is missing in DOO-PPV solution, showing that it is predominantly interchain in nature. By contrast, the triplet EXPA(ω) spectrum in the non-luminescent polymer polydiacetylene (PDA) is flat with an onset at E=Eg (≈2.25 eV). From this, we infer that intrachain SF that involves a triplet–triplet pair state, also known as the ‘dark’ 2Ag exciton, dominates the triplet photogeneration in PDA polymer as Eg>2ET. The intrachain SF process was also identified from the MPA(B) response of the triplet PA band in PDA. Our work shows that the SF process in π-conjugated polymers is a much more general process than thought previously. PMID:25987576

  5. Exciton diffusion in disordered small molecules for organic photovoltaics: insights from first-principles simulations.

    PubMed

    Li, Z; Zhang, X; Lu, G

    2014-05-01

    Exciton diffusion in small molecules 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione [DPP(TBFu)2] is studied using first-principles simulations. We have examined dependence of exciton diffusion on structure disorder, temperature and exciton energy. We find that exciton diffusion length and diffusivity increase with structural order, temperature and the initial exciton energy. Compared to conjugated polymer poly(3-hexylthiophene) (P3HT), DPP(TBFu)2 small molecules exhibit a much higher exciton diffusivity, but a shorter lifetime. The exciton diffusion length in DPP(TBFu)2 is 50% longer than that in P3HT, yielding a higher exciton harvesting efficiency; the physical origin behind these differences is discussed. The time evolutions of exciton energy, electron-hole distance, and exciton localization are explored, and the widely speculated exciton diffusion mechanism is confirmed theoretically. The connection between exciton diffusion and carrier mobilities is also studied. Finally we point out the possibility to estimate exciton diffusivity by measuring carrier mobilities under AC electric fields. PMID:24759042

  6. The Origin of the Ionic-Radius Ratio Rules

    ERIC Educational Resources Information Center

    Jensen, William B.

    2010-01-01

    In response to a reader query, this article traces the origins of the ionic-radius ratio rules and their incorrect attribution to Linus Pauling in the chemical literature and to Victor Goldschmidt in the geochemical literature. In actual fact, the ionic-radius ratio rules were first proposed within the context of the coordination chemistry…

  7. Determination of Radius of Curvature for Teeth With Cycloid Profile

    NASA Astrophysics Data System (ADS)

    Shatalov, E. V.; Efremenkov, E. A.; Shibinskiy, K. G.

    2016-04-01

    In the article the geometric determination of curvature radius is considered for teeth with cycloid profile. The equations are obtained for the determination of a radius of curvature with point coordinates of a cycloid profile. The conditions of convexo-concavity of a teeth profile are defined for transmission with intermediate rollers.

  8. Correlated Pair States Formed by Singlet Fission and Exciton-Exciton Annihilation.

    PubMed

    Scholes, Gregory D

    2015-12-24

    Singlet fission to form a pair of triplet excitations on two neighboring molecules and the reverse process, triplet-triplet annihilation to upconvert excitation, have been extensively studied. Comparatively little work has sought to examine the properties of the intermediate state in both of these processes-the bimolecular pair state. Here, the eigenstates constituting the manifold of 16 bimolecular pair excitations and their relative energies in the weak-coupling regime are reported. The lowest-energy states obtained from the branching diagram method are the triplet pairs with overall singlet spin |X1⟩ ≈ (1)[TT] and quintet spin |Q⟩ ≈ (5)[TT]. It is shown that triplet pair states can be separated by a triplet-triplet energy-transfer mechanism to give a separated, yet entangled triplet pair (1)[T···T]. Independent triplets are produced by decoherence of the separated triplet pair. Recombination of independent triplets by exciton-exciton annihilation to form the correlated triplet pair (i.e., nongeminate recombination) happens with 1/3 of the rate of either triplet migration or recombination of the separated correlated triplet pair (geminate recombination). PMID:26595530

  9. Intermolecular exciton-exciton annihilation in phospholipid vesicles doped with [Ru(bpy)2dppz]2+

    NASA Astrophysics Data System (ADS)

    De la Cadena, Alejandro; Pascher, Torbjörn; Davydova, Dar'ya; Akimov, Denis; Herrmann, Felix; Presselt, Martin; Wächtler, Maria; Dietzek, Benjamin

    2016-01-01

    The ultrafast photophysics of [Ru(bpy)2dppz]2+ (dppz = dipyrido[3,2-a:2‧,3‧-c]-phenazine) embedded into the walls of phospholipid vesicles has been studied by femtosecond time-resolved pump-probe spectroscopy. While [Ru(bpy)2dppz]2+ has been studied intensively with respect to its intramolecular charge transfer processes, which are associated with the well known light-switch effect, this study focuses on intermolecular energy transfer processes taking place upon dense packing of the complexes into a phospholipid membrane composed of dipalmitoyl-L-α-phosphatidylglycerol, which can be thought of as a simplistic model of a cellular membrane. The data indicate additional quenching of excited [Ru(bpy)2dppz]2+ upon increasing the pump-pulse intensity. Hence, the observed photophysics, which is assigned to the presence of intermolecular exciton-exciton annihilation at high pump-intensities, might be related to the ultrafast photophysics of [Ru(bpy)2dppz]2+ when used as a chromophore to stain cells, an effect that may be taken into account during the employment of novel cellular markers based on Ru polypyridine complexes.

  10. Multiple exciton generation and ultrafast exciton dynamics in HgTe colloidal quantum dots.

    PubMed

    Al-Otaify, Ali; Kershaw, Stephen V; Gupta, Shuchi; Rogach, Andrey L; Allan, Guy; Delerue, Christophe; Binks, David J

    2013-10-21

    The investigation of sub-nanosecond exciton dynamics in HgTe colloidal quantum dots using ultrafast transient absorption spectroscopy is reported. The transmittance change spectrum acquired immediately after pumping is dominated by a bleach blue-shifted by ~200-300 nm from the photoluminescent emission band. Comparison with a tight-binding model of the electronic structure allows this feature to be attributed to the filling of band edge states. The form of the pump-induced transmittance transients is dependent on the excitation rate and the rate of sample stirring. For moderate pumping of stirred samples, the transmittance transients are well-described by a mono-exponential decay associated with biexciton recombination, with a lifetime of 49 ± 2 ps. For samples that are strongly-pumped or unstirred, the decay becomes bi-exponential in form, indicating that trap-related recombination has become significant. We also present a new analysis that enables fractional transmittance changes to be related to band edge occupation for samples with arbitrary optical density at the pump wavelength. This allows us to identify the occurrence of multiple exciton generation, which results in a quantum yield of 1.36 ± 0.04 for a photon energy equivalent to 3.1 times the band gap, in good agreement with the results of the model. PMID:23999734

  11. Decreasing the spectral radius of a graph by link removals.

    PubMed

    Van Mieghem, Piet; Stevanović, Dragan; Kuipers, Fernando; Li, Cong; van de Bovenkamp, Ruud; Liu, Daijie; Wang, Huijuan

    2011-07-01

    The decrease of the spectral radius, an important characterizer of network dynamics, by removing links is investigated. The minimization of the spectral radius by removing m links is shown to be an NP-complete problem, which suggests considering heuristic strategies. Several greedy strategies are compared, and several bounds on the decrease of the spectral radius are derived. The strategy that removes that link l=i~j with largest product (x(1))(i)(x(1))(j) of the components of the eigenvector x(1) belonging to the largest adjacency eigenvalue is shown to be superior to other strategies in most cases. Furthermore, a scaling law where the decrease in spectral radius is inversely proportional to the number of nodes N in the graph is deduced. Another sublinear scaling law of the decrease in spectral radius versus the number m of removed links is conjectured. PMID:21867251

  12. Interband optical spectra of magnetoexcitons in semiconductor nanorings: Electron-hole spatial correlation

    NASA Astrophysics Data System (ADS)

    Citrin, D. S.; Maslov, A. V.

    2005-08-01

    An analytic model [R. A. Römer and M. E. Raikh, Phys. Rev. B 62, 7045 (2000); K. Moulopoulos and M. Constantinou, Phys. Rev. B 70, 235327 (2004)] for magnetoexcitons in nanoscale semiconductor rings is extended to calculate directly the linear optical properties. The spectroscopic properties exhibit pronounced Φ0=hc/e excitonic Aharonov-Bohm oscillations in the threading magnetic flux Φ when the ring radius R is less than the effective exciton Bohr radius a0 . The electron-hole spatial correlation induced by an optical field as a function of nanoring radius and threading magnetic flux is studied.

  13. Exciton-plasmon interactions and energy transfer in nanoparticles

    NASA Astrophysics Data System (ADS)

    Govorov, Alexander

    2009-03-01

    Energy transfer between optically-excited nanocrystals coupled by the Coulomb interaction can be very efficient. The interaction of excitons and plasmons in nanocrystals leads to several effects: energy transfer between nanoparticles (NPs), electromagnetic enhancement, reduced exciton diffusion in nanowires (NWs), exciton energy shifts, and interference and non-linear phenomena [1-3]. Using kinetic equations for excitons, we model exciton transport in a NW and explain the origin of the blue shift of exciton emission observed in the recent experiments on hybrid NW-NP assemblies [2]. We also model artificial light-harvesting complexes composed of chlorophylls, bacterial reaction centers, and NPs [3]. Using superior optical properties of metal and semiconductor NPs, one can strongly enhance the efficiency of light harvesting [3]. An interaction between a discrete state of exciton and a continuum of plasmonic states can give rise to interference effects (Fano-like asymmetric resonances). These interference effects greatly enhance visibility of relatively weak exciton signals and can be used for spectroscopy of single nanoparticle and molecules. In the nonlinear regime, the Fano effect becomes strongly amplified [4]. In conclusion, our theory explains present experimental results and also provides motivation for future experiments and applications. Potential applications of dynamical exciton-plasmon systems include sensors and light-harvesting. The above theoretical studies were performed in collaboration with several groups [1-4]. [4pt] [1] A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, Nano Letters 6, 984 (2006).[0pt] [2] J. Lee, P. Hernandez, J. Lee, A. Govorov, and N. Kotov, Nature Materials 6, 291 (2007).[0pt] [3] A. O. Govorov and I. Carmeli, Nano Lett. 7, 620 (2007); S. Mackowski, S. W"ormke, A.J. Maier, T.H.P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A.O. Govorov, H. Scheer, C. Br"auchle, Nano Lett. 8, 558

  14. Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger: The origins of the principles of uncertainty and complementarity

    NASA Astrophysics Data System (ADS)

    Mehra, Jagdish

    1987-05-01

    In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger during 1920 1927 are treated. From the formulation of quantum mechanics in 1925 1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory—formulated in fall 1926 by Dirac, London, and Jordan—Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publicly enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of qnautum mechanics and of physical theory as such—formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930—were continued during the next decades. All these aspects are briefly summarized.

  15. Multiple Exciton Generation in Semiconductor Nanostructures: DFT-based Computation

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Kryjevski, Andrei; Kilin, Dmitri; Kilina, Svetlana; Vogel, Dayton

    Multiple exciton generation (MEG) in nm-sized H-passivated Si nanowires (NWs), and quasi 2D nanofilms depends strongly on the degree of the core structural disorder as shown by the perturbation theory calculations based on the DFT simulations. In perturbation theory, we work to the 2nd order in the electron-photon coupling and in the (approximate) RPA-screened Coulomb interaction. We also include the effect of excitons for which we solve Bethe-Salpeter Equation. To describe MEG we calculate exciton-to-biexciton as well as biexciton-to-exciton rates and quantum efficiency (QE). We consider 3D arrays of Si29H36 quantum dots, NWs, and quasi 2D silicon nanofilms, all with both crystalline and amorphous core structures. Efficient MEG with QE of 1.3 up to 1.8 at the photon energy of about 3Egap is predicted in these nanoparticles except for the crystalline NW and film where QE ~=1. MEG in the amorphous nanoparticles is enhanced by the electron localization due to structural disorder. The exciton effects significantly red-shift QE vs. photon energy curves. Nm-sized a-Si NWs and films are predicted to have effective MEG within the solar spectrum range. Also, we find efficient MEG in the chiral single-wall Carbon nanotubes and in a perovskite nanostructure.

  16. Chiral exciton in the topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Kung, Hsiang-Hsi; Salehi, Maryam; Wang, Xueyun; Koirala, Nikesh; Brahlek, Matthew; Lee, Alexander; Cheong, Sang-Wook; Oh, Seongshik; Blumberg, Girsh

    Materials with novel band structures can host ``chiral excitons'', where the exciton emission preserves the helicity of the excitation photon, as recently demonstrated in transition metal dichalcogenide monolayers. Here, we report the observation of a highly polarized photoluminescence peak, which is due to chiral exciton emission in the topological insulator Bi2Se3. Surprisingly, the energy of the emission is centered at 2.26 eV, much higher than the 0.3 eV bulk band gap of Bi2Se3. The excitation profile shows maximum polarization around 2.60 eV excitation, suggesting the chiral exciton is due to interband transition between the topological surface states and a bulk band. We demonstrate that the polarization of the exciton emission is insensitive to temperature and Bi2Se3 film thickness, providing a convenient and robust platform for optoelectronic applications. Gb, HHK and AL acknowledge support from NSF Award DMR-1104884. MS, NK, MB and SO are funded by Gordon and Betty Moore Foundation's EPiQS initiative (GBMF4418) and NSF(DMR-1308142). XYW and SWC acknowledge support from NSF Award DMREF-1233349.

