Science.gov

Sample records for boiler fuels

  1. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  2. Fuel sulfur and boiler fouling

    SciTech Connect

    Litzke, W.; Celebi, Y.; Butcher, T.

    1995-04-01

    Fouling of the heat transfer surfaces of boilers and furnaces by `soot` leads to reduced efficiency and increased service requirements. The average level of annual efficiency reduction as a result of fouling if generally accepted as 2% per year. Improving the efficiency of equipment in the field may be the most important oil heat conservation opportunity at present. Improvements can be realized by reducing fouling rates, promoting lower firing rates in existing equipment, and enabling excess air levels to be set lower without raising concerns about increased service requirements. In spite of the importance of efficiency in the field there is very little data available on efficiency degradation rates with modern equipment, actual field operating conditions (excess air and smoke number settings) and service problems which affect efficiency. During 1993-94 field tests were initiated to obtain such data and to obtain information that would compliment existing and current laboratory work. Experimental work conducted on a bench scale level have included tests with various advanced burners, fuel types, and different operating conditions which have been done at the BNL Rapid Fouling Test Facility. This report will focus on the field study of fouling effects on ten residential heating service problems at each site are summarized. In addition, the technical difficulties involved with conducting such a field study shall also be discussed as the findings should serve to improve future work in this area.

  3. Utilization of silt as CFB boiler fuel

    SciTech Connect

    Herb, B.; Tsao, T.R.; Bickley, D.

    1994-12-31

    Bituminous silt represents an enormous source of discarded energy that is polluting the environment. Although bituminous silt is a potential opportunity fuel for circulating fluidized bed (CFB) boilers, handling problems and uncertainties about the impact of this fuel on CFB boiler performance and operating economics have prevented its use. Under sponsorship of the Pennsylvania Energy Development Authority, five different technologies having the potential to process silt into CFB boiler fuel were evaluated. The technologies evaluated include: washing, pelletizing, thermal drying, mulling and flaking. The desired goal was to process the silt into a form that can be fed to CFB boilers using conventional coal handling equipment and combusted in an environmentally acceptable manner. Criteria were developed for the product characteristics that are desired and tests were run to evaluate the technical feasibility of each silt processing technology. Based on these test results, the design and cost bases for a commercial silt processing facility were developed for each technology capable of achieving the desired product characteristics. As a result of considering both engineering and economic factors, the technology that best meets the objectives for use of processed silt as CFB boiler fuel was selected for further demonstration testing. This paper will present the results of this project up through the selection of the best silt processing technology.

  4. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  5. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  6. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  7. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces..., solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions..., liquid fuel boiler, or hydrochloric acid production furnace that has conducted a...

  8. The next generation of oxy-fuel boiler systems

    SciTech Connect

    Ochs, Thomas L.; Gross, Alex; Patrick, Brian; Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

    2005-01-01

    Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

  9. TECHNOLOGY ASSESSMENT REPORT FOR INDUSTRIAL BOILER APPLICATIONS: SYNTHETIC FUELS

    EPA Science Inventory

    The report, part of a series to aid in determining the technological basis for New Source Performance Standards for Industrial Boilers, addresses the use of synthetic fuels produced from coal as a precombustion emission control for new industrial boilers. The synthetic fuels tech...

  10. Fuel switching for Clean Air Act compliance-boiler considerations

    SciTech Connect

    Warchol, J.J.; Kitto, B. Jr.; Kulig, J.S.

    1995-03-01

    Boiler considerations in fuel switching for Clean Air Act Compliance are outlined. The following topics are discussed: fuel switching options, major fuel characteristics, coal receiving and handling, dust control, grindability vs coal rank, pulverizers and burners, burning profiles, deposition zones in a coal-fired boiler, sootblower location, flues, ducts, and fans, air heaters, electrostatic precipitator (ESP), fly ash resistivity, potential ESP upgrades, ash handling system, auxiliary power system, economic factors, site considerations, and political issues. A summary and conclusion is presented.

  11. Infrared imaging of fossil fuel power plant boiler interiors

    NASA Astrophysics Data System (ADS)

    Howard, James W.; Cranton, Brian W.; Armstrong, Karen L.; Hammaker, Robert G.

    1997-08-01

    Fossil fuel power plant boilers operate continuously for months at a time, typically shutting down only for routine maintenance or to address serious equipment failures. These shutdowns are very costly, and diagnostic tools and techniques which could be used to minimize shutdown duration and frequency are highly desirable. Due to the extremely hostile environment in these boilers, few tools exist to inspect and monitor operating boiler interiors. This paper presents the design of a passively cooled, infrared borescope used to inspect the interior of operating boilers. The borescope operates at 3.9 micrometer, where flame is partially transparent. The primary obstacles overcome in the instrument design were the harsh industrial environment surrounding the boilers and the high temperatures encountered inside the boilers. A portable yet durable lens system and enclosure was developed to work with a scanning radiometer to address these two problems by both shielding the radiometer from the environment and by extending the optical train into a snout designed to be inserted into access ports on the sides of the boiler. In this manner, interior images of the boiler can be made while keeping the radiometer safely outside the boiler. The lens views a 40 degree field of view through any 2.5' or larger opening in a foot thick boiler wall. Three of these borescopes have been built, and high resolution images of boiler interiors have been obtained.

  12. Combustion of waste fuels in a fluidized-bed boiler

    SciTech Connect

    Zylkowski, J.; Ehrlich, S.

    1983-01-01

    This paper reports on a project whose objectives are to determine the impact of the waste fuels on Atmospheric Fluidized Bed Combustion (AFBC) operating procedures, boiler performance, and emissions and to assess the potential for fuel-specific operating problems. The low-grade waste fuels investigated are hogged railroad ties, shredded rubber tires, peat, refuse-derived fuel, and one or more agricultiral wastes. The Northern States Power (NSP) Company converted their French Island Unit No. 2 stoker-fired boiler to a fluidized-bed combustor designed to burn wood waste. NSP and EPRI are investigating cofiring other waste fuels with wood waste. Topics considered include fluidized-bed boiler conversion, fuel resources, economic justification, environmental considerations, the wood-handling system, an auxiliary fuel system, the air quality control system, ash handling and disposal, and the alternate fuels test program.

  13. GUIDELINES FOR INDUSTRIAL BOILER PERFORMANCE IMPROVEMENT. (BOILER ADJUSTMENT PROCEDURES TO MINIMIZE AIR POLLUTION AND TO ACHIEVE EFFICIENT USE OF FUEL)

    EPA Science Inventory

    Recommended procedures for improving industrial boiler performance to minimize air pollution and to achieve efficient use of fuel are given. It is intended for use by industrial boiler operators to perform an efficiency and emissions tune-up on boilers firing gas, oil, or coal. P...

  14. A demonstration of pig lard as an industrial boiler fuel

    SciTech Connect

    Miller, B.G.; Badger, M.; Larsen, J.; Clemens, T.; Moyer, D.; Wehr, T.

    1999-07-01

    Hatfield Quality Meats is a family owned regional meat processor and vendor and has multiple facilities in Pennsylvania. The main plant and corporate offices are located in Hatfield, Pennsylvania where they process 7,000 hogs per day. Two of Hatfield's by-products are lard and choice white grease (CWG), both of which are produced in large quantities. The lard, which is stored warm and liquid, is sold by tanker truck to veal producers, by 55-gallon drums to commercial bakeries, in 5-gallon pails to a variety of restaurants, and periodically in 1-pound tins to grocery stores. The CWG, which is a rendered product, is also sold to veal producers. A decrease in sales could leave the company with large excess of these products and difficult disposal problems. Hatfield Quality Meats, Lehigh University, and Penn State's the Energy Institute evaluated the liquid lard as an industrial boiler fuel and obtained the necessary handleability and combustion data to allow for its use as a supplemental fuel in Hatfield's process, were burned in Penn State's research boiler. The boiler, which has a nominal firing rate of two million Btu/h, is a 150 psig working pressure, A-frame watertube boiler. In addition to the lard samples, No.6 fuel oil was fired for baseline comparison. This paper discusses the comparison of lard and No.6 fuel oil as boiler fuels. Issues discussed include fuel characterization, material handling, combustion performance, flame character and stability, and emissions.

  15. FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS

    SciTech Connect

    Jeffrey J. Sweterlitsch; Robert C. Brown

    2002-07-01

    This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

  16. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    NASA Astrophysics Data System (ADS)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  17. ELECTRIC RATES AND BOILER FUEL CHOICE

    EPA Science Inventory

    This study was undertaken in response to an EPA/IERL-RTP request to examine in a 'quick look' fashion the economic tradeoffs of using purchased utility electricity as an alternative to on-site combustion of fossil fuels for industrial steam generation. Specifically, the impacts o...

  18. The reapplication of energetic materials as boiler fuels

    SciTech Connect

    Buckley, S.G.; Sclippa, G.C.; Ross, J.R.

    1997-02-01

    Decommissioning of weapons stockpiles, off-specification production, and upgrading of weapons systems results in a large amount of energetic materials (EM) such as rocket propellant and primary explosives that need to be recycled or disposed of each year. Presently, large quantities of EM are disposed of in a process known as open-burn/open-detonation (OB/OD), which not only wastes their energy content, but may release large quantities of hazardous material into the environment. Here the authors investigate the combustion properties of several types of EM to determine the feasibility of reapplication of these materials as boiler fuels, a process that could salvage the energy content of the EM as well as mitigate any potential adverse environmental impact. Reapplication requires pretreatment of the fuels to make them safe to handle and to feed. Double-base nitrocellulose and nitroglycerin, trinitrotoluene (TNT), nitroguanidine, and a rocket propellant binder primarily composed of polybutidiene impregnated with aluminum flakes have been burned in a 100-kW downfired flow reactor. Most of these fuels have high levels of fuel-bound nitrogen, much of it bound in the form of nitrate groups, resulting in high NO{sub x} emissions during combustion. The authors have measured fuel-bound nitrate conversion efficiencies to NO{sub x} of up to 80%, suggesting that the nitrate groups do not follow the typical path of fuel nitrogen through HCN leading to NO{sub x}, but rather form NO{sub x} directly. They show that staged combustion is effective in reducing NO{sub x} concentrations in the postcombustion gases by nearly a factor of 3. In the rocket binder, measured aluminum particle temperatures in excess of 1700{degrees}C create high levels of thermal NO{sub x}, and also generate concern that molten aluminum particles could potentially damage boiler equipment. Judicious selection of the firing method is thus required for aluminum-containing materials.

  19. OVERVIEW OF POLLUTION FROM COMBUSTION OF FOSSIL FUELS IN BOILERS OF THE UNITED STATES

    EPA Science Inventory

    The report describes the fossil-fuel-fired boiler population of the U.S. It presents data on the number and capacity of boilers for categories most relevant to producing pollution. Information presented includes: type of fuel burned (coal, residual oil, distillate oil, natural ga...

  20. Characterization of Residential Scale Biofuel Boilers and Fuels

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Sriraam R.

    The objectives of this study were to: 1) characterize commercially available wood pellets and wood chips for basic properties such as calorific, ash, moisture contents; 2) analyze elements and ions and other possible contamination during the pellet manufacturing processes; 3) characterize the chemical and thermo-chemical property of grass pellets for their combustion potential; 4) characterize the emissions from 6 different residential scale boiler/furnace appliances burning grass and wood pellets; 5) characterize the emitted particulate matter for toxic and marker species with respect to combustion appliance and combustion conditions; and 6) determine the effects of the biomass fuel properties of 5 different grass pellets on particulate and gaseous emissions from a single type of boiler. The results from characterization of wood pellets and chips indicated that the wood pellet samples generally meet the quality standards. However, there are some samples that would fail the ash content requirements. Only the German standards have extensive trace element limits. Most of the samples would meet these standards, but some samples failed to meet these standards based on their lead, arsenic, cadmium, and copper concentrations. It is likely that inclusion of extraneous materials such as painted or pressure treated lumber led to the observed high concentrations. Given increasing use of pellets and chips as a renewable fuel, standards for the elemental composition of commercial wood pellets and chips are needed in United States to avoid the inclusion of extraneous materials. Such standards would reduce the environmental impact of toxic species that would be released when the wood is burned. Grass pellets were characterized for chemical and thermochemical properties. Switch grass pellets were studied for it thermal degradation process under inert and oxidizing atmosphere using TGA. The thermal degradation of grass pellet measured the activation energy and pre

  1. Costs of particulate matter controls for nonfossil fuel fired boilers. Final report

    SciTech Connect

    Barnett, K.W.; Kwapil, W.D.; Margerum, S.C.

    1983-02-01

    This report is a resource document for the development of Federal standards of performance for control of particulate matter from new nonfossil fuel-fired boilers ranging in size from 30 to 400 million Btu/hour heat input. Capital and annualized costs for a variety of alternative emission control systems are given for wood, bark, solid waste (refuse), and bagasse fired boilers.

  2. Combustion Characteristics of Oxy-fuel Burners for CO2 Capturing Boilers

    NASA Astrophysics Data System (ADS)

    Ahn, Joon; Kim, Hyouck Ju; Choi, Kyu Sung

    Oxy-fuel boilers have been developed to capture CO2 from the exhaust gas. A 50 kW class model burner has been developed and tested in a furnace type boiler. The burner has been scaled up to 0.5 and 3 MW class for fire-tube type boilers. The burners are commonly laid out in a coaxial type to effectively heat the combustion chamber of boilers. Burners are devised to support air and oxy-fuel combustion modes for the retrofitting scenario. FGR (flue gas recirculation) has been tried during the scale-up procedure. Oxy-fuel combustion yields stretched flame to uniformly heat the combustion chamber. It also provides the high CO2 concentration, which is over 90% in dry base. However, pure oxy-fuel combustion increases NO concentration, because of the reduced flow rate. The FGR can suppress the thermal NOx induced by the infiltration of the air.

  3. Characterization of Residential Scale Biofuel Boilers and Fuels

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Sriraam R.

    The objectives of this study were to: 1) characterize commercially available wood pellets and wood chips for basic properties such as calorific, ash, moisture contents; 2) analyze elements and ions and other possible contamination during the pellet manufacturing processes; 3) characterize the chemical and thermo-chemical property of grass pellets for their combustion potential; 4) characterize the emissions from 6 different residential scale boiler/furnace appliances burning grass and wood pellets; 5) characterize the emitted particulate matter for toxic and marker species with respect to combustion appliance and combustion conditions; and 6) determine the effects of the biomass fuel properties of 5 different grass pellets on particulate and gaseous emissions from a single type of boiler. The results from characterization of wood pellets and chips indicated that the wood pellet samples generally meet the quality standards. However, there are some samples that would fail the ash content requirements. Only the German standards have extensive trace element limits. Most of the samples would meet these standards, but some samples failed to meet these standards based on their lead, arsenic, cadmium, and copper concentrations. It is likely that inclusion of extraneous materials such as painted or pressure treated lumber led to the observed high concentrations. Given increasing use of pellets and chips as a renewable fuel, standards for the elemental composition of commercial wood pellets and chips are needed in United States to avoid the inclusion of extraneous materials. Such standards would reduce the environmental impact of toxic species that would be released when the wood is burned. Grass pellets were characterized for chemical and thermochemical properties. Switch grass pellets were studied for it thermal degradation process under inert and oxidizing atmosphere using TGA. The thermal degradation of grass pellet measured the activation energy and pre

  4. COAL: DRDF (DENSIFIED REFUSE DERIVED FUEL) DEMONSTRATION TEST IN AN INDUSTRIAL SPREADER STOKER BOILER. USE OF COAL: DRDF BLENDS IN STOKER-FIRED BOILERS. VOLUME I

    EPA Science Inventory

    This study program has the overall objective of evaluating boiler performance and environmental feasibility when combusting densified forms of refuse derived fuels (dRDF) blended with coal and fired in a modern industrial spreader stoker-fired boiler. The results reported herein ...

  5. New source performance standards for industrial boilers. Volume 1. Analysis of fuel use implications

    SciTech Connect

    Placet, M.; Heller, J.N.

    1981-01-01

    A review of the Industrial Fuel Choice Analysis Model (IFCAM) led to several concerns: first, the retirement rate used in the model seems to overestimate retirement levels, thus overstating the potential for coal penetration in the industrial sector. Also, the coal transportation rate is assumed to increase by 15% between 1978 and 1985 and remain constant thereafter. In light of recent rate increase approvals the expected price escalation of labor and materials used in railroad expansion, the currently assumed rail rate escalators seem too low. Additionally, the model does not deal with the issue of substitution of small boiler combinations for large boilers. Both promulgation and enforcement may provide incentives for installation of small boiler combinations. For IFCAM to reflect this phenomenon, alternative assumptions and model modifications are suggested. Fuel price projections, the capacity utilization distribution, boiler size distribution, and translation of costs into model algorithms are considered.

  6. High Temperature Corrosion Problem of Boiler Components in presence of Sulfur and Alkali based Fuels

    NASA Astrophysics Data System (ADS)

    Ghosh, Debashis; Mitra, Swapan Kumar

    2011-04-01

    Material degradation and ageing is of particular concern for fossil fuel fired power plant components. New techniques/approaches have been explored in recent years for Residual Life assessment of aged components and material degradation due to different damage mechanism like creep, fatigue, corrosion and erosion etc. Apart from the creep, the high temperature corrosion problem in a fossil fuel fired boiler is a matter of great concern if the fuel contains sulfur, chlorine sodium, potassium and vanadium etc. This paper discusses the material degradation due to high temperature corrosion in different critical components of boiler like water wall, superheater and reheater tubes and also remedial measures to avoid the premature failure. This paper also high lights the Residual Life Assessment (RLA) methodology of the components based on high temperature fireside corrosion. of different critical components of boiler.

  7. Technical and economic feasibility of alternative fuel use in process heaters and small boilers

    SciTech Connect

    Not Available

    1980-02-01

    The technical and economic feasibility of using alternate fuels - fuels other than oil and natural gas - in combustors not regulated by the Powerplant and Industrial Fuel Use Act of 1978 (FUA) was evaluated. FUA requires coal or alternate fuel use in most large new boilers and in some existing boilers. Section 747 of FUA authorizes a study of the potential for reduced oil and gas use in combustors not subject to the act: small industrial boilers with capacities less than 100 MMBtu/hr, and process heat applications. Alternative fuel use in combustors not regulated by FUA was examined and the impact of several measures to encourage the substitution of alternative fuels in these combustors was analyzed. The primary processes in which significant fuel savings can be achieved are identified. Since feedstock uses of oil and natural gas are considered raw materials, not fuels, feedstock applications are not examined in this analysis. The combustors evaluated in this study comprise approximately 45% of the fuel demand projected in 1990. These uses would account for more than 3.5 million barrels per day equivalent fuel demand in 1990.

  8. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  9. Performance analysis of cofiring densified refuse derived fuel in a military boiler

    NASA Astrophysics Data System (ADS)

    1981-12-01

    This report provides an overview of existing densified refuse-derived fuel (dRDF) receiving, storage, handling and combustion equipment at Wright-Patterson Air Foce Base. DRDF is being burned as part of a long term alternative fuel evaluation program to develop design and procurement criteria for multiple fuel boilers. Recommendations are offered for specific equipment, procedural changes, and studies to improve the efficacy of the present configurations of dRDF as a fuel. A discussion of the fuel use criteria is presented. The options for continuing the present dRDF supply arrangement vs. the feasibility of local production of dRDF are presented. Research needs are summarized. A preemptive, integrated local synthetic solid fuel production facility and boiler performance test is recommended as a continuation of the program.

  10. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid fuel boilers and hydrochloric acid production furnaces to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235 Protection of Environment...

  11. Utilization of felled trees as supplemental boiler fuel

    SciTech Connect

    Lederer, C.C.; Schugar, S.

    1983-04-01

    A valuable natural resource, wood, is being generated in tremendous quantities every year in the City of Detroit as a result of the City's obligation to fell and remove dead trees, principally elms. The bulk of this resource, 115,000 tons of wood every year, is presently being burned at the City's public works facilities, serving only to fill the air with smoke. There are a number of ways to use this wood productively instead of wasting it. The purpose of our project was to explore the economic and technical feasibility of using the wood to supplement coal in a type of existing small industrial boiler that normally would not be considered as suitable for burning a coal/wood mixture, the boiler equipped with a single-retort, underfeed coal stoker. 4 figs.

  12. Use of multiple opportunity fuels in coal-fired cyclone boilers

    SciTech Connect

    Tillman, D.A.; Hus, P.; Hughes, E.

    1999-07-01

    Northern Indiana Public Service Company (NIPSCO), with support from USDOE-EERE, the USDOE Federal Energy Technology Center, and EPRI, is installing a materials handling system to fire a combination of wood waste and petroleum coke with the base coal in the No.7 boiler of Bailly Generating Station. The No.7 boiler is a 160 MW{sub e} (net) unit fired with four cyclones. It is typically fired with a blend of Illinois coal and Western coal. The gaseous combustion products from this boiler are ducted to a precipitator and then to a Pure Air scrubber for sulfur oxides removal. The Pure Air scrubber converts the SO{sub 2} into artificial gypsum. Typically the unit burns about 70 tons/hr of coal at full load. The Bailly Generating Station program, being implemented by Foster Wheeler Development Corporation, involves blending petroleum coke and wood waste with coal for combination opportunity fuel firing. Multiple fuel firing is intended to capture the advantages of each fuel: high volatility of biofuels and high Btu content of petroleum coke are among these characteristics. The objective of the program, then, is to reduce fuel costs at the station while improving combustion. The program involves constructing a fuel handling and blending system, and then testing the impacts of individual opportunity fuels with coal plus blends of opportunity fuels with coal. This paper reviews the program concept, the combustion modeling, the blending system design, and the results of baseline and laboratory testing to date.

  13. FUEL OIL REBURNING APPLICATION FOR NOX CONTROL TO FIRETUBE PACKAGE BOILERS

    EPA Science Inventory

    The paper discusses retrofitting two 1.0 MW (3.5 million Btu/hr) firetube package boilers for fuel oil reburning application for NOx emission control. An overall NOx reduction of 46% from an uncontrolled emission of 125 ppm (dry, at 0% O2) was realized by diverting 20% of the tot...

  14. FUEL OIL REBURNING APPLICATION FOR NOX CONTROL TO FIRETUBE PACKAGE BOILERS (JOURNAL VERSION)

    EPA Science Inventory

    The paper discusses retrofitting two 1.0 MW (3.5 million Btu/hr) firetube package boilers for fuel oil reburning application for NOx emission control. An overall NOx reduction of 46% from an uncontrolled emission of 125 ppm (dry, at 0% O2) was realized by diverting 20% of the tot...

  15. HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF AN EMULSIFIED HEAVY FUEL OIL IN A FIRETUBE BOILER

    EPA Science Inventory

    The report gives results of measuring emissions of hazardous air pollutants (HAPs) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose of determining the impacts of the e...

  16. VERIFICATION TESTING OF EMISSIONS FROM THE COMBUSTION OF A-55 CLEAN FUELS IN A FIRETUBE BOILER

    EPA Science Inventory

    The report gives results of testing three fuels in a small (732 kW) firetube package boiler to determine emissions of carbon monoxide (CO), nitrogen oxide (NO), particulate matter (PM), and total hydrocarbons (THCs). The tests were part of EPA's Environmental Technology Verificat...

  17. Design and operation of industrial boilers fired with wood and bark residue fuels

    SciTech Connect

    Junge, D.C.

    1982-08-01

    Most of the technical reference literature concerning the design and operation of industrial wood and bark-fired boilers and supporting facilities is out of date. This publication updates existing information and includes extensive research and development data that was generated at Oregon State University. Topics covered include the state of wood combustion technology; the basic characteristics of wood fuels; the principles of wood combustion and parameters that influence combustion; fuel receiving preparation, and storage; and pollution control.

  18. EFFECTS OF FUEL PROPERTIES AND ATOMIZATION PARAMETERS ON NOX CONTROL FOR HEAVY LIQUID FUEL FIRED PACKAGE BOILERS

    EPA Science Inventory

    The report gives information necessary for development and generalization of low-NOx oil burner technology for package firetube boilers. It gives results of experiments at two scales: 20 kW and 1.08 MW heat input. At 20 kW, effects of fuel properties were examined in tests of 3 d...

  19. Feasibility of burning refuse derived fuel in institutional size oil-fired boilers. Final report

    SciTech Connect

    1980-10-01

    This study investigates the feasibility of retrofitting existing oil-fired boilers of institutional size, approximately 3.63 to 36.3 Mg steam/h (8000 to 80,000 lbs steam/h) for co-firing with refuse-derived fuel (RDF). Relevant quantities describing mixtures of oil and RDF and combustion products for various levels of excess air are computed. Savings to be realized from the use of RDF are derived under several assumptions and allowable costs for a retrofit are estimated. An extensive survey of manufacturers of burners, boilers, and combustion systems showed that no hardware or proven design is yet available for such retrofit. Approaches with significant promises are outlined: the slagging burner, and a dry ash double vortex burner for low heat input from RDF. These two systems, and an evaluation of a small separate RDF dedicated combustor in support of the oil-fired boiler, are recommended as topics for future study.

  20. Ways of solving environmental problems while transferring the boilers for burning water-bitumen mixture instead of fuel oil

    NASA Astrophysics Data System (ADS)

    Kotler, V. R.; Sosin, D. V.

    2009-03-01

    Information concerning a new kind (for Russia) of liquid fuel, i.e., water-bitumen mixture (orimulsion), is presented. The application of the new fuel instead of the fuel oil at a boiler of a power unit of 350-MW capacity makes it possible to decrease sufficiently the expenditures for fuel while keeping the main environmental indices.

  1. 40 CFR 63.1216 - What are the standards for solid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Boilers, and Hydrochloric Acid Production Furnaces § 63.1216 What are the standards for solid fuel boilers... standards in lieu of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants....

  2. 40 CFR 63.1216 - What are the standards for solid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Boilers, and Hydrochloric Acid Production Furnaces § 63.1216 What are the standards for solid fuel boilers... standards in lieu of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants....

  3. Effect of fuel quality on slagging behavior in a cyclone-fired boiler

    SciTech Connect

    Katrinak, K.; Laumb, J.; Peterson, W.; Schwalbe, R.

    1998-12-31

    Relationships between the occurrence of poor slag flow episodes at a cyclone-fired boiler, coal mineral content, heating value, and other fuel quality parameters have been investigated. In addition, optimization of boiler operating conditions to match coal quality is the major emphasis of current activities. The boiler fires North Dakota lignite, a highly variable fuel, and experiences intermittent cyclone slagging problems related to coal quality. Cyclone slagging episodes were found to occur when the heating value of the fuel was less than 6600 Btu/lb and the T250 was greater than 2250 F. Higher-Btu coals burn hotter and appear to be able to handle higher T250 values without slagging. Other fuel quality parameters related to cyclone slag flow behavior include high silicon and aluminum concentrations and high concentrations of the silicon- and aluminum-rich clay minerals illite and montmorillonite. These minerals are thought to contribute to cyclone slagging episodes by reducing the ability of the slag to incorporate calcium, thus leading to increased slag viscosity. To improve slag flow behavior, operating conditions have been modified to maintain high temperatures in the cyclones. Changes include increasing coal drying temperature and balancing the air/fuel ratio. T250 can be readily calculated from coal ash composition. Clays and other minerals can be identified in individual coal particles using automated scanning electron microscopy with energy-dispersive X-ray spectrometry. Use of these analytical techniques can enable potential cyclone slagging problems to be predicted in advance.