  17. Interface exciton at lateral heterojunction of monolayer semiconductors

    NASA Astrophysics Data System (ADS)

    Lau, Ka Wai; Gong, Zhirui; Yu, Hongyi; Yao, Wang

    Heterostructures based on 2D transition metal dichalcogenides (TMDs) have attracted extensive research interest recently due to the appealing physical properties of TMDs and new geometries for forming heterostructures. One such heterostructure is the lateral heterojunctions seamlessly formed in a monolayer crystal between two different types of TMDs, e.g. WSe2 and MoSe2. Such heterojunction exhibits a type II band alignment, with electrons (holes) having lower energy on the MoSe2 (WSe2) region. Here we present the study of an interface exciton at the 1D lateral junction of monolayer TMDs. With the distance dependent screening, we find that the interface exciton can have strong binding even though the electron-hole separation is much larger compare to the 2D excitons in TMDs. Neutral excitons are studied using two different approaches: the solution based on a real-space tight binding model, and the perturbation expansion in a hydrogen-like basis in an effective mass model. We have also used the latter method to study charged excitons at a MoSe2-WSe2-MoSe2 nanoscale junction. The work is supported by the Research Grant Council of Hong Kong (HKU705513P, HKU9/CRF/13G), the Croucher Foundation, and the HKU OYRA.

  18. Nonmonotonic energy harvesting efficiency in biased exciton chains.

    PubMed

    Vlaming, S M; Malyshev, V A; Knoester, J

    2007-10-21

    We theoretically study the efficiency of energy harvesting in linear exciton chains with an energy bias, where the initial excitation is taking place at the high-energy end of the chain and the energy is harvested (trapped) at the other end. The efficiency is characterized by means of the average time for the exciton to be trapped after the initial excitation. The exciton transport is treated as the intraband energy relaxation over the states obtained by numerically diagonalizing the Frenkel Hamiltonian that corresponds to the biased chain. The relevant intraband scattering rates are obtained from a linear exciton-phonon interaction. Numerical solution of the Pauli master equation that describes the relaxation and trapping processes reveals a complicated interplay of factors that determine the overall harvesting efficiency. Specifically, if the trapping step is slower than or comparable to the intraband relaxation, this efficiency shows a nonmonotonic dependence on the bias: it first increases when introducing a bias, reaches a maximum at an optimal bias value, and then decreases again because of dynamic (Bloch) localization of the exciton states. Effects of on-site (diagonal) disorder, leading to Anderson localization, are addressed as well. PMID:17949203

  19. Fundamental processes of exciton scattering at organic solar-cell interfaces: One-dimensional model calculation

    NASA Astrophysics Data System (ADS)

    Masugata, Yoshimitsu; Iizuka, Hideyuki; Sato, Kosuke; Nakayama, Takashi

    2016-08-01

    Fundamental processes of exciton scattering at organic solar-cell interfaces were studied using a one-dimensional tight-binding model and by performing a time-evolution simulation of electron–hole pair wave packets. We found the fundamental features of exciton scattering: the scattering promotes not only the dissociation of excitons and the generation of interface-bound (charge-transferred) excitons but also the transmission and reflection of excitons depending on the electron and hole interface offsets. In particular, the dissociation increases in a certain region of an interface offset, while the transmission shows resonances with higher-energy bound-exciton and interface bound-exciton states. We also studied the effects of carrier-transfer and potential modulations at the interface and the scattering of charged excitons, and we found trap dissociations where one of the carriers is trapped around the interface after the dissociation.

  20. Quantum Simulation of Multiple-Exciton Generation in a Nanocrystal by a Single Photon

    SciTech Connect

    Witzel, Wayne M.; Shabaev, Andrew; Hellberg, C. Stephen; Jacobs, Verne L.; Efros, Alexander L.

    2010-09-22

    We have shown theoretically that efficient multiple-exciton generation (MEG) by a single photon can be observed in small nanocrystals. Our quantum simulations that include hundreds of thousands of exciton and multiexciton states demonstrate that the complex time-dependent dynamics of these states in a closed electronic system yields a saturated MEG effect on a picosecond time scale. Including phonon relaxation confirms that efficient MEG requires the exciton-biexciton coupling time to be faster than exciton relaxation time.

  1. Dark solitons and vortices in the intrinsic bistability regime in exciton polariton condensates

    NASA Astrophysics Data System (ADS)

    Yulin, A. V.; Skryabin, D. V.; Gorbach, A. V.

    2015-08-01

    We report on a class of dark solitons and vortices existing in the exciton-polariton condensates and having discontinuity in their excitonic component. These solutions exist due to an intrinsic bistability of the exciton density in the given optical field and for nonzero detuning between the cavity and excitonic resonances. We specify a well defined energy boundary where they transform into previously known polaritonic dark solitons and vortices.

  2. Thermoconvective vortices in a cylindrical annulus with varying inner radius

    NASA Astrophysics Data System (ADS)

    Castaño, D.; Navarro, M. C.; Herrero, H.

    2014-12-01

    This paper shows the influence of the inner radius on the stability and intensity of vertical vortices, qualitatively similar to dust devils and cyclones, generated in a cylindrical annulus non-homogeneously heated from below. Little relation is found between the intensity of the vortex and the magnitude of the inner radius. Strong stable vortices can be found for both small and large values of the inner radius. The Rankine combined vortex structure, that characterizes the tangential velocity in dust devils, is clearly observed when small values of the inner radius and large values of the ratio between the horizontal and vertical temperature differences are considered. A contraction on the radius of maximum azimuthal velocity is observed when the vortex is intensified by thermal mechanisms. This radius becomes then nearly stationary when frictional force balances the radial inflow generated by the pressure drop in the center, despite the vortex keeps intensifying. These results connect with the behavior of the radius of the maximum tangential wind associated with a hurricane.

  3. Thermoconvective vortices in a cylindrical annulus with varying inner radius.

    PubMed

    Castaño, D; Navarro, M C; Herrero, H

    2014-12-01

    This paper shows the influence of the inner radius on the stability and intensity of vertical vortices, qualitatively similar to dust devils and cyclones, generated in a cylindrical annulus non-homogeneously heated from below. Little relation is found between the intensity of the vortex and the magnitude of the inner radius. Strong stable vortices can be found for both small and large values of the inner radius. The Rankine combined vortex structure, that characterizes the tangential velocity in dust devils, is clearly observed when small values of the inner radius and large values of the ratio between the horizontal and vertical temperature differences are considered. A contraction on the radius of maximum azimuthal velocity is observed when the vortex is intensified by thermal mechanisms. This radius becomes then nearly stationary when frictional force balances the radial inflow generated by the pressure drop in the center, despite the vortex keeps intensifying. These results connect with the behavior of the radius of the maximum tangential wind associated with a hurricane. PMID:25554036

  4. On the Variation of Solar Radius in Rotation Cycles

    NASA Astrophysics Data System (ADS)

    Qu, Z. N.; Kong, D. F.; Xiang, N. B.; Feng, W.

    2015-01-01

    The Date Compensated Discrete Fourier Transform and CLEANest algorithm are used to study the temporal variations of the solar radius observed at Rio de Janeiro Observatory from 1998 March 2 to 2009 November 6. The CLEANest spectra show several significant periodicities around 400, 312, 93.5, 86.2, 79.4, 70.9, 53.2, and 26.3 days. Then, combining the data on the daily solar radius measured at Calern Observatory and Rio de Janeiro Observatory and the corresponding daily sunspot areas, we study the short-term periodicity of the solar radius and the role of magnetic field in the variation of the solar radius. The rotation period of the daily solar radius is determined to be statistically significant. Moreover, its temporal evolution is anti-phase with that of sunspot activity, and it is found anti-phase with solar activity. Generally, the stronger solar activity is, the more obvious is the anti-phase relation of radius with solar activity. This indicates that strong magnetic fields have a greater inhibitive effect than weak magnetic fields on the variation of the radius.

  5. ON THE VARIATION OF SOLAR RADIUS IN ROTATION CYCLES

    SciTech Connect

    Qu, Z. N.; Kong, D. F.; Xiang, N. B.; Feng, W.

    2015-01-10

    The Date Compensated Discrete Fourier Transform and CLEANest algorithm are used to study the temporal variations of the solar radius observed at Rio de Janeiro Observatory from 1998 March 2 to 2009 November 6. The CLEANest spectra show several significant periodicities around 400, 312, 93.5, 86.2, 79.4, 70.9, 53.2, and 26.3 days. Then, combining the data on the daily solar radius measured at Calern Observatory and Rio de Janeiro Observatory and the corresponding daily sunspot areas, we study the short-term periodicity of the solar radius and the role of magnetic field in the variation of the solar radius. The rotation period of the daily solar radius is determined to be statistically significant. Moreover, its temporal evolution is anti-phase with that of sunspot activity, and it is found anti-phase with solar activity. Generally, the stronger solar activity is, the more obvious is the anti-phase relation of radius with solar activity. This indicates that strong magnetic fields have a greater inhibitive effect than weak magnetic fields on the variation of the radius.

  6. Excitonic condensation of massless fermions in graphene bilayers

    SciTech Connect

    Zhang, C.-H.; Joglekar, Yogesh N.

    2008-06-15

    Graphene, a single sheet of graphite with honeycomb lattice structure, has massless carriers with tunable density and polarity. We investigate the ground-state phase diagram of two graphene sheets (embedded in a dielectric), separated by distance d where the top layer has electrons and the bottom layer has holes, using mean-field theory. We find that a uniform excitonic condensate occurs over a large range of carrier densities and is weakly dependent on the relative orientation of the two sheets. We obtain the excitonic gap, quasiparticle energy, and the density of states. We show that both the condensate phase stiffness and the mass of the excitons with massless particles as constituents, vary as the square root of the carrier density, and predict that the condensate will not undergo Wigner crystallization.

  7. Optical control of charged exciton states in tungsten disulfide

    NASA Astrophysics Data System (ADS)

    Currie, M.; Hanbicki, A. T.; Kioseoglou, G.; Jonker, B. T.

    2015-05-01

    A method is presented for optically preparing WS2 monolayers to luminescence from only the charged exciton (trion) state-completely suppressing the neutral exciton. When isolating the trion state, we observed changes in the Raman A1g intensity and an enhanced feature on the low energy side of the E12g peak. Photoluminescence and optical reflectivity measurements confirm the existence of the prepared trion state. This technique also prepares intermediate regimes with controlled luminescence amplitudes of the neutral and charged exciton. This effect is reversible by exposing the sample to air, indicating the change is mitigated by surface interactions with the ambient environment. This method provides a tool to modify optical emission energy and to isolate physical processes in this and other two-dimensional materials.

  8. Robust Excitons and Trions in Monolayer MoTe2.

    PubMed

    Yang, Jiong; Lü, Tieyu; Myint, Ye Win; Pei, Jiajie; Macdonald, Daniel; Zheng, Jin-Cheng; Lu, Yuerui

    2015-06-23

    Molybdenum telluride (MoTe2) has emerged as a special member in the family of two-dimensional transition metal dichalcogenide semiconductors, owing to the strong spin-orbit coupling and relatively small energy gap, which offers new applications in valleytronic and excitonic devices. Here we successfully demonstrated the electrical modulation of negatively charged (X(-)), neutral (X(0)), and positively charged (X(+)) excitons in monolayer MoTe2 via photoluminescence spectroscopy. The binding energies of X(+) and X(-) were measured to be ∼24 and ∼27 meV, respectively.The exciton binding energy of monolayer MoTe2 was measured to be 0.58 ± 0.08 eV via photoluminescence excitation spectroscopy, which matches well with our calculated value of 0.64 eV. PMID:26039551

  9. Optical control of charged exciton states in tungsten disulfide

    SciTech Connect

    Currie, M.; Hanbicki, A. T.; Jonker, B. T.; Kioseoglou, G.

    2015-05-18

    A method is presented for optically preparing WS{sub 2} monolayers to luminescence from only the charged exciton (trion) state–completely suppressing the neutral exciton. When isolating the trion state, we observed changes in the Raman A{sub 1g} intensity and an enhanced feature on the low energy side of the E{sup 1}{sub 2g} peak. Photoluminescence and optical reflectivity measurements confirm the existence of the prepared trion state. This technique also prepares intermediate regimes with controlled luminescence amplitudes of the neutral and charged exciton. This effect is reversible by exposing the sample to air, indicating the change is mitigated by surface interactions with the ambient environment. This method provides a tool to modify optical emission energy and to isolate physical processes in this and other two-dimensional materials.

  10. Exciton absorption of entangled photons in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  11. Microscopic theory of singlet exciton fission. I. General formulation

    NASA Astrophysics Data System (ADS)

    Berkelbach, Timothy C.; Hybertsen, Mark S.; Reichman, David R.

    2013-03-01

    Singlet fission, a spin-allowed energy transfer process generating two triplet excitons from one singlet exciton, has the potential to dramatically increase the efficiency of organic solar cells. However, the dynamical mechanism of this phenomenon is not fully understood and a complete, microscopic theory of singlet fission is lacking. In this work, we assemble the components of a comprehensive microscopic theory of singlet fission that connects excited state quantum chemistry calculations with finite-temperature quantum relaxation theory. We elaborate on the distinction between localized diabatic and delocalized exciton bases for the interpretation of singlet fission experiments in both the time and frequency domains. We discuss various approximations to the exact density matrix dynamics and propose Redfield theory as an ideal compromise between speed and accuracy for the detailed investigation of singlet fission in dimers, clusters, and crystals. Investigations of small model systems based on parameters typical of singlet fission demonstrate the numerical accuracy and practical utility of this approach.

  12. Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Scully, Shawn Ryan

    Organic photovoltaics have attracted significant interest over the last decade due to their promise as clean low-cost alternatives to large-scale electric power generation such as coal-fired power, natural gas, and nuclear power. Many believe power conversion efficiency targets of 10-15% must be reached before commercialization is possible. Consequently, understanding the loss mechanisms which currently limit efficiencies to 4-5% is crucial to identify paths to reach higher efficiencies. In this work, we investigate the dominant loss mechanisms in some of the leading organic photovoltaic architectures. In the first class of architectures, which include planar heterojunctions and bulk heterojunctions with large domains, efficiencies are primarily limited by the distance photogenerated excitations (excitons) can be transported (termed the exciton diffusion length) to a heterojunction where the excitons may dissociate. We will discuss how to properly measure the exciton diffusion length focusing on the effects of optical interference and of energy transfer when using fullerenes as quenching layers and show how this explains the variety of diffusion lengths reported for the same material. After understanding that disorder and defects limit exciton diffusion lengths, we suggest some approaches to overcome this. We then extensively investigate the use of long-range resonant energy transfer to increase exciton harvesting. Using simulations and experiments as support, we discuss how energy transfer can be engineered into architectures to increase the distance excitons can be harvested. In an experimental model system, DOW Red/PTPTB, we will show how the distance excitons are harvested can be increased by almost an order of magnitude up to 27 nm from a heterojunction and give design rules and extensions of this concept for future architectures. After understanding exciton harvesting limitations we will look at other losses that are present in planar heterojunctions. One of

  13. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ardelt, P.-L.; Gawarecki, K.; Müller, K.; Waeber, A. M.; Bechtold, A.; Oberhofer, K.; Daniels, J. M.; Klotz, F.; Bichler, M.; Kuhn, T.; Krenner, H. J.; Machnikowski, P.; Finley, J. J.

    2016-02-01

    We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k .p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.

  14. Hidden symmetry and excitonic transitions in the quantum well

    NASA Astrophysics Data System (ADS)

    Kazaryan, E. M.; Petrosyan, L. S.; Sarkisyan, H. A.

    2008-01-01

    In this article it is shown that, Sommerfeld's coefficients for excitonic transitions in quantum wells are determined only with the principle quantum number within the framework of two-dimensional Coulomb potential. This is a consequence of hidden symmetry of two-dimensional Coulomb problem, conditioned by the existence of two-dimensional analog of the Runge-Lentz vector. For the narrow gap semiconductor quantum well with the non-parabolic dispersion law of electron and hole in the two-band Kane model it is shown that two-dimensional excitonic states are described in the frames of an analog of Klein-Gordon equation with the two-dimensional Coulomb potential. The non-stability of the ground state of the two-dimensional Kane's exciton is shown.

  15. Exciton dynamics in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Kwangsik; Won, Taeyoung

    2012-11-01

    In this paper, we present a numerical simulation for the optoelectronic material and device characterization in organic light-emitting diodes (OLEDs). Our model includes a Gaussian density of states to account for the energetic disorder in the organic semiconductors and the Fermi-Dirac statistics to account for the charge-hopping process between uncorrelated sites. The motivation for this work is the extraction of the emission profile and the source spectrum of a given OLED structure. The physical model covers all the key physical processes in OLEDs: namely, charge injection, transport and recombination, exciton diffusion, transfer, and decay. The exciton model includes generation, diffusion, energy transfer, and annihilation. We assume that the light emission originates from an oscillation and is thus embodied as excitons and is embedded in a stack of multilayers. The outcoupled emission spectrum is numerically calculated as a function of viewing angle, polarization, and dipole orientation. We also present simulated current-voltage and transient results.

  16. Charged two-exciton emission from a single semiconductor nanocrystal

    SciTech Connect

    Hu, Fengrui; Zhang, Qiang; Zhang, Chunfeng; Wang, Xiaoyong; Xiao, Min

    2015-03-30

    Here, we study the photoluminescence (PL) time trajectories of single CdSe/ZnS nanocrystals (NCs) as a function of the laser excitation power. At the low laser power, the PL intensity of a single NC switches between the “on” and “off” levels arising from the neutral and positively charged single excitons, respectively. With the increasing laser power, an intermediate “grey” level is formed due to the optical emission from a charged multiexciton state composed of two excitons and an extra electron. Both the inter-photon correlation and the PL decay measurements demonstrate that lifetime-indistinguishable photon pairs are emitted from this negatively charged two-exciton state.

  17. Effects of fermion exchange on the polarization of exciton condensates.

    PubMed

    Combescot, Monique; Combescot, Roland; Alloing, Mathieu; Dubin, François

    2015-03-01

    Exchange interaction is responsible for the stability of elementary boson condensates with respect to momentum fragmentation. This remains true for composite bosons when single fermion exchanges are included but spin degrees of freedom are ignored. Here, we show that their inclusion can produce a spin fragmentation of the dark exciton condensate, i.e., an unpolarized condensate with an equal amount of spin (+2) and (-2) excitons not coupled to light. The composite boson many-body formalism allows us to predict that, for spatially indirect excitons, the condensate polarization switches from unpolarized to fully polarized when the distance between the layers confining electrons and holes increases. Importantly, the threshold distance for this switch lies in a regime fully accessible to experiments. PMID:25793784

  18. Impurity effects on polaron-exciton formation in conjugated polymers

    SciTech Connect

    Ribeiro, Luiz Antonio Ferreira da Cunha, Wiliam; Neto de Oliveira, Pedro Henrique; Gargano, Ricardo; Magela e Silva, Geraldo

    2013-11-07

    Combining the one-dimensional tight-binding Su-Schrieffer-Heeger model and the extended Hubbard model, the collision of two oppositely charged polarons is investigated under the influence of impurity effects using a non-adiabatic evolution method. Results show that electron-electron interactions have direct influence on the charge distribution coupled to the polaron-exciton lattice defect. Additionally, the presence of an impurity in the collisional process reduces the critical electric field for the polaron-exciton formation. In the small electric field regime, the impurity effects open three channels and are of fundamental importance to favor the polaron-exciton creation. The results indicate that the scattering between polarons in the presence of impurities can throw a new light on the description of electroluminescence in conjugated polymer systems.

  19. Quantum Hall Exciton Condensation at Full Spin Polarization

    NASA Astrophysics Data System (ADS)

    Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2010-03-01

    Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at νT=1 as a function of Zeeman energy, EZ. The critical layer separation (d/l)c for exciton condensation initially increases rapidly with EZ, but then reaches a maximum and begins a gentle decline. At high EZ, where both the excitonic phase at small d/l and the compressible phase at large d/l are fully spin polarized, we find that the width of the transition, as a function of d/l, is much larger than at small EZ and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids.

  20. Quantum Hall Exciton Condensation at Full Spin Polarization

    NASA Astrophysics Data System (ADS)

    Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2010-01-01

    Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at νT=1 as a function of Zeeman energy EZ. The critical layer separation (d/ℓ)c for exciton condensation initially increases rapidly with EZ, but then reaches a maximum and begins a gentle decline. At high EZ, where both the excitonic phase at small d/ℓ and the compressible phase at large d/ℓ are fully spin polarized, we find that the width of the transition, as a function of d/ℓ, is much larger than at small EZ and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids.

  1. Effects of Fermion Exchange on the Polarization of Exciton Condensates

    NASA Astrophysics Data System (ADS)

    Combescot, Monique; Combescot, Roland; Alloing, Mathieu; Dubin, François

    2015-03-01

    Exchange interaction is responsible for the stability of elementary boson condensates with respect to momentum fragmentation. This remains true for composite bosons when single fermion exchanges are included but spin degrees of freedom are ignored. Here, we show that their inclusion can produce a spin fragmentation of the dark exciton condensate, i.e., an unpolarized condensate with an equal amount of spin (+2 ) and (-2 ) excitons not coupled to light. The composite boson many-body formalism allows us to predict that, for spatially indirect excitons, the condensate polarization switches from unpolarized to fully polarized when the distance between the layers confining electrons and holes increases. Importantly, the threshold distance for this switch lies in a regime fully accessible to experiments.

  2. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport.

    PubMed

    Jensen, F B

    2004-11-01

    The discovery of the S-shaped O2 equilibrium curve and the Bohr effect in 1904 stimulated a fertile and continued research into respiratory functions of blood and allosteric mechanisms in haemoglobin (Hb). The Bohr effect (influence of pH/CO2 on Hb O2 affinity) and the reciprocal Haldane effect (influence of HbO2 saturation on H+/CO2 binding) originate in the Hb oxy-deoxy conformational change and allosteric interactions between O2 and H+/CO2 binding sites. In steady state, H+ is passively distributed across the vertebrate red blood cell (RBC) membrane, and intracellular pH (pHi) changes are related to changes in extracellular pH, Hb-O2 saturation and RBC organic phosphate content. As the Hb molecule shifts between the oxy and deoxy conformation in arterial-venous gas transport, it delivers O2 and takes up CO2 and H+ in tissue capillaries (elegantly aided by the Bohr effect). Concomitantly, the RBC may sense local O2 demand via the degree of Hb deoxygenation and release vasodilatory agents to match local blood flow with requirements. Three recent hypotheses suggest (1) release of NO from S-nitroso-Hb upon deoxygenation, (2) reduction of nitrite to vasoactive NO by deoxy haems, and (3) release of ATP. Inside RBCs, carbonic anhydrase (CA) provides fast hydration of metabolic CO2 and ensures that the Bohr shift occurs during capillary transit. The formed H+ is bound to Hb (Haldane effect) while HCO3- is shifted to plasma via the anion exchanger (AE1). The magnitude of the oxylabile H+ binding shows characteristic differences among vertebrates. Alternative strategies for CO2 transport include direct HCO3- binding to deoxyHb in crocodilians, and high intracellular free [HCO3-] (due to high pHi) in lampreys. At the RBC membrane, CA, AE1 and other proteins may associate into what appears to be an integrated gas exchange metabolon. Oxygenation-linked binding of Hb to the membrane may regulate glycolysis in mammals and perhaps also oxygen-sensitive ion transport involved in

  3. Hot-exciton luminescence in ZnTe/MnTe quantum wells

    NASA Astrophysics Data System (ADS)

    Pelekanos, N.; Ding, J.; Fu, Q.; Nurmikko, A. V.; Durbin, S. M.; Kobayashi, M.; Gunshor, R. L.

    1991-04-01

    Hot-exciton luminescence phenomena are investigated in a ZnTe/MnTe single-quantum-well structure where tunneling through thin MnTe barriers suppresses the formation of thermalized luminescence. The longitudinal-optical-phonon-modulated recombination spectra are excitonic in nature and show strong resonance enhancement at energies that lie within localized states below the n=1 exciton.

  4. Coulomb screening and exciton binding energies in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Moore, Eric; Gherman, Benjamin; Yaron, David

    1997-03-01

    Hartree-Fock solutions of the Pariser-Parr-Pople and MNDO Hamiltonians are shown to give reasonable predictions for the ionization potentials and electron affinities of gas-phase polyenes. However, the energy predicted for formation of a free electron-hole pair on an isolated chain of polyacetylene is much larger than that seen in the solid state. The prediction is 6.2 eV if soliton formation is ignored and about 4.7 eV if soliton formation is included. The effects of interchain interactions on the exciton binding energy are then explored using a model system consisting of one solute and one solvent polyene, that are coplanar and separated by 4 Å. The lowering of the exciton binding energy is calculated by comparing the solvation energy of the exciton state to that of a single hole (a cationic solute polyene) and a single electron (an anionic solute polyene). It is argued that when the relative timescales of charge fluctuations on the solute and solvent chains are taken into account, it is difficult to rationalize the electron-electron screening implicit in the parametrization of a single-chain Hamiltonian to solid-state data. Instead, an electron-hole screening model is developed that includes the time scales of both the electron-hole motion and the solvent polarization. The predicted solvation energies, which are saturated with respect to solute and solvent chain length, are 0.07 eV for the exciton and 0.50 eV for a well separated electron-hole pair. Given this large, 0.43 eV reduction in the exciton binding energy due to interaction with a single chain, it seems likely that interchain interactions play a central role in establishing the solid-state exciton binding energy.