  4. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and Hydrochloric Acid Production Furnaces § 63.1217 What are the standards for liquid fuel boilers... standards in lieu of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants....

  5. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Boilers, and Hydrochloric Acid Production Furnaces § 63.1217 What are the standards for liquid fuel... standards in lieu of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants....

  6. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and Hydrochloric Acid Production Furnaces § 63.1217 What are the standards for liquid fuel boilers... standards in lieu of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants....

  7. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Boilers, and Hydrochloric Acid Production Furnaces § 63.1217 What are the standards for liquid fuel... standards in lieu of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants....

  8. Using oily wastewater emulsified fuel in boiler: energy saving and reduction of air pollutant emissions.

    PubMed

    Chen, Chun-Chi; Lee, Wen-Jhy

    2008-01-01

    The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers. PMID:18350907

  9. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    PubMed

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. PMID:18505001

  10. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler

    SciTech Connect

    Changfu You; Xuchang Xu

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from underground coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. 17 refs., 3 figs., 1 tab.

  11. Evaluation of peat as a utility boiler fuel. Final report

    SciTech Connect

    Bongiorno, S.J.; Strianse, R.V.

    1983-03-01

    The objective of this study was to assess the technical and economic feasibility of the direct combustion of peat for electric power generation in the United States. The study includes a review of peat literature, selection of a region in the US to locate a hypothetical peat-harvesting operation, and an assessment of current practices for peat utilization in Europe, including peat harvesting, environmental control, and combustion technology. The conceptual design of a peat-harvesting facility supplying 1.4 million tons/yr of peat to a 2 x 150 MW power plant located in eastern North Carolina is developed for the purpose of estimating peat fuel costs. Environmental-control measures and peat transportation systems are identified. Budget capital and operating costs for a peat-fired power plant are estimated and the busbar cost of electricity compared to that for a 1 x 300 MW coal-fired power plant. Technical feasibility is demonstrated, although environmental acceptability of a large-scale peat harvesting operation must be confirmed on a site-specific basis. Peat fuel costs are found to be less than coal costs for a power plant located adjacent to the peat bogs in eastern North Carolina. The higher capital cost of a peat-fired power plant offsets to some extent the fuel cost advantage. Peat is found to have an electricity cost advantage of about 5 to 25% when compared to coal on a 30 year levelized basis depending on the peat escalation rate assumed.

  12. Improvement of the process of fuel firing on BKZ-210-140F boilers

    SciTech Connect

    V.V. Osintsev; M.P. Sukharev; E.V. Toropov; K.V. Osintsev

    2007-01-15

    The existing flame processes of dual firing of gas and solid fuel are updated with reconstruction of the burners at the Chelyabinsk TETs-2. This is connected with marked worsening of the quality of local coal supplied to the cogeneration plant. Comparative tests of boilers with burners subjected to different degrees of updating have shown that replacement of the now used swirled method of introduction of reagents into the furnace by a uniflow one lowers the heat flows to the metal structures and to the settling of the burner throats making them more reliable. The emission of nitrogen oxides is minimized in the mode of gas firing and the activity of slagging of the furnace and of the platens is reduced in the mode of coal firing, which makes it possible to raise the steam rate of the boiler. Ways for further improvement of burner design with respect to nitrogen oxide emissions in the polydisperse flame are outlined.

  13. Fossil-Fired Boilers

    Energy Science and Technology Software Center (ESTSC)

    1993-09-23

    Boiler Performance Model (BPM 3.0S) is a set of computer programs developed to analyze the performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, and can model coal, oil, or natural gas firing. The programs are intended for use by engineers performing analyses of alternative fuels, alternative operating modes, or boiler modifications.

  14. POLLUTANT CONTROL TECHNIQUES FOR PACKAGE BOILERS: HARDWARE MODIFICATIONS AND ALTERNATE FUELS

    EPA Science Inventory

    The report gives results of investigations of four ways to control nitrogen oxide (NOx) emissions from package boilers (both field operating boilers and boiler simulators): (1) variations in combustor operating procedure; (2) combustion modification (flue gas recirculation and st...

  15. An economic analysis of using alternative fuels in a mass burn boiler.

    PubMed

    Kaylen, Michael S

    2005-11-01

    In this study the economic feasibility of using alternative fuels in a mass burn boiler for a chemical plant in northeastern Missouri is analyzed. The key consideration is whether biomass (switchgrass and crop residues) is economically preferred to other available fuels. Research reveals an abundance of alternative fuels for which the plant would receive a tipping fee, including municipal solid waste and used tires. Since the plant would have to pay for biomass, it does not appear in the optimal solution. An economic optimization model shows the marginal cost to the plant of using biomass would increase as more biomass is used, displacing quantities of more valuable (in terms of tipping fees per BTU) waste materials. PMID:16084375

  16. COAL: DRDF (DENSIFIED REFUSE DERIVED FUEL) DEMONSTRATION TEST IN AN INDUSTRIAL SPREADER STOKER BOILER. USE OF COAL: DRDF BLENDS IN STOKER-FIRED BOILERS, APPENDICES A, B, C, AND D. VOLUME II

    EPA Science Inventory

    This study program has the overall objective of evaluating boiler performance and environmental feasibility when combusting densified forms of refuse derived fuels (dRDF) blended with coal and fired in a modern industrial spreader stoker-fired boiler. The results reported herein ...

  17. Low NO{sub x} retrofit of a NSPS boiler burning sub-bituminous western fuel

    SciTech Connect

    Costanzo, M.A.; Perry, D.M.; Sharman, J.

    1995-12-31

    This paper presents the goals, equipment selection and operating results of the low NO{sub x} conversion project of an NSPS boiler burning western sub-bituminous fuel. The subject unit is a nominal 500 MW non-B&W boiler commissioned in 1981. The original firing equipment was designed in accordance with the New Source Performance Standards (NSPS) instituted in the 1970s. This original equipment included 24 scroll type burners in an opposed wall configuration with 3 rows and 4 columns of burners on the front and rear walls. Eight overfire air ports were included with a port located above each column of burners. Each level of four burners is supplied with pulverized coal from one of six pulverizers. The original and current fuel is a low sulfur sub-bituminous class C Powder River Basin Coal. The stated goal for the low NO{sub x} project was a maximum NO{sub x} emission rate of 0.35 lb/MBtu with a corresponding carbon content in the fly ash not to exceed two times the pre-retrofit operating conditions. The existing pulverizer performance was poor and at any given time no more than five mills were available for service. Therefore, the project No{sub x}, and unburned carbon (UBC) requirements must be achieved with any five out of six existing mills operating.

  18. Tire-derived fuel cofiring test in a pulverized coal utility boiler. Final report

    SciTech Connect

    Joensen, A.W.

    1994-12-01

    In recent years, several states have enacted legislation that outlaws the landfilling of whole tires and forces the implementation of various integrated waste management alternatives to dispose of passenger car and truck tires. Alternate disposal options include source reduction, recycling, composting, incineration, and, as a last resort, landfilling of only shredded tires in conventional landfills or in lined monofills, as required by several states. The high energy content of scrap tires, 13,000-16,000 Btu/lb, has resulted in the use of processed tires as tire-derived fuel (TDF). Previous TDF applications include cement kilns, fluidized bed combustion, stoker, and cyclone-fired boilers. Up to now, no data have been reported for cofiring TDF with coal in pulverized coal boilers. This report presents the results of a Phase I feasibility test program conducted in a 65-MW Babcock and Wilcox pulverized coal steam generator at the City of Ames, Iowa, Municipal Power Plant. This unit currently cofires western coal with refuse-derived fuel (RDF) and utilizes a bottom dump grate to ensure the complete combustion of RDF in the furnace.

  19. Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers

    DOEpatents

    Tuttle, Kenneth L.

    1980-01-01

    A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

  20. Chlorine in solid fuels fired in pulverized fuel boilers sources, forms, reactions, and consequences: a literature review

    SciTech Connect

    David A. Tillman; Dao Duong; Bruce Miller

    2009-07-15

    Chlorine is a significant source of corrosion and deposition, both from coal and from biomass, and in PF boilers. This investigation was designed to highlight the potential for corrosion risks associated with once-through units and advanced cycles. The research took the form of a detailed literature investigation to evaluate chlorine in solid fuels: coals of various ranks and origins, biomass fuels of a variety of types, petroleum cokes, and blends of the above. The investigation focused upon an extensive literature review of documents dating back to 1991. The focus is strictly corrosion and deposition. To address the deposition and corrosion issues, this review evaluates the following considerations: concentrations of chlorine in available solid fuels including various coals and biomass fuels, forms of chlorine in those fuels, and reactions - including reactivities - of chlorine in such fuels. The assessment includes consideration of alkali metals and alkali earth elements as they react with, and to, the chlorine and other elements (e.g., sulfur) in the fuel and in the gaseous products of combustion. The assessment also includes other factors of combustion: for example, combustion conditions including excess O{sub 2} and combustion temperatures. It also considers analyses conducted at all levels: theoretical calculations, bench scale laboratory data and experiments, pilot plant experiments, and full scale plant experience. Case studies and plant surveys form a significant consideration in this review. The result of this investigation focuses upon the concentrations of chlorine acceptable in coals burned exclusively, in coals burned with biomass, and in biomass cofired with coal. Values are posited based upon type of fuel and combustion technology. Values are also posited based upon both first principles and field experience. 86 refs., 8 figs., 7 tabs.

  1. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true What are the standards for liquid fuel boilers that burn hazardous waste? 63.1217 Section 63.1217 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  2. 40 CFR 63.1216 - What are the standards for solid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and Hydrochloric Acid Production Furnaces § 63.1216 What are the standards for solid fuel boilers that... standards in lieu of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants....

  3. 40 CFR 63.1216 - What are the standards for solid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true What are the standards for solid fuel boilers that burn hazardous waste? 63.1216 Section 63.1216 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  4. 40 CFR 63.1216 - What are the standards for solid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and Hydrochloric Acid Production Furnaces § 63.1216 What are the standards for solid fuel boilers that... standards in lieu of the standards under 40 CFR 266.105, 266.106, and 266.107 to control those pollutants....

  5. Drying Milk With Boiler Exhaust

    NASA Technical Reports Server (NTRS)

    Broussard, M. R.

    1984-01-01

    Considerable energy saved in powdered-milk industry. Only special requirement boiler fired with natural gas or other clean fuel. Boiler flue gas fed to spray drier where it directly contacts product to be dried. Additional heat supplied by auxillary combustor when boiler output is low. Approach adaptable to existing plants with minimal investment because most already equipped with natural-gas-fired boilers.

  6. Co-Combustion of Refuse Derived Fuel with Anthracites in a CFB Boiler

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Won; Lee, Jong-Min; Kim, Jae-Sung

    Combustion of Refuse derived fuel (RDF) is considered as a priority solution to energy recovery from municipal solid waste (MSW). The co-combustion characteristics of anthracite coals with RDF were determined in the commercial scale Tonghae CFB Power Plant. As the feeding ratio of the RDF to the anthracites increased to 5%, temperature and pressure were not changed in comparison with firing only anthracites. The amount of the required air was reduced due to high O2 content in RDF relative to the anthracites. The emissions of NOx, SOx, HCl and Dioxin were also measured. According to higher mixing ratio of the RDF to the anthracites, SOx, NOx emissions slightly decreased and HCl emissions increased, because RDF has relatively smaller S, N and higher CI than the anthracites. Heavy metals of the fly ash and bottom ash and the dioxin emissions were far below Korean maximum permissible concentration level at incinerator. The results showed that it is of great use and technically possible to co-combustion of RDF with the anthracites by 5% in the form of fuel recovery and energy production in commercial scale CFB boiler.

  7. Thermal Mode of Tanks for Storage Fuel of Thermal Power Plants and Boiler with the Influence of Engineering Facilities in the Area of their Placement

    NASA Astrophysics Data System (ADS)

    Polovnikov, V. Yu.; Makhsutbek, F. T.; Ozhikenova, Zh. F.

    2016-02-01

    This paper describes the numerical modeling of heat transfer in the area placing of the tank for storage fuel of thermal power plant and boiler with the influence of engineering construction. We have established that the presence of engineering structures in the area of placing of the tank for storage fuel of thermal power plant and boiler have little effect on the change of heat loss.

  8. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers

    SciTech Connect

    Hai Zhang; Guangxi Yue; Junfu Lu; Zhen Jia; Jiangxiong Mao; Toshiro Fujimori; Toshiyuki Suko; Takashi Kiga

    2007-07-01

    High temperature air combustion (HTAC) is a promising technology for energy saving, flame stability enhancement and NOx emission reduction. In a conventional HTAC system, the combustion air is highly preheated by using the recuperative or regenerative heat exchangers. However, such a preheating process is difficult to implement for pulverized fossil fuel fired boilers. In this paper, an alternative approach is proposed. In the proposed HTAC system, a special burner, named PRP burner is introduced to fulfill the preheating process. The PRP burner has a preheating chamber with one end connected with the primary air and the other end opened to the furnace. Inside the chamber, gas recirculation is effectively established such that hot flue gases in the furnace can be introduced. Combustible mixture instead of combustion air is highly preheated by the PRP burner. A series of experiments have been conducted in an industrial scale test facility, burning low volatile petroleum coke and an anthracite coal. Stable combustion was established for burning pure petroleum coke and anthracite coal, respectively. Inside the preheating chamber, the combustible mixture was rapidly heated up to a high temperature level close to that of the hot secondary air used in the conventional HTAC system. The rapid heating of the combustible mixture in the chamber facilitates pyrolysis, volatile matter release processes for the fuel particles, suppressing ignition delay and enhancing combustion stability. Moreover, compared with the results measured in the same facility but with a conventional low NOx burner, NOx concentration at the furnace exit was at the same level when petroleum coke was burnt and 50% less when anthracite was burnt. Practicability of the HTAC technology using the proposed approach was confirmed for efficiently and cleanly burning fossil fuels. 16 refs., 10 figs., 1 tab.

  9. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOEpatents

    Roberts, George W.; Tao, John C.

    1985-01-01

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  10. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, August 15, 1994--February 15, 1995

    SciTech Connect

    Miller, B.G.

    1995-05-12

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. Penn State and DOE have entered into a cooperative agreement to determine if CWSFs prepared from cleaned coal (containing approximately 3.5 wt.% ash and 0.9 wt.% sulfur) can be burned effectively in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will also provide information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and stagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first three phases (i.e., the first demonstration) have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. Consequently, the first demonstration has been concluded at 500 hours.

  11. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect

    Not Available

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  12. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semi-annual technical progress report, February 15--September 15, 1995

    SciTech Connect

    Miller, B.G.; Scaroni, A.W.

    1997-06-02

    A coal-water slurry fuel (CWSF) program is being undertaken to determine if CWSFs prepared from cleaned coal (containing approximately 3.5 wt.% ash and 0.9 wt.% sulfur) can be burned effectively in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. Information will also be generated to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated In a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (target is 98%) was achieved; however, natural gas cofiring was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second demonstration (Phase 4) will be conducted after a proven CWSF-designed burner is installed on the boiler. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production.

  13. Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler.

    PubMed

    Chmielewski, Andrzej G; Ostapczuk, Anna; Licki, Janusz

    2010-08-01

    The electron beam treatment technology for purification of exhaust gases from the burning of heavy fuel oil (HFO) mazout with sulfur content approximately 3 wt % was tested at the Institute of Nuclear Chemistry and Technology laboratory plant. The parametric study was conducted to determine the sulfur dioxide (SO2), oxides of nitrogen (NO(x)), and polycyclic aromatic hydrocarbon (PAH) removal efficiency as a function of temperature and humidity of irradiated gases, absorbed irradiation dose, and ammonia stoichiometry process parameters. In the test performed under optimal conditions with an irradiation dose of 12.4 kGy, simultaneous removal efficiencies of approximately 98% for SO2, and 80% for NO(x) were recorded. The simultaneous decrease of PAH and one-ringed aromatic hydrocarbon (benzene, toluene, and xylenes [BTX]) concentrations was observed in the irradiated flue gas. Overall removal efficiencies of approximately 42% for PAHs and 86% for BTXs were achieved with an irradiation dose 5.3 kGy. The decomposition ratio of these compounds increased with an increase of absorbed dose. The decrease of PAH and BTX concentrations was followed by the increase of oxygen-containing aromatic hydrocarbon concentrations. The PAH and BTX decomposition process was initialized through the reaction with hydroxyl radicals that formed in the electron beam irradiated flue gas. Their decomposition process is based on similar principles as the primary reaction concerning SO2 and NO(x) removal; that is, free radicals attack organic compound chains or rings, causing volatile organic compound decomposition. Thus, the electron beam flue gas treatment (EBFGT) technology ensures simultaneous removal of acid (SO2 and NO(x)) and organic (PAH and BTX) pollutants from flue gas emitted from burning of HFO. This technology is a multipollutant emission control technology that can be applied for treatment of flue gas emitted from coal-, lignite-, and HFO-fired boilers. Other thermal processes such

  14. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, August 15, 1993--February 15, 1994

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Poe, R.L.; Scaroni, A.W.

    1994-11-30

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first demonstrations been completed and the combustion performance of the burner that was provided with the boiler has been determined to be unacceptable. Consequently, the first demonstration has been concluded at 500 hours. The second demonstration will be conducted after a proven CWSF-designed burner is installed on the boiler. During this reporting period, the construction of the fuel preparation facility that will contain the CWSF circuit (as well as a dry, micronized coal circuit) was completed. Proposals from potential suppliers of the flue gas treatment systems were reviewed by Penn State and DOE.

  15. BOILER PERF MODEL

    SciTech Connect

    Winslow, J.C. )

    1988-01-01

    The BOILER PERFORMANCE MODEL is a package of eleven programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

  16. Production of dioxins and furans for various solid fuels burnt in 25 kW automatic boiler

    NASA Astrophysics Data System (ADS)

    Hopan, František; Horák, Jiří; Krpec, Kamil; Kubesa, Petr; Dej, Milan; Laciok, Vendula

    2016-06-01

    There has been brown coal, black coal and maize straw in a pellet form burnt in an automatic boiler. Production of dibenzodioxins and dibenzofuranes, recomputated through toxicity equivalents, expressed as the emission factor relative to the fuel unit, has differentiated in a range of ca. three orders (0.05 up to 78.9 ng/kg) in dependence on a sort of the used fuel. The measured values have been compared with emission factors used for the emission inventory in the Czech Republic and Poland and with the emission limit applicable for waste incineration plants. The study has proven the influence of chlorine content in fuel on production of dioxins and furanes.

  17. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15, 1994--August 15, 1994

    SciTech Connect

    Miller, B.G.; Scaroni, A.W.

    1994-11-30

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new system specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. During this reporting period, the construction of the CWSF preparation circuit (as well as a dry, micronized coal circuit) continued. The CWSF preparation circuit will be completed by November 1,1994. Additional activities included receiving a coal-designed burner and installing it on the demonstration boiler, and working with DOE in selecting pollution control systems to install on the boiler.

  18. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15, 1993--August 15, 1993

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Poe, R.L.; Scaroni, A.W.

    1993-09-24

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. Penn State and DOE have entered into a cooperative agreement with the purpose of determining if CWSF prepared from a cleaned coal (containing approximately 3.5 wt % ash and 0.9 wt % sulfur) can be effectively burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will also generate information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The approach being used in the program is as follows: 1. Install a natural gas/fuel oil-designed package boiler and generate baseline data firing natural gas; 2. Shake down the system with CWSF and begin the first 1,000 hours of testing using the burner/atomizer system provided with the boiler. The first 1,000-hour demonstration was to consist of boiler operation testing and combustion performance evaluation using CWSF preheat, a range of atomizing air pressures (up to 200 psig as compared to the 100 psig boiler manufacturer design pressure), and steam as the atomizing medium; 3. If the combustion performance was not acceptable based on the combustion efficiency obtained and the level of gas support necessary to maintain flame stabilization, then low-cost modifications were to be implemented, such as installing a quarl and testing alternative atomizers; 4. If acceptable combustion performance was not obtained with the low-cost modifications, then the first demonstration was to be terminated and the burner system replaced with one of proven CWSF design.

  19. Composite coatings for elevated temperature erosion-corrosion protection in fossil-fueled boilers

    SciTech Connect

    Verstak, A.; Wang, B.; Baranovski, V.; Beliaev, A.

    1998-12-31

    Fluidized bed combustors components suffer severe erosion, frequently accomplished by corrosive gases attack at elevated temperatures. The tubes damage rate depends on the boiler design bed constituents and combustion parameters, however an accelerated metal wastage is usually found in the same specific areas of different boilers. New HVOF sprayed coatings are developed for the tube erosion-corrosion protection, based on Cr{sub 2}C{sub 2}/Ni-Cr, Cr-Ti-C/Ni-Cr-Mo, and Al{sub 2}O{sub 3}/NiAl composite materials. The combustion arc Fe-Cr-C coatings were found as an economical solution for relatively low erosion rate zones. The coatings properties and behavior under simulated elevated temperature erosion conditions and in the operating boilers are discussed.

  20. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    SciTech Connect

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

  1. Utilisation of short rotation forestry for on-site boiler fuel

    SciTech Connect

    Sims, R.E.H.; Lowe, H.T.

    1995-11-01

    A New Zealand meat processing company has planted 100 ha of land adjacent to its plant in short rotation coppice eucalyptus trees for land treatment of the effluent stream (5000+ m{sup 3}/day). To be effective this necessitates removal of the accumulate biomass from the site at regular intervals (every 3-4 years). Using the biomass for fuelwood on site could offset the cost of effluent treatment if it could substitute for the existing energy supplies bought into the plant. A wide range of harvesting, drying, processing, storage and conversion options were identified with the objective of using the biomass produced on site to partly displace the coal currently fuelling a 4.2 MW boiler to provide process steam. A computer model was developed to identify the optimum biomass utilisation system from the variety of combinations of options possible including use of contractors. The objective was to match the work capacity of the various equipment components and to minimise the investment payback period for the company. Boiler options to convert or replace the current boiler or to purchase an additional wood-fired boiler were also included. The model was based around the specific requirements of this particular meat plant but it could be adapted to suit other similar short rotation forestry, biomass utilisation schemes.

  2. Preparation of industrial solid waste into boiler fuel with a single horizontal shredder

    SciTech Connect

    Matthews, W.R.

    1982-01-01

    The paper describes a horizontal shredder, complete with an infeed and outfeed system that was placed in service at the Kodak Park solid waste disposal facility in Rochester, New York. This shredder has become the primary shredder for preparing solid waste for incineration in a suspension-fired boiler. Before discussing the details of this shredder installation, a brief review of the operating problems and modifications which have evolved from this experience are presented.

  3. {open_quotes}The next generations of Tampella Power`s CFB boilers{close_quotes}

    SciTech Connect

    Alliston, M.G.

    1995-12-31

    The next generation of Tampella Power Corporation`s CFB boilers is discussed in outline form. The following topics are outlined: CFB boiler advantages, CFB boiler fuel flexibility and CYMIC boiler construction.

  4. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions

    SciTech Connect

    Hyukjin Oh; Kalyan Annamalai; John M. Sweeten

    2008-04-15

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass, FB) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash 'fouling' were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. 16 refs., 12 figs., 6 tabs.

  5. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    PubMed

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. PMID:18422038

  6. Guidelines for cofiring refuse-derived fuel in electric utility boilers: Volume 1, Executive summary: Final report

    SciTech Connect

    Fiscus, D.E.; Wolfs, K.E.; Ege, H.D.; Kimber, A.; Joensen, A.W.; Savage, G.M.

    1988-06-01

    The quidelines address the procedures for evaluting proposed RDF (refuse-derived fuel) cofiring projects, RDF specifications and preparation, impact of RDF cofiring on power plant performance and operation, design criteria for RDF handling and other equipment, environmental control systems, capital and O and M cost estimates, economic analysis, and the breakeven RDF value to the utility. The economic analysis examples suggest that the value of RDF to the utility is only a fraction of the value of the fuel being replaced. This is because the incremental fuel savings derived from RDF cofiring are at least partially offset by the incremental capital and O and M costs. In order to maximize RDF value, it is important to select units for RDF cofiring that have at least 15 years of remaining life, operate at high capacity factor, are of sufficient size to consume the available RDF stream, and do not exihibit boiler slagging and fouling, electricstatic precipitator, or unit derating problems while burning coal or oil. 1 ref., 18 figs., 4 tabs.

  7. Performance of high-velocity oxy-fuel-sprayed chromium carbide-nickel chromium coating in an actual boiler environment of a thermal power plant

    SciTech Connect

    Sidhu, T.S.; Prakash, S.; Agrawal, R.D.

    2007-09-15

    The present study aims to evaluate the performance of a high-velocity oxy-fuel (HVOF)-sprayed Cr{sub 3}C{sub 2}-NiCr (chromium carbide-nickel chromium) coating on a nickel-based super-alloy in an actual industrial environment of a coal-fired boiler, with the objective to protect the boiler super-heater and reheater tubes from hot corrosion. The tests were performed in the platen super heater zone of a coal-fired boiler for 1,000 h at 900 degrees C under cyclic conditions. The Cr{sub 3}C{sub 2}-NiCr coating imparted the necessary protection to the nickel-based super alloy in the given environment. The dense and flat splat structure of the coating, and the formation of oxides of chromium and nickel and their spinels, might have protected the substrate super alloy from the inward permeation of corrosive species.

  8. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  9. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge.

    PubMed

    Åmand, Lars-Erik; Kassman, Håkan

    2013-08-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (<700 °C), incineration of electronic waste and plastic waste containing chlorine are all factors influencing the formation of PCDD/Fs in boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW(th) circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS as additional fuel. PMID:23684693

  10. Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030

    SciTech Connect

    L. M. Dittmer

    2006-08-10

    The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  11. Exposure to fuel-oil ash and welding emissions during the overhaul of an oil-fired boiler.