  5. An Asian Perspective on the Management of Distal Radius Fractures

    PubMed Central

    Sebastin, Sandeep J.; Chung, Kevin C.

    2012-01-01

    Synopsis There is little data with regards to the epidemiology, pathology, or management of distal radius fractures from centers in Asia. Asia includes five advanced economies, namely Hong Kong SAR, Japan, Korea, Singapore, and Taiwan and a number of emerging economies prominent among which are China, India, Malaysia, Philippines, and Thailand. This article examines the available epidemiological data from Asia, and compares the management of distal radius fractures in the advanced and emerging Asian economies and how they match up to the current management in the west. It concludes by offering solutions for improving outcomes of distal radius fractures in both the advanced and emerging economies of Asia. PMID:22554658

  6. Primary nonunion of the distal radius fractures in healthy children.

    PubMed

    Song, Kwang Soon; Lee, Si Wook; Bae, Ki Cheor; Yeon, Chang Jin; Naik, Premal

    2016-03-01

    There are no published case series of nonunion of distal radius fractures in healthy children because of the rarity of its occurrence. We searched for all reported cases of this condition in Pubmed, Google scholar, and SCOPUS. We found three series, which included one previously reported by our group. The aim of the present study was to define the predisposing factors leading to nonunion after treatment of distal radius fractures in healthy children. We also aimed to emphasize that nonunion should be included in the list of complications of distal radius fractures in children and be mentioned in the textbook of pediatric trauma. PMID:26583931

  7. New Precision Measurement for Proton Zemach Radius with Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Ishida, K.; Iwasaki, M.; Matsuzaki, Y.; Oishi, Y.; Okada, S.; Sato, M.; Midorikawa, K.; Saito, N.; Wada, S.; Aikawa, S.; Kanda, S.; Matsuda, Y.; Tanaka, K.; Takamine, A.

    2016-02-01

    In this proceeding, a new proposal aiming to improve the precision of the proton Zemach radius will be presented. A circularly polarized laser will be shed on a sample of muonic hydrogen in its ground state. By observing the maximum muon decay asymmetry during scanning laser wave length, the ground-state hyperfine splitting energy can be identified, which is directly related to Zemach radius.citedupays The precision of Zemach radius by this measurement is estimated to be three times better compared to PSI experiment. This result will contribute to the solution of proton size puzzle.

  8. An Asian perspective on the management of distal radius fractures.

    PubMed

    Sebastin, Sandeep J; Chung, Kevin C

    2012-05-01

    There is limited data regarding the epidemiology, pathology, and management of distal radius fractures from centers in Asia. The advanced economies in Asia include Hong Kong, Japan, Korea, Singapore, and Taiwan, whereas the prominent emerging economies are China, India, Malaysia, Philippines, and Thailand. This article examines the available epidemiological data from Asia, compares the management of distal radius fractures in the advanced and emerging Asian economies and how they compare with the current management in the west. It concludes by offering solutions for improving outcomes of distal radius fractures in Asia. PMID:22554658

  9. Study of a non-intrusive electron beam radius diagnostic

    SciTech Connect

    Kwan, T.J.T.; DeVolder, B.G.; Goldstein, J.C.; Snell, C.M.

    1997-12-01

    The authors have evaluated the usefulness and limitation of a non-intrusive beam radius diagnostic which is based on the measurement of the magnetic moment of a high-current electron beam in an axisymmetric focusing magnetic field, and relates the beam root-mean-square (RMS) radius to the change in magnetic flux through a diamagnetic loop encircling the beam. An analytic formula that gives the RMS radius of the electron beam at a given axial position and a given time is derived and compared with results from a 2-D particle-in-cell code. The study has established criteria for its validity and optimal applications.

  10. Plasmon and exciton superconductivity mechanisms in layered structures

    NASA Technical Reports Server (NTRS)

    Gabovich, A. M.; Pashitskiy, E. A.; Uvarova, S. K.

    1977-01-01

    Plasmon and exciton superconductivity mechanisms are discussed. Superconductivity in a three layer metal semiconductor metal and insulator semimetal insulator sandwich structure was described in terms of the temperature dependent Green function of the longitudinal (Coulomb) field. The dependences of the superconducting transition temperature on structure parameters were obtained. In a semiconducting film, as a result of interactions of degenerate free carriers with excitons, superconductivity exists only in a certain range of parameter values, and the corresponding critical temperature is much lower than in the plasmon mechanism of superconductivity.

  11. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    PubMed

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons

  12. Crossed excitons in a semiconductor nanostructure of mixed dimensionality

    SciTech Connect

    Owschimikow, Nina Kolarczik, Mirco; Kaptan, Yücel I.; Grosse, Nicolai B.; Woggon, Ulrike

    2014-09-08

    Semiconductor systems of reduced dimensionality, e.g., quantum dots or quantum wells, display a characteristic spectrum of confined excitons. Combining several of these systems may lead to the formation of “crossed” excitons, and thus new equilibrium states and scattering channels. We derive gain excitation spectra from two-color pump-probe experiments on an In(Ga)As based quantum dot semiconductor optical amplifier by analyzing the amplitudes of the traces. This grants access to the quantum dot response, even in the presence of strong absorption by the surroundings at the excitation energy. The gain excitation spectra yield evidence of crossed quantum dot-bulk states.

  13. Exciton localization-delocalization transition in an extended dendrimer

    SciTech Connect

    Pouthier, Vincent

    2013-12-21

    Exciton-mediated quantum state transfer between the periphery and the core of an extended dendrimer is investigated numerically. By mapping the dynamics onto that of a linear chain, it is shown that a localization-delocalization transition arises for a critical value of the generation number G{sub c} ≈ 5. This transition originates in the quantum interferences experienced by the excitonic wave due to the multiple scatterings that arise each time the wave tunnels from one generation to another. These results suggest that only small-size dendrimers could be used for designing an efficient quantum communication protocol.

  14. Resolving multi-exciton generation by attosecond spectroscopy.

    PubMed

    Neukirch, A J; Neumark, D M; Kling, M F; Prezhdo, O V

    2014-10-20

    We propose an experimentally viable attosecond transient absorption spectroscopy scheme to resolve controversies regarding multiexciton (ME) generation in nanoscale systems. Absence of oscillations indicates that light excites single excitons, and MEs are created by incoherent impact ionization. An oscillation indicates the coherent mechanism, involving excitation of superpositions of single and MEs. The oscillation decay, ranging from 5 fs at ambient temperature to 20 fs at 100 K, gives the elastic exciton-phonon scattering time. The signal is best observed with multiple-cycle pump pulses. PMID:25401661

  15. Frequency combs with weakly lasing exciton-polariton condensates.

    PubMed

    Rayanov, K; Altshuler, B L; Rubo, Y G; Flach, S

    2015-05-15

    We predict the spontaneous modulated emission from a pair of exciton-polariton condensates due to coherent (Josephson) and dissipative coupling. We show that strong polariton-polariton interaction generates complex dynamics in the weak-lasing domain way beyond Hopf bifurcations. As a result, the exciton-polariton condensates exhibit self-induced oscillations and emit an equidistant frequency comb light spectrum. A plethora of possible emission spectra with asymmetric peak distributions appears due to spontaneously broken time-reversal symmetry. The lasing dynamics is affected by the shot noise arising from the influx of polaritons. That results in a complex inhomogeneous line broadening. PMID:26024173

  16. Realization of an all optical exciton-polariton router

    NASA Astrophysics Data System (ADS)

    Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto; Bloch, Jacqueline

    2015-11-01

    We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions.

  17. Evidence of Hybrid Excitons in Weakly Interacting Nanopeapods

    PubMed Central

    2013-01-01

    Nanopeapods, consisting of optically active π-conjugated molecules encapsulated inside of the cavity of carbon nanotubes, exhibit efficient photon emission in the visible spectral range. Combining optical experiments with ab initio theory, we show that the puzzling features observed in photoluminescence spectra are of excitonic nature. The subunits though being van der Waals bound are demonstrated to interact in the excited state, giving rise to the formation of hybrid excitons. We rationalize why this many-body effect makes such nanohybrids useful for optoelectronic devices. PMID:23991266

  18. Nongeneric dispersion of excitons in the bulk of WSe2

    NASA Astrophysics Data System (ADS)

    Schuster, R.; Wan, Y.; Knupfer, M.; Büchner, B.

    2016-08-01

    We combine electron energy-loss spectroscopy (EELS) and density functional theory (DFT) calculations to study the dispersion and effective mass of excitons in the bulk of WSe2. Our EELS data suggest substantial deviations from the generic quadratic momentum dependence along the Γ K direction. From the DFT-derived Kohn-Sham states we deduce the EELS response without the inclusion of particle-hole attraction to study the possible role of the single-particle band structure on the exciton behavior. Based on this analysis we argue in favor of a strongly momentum dependent particle-hole interaction in WSe2 and other group-VI-transition-metal dichalcogenides.

  19. Enhanced energy transport in genetically engineered excitonic networks.

    PubMed

    Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F; Lloyd, Seth; Belcher, Angela M

    2016-02-01

    One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime. PMID:26461447

  20. Realization of an all optical exciton-polariton router

    SciTech Connect

    Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto

    2015-11-16

    We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions.

  1. Enhanced energy transport in genetically engineered excitonic networks

    NASA Astrophysics Data System (ADS)

    Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvalaggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C.; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F.; Lloyd, Seth; Belcher, Angela M.

    2016-02-01

    One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.

  2. Effect of Potential Shape on Density of States for a Light-Hole Exciton in a Microtube of AlGaAs/GaAs

    NASA Astrophysics Data System (ADS)

    González, J. D.; Joya, Miryam R.; Barba-Ortega, J.

    2014-01-01

    In this paper, we propose a theoretical model to calculate the ground-state energy of light-hole exciton and its density of states in a microtube. This heterostructure has been fabricated and studied experimentally, and contains a double quantum well of AlGaAs/GaAs and large radius of curvature. The exciton trial function is taken as a product of the ground state wave functions of both the unbound electron and hole in the heterostructure, with an arbitrary correlation function that depends only on electron-hole separation. A renormalized Schrödinger equation for the correlation function is derived and coincides with the corresponding equation for a hydrogen atom in an effective isotropic and nonhomogeneous space. The binding energy of the ground state for an exciton in this heterostructure is calculated by the variational model proposed. The contribution to the energy given by the sublevels and the density of states is determined as a function of the width of the well and the aluminum concentration. The obtained results show good agreement with recent experimental observations.

  3. Laser induced magneto-Raman optical gain of an exciton and a biexciton in a CdTe/ZnTe quantum dot

    NASA Astrophysics Data System (ADS)

    Sujanah, P.; John Peter, A.; Lee, Chang Woo

    2016-06-01

    Magnetic field and laser field amplitude dependent electronic and optical properties of exciton and biexciton in a CdTe/ZnTe quantum dot nanostructure are brought out taking into account the spatial confinement effect. Binding energies of exciton and biexciton as functions of laser field amplitude and magnetic field strength are computed in a CdTe/ZnTe quantum dot for the constant dot radius 30 Å. Oscillator strength, resonant absorption coefficients and resonant optical Raman intensity of the exciton and biexciton as a function of laser field amplitude are obtained in the presence of magnetic field strength in a CdTe/ZnTe quantum dot. The laser field induced magneto-Raman gain is studied for a constant dot radii. The Coulomb interaction energy which is involved in Hartree potential is obtained numerically. The result shows that the applications of magnetic field strength and the laser field amplitude alter the electronic and optical properties considerably in the CdTe/ZnTe quantum dot.

  4. Laser confocal radius measurement method for unpolished spheres.

    PubMed

    Wang, Xu; Zhao, Weiqian; Qiu, Lirong; Yang, Shuai; Wang, Zhongyu

    2016-06-10

    A laser confocal radius measurement method for unpolished spheres (CRMUS) is proposed for measuring the radius of an unpolished sphere during optical sphere processing. CRMUS uses the laser confocal focusing technique to accurately identify the cat's eye and confocal positions of the unpolished sphere, and then uses the distance between the cat's eye and confocal positions measured by a distance measurement interferometer to derive the radius. The partially coherent optical theoretical model of the CRMUS derived indicates that the CRMUS is able to measure the radius of the unpolished sphere with a roughness of less than 0.15 μm. Using an unpolished sphere made of Schott BK7 as the test sphere, experimental results indicate that the CRMUS has a relative expanded uncertainty of less than 20 ppm. The CRMUS could greatly increase processing efficiency. PMID:27409012

  5. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device... small, hand held, single tube penscope or eye gauge magnifier. (b) Classification. Class I...

  6. Fixed Lunate Flexion Deformity in Distal Radius Fractures.

    PubMed

    Lee, Sanglim; Yu, Jae-Ha; Jeon, Suk Ha

    2016-06-01

    Carpal malalignments in malunion of distal radius fracture are considered as an adaptive response of the carpus to loss of normal architecture of the distal radius. This condition leads to mechanical overload, ligament attenuation and progressive dynamic instability around the wrist joint. Radial corrective osteotomy is suggested as a treatment option of carpal malalignment after distal radius malunion. In radiocarpal malalignment, the lunate is usually observed in flexion in contrast to its extension posture in the more common midcarpal malalignment. We report two cases of fixed lunate flexion deformity after a distal radius fracture, in which reduction and fixation of fresh fracture or corrective osteotomy of malunion were not successful. Arthritic changes were observed in the radiolunate joint on arthroscopy. Thus, fixed flexion deformity of the lunate might be associated with posttraumatic arthritic change in the radiolunate joint. PMID:27247752

  7. Fixed Lunate Flexion Deformity in Distal Radius Fractures

    PubMed Central

    Lee, Sanglim; Yu, Jae-Ha

    2016-01-01

    Carpal malalignments in malunion of distal radius fracture are considered as an adaptive response of the carpus to loss of normal architecture of the distal radius. This condition leads to mechanical overload, ligament attenuation and progressive dynamic instability around the wrist joint. Radial corrective osteotomy is suggested as a treatment option of carpal malalignment after distal radius malunion. In radiocarpal malalignment, the lunate is usually observed in flexion in contrast to its extension posture in the more common midcarpal malalignment. We report two cases of fixed lunate flexion deformity after a distal radius fracture, in which reduction and fixation of fresh fracture or corrective osteotomy of malunion were not successful. Arthritic changes were observed in the radiolunate joint on arthroscopy. Thus, fixed flexion deformity of the lunate might be associated with posttraumatic arthritic change in the radiolunate joint. PMID:27247752

  8. Contribution of the gamma-carboxyl group of Glu-43(beta) to the alkaline Bohr effect of hemoglobin A.

    PubMed

    Rao, M J; Acharya, A S

    1992-08-18

    Glu-43(beta) of hemoglobin A exhibits a high degree of chemical reactivity around neutral pH for amidation with nucleophiles in the presence of carbodiimide. Such a reactivity is unusual for the side-chain carboxyl groups of proteins. In addition, the reactivity of Glu-43(beta) is also sensitive to the ligation state of the protein [Rao, M. J., & Acharya, A. S. (1991) J. Protein Chem. 10, 129-138]. The influence of deoxygenation of hemoglobin A on the chemical reactivity of the gamma-carboxyl group of Glu-43(beta) has now been investigated as a function of pH (from 5.5 to 7.5). The chemical reactivity of Glu-43(beta) for amidation increases upon deoxygenation only when the modification reaction is carried out above pH 6.0. The pH-chemical reactivity profile of the amidation of hemoglobin A in the deoxy conformation reflects an apparent pKa of 7.0 for the gamma-carboxyl group of Glu-43(beta). This pKa is considerably higher than the pKa of 6.35 for the oxy conformation. The deoxy conformational transition mediated increase in the pKa of the gamma-carboxyl group of Glu-43(beta) implicates this carboxyl group as an alkaline Bohr group. The amidated derivative of hemoglobin A with 2 mol of glycine ethyl ester covalently bound to the protein was isolated by CM-cellulose chromatography.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1354984

  9. Cathodoluminescence of stacking fault bound excitons for local probing of the exciton diffusion length in single GaN nanowires

    SciTech Connect

    Nogues, Gilles Den Hertog, Martien; Auzelle, Thomas; Gayral, Bruno; Daudin, Bruno

    2014-03-10

    We perform correlated studies of individual GaN nanowires in scanning electron microscopy combined to low temperature cathodoluminescence, microphotoluminescence, and scanning transmission electron microscopy. We show that some nanowires exhibit well localized regions emitting light at the energy of a stacking fault bound exciton (3.42 eV) and are able to observe the presence of a single stacking fault in these regions. Precise measurements of the cathodoluminescence signal in the vicinity of the stacking fault give access to the exciton diffusion length near this location.

  10. Isolated Diaphyseal Fractures of the Radius in Skeletally Immature Patients

    PubMed Central

    Guitton, Thierry G.; Van Dijk, Niek C.; Raaymakers, Ernst L.

    2009-01-01

    Diaphyseal radius fractures without associated ulna fracture or radioulnar dislocation (isolated fracture of the radius) are recognized in adults but are rarely described in skeletally immature patients. A search of our database (1974–2002) identified 17 pediatric patients that had an isolated fracture of the radius. Among the 13 patients with at least 1 year follow-up, ten were treated with manipulative reduction and immobilization in an above elbow cast and three had initial operative treatment with plate and screw fixation. These 13 patients were evaluated for an average of 18 months (range, 12 to 45 months) after injury using the system of Price and colleagues. The incidence of isolated diaphyseal radius fractures in skeletally immature patients was 0.56 per year in our database and represented 27% of the 63 patients with a diaphyseal forearm fracture. All 13 patients, with at least 1 year follow-up, regained full elbow flexion and extension and full forearm rotation. According to the classification system of Price, all 13 patients (100%) had an excellent result. As in adults, isolated radius fractures seem to occur in children more frequently than previously appreciated. Treatment of isolated radius fractures in skeletally immature patients has a low complication rate, and excellent functional outcomes are the rule. PMID:19859772

  11. LONG-TERM PERIODICITY VARIATIONS OF THE SOLAR RADIUS

    SciTech Connect

    Qu, Z. N.; Xie, J. L.

    2013-01-01

    In order to study the long-term periodicity variations of the solar radius, daily solar radius data from 1978 February to 2000 September at the Calern Observatory are used. Continuous observations of the solar radius are difficult due to the weather, seasonal effects, and instrument characteristics. Thus, to analyze these data, we first use the Dixon criterion to reject suspect values, then we measure the cross-correlation between the solar radius and sunspot numbers. The result indicates that the solar radius is in complete antiphase with the sunspot numbers and shows lead times of 74 months relative to the sunspot numbers. The Lomb-Scargle and date compensated discrete Fourier transform methods are also used to investigate the periodicity of the solar radius. Both methods yield similar significance periodicities around {approx}1 yr, {approx}2.6 yr, {approx}3.6 yr, and {approx}11 yr. Possible mechanisms for these periods are discussed. The possible physical cause of the {approx}11 yr period is the cyclic variation of the magnetic pressure of the concentrated flux tubes at the bottom of the solar convection zone.

  12. All-optical depletion of dark excitons from a semiconductor quantum dot

    SciTech Connect

    Schmidgall, E. R.; Schwartz, I.; Cogan, D.; Gershoni, D.; Gantz, L.; Heindel, T.; Reitzenstein, S.

    2015-05-11

    Semiconductor quantum dots are considered to be the leading venue for fabricating on-demand sources of single photons. However, the generation of long-lived dark excitons imposes significant limits on the efficiency of these sources. We demonstrate a technique that optically pumps the dark exciton population and converts it to a bright exciton population, using intermediate excited biexciton states. We show experimentally that our method considerably reduces the dark exciton population while doubling the triggered bright exciton emission, approaching thereby near-unit fidelity of quantum dot depletion.

  13. Photoluminescence properties and exciton dynamics in monolayer WSe{sub 2}

    SciTech Connect

    Yan, Tengfei; Qiao, Xiaofen; Liu, Xiaona; Tan, Pingheng; Zhang, Xinhui

    2014-09-08

    In this work, comprehensive temperature and excitation power dependent photoluminescence and time-resolved photoluminescence studies are carried out on monolayer WSe{sub 2} to reveal its properties of exciton emissions and related excitonic dynamics. Competitions between the localized and delocalized exciton emissions, as well as the exciton and trion emissions are observed, respectively. These competitions are suggested to be responsible for the abnormal temperature and excitation intensity dependent photoluminescence properties. The radiative lifetimes of both excitons and trions exhibit linear dependence on temperature within the temperature regime below 260 K, providing further evidence for two-dimensional nature of monolayer material.

  14. Exciton Lifetime Paradoxically Enhanced by Dissipation and Decoherence: Toward Efficient Energy Conversion of a Solar Cell

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Yamaji, Youhei; Imada, Masatoshi

    2015-11-01

    Energy dissipation and decoherence are at first glance harmful to acquiring the long exciton lifetime desired for efficient photovoltaics. In the presence of both optically forbidden (namely, dark) and allowed (bright) excitons, however, they can be instrumental, as suggested in photosynthesis. By simulating the quantum dynamics of exciton relaxations, we show that the optimized decoherence that imposes a quantum-to-classical crossover with the dissipation realizes a dramatically longer lifetime. In an example of a carbon nanotube, the exciton lifetime increases by nearly 2 orders of magnitude when the crossover triggers a stable high population in the dark excitons.

  15. Exciton Lifetime Paradoxically Enhanced by Dissipation and Decoherence: Toward Efficient Energy Conversion of a Solar Cell.

    PubMed

    Yamada, Yasuhiro; Yamaji, Youhei; Imada, Masatoshi

    2015-11-01

    Energy dissipation and decoherence are at first glance harmful to acquiring the long exciton lifetime desired for efficient photovoltaics. In the presence of both optically forbidden (namely, dark) and allowed (bright) excitons, however, they can be instrumental, as suggested in photosynthesis. By simulating the quantum dynamics of exciton relaxations, we show that the optimized decoherence that imposes a quantum-to-classical crossover with the dissipation realizes a dramatically longer lifetime. In an example of a carbon nanotube, the exciton lifetime increases by nearly 2 orders of magnitude when the crossover triggers a stable high population in the dark excitons. PMID:26588415

  16. Spatial confinement, self-polarization and exciton-phonon interaction effect on the location of exciton line in lead iodide nanofilms

    NASA Astrophysics Data System (ADS)

    Kramar, V. M.; Pugantseva, O. V.; Derevyanchuk, A. V.

    2014-08-01

    Theoretical investigation of the spatial confinement, self-polarization and exciton-phonon interaction influence on the exciton state in plane double nanoheterostructure (nanofilm)-lead iodide in polymeric matrix is performed within the effective mass approximation for the electron and dielectric continuum for the phonons in the framework of infinitely deep single quantum well. It is shown that spatial confinement is the dominating feature determining the energy of the bottom of exciton ground band and its binding energy. The relationship of two others depends on nanofilm thickness: in ultrathin films the influence of self-polarization effect is essentially bigger than the role of exciton-phonon interaction.

  17. Exploration of exciton delocalization in organic crystalline thin films

    NASA Astrophysics Data System (ADS)

    Hua, Kim; Manning, Lane; Rawat, Naveen; Ainsworth, Victoria; Furis, Madalina

    The electronic properties of organic semiconductors play a crucial role in designing new materials for specific applications. Our group recently found evidence for a rotation of molecular planes in phthalocyanines that is responsible for the disappearance of a delocalized exciton in these systems for T >150K.................()().......1 In this study, we attempt to tune the exciton delocalization of small organic molecules using strain effects and alloying different molecules in the same family. The exciton behavior is monitored using time- and polarization resolved photolumniscence (PL) spectroscopy as a function of temperature. Specifically, organic crystalline thin films of octabutoxy phthalocyanine (H2OBPc), octyloxy phthalocyanines and H-bonded semiconductors such as the quinacridone and indigo derivatives are deposited on flexible substrates (i.e. Kapton and PEN) using an in-house developed pen-writing method.........2 that results in crystalline films with macroscopic long range order. The room temperature PL studies show redshift and changes in polarization upon bending of the film. Crystalline thin films of alloyed H2OBPc and octabutoxy naphthalocyanine with ratios ranging from 1:1 to 100:1 fabricated on both sapphire and flexible substrates are also explored using the same PL spectroscopy to elucidate the behaviors of delocalized excitons. .1N. Rawat, et al., J Phys Chem Lett 6, 1834 (2015). 2R. L. Headrick, et al., Applied Physics Letters 92, 063302 (2008). NSF DMR-1056589, NSF DMR-1062966.

  18. Organic photosensitive optoelectronic device having a phenanthroline exciton blocking layer

    DOEpatents

    Thompson, Mark E.; Li, Jian; Forrest, Stephen; Rand, Barry

    2011-02-22

    An organic photosensitive optoelectronic device, having an anode, a cathode, and an organic blocking layer between the anode and the cathode is described, wherein the blocking layer comprises a phenanthroline derivative, and at least partially blocks at least one of excitons, electrons, and holes.

  19. Exciton condensation in microcavities under three-dimensional quantization conditions

    SciTech Connect

    Kochereshko, V. P. Platonov, A. V.; Savvidis, P.; Kavokin, A. V.; Bleuse, J.; Mariette, H.

    2013-11-15

    The dependence of the spectra of the polarized photoluminescence of excitons in microcavities under conditions of three-dimensional quantization on the optical-excitation intensity is investigated. The cascade relaxation of polaritons between quantized states of a polariton Bose condensate is observed.