    PubMed

    Liu, Youcheng; Woodin, Mark A; Smith, Thomas J; Herrick, Robert F; Williams, Paige L; Hauser, Russ; Christiani, David C

    2005-09-01

    The health effects of exposure to vanadium in fuel-oil ash are not well described at levels ranging from 10 to 500 microg/m(3). As part of a larger occupational epidemiologic study that assessed these effects during the overhaul of a large oil-fired boiler, this study was designed to quantify boilermakers' exposures to fuel-oil ash particles, metals, and welding gases, and to identify determinants of these exposures. Personal exposure measurements were conducted on 18 boilermakers and 11 utility workers (referents) before and during a 3-week overhaul. Ash particles < 10 microm in diameter (PM(10), mg/m(3)) were sampled over full work shifts using a one-stage personal size selective sampler containing a polytetrafluoroethylene filter. Filters were digested using the Parr bomb method and analyzed for the metals vanadium (V), nickel (Ni), iron (Fe), chromium (Cr), cadmium (Cd), lead (Pb), manganese (Mn), and arsenic (As) by inductively coupled plasma mass spectrometry. Nitrogen dioxide (NO(2)) was measured with an Ogawa passive badge-type sampler and ozone (O(3)) with a personal active pump sampler.Time-weighted average (TWA) exposures were significantly higher (p < 0.05) for boilermakers than for utility workers for PM(10) (geometric mean: 0.47 vs. 0.13 mg/m(3)), V (8.9 vs. 1.4 microg/m(3)), Ni (7.4 vs. 1.8 microg/m(3)) and Fe (56.2 vs. 11.2 microg/m(3)). Exposures were affected by overhaul time periods, tasks, and work locations. No significant increases were found for O(3) or NO(2) for boilermakers or utility workers regardless of overhaul period or task group. Fuel-oil ash was a major contributor to boilermakers' exposure to PM(10) and metals. Vanadium concentrations sometimes exceeded the 2003 American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value. PMID:16048845

  12. Retrofitting the operating coal-fired TP-87 and BKZ-320 boilers for vortex fuel combustion technology

    NASA Astrophysics Data System (ADS)

    Salomatov, V. V.

    2013-06-01

    Scientific and technical problems concerned with retrofitting the TP-87 boiler installed at the Novokemerovo cogeneration station and operating on Grade 2SS Kuznetsk coal and the BKZ-320 boiler installed at the Novosibirsk TETs-3 cogeneration station and operating on Berezovo coal from the Kansk-Achinsk coal field for vortex combustion technology are addressed. A conclusion is drawn that low-cost retrofitting of obsolete boilers at thermal power stations with retaining the existing boiler unit infrastructure is presently the most reasonable strategy of their further use.

  13. Development of a Novel Oxygen Supply Process and its Integration with an Oxy-Fuel Coal-Fired Boiler

    SciTech Connect

    2006-12-31

    BOC, the world's second largest industrial gas company, has developed a novel high temperature sorption based technology referred to as CAR (Cyclic Autothermal Recovery) for oxygen production and supply to oxy-fuel boilers with flue gas recycle. This technology is based on sorption and storage of oxygen in a fixed bed containing mixed ionic and electronic conductor materials. The objective of the proposed work was to construct a CAR PDU that was capable of producing 10-scfm of oxygen, using steam or recycled flue gas as the sweep gas, and install it in the Combustion Test Facility. The unit was designed and fabricated at BOC/The Linde Group, Murray Hill, New Jersey. The unit was then shipped to WRI where the site had been prepared for the unit by installation of air, carbon dioxide, natural gas, nitrogen, computer, electrical and infrastructure systems. Initial experiments with the PDU consisted of flowing air into both sides of the absorption systems and using the air heaters to ramp up the bed temperatures. The two beds were tested individually to operational temperatures up to 900 C in air. The cycling process was tested where gases are flowed alternatively from the top then bottom of the beds. The PDU unit behaved properly with respect to flow, pressure and heat during tests. The PDU was advanced to the point where oxygen production testing could begin and integration to the combustion test facility could occur.

  14. 30 CFR 57.13030 - Boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... American Society of Mechanical Engineers to protect against hazards from overpressure, flameouts, fuel...) The ASME Boiler and Pressure Vessel Code, 1977, published by the American Society of Mechanical... VIIRecommended Rules for Care of Power Boilers (2) The National Board Inspection Code, a Manual for Boiler...

  15. Industrials fear new boiler-pollution regs

    SciTech Connect

    Betts, M.

    1982-07-12

    The Council of Industrial Boiler Owners (CIBO) claims that new Environmental Protection Agency (EPA) regulations requiring costly pollution-control equipment on coal- and waste-fueled boilers conflict with national fuel-substitution goals. EPA counters that capital and annual costs will each increase only 2%, but CIBO considers that a financial barrier during the current recession. Fuel choices determined on the basis of environmental regulations could delay conversion to more-efficient boilers and alternative fuels. CIBO concerns focus on the New Source performance Standards applying to emissions from new, modified, and reconstructed industrial boilers larger than 100 million Btus per hour. (DCK)

  16. Technical and economic feasibility of briquetting mill sludge for boiler fuel

    SciTech Connect

    Sell, N.J.; McIntosh, T.H.

    1988-03-01

    The use of briquetted sludge for fuel is an alternative to the current practice of landfill disposal. Sludge is typically less than 1% sulfur and has a heating value of more than 6000 Btu/o.d lb. The resulting briquettes, when dried to at least 80% solids, have high compressive strength and abrasion resistance. A sludge briquetting system to handle 42 o.d. tons/day will reduce landfill by 47,000 tons/year and return a 5-year ROI of 35% on approximately $1 million of investment.

  17. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOEpatents

    Jones, Brian C.

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  18. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge

    SciTech Connect

    Åmand, Lars-Erik; Kassman, Håkan

    2013-08-15

    Highlights: • Two strategies to reduce PCDD/F formation when co-firing solid recovered fuel (SRF) and biomass. • They were co-combustion with municipal sewage sludge (MSS) and addition of ammonium sulphate. • PCDD/Fs were significantly reduced for a biomass rich in chlorine when adding ammonium sulphate. • MSS had a suppressing effect on PCDD/F formation during co-combustion with SRF. • A link is presented between gaseous alkali chlorides, chlorine in deposits and PCDD/F formation. - Abstract: Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (<700 °C), incineration of electronic waste and plastic waste containing chlorine are all factors influencing the formation of PCDD/Fs in boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW{sub th} circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS

  19. FY15 Status Report: CIRFT Testing of Spent Nuclear Fuel Rods from Boiler Water Reactor Limerick

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    2015-06-01

    The objective of this project is to perform a systematic study of used nuclear fuel (UNF, also known as spent nuclear fuel [SNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. The additional CIRFT was conducted on three HBR rods (R3, R4, and R5) in which two specimens failed and one specimen was tested to over 2.23 10⁷ cycles without failing. The data analysis on all the HBR UNF rods demonstrated that it is necessary to characterize the fatigue life of the UNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum of tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, ten SNF rod segments from BWR Limerick were tested using ORNL CIRFT, with one under static and nine dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at maximum curvature 4.0 m⁻¹. The specimen did not show any sign of failure in three repeated loading cycles to almost same maximum curvature. Ten cyclic tests were conducted with amplitude varying from 15.2 to 7.1 N·m. Failure was observed in nine of the tested rod specimens. The cycles to failure were

  20. Utilization of coal-water fuels in fire-tube boilers. Final report, October 1990--August 1994

    SciTech Connect

    Sommer, T.; Melick, T.; Morrison, D.

    1994-12-31

    The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to the boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.

  1. Optimising boiler performance.

    PubMed

    Mayoh, Paul

    2009-01-01

    Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings. PMID:19192603

  2. Bromine and Chlorine in Aerosols and Fly Ash when Co-Firing Solid Recovered Fuel, Spruce Bark and Paper Mill Sludge in a 80MWth BFB Boiler

    NASA Astrophysics Data System (ADS)

    Vainikka, P.; Silvennoinen, J.; Yrjas, P.; Frantsi, A.; Hietanen, L.; Hupa, M.; Taipale, R.

    Aerosol and fly ash sampling was carried out at a 80MWth bubbling fluidised bed (BFB) boiler plant co-firing solid recovered fuel (SRF), spruce bark and paper mill wastewater sludge in two experimental conditions. The SRF-Bark ratio in the fuel mix was kept constant at 50%-50% on dry mass basis in both experiments but two sludge proportions were used: 15% and 4% on dry mass basis. Aerosol samples were collected from the superheater region of the boiler furnace and fly ash from the electrostatic precipitator (ESP). Na, K, Cl and S were found to be in mainly water soluble compounds in the aerosols sampled by means of a Dekati type Low Pressure Impactor (DLPI). Bromine was found in several weight percentages in aerosols and it was amongst the main elements in some of the samples collected. Bromine is assumed to mainly originate from flame retarded plastics and textiles in the SRF. According to the measurements, the fate of Br seems to be analogous to the other main halogen, Cl, and its conversion from fuel to aerosols was high, indicating a strong tendency to form bromine salts.

  3. Development of a reburning boiler process model

    SciTech Connect

    Wu, K.T.

    1992-01-30

    The overall objective of this program is to integrate EER's expertise in boiler reburning performance evaluation into a package of analytical computer tools. Specific objectives of the program are to develop a computational capability with the following features: (1) can be used to predict the impact of gas reburning application on thermal conditions in the boiler radiant furnace, and on overall boiler performance; (2) can estimate gas reburning NO{sub x} reduction effectiveness based on specific reburning configurations and furnace/boiler configurations; (3) can be used as an analytical tool to evaluate the impact of boiler process parameters (e.g., fuel switching and changes in boiler operating conditions) on boiler thermal performance; (4) is adaptable to most boiler designs (tangential and wall fire boilers) and a variety of fuels (solid, liquid, gaseous and slurried fuels); (5) is sufficiently user friendly to be exercisable by engineers with a reasonable knowledge of boilers, and with reasonable computer skills. Here, user friendly'' means that the user will be guided by computer codes during the course of setting up individual input files for the boiler performance model.

  4. Small boiler uses waste coal

    SciTech Connect

    Virr, M.J.

    2009-07-15

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  5. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 1. LABORATORY SCALE TESTS

    EPA Science Inventory

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  6. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 2. PILOT SCALE TESTS

    EPA Science Inventory

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  7. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    SciTech Connect

    Saqib, Naeem Bäckström, Mattias

    2014-12-15

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine

  8. Steam conservation and boiler plant efficiency advancements

    SciTech Connect

    Fiorino, D.P.

    1999-07-01

    This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing complex. They were: (1) Reheating of dehumidified clean room makeup air with heat extracted during precooling; (2) Preheating of deionization feedwater with refrigerant heat of condensation; (3) Preheating of boiler combustion air with heat extracted from boiler flue gas; (4) Preheating of boiler feedwater with heat extracted from gas turbine exhaust; (5) Variable-speed operation of boiler feedwater pumps and forced-draft fans; and (6) Preheating of boiler makeup water with heat extracted from boiler surface blow-down. The first two advancements (steam conservation measures) saved about $1,010,000 per year by using recovered waste heat rather than steam-derived heat at selected heating loads. The last four advancements (boiler plant efficiency measures) reduced the cost of steam produced by about 13%, or $293,500 per year, by reducing use of natural gas and electricity at the steam boiler plant. These advancements should prove of interest to industrial energy users faced with replacement of aging, inefficient boiler plants, rising fuel and power prices, and increasing pressures to reduce operating costs in order to enhance competitiveness.

  9. 33. VIEW OF BASEMENT UNDER EAST BOILER ROOM LOOKING TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. VIEW OF BASEMENT UNDER EAST BOILER ROOM LOOKING TOWARD WEST BOILER ROOM BASEMENT THROUGH THE ASH TRANSFER TUNNEL. ASH HOPPER FOR BOILER 900 IS ON THE RIGHT. NOTE THE TRACKS ALONG THE FLOOR OF THE TUNNEL. A SMALL ELECTRIC LOCOMOTIVE HAULED CARS FOR TRANSFERRING ASH FROM BOILERS TO DISPOSAL SITES OUTSIDE THE BUILDING. THIS SYSTEM BECAME OBSOLETE IN 1938 WHEN BOILERS IN THE WEST BOILER ROOM WERE REMOVED AND PULVERIZED COAL WAS ADOPTED AS THE FUEL. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  10. 16 CFR Appendix G7 to Part 305 - Boilers (Oil)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Boilers (Oil) G7 Appendix G7 to Part 305... RULEâ) Appendix G7 to Part 305—Boilers (Oil) Type Range of annual fuel utilization efficiencies (AFUEs) Low High Oil Boilers Manufactured Before the Compliance Date of DOE Regional Standards for...

  11. 16 CFR Appendix G8 to Part 305 - Boilers (Electric)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Boilers (Electric) G8 Appendix G8 to Part... LABELING RULEâ) Appendix G8 to Part 305—Boilers (Electric) Type Range of annual fuel utilization efficiencies (AFUEs) Low High Electric Boilers 100 100...

  12. 26. VIEW OF SOUTHERN PORTION OF EAST BOILER ROOM LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW OF SOUTHERN PORTION OF EAST BOILER ROOM LOOKING EAST AT BOILER 904. BOILER 904 WAS MANUFACTURED BY RILEY STOKER AND INSTALLED IN 1944. ORIGINALLY FUELED BY PULVERIZED COAL, IT WAS CONVERTED TO GAS/OIL OPERATION IN 1978 AND OPERATED UNTIL THE PLANT CLOSED. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  13. 16 CFR Appendix G6 to Part 305 - Boilers (Gas)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Boilers (Gas) G6 Appendix G6 to Part 305... RULEâ) Appendix G6 to Part 305—Boilers (Gas) Type Range of annual fuel utilization efficiencies (AFUEs) Low High Gas (Except Steam) Boilers Manufactured Before the Compliance Date of DOE Regional...

  14. Intelligent Control System of Stack-boiler

    NASA Astrophysics Data System (ADS)

    Jing, Li; Jingxia, Niu; Jianhua, Lang; Shaofeng, Li; Zhi, Li

    Boiler combustion control system's basic task is to make fuel burn calories adapt to the needs of the water temperature and ensure the economical combustion and the safe operation. In the foundations which have analyzed the stack-boiler's work process and control system structure, the system designed by using the self-learning and self-optimizing fuzzy control system of the PC to make air/coal ratio achieve the best and realize the optimized combustion; through PLC to accelerate the speed of response to the boiler, and speed up the PC to optimize the speed and realize the double loop control system for stack-boiler. The control system in premise of the stack-boiler reaches the goal of the load to achieve the highest efficiency of the boiler combustion.

  15. PAH emission from the industrial boilers.

    PubMed

    Li, C; Mi, H; Lee, W; You, W; Wang, Y

    1999-10-01

    Polycyclic aromatic hydrocarbons (PAHs) emitted from 25 industrial boilers were investigated. The fuels used for these 25 boilers included 21 heavy oil, two diesel, a co-combustion of heavy oil and natural gas (HO+NG) and a co-combustion of coke oven gas and blast furnace gas (COG+BFG) boilers. PAH samples from the stack flue gas (gas and particle phases) of these 25 boilers were collected by using a PAH stack sampling system. Twenty one individual PAHs were analyzed primarily by a gas chromatography/mass spectrometer (GC/MS). Total-PAH concentration in the flue gas of 83 measured data for these 25 boiler stacks ranged between 29.0 and 4250 microg/m(3) and averaged 488 microg/m(3). The average of PAH-homologue mass (F%) counted for the total-PAH mass was 54.7%, 9.47% and 15.3% for the 2-ring, 3-ring and 4-ring PAHs, respectively. The PAHs in the stack flue gas were dominant in the lower molecular weight PAHs. The emission factors (EFs) of total-PAHs were 13,300, 2920, 2880 and 208 microg/kg-fuel for the heavy oil, diesel, HO+NG and COG+BFG fueled-boiler, respectively. Nap was the most predominant PAH occurring in the stack flue gas. In addition, the EF of 21 individual PAHs in heavy-oil boiler were almost the highest among the four various fueled-boilers except for those of FL and BkF in the diesel boiler. Furthermore, the EF of total-PAHs or BaP for heavy oil were both one order of magnitude higher than that for the diesel-fueled boiler. PMID:10502602

  16. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. PMID:25263218

  17. MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING

    EPA Science Inventory

    The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...

  18. Design and experience with large-size CFB boilers

    SciTech Connect

    Darling, S.L.

    1994-12-31

    CFB boilers have been in operation for many years in industrial steam and power generation applications demonstrating the low SO{sub x}/NO{sub x} emissions and fuel flexibility of the technology. In the past few years, several large-size CFB boilers (over 100 MWe) have entered service and are operating successfully. On the basis of this experience, CFB boilers up to 400 MWe in size are now being offered with full commercial guarantees. Such large CFB boilers will be of interest to countries with strict emission regulations or the need to reduce emissions, and to countries with both a large need for additional power and low grade indigenous solid fuel. This paper will describe Ahlstrom Pyropower`s scale-up of the AHLSTROM PYROFLOW CFB boiler, experience with large-size CFB boilers and the design features of CFB boilers in the 400 MWe size range.

  19. Design considerations of B&W internal circulation CFB boilers

    SciTech Connect

    Kavidass, S.; Belin, F.; James, D.E.

    1995-12-31

    Worldwide, the use of Circulating Fluidized-Bed (CFB) boiler technology is rapidly increasing due to the ability to burn low grade fuels while meeting the required NO{sub x}, SO{sub 2}, CO, VOC, and particulate emissions requirements. The CFB boiler can produce steam economically for process and electric power generation. This paper discusses various aspects of Babcock & Wilcox (B&W) internal recirculation circulating fluidized-bed (IR-CFB) boiler design including fuel, boiler process parameters, and emissions. The B&W CFB boiler is unique in design. It utilizes proven impact-type particle separators (U-beams) with in-furnace solids recirculation recirculation. The paper describes the methodology for setting up process parameters, heat duty, boiler design, including auxiliary equipment selection and advantages. The paper also updates the ongoing IR-CFB boiler contracts.

  20. REBURN TECHNOLOGY FOR BOILER NOX CONTROL

    EPA Science Inventory

    The paper reports the progress principally of design-relate phases of a demonstration of reburning on a large cyclone-fired boiler, for which coal is the primary fuel and natural gas, the reburn fuel. Reburn system design criteria are presented, as well as the methodology and res...

  1. FORMATION AND CHARACTERIZATION OF SOOT DEPOSITS FROM NON-OPTIMUM COMBUSTION OF NO. 6 FUEL OIL WITH CHLORINATED ORGANIC COMPOUNDS IN AN INDUSTRIAL BOILER

    EPA Science Inventory

    During a full-scale hazardous waste combustion study performed for EPA, sampling and analysis was conducted on both stack gases and solid "soot" collected from a boiler's interior surfaces. wo organochlorine compounds, monochlorobenzene (MCB) and trichloroethylene (TCE), were cof...

  2. Burning wastes in steam boiler

    SciTech Connect

    Feeley, F.G.

    1984-01-01

    A review of the advantages and precautions in the burning of a wide variety of industrial wastes is presented. The reasons for burning industrial wastes are economics and pollution control. The incineration of the following industrial wastes is discussed: pulp cooking liquors, wood wastes, coffee grounds and other biomass, pitch and tars, gases, and miscellaneous solid fuels. Boiler cycles and types are also discussed. (RCK)

  3. Design considerations of B&W internal circulation CFB boilers

    SciTech Connect

    Kavidass, S.; Alexander, K.C.

    1995-12-31

    Worldwide, the use of Circulating Fluidized-Bed (CFB) boiler technology is rapidly increasing due to the ability to burn low grade fuels while meeting the required NO{sub x}, SO{sub 2}, CO, VOC, and particulate emissions requirements. The CFB boiler can produce steam economically for process and electric power generation. This paper discusses various aspects of Babcock & Wilcox (B&W) internal recirculation circulating fluidized-bed (IR-CFB) boiler design including fuel, boiler process parameters, and emissions. The B&W CFB boiler is unique in design. It utilizes proven impact-type particle separators (U-beams) with in-furnace solids recirculation. The paper describes the methodology for setting up process parameters, heat duty, boiler design, including auxiliary equipment selection and advantages.

  4. Proposed draft document for GSA office waste removal and procurement of densified refuse derived fuel for use as a supplemental fuel in GAS operated boilers

    NASA Astrophysics Data System (ADS)

    Campbell, J. A.

    1981-09-01

    A contract specifying waste collection and disposal from buildings managed by Government Services Administration (GSA) in the Washington, D. C. area and the production and delivery of pelletized fuel for burning with coal in one or two GSA steam generating plants is given.

  5. BPM2.0. Fossil-Fired Boilers

    SciTech Connect

    Winslow, J.C.

    1988-01-01

    BOILER PERFORMANCE MODEL (BPM2.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

  6. BPM3.0. Fossil-Fired Boilers

    SciTech Connect

    Winslow, J.C.

    1992-03-01

    The BOILER PERFORMANCE MODEL (BPM3.0) is a set of programs for predicting the heat transfer performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, provide boiler performance estimates for coal, oil or gaseous fuels, determine the influence of slagging and fouling characteristics on boiler performance, and calculate performance factors for tradeoff analyses comparing boilers and fuels. Given a set of target operating conditions, the programs can estimate control settings, gas and steam operating profiles through the boiler, overall boiler efficiency, and fuel consumption. The programs are broken into three categories: data, calculation, and reports with a central processor program acting as the link allowing the user to access any of the data or calculation programs and easily move between programs. The calculations are divided among the following five programs: heat duty calculation, combustion calculation, furnace performance calculation, convection pass performance calculation, and air heater performance calculation. The programs can model subcritical or supercritical boilers, most configurations of convective passes including boilers that achieve final reheat steam temperature control by split back pass, boilers with as many as two reheat circuits and/or multiple attemperator stations in series, and boilers with or without economizers and/or air heaters. Either regenerative or tubular air heaters are supported. For wall-fired or tangentially-fired furnaces, the furnace performance program predicts the temperature of the flue gases leaving the furnace. It accounts for variations in excess air, gas recirculation, burner tilt, wall temperature, and wall cleanliness. For boilers having radiant panels or platens above the furnace, the convective pass program uses the results of the combustion chamber calculation to estimate the gas temperature entering the convective pass.

  7. 27. VIEW OF SOUTHERN PORTION OF EAST BOILER ROOM LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW OF SOUTHERN PORTION OF EAST BOILER ROOM LOOKING EAST AT UPPER PORTION BOILER 904. BOILER 904 WAS MANUFACTURED BY RILEY STOKER AND INSTALLED IN 1944. ORIGINALLY FUELED BY PULVERIZED COAL, IT WAS CONVERTED TO GAS/OIL OPERATION IN 1978 AND OPERATED UNTIL THE PLANT CLOSED. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  8. Reduction of noxious substance emissions at the pulverized fuel combustion in the combustor of the BKZ-160 boiler of the Almaty heat electropower station using the "Overfire Air" technology

    NASA Astrophysics Data System (ADS)

    Askarova, A. S.; Messerle, V. E.; Ustimenko, A. B.; Bolegenova, S. A.; Bolegenova, S. A.; Maximov, V. Yu.; Yergalieva, A. B.

    2016-01-01

    The computational experiments using the "Overfire Air" (OFA) technology at the coal dust torch combustion in the combustor of the BKZ-160 boiler of the heat power plant No. 2 in Almaty have been conducted. The results show a possibility of reaching a reduction of the emission of noxious nitrogen oxides NO x and minimizing the energy losses. The results of numerical experiments on the influence of the additional air supply on the main characteristics of heat and mass transfer are presented. A comparison with the base regime of the solid fuel combustion when there is no supply of the additional air (OFA = 0 %) has been made.

  9. Conversion of a recovery boiler to bark burning

    SciTech Connect

    Barsin, J.A.; Pottera, J.; Stewart, G.

    1988-03-01

    Georgia-Pacific (GP) operates a large integrated pulp and paper mill in Crossett, Ark., which produces in excess of 1400 dry tons/day of various grades of bleached kraft paper. Steam generation in the mill is approximately 1.2 million lb/h, which is supplied by a 1500-ton recovery boiler, a 400,000-lb/h wood-waste boiler, and two power boilers. Because GP wanted to minimize its use of natural gas as a boiler fuel and because it had a retired recovery boiler which could be converted, the decision was made to proceed with this fuel conversion product as a means of reducing energy costs per ton of product. This paper also discusses the biomass fuel handling system.

  10. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    EPA Science Inventory

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  11. NOX EMISSION FACTORS FOR WOOD-FIRED BOILERS

    EPA Science Inventory

    The report gives results of a review of NOx emission data from 14 wood-fired boilers. Types of wood used as fuel included sawdust, chips, shavings, edgings, bark, and other processing residues. Boilers tested ranged in size from 1.5 to 67 MW (4,500 to 200,000 lb steam/hr). The ma...

  12. 11. VIEW OF GAS FIRED BOILERS. Erie City Iron Works, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF GAS FIRED BOILERS. Erie City Iron Works, Model AA60, SN No. 685, size 16, Fuel No. 2 oil or gas, max input 13400. - Juniata Shops, Power Plant & Boiler House, East of Fourth Avenue at Second Street, Altoona, Blair County, PA

  13. DESIGN REPORT LOW-NOX BURNERS FOR PACKAGE BOILERS

    EPA Science Inventory

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  14. Heating boilers in Krakow, Poland: Options for improving efficiency and reducing emissions

    SciTech Connect

    Cyklis, P.; Wlodkowski, A.; Butcher, T.; Kowalski, J.; Zaczkowski, A.; Kroll, J.; Boron, J.

    1995-08-01

    In Krakow, Poland, coal-fired boilers are used to heat single apartment buildings and local heating districts. Tile population includes 2,930 small, hand-fired boilers and 227 larger traveling grate stoker-fired boilers. These boilers are important contributors to air quality problems in Krakow, and an assessment of their efficiency and emissions characteristics was recently undertaken. For the larger, stoker-fired boilers, efficiency was measured using a stack-loss method In addition to the normal baseline fuel, the effects of coal cleaning and grading were evaluated Testing was done at two selected sites. Boiler efficiencies were found to be low-50% to 67%. These boilers operate without combustion controls or instrumentation for flue gas analysis. As a result, excess air levels are very high (up to 400%) leading to poor performance. Emissions were found to be typical for boilers of this type. Using the improved fuels yields reductions in emissions and improvement in efficiency when combined with proper adjustments. In the case of the hand-fired boilers, one set of cast-iron boilers and one set of steel boilers were tested. Efficiency in this case was measured using an input-output method for sets of three boilers taken together as a system. Emissions from these boilers are lowest when low volatile fuels, such as coke or smokeless briquettes, are used.

  15. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    SciTech Connect

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  16. Design of a large-scale CFB boiler

    SciTech Connect

    Darling, S.; Li, S.

    1997-12-31

    Many CFB boilers sized 100--150 MWe are in operation, and several others sized 150--250 MWe are in operation or under construction. The next step for CFB technology is the 300--400 MWe size range. This paper will describe Foster Wheeler`s large-scale CFB boiler experience and the design for a 300 MWe CFB boiler. The authors will show how the design incorporates Foster Wheeler`s unique combination of extensive utility experience and CFB boiler experience. All the benefits of CFB technology which include low emissions, fuel flexibility, low maintenance and competitive cost are now available in the 300--400 MWe size range.

  17. Boiler using combustible fluid

    DOEpatents

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  18. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  19. Old boilers to profitable use with local biofuels

    SciTech Connect

    Hankala, J.

    1998-07-01

    To convert an old plant is often an economically advantageous alternative for a new boiler. The most important sources of biomass in industrial countries are residues from forestry, industry and agriculture. Sludges and wastes from industry, communities and households also contain useful energy. Still in many places there are existing power plants which can be converted to burn biofuels with low investment costs. An efficient and proven way is to convert an existing boiler to fluidized bed combustion (FBC) or use atmospheric circulating fluidized bed biofuel gasification connected to an existing boiler. Modern Fluidized Bed Combustion and Gasification gives us a possibility to burn biomass, sludges and many kinds of wastes in an efficient way with low emissions. Fluidized bed technologies are divided into bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) solutions. When making a boiler conversion to fluidized bed combustion, lower furnace of an existing boiler is converted and fuel receiving, handling and transportation system is installed. In many cases most of the existing boiler heating surfaces and a majority of the existing auxiliary equipment can be utilized. The circulating fluidized bed gasifier consists of the inside refractory-lined steel vessel, where fuel is gasified in a hot fluidized gas solid particle suspension. In the gasifier, the biofuels will be converted to combustible gas at atmospheric pressure at the temperature 800--900 C. The hot gas from the gasifier will be cooled down to 650--750 C in the air preheater. The hot gas is led directly to separate burners, which are located in the existing boiler furnace. The gas is burned in the boiler and replaces a part of the coal used in the boiler. Typical fuels for the FBC-boilers are wet fuels such as bark, wood waste, peat and sludges. These fuels normally contain 40--70% water.

  20. Guide to Low-Emission Boiler and Combustion Equipment Selection

    SciTech Connect

    Oland, CB

    2002-05-06

    Boiler owners and operators who need additional generating capacity face a number of legal, political, environmental, economic, and technical challenges. Their key to success requires selection of an adequately sized low-emission boiler and combustion equipment that can be operated in compliance with emission standards established by state and federal regulatory agencies. Recognizing that many issues are involved in making informed selection decisions, the U.S. Department of Energy (DOE), Office of Industrial Technologies (OIT) sponsored efforts at the Oak Ridge National Laboratory (ORNL) to develop a guide for use in choosing low-emission boilers and combustion equipment. To ensure that the guide covers a broad range of technical and regulatory issues of particular interest to the commercial boiler industry, the guide was developed in cooperation with the American Boiler Manufacturers Association (ABMA), the Council of Industrial Boiler Owners (CIBO), and the U.S. Environmental Protection Agency (EPA). The guide presents topics pertaining to industrial, commercial, and institutional (ICI) boilers. Background information about various types of commercially available boilers is provided along with discussions about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and other important selection considerations. Although information in the guide is primarily applicable to new ICI boilers, it may also apply to existing boiler installations.

  1. Study of oil combustion in the TGMP-314 boiler with hearth burners

    SciTech Connect

    Usman, Yu.M.; Shtal'man, S.G.; Enyakin, Yu.P.; Abryutin, A.A.; Levin, M.M.; Taran, O.E.; Chuprov, V.V.; Antonov, A.Yu.

    1983-01-01

    Studies of the TGMP-314 boiler with hearth configured burners included the gas mixture in the boiler, the degree of fuel combustion at various heights in the boiler, hydrogen sulfide content in the near-wall zones of the boiler, and temperature distribution fields. Experimental data showed that the hearth burners, in conjunction with steam-mechanical atomizing burners, operate with the least possible excess air over a wide range of load changes. The operation and performance of the hearth burners are discussed.

  2. 33. BOILER HOUSE FURNACE AND BOILER Close view of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BOILER HOUSE - FURNACE AND BOILER Close view of the Dorward Engineering Company furnace and boiler which provided steam to the cooking retorts in the adjacent room. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  3. 51. BOILER ROOM. SMALL BOILER ON LEFT OF UNKNOWN MANUFACTURE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. BOILER ROOM. SMALL BOILER ON LEFT OF UNKNOWN MANUFACTURE, WITH INDUCTION MOTORS. HARTLEY BOILER, MONTGOMERY, ALABAMA, ON RIGHT. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  4. INTERIOR OF BOILER BUILDING, FIRST LEVEL, EAST SIDE, SHOWING STEAMDRIVEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF BOILER BUILDING, FIRST LEVEL, EAST SIDE, SHOWING STEAM-DRIVEN PISTON PUMPS FOR FUEL OIL, CAMERA FACING EAST. - New Haven Rail Yard, Central Steam Plant and Oil Storage, Vicinity of Union Avenue, New Haven, New Haven County, CT

  5. Combined oil gun and coal guide for power plant boilers

    SciTech Connect

    Wiest, M.R.

    1990-08-28

    This paper discusses apparatus for introducing fuel into the combustion chamber of a power plant boiler. It comprises a coal guide; a coal disperser; tubular disperser support means; an oil gun; first actuator means; and second actuator means.

  6. 29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH FORMER GENERAL OFFICE BUILDING IN BACKGROUND. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  7. Fluidized-bed-fired industrial boilers

    SciTech Connect

    Leon, A.M.; McCoy, D.E.

    1981-01-01

    E. Keeler Company and Dorr-Oliver, Inc. have joined to design, market and manufacture atmospheric fluidized-bed-fired boilers. The first contract, called Shamokin, was a 23,400 lb/hr unit fired with anthracite culm having a heating value of 4000 Btu/lb and 67% ash. The Department of Energy sponsored this plant as a demonstration project. Boiler erection is nearly complete and start-up is scheduled for mid-1981. In conjunction with the Shamokin project, a line of fluidized-bed-fired boilers to 250,000 lb/hr has been developed for conventional solid fuels. The development of fluidized-bed-fired, industrial boilers is in its very early stages. At this point, it is not possible for any manufacturer to claim extensive operating experience with any particular design under the varied applications normal to industrial watertube boilers. Many different designs and approaches will develop over the next few years and until there has been some operating experience, it is not possible to evaluate just what share of the future industrial boiler market will utilize fluidized-bed firing.

  8. Boiler saves pollution problem

    SciTech Connect

    Kaiser, J.A.

    1981-02-01

    Monarch Furniture Industries, High Point, N.C. replaced their old locomotive-type boiler in 1978 with a multifuel boiler system from Energy Systems, Inc. of Chattanooga. The system burns the company's wood wastes, supplemented with low-cost coal in winter. It generates 17,250 lbs. per hour of steam, gives a much cleaner burn than the old boiler, and has a calculated payback period of 1.67 years.

  9. REBURNING APPLICATION TO FIRETUBE PACKAGE BOILERS

    EPA Science Inventory

    The report gives results of pilot-scale experimental research that examined the physical and chemical phenomena associated with the NOx control technology of reburning applied to gas- and liquid-fired firetube package boilers. Reburning (staged fuel combustion) diverts some of th...

  10. Compartment B3, boiler room; showing boiler facing of boiler #5 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Compartment B-3, boiler room; showing boiler facing of boiler #5 aft to forward from passing room B-25. (030A) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  11. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  12. Improving boiler efficiency

    SciTech Connect

    Yost, L.

    1982-06-24

    Boilers and burners are designed to operate most efficiently at, or near, full load. This fact seems to indicate that on/off operation is more efficient; however, standby losses must be considered. This article examines various types of industrial boiler heat losses that reduce efficiency and discusses methods for improving operation.

  13. 39. (Credit JTL) Interior of boiler room looking east; boiler ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. (Credit JTL) Interior of boiler room looking east; boiler casing in background, boiler feedwater pumps and feedwater heater in middle ground; hot well on columns in left foreground. Steam lines from boilers to high service engines pass overhead. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  14. 68. 1911 BOILER HOUSE LOOKING SOUTH. BOILERS ARE CA. 1945. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. 1911 BOILER HOUSE LOOKING SOUTH. BOILERS ARE CA. 1945. SPACE HEATING BOILER S REPLACED ORIGINAL 8 VERTICAL HIGH PRESSURE STEAM POWER BOILERS. THE ORIGINAL SHEET METAL FLUE IS IN THE UPPER CENTER. - Boston Manufacturing Company, 144-190 Moody Street, Waltham, Middlesex County, MA

  15. SRC burn test in 700-hp oil-designed boiler. Annex Volume C. Boiler emission report. Final technical report

    SciTech Connect

    Not Available

    1983-09-01

    The Solvent-Refined Coal (SRC) test burn program was conducted at the Pittsburgh Energy Technology Center (PETC) located in Bruceton, Pa. One of the objectives of the study was to determine the feasibility of burning SRC fuels in boilers set up for fuel oil firing and to characterize emissions. Testing was conducted on the 700-hp oil-fired boiler used for research projects. No. 6 fuel oil was used for baseline data comparison, and the following SRC fuels were tested: SRC Fuel (pulverized SRC), SRC Residual Oil, and SRC-Water Slurry. Uncontrolled particulate emission rates averaged 0.9243 lb/10/sup 6/ Btu for SRC Fuel, 0.1970 lb/10/sup 6/ Btu for SRC Residual Oil, and 0.9085 lb/10/sup 6/ Btu for SRC-Water Slurry. On a lb/10/sup 6/ Btu basis, emissions from SRC Residual Oil averaged 79 and 78%, respectively, lower than the SRC Fuel and SRC-Water Slurry. The lower SRC Residual Oil emissions were due, in part, to the lower ash content of the oil and more efficient combustion. The SRC Fuel had the highest emission rate, but only 2% higher than the SRC-Water Slurry. Each fuel type was tested under variable boiler operating parameters to determine its effect on boiler emissions. The program successfully demonstrated that the SRC fuels could be burned in fuel oil boilers modified to handle SRC fuels. This report details the particulate emission program and results from testing conducted at the boiler outlet located before the mobile precipitator take-off duct. The sampling method was EPA Method 17, which uses an in-stack filter.

  16. Modeling operation mode of pellet boilers for residential heating

    NASA Astrophysics Data System (ADS)

    Petrocelli, D.; Lezzi, A. M.

    2014-11-01

    In recent years the consumption of wood pellets as energy source for residential heating lias increased, not only as fuel for stoves, but also for small-scale residential boilers that, produce hot water used for both space heating and domestic hot water. Reduction of fuel consumption and pollutant emissions (CO, dust., HC) is an obvious target of wood pellet boiler manufacturers, however they are also quite interested in producing low- maintenance appliances. The need of frequent maintenance turns in higher operating costs and inconvenience for the user, and in lower boiler efficiency and higher emissions also. The aim of this paper is to present a theoretical model able to simulate the dynamic behavior of a pellet boiler. The model takes into account many features of real pellet boilers. Furthermore, with this model, it is possible to pay more attention to the influence of the boiler control strategy. Control strategy evaluation is based not only on pellet consumption and on total emissions, but also on critical operating conditions such as start-up and stop or prolonged operation at substantially reduced power level. Results are obtained for a residential heating system based on a wood pellet boiler coupled with a thermal energy storage. Results obtained so far show a weak dependence of performance in terms of fuel consumption and total emissions on control strategy, however some control strategies present some critical issues regarding maintenance frequency.

  17. Condensing heat exchangers for maximum boiler efficiency

    SciTech Connect

    Johnson, D.W.; DiVitto, J.G.; Rakocy, M.E.

    1994-12-31

    Until now, boiler efficiency has been limited due to the minimum temperature allowed at the stack. Heat lost up the stack was in exchange for keeping the flue gas temperature above the water vapor dew point. If water vapor was allowed to condense out, rapid deterioration, due to acid corrosion, of the outlet duct and stack would result. With the development of the condensing heat exchanger, boiler efficiency can now exceed 90%. Approximately 1% gain in boiler efficiency can be expected for every 40 F (4.5 C) reduction in flue gas stack temperature. In the CHX{reg_sign} condensing heat exchanger, all gas wetted surfaces are covered with DuPont Teflon{reg_sign}. The Teflon covered heat exchanger surfaces are impervious to all acids normally resulting from the combustion of fossil fuels. This allows the flue gas to be cooled to below the water vapor dew point with no subsequent corrosion of the heat exchanger surfaces.

  18. Evaluation of thermal overload in boiler operators.

    PubMed

    Braga, Camila Soares; Rodrigues, Valéria Antônia Justino; Campos, Julio César Costa; de Souza, Amaury Paulo; Minette, Luciano José; de Moraes, Angêlo Casali; Sensato, Guilherme Luciano

    2012-01-01

    The Brazilians educational institutions need a large energy demand for the operation of laundries, restaurants and accommodation of students. Much of that energy comes from steam generated in boilers with wood fuel. The laboral activity in boiler may present problems for the operator's health due to exposure to excessive heat, and its operation has a high degree of risk. This paper describes an analysis made the conditions of thermal environment in the operation of a B category boiler, located at a Higher Education Institution, located in the Zona da Mata Mineira The equipments used to collect data were Meter WBGT of the Heat Index; Meter of Wet Bulb Index and Globe Thermometer (WBGT); Politeste Instruments, an anemometer and an Infrared Thermometer. By the application of questionnaires, the second phase consisted of collecting data on environmental factors (temperature natural environment, globe temperature, relative humidity and air velocity). The study concluded that during the period evaluated, the activity had thermal overload. PMID:22316768

  19. Boiler house modernization through shared savings program

    SciTech Connect

    Breault, R.W.

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  20. Coal reburning for cyclone boiler NO sub x control demonstration

    SciTech Connect

    Haggard, R.W. Jr.

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NOx Control Project to fully establish that the coal reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NOx emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NOx emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  1. Coal reburning for cyclone boiler NO sub x control demonstration

    SciTech Connect

    Not Available

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  2. Individual burner control for combustion optimization in industrial boilers. [Spectral flame analyzer

    SciTech Connect

    Batra, S.K.; Cole, W.; Metcalfe, C.

    1986-11-01

    Combustion of fuels in large industrial boilers is monitored by measuring CO, CO/sub 2/, and O/sub 2/ in the flue gas exiting the boiler. Thermo Electron Corporation has under development an instrument called Spectral Flame Analyzer for monitoring the combustion conditions in individual burners in a multi-burner boiler. The instrument is presently being tested in an industrial boiler. This paper describes the principle of operation of the Spectral Flame Analyzer, the results of the tests carried out at the M.I.T. Combustion Research Facility and the proposed test program for an industrial boiler at the Polaroid Company.

  3. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    SciTech Connect

    Liss, William E; Cygan, David F

    2013-04-17

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system the Super Boiler for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to

  4. FIELD TESTS OF INDUSTRIAL STOKER COAL-FIRED BOILERS FOR EMISSIONS CONTROL AND EFFICIENCY IMPROVEMENT - SITE D

    EPA Science Inventory

    The report gives results of field measurements made on a 90,000 lb/hr vibrating-grate-stoker boiler. The effect of various parameters on boiler emissions and efficiency was studied. Parameters included overfire air, excess air, boiler load, and fuel properties. Measurements inclu...

  5. FIELD TESTS OF INDUSTRIAL STOKER COAL-FIRED BOILERS FOR EMISSIONS CONTROL AND EFFICIENCY IMPROVEMENT - SITE B

    EPA Science Inventory

    The report gives results of field measurements made on a 200,000 lb/hr spreader stoker boiler. The effect of various parameters on boiler emissions and efficiency was studied. Parameters studied included overfire air, flyash reinjection, excess air, boiler load, and fuel properti...

  6. FIELD TESTS OF INDUSTRIAL STOKER COAL-FIRED BOILERS FOR EMISSIONS CONTROL AND EFFICIENCY IMPROVEMENT - SITE C

    EPA Science Inventory

    The report gives results of field measurements made on a 182,5000 lb/hr spreader stoker boiler. The effect of various parameters on boiler emissions and efficiency was studied. Parameters included overfire air, flyash reinjection, excess air, boiler load, and fuel properties. Mea...

  7. Application of advanced technologies to ash-related problems in boilers

    SciTech Connect

    Baxter, L.L.; Richards, G.; Harb, J.

    1995-01-01

    Prediction of ash behavior in boilers has, for many years, been based on relatively simple relationships involving the composition of inorganic material in fuels. In recent years, advanced analyses for both fuels and deposits have seen increasing use in the solid fuel combustion community. The combination of the standard and advanced analyses, together with a knowledge of boiler design and operating conditions, allow better interpretation of ash behavior in boilers than has previously been possible. This paper discusses several case histories where advanced technologies have been applied to interpret ash behavior in boilers where standard techniques were insufficient. Included in the discussion are: (1) the behavior of blends of fuels; (2) explanations for markedly different behavior between fuels with similar ASTM characteristics; and (3) effects of boiler operating conditions on ash deposit formation.

  8. Climate Technology in a Wood Chips Boiler House

    NASA Astrophysics Data System (ADS)

    Vigants, Edgars; Blumberga, Dagnija; Veidenbergs, Ivars

    2011-01-01

    One of the innovative solutions of climate technologies is a pilot project relating to the condenser of fuel combustion products which is installed at a chips-fuelled boiler house in the Ludza city. A commercial experiment with the use of a gas condenser has been run at a boiler-house. An empirical model has been obtained, that describes the relation between the specific greenhouse gas (GHG) emissions reduction and the temperature difference of irrigation liquid & condensate mixture.

  9. 42. BOILER HOUSE FOURTH FLOOR, FORCED DRAFT FANS ABOVE BOILERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. BOILER HOUSE FOURTH FLOOR, FORCED DRAFT FANS ABOVE BOILERS (SEE DRAWING Nos. 10 & 11 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  10. Interior view of boiler house looking south. Boiler units are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of boiler house looking south. Boiler units are on left. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  11. 4. INTERIOR, CENTRAL BOILER ROOM, LOWER LEVEL, BOILERS, FROM SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR, CENTRAL BOILER ROOM, LOWER LEVEL, BOILERS, FROM SOUTHWEST CORNER OF ROOM, LOOKING SOUTHEAST. - Oakland Naval Supply Center, Heating Plant, North of B Street & West of Third Street, Oakland, Alameda County, CA

  12. Gas reburn retrofit on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Latham, C.E.; Maringo, G.J.

    1996-01-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, is being retrofitted with the gas reburning technology developed by Babcock & Wilcox (B & W) to reduce NO{sub x} emissions in order to comply with the Title I, ozone nonattainment, of the Clean Air Act Amendments (CAAA) of 1990. The required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit set in New York`s regulation is about 47%. Eastman Kodak and the Gas Research Institute (GRI) are cosponsoring this project. B & W is the prime contractor and contract negotiations with Chevron as the gas supplier are presently being finalized. Equipment installation for the gas reburn system is scheduled for a September 1995 outage. No. 43 Boiler`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow or approximately equivalent to 60 MW{sub e}. Because of the compact boiler design, there is insufficient gas residence time to use pulverized coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Based on successful completion of this gas reburn project, modifying the other three cyclone boilers with gas reburn technology is anticipated. The paper will describe B & W`s gas reburn data from a cyclone-equipped pilot facility (B & W`s Small Boiler Simulator), gas reburn design information specific to Eastman Kodak No. 43 Boiler, and numerical modeling experiences based on the pilot-scale Small Boiler Simulator (SBS) results along with those from a full-scale commercial boiler.

  13. 1. EXTERIOR VIEW OF BOILER HOUSE FROM SOUTHWEST. THE BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF BOILER HOUSE FROM SOUTHWEST. THE BOILER HOUSE WAS USED FOR HEATING THE MILL; HYDRO-ELECTRIC POWER FOR PRODUCTION WAS PURCHASED FROM THE COLUMBUS LIGHT & POWER COMPANY. NORTH END OF 1924 MILL TO RIGHT, c. 1970 WINDOWLESS WEAVE ROOM ADDITION TO LEFT. - Stark Mill, Boiler House, 117 Corinth Road, Hogansville, Troup County, GA

  14. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  15. Development and Demonstration of a Biomass Boiler for Food Processing Applications

    SciTech Connect

    2009-02-01

    Burns & McDonnell Engineering Company, in collaboration with Frito-Lay, Inc., Oak Ridge National Laboratory, CPL Systems, Inc., Alpha Boilers, and Kansas State University will demonstrate use of a biomass boiler in the food processing industry. The 60,000 lb/hr innovative biomass boiler system utilizing a combination of wood waste and tire-derived fuel (TDF) waste will offset all natural gas consumption at Frito-Lay's Topeka, Kansas, processing facility.

  16. Update of operating experience of B and W IR-CFB coal-fired boilers

    SciTech Connect

    Belin, F.; Kavidass, S.; Maryamchik, M.; Walker, D.J.; Mandal, A.K.; Price, C.E.

    1999-07-01

    This paper updates the operating experience of two Babcock and Wilcox (B and W) coal-fired, internal recirculation circulating fluidized-bed (IR-CFB) boilers. The first boiler is located at Southern Illinois University (SIU) in Carbondale, Illinois, USA, and is designed for 35 MW{sub th} output for cogeneration application, utilizing high sulfur, low ash Illinois coal. The second boiler is located at Kanoria Chemicals and Industries in Renukoot, India, and is designed for 81 MW{sub th} output for captive power requirement, firing high ash, low sulfur coal. This boiler was supplied by Thermax B and W Ltd., a joint venture company of B and W and Thermax of India. The choice of CFB technology was based on its fuel flexibility, cost effectiveness and environmental benefits for solid fuels. Based on the broad experience in designing utility and industrial boilers for operation worldwide, B and W has developed a cost effective and compact atmospheric pressure IR-CFB boiler. The B and W IR-CFB boiler design is distinctive in its use of U-beam particle separators. Worldwide, B and W offers IF-CFB boilers up to 175 MW{sub th}, both reheat and non-reheat, and is pursuing units up to 350 MW{sub th}. This paper reviews the general description of each IR-CFB boiler, design and performance aspects, as well as overall operating experiences. The boiler availabilities including maintenance aspects and emissions data will be presented.

  17. Biomass cofiring in full-sized coal-fired boilers

    SciTech Connect

    Plasynski, S.I.; Costello, R.; Hughes, E.; Tillman, D.

    1999-07-01

    Biomass cofiring represents one alternative for reducing greenhouse gas emissions of carbon dioxide from fossil sources. Realizing this opportunity, the Federal Energy Technology Center (FETC), a field site of the Department of Energy (DOE), along with the EPRI, initiated a Program around two-years ago to research the feasibility of coal-fired boilers in cofiring of biomass and other waste-derived fuels. The cooperative agreement between FETC and EPRI includes cofiring at six different electric utility sites and one steam generation site. Boilers include wall-fired, tangential, cyclone, and stokers ranging in size from 15 to 500 MWe. Biomass consisting of wood (usually) and switchgrass (in two cases) will be the fuel, and pulp and plastics may be used in some waste-derived fuels cofiring tests. This paper will focus only on the biomass cofired tests in electric utility boilers.

  18. Coal reburning application on a Cyclone boiler

    SciTech Connect

    Maringo, G.J.; Yagiela, A.S.; Newell, R.J.; Farzan, H.

    1994-12-31

    Cyclone reburn involves the injection of a supplemental fuel (natural gas, oil or coal) into the main furnace of a Cyclone-fired boiler to produce locally reducing conditions which convert NO{sub x}, generated in the main combustion zone, to molecular nitrogen, thereby reducing overall NO{sub x} emissions. The world`s only application of the Cyclone reburn technology using pulverized coal as the reburn fuel was installed at Wisconsin Power & Light`s Nelson Dewey Generating Station, Unit 2. The project was selected for demonstration under the US Department of Energy`s Clean Coal Technology Demonstration Program, Round II.

  19. Sulfur capture in combination bark boilers

    SciTech Connect

    Someshwar, A.V.; Jain, A.K. )

    1993-07-01

    A review of sulfur dioxide emission data for eight combination bark boilers in conjunction with the sulfur contents of the fuels reveals significant sulfur capture ranging from 10% to over 80% within the solid ash phase. Wood ash characteristics similar to activated carbon as well as the significant wood ash alkali oxide and carbonate fractions are believed responsible for the sulfur capture. Sulfur emissions from combination bark-fossil fuel firing are correlated to the sulfur input per ton of bark or wood residue fired.

  20. Development of a reburning boiler process model. First quarterly progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Wu, K.T.

    1992-01-30

    The overall objective of this program is to integrate EER`s expertise in boiler reburning performance evaluation into a package of analytical computer tools. Specific objectives of the program are to develop a computational capability with the following features: (1) can be used to predict the impact of gas reburning application on thermal conditions in the boiler radiant furnace, and on overall boiler performance; (2) can estimate gas reburning NO{sub x} reduction effectiveness based on specific reburning configurations and furnace/boiler configurations; (3) can be used as an analytical tool to evaluate the impact of boiler process parameters (e.g., fuel switching and changes in boiler operating conditions) on boiler thermal performance; (4) is adaptable to most boiler designs (tangential and wall fire boilers) and a variety of fuels (solid, liquid, gaseous and slurried fuels); (5) is sufficiently user friendly to be exercisable by engineers with a reasonable knowledge of boilers, and with reasonable computer skills. Here, ``user friendly`` means that the user will be guided by computer codes during the course of setting up individual input files for the boiler performance model.

  1. Cofiring Wood and Coal to Stoker Boilers in Pittsburgh

    SciTech Connect

    Cobb, J.T., Jr.; Elder, W.W.

    1997-07-01

    The prime objective of the University of Pittsburgh's overall wood/coal cofiring program is the successful introduction of commercial cofiring of urban wood wastes into the stoker boilers of western Pennsylvania. Central to this objective is the demonstration test at the Pittsburgh Brewing Company. In this test the project team is working to show that two commercially-available clean wood wastes - tub-ground pallet waste and chipped clearance wood - can be included in the fuel fed daily to an industrial stoker boiler. Irrespective of its economic outcome, the technical success of the demonstration at the brewery will allow the local air quality regulation agency to permit a parametric test at the Bellefield Boiler Plant. The objective of this test is to obtain comprehensive data on all key parameters of this operational boiler while firing wood with coal. The data would then be used for thorough generic technical and economic analyses. The technical analysis would be added to the open literature for the general planning and operational guidance for boiler owners and operators. The economic analysis would gage the potential for providing this stoker fuel commercially in an urban setting and for purchasing it regularly for combustion in an urban stoker boiler.

  2. ENVIRONMENTAL ASSESSMENT OF A FIRETUBE BOILER FIRING COAL/OIL/WATER MIXTURES. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal/oil/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SO2 sorbent. The test data inc...

  3. EMISSION OF ORGANIC COMPOUNDS AND COMBUSTION GASES DURING HAZARDOUSWASTE COFIRING IN A WATERTUBE PACKAGE BOILER

    EPA Science Inventory

    The primary objective of this study was to evaluate the sorptionand desorption of organic compounds on combustion-generated sootduring the cofiring of hazardous organics with fuel oil in afull-scale boiler. orption of organics was accomplished by firinga watertube package boiler ...

  4. COMBUSTION MODIFICATION EFFECTS ON NOX EMISSIONS FROM GAS-, OIL-, AND COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report represents the conclusion of 4 years of analysis of large quantities of emissions, operating conditions, and boiler configuration data from full-scale multiple-burner, electric-generating boilers firing natural gas, oil, and coal fuels. The overall objective of the stu...