  20. Order-disorder oscillations in exciton-polariton superfluids.

    PubMed

    Saito, Hiroki; Aioi, Tomohiko; Kadokura, Tsuyoshi

    2013-01-11

    The dynamics of an exciton-polariton superfluid resonantly pumped in a semiconductor microcavity are investigated by mean-field theory. Modulational instability develops into crystalline order, and then, ordered and disordered states alternately form. It is found that the crystalline order at rest can coexist with superflow. PMID:23383923

  1. Aharonov-Bohm effect of excitons in nanorings

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Zhu, Jia-Lin; Li, Dai-Jun; Xiong, Jia-Jiong

    2001-05-01

    The magnetic field effects on excitons in an InAs nanoring are studied theoretically. By numerically diagonalizing the effective-mass Hamiltonian of the problem that can be separated into terms in center-of-mass and relative coordinates, we calculate the low-lying excitonic energy levels and oscillator strengths as a function of the ring width and the strength of an external magnetic field. It is shown that in the presence of Coulomb correlation, the so-called Aharonov-Bohm effect of excitons exists in a finite (but small) width nanoring. However, when the ring width becomes large, the non-simply-connected geometry of nanorings is destroyed, causing the suppression of the Aharonov-Bohm effect. The analytical results are obtained for a narrow-width nanoring in which the radial motion is the fastest one and adiabatically decoupled from the azimuthal motions. The conditional probability distribution calculated for the low-lying excitonic states allows identification of the presence of the Aharonov-Bohm effect. The linear optical susceptibility is also calculated as a function of the magnetic field, to be compared with the future measurements of optical emission experiments on InAs nanorings.

  2. Heavy ion collisions and the pre-equilibrium exciton model

    SciTech Connect

    Betak, E.

    2012-10-20

    We present a feasible way to apply the pre-equilibrium exciton model in its masterequation formulation to heavy-ion induced reactions including spin variables. Emission of nucleons, {gamma}'s and also light clusters is included in our model.

  3. Enhanced Multiple Exciton Generation in Amorphous Silicon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kryjevski, Andrei; Mihaylov, Deyan; Kilin, Dmitri

    2015-03-01

    Multiple exciton generation (MEG) in nm-sized hydrogen-passivated silicon nanowires (NWs), and quasi two-dimensional nanofilms depends strongly on the degree of the core structural disorder as shown by the many-body perturbation theory (MBPT) calculations based on the DFT simulations. Here, we use the HSE exchange correlation functional. In MBPT, we work to the 2nd order in the electron-photon coupling and in the approximate screened Coulomb interaction. We also include the effect of excitons for which we solve Bethe-Salpeter Equation. We calculate quantum efficiency (QE), the average number of excitons created by a single absorbed photon, in 3D arrays of Si29H36 quantum dots, NWs, and quasi 2D silicon nanofilms, all with both crystalline and amorphous core structures. Efficient MEG with QE of 1.3 up to 1.8 at the photon energy of about 3Eg , where Eg is the gap, is predicted in these nanoparticles except for the crystalline NW and film where QE ~= 1 . MEG in the amorphous nanoparticles is enhanced by the electron localization due to structural disorder. The exciton effects significantly red-shift QE (Ephoton) curves. Nanometer-sized amorphous silicon NWs and films are predicted to have effective MEG within the solar spectrum range. We acknowledge NSF support (CHE-1413614) for method development.

  4. Dynamics of exciton dissociation in donor-acceptor polymer heterojunctions.

    PubMed

    Sun, Zhen; Stafström, Sven

    2013-04-28

    Exciton dissociation in a donor-accepter polymer heterojunction has been simulated using a nonadiabatic molecular dynamics approach, which allows for the coupled evolution of the nuclear degrees of freedom and the electronic degrees of freedom described by multiconfigurational electronic wavefunctions. The simulations reveal important details of the charge separation process: the exciton in the donor polymer first dissociates into a "hot" charge transfer state, which is best described as a polaron pair. The polaron pair can be separated into free polaron charge carriers if a sufficiently strong external electric field is applied. We have also studied the effects of inter-chain interaction, temperature, and the external electric field strength. Increasing inter-chain interactions makes it easier for the exciton to dissociate into a polaron pair state, but more difficult for the polaron pair to dissociate into free charge carriers. Higher temperature and higher electric field strength both favor exciton dissociation as well as the formation of free charge carriers. PMID:23635169

  5. Using dispersive medium to control excitons in 2D materials

    NASA Astrophysics Data System (ADS)

    Klots, Andrey; Bolotin, Kirill I.

    Excitons in 2D materials (2DMs) are known to be sensitive to the surrounding environment. This makes it possible to modify 2D excitons by depositing materials with controlled dielectric constant on top of 2DMs. This possibility becomes especially interesting if we consider materials with dielectric permittivity ɛ that depends both on wavevector k (this happens if the medium is spatially non-uniform) and frequency ω. Here, we develop platforms to control ɛ (k , ω) and explore resulting changes in light-matter interactions of 2DMs. To examine the effect of wavevector-dependent permittivity of the medium, we study absorption/photoluminescence of graphene and MoS2 in the vicinity of highly non-uniform medium - an array of metal nanoparticles, 3-5 nm in diameter. In this case absorption of light can lead to creation of excitons with non-zero momentum. These dark states are not accessible via regular absorption spectroscopy. We study the case of frequency-dependent permittivity by surrounding MoS2 by a highly-dispersive media (e.g. dielectric liquids, graphene and VO2) . We demonstrate non-trivial frequency-dependent renormalization of the quasiparticle bandgap and exciton binding energies.

  6. Singlet Fission and Multi-Exciton Generation in Organic Systems

    NASA Astrophysics Data System (ADS)

    Musgrave, Charles

    2012-02-01

    Multi-exciton generation (MEG) has been observed in a variety of materials and might be exploited in solar-cells to dramatically increase efficiency. In tetracene and pentacene MEG has been attributed to singlet fission (SF), however a fundamental mechanism for SF has not been previously described. Here, we use sophisticated ab initio calculations to show that MEG in pentacene proceeds by transition of the lowest optically allowed excited state S1 to a dark state (D) of multi-exciton character, which subsequently undergoes SF to generate two triplets (2xT0). D satisfies the energy requirement for SF (ED>2ET0) and lies just below S1 in pentacene, but above S1 in tetracene, consistent with the observed thermally activated SF process in tetracene, but no thermal activation in pentacene. While S1 exhibits single exciton character, D shows multi-exciton character comprising two separated electron-hole pairs. Dimer simulations predict S1 excimer formation and that fission of D into triplets proceeds through the excimer. The predicted energetics, wavefunctions and excimer interaction support the proposed mechanism, which accounts for the observed rapid, unactivated SF in pentacene. Results for SF in polyacenes, grapheme nanoribbons, rubrene and carbon nanotubes will be presented.

  7. Singlet fission in pentacene through multiple exciton quantum states

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Zimmerman, Paul; Musgrave, Charles

    2010-03-01

    Multi-exciton generation (MEG) has been reported for several materials and may dramatically increase solar cell efficiency. Singlet fission is the molecular analogue of MEG and has been observed in various systems, including tetracene and pentacene, however, no fundamental mechanism for singlet fission has yet been described, although it may govern MEG processes in a variety of materials. Because photoexcited states have single-exciton character, singlet fission to produce a pair of triplet excitons must involve an intermediate state that: (1) exhibits multi-exciton (ME) character, (2) is accessible from S1 and satisfies the fission energy requirement, and (3) efficiently dissociates into multiple electron-hole pairs. Here, we use sophisticated ab initio calculations to show that singlet fission in pentacene proceeds through a dark state (D) of ME character that lies just below S1, satisfies the fission energy requirement (ED>2ET0), and splits into two triplets (2xT0). In tetracene, D lies just above S1, consistent with the observation that singlet fission is thermally activated in tetracene. Rational design of photovoltaic systems that exploit singlet fission will require ab initio analysis of ME states such as D.

  8. Highly anisotropic and robust excitons in monolayer black phosphorus.

    PubMed

    Wang, Xiaomu; Jones, Aaron M; Seyler, Kyle L; Tran, Vy; Jia, Yichen; Zhao, Huan; Wang, Han; Yang, Li; Xu, Xiaodong; Xia, Fengnian

    2015-06-01

    Semi-metallic graphene and semiconducting monolayer transition-metal dichalcogenides are the most intensively studied two-dimensional materials of recent years. Lately, black phosphorus has emerged as a promising new two-dimensional material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However, current progress is primarily limited to its thin-film form. Here, we reveal highly anisotropic and strongly bound excitons in monolayer black phosphorus using polarization-resolved photoluminescence measurements at room temperature. We show that, regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centres around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. Moreover, photoluminescence excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of ∼0.9 eV, consistent with theoretical results based on first principles. The experimental observation of highly anisotropic, bright excitons with large binding energy not only opens avenues for the future explorations of many-electron physics in this unusual two-dimensional material, but also suggests its promising future in optoelectronic devices. PMID:25915195

  9. Exciton-polariton condensation in transition metal dichalcogenide bilayer heterostructure

    NASA Astrophysics Data System (ADS)

    Lee, Ki Hoon; Jeong, Jae-Seung; Min, Hongki; Chung, Suk Bum

    For the bilayer heterostructure system in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon coupling can lead to the emergence of quasiparticles consisting of the spatially indirect exciton and cavity photons known as dipolariton, which can form the Bose-Einstein condensate above a threshold density. Additional physics comes into play when each layer of the bilayer system consists of the transition metal dichalcogenide (TMD) monolayer. The TMD monolayer band structure in the low energy spectrum has two valley components with nontrivial Berry phase, which gives rise to a selection rule in the exciton-polariton coupling, e.g. the exciton from one (the other) valley can couple only to the clockwise (counter-clockwise) polarized photon. We investigate possible condensate phases of exciton-polariton in the bilayer TMD microcavity changing relevant parameters such as detuning, excitation density and interlayer distance. This work was supported in part by the Institute for Basic Science of Korea (IBS) under Grant IBS-R009-Y1 and by the National Research Foundation of Korea (NRF) under the Basic Science Research Program Grant No. 2015R1D1A1A01058071.

  10. National solar technology roadmap: Multiple-exciton-generation PV

    SciTech Connect

    Ellingson, Randy

    2007-06-01

    This roadmap addresses the development of solar cells based on inorganic semiconductor nanocrystals (NCs)—such as spherical quantum dots (QDs), quantum rods (QRs), or quantum wires (QWs)—focusing on their potential to improve upon bulk semiconductor cell efficiencies by efficient multiple-exciton generation (MEG

  11. Spatially Indirect Exciton Condensates in Double Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Su, Jung-Jung; MacDonald, Allan H.

    Many-body interaction effects have a strong influence on the low-energy electronic properties of graphene bilayers because of the nearly quadratic dispersion at the K/K' band-crossing points. In the single graphene bilayer systems, the ground state has an energy gap thought to be a consequence of spin-density wave order and other competing ordered states are believed to be nearby in energy. In systems with two closely spacing bilayer, spatially indirect exciton states are expected in neutral systems with inter-bilayer charge transfer. This transfer can be achieved by applying either a vertical electrical displacement fields or an interbilayer potential bias. Here we report that the different combinations of displacement field and potential bias can give rise to different types of indirect exciton condensate states that are distinguished by the two-dimensional momentum dependence of the spontaneous inter-bilayer coherence. In general a displacement field prefers an excitonic condensate in which the phase coherence between the inner two layers of the four layer system, while the potential bias prefers momentum-independent coherence between remote layers. The complete phase diagram reported exhibits excitonic coherence states mentioned above, and more interestingly, their mixtures.

  12. Strong quantum coherence between Fermi liquid Mahan excitons

    DOE PAGESBeta

    Paul, J.; Stevens, C. E.; Liu, C.; Dey, P.; McIntyre, C.; Turkowski, V.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2016-04-14

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called “Mahan excitons.” The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the opticalmore » Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Furthermore, time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.« less

  13. Modeling ultrafast exciton deactivation in oligothiophenes via nonadiabatic dynamics.

    PubMed

    Fazzi, Daniele; Barbatti, Mario; Thiel, Walter

    2015-03-28

    Ultrafast excited-state processes play a key role in organic electronics and photovoltaics, governing the way of how excitons can relax and separate. Through the use of nonadiabatic excited-state dynamics, relaxation processes were investigated at the sub-picosecond timescale in thiophene and oligothiophenes (nT, n = 2, 3, 4), prototype oligomers for efficient π-electron conjugated polymers adopted in photovoltaics. For thiophene, TDDFT and TDA nonadiabatic excited-state dynamics revealed ultrafast nonradiative relaxation processes through ring opening and ring puckering, bringing the system to an S1/S0 conical intersection seam. The computed relaxation time is 110 fs, matching well the experimental one (∼105 fs). In oligothiophenes (n = 2-4), high-energy (hot) excitations were considered. Exciton relaxation through the manifold of excited states to the lowest excited state is predicted to occur within ∼150-200 fs, involving bond stretching, ring puckering, and torsional oscillations. For the longer oligomer (4T), the ultrafast relaxation process leads to exciton localization over three thiophene rings in 150 fs. These data agree with the self-localization mechanism (∼100-200 fs) observed for poly(3-hexylthiophene) (P3HT) and shed light on the complex exciton relaxation dynamics occurring in π-conjugated oligomers of potential interest for optoelectronic applications. PMID:25714233

  14. Strong Quantum Coherence between Fermi Liquid Mahan Excitons.

    PubMed

    Paul, J; Stevens, C E; Liu, C; Dey, P; McIntyre, C; Turkowski, V; Reno, J L; Hilton, D J; Karaiskaj, D

    2016-04-15

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system. PMID:27127985

  15. Highly anisotropic and robust excitons in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomu; Jones, Aaron M.; Seyler, Kyle L.; Tran, Vy; Jia, Yichen; Zhao, Huan; Wang, Han; Yang, Li; Xu, Xiaodong; Xia, Fengnian

    2015-06-01

    Semi-metallic graphene and semiconducting monolayer transition-metal dichalcogenides are the most intensively studied two-dimensional materials of recent years. Lately, black phosphorus has emerged as a promising new two-dimensional material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However, current progress is primarily limited to its thin-film form. Here, we reveal highly anisotropic and strongly bound excitons in monolayer black phosphorus using polarization-resolved photoluminescence measurements at room temperature. We show that, regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centres around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. Moreover, photoluminescence excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of ∼0.9 eV, consistent with theoretical results based on first principles. The experimental observation of highly anisotropic, bright excitons with large binding energy not only opens avenues for the future explorations of many-electron physics in this unusual two-dimensional material, but also suggests its promising future in optoelectronic devices.