  5. Systematic Field Study of NO(x) Emission Control Methods for Utility Boilers.

    ERIC Educational Resources Information Center

    Bartok, William; And Others

    A utility boiler field test program was conducted. The objectives were to determine new or improved NO (x) emission factors by fossil fuel type and boiler design, and to assess the scope of applicability of combustion modification techniques for controlling NO (x) emissions from such installations. A statistically designed test program was…

  6. ANALYSIS TEST DATA FOR NOX CONTROL IN COAL-FIRED UTILITY BOILERS

    EPA Science Inventory

    The report describes the analyses of a large quantity of emissions, operating conditions, and boiler configuration data from full-scale, multiple-burner, electric-generating boilers firing coal fuel. Objectives of the study include: (1) evaluation of the effects of combustion mod...

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  9. Plasma-supported coal combustion in boiler furnace

    SciTech Connect

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B.

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  10. Particulate Emission Abatement for Krakow Boiler Houses

    SciTech Connect

    1998-09-01

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which currently comprises over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low- capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  11. Research, Development and Demonstration of Bio-Mass Boiler for Food Industry

    SciTech Connect

    Fisher, Steve; Knapp, David

    2012-07-01

    Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a biomass-fired boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using carbon neutral fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO2) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO2 emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO2 emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO2. The boiler does require auxiliary functions, however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO2 emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO2 per year.

  12. Conversion of KVGM-100-150 boilers to cyclone-swirl burning of gas

    NASA Astrophysics Data System (ADS)

    Shtym, K. A.; Solov'eva, T. A.

    2015-03-01

    Heating sources of Vladivostok with boilers reconstructed in 2011 to gas burning is presented. The historical reference of the experience of boiler conversion to cyclone-swirl technology of burning of fuel oil and gas is given. Stages of the primary furnace and boiler upgrading are shown. Taking BKZ 75-16 and BKZ-120-100 boilers as examples, the principal differences of the swirl type of fuel burning from the burner type are demonstrated. Data of the KVGM-100-150 MTs boiler with cyclone-swirl burning of gas and fuel oil is represented. The mathematical model developed for the primary furnace with the 65 MW capacity gives detailed explanations to the features of mixing in the combustion chamber of the primary furnace, which substantiate conditions and places of the fuel injection. The practical result is supported by test data obtained on the operating equipment. To enhance the effectiveness of fuel consumption on six converted KVGM-100-150 MTs boilers, the convective section was restructured and the water circulation circuit was optimized. Comparative analysis of estimated and operating characteristics showed the efficiency increment. The application of cyclone-swirl technology made it possible to increase the effectiveness of the KVGM-100-150 boiler and improve its environmental indicators.

  13. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  14. Case study - fast work in Chesapeake on a wastewood boiler

    SciTech Connect

    Hammond, S.L.; Habeishi, F.G.

    1983-08-01

    The project began in April 1980 and was on an extremely tight ''fast-track'' schedule to take advantage of available funding and energy tax credits. It was completed in December 1981, 19 months after the boiler was purchased. In spite of the congested location and the need to maintain normal mill operations, the work was completed on schedule. The project included a 190,000-kg/hour (420,000-lb/hour) waste-fuel-fired boiler, auxiliaries, and a new woodyard complete with flume, slasher, barking drum, chipper, screens, and materials-handling system. The boiler is designed to burn bark, oil as an auxiliary fuel, wastewater sludge, and strong waste gases.

  15. Plasma enhancement of combustion of solid fuels

    SciTech Connect

    Askarova, A.S.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B.

    2006-03-15

    Plasma fuel systems that increase the coal burning efficiency are discussed. The systems were tested for fuel oil-free startup of boilers and stabilizating a pulverized-coal flame in power-generating boilers equipped with different types of burner and burning all types of power-generating coal. Plasma ignition, thermochemical treatment of an air-fuel mixture prior to combustion, and its burning in a power-generating boiler were numerically simulated. Environmental friendliness of the plasma technology was demonstrated.

  16. Load control and the provision of the efficiency of steam boilers equipped with an extremal governor

    NASA Astrophysics Data System (ADS)

    Sabanin, V. P.; Kormilitsyn, V. I.; Kostyk, V. I.; Smirnov, N. I.; Koroteev, A. V.; Repin, A. I.

    2014-12-01

    This paper presents an analysis of main problems of controlling small- and medium-size steam boilers. Noted are deficiencies of current normative and technical documents, as well as those of the traditional concept of the process of fuel firing, the methods for and algorithms of boiler control. There is established an approach to creation of such control systems in which a boiler is treated, as to control and load channels, as a nonlinear linked controlled objects. To control load and efficiency of a boiler, an universal schematic diagram is suggested that allows for the possibility of implementation in modern controllers of both known methods and a new method using an extremal governor, which would provide minimum fuel consumption at given thermal load of a boiler.

  17. Combustion control in boilers. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning utility and industrial boiler combustion control systems and methods. Topics include methods to meet emission standards, energy savings, and safety. The use of microcomputers, mathematical models, algorithms, artificial intelligence, and fuzzy logic is considered. Citations on boilers and furnaces fueled by coal, oil, gas, refuse, and multiple fuels are included. (Contains a minimum of 123 citations and includes a subject term index and title list.)

  18. Anthracite culm fired fluidized bed boiler at East Stroudsburg University

    SciTech Connect

    Curran, M.J.; Lentz, E.C.

    1986-01-01

    This paper describes operating experience and results of a fluidized bed boiler through the first 7500 hours of operation. Solutions to problems encountered during this period are described. Problem areas discussed in the paper include: finding alternate fuel suppliers; material handling and storage systems; personnel selection, training, and job description changes; and ash disposal.

  19. REDUCTION OF POLLUTANT EMISSIONS FROM INDUSTRIAL BOILERS BY COMBUSTION MODIFICATION

    EPA Science Inventory

    The paper describes results of a field test program to investigate the usefulness of combustion modification in reducing NOx emissions from industrial boilers (ranging in size from 11 to 528 GJ/hr). The gaseous and particulate emissions from coal, oil, and natural-gas fuels were ...

  20. Controlling the Furnace Process in Coal-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Shatil', A. A.; Klepikov, N. S.; Smyshlyaev, A. A.; Kudryavtsev, A. V.

    2008-01-01

    We give an outline of methods using which the furnace process in coal-fired boilers can be controlled to expand the range of loads, reduce the extent to which the furnace is contaminated with slag and the amount of harmful substances is emitted, and when a change is made to another kind of fuel.

  1. A burner for plasma-coal starting of a boiler

    NASA Astrophysics Data System (ADS)

    Peregudov, V. S.

    2008-04-01

    Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.

  2. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial packaged boilers. 431.82 Section 431.82 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN... is equal to 100 percent minus percent flue loss (percent flue loss is based on input fuel...

  3. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Definitions concerning commercial packaged boilers. 431.82 Section 431.82 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN... is equal to 100 percent minus percent flue loss (percent flue loss is based on input fuel...

  4. Task 2: Materials for Advanced Boiler and Oxy-combustion Systems

    SciTech Connect

    Holcolm, Gordon R.; McGhee, Barry

    2009-05-01

    The PowerPoint presentation provides an overview of the tasks for the project: Characterize advanced boiler (oxy-fuel combustion, biomass co-fired) gas compositions and ash deposits; Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardization; Generate critical data for coating systems for use in advanced boiler systems; Generate critical data for flue gas recycle piping materials for oxy-fuel systems; and, Compile materials performance data from laboratory and pilot plant exposures of candidate alloys for use in advanced boiler systems.

  5. Particulate emission abatement for Krakow boiler houses

    SciTech Connect

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  6. Pyroflow Compact: The next generation CFB boiler

    SciTech Connect

    Darling, S.L.

    1995-12-31

    CFB technology is the modern way to burn coal and other solid fuels. This technology was specifically developed to address today`s needs for fuel flexibility and low emissions. The low furnace temperatures characteristic of CFB technology provide for (a) low NO{sub x} emissions, (b) low SO{sub 2} emissions via simple furnace limestone injection and (c) the ability to fire a wide range of fuels because slagging is avoided. Lack of pulverizers and stack gas scrubbers results in a simple design with low maintenance costs and high availability. Ahlstrom, responsible for many innovations in CFB technology, has recently developed an improved CFB boiler design called the Pyroflow Compact. This new design retains all the benefits of the proven AHLSTROM PYROFLOW{reg_sign}CFB boiler while providing many advantages. This paper will describe the design features of the new Pyroflow Compact design, the advantages of this new design, operating experience, an up-to-date list of projects and Ahlstrom`s future plans for the new design.

  7. Interior view of boiler house looking north. Boiler units are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of boiler house looking north. Boiler units are on right. HAER Engineer/Historian Donald C. Jackson on right is interviewing Garry Dobbins concerning operation of the facility. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  8. Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers

    SciTech Connect

    Krish Krishnamurthy; Divy Acharya; Frank Fitch

    2008-09-30

    In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW

  9. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  10. Building America Case Study: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet)

    SciTech Connect

    PARR

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  11. Upgrades and enhancements for competitive coal-fired boiler systems

    SciTech Connect

    Kitto, J.B. Jr.; Bryk, S.A.; Piepho, J.M.

    1996-12-31

    Deregulation of the electric utility industry is resulting in significant opportunities and challenges for US power generators. Existing coal-fired capacity potentially offers the lowest variable cost power production option if these units are upgraded to optimize capacity, operating cost (including fuel), efficiency, and availability while also meeting today`s stringent emissions control requirements. This paper highlights a variety of boiler system upgrades and enhancements which are being utilized to make aging coal-fired boilers low cost competitors in the 1990s.

  12. Performance of High Temperature Air Combustion Boiler with Low NOx Emission

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiromichi; Ito, Yoshihito; Tsuruta, Naoki; Yoshikawa, Kunio

    Thermal performance in the experiments and three-dimensional numerical simulations for a high temperature air combustion boiler where fuel can be efficiently combusted by high temperature preheated air (800°C-1000°C) is examined. The boiler can burn not only natural gas but also low calorific gas (e. g. full gasification gas obtained from coal or wastes). In the boiler, four regenerative burners are installed. This boiler has new features that not only air but also gasification gas is heated up to 900°C, and combination of burners is switched every 15 seconds where two burners are used as inlets of fuel and air and the other two burners are used as outlets of exhaust gas. Natural gas and syngas obtained from coal are burned. The NOx emission for each fuel is less than 50ppm. The heat transfer of three-dimensional calculation is predicted higher than that of experiment.

  13. Design and research of retrofitting PC boiler into CFB boiler

    SciTech Connect

    Chen, H.P.; Lu, J.D.; Huang, L.; Liu, H.; Lin, Z.; Liu, D.C.

    1997-12-31

    In China, there are a large number of aged pulverized coal (PC) boilers at aging utility power plants. Many of them are beyond their reasonable working life or in a condition of unreliable operation, low combustion efficiency, and serious air pollution. It is very important and urgent to retrofit the aged PC boilers, and repower the aging utility power plants in China. Circulating fluidized bed (CFB) boilers have been developed rapidly, and paid great attention to in China. There are many striking advantages to retrofit an aged boiler with a CFB boiler. The retrofitting is suitable to meet the needs of effective utilization of low-grade coal, reducing SO{sub 2} and NO{sub x} emissions and repowering an aging power plant. The cost is much lower than that of building a new CFB unit. The National Laboratory of Coal Combustion (NLCC) has always paid great attention to studying and developing CFB combustion technology in connection with Chinese national conditions, and has evolved distinguishing technology features of its own. This paper introduces a new design concept of retrofitting PC boiler into Pi ({Pi}-shaped) CFB boiler with downward exhaust cyclone, and relevant research work and results of design and calculation.

  14. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  15. Keep out of hot water when remotely monitoring boilers

    SciTech Connect

    Kolbus, J.W.

    1994-11-01

    Everyone recognizes the importance of maintaining the proper water level in boilers and other steam equipment. Operators have long relied on devices such as water-level gages, mounted directly to boiler drums or to safety water columns attached to the drums, to show the level of the water, thus enabling them to keep it at a safe level, and assuring optimum fuel utilization. Advances in monitoring and control systems have made it possible to do the job more easily and efficiently, with accurate water-level readings clearly on display to operators who may be up to 1,000 ft away from the steam equipment. Today, there are a number of types of remote level-indicating devices in the marketplace--including electric, fiber-optic, manometric, and mechanical systems. In this article, the author describes the advantages and disadvantages of each. But to put their use in context, the paper first considers the requirements of the ASME Boiler Code.

  16. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    SciTech Connect

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  17. Bridging the experience gap: Burning tires in a utility boiler

    SciTech Connect

    Denhof, D.

    1993-03-01

    For many communities, a solution to waste tire management problems may be no farther than the nearest coal-fired utility or industrial boiler. Sending waste tires to be used as a fuel in existing boilers is one way communities can prevent tires from creating problems in landfills, or from growing into nuisances and potentially dangerous stockpiles while waiting for recycling markets to develop. For utilities, using tire-derived fuel can help control fuel costs and conserve coal. When the State of Wisconsin sought alternatives to disposing of waste tires in its landfills, Wisconsin Power & Light came forward to meet the challenge. Now, the electric utility is shredding and burning more than 1 million tires a year at its coal-fired generating station in southern Wisconsin.

  18. 49 CFR 230.47 - Boiler number.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  19. 49 CFR 230.47 - Boiler number.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  20. 49 CFR 230.47 - Boiler number.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  1. 30 CFR 77.413 - Boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  2. 49 CFR 230.47 - Boiler number.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  3. 30 CFR 77.413 - Boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  4. 30 CFR 77.413 - Boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  5. 30 CFR 77.413 - Boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  6. 49 CFR 230.47 - Boiler number.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  7. 30 CFR 77.413 - Boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  8. USA B and W`s IR-CFB coal-fired boiler operating experiences

    SciTech Connect

    Kavidass, S.; Maryamchik, M.; Kanoria, M.; Price, C.S.

    1998-12-31

    This paper updates operating experience of two Babcock and Wilcox (B and W) coal-fired, internal recirculation circulating fluidized-bed (IR-CFB) boilers. The first boiler is located at Southern Illinois University (SIU) in Carbondale, Illinois and is designed for 35 MWt output for cogeneration application, utilizing high sulfur, low ash Illinois coal. The second boiler is located at Kanoria Chemicals and Industries Ltd. (KCIL) in Renukoot, India and is designed for 81 MWt output for captive power requirements, firing high ash, low sulfur coal. This boiler was supplied by Thermax B and W (TBW) Ltd., a joint venture company of B and W and Thermax in India. The CFB technology is selected for these two units based on the fuel and environmental considerations. This paper discusses the various aspects of the two IR-CFB boilers` design features, performance, and operating experience including emissions.

  9. Unconventional fuel: Tire derived fuel

    SciTech Connect

    Hope, M.W.

    1995-09-01

    Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

  10. Effects of installing economizers in boilers used in space heating applications

    SciTech Connect

    Gonzalez, M.A.; Medina, M.A.; Schruben, D.L.

    1999-07-01

    This paper discusses how the performance of a boiler can be improved by adding an economizer to preheat the boiler's feedwater. An energy analysis was applied to a boiler and then to both a boiler and an economizer (water pre-heater) to evaluate the benefits of heat recovery. Exergy rates calculated for both the boiler and the economizer determined that the temperature of the stack gases had primary effects on the performance of a boiler. The results from this study showed that 57% of the heat rejected at the boiler's stack could be recovered by installing an economizer to preheat the feedwater. As a result, the average cost savings that would be realized for a 36,400 kg/h (80,000 lbm/h) boiler averages US$8 per hour. The cost savings to steam production averaged US$0.20 per 455 kg (1,000 lbm) of steam and the ration between the cost savings to stack temperature averaged $0.02 per C (1.8 F). For this case, the fuel and the cost savings realized from using an economizer were averaged at 3.8% and 3.7%, respectively. These results translated to total cost savings, for an eight-day period considered, of US$940.

  11. Chemical corrosion potential in boilers

    SciTech Connect

    Bairr, D.L.; McDonough, C.J.

    1998-12-31

    Misuse or abuse of chelants has long been recognized as a potential corrosion problem in boilers. In recent years all polymer chemical treatment programs have been introduced and although they are much more benign even all polymer programs must be properly designed and controlled. Under extreme conditions a similar corrosion potential exists. This paper discusses the potential for chelant or polymer corrosion in boilers and the proper safeguards. Case histories are presented.

  12. Boiler-turbine life extension

    SciTech Connect

    Natzkov, S.; Nikolov, M.

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  13. CFB boiler at Gardanne (France)

    SciTech Connect

    Jaud, P.; Jacquet, L.; Delot, P.; Bayle, F.

    1995-06-01

    Among the new Clean Coal Technologies, {open_quotes}Circulating Fluidized Bed{close_quotes} is one of the most promising. Today, the largest project in commissioning`s the 250 MWe Provence CFB boiler, located near MARSEILLE in the south of France. At such a size, the CFB technique has now reached a capacity corresponding to thermal power plants operated by utilities. This new unit is a very important step towards larger size i.e. 400 MWe and greater. The SO{sub 2} emissions of this CFB boiler are guaranteed to be less than 400 mg / Nm{sup 3} at 6% O{sub 2} with the ratio of Ca/S lower than 3 while total sulfur in local coal used can reach 3.68 %. The purpose of the Provence project was to replace the existing pulverized coal boiler unit 4, commissioned in 1967, of the Provence power plant, with a new CFB boiler while reusing most of the existing equipment. The new boiler has been ordered from GEC ALSTHOM STEIN INDUSTREE (GASI) by Electricite de France (EDF) on behalf of the SOPROLIF consortium. Architect Engineering and construction management was performed by EDF jointly with Charbonnages de France (CdF: the French Coal Board). The 250 MWe CFB boiler is of the superheat-reheat type. The first firing of the boiler is due in April 1995. The poster session will describe the progress in the construction of the plant and provides technical details of the new boiler and auxiliaries.

  14. Boiler heat transfer modeling using CEMS data with application to fouling analysis

    SciTech Connect

    Zibas, S.J.; Idem, S.A.

    1996-12-31

    A mathematical boiler heat transfer simulation for coal-fired plants is described. Required model input includes boiler geometry, fuel composition, and limited CEMS data that are typically available. Radiation heat transfer in the furnace is calculated using curve-fits to the Hottel charts. The model employs empirical heat transfer coefficient correlations to evaluate convection heat transfer to various boiler component surfaces. Fouling/slagging can be accounted for by including fouling resistance in the calculation of the overall heat transfer coefficient of each component. Model performance predictions are compared to cases available in the literature. Results from parametric studies are presented.

  15. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 2: Residual-fired nocogeneration process boiler

    NASA Technical Reports Server (NTRS)

    Knightly, W. F.

    1980-01-01

    Computer generated data on the performance of the cogeneration energy conversion system are presented. Performance parameters included fuel consumption and savings, capital costs, economics, and emissions of residual fired process boilers.

  16. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    SciTech Connect

    Sharp, William

    2011-12-01

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through

  17. 40 CFR 266.110 - Waiver of DRE trial burn for boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the total heat input to the maximum design heat input; (c) Primary fuels and hazardous waste fuels... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.110..., and that do not burn hazardous waste containing (or derived from) EPA Hazardous Waste Nos. F020,...

  18. 40 CFR 266.110 - Waiver of DRE trial burn for boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the total heat input to the maximum design heat input; (c) Primary fuels and hazardous waste fuels... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.110..., and that do not burn hazardous waste containing (or derived from) EPA Hazardous Waste Nos. F020,...

  19. 40 CFR 266.110 - Waiver of DRE trial burn for boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the total heat input to the maximum design heat input; (c) Primary fuels and hazardous waste fuels... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.110..., and that do not burn hazardous waste containing (or derived from) EPA Hazardous Waste Nos. F020,...

  20. NATURAL GAS REBURNING FOR NOX CONTROL ON A CYCLONE-FIRED BOILER

    EPA Science Inventory

    The paper discusses natural gas reburning (fuel staging) for nitrogen oxide (NOx) control on a cyclone-fired boiler. eburning is an in-furnace NOx combustion modification technology that has been shown to reduce NOx by 50-60%. eburning is accomplished by injecting fuel downstream...

  1. BOILER-SUPERHEATED REACTOR

    DOEpatents

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  2. Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement

    SciTech Connect

    1998-12-02

    In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled �Krakow Clean Fossil Fuels and Energy Efficiency Program.� The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI�s cooperative agreement is to apply combustion controls to existing boiler plants in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI�s combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.

  3. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2002-07-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  4. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2002-10-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan

    2002-04-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced

  7. Controlling boiler emissions

    SciTech Connect

    Katzel, J.

    1992-10-22

    This paper reports that if you are confused about how to interpret the Clean Air Act Amendments of 1990, you are not alone. The massive document runs several hundred pages and consists of 11 titles, each addressing a different aspect of air quality. In some cases, specific emissions levels are established; in others, they are left to the discretion of state and local governments. In many ways, the impact of the CAAA right now is no impact. But now is not the time for plant engineers to play any waiting games. The annual cost of complying with the comprehensive environmental legislation is estimated at $4 to $7 billion. Despite the ambiguity and uncertainty, one conclusion appears clear: control of emissions, especially nitrogen oxides, from all types of boilers and process units can be expected to become more stringent. More and more equipment and industries will fall under the regulations as they are implemented by the Environmental Protection Agency (EPA). An newly available and improved strategies and technologies will make it more and more difficult to circumvent the law. As the general concepts of the legislation are molded into specifics, plant engineers are well advised to take an active role in shaping the attainment and control programs being formed by their state sand in understanding and applying available control technologies.

  8. Design, construction, operation and evaluation of a prototype culm combustion boiler/heater unit. Final design of prototype unit

    SciTech Connect

    Not Available

    1980-10-01

    A final design of a prototype anthracite culm combustion boiler has been accomplished under Phase I of DOE Contract ET-78-C-01-3269. The prototype boiler has been designed to generate 20,000 pounds per hour of 150 psig saturated steam using low Btu (4000 Btu per pound) anthracite culm as a fuel. This boiler will be located at the industrial park of the Shamokin Area Industrial Corporation (SAIC). This program is directed at demonstrating the commercial viability of anthracite culm fueled FBC steam generation systems.

  9. 13. View northeast of boiler plant (Building 39), engineering work ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View northeast of boiler plant (Building 39), engineering work order building/former tin shop (Building 129), laundry MAT workshop (Building 28), pipe shop/former water softening plant (Building 81), paint spray shop/former blacksmith shop (Building 95), fuel oil storage tank building (Building 103), mason's shop (Building 77), and carpenter shop (Building 97) with steel water tank (Building 124) in background - National Home for Disabled Volunteer Soldiers Western Branch, 4101 South Fourth Street, Leavenworth, Leavenworth County, KS

  10. New controls spark boiler efficiency

    SciTech Connect

    Engels, T. )

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, air dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.

  11. Anthracite culm fired fluidized-bed boiler

    SciTech Connect

    Lentz, E.C.

    1984-01-01

    This chapter discusses a DOE-sponsored project to design, fabricate, install and demonstrate a system which can be fired with anthracite refuse coal (culm) or other coal. It is estimated that there are over 800 culm banks containing approximately 900 million ton of material in the northeast Pennsylvania area, which represents 1 billion barrels (159 GL) of oil equivalent. Culm combustion tests were conducted to establish and confirm the start-up and load following control systems to be used in the fluidized-bed boiler. The main purpose of the examined project is to demonstrate to industry that mine-site preparation/delivery of ready-to-burn fuel and disposal of the ash can be accomplished reliably, economically, and without detriment to the industrial or community environment.

  12. Program to Train Boiler Operators Developed

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1978

    1978-01-01

    This program initiated by Nalco Chemical, a major supplier of chemicals for boiler feedwater treatment, uses texts, audiovisual aids, and hands-on experience and is designed to boost the efficiency of boiler operators. (BB)

  13. Boiler for generating high quality vapor

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  14. SRC burn test in 700-hp oil-designed boiler. Volume 2. Engineering evaluation report. Final technical report. [Oil-fired boiler to solvent-refined coal

    SciTech Connect

    Not Available

    1983-12-01

    Volume 2 of this report gives the results of an engineering evaluation study and economic analysis of converting an existing 560-MW residual (No. 6) oil-fired unit to burn solvent refined coal (SRC) fuel forms. Volume 1 represents an integrated overview of the test program conducted at the Pittsburgh Energy Technology Center. Three SRC forms (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) were examined. The scope of modifications necessary to convert the unit to each of the three SRC fuel forms was identified and a capital cost of the necessary modifications estimated. A fuel conversion feasibility study of the boiler was performed wherein boiler modifications and performance effects of each fuel on the boiler were identified. An economic analysis of the capital and operating fuel expenses of conversion of the unit was performed. It was determined that conversion of the unit to any one of the three SRC fuel forms was feasible where appropriate modifications were made. It also was determined that the conversion of the unit can be economically attractive if SRC fuel forms can be manufactured and sold at prices discounted somewhat from the price of No. 16 Fuel Oil. As expected, greater discounts are required for the pulverized SRC and the slurry than for the solution of SRC dissolved in process-derived distillates.

  15. Advanced combustion system for industrial boilers. Quarterly technical progress report, August 1987--October 1987

    SciTech Connect

    Attig, R.C.; Foote, J.P.; Millard, W.P.; Schulz, R.J.; Wagoner, C.L.

    1987-12-31

    The purpose of this project is to develop an advanced coal-combustion system for industrial boilers. With the new combustion system, coal could be used to replace oil and possibly gas as fuel for many industrial boilers. The advanced combustion system is comprised of several parts: (1) A new burner-design concept for coal fuels, developed from the familiar gas turbine combustor-can designs that have proven efficient, reliable, durable, and safe for the combustion of liquid fuel oils. (2) A coal storage and dense-phase feed system for injecting clean, ultrafine pulverized coal into the burner at a low velocity. (3) An automatic control system based on feedback from low-cost automotive combustion-quality transducers. A cold flow model of an initial phase of the new burner design and the associated laser flow-visualization techniques were developed during this quarter. A series of modifications of the initial cold flow model will be tested to establish details of design for the new burner. Also a 200 hp firetube boiler has been installed and tested using number 2 oil as a fuel. This boiler will be used for future combustion testing with the new burner and ultrafine pulverized coal. Additionally an ultrafine-coal injector has been designed which will be evaluated separately as a replacement for the oil gun in the firetube boiler. Two tons of deep-cleaned, ultrafine coal were received for initial tests with the coal injector.

  16. 29 CFR 1915.162 - Ship's boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... employees are working in the boilers shall be hung in a conspicuous location in the engine room. This...

  17. 29 CFR 1915.162 - Ship's boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... that employees are working in the boilers shall be hung in a conspicuous location in the engine...

  18. 29 CFR 1915.162 - Ship's boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... that employees are working in the boilers shall be hung in a conspicuous location in the engine...

  19. 29 CFR 1915.162 - Ship's boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... employees are working in the boilers shall be hung in a conspicuous location in the engine room. This...

  20. 29 CFR 1915.162 - Ship's boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where employees may be subject to injury from the direct escape of a high temperature medium such as steam, or... that employees are working in the boilers shall be hung in a conspicuous location in the engine...

  1. Sootblowing optimization for improved boiler performance

    DOEpatents

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  2. Sootblowing optimization for improved boiler performance

    DOEpatents

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  3. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    SciTech Connect

    Chau, J.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Preto, F.; Melin, Staffan

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

  4. Modeling energy consumption of residential furnaces and boilers in U.S. homes

    SciTech Connect

    Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

    2004-02-01

    In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

  5. WATER BOILER REACTOR

    DOEpatents

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  6. Coal-fired boiler houses in Cracow present state and possibilities to improve their efficiency

    SciTech Connect

    Cyklis, P.; Butcher, T.A.

    1995-12-31

    A significant amount of heat energy both for heating and process purposes is generated in Cracow, Poland in small-and medium size local boiler houses. The operating procedure of these boiler houses is most often economically and ecologically ineffective because of the bad condition of boilers and lack of funds to install automation, control and measurement equipment. Within the Polish-American Program of Elimination of Low Emission Sources financed by the US Department of Energy, the ENERGOEKSPERT Co., Ltd. investigated chosen boiler houses in Cracow, commissioned by the Cracow Development Office. The results of these investigations were subject of engineering analysis carried out at the Institute of Industrial Equipment and Power Engineering, Technical University, Cracow. The analysis proved that the low-cost improvement of economic efficiency and reduction of air pollutant emission is feasible for combustion of coal fuels.

  7. The implication of CFB technology for repowering of old pulverized coal boiler in Russia

    SciTech Connect

    Ryabov, G.A.; Nadirov, I.I.

    1999-07-01

    One of the main priorities of the energy strategy of Russia is to develop new economically efficient and environmentally friendly technologies. At the moment more than 100 old pulverized coal boilers with steam capacity of 170--240 t/h need to be reconstructed. Modern requirements on pollution and the possibility of low-grade coal firing make the use of CFB technology attractive. This paper presents some results of an economic comparison and estimations of the power range vs typical Russian fuel quality. The authors compared different CFB technology modifications. As a result it was demonstrated that it would be feasible to use CFB boilers with simple impact ash collectors. Some technical data of boiler design for the Nesvetay thermal power plant (TPP) and Cherepetskay TPP are given. The prediction of CFB boiler operation parameters is based on CFB pilot data and results of the mathematical analysis.

  8. In-line particle measurement in a recovery boiler using high-speed infrared imaging

    NASA Astrophysics Data System (ADS)

    Siikanen, Sami; Miikkulainen, Pasi; Kaarre, Marko; Juuti, Mikko

    2012-06-01

    Black liquor is the fuel of Kraft recovery boilers. It is sprayed into the furnace of a recovery boiler through splashplate nozzles. The operation of a recovery boiler is largely influenced by the particle size and particle size distribution of black liquor. When entrained by upwards-flowing flue gas flow, small droplet particles may form carry-over and cause the fouling of heat transfer surfaces. Large droplet particles hit the char bed and the walls of the furnace without being dried. In this study, particles of black liquor sprays were imaged using a high-speed infrared camera. Measurements were done in a functional recovery boiler in a pulp mill. Objective was to find a suitable wavelength range and settings such as integration time, frame rate and averaging for the camera.

  9. SNAP-8 refractory boiler development program

    NASA Technical Reports Server (NTRS)

    Fuller, R. A.

    1974-01-01

    Performance and endurance tests of the SNAP-8, SN-1 refractory metal boiler are described. The tests were successful and indicated that the boiler heat transfer area could be reduced significantly primarily because of the wetting characteristics of mercury on tantalum in a contaminant-free environment. A continuous endurance test of more than 10,000 hours was conducted without noticeable change in the thermal performance of the boiler. A conclusion of the metallographic examination of the boiler following the endurance test was that expected boiler life would be of the order of 40,000 hours at observed corrosion rates.

  10. Corrosion of boiler tube alloys in refuse firing: Shredded vs bulk refuse

    SciTech Connect

    Krause, H.H. ); Daniel, P.L.; Blue, J.D. )

    1994-08-01

    Results of corrosion probe exposures at two mass burning incinerators were compared with those conducted in a unit burning refuse-derived fuel. Tests were conducted with carbon steel, low-alloy steels, stainless steels, and high nickel-chromium alloys. Corrosion rates at similar metal and gas temperatures were essentially the same for both types of fuel. Boiler tube performance in the waterwalls of other incinerators confirmed these results. Boiler design and operating conditions appear to be more important factors in tube wastage than the extent of refuse processing.

  11. Conversion of a black liquor recovery boiler to wood firing: A case history

    SciTech Connect

    Eleniewski, M.A.

    1994-12-31

    In 1983 a large integrated pulp and paper mill in southeastern United States retired an older chemical recovery boiler when it was replaced by a newer and larger unit as part of a mill expansion. At that time the mill was generating steam and power using wood waste, natural gas and black liquor, a common fuel mix for pulp mills. The retirement of the recovery boiler presented an opportunity for the mill and corporate engineering to evaluate various mixes of fuels for the mill.

  12. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 7, October, November, and December 1991

    SciTech Connect

    Haggard, R.W. Jr.

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NOx Control Project to fully establish that the coal reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NOx emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NOx emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  13. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 6, July--September, 1991

    SciTech Connect

    Not Available

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  14. Predictive modelling of boiler fouling

    SciTech Connect

    Not Available

    1992-01-01

    In this reporting period, efforts were initiated to supplement the comprehensive flow field description obtained from the RNG-Spectral Element Simulations by incorporating, in a general framework, appropriate modules to model particle and condensable species transport to the surface. Specifically, a brief survey of the literature revealed the following possible mechanisms for transporting different ash constituents from the host gas to boiler tubes as deserving prominence in building the overall comprehensive model: (1) Flame-volatilized species, chiefly sulfates, are deposited on cooled boiler tubes via the mechanism of classical vapor diffusion. This mechanism is more efficient than the particulate ash deposition, and as a result there is usually an enrichment of condensable salts, chiefly sulfates, in boiler deposits; (2) Particle diffusion (Brownian motion) may account for deposition of some fine particles below 0. 1 mm in diameter in comparison with the mechanism of vapor diffusion and particle depositions, however, the amount of material transported to the tubes via this route is probably small. (3) Eddy diffusion, thermophoretic and electrophoretic deposition mechanisms are likely to have a marked influence in transporting 0.1 to 5[mu]m particles from the host gas to cooled boiler tubes; (4) Inertial impaction is the dominant mechanism in transporting particles above 5[mu]m in diameter to water and steam tubes in pulverized coal fired boiler, where the typical flue gas velocity is between 10 to 25 m/s. Particles above 10[mu]m usually have kinetic energies in excess of what can be dissipated at impact (in the absence of molten sulfate or viscous slag deposit), resulting in their entrainment in the host gas.

  15. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility

    SciTech Connect

    Levasseur, Armand

    2014-04-30

    fuels, oxy-process variables and boiler design parameters. Significant improvement of CFD modeling tools and validation against 15 MWth experimental data has been completed. Oxy-boiler demonstration and large reference designs have been developed, supported with the information and knowledge gained from the 15 MWth testing. This report addresses the results from the 15 MWth testing in the BSF.

  16. Design considerations for sludge fired fluidized bed incinerator-cum-boiler

    SciTech Connect

    Bapat, D.W.; Vishwanathan, K.

    1997-12-31

    Thermal Limited, a major player in the field of Fluidized Bed Boilers in India, has supplied on a turnkey basis, three boilers each of 22.5 tons per hour capacity as a part of Cogeneration system for PT. South Pacific Viscose, Indonesia. The plant generates huge volumes of sludge from its effluent Treatment Plant (ETP). The sludge produced from the ETP has a moisture content of about 98%, which is subsequently reduced to about 78% using a decanter before feeding the sludge into the boiler. The waste sludge has a negative heating value ({minus}150 kcal/kg on NCV basis) and required coal as support fuel for burning. The plant`s requirement was to incinerate the entire sludge generated in the plant, which meant that nearly 50% of the fuel fed to the boiler consisted of the waste sludge. Additional requirements were to burn coal and oil as back-up fuels. This paper deals with the challenges encountered and various design features provided in the configuration of the incinerator-cum-boiler including conveying, feeding and spreading arrangement of the waste sludge for effective incineration in addition to burning coal and oil. Also included in the paper is a brief description of the automatic control logics for combustion control and bed temperature control.

  17. UKRAINIAN MULTI-FUEL REBURN DEMO

    EPA Science Inventory

    This research demonstrates a multi-fuel reburning system to allow the use of natural gas, fuel oil, or pulverized coal as the reburn fuel on a 300 MW wall-fired, we-bottom boiler in the Ukraine. The ability to use more than one fuel is critical to the success of reburning as a N...

  18. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  19. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    SciTech Connect

    Levasseur, Armand

    2014-04-30

    matrix of fuels, oxyprocess variables and boiler design parameters. Significant improvement of CFD modeling tools and validation against 15 MWth experimental data has been completed. Oxy-boiler demonstration and large reference designs have been developed, supported with the information and knowledge gained from the 15 MWth testing. The results from the 15 MWth testing in the BSF and complimentary bench-scale testing are addressed in this volume (Volume II) of the final report. The results of the modeling efforts (Volume III) and the oxy boiler design efforts (Volume IV) are reported in separate volumes.

  20. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000...

  1. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000...

  2. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000...

  3. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000...

  4. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000...

  5. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  6. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  7. Energy storage-boiler tank

    NASA Technical Reports Server (NTRS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-01-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  8. APPLICATION OF LIMB TO PULVERIZED COAL BOILERS - A SYSTEMS ANALYSIS: LIMESTONE FEED AND BOILER SYSTEMS

    EPA Science Inventory

    The report gives results of a systems analysis of the application of Limestone Injection Multistaged Burner (LIMB) technology to pulverized-coal boilers. It evaluates alternative limestone handling, preparation, and injection methods and boiler system impacts associated with LIMB...

  9. 5. North/northwest elevations of boiler stack and boiler room. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. North/northwest elevations of boiler stack and boiler room. Note tires on roof to reduce impact of brick work falling from stack. - Lowe Mill, Eighth Avenue, Southwest, Huntsville, Madison County, AL

  10. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  11. Development of the first demonstration CFB boiler for gas and steam cogeneration

    SciTech Connect

    Fang, M; Luo, Z.; Li, X.; Wang, Q.; Shi, Z.; Ni, M.; Cen, K.

    1997-12-31

    To solve the shortage of gas and steam supply in the small towns of the country, a new gas steam cogeneration system has been developed. On the basis of the fundamental research on the system, a demonstration gas steam cogeneration system has been designed. As the phase 1 of the project, a 75t/h demonstration CFB boiler for gas steam cogeneration has been erected and operated at Yangzhong Thermal Power Plant of China. This paper introduces the first 75t/h demonstration CFB boiler for gas steam cogeneration. Due to the need of gas steam cogeneration process, the boiler has the features of high temperature cyclone separation, high solid recycle ratio, staged combustion and an external heat exchanger adjusting bed temperature and heat load. The operation results show that the boiler has wide fuel adaptability and the heating value of the coal changes from 14MJ/Kg to 25MJ/Kg. The heat load changes from 85t/h to 28t/h while steam parameter is maintained at the normal conditions. The combustion efficiency of the boiler attain 98%. The boiler design and operation experiences may be a guide to the design and operation of larger CFB units in the future.

  12. Technology Solutions Case Study: Advanced Boiler Load Monitoring Controls, Chicago, Illinois

    SciTech Connect

    2014-09-01

    Most of Chicago’s older multifamily housing stock is heated by centrally metered steam or hydronic systems. The cost of heat is typically absorbed into the owner’s operating cost and is then passed to tenants. Central boilers typically have long service lifetimes; the incentive for retrofit system efficiency upgrades is greater than equipment replacement for the efficiency-minded owner. System improvements as the “low-hanging fruit” are familiar, from improved pipe insulation to aftermarket controls such as outdoor temperature reset (OTR) or lead/lag controllers for sites with multiple boilers. Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. In this project, the Building America team Partnership for Advanced Residential Retrofit (PARR) installed and monitored an ALM aftermarket controller, the M2G from Greffen Systems, at two Chicago area multifamily buildings with existing OTR control. Results show that energy savings depend on the degree to which boilers are oversized for their load, represented by cycling rates. Also, savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, oversized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less oversized boilers at another site showed muted savings.

  13. Unmanned boiler operation a reality in Europe

    SciTech Connect

    Ilg, E.

    1996-08-01

    With the rise in liquid level technology in Europe comes new standards for boiler operation. SMART technology for level probes and auxiliary equipment, means many European countries allow a boiler to operate completely unmanned (without operators) for up to 72 hours at a time. It is not just a level control system, but a total boiler control scheme. This incorporates level control, continuous TDS monitoring with blowdown, automatic timed bottom blowdown, feed water control, contamination detection systems for monitoring of incoming feed water, monitoring of exhaust stack temperatures, over pressure alarms and timed automatic blowdown of level pots. One of the main reasons for the development of the SMART equipment and the new boiler codes was to increase reliability of boiler operation. Surveys in Germany and England showed that almost 90 percent of boiler failures was due to operator error, this has almost been eliminated through the use of new equipment based on the new codes.

  14. Combustion performance of pyrolysis oil/ethanol blends in a residential-scale oil-fired boiler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 40 kWth oil-fired commercial boiler was fueled with blends of biomass pyrolysis oil (py-oil) and ethanol to determine the feasibility of using these blends as a replacement for fuel oil in home heating applications. An optimal set of test parameters was determined for the combustion of these blend...

  15. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial

  16. Comparative assessment of industrial-boiler options relative to air-emission regulations

    SciTech Connect

    Klepper, O.H.; Delene, J.G.; Drago, J.P.; Fox, E.C.; Kahl, W.K.; Thomas, J.F.

    1983-07-01

    The purpose of this work was to assist the DOE in its efforts to further advance environmental control technologies in the industrial coal use sector. A number of near-term technologies applicable to new boilers were evaluated to determine their technical and economic merits, and to identify needed research and development. In addition, sets of capital cost data were developed for the industrial steam supply options. The steam supply options comprise conventional pulverized-coal and stoker-fired boilers, atmospheric fluidized bed boilers, and low- and medium-Btu gas fueled units. Oil-fired boilers were included for comparison purposes. The consequences of potential future alterations of EPA's regulation of stack gas pollutants (NO/sub 2/, particulates, and SO/sub x/) were evaluated by analyzing the potential impact of ranges of emission levels for each of the DOE Regions. In each DOE region investigated, the steam from new coal-fired boilers is costlier than from oil for small size systems or those with a small capacity factor. The implication is that if coal is to displace oil/gas for new industrial boilers under free market conditions, then research and development should focus on developing small, low cost, direct combustion coal-fired systems. Development of lower cost emission controls appropriate for small boilers with moderate control requirements would be an important facet of this endeavor. For medium to large applications in regions using subbituminous, low-sulfur coal, demonstration and full commercialization of AFBCs would yield steam costs about 10% lower than for conventional coal-fired boilers. Central gasification may be useful for a group of small industrial users - the cost of medium-Btu gas approaches the cost of oil in some regions. On-site gasification is clearly uneconomic relative to direct coal firing.

  17. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1996-12-31

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn technology developed by the Babcock and Wilcox (B and W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be consideredd. The paper will describe B and W`s gas reburn data from a cyclone-equipped pilot facility (B and W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  18. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1997-07-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn. technology developed by the Babcock & Wilcox (B&W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be considered. The paper will describe B&W`s gas reburn data from a cyclone-equipped pilot facility (B&W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  19. Cycling of high-pressure-steam power-generating units with drum boilers. Final report

    SciTech Connect

    Frank, R.L.; Kelley, P.G.; Robinson, G.G.; Siddall, W.F.; White, A.O.

    1982-04-01

    In recent years, there has been an increased need to operate large fossil-fueled boilers in a cyclic mode. Such operation is unfortunately accompanied by a number of problems related to cyclic stresses, turndown limitations, energy losses, boiler-water quality, and control systems. Some success in dealing with these problems is being achieved through the use of variable-pressure operation, turbine bypasses, superheater bypasses, superheater division valves, firing-system modifications, and a number of miscellaneous design-modifications. Nevertheless, the need remains for further study of this topic. In the present study, the cyclic behavior of a boiler-turbine unit was investigated by both analytical and experimental methods. The main thrust of the study was the development of a new analytical model of transient boiler operation. This work was supplemented by a testing program at TVA's Widows Creek Station during which transient test-data was acquired on a cold start-up, a hot start-up, and a warm start-up. The development of the new analytical model included its formulation, implementation, validation, and documentation. The new analytical model is expected to be useful in many ways. It has already been used to identify critical boiler components during transient operation. In the future, the model can be used to determine the optimum operating procedures for boiler-turbine units engaged in cyclic duty and to develop design criteria for boilers intended for this service. The model can also serve as the basis for further model-development activities pertinent to both subcritical- and supercritical-pressure boilers.

  20. A FIELD TEST USING COAL:DRDF BLENDS IN SPREADER STOKER-FIRED BOILERS

    EPA Science Inventory

    This program was conducted to characterize and demonstrate the technical, economic, and environmental feasibility of combustion densified forms of refuse derived fuel (dRDF) blended with coal in spreader stoker-fired boilers. A total of 258.5 Mg (285 tons) of pelletized 1/2-inch-...

  1. DESTRUCTION OF HAZARDOUS WASTES COFIRED IN INDUSTRIAL BOILERS: PILOT-SCALE PARAMETRICS TESTING

    EPA Science Inventory

    Thermal destruction of wastes by direct incineration or by cofiring with conventional fuels in boilers, furnaces, or kilns is one of the most effective methods currently available for disposal of hazardous organic material. However, more information is needed on the potential for...

  2. CHARACTERIZATION OF AIR TOXICS FROM AN OIL-FIRED FIRETUBE BOILER

    EPA Science Inventory

    Tests were conducted on a commercially available firetube package boiler running on #2 through #6 oils to determine the emissions levels of hazardous air pollutants (HAPs) from the combustion of four fuel oils. Flue gas was sampled to determine levels of volatile and semivolatile...

  3. Stress-Assisted Corrosion in Boiler Tubes

    SciTech Connect

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  4. 6. VIEW WESTINTERIOR OF BOILER SHOP SECTION OF THE BETHLEHEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW WEST-INTERIOR OF BOILER SHOP SECTION OF THE BETHLEHEM STEEL COMPANY SHIPYARD BLACKSMITH SHOP/BOILER SHOP. - Bethlehem Steel Company Shipyard, Blacksmith Shop-Boiler Shop, 1201-1321 Hudson Street, Hoboken, Hudson County, NJ

  5. 2. VIEW SOUTHWESTNORTH ELEVATION OF BOILER SHOP SECTION OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST-NORTH ELEVATION OF BOILER SHOP SECTION OF THE BETHLEHEM STEEL COMPANY SHIPYARD BLACKSMITH SHOP/BOILER SHOP. - Bethlehem Steel Company Shipyard, Blacksmith Shop-Boiler Shop, 1201-1321 Hudson Street, Hoboken, Hudson County, NJ

  6. Looking east at the boiler water treatment tank located off ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at the boiler water treatment tank located off the west wall of the boiler house. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  7. 7. VIEW EASTINTERIOR OF BOILER SHOP SECTION OF THE BETHLEHEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW EAST-INTERIOR OF BOILER SHOP SECTION OF THE BETHLEHEM STEEL COMPANY SHIPYARD BLACKSMITH SHOP/BOILER SHOP. - Bethlehem Steel Company Shipyard, Blacksmith Shop-Boiler Shop, 1201-1321 Hudson Street, Hoboken, Hudson County, NJ

  8. 12. Forward end of Boiler Room showing open firing doors ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Forward end of Boiler Room showing open firing doors for boilers. Note ladderway retracted overhead by which firemen entered and left Boiler Room. Coal ejectors shown at extreme left of view. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  9. Advanced, Low/Zero Emission Boiler Design and Operation

    SciTech Connect

    Babcock Illinois State Geological; Worley Parsons; Parsons Infrastructure /Technology Group

    2007-06-30

    In partnership with the U.S. Department of Energy's National Energy Technology Laboratory, B&W and Air Liquide are developing and optimizing the oxy-combustion process for retrofitting existing boilers as well as new plants. The main objectives of the project is to: (1) demonstrate the feasibility of the oxy-combustion technology with flue gas recycle in a 5-million Btu/hr coal-fired pilot boiler, (2) measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection and flue gas recycle strategies, and (3) perform technical and economic feasibility studies for application of the technology in demonstration and commercial scale boilers. This document summarizes the work performed during the period of performance of the project (Oct 2002 to June 2007). Detailed technical results are reported in corresponding topical reports that are attached as an appendix to this report. Task 1 (Site Preparation) has been completed in 2003. The experimental pilot-scale O{sub 2}/CO{sub 2} combustion tests of Task 2 (experimental test performance) has been completed in Q2 2004. Process simulation and cost assessment of Task 3 (Techno-Economic Study) has been completed in Q1 2005. The topical report on Task 3 has been finalized and submitted to DOE in Q3 2005. The calculations of Task 4 (Retrofit Recommendation and Preliminary Design of a New Generation Boiler) has been completed in 2004. In Task 6 (engineering study on retrofit applications), the engineering study on 25MW{sub e} unit has been completed in Q2, 2008 along with the corresponding cost assessment. In Task 7 (evaluation of new oxy-fuel power plants concepts), based on the design basis document prepared in 2005, the design and cost estimate of the Air Separation Units, the boiler islands and the CO{sub 2} compression and trains have been completed, for both super and ultra-supercritical case study. Final report of Task-7 is published by DOE in Oct 2007.

  10. Ash formation, deposition, corrosion, and erosion in conventional boilers

    SciTech Connect

    Benson, S.A.; Jones, M.L.

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  11. Wood/coal cofiring in industrial stoker boilers

    SciTech Connect

    Cobb, J.T. Jr.; Elder, W.W.; Freeman, M.C.

    1999-07-01

    Realizing that a significant reduction in the global emissions of fossil carbon dioxide may require the installation of a wide variety of control technologies, options for large and small boilers are receiving attention. With over 1,500 coal-fired stoker boilers in the US, biomass co-firing is of interest, which would also open markets for waste wood which is presently landfilled at significant costs ranging from $20--200/ton. While much cofiring occurs inside the fence, where industrial firms burn wastes in their site boilers, other opportunities exist. Emphasis has been placed on stoker boilers in the northeastern US, where abundant supplies of urban wood waste are generally known to exist. Broken pallets form a significant fraction of this waste. In 1997, the cofiring of a volumetric mixture of 30% ground broken pallet material and 70% coal was demonstrated successfully at the traveling-grate stoker boilerplant of the Pittsburgh Brewing Company. Fourteen test periods, with various wood/coal mixtures blended on site, and two extended test periods, using wood/coal mixtures blended at the coal terminal and transported by truck to the brewery, were conducted. The 30% wood/70% coal fuel was conveyed through the feed system without difficulty, and combusted properly on the grate while meeting opacity requirements with low SO{sub 2} and NO{sub x} emissions. Efforts are underway to commercialize a wood/coal blend at the brewery, to identify specific urban wood supplies in the Pittsburgh region and to conduct a demonstration at a spreader stoker.

  12. 46 CFR 109.555 - Propulsion boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  13. 46 CFR 109.555 - Propulsion boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  14. 46 CFR 109.555 - Propulsion boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  15. 46 CFR 109.555 - Propulsion boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  16. 46 CFR 109.555 - Propulsion boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  17. Baghouse cleans flyash from boiler exhaust

    SciTech Connect

    Not Available

    1981-02-01

    A large baghouse installation recently started up on the boilerhouse of the Avtex Fibers Inc. rayon plant in Front Royal, Virginia. The baghouse removes 99.7% of the flyash particulate from the combustion fumes of five coal-fired boilers. The boilers have a combined capacity of one million lb/h of steam. Emissions from the plant are well below EPA limitations.

  18. 30 CFR 56.13030 - Boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., automatic pressure-relief valves, blowdown piping, and other safety devices approved by the American Society... and Pressure Vessel Code, 1977, Published by the American Society of Mechanical Engineers. Section and... Care of Power Boilers (2) The National Board Inspection Code, a Manual for Boiler and Pressure...

  19. Application of RBC burners in 220 t/h boilers in Xinhua Power Plant

    SciTech Connect

    Li Zhengqi; Sun Shaozeng; Sun Rui; Chen Lizhe; Wang Zhijin; Wu Shaohua; Qin Yukun

    1997-12-31

    The Radial Bias Combustion (RBC) pulverized coal burner was developed to simultaneously solve five problems, i.e. combustion efficiency, flame stability, slagging, high temperature corrosion of furnace wall tube metal and NOx emission, that existed in firing low grade Chinese coal. It was developed for wall fired systems. A RBC burner is usually facilitated in the following way: A fuel enricher of high enriching ratio is installed in the fuel transport channel which separates radially the fuel air stream into two streams of proper fuel concentration. The fuel-rich stream injects through the fuel nozzles, forming a high temperature annular core just outside the recirculation zone in the center of the flame; the fuel-lean stream injects through the fuel lean nozzles outside fuel rich flame and blanketing high temperature flame core with an out layer of more oxidizing atmosphere. RBC burners have been applied to the retrofit of coal burners of No.1 and No.2 boilers in the Xinhua Power Plant. These boilers are high pressure ones of 220 t/h rated steam capacity which were retrofitted from oil fired boilers. Prior to the retrofit with RBC burners, flame stability was very poor. It needed auxiliary fuel oil to enhance its stability at 70--80% rated capacity. NOx emissions did not meet environmental regulations. Satisfactory results have been obtained after the retrofit. Flame stability has been improved a great deal. The minimum load without auxiliary fuel has reached 40%. Furthermore, RBC burners raised the combustion efficiency. Lastly, NOx emission have been abated and meet Chinese legislation.

  20. Boiler briquette coal versus raw coal: Part II--Energy, greenhouse gas, and air quality implications.

    PubMed

    Zhang, J; Ge, S; Bai, Z

    2001-04-01

    The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO2 emission, a 17% reduction in CO emission, a 63% reduction in SO2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM10. These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM10 mass emission and a 9-16% increase in fuel cost. PMID:11321910

  1. Effect of combustion catalyst on the operation efficiency of steam boilers

    NASA Astrophysics Data System (ADS)

    Kapustyanskii, A. A.

    2014-09-01

    The state of the energy market of the Ukraine is analyzed. The priority of using local, low-grade solid fuel according to its flame combustion in power boilers of thermal power plants and heat and power plants in the short-term perspective is proven. Data of expert tests of boilers of TPP-210A, BKZ-160-100, BKZ-210-140, Ep-670-140, and TGM-84 models with the investigation of the effect of the addition of combustion catalyst into primary air duct on their operation efficiency are represented. Positive results are attained by burning the anthracite culm or its mixture with lean coal in all range of operating loads of boilers investigated. The possibility to eliminate the consumption of "backlighting" high-reactive fuel (natural gas or fuel oil) and to operate at steam loads below the technical minimum in the case of burning nonproject coal is given. Problems of the normalization of liquid slag run-out without closing the boiler taphole are solved.