  16. Investigations of the νT=1 Exciton Condensate

    NASA Astrophysics Data System (ADS)

    Wiersma, R. D.; Lok, J. G. S.; Tiemann, L.; Dietsche, W.; von Klitzing, K.; Wegscheider, W.; Schuh, D.

    Recent experiments on quantum Hall bilayers in the vicinity of total filling factor 1 (νT=1) have revealed the possibility of a superfluidic exciton condensate. We report on our experimental work involving the νT=1 exciton condensate in independently contacted bilayer two-dimensional electron systems. We reproduce the previously reported zero bias resonant tunneling peak, a quantized Hall drag resistivity, and in counter-flow configuration, the near vanishing of both ρxx and ρxy resistivity components. At balanced electron densities in the layers, we find for both drag and counter-flow current configurations, thermally activated transport with a monotonic increase of the activation energy for d/ℓB < 1.65 with activation energies up to 0.4 K. In the imbalanced system the activation energies show a striking asymmetry around the balance point, implying that the gap to charge excitations is considerably different in the separate layers that form the bilayer condensate. This indicates that the measured activation energy is neither the binding energy of the excitons, nor their condensation energy. We establish a phase diagram of the excitonic condensate showing the enhancement of this state at slight imbalances.

  17. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.

    PubMed

    Palummo, Maurizia; Bernardi, Marco; Grossman, Jeffrey C

    2015-05-13

    Light emission in two-dimensional (2D) transition metal dichalcogenides (TMDs) changes significantly with the number of layers and stacking sequence. While the electronic structure and optical absorption are well understood in 2D-TMDs, much less is known about exciton dynamics and radiative recombination. Here, we show first-principles calculations of intrinsic exciton radiative lifetimes at low temperature (4 K) and room temperature (300 K) in TMD monolayers with the chemical formula MX2 (X = Mo, W, and X = S, Se), as well as in bilayer and bulk MoS2 and in two MX2 heterobilayers. Our results elucidate the time scale and microscopic origin of light emission in TMDs. We find radiative lifetimes of a few picoseconds at low temperature and a few nanoseconds at room temperature in the monolayers and slower radiative recombination in bulk and bilayer than in monolayer MoS2. The MoS2/WS2 and MoSe2/WSe2 heterobilayers exhibit very long-lived (∼20-30 ns at room temperature) interlayer excitons constituted by electrons localized on the Mo-based and holes on the W-based monolayer. The wide radiative lifetime tunability, together with the ability shown here to predict radiative lifetimes from computations, hold unique potential to manipulate excitons in TMDs and their heterostructures for application in optoelectronics and solar energy conversion. PMID:25798735

  18. Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers

    NASA Astrophysics Data System (ADS)

    Daniel, Clément; Herz, Laura M.; Silva, Carlos; Hoeben, Freek J.; Jonkheijm, Pascal; Schenning, Albertus P.; Meijer, E. W.

    2003-12-01

    We present femtosecond transient absorption measurements on π-conjugated supramolecular assemblies in a high-pump-fluence regime. Oligo(p-phenylenevinylene) monofunctionalized with ureido-s-triazine (MOPV) self-assembles into chiral stacks in dodecane solution below 75 °C at a concentration of 4×10-4 M. We observe exciton bimolecular annihilation in MOPV stacks at high excitation fluence, indicated by the fluence-dependent decay of 11Bu-exciton spectral signatures and by the sublinear fluence dependence of time- and wavelength-integrated photoluminescence (PL) intensity. These two characteristics are much less pronounced in MOPV solution where the phase equilibrium is shifted significantly away from supramolecular assembly, slightly below the transition temperature. A mesoscopic rate-equation model is applied to extract the bimolecular annihilation rate constant from the excitation fluence dependence of transient absorption and PL signals. The results demonstrate that the bimolecular annihilation rate is very high with a square-root dependence in time. The exciton annihilation results from a combination of fast exciton diffusion and resonance energy transfer. The supramolecular nanostructures studied here have electronic properties that are intermediate between molecular aggregates and polymeric semiconductors.

  19. Mori approach to exciton memories in initially unrelaxed excitonphonon systems: direct and reorganized perturbation expansions

    NASA Astrophysics Data System (ADS)

    Čápek, V.

    1993-11-01

    Starting from the Mori formalism, memory functions of excitons coupled to harmonic phonons in periodic crystals with linear exciton-phonon coupling are calculated in two limiting cases: that of the naxrow unrenormalized exciton band with only site local coupling and that of the weak exciton-phonon coupling. Mutual correspondence as well as that with results of analogous works is discussed. By a mathematical trick, perturbational series for memory kernel of initially unrela-xed excitons interacting locally with harmonic phonons is then reorganized. Using that, full agreement is achieved with previous results obtained by Generalized Master Equations for initially relaxed excitons in case of narrow exciton band width. For the weak exciton-phonon coupling case, appreciable reduction of damping of the quasicoherent channel may be achieved on account of polaron effects. Crucial role of the exciton bandwidth beyond the lowest order is found in both cases for the low-temperature exciton diffusivity. Some predictions on the temperature dependence of the phonon-scattering limited exciton diffusion constant are given.

  20. Trapping indirect excitons in a GaAs quantum-well structure with a diamond-shaped electrostatic trap.

    PubMed

    High, A A; Thomas, A K; Grosso, G; Remeika, M; Hammack, A T; Meyertholen, A D; Fogler, M M; Butov, L V; Hanson, M; Gossard, A C

    2009-08-21

    We report on the principle and realization of a new trap for excitons--the diamond electrostatic trap--which uses a single electrode to create a confining potential for excitons. We also create elevated diamond traps which permit evaporative cooling of the exciton gas. We observe the collection of excitons towards the trap center with increasing exciton density. This effect is due to screening of disorder in the trap by the excitons. As a result, the diamond trap behaves as a smooth parabolic potential which realizes a cold and dense exciton gas at the trap center. PMID:19792761

  1. Photoreflectance investigation of exciton-acoustic phonon scattering in GaN grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Bouzidi, M.; Soltani, S.; Halidou, I.; Chine, Z.; El Jani, B.

    2016-04-01

    In this paper, we report a systematic investigation of the near band edge (NBE) excitonic states in GaN using low temperature photoluminescence (PL) and photoreflectance (PR) measurements. For this purpose, GaN films of different thicknesses have been grown on silicon nitride (SiN) treated c-plane sapphire substrates by atmospheric pressure metalorganic vapor phase epitaxy (MOVPE). Low temperature PR spectra exhibit well-defined spectral features related to the A, B and C free excitons denoted by FXA FXB and FXC, respectively. In contrast, PL spectra are essentially dominated by the A free and donor bound excitons. By combining PR spectra and Hall measurements a strong correlation between residual electron concentration and exciton linewidths is observed. From the temperature dependence of the excitonic linewidths, the exciton-acoustic phonon coupling constant is determined for FXA, FXB and FXC. We show that this coupling constant is strongly related to the exciton kinetic energy and to the strain level.

  2. Using dark states for exciton storage in transition-metal dichalcogenides.

    PubMed

    Tseng, Frank; Simsek, Ergun; Gunlycke, Daniel

    2016-01-27

    We explore the possibility of storing excitons in excitonic dark states in monolayer semiconducting transition-metal dichalcogenides. In addition to being optically inactive, these dark states require the electron and hole to be spatially separated, thus inhibiting electron/hole recombination and allowing exciton lifetimes to be extended. Based on an atomistic exciton model, we derive transition matrix elements and an approximate selection rule showing that excitons could be transitioned into and out of dark states using a pulsed infrared laser. For illustration, we also present exciton population scenarios based on a population analysis for different recombination decay constants. Longer exciton lifetimes could make these materials candidates for applications in energy management and quantum information processing. PMID:26704568

  3. Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry

    PubMed Central

    Chestnov, Igor Yu.; Demirchyan, Sevak S.; Alodjants, Alexander P.; Rubo, Yuri G.; Kavokin, Alexey V.

    2016-01-01

    We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators. PMID:26790534

  4. Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry.

    PubMed

    Chestnov, Igor Yu; Demirchyan, Sevak S; Alodjants, Alexander P; Rubo, Yuri G; Kavokin, Alexey V

    2016-01-01

    We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators. PMID:26790534

  5. Photophysics of pentacene thin films: The role of exciton fission and heating effects

    NASA Astrophysics Data System (ADS)

    Rao, Akshay; Wilson, Mark W. B.; Albert-Seifried, Sebastian; di Pietro, Riccardo; Friend, Richard H.

    2011-11-01

    There is evidence that the photo-generated singlet exciton in polycrystalline pentacene films undergoes rapid and efficient fission to form two triplet excitons. However, the role of exciton fission in pentacene has been controversial, with previous studies putting forward alternate relaxation pathways for the singlet exciton, such as excimer or charge formation, or internal conversion to a doubly excited exciton. We report temperature- and angular-dependent ultrafast transient optical absorption measurements in a wide spectral and temporal window. Angular-dependent transient spectra identify a common origin to photo-induced absorptions at 530 and 860 nm, which we associate with triplet excitons. These constitute the dominant relaxation channel for singlet excitons. Other features, particularly near 620 nm, previously assigned to excimers or electronic charges, are shown to be caused by thermal modulation from the optical pump.

  6. Physical model of the vapor-liquid (insulator-metal) transition in an exciton gas

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2015-04-15

    We propose a simple physical model describing the transition of an exciton gas to a conducting exciton liquid. The transition occurs due to cohesive coupling of excitons in the vicinity of the critical point, which is associated with transformation of the exciton ground state to the conduction band and the emergence of conduction electrons. We calculate the cohesion binding energy for the exciton gas and, using it, derive the equations of state, critical parameters, and binodal. The computational method is analogous to that used by us earlier [5] for predicting the vapor-liquid (insulator-metal) phase transition in atomic (hypothetical, free of molecules) hydrogen and alkali metal vapors. The similarity of the methods used for hydrogen and excitons makes it possible to clarify the physical nature of the transition in the exciton gas and to predict more confidently the existence of a new phase transition in atomic hydrogen.

  7. Time Dependent Study of Multiple Exciton Generation in Nanocrystal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Damtie, Fikeraddis A.; Wacker, Andreas

    2016-03-01

    We study the exciton dynamics in an optically excited nanocrystal quantum dot. Multiple exciton formation is more efficient in nanocrystal quantum dots compared to bulk semiconductors due to enhanced Coulomb interactions and the absence of conservation of momentum. The formation of multiple excitons is dependent on different excitation parameters and the dissipation. We study this process within a Lindblad quantum rate equation using the full many-particle states. We optically excite the system by creating a single high energy exciton ESX in resonance to a double exciton EDX. With Coulomb electron-electron interaction, the population can be transferred from the single exciton to the double exciton state by impact ionisation (inverse Auger process). The ratio between the recombination processes and the absorbed photons provide the yield of the structure. We observe a quantum yield of comparable value to experiment assuming typical experimental conditions for a 4 nm PbS quantum dot.

  8. Direct evidence for self-trapping of excitons by indium nanowires at In/Si(111) surface

    SciTech Connect

    Xu, Maojie

    2013-11-04

    We report on the real-space observation of self-trapped excitons using scanning tunneling microscope. Electrons of In nanowires transfer to the Si substrate, yielding charge-transfer excitons at In/Si interface. The strong coupling between excitons and lattice vibrations leads to the exciton localization at low carrier density and 80.0 K. Exciton condensation was observed at the proper carrier density and its microscopic origin is discussed.