  2. Reduction of Nitrogen Oxides Emissions from a Coal-Fired Boiler Unit

    NASA Astrophysics Data System (ADS)

    Zhuikov, Andrey V.; Feoktistov, Dmitry V.; Koshurnikova, Natalya N.; Zlenko, Lyudmila V.

    2016-02-01

    During combustion of fossil fuels a large amount of harmful substances are discharged into the atmospheres of cities by industrial heating boiler houses. The most harmful substances among them are nitrogen oxides. The paper presents one of the most effective technological solutions for suppressing nitrogen oxides; it is arrangement of circulation process with additional mounting of the nozzle directed into the bottom of the ash hopper. When brown high-moisture coals are burnt in the medium power boilers, generally fuel nitrogen oxides are produced. It is possible to reduce their production by two ways: lowering the temperature in the core of the torch or decreasing the excess-air factor in the boiler furnace. Proposed solution includes the arrangement of burning process with additional nozzle installed in the lower part of the ash hopper. Air supply from these nozzles creates vortex involving large unburned fuel particles in multiple circulations. Thereby time of their staying in the combustion zone is prolonging. The findings describe the results of the proposed solution; and recommendations for the use of this technological method are given for other boilers.

  3. Investigating the effects of JP-8 use in heating plant boilers. Final report, June 1990-July 1991

    SciTech Connect

    Tichenor, L.B.; Shaaban, A.H.; Mayfield, H.T.

    1991-12-01

    The object of this project was to investigate the operational and environmental effects associated with burning aviation fuel JP-8 in traditional heating plant boilers. JP-8 was compared to 2 fuel oil and diesel fuel in small-scale testing at tyndall AFB FL and diesel fuel in full-scale testing at McClellan AFB CA. System performance was evaluated with respect to the boilers' thermal efficiencies, fuel pump and burner pump performance, and environmentally significant combustion products. The operational performance of JP-8, in comparison with DF-2 and fuel oil, was satisfactory, with fuel to steam conversion ranging from 7 percent less with JP-8 to performance that exceeded that of 2 fuel oil and DF-2. The calculated theoretical drop in heat output when switching from DF-2 or 2 fuel oil to JP-8 is approximately 10 percent, based on the energy value of the fuels. Stack emissions showed a significant drop in SOx with JP-8, and lower values of NOx and particulate. There was negligible difference between the organic measurements among the full-scale test conditions. The research conducted in support of this effort was designed to provide guidance to the base civil engineer and the boiler operator to allow safe, efficient, and environmentally clean operation of existing systems with JP-8.

  4. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 13, April--June 1993

    SciTech Connect

    Not Available

    1993-09-15

    The coal reburning for cyclone boiler NO{sub x} control system consists of commercially available equipment, such as a pulverizer, burners, a pneumatic coal transfer system, overfire air ports and a control system, all of which are well proven, reliable equipment that can be readily installed. Extensive power plant modification is not required to implement the reburn technology which will increase the potential for commercialization. The coal reburning technology will be a desirable alternative for cyclone boiler NO{sub x} control by offering: (1) A technically and economically feasible low-NO{sub x} alternative for cyclone boilers to achieve a 50% to 60% NO{sub x} reduction where one currently does not exist. (2) Significant reductions in emission-levels of oxides of nitrogen achieved at a low capital cost and very low operating costs (compared to the SCR technology). (3) No need for a supplemental fuel. Reburn will be carried out using the present boiler fuel which is coal. (4) A system that will maintain boiler reliability, operability, and steam production performance after retrofit. The coal reburning for cyclone boiler NO{sub x} control demonstration project will be carried out at the Nelson Dewey Station Unit No. 2 of Wisconsin Power and Light in Cassville, Wisconsin.

  5. Study of the mineral matter distribution in pulverized fuel coals with respect to slag deposit formation in boiler furnaces. Phase 1. Final report, 1 April 1976-30 June 1980

    SciTech Connect

    Austin, L.G..; Moza, A.K.; Abbott, M.F.; Singh, S.N.; Trimarchi, T.J.

    1980-07-01

    The work reported here is aimed at understanding the initiation of upper wall slag deposits in pulverized coal fired utility boilers, and characterizing pulverized coals for the mineral elements of significance. A scanning electron microscope with x-ray fluorescence capability, under computer control, has been used to analyze individual coal particles for the elements Si, Al, Ca, Fe and S. The required software for these analyses has been developed, as have suitable sample preparation techniques. The results show many different types of particles to exist in pulverized coal, some of which are likely to be bad-acting in terms of slagging. A test has been developed to study the sticking of melted pellets of ash or mineral matter dropped onto a metal substrate held at a controlled temperature. It was found that for a given drop composition and substrate material there is a substrate temperature below which the drop will not adhere. At higher substrate temperatures the strength of adhesion increases logarithmically. Sticking appears to be a function of the oxidation of the surface or of alkalies deposited on the surface. If the drop composition is such that material absorbed from the substrate fluxes the drop-substrate interface, then the apparent contact angle is reduced and sticking is enhanced, and vice-versa. A small-scale pulverized coal furnace designed to give a uniform temperature-time history for each particle was reconstructed and tested. Water-cooled probes were found to give the most accurate control of initial probe temperature. Deposits initiate on the probe in a few minutes, and the fall of probe temperature can be used to indicate the growth of deposit. Systematic investigation of the particles initiating the deposit have not yet been performed.

  6. BPACK -- A computer model package for boiler reburning/co-firing performance evaluations. User`s manual, Volume 1

    SciTech Connect

    Wu, K.T.; Li, B.; Payne, R.

    1992-06-01

    This manual presents and describes a package of computer models uniquely developed for boiler thermal performance and emissions evaluations by the Energy and Environmental Research Corporation. The model package permits boiler heat transfer, fuels combustion, and pollutant emissions predictions related to a number of practical boiler operations such as fuel-switching, fuels co-firing, and reburning NO{sub x} reductions. The models are adaptable to most boiler/combustor designs and can handle burner fuels in solid, liquid, gaseous, and slurried forms. The models are also capable of performing predictions for combustion applications involving gaseous-fuel reburning, and co-firing of solid/gas, liquid/gas, gas/gas, slurry/gas fuels. The model package is conveniently named as BPACK (Boiler Package) and consists of six computer codes, of which three of them are main computational codes and the other three are input codes. The three main codes are: (a) a two-dimensional furnace heat-transfer and combustion code: (b) a detailed chemical-kinetics code; and (c) a boiler convective passage code. This user`s manual presents the computer model package in two volumes. Volume 1 describes in detail a number of topics which are of general users` interest, including the physical and chemical basis of the models, a complete description of the model applicability, options, input/output, and the default inputs. Volume 2 contains a detailed record of the worked examples to assist users in applying the models, and to illustrate the versatility of the codes.

  7. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, February 15, 1992--August 15, 1992

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  8. Fuel cell/gas turbine integration

    SciTech Connect

    Knickerbocker, T.

    1995-10-19

    The Allison Engine Company`s very high efficiency fuel cell/advanced turbine power cycle program is discussed. The power cycle has the following advantages: high system efficiency potential, reduced emissions inherent to fuel cells, unmanned operation(no boiler) particularly suited for distributed power, and existing product line matches fuel cell operating environment. Cost effectiveness, estimates, and projections are given.

  9. Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit

    SciTech Connect

    D'Aciermo, J.; Richards, H.; Spindler, F.

    1983-10-01

    A process for utilizing anthracite culm in a fluidized bed combustion system was demonstrated by the design and construction of a prototype steam plant at Shamokin, PA, and operation of the plant for parametric tests and a nine month extended durability test. The parametric tests evaluated turndown capability of the plant and established turndown techniques to be used to achieve best performance. Throughout the test program the fluidized bed boiler durability was excellent, showing very high resistence to corrosion and erosion. A series of 39 parametric tests was performed in order to demonstrate turndown capabilities of the atmospheric fluidized bed boiler burning anthracite culm. Four tests were performed with bituminous coal waste (called gob) which contains 4.8 to 5.5% sulfur. Heating value of both fuels is approximately 3000 Btu/lb and ash content is approximately 70%. Combustion efficiency, boiler efficiency, and emissions of NO/sub x/ and SO/sub 2/ were also determined for the tests.

  10. Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler

    NASA Astrophysics Data System (ADS)

    Brazdil, Marian; Pospisil, Jiri

    2013-07-01

    The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.

  11. Subsystem selection for advanced low emission boiler system

    SciTech Connect

    Rodgers, L.W.; Farthing, G.A.; Gorrell, R.L.

    1993-12-31

    In 1992 the Pittsburgh Energy Technology Center (PETC) initiated a new program called Combustion 2000. The purpose of the program was to address the design issues facing new and replacement coal-fired power plants. The work presented in this paper was conducted under the low-emission boiler system (LEBS) portion of the program. LEBS major goals are: NO{sub x} - No more than 0.20 lbs per million Btu of fuel input firing bituminous coal; SO{sub x} -- no more than 0.2 lbs of SO{sub 2} per million Btu firing coal with at least 3 lbs of sulfur per million btu; Particulate -- no more than 0.015 lbs per million Btu of fuel input; Waste and Air Toxics -- reduced; and Plant Efficiency -- no less than 38%. Other objectives include reducing waste generation, producing usable by-products, improving ash disposability, and increasing plant thermal efficiency while keeping the cost of electricity comparable to a state-of-the-art plant. The Babcock and Wilcox Company has completed the first year of work toward the development of an advanced low-emission boiler system (LEBS). The results of this work have led to a preliminary engineering design and a plan to address remaining technical uncertainties. This was accomplished by conducting a thorough technical assessment and performing a concept selection analysis. A summary of the results of this work is presented in this paper.

  12. Looking east at the west wall of the boiler house, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at the west wall of the boiler house, boiler water treatment tank, and waste gas stack. Water tower is to the left of the boiler house. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  13. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  14. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  15. Retrofitted coal-fired firetube boiler and method employed therewith

    DOEpatents

    Wagoner, C.L.; Foote, J.P.

    1995-07-04

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

  16. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  17. Retrofitted coal-fired firetube boiler and method employed therewith

    DOEpatents

    Wagoner, Charles L.; Foote, John P.

    1995-01-01

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

  18. 46 CFR 63.25-7 - Exhaust gas boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a)...

  19. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  20. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  1. 24. VIEW OF FIRING AISLE OF EAST BOILER ROOM LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF FIRING AISLE OF EAST BOILER ROOM LOOKING SOUTH. BOILERS 900 AND 901 ARE ON THE RIGHT, BOILERS 902, 903, AND 904 ARE ON THE LEFT. NOTE REMAINS OF THE LARRY CAR TRACK SYSTEM FOR TRANSFERRING COAL TO BOILER HOPPERS ABOVE THE AISLE. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  2. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  3. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping

    NASA Astrophysics Data System (ADS)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.

  4. Design report: Low NOx burners for package boilers. Final report, May 1985-March 1989

    SciTech Connect

    Brown, R.A.; Dehne, H.; Eaton, S.; Mason, H.B.; Torbov, S.

    1990-01-01

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The burner utilizes two-stage combustion in a deep staging mode in which a precombustor firing substoichiometrically is retrofitted to the front of the boiler. The completion of the combustion in the second stage is achieved through sidefire air ports to be retrofitted to the boiler. The precombustor is a cylindrical shell of 2.1 m internal diameter fabricated of lightweight refractory blocks with a Saffil based coating. This material gives a lightweight, non-regenerative precombustor which can adapt to the start-up, shutdown, and load following transients typical of industrial boilers. The precombustor is designed for the capacity range of 15-29 MW heat input. A modular design using annular spool sections adapts to different design loads within this range. For larger loads, a geometric scale-up is required. Design data are also given for 59 MW capacity.

  5. Using closed-loop dynamic optimization to improve boiler efficiency at Chemopetrol's Litvinov Plant

    SciTech Connect

    Jarc, C.A.; Lang, R.

    1998-07-01

    Due to ever increasing demands by shareholders, environmental and governmental agencies, and customers, power generation and co-generating companies are looking more and more into advanced technologies to help them gain an edge on their competitors. Intelligent empirical optimization is a promising family of technologies to tune boilers for maximum efficiency and/or minimum emissions. A recent project teamed the Ultramax Corporation and Honeywell to install an on-line, closed-loop optimization solution on four new boilers at the Chemopetrol plant in Litvinov, Czech Republic, Honeywell has created an engineered solution called Individual Boiler Optimization (IBO) which utilizes the Ultramax Method and Dynamic Optimization, known as ULTRAMAX{reg{underscore}sign}, to optimize combustion of the boilers which are controlled by Honeywell's TotalPlant{reg{underscore}sign} solutions (TPS) System. IBO provides a real-time shell providing for automatic Ultramax operation in either open or closed-loop. With this system, Chemopetrol will be able to improve their boiler efficiency and NO{sub x} emissions on-line with little operator intervention. It can safely maintain best operating settings and compensate for changes that could potentially cause poor performance. The integrated dynamic solution enables greater emissions control fuel savings, and the ability to respond rapidly and flexibly to changes in operating conditions, compliance regulations and plant demands.

  6. METHANE de-NOX for Utility PC Boilers

    SciTech Connect

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable

  7. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    SciTech Connect

    Baxter, L.L.; Miles, T.R.; Miles, T.R. Jr.; Jenkins, B.M.; Dayton, D.C.; Milne, T.A.; Bryers, R.W.; Oden, L.L.

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  8. Experimental research on rice husk combustion in CFB boiler and the design of a 35 t/h rice husk-fired CFB boiler

    SciTech Connect

    Chen Guanyi; Fang Mengxiang; Luo Zhongyang; Li Xuantian; Shi Zhenglun; Cen Kefa; Ni Mingjiang

    1997-12-31

    The fluidization and transportation properties of rice husk have been studied on a cold model bed of inner diameter 120 mm. The ignition and combustion characteristics of rice husk mixed with coal have also been studied in a 1 MW experimental circulating fluidized bed (CFB) system. The conclusions, drawn on the basis of these experiments, are found to be very useful for the design of a 35 tons per hour CFB boiler firing this biomass fuel.

  9. Boiler efficiency methodology for solar heat applications

    NASA Astrophysics Data System (ADS)

    Maples, D.; Conwell, J. C.; Pacheco, J. E.

    1992-08-01

    This report contains a summary of boiler efficiency measurements which can be applied to evaluate the performance of steam-generating boilers via both the direct and indirect methods. This methodology was written to assist industries in calculating the boiler efficiency for determining the applicability and value of thermal industrial heat, as part of the efforts of the Solar Thermal Design Assistance Center (STDAC) funded by Sandia National Laboratories. Tables of combustion efficiencies are enclosed as functions of stack temperatures and the amount of carbon dioxide and carbon monoxide in the gas stream.

  10. How safe is your fuel?

    SciTech Connect

    Farrow, R.J.

    1995-12-31

    This paper focuses on the incidents that can cause premature ignition of fuels used in industrial boilers, especially fuels that are the byproducts of the main activity of the industry. The sections refer to solid fuels, liquid fuels and gaseous fuels, and accidents that have caused serious damage not only to the equipment, but have led to severe damage to major portions of the installation. The solid fuels include the traditional coals, the more recent expansion of subbituminous coals into common industrial use, wood byproducts and trash-to-energy fuels. Included are methods to safeguard the preparation, conveyance and ignition of the fuels. Liquid fuels are the various grades of fuel oil as well as solids dispersed in a liquid medium. Gaseous fuels are natural gas, butane, and propane. This paper is focused on the amount of energy that has been released in fuel processing, delivery, and abnormal firing conditions.

  11. LOW NOX, HIGH EFFICIENCY MULTISTAGED BURNER: GASEOUS FUEL RESULTS

    EPA Science Inventory

    The paper discusses the evaluation of a multistaged combustion burner design on a 0.6 MW package boiler simulator for in-furnace NOx control and high combustion efficiency. Both deep air staging, resulting in a three-stage configuration, and boiler front wall fuel staging of undo...

  12. WOOD WASTE AS A POWER PLANT FUEL IN THE OZARKS

    EPA Science Inventory

    The report discusses the testing program conducted on a chain-grate stoker boiler with a blended coal and wood waste fuel. The boiler was designed to produce 18,000 lb/hr of saturated steam at 150 psig. The objective of the tests was to determine the difference, if any, in the pe...

  13. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  14. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  15. Technology Solutions Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts

    SciTech Connect

    2014-11-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency, which faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68°F) than day (73° F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  16. Demonstration of Orimulsion{reg{underscore}sign} reburning on a coal-fired utility boiler

    SciTech Connect

    Rostorfer, C.R.; Krueger, S.; Payne, R.

    1998-07-01

    This paper provides a summary of the Orimulsion Reburn Demonstration Project recently conducted at Illinois Power's Hennepin Power Station during September through November 1997. The demonstration consisted of three major activities: Modify the Hennepin Station Unit 1 boiler for Orimulsion reburn; Deliver Orimulsion fuel to the Station on the Illinois River via double-hulled barge; and Conduct the demonstration through a series of parametric and duration tests. Hennepin Station Unit 1 was selected to host the demonstration because it had been the site of a US DOE Clean Coal Technology (CCT) Program involving natural gas reburn in the early 1990s. Consequently, the modifications required for the Orimulsion reburn system were relatively minor since penetrations in the boiler walls existed and overfire air and flue gas recirculation fans and ducts were still in place. The reburn fuel system was designed and installed to transfer the Orimulsion from the barge and inject it into the boiler. A double-hulled barge was used to transport about 16,500 barrels of Orimulsion to the plant on the Mississippi and Illinois Rivers and served as the storage facility during the testing. Illinois bituminous coal provided approximately 80% of the unit's heat input, with Orimulsion providing approximately 20%. The objective of the project was to demonstrate NO{sub x} reductions of up to 65% from the original baseline levels with no unexpected impacts on boiler performance or operation.

  17. Superheater Corrosion Produced By Biomass Fuels

    SciTech Connect

    Sharp, William; Singbeil, Douglas; Keiser, James R

    2012-01-01

    About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

  18. Experiences with hydrazine substitutes in boiler systems

    SciTech Connect

    Costa, S.T.; Dilcer, S.B.; Walker, J.L. )

    1990-07-01

    Several case histories are given to show the improved results obtained when strong passivating agents replace hydrazine in load-following boilers. Feedwater iron and copper levels obtained with hydrazine and with the new stronger reducing agents are compared.

  19. Exploiting the On-Campus Boiler House.

    ERIC Educational Resources Information Center

    Woods, Donald R.; And Others

    1986-01-01

    Shows how a university utility building ("boiler house") is used in a chemical engineering course for computer simulations, mathematical modeling and process problem exercises. Student projects involving the facility are also discussed. (JN)

  20. Boiler scale prevention employing an organic chelant

    DOEpatents

    Wallace, Steven L.; Griffin, Jr., Freddie; Tvedt, Jr., Thorwald J.

    1984-01-01

    An improved method of treating boiler water which employs an oxygen scavenging compound and a compound to control pH together with a chelating agent, wherein the chelating agent is hydroxyethylethylenediaminetriacetic acid.

  1. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  2. Investigations on the Behavior of HVOF and Cold Sprayed Ni-20Cr Coating on T22 Boiler Steel in Actual Boiler Environment

    NASA Astrophysics Data System (ADS)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya; Karthikeyan, J.

    2012-01-01

    High temperature corrosion accompanied by erosion is a severe problem, which may result in premature failure of the boiler tubes. One countermeasure to overcome this problem is the use of thermal spray protective coatings. In the current investigation high velocity oxy-fuel (HVOF) and cold spray processes have been used to deposit commercial Ni-20Cr powder on T22 boiler steel. To evaluate the performance of the coatings in actual conditions the bare as well as the coated steels were subjected to cyclic exposures, in the superheater zone of a coal fired boiler for 15 cycles. The weight change and thickness loss data were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface and cross-sectional field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) and x-ray mapping techniques were used to analyse the as-sprayed and corroded specimens. The HVOF sprayed coating performed better than its cold sprayed counterpart in actual boiler environment.

  3. Boiler burden reduced at Bedford site.

    PubMed

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation. PMID:22049674

  4. Combustion characteristics and NO formation for biomass blends in a 35-ton-per-hour travelling grate utility boiler.

    PubMed

    Li, Zhengqi; Zhao, Wei; Li, Ruiyang; Wang, Zhenwang; Li, Yuan; Zhao, Guangbo

    2009-04-01

    Measurements were taken for a 35-ton-per-hour biomass-fired travelling grate boiler. Local mean concentrations of O(2), CO, SO(2) and NO gas species and gas temperatures were determined in the region above the grate. For a 28-ton-per-hour load, the mass ratios of biomass fly ash and boiler slag were 42% and 58%, the boiler efficiency was 81.56%, and the concentrations of NO(x) and SO(2) at 6% O(2) were 257 and 84 mg/m(3). For an 18-ton-per-hour load, the fuel burning zone was nearer to the inlet than it was for the 28-ton-per-hour load, and the contents of CO and NO in the fuel burning zone above the grate were lower. PMID:19091555

  5. Assessment of control technologies for reducing emissions of SO sub 2 and NOx from existing coal-fired utility boilers. Final report, January 1987-December 1989

    SciTech Connect

    White, D.M.; Maibodi, M.

    1990-09-01

    The report reviews available information and estimated costs on 15 emission control technology categories applicable to existing coal-fired electric utility boilers. The categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies still undergoing pilot scale and commercial demonstration. The status of each technology is reviewed relative to four elements: Description--how the technology works; Applicability--its applicability to existing plants; Performance--the expected emissions reduction; and Costs--the capital cost, busbar cost, and cost per ton of SO2 and NOx removed. Costs are estimated for new and retrofit applications for various boiler sizes, operating characteristics, fuel qualities, and boiler retrofit difficulties.

  6. Foster Wheeler compact CFB boiler with INTREX

    SciTech Connect

    Hyppaenen, T.; Rainio, A.; Kauppinen, K.V.O.; Stone, J.E.

    1997-12-31

    Foster Wheeler has introduced a new COMPACT Circulating Fluidized Bed (CFB) boiler design based on the rectangular hot solids separator. The Compact design also enables easy implementation of new designs for INTREX fluid bed heat exchangers. These new products result in many benefits which affect the boiler economy and operation. After initial development of the Compact CFB design it has been applied in demonstration and industrial scale units. The performance of Compact CFB has been proved to be equivalent to conventional Foster Wheeler CFB has been proved to be equivalent to conventional Foster Wheeler CFB boilers with high availability. Several new Foster Wheeler Compact boilers are being built or already in operation. Operational experiences from different units will be discussed in this paper. There are currently Compact units with 100--150 MW{sub e} capacity under construction. With the scale-up experience with conventional CFB boilers and proven design approach and scale-up steps, Foster Wheeler will have the ability to provide large Compact CFB boilers up to 400--600 MW{sub e} capacity.

  7. Assessment of physical workload in boiler operations.

    PubMed

    Rodrigues, Valéria Antônia Justino; Braga, Camila Soares; Campos, Julio César Costa; Souza, Amaury Paulo de; Minette, Luciano José; Sensato, Guilherme Luciano; Moraes, Angelo Casali de; Silva, Emília Pio da

    2012-01-01

    The use of boiler wood-fired is fairly common equipment utilized in steam generation for energy production in small industries. The boiler activities are considered dangerous and heavy, mainly due to risks of explosions and the lack of mechanization of the process. This study assessed the burden of physical labor that operators of boilers are subjected during the workday. Assessment of these conditions was carried out through quantitative and qualitative measurements. A heart rate monitor, a wet-bulb globe thermometer (WBGT), a tape-measure and a digital infrared camera were the instruments used to collect the quantitative data. The Nordic Questionnaire and the Painful Areas Diagram were used to relate the health problems of the boiler operator with activity. With study, was concluded that the boiler activity may cause pains in the body of intensity different, muscle fatigue and diseases due to excessive weight and the exposure to heat. The research contributed to improve the boiler operator's workplace and working conditions. PMID:22316759

  8. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains a minimum of 231 citations and includes a subject term index and title list.)

  10. Economical Comporison PC and CFB Boilers for Retrofit and New Power Plants in Russia

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.

    According to the investment programmes of Russian electricity generating companies increased attention is paid to reconstruction and building new coal TPP. The typical projects are 225, 330 and 600 MW blocks for combustion of different domestic coals. VTI had made technical and economical comparison of CFB and PC boilers for existing and perspective (European) standards of particles, NOx and SOx emissions, according to the data of the prehminary designs and investments in new power plants of 225 and 330 MW. As the basis for technical and economical evaluations was used comparison data of metal-capacity of PC and boilers, emissions-control systems and material-handling systems, with paying attention to the exact suggestions of the boiler producers. The results of the comparisons (capital costs and O&M costs) are discussed in the paper. The most perspective fuels for combustion in CFB boilers are: anthracite culm, coals of the Pechora area, lean coals of Kuznetsk, brown coals of near Moscow, brown coals of Urals and Far East, and also the wastes of coal preparations, peat, shells and biomass. A good composition could be made from Kuznetsk coals and coals of Pechora area. Brown coals are combusted very good in suitable conditions for firing biomass and peat. Also allowed co-combustion with the wastes of coal preparations for the low reactivity fuels such as anthracite culm and lean coals. The diversification of the fuel supply is an essential advantage of CFB boilers. The CFB boiler installations are rather new for the conditions of Russian Federation. For decreasing the technical risks, first installations should be supplied by engineering or license of leading foreign companies with rather big part of their participation. One of important tasks is development of the typical projects, which would allow decreasing not only capital costs, but also decrease time of project realization. The project of the new Block #9 330MW with OTU boiler of Novocherkassk TPP is the

  11. Technology assessment: Municipal solid waste as a utility fuel

    NASA Astrophysics Data System (ADS)

    Neparstek, M. I.; Cymny, G. A.

    1982-05-01

    This study updates a 1974 EPRI technology assessment of municipal solid waste (MSW) as a utility fuel. An independent and consistent assessment of the development status and conceptual design and economics is presented for the following refuse-to-electricity technologies; mass burning of MSW in a dedicated boiler; preparation of coarse RDF and firing in a dedicated boiler; preparation of wet RDF and firing in a dedicated boiler; preparation of fluff RDF and cofiring with coal in a utility boiler; and preparation of dust RDF and cofiring with coal in a utility boiler. The generated steam is used to drive a turbine-generator and produce electricity. Utility ownership and financing are assumed for the coal-fired power plant used for RDF cofiring and the turbine generators driven by refuse-generated steam. Municipal ownership is assumed for the RDF preparation facilities and the MSW mass burning and RDF-fired dedicated boilers.

  12. Correlating benzene, total hydrocarbon and carbon monoxide emissions from wood-fired boilers

    SciTech Connect

    Hubbard, A.J.; Grande, D.E.; Berens, J.R.; Piotrowski, J.