  9. The radius distribution of planets around cool stars

    SciTech Connect

    Morton, Timothy D.; Swift, Jonathan

    2014-08-10

    We calculate an empirical, non-parametric estimate of the shape of the period-marginalized radius distribution of planets with periods less than 150 days using the small yet well-characterized sample of cool (T{sub eff} < 4000 K) dwarf stars in the Kepler catalog. In particular, we present and validate a new procedure, based on weighted kernel density estimation, to reconstruct the shape of the planet radius function down to radii smaller than the completeness limit of the survey at the longest periods. Under the assumption that the period distribution of planets does not change dramatically with planet radius, we show that the occurrence of planets around these stars continues to increase to below 1 R{sub ⊕}, and that there is no strong evidence for a turnover in the planet radius function. In fact, we demonstrate using many iterations of simulated data that a spurious turnover may be inferred from data even when the true distribution continues to rise toward smaller radii. Finally, the sharp rise in the radius distribution below ∼3 R{sub ⊕} implies that a large number of planets await discovery around cool dwarfs as the sensitivities of ground-based transit surveys increase.

  10. Evidence for a large radius of the 11Be projectile

    NASA Astrophysics Data System (ADS)

    So, W. Y.; Choi, K. S.; Cheoun, Myung-Ki; Kim, K. S.

    2016-05-01

    We investigate ratios of the elastic scattering cross section to Rutherford cross section, PE, and angular distributions of breakup cross section by using an optical model which exploits various long-range dynamic polarization potentials as well as short-range nuclear bare potentials for the 11Be projectile. From these simultaneous analyses, we extract a large radius of a halo projectile from the experimental data for PE and the angular distribution of the breakup cross section of the 11Be + 64Zn and 11 + 120Sn systems. It results from the fact that a large radius for the long-range nuclear potential is more reasonable for properly explaining these data simultaneously. The extracted reduced interaction radius turns out to be r0=3.18 ˜3.61 fm for 11Be nucleus, which is larger than the conventional value of r0=1.1 ˜1.5 fm used in the standard radius form R =r0A1 /3 . Furthermore, the larger radius as well as the normalization constant N is shown to be important for understanding Coulomb dipole strength distribution.

  11. Solar radius measurements with the space instrument HMI (SDO)

    NASA Astrophysics Data System (ADS)

    Irbah, Abdanour; Hauchecorne, Alain; Meftah, Mustapha; Damé, Luc; Keckhut, Philippe

    2016-04-01

    The solar radius variations and its effects on the Earth climate are still a long scientific debate. The observed variations from ground experiments were not totally admitted and several space missions have had these measures as a goal. The high angular resolution of radius measurements and its long-term trend is however a challenge in space. The first attempts with MDI (Soho) then SODISM (PICARD) and HMI (SDO) revealed the difficulties of such measures due to the hostile environment which introduces thermal variations on the instruments all along the satellite orbit. These variations have non-negligible impacts on the optical properties of the onboard telescopes and therefore on the images and the parameters which are extracted such as the solar radius. We need then to make a posteriori corrections using the thermal housekeeping's recorded together with the data science. We present here how we make such correction on the solar radius obtained from the HMI images. We will then compare and discuss the results with the solar radius recorded at 607 nm with the ground-based instrument of PICARD.

  12. Distal Radius Radiographic Indices and Perilunate Fracture Dislocation

    PubMed Central

    Bagherifard, Abolfazl; Jafari, Davod; Keihan Shokouh, Hassan; Motavallian, Ebrahim; Najd Mazhar, Farid

    2016-01-01

    Background Distal radius radiographic indices may play a role as risk factors in pathogenesis of Kienbock’s disease, scaphoid fracture and nonunion. Perilunate fracture dislocations are devastating wrist injuries, and their relationship and distal radius indices have not been addressed in the literature. Objectives The aim of this study was to evaluate the possible role of distal radius radiographic indices including radial height, radial inclination, ulnar variance and volar tilt as risk factors in the perilunate fracture dislocation injury of the wrist. Patients and Methods We studied distal radius radiographic indices including radial height, radial inclination, ulnar variance and volar tilt in 43 patients with perilunate fracture dislocations and compared them with 44 wrists in the control group. Results The mean values of the radial height, radial inclination, ulnar variance and volar tilt were 12.74 (5 - 18), 24.20 (7 - 35), -0.73 (-5 - 4) and 12.28 (2 - 20) in the patient group. These values were 12.68 (9 - 22), 23.22 (17 - 30), -0.11 (-4 - 3) and 11.05 (-3 - 20), respectively in the control group. There was no statistically significant difference between the two groups. Conclusions This study did not show that distal radius anatomical indices including the radial height, radial inclination, ulnar variance and volar tilt influence perilunate fracture dislocation as risk factors.

  13. The Mass - Radius Relation of Giant Gas Planets

    NASA Astrophysics Data System (ADS)

    Çelik Orhan, Zeynep; Kayhan, Cenk; Yildiz, Mutlu

    2016-07-01

    Thanks to CoRoT and Kepler space telescope, the thousand of exoplanets have been discovered. The only observational construct on planetary interior is planetary radius. Mass-radius relation is widely studied in the literature. Many mechanisms have been suggested in the literature to explain the inflated radii of these planets. In this study, our aim is to consider planet and host star interaction and assess the basic mechanisms responsible for excess in radius of transiting giant gas planets. We show that there is much more definite relation between radius and energy per gram per second (log (l- )). There is a good linear relation between planetary radius and log (l- ) for log (l- /l0 ) < 3.75. The relation changes if log (l- /l0 ) > 3.5. There is a relatively clump for the range log (l- /l0 ) > 3.75. The reason for the change in the relation may be related with the structure of the heated part of the planets. We focus on these inflated planet.

  14. ON THE CONSTANCY OF THE SOLAR RADIUS. III

    SciTech Connect

    Bush, R. I.; Emilio, M.; Kuhn, J. R. E-mail: memilio@uepg.b

    2010-06-20

    The Michelson Doppler Imager on board the Solar and Heliospheric Observatory satellite has operated for over a sunspot cycle. This instrument is now relatively well understood and provides a nearly continuous record of the solar radius in combination with previously developed algorithms. Because these data are obtained from above Earth's atmosphere, they are uniquely sensitive to possible long-term changes of the Sun's size. We report here on the first homogeneous, highly precise, and complete solar-cycle measurement of the Sun's radius variability. Our results show that any intrinsic changes in the solar radius that are synchronous with the sunspot cycle must be smaller than 23 mas peak to peak. In addition, we find that the average solar radius must not be changing (on average) by more than 1.2 mas yr{sup -1}. If ground- and space-based measurements are both correct, the pervasive difference between the constancy of the solar radius seen from space and the apparent ground-based solar astrometric variability can only be accounted for by long-term changes in the terrestrial atmosphere.

  15. Is there any Exciton (bottleneck) in an Excitonic Solar Cell: Revisiting the Prospects of Single-Semiconductor OPV

    NASA Astrophysics Data System (ADS)

    Alam, Muhammad

    2014-03-01

    The discovery dye sensitized and bulk heterojunction (BHJ) solar cells in early 1990s introduced a new class of PV technology that rely on (i) distributed photogeneration of excitons, (ii) dissociation of excitons into free carriers by the heterojunction between two organic semiconductors (OSC), and (iii) collection of free carriers through electron and hole transport layers. The success of the approach is undisputed: the highest efficiency OPV cells have all relied on variants of BHJ approach. Yet, three concerns related to the use of a pair of OSCs, namely, low Voc, process sensitivity, and reliability, suggest that the technology may never achieve efficiency-variability-reliability metrics comparable to inorganic solar cells. This encourages a reconsideration of the prospects of Single semiconductor OPV (SS-OPV), a system presumably doomed by the exciton bottleneck. In this talk, we use an inverted SS-OPV to demonstrate how the historical SS-OPV experiments may have been misinterpreted. No one disputes the signature of excitons in polymer under narrowband excitation, but our experiments show that exciton dissociation need not be a bottleneck for OPV under broadband solar illumination. We demonstrate that an alternate collection-limited theory consistently interprets the classical and new experiments, resolves puzzles such as efficiency loss with increasing light intensity, and voltage-dependent reverse photo-current, etc. The theory and experiments suggest a new ``perovskite-like'' strategy to efficiency-variability-reliability of organic solar cells. The work was supported by the Columbia DOE-EFRC (DE-SC0001085) and NSF-NCN (EEC-0228390).

  16. FY15 Progress Report for PL14-Lg Radius SIMS-PD1Ea: Large Radius SIMS Support / Large Radius SIMS for Nuclear Materials Analysis and Characterization

    SciTech Connect

    Zimmer, Mindy M.; Naes, Benjamin E.; Willingham, David G.; Cloutier, Janet M.

    2015-09-15

    PNNL has been procured a Cameca 1280 Large Radius Secondary Ions Mass Spectrometer (LRSIMS) from the Amtek corporation out of France. This state-of-the-art instrument is aligning PNNL to deliver to NNSA the ability to address issues from proliferation detection to nuclear archeology of reactor operation and cascade enrichment history verification pushing beyond the limits of currently available methods and instrumentation at PNNL.

  17. Exciton Transfer and Emergent Excitonic States in Oppositely-Charged Conjugated Polyelectrolyte Complexes.

    PubMed

    Hollingsworth, William R; Segura, Carmen; Balderrama, Jonathan; Lopez, Nathaniel; Schleissner, Pamela; Ayzner, Alexander L

    2016-08-11

    Photosynthetic organisms have mastered the use of "soft" macromolecular assemblies for light absorption and concentration of electronic excitation energy. Nature's design centers on an optically inactive protein-based backbone that acts as a host matrix for an array of light-harvesting pigment molecules. The pigments are organized in space such that excited states can migrate between molecules, ultimately delivering the energy to the reaction center. Here we report our investigation of an artificial light-harvesting energy transfer antenna based on complexes of oppositely charged conjugated polyelectrolytes (CPEs). The conjugated backbone and the charged side chains of the CPE lead to an architecture that simultaneously functions as a structural scaffold and an electronic energy "highway". We find that the process of ionic complex formation leads to a remarkable change in the excitonic wavefunction of the energy acceptor, which manifests in a dramatic increase in the fluorescence quantum yield. We argue that the extended backbone of the donor CPE effectively templates a planarized acceptor polymer, leading to excited states that are highly delocalized along the polymer backbone. PMID:27428604

  18. Ultrafast coherent studies of excitons and excitonic complexes in doped and undoped gallium arsenide quantum wells

    NASA Astrophysics Data System (ADS)

    Busch, Alexander Anthony

    2003-10-01

    This thesis reports a systematic study of near-band edge linear and nonlinear optical properties of doped and undoped semiconductor multiple quantum well samples, aimed at quantifying and separating the numerous contributions to the overall material response from photon excitation. Information obtained from both linear absorption and nonlinear, degenerate four-wave-mixing experiments is compared with elaborate numerical simulations. Accurate measures of 1S--2S binding energies and dephasing rates as a function of temperature from 5 to 40 K is established. The biexciton binding energy and dephasing rate over the temperature range 5 to 40 K is measured and, by comparison with theories reported in the literature, it is found that localization effects have a significant influence on the biexciton binding energy in 5 nm quantum wells. The first systematic attempt to quantitatively account for the continuum contribution to nonlinear response by fitting a series of spectra obtained at various input laser pulse detunings was conducted. Unique evidence for coherent beating between multi-exciton/free electron complexes in lightly doped material was also found.

  19. Attractor radius, a new determination criterion of predictability limit

    NASA Astrophysics Data System (ADS)

    Liu, Deqiang; Ding, Ruiqiang; Li, Jianping; Feng, Jie

    2014-05-01

    Firstly, the definition of the attractor radius was given and then the property of that the attractor radius (AR) in a given n-dimensional attractor A is a constant was proved in theory. Secondly, the SV of the square of the RMS difference was separated into two components - the systematic error and the attractor radius, and it was proved that the observed global climatological RMS (OCR) difference is not equal to 71% of the SV of the RMS difference when the systematic error is existed, however, it is always equal to 71% of the AR. Then the physical understanding of the AR and also the predictability limit determinated by it were discussed. Finally, the spatial distributions of the predictability limit calculated from CFSv2 data by different criterions were compared.

  20. Hominid radius from the middle Pliocene of Lake Turkana, Kenya.

    PubMed

    Heinrich, R E; Rose, M D; Leakey, R E; Walker, A C

    1993-10-01

    A nearly complete left radius, KNM-ER 20419, was recovered from middle Pliocene sediments east of Lake Turkana, Kenya in 1988. Ape-like characteristics of the fossil include an eccentrically positioned articular fovea, relatively long radial neck, wide distal metaphysis, and large brachioradialis crest. The robustness of the radial neck in proportion to the radial head, and the semilunar shape of the distal diaphysis, however, clearly distinguish KNM-ER 20419 as hominid. The distal articular surface possesses a larger area for radius-lunate articulation than for radius and scaphoid, a radiocarpal arrangement that is associated with increased wrist adduction among quadrumanous climbers. Since this morphology is also found in hylobatids, Pongo, and other early australopithecines, it is argued to be plesiomorphic for hominoids. This further supports the argument that vertical climbing was an important locomotor behavior among both early hominoids and our more immediate prebipedal ancestors. PMID:8273826