    1997-12-31

    Hazardous air pollutants, including benzene, are generated by the incomplete combustion of fuels. Organic compound emissions, which are generally products of incomplete combustion, are reduced by promoting high quality combustion, for example by controlling furnace exit temperatures and establishing minimum residence times. Monitoring carbon monoxide (CO) emissions is important since the amount of carbon monoxide emitted represents the quality of combustion which in turn represents the amount of hazardous air pollutants being generated. Total hydrocarbon (THC) emissions are also related to the quality of combustion. Recently the Wisconsin Department of Natural Resources (DNR) measured the benzene and total hydrocarbon emissions from two large industrial wood fired boilers. These boilers are located at Tenneco Packaging, a container board manufacturing facility in northern Wisconsin. Temperature, oxygen and carbon monoxide concentrations were sampled continuously by Tenneco Packaging`s emission monitoring system. The Department`s team used an organic vapor analyzer to continuously measure concentrations of total hydrocarbons (THC). The Department`s team also used a modified USEPA Method 18 sampling train to capture organic vapors for subsequent analysis by gas chromatography. The data show correlations between benzene and carbon monoxide, and between benzene and THC concentrations. The emissions sampling occurred both upstream of the particulate emissions control system as well as at the stack. The CO variations during actual boiler operation appeared to be well correlated with changes in boiler steam load. That is, increases in CO generally accompanied a change, either up or down, in boiler load. Lower concentrations of CO were associated with stable combustion, as indicated by periods of constant or nearly constant boiler load.

  13. The partitioning of calcium and sulfur between bottom ash and flyash in a commercial CFB boiler

    SciTech Connect

    Rozelle, P.L.; Pisupati, S.V.; Morrison, J.L.; Scaroni, A.W.

    1999-07-01

    As part of a program to examine the effect of sorbent properties on sulfation performance in the circulating fluidized bed (CFB) combustion process, a series of sorbents varying in chemical composition was tested under similar operating conditions in a 30 MW(e) CFB boiler. These sorbents ranged from 27.8 to 55.2 wt% CaO, and from 0.54 to 18.8 wt% MgO. The fuel used was a high ash content (68 wt%) coal refuse. Parameters of boiler operation were established from distributed control system data, used to screen test results, and data were eliminated from consideration where changes in boiler load or bed inventory levels were seen prior to sampling of bottom ash and flyash streams. This, and the development of a set of simultaneous equations for measuring individual ash stream flow rates, allowed the computation of calcium and sulfur material balances around the boiler for each sorbent test. The partitioning of calcium and sulfur to the bottom ash and flyash streams was examined. It was found that the majority of both calcium and sulfur fed to the boiler was removed with the flyash, regardless of the sorbent. It was further found that across the range of sorbent properties, the flow of sulfur as a solid with the flyash was relatively uniform (71 to 86 wt% of that fed to the boiler). Calcium to sulfur ratios in the bottom ash were uniformly higher than those found for the corresponding flyash streams, indicating that attrition may play a key role in overall sorbent performance. The calcium balance data also indicated that thermally induced fractures (TIFs) may affect attrition.

  14. Development of a FI CIRC{trademark} fluidized bed boiler to burn waste tires

    SciTech Connect

    Dervin, C.; Waldron, D.J.; Haas, J.C.

    1997-12-31

    Disposal of tires is becoming a problem due to higher landfill charges and environmental concerns. Typically tires have a higher calorific value than coal, contain less nitrogen, ash, and sulfur than most coals and are a potential source of energy for power and process steam generation. In 1995 a Fines Circulating (FI CIRC{trademark}) fluidized bed boiler was selected to burn tires for a project in the city of Fulton, Illinois. Fuels ranging from Petroleum Coke to Brown coal had already been successfully fired in commercial plants and preliminary pilot plant testing showed no problems in firing tires. During the development of the project, financiers raised concerns about the optimum fuel size, combustion characteristics, removal of wires from the fluidized bed, and the control of emissions from the plant. A testing program was devised which included hot and cold pilot plant testing to evaluate the characteristics of firing shredded tires. The results and the impact on the boiler design are presented.

  15. ENVIRONMENTAL ASSESSMENT OF A COMMERCIAL BOILER FIRED WITH A COAL/WASTE PLASTIC MIXTURE. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report gives results of comprehensive emissions testing and laboratory analyses of a stoker-fired commercial boiler firing a coal/waste plastic mixture. In one test, the unit fired its typical coal fuel; in the other, shredded waste polyethylene terephthalate (PET) beverage b...

  16. ENVIRONMENTAL ASSESSMENT OF A COMMERCIAL BOILER FIRED WITH A COAL/WASTE PLASTIC MIXTURE. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    The report gives results of comprehensive emissions testing and laboratory analyses of a stoker-fired commercial boiler firing a coal/waste plastic mixture. In one test, the unit fired its typical coal fuel; in the other, shredded waste polyethylene terephthalate (PET) beverage b...

  17. Finessing fuel fineness

    SciTech Connect

    Storm, R.F.

    2008-10-15

    Most of today's operating coal plants began service at least a generation ago and were designed to burn eastern bituminous coal. A switch to Powder River Basin coal can stress those plants' boiler systems, especially the pulverisers, beyond their design limits and cause no end of operational and maintenance problems. Many of those problems are caused by failing to maintain good fuel fineness when increasing fuel throughput. This article concerns the proper management of the fuel component of the combustion equation in an eight step plan. 8 figs.

  18. Composition and methods for improved fuel production

    SciTech Connect

    Steele, Philip H.; Tanneru, Sathishkumar; Gajjela, Sanjeev K.

    2015-12-29

    Certain embodiments of the present invention are configured to produce boiler and transportation fuels. A first phase of the method may include oxidation and/or hyper-acidification of bio-oil to produce an intermediate product. A second phase of the method may include catalytic deoxygenation, esterification, or olefination/esterification of the intermediate product under pressurized syngas. The composition of the resulting product--e.g., a boiler fuel--produced by these methods may be used directly or further upgraded to a transportation fuel. Certain embodiments of the present invention also include catalytic compositions configured for use in the method embodiments.

  19. NOx Control for Utility Boiler OTR Compliance

    SciTech Connect

    Hamid Farzan; Jennifer L. Sivy

    2005-07-30

    Babcock & Wilcox Power Generation Group (B&W) and Fuel Tech, Inc. (Fuel Tech) teamed to evaluate an integrated solution for NO{sub x} control comprised of B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a selective non-catalytic reduction (SNCR) technology, capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu. In a previous project sponsored by the U.S. Department of Energy (DOE), promising results were obtained with this technology from large-scale testing in B&W's 100-million Btu/hr Clean Environment Development Facility (CEDF) which simulates the conditions of large coal-fired utility boilers. Under the most challenging boiler temperatures at full load conditions, NO{sub x} emissions of 0.19 lb/10{sup 6} Btu were achieved firing Powder River Basin coal while controlling ammonia slip to less than 5 ppm. At a 40 million Btu/hr firing rate, NO{sub x} emissions were as low as 0.09 lb/10{sup 6} Btu. Improved performance with this system was proposed for this new program with injection at full load via a convective pass multiple nozzle lance (MNL) in front of the superheater tubes or in the convective tube bank. Convective pass lances represent the current state-of-the-art in SNCR and needed to be evaluated in order to assess the full potential of the combined technologies. The objective of the program was to achieve a NO{sub x} level below 0.15 lb/10{sup 6} Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B&W's DRB-4Z{reg_sign} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign} System. Commercial installations of B&W's low-NO{sub x} burner, in combination with overfire air ports using PRB coal, have demonstrated a NO{sub x} level of 0.15 to 0.2 lb/10{sup 6} Btu under staged combustion conditions. The proposed goal of the combustion system (no SNCR) for this project is a NO

  20. Boiler wood ash as a soil amendment

    SciTech Connect

    Mitchell, C.C.

    1996-12-31

    Each of the 88 pulp and paper mills in the southeastern United States produces an average of 43 t of boiler ash daily (47 US tons). Forty percent is wood ash, 5% is coal ash, and the remaining is a combination ash. An analysis of boiler ash from 14 Alabama pulp and paper mills averaged 38% CaCO3 equivalent with a dry density of 500 kg m{sup -3}. Most agricultural soils in the southeastern US require periodic application of ground limestone in order to maintain productivity. Using boiler wood ash and combination ash as an alternative to ground limestone is agronomically productive, environmentally safe, and fiscally sound for both the ash producer and the landowner/ farmer. While plant, nutrient content of ash is variable, it should be considered as an incidental source of plant nutrients for field crops. Metals and phytotoxic components are very low. Extensive research has been reported on the value and safety of wood-fired boiler ashes. Nevertheless, research and development projects continue in efforts to assure safe use of boiler wood ash as an alternative soil liming material.

  1. Boiler MACT Technical Assistance (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012. This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.

  2. Looking north at the stokers for boilers numbers 1 through ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking north at the stokers for boilers numbers 1 through 4. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  3. Looking south at the ash disposal hoppers for boilers numbers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at the ash disposal hoppers for boilers numbers 1 through 6. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  4. View of the rear of the electrical department & boiler ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the rear of the electrical department & boiler house, behind the upper shops - Johnson Steel Street Rail Company, Electrical Department & Boiler House, 525 Central Avenue, Johnstown, Cambria County, PA

  5. 1. VIEW OS SOUTH FRONT OF BOILER HOUSE, WITH SCALE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OS SOUTH FRONT OF BOILER HOUSE, WITH SCALE STICK, SHOWING HEAVY SCALES OFFICE TO LEFT, LOOKING NORTH - Marvine Colliery, Boiler House No. 2, West side Boulevard Avenue, between East Parker Street & Route 380, Scranton, Lackawanna County, PA

  6. 1. VIEW TO EAST, WITH BOILER HOUSE TO LEFT, FILTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO EAST, WITH BOILER HOUSE TO LEFT, FILTH HOIST HOUSE TO RIGHT, WITH ENGINE HOUSE AT RIGHT REAR. - Providence Sewage Treatment System, Ernest Street Pumping Station, Boiler House, Ernest Street & Allens Avenue, Providence, Providence County, RI

  7. 3. NORTH ELEVATION OF BOILER HOUSE; PARTIAL NORTH ELEVATION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. NORTH ELEVATION OF BOILER HOUSE; PARTIAL NORTH ELEVATION OF ENGINE HOUSE, LEFT REAR. - Providence Sewage Treatment System, Ernest Street Pumping Station, Boiler House, Ernest Street & Allens Avenue, Providence, Providence County, RI

  8. BOILER SHOP, NORTH END, WITH DROP PIT IN FOREGROUND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILER SHOP, NORTH END, WITH DROP PIT IN FOREGROUND AND SP 2902 PASSENGER CAR UNDER RESTORATION, LOOKING SOUTHEAST. - Southern Pacific, Sacramento Shops, Boiler Shop, 111 I Street, Sacramento, Sacramento County, CA

  9. 32. VIEW OF BASEMENT BELOW BOILER 904 LOOKING SOUTHEAST AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW OF BASEMENT BELOW BOILER 904 LOOKING SOUTHEAST AT TURBINE DRIVEN FORCED DRAFT FAN FOR BOILER 904. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  10. Looking south at boiler feedwater pumps (steam turbine pump on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at boiler feedwater pumps (steam turbine pump on left, electric motor pump on right). - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  11. 38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Photocopy of photograph. STEEL PLANT, BOILERS UNDER CONSTRUCTION IN BOILER PLANT LOCATED EAST OF MAIN STEEL PLANT, 1909. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  12. 4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND SOUTH OF ORIGINAL STEAM PLANT BOILERS, FROM SOUTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  13. BOILERS COFIRING HAZARDOUS WASTE: EFFECTS OF HYSTERESIS ON PERFORMANCE MEASUREMENTS

    EPA Science Inventory

    The Hazardous Waste Engineering Research Laboratory (HWERL) has conducted full scale and pilot scale boiler testing to determine hazardous waste destruction and removal efficiencies (DRE's) and other associated boiler performance parameters during the last five years. The effort ...

  14. Corrosion fatigue boiler tube failures in waterwalls and economizers

    SciTech Connect

    McNabb, D.; Sidey, D. )

    1992-04-01

    Corrosion fatigue is a cracking mechanism initiating on the inside surface of water-touched boiler tubing at locations subject to high fatigue stresses, usually at pressure/nonpressure attachments. The mechanism is considered one of the last major sources of boiler tube failures in subcritical drum-type boilers without a root cause solution. The Electric Power Research Institute initiated a study to derive solutions to corrosion fatigue for in-service boilers and guidelines for the design of new boilers. The study consisted of a number of tasks including a survey of industry experience, field testing, theoretical stress analysis, and laboratory testing. The present volume summarizes the survey results. Ten subcritical drum-type boilers participated in the survey. The procedure involved a review of maintenance and boiler water chemistry history, and a detailed inspection of the boiler.

  15. Looking northwest at central boiler house, with 16" skelp mill ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking northwest at central boiler house, with 16" skelp mill furnace building in foreground. - U.S. Steel National Tube Works, Central Boiler House, Along Monongahela River, McKeesport, Allegheny County, PA

  16. 3. Partial view of SE sides of Boiler Building (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Partial view of SE sides of Boiler Building (left), Incineration Building (to right of stack) and Machine Shop (right). - Pacific Creosoting Plant, Boiler Building, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  17. 6. View along E wall of Engine Room, Boiler House ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View along E wall of Engine Room, Boiler House and Pattern Room. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Engine Boiler & Pattern Building, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  18. 14. Door leading from Boiler Room to Pattern Room. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Door leading from Boiler Room to Pattern Room. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Engine Boiler & Pattern Building, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  19. 5. N elevation of Engine Room, Boiler House and Pattern ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. N elevation of Engine Room, Boiler House and Pattern Room. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Engine Boiler & Pattern Building, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  20. 11. Interior view of Engine Room and Boiler House showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view of Engine Room and Boiler House showing wall buttress. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Engine Boiler & Pattern Building, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  1. 2. S. elevation of Engine Room, Boiler House and Pattern ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. S. elevation of Engine Room, Boiler House and Pattern Room. - Central of Georgia Railway, Savannah Repair Shops & Terminal Facilities, Engine Boiler & Pattern Building, Bounded by West Broad, Jones, West Boundary & Hull Streets, Savannah, Chatham County, GA

  2. EVALUATION OF LIME PRECIPITATION FOR TREATING BOILER TUBE CLEANING WASTES

    EPA Science Inventory

    The report gives results of an evaluation of lime precipitation for treating boiler tube cleaning wastes. In this project, wastewater samples were collected from six boiler tubeside chemical cleanings, using complexing and chelating agents. The samples represented: (1) ammoniacal...

  3. 36. REDUCTION PLANT CLOSE VIEW OF FURNACE AND BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. REDUCTION PLANT - CLOSE VIEW OF FURNACE AND BOILER Reduction Plant furnace and boiler used to provide heat for drying the fish and fish offal, in their conversion to meal. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  4. 3. GENERAL VIEW OF BOILER ROOM, LOOKING NORTH; CONTROL PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW OF BOILER ROOM, LOOKING NORTH; CONTROL PANEL AT CENTER; BOXLIKE, RIVETED HOUSING AT TOP CENTER CONTAINED AUGER FOR COAL DISTRIBUTION SYSTEM - Rath Packing Company, Boiler Room, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  5. 2. EAST SIDE; COAL ASH FROM BOILERS WAS BLOWN INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST SIDE; COAL ASH FROM BOILERS WAS BLOWN INTO TANK AT RIGHT, THEN DROPPED INTO RAIL CARS FOR REMOVAL - Rath Packing Company, Boiler Room, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  6. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  7. Determining heat loss into the environment based on comprehensive investigation of boiler performance characteristics

    NASA Astrophysics Data System (ADS)

    Lyubov, V. K.; Malygin, P. V.; Popov, A. N.; Popova, E. I.

    2015-08-01

    A refined procedure for determining heat loss into the environment from heat-generating installations is presented that takes into account the state of their lining and heat insulation quality. The fraction of radiative component in the total amount of heat loss through the outer surfaces is determined. The results from experimental investigations of the thermal engineering and environmental performance characteristics of a foreign hot-water boiler in firing wood pellets are presented. A conclusion is drawn about the possibility of using such hot-water boilers for supplying heat to low-rise buildings, especially for the conditions of the North-Arctic region. The results from a thermal engineering investigation of wood pellets and furnace residue carried out on installations of a thermal analysis laboratory are presented together with the grain-size composition of fuel and indicators characterizing the mechanical strength of wood pellets. The velocity fields, flue gas flow rates, and soot particle concentrations are determined using the external filtration methods, and the composition of combustion products is investigated using a gas analyzer. The graphs of variation with time of boiler external surface temperature from the moment of achieving the nominal mode of operation and heat loss into the environment for stationary boilers are presented.

  8. Operating experience of 75 t/h two stage circulating fluidized bed boiler

    SciTech Connect

    Tang, M.S.; Li, X.; Liu, D.C.

    1999-07-01

    Two 2-stage circulating fluidized bed combustion boilers have been put into operation in the Pacific Ocean Cogeneration Company for 3 years. After being put into operation these boilers had the following problems: Steam Capacity was less than the design value; Fly ash collecting efficiency of the two stage separators was lower, resulting in lower combustion efficiency and higher coal consumption; Refractory bricks of the furnace roof frequently fell off; and Bed temperature at the low part of the combustion chamber was higher than 1,050 C, resulting in lower de-SO{sub x} efficiency. In order to improve combustion efficiency, save fuel and prolong the duration of runs, the following technology improvements have been adopted: Replacing the second stage louver separator with two horizontal louver cyclone separators. This improved the fly ash collecting efficiency; and An additional membrane wall is placed at the furnace roof to support the refractory bricks, prevent refractory bricks from falling off, and prolong the duration of runs. After these improvements, the boiler can run stably at design conditions and the boiler efficiency reaches 80.1%, 5 percentage points higher than before; the bed temperature can be controlled in the range of 900{approximately}950 C; the refractory bricks of the furnace roof have not fallen off.

  9. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2014-09-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  10. Cost-effectiveness Analysis on Measures to Improve China's Coal-fired Industrial Boiler

    DOE PAGESBeta

    Liu, Manzhi; Shen, Bo; Han, Yafeng; Price, Lynn; Xu, Mingchao

    2015-08-01

    Tackling coal-burning industrial boiler is becoming one of the key programs to solve the environmental problem in China. Assessing the economics of various options to address coal-fired boiler is essential to identify cost-effective solutions. This paper discusses our work in conducting a cost-effectiveness analysis on various types of improvement measures ranging from energy efficiency retrofits to switch from coal to other fuels in China. Sensitivity analysis was also performed in order to understand the impacts of some economic factors such as discount rate and energy price on the economics of boiler improvement options. The results show that nine out ofmore » 14 solutions are cost-effective, and a lower discount rate and higher energy price will result in more energy efficiency measures being cost-effective. Both monetary and non-monetary barriers to energy-efficiency improvement are discussed and policies to tackle these barriers are recommended. Our research aims at providing a methodology to assess cost-effective solutions to boiler problems.« less

  11. Cost-effectiveness Analysis on Measures to Improve China's Coal-fired Industrial Boiler

    SciTech Connect

    Liu, Manzhi; Shen, Bo; Han, Yafeng; Price, Lynn; Xu, Mingchao

    2015-08-01

    Tackling coal-burning industrial boiler is becoming one of the key programs to solve the environmental problem in China. Assessing the economics of various options to address coal-fired boiler is essential to identify cost-effective solutions. This paper discusses our work in conducting a cost-effectiveness analysis on various types of improvement measures ranging from energy efficiency retrofits to switch from coal to other fuels in China. Sensitivity analysis was also performed in order to understand the impacts of some economic factors such as discount rate and energy price on the economics of boiler improvement options. The results show that nine out of 14 solutions are cost-effective, and a lower discount rate and higher energy price will result in more energy efficiency measures being cost-effective. Both monetary and non-monetary barriers to energy-efficiency improvement are discussed and policies to tackle these barriers are recommended. Our research aims at providing a methodology to assess cost-effective solutions to boiler problems.

  12. Computer simulation of the fire-tube boiler hydrodynamics

    NASA Astrophysics Data System (ADS)

    Khaustov, Sergei A.; Zavorin, Alexander S.; Buvakov, Konstantin V.; Sheikin, Vyacheslav A.

    2015-01-01

    Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  13. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, P.M.

    1979-12-27

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  14. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  15. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  16. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  17. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  18. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  19. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  20. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  1. 23. VIEW FROM CATWALK OF EAST BOILER ROOM LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW FROM CATWALK OF EAST BOILER ROOM LOOKING NORTH. BOILERS 900 AND 901 ARE ON THE LEFT, BOILERS 902 AND 903 ARE ON THE RIGHT. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  2. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  3. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter...

  4. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  5. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  6. Overview of Boiler House and Sheet Metal and Electrical Shops ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Boiler House and Sheet Metal and Electrical Shops Building (center - with single large chimney), note the monitor on the original section of the Boiler House Building, view facing north - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  7. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  8. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  9. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  10. 35. VIEW LOOKING EAST IN SOUTH END OF EAST BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VIEW LOOKING EAST IN SOUTH END OF EAST BOILER ROOM. CYLINDRICAL TANKS ARE WORTHINGTON DEAERATORS. THESE REMOVED AIR FROM BOILER FEED WATER TO MINIMIZE CORROSION AND PITTING OF THE BOILER TUBES. AIR REMOVAL ALSO HELPED AVOID THE FORMATION OF FOAM IN THE SYSTEM. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  11. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air and boilers; general. 77.411... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  12. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  13. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested... testing requirements for boilers are contained in § 61.05 in subchapter F of this chapter....

  14. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  15. 46 CFR 109.205 - Inspection of boilers and machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  16. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Boilers and process heaters....

  17. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  18. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Boilers and process heaters....

  19. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Boilers and process heaters....

  20. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Boilers and process heaters....

  1. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  2. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  3. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Boilers and process heaters....

  4. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  5. Experimental Investigations of the Energy and Environmental Indices of Operation of a Low-Capacity Combined Gas Producer and Hot-Water Boiler

    NASA Astrophysics Data System (ADS)

    Bodnar, L. A.; Stepanov, D. V.; Dovgal‧, A. N.

    2015-07-01

    It has been shown that the introduction of combined gas producers and boilers on renewable energy sources is a pressing issue. A structural diagram of a low-capacity combined gas producer and boiler on renewable energy sources has been given; a bench and procedures for investigation and processing of results have been developed. Experimental investigations of the energy and environmental indices of a 40-kW combined gas producer and hotwater boiler burning wood have been carried out. Results of the experimental investigations have been analyzed. Distinctive features have been established and a procedure of thermal calculation of the double furnace of a lowcapacity combined gas producer and boiler burning solid fuel has been proposed. The calculated coefficients of heat transfer from the gases in the convection bank have been compared with the obtained experimental results. A calculation dependence for the heat transfer from the gases in convection banks of low-capacity hot-water boilers has been proposed. The quantities of harmful emissions from the combined gas producer and boiler on renewable energy sources have been compared with the existing Ukrainian and foreign standards. It has been established that the environmental efficiency of the boiler under study complies with most of the standard requirements of European countries.

  6. Design of a 350 MWe CFB boiler

    SciTech Connect

    Darling, S.L.; Li, X.

    1997-12-31

    Circulating fluidized bed (CFB) boilers have been in operation for many years in industrial steam and power generation applications, primarily in the 50--100 MWe size range. Recently, several utility-scale CFB boilers have entered service and several others are under construction, in the 150--250 MWe size range. The next step for CFB technology is the 350 MWe size range. This paper will describe Foster Wheeler`s utility CFB experience, scale-up philosophy and the major design features of the 350 MWe CFB design.

  7. Compact CFB: The next generation CFB boiler

    SciTech Connect

    Utt, J.

    1996-12-31

    The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.

  8. Transients in a circulating fluidized bed boiler

    NASA Astrophysics Data System (ADS)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  9. Super low NO.sub.x, high efficiency, compact firetube boiler

    DOEpatents

    Chojnacki, Dennis A.; Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Korenberg, Jacob

    2005-12-06

    A firetube boiler furnace having two combustion sections and an in-line intermediate tubular heat transfer section between the two combustion sections and integral to the pressure vessel. This design provides a staged oxidant combustion apparatus with separate in-line combustion chambers for fuel-rich primary combustion and fuel-lean secondary combustion and sufficient cooling of the combustion products from the primary combustion such that when the secondary combustion oxidant is added in the secondary combustion stage, the NO.sub.x formation is less than 5 ppmv at 3% O.sub.2.

  10. Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  11. Development of an advanced high efficiency coal combustor for boiler retrofit

    SciTech Connect

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  12. Operation and maintenance experience of the Shamokin and Wilkes-Barre fluid bed boilers

    SciTech Connect

    Bersani, A.A.; Laukaitis, J.F.

    1986-01-01

    During the past 150 years, the anthracite coal industry of Northeastern Pennsylvania has deposited, above ground, approximately 1 billion tons of refuse, disfiguring the landscape and generally polluting the environment. Anthracite refuse is made up of breaker refuse or culm, silt, mine refuse and tunnel rock. Culm, containing appreciable amounts of carbon, is essentially a low quality, low cost, alternate energy source. This fuel with its high ash content, low heating value and generally high moisture content is considered to be a feasible fuel for a fluidized bed boiler.

  13. Industrial Fuel Flexibility Workshop

    SciTech Connect

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  14. Automated boiler combustion controls for emission reduction and efficiency improvement. Quarterly report, August 15--November 15, 1995

    SciTech Connect

    1995-12-31

    Control Techtronics International (CTI) is conducting a project to reduce air emissions and increase efficiency in coal fired boilers in Krakow, Poland and to create a commercial venture in Poland which can act as a leader for efficient combustion in boilers throughout the region. To achieve the technical goals of the project, CTI will use a three part program as follows: analyze the fuel specifications of a given plant and recommend modifications as necessary; apply automatic combustion controls systems to the boilers; and train plant operators in proper plant operation as well as proper use of control systems. To achieve the commercial goals, CTI will form a commercial venture in Poland to market and service the CTI program after successful demonstration.

  15. High Temperature Behavior of Cr3C2-NiCr Coatings in the Actual Coal-Fired Boiler Environment

    NASA Astrophysics Data System (ADS)

    Bhatia, Rakesh; Sidhu, Hazoor Singh; Sidhu, Buta Singh

    2015-03-01

    Erosion-corrosion is a serious problem observed in steam-powered electricity generation plants, and industrial waste incinerators. In the present study, four compositions of Cr3C2-(Ni-20Cr) alloy coating powder were deposited by high-velocity oxy-fuel spray technique on T-91 boiler tube steel. The cyclic studies were performed in a coal-fired boiler at 1123 K ± 10 K (850 °C ± 10 °C). X-ray diffraction, scanning electron microscopy/energy dispersive X-ray analysis and elemental mapping analysis techniques were used to analyze the corrosion products. All the coatings deposited on T-91 boiler tube steel imparted hot corrosion resistance. The 65 pctCr3C2 -35 pct (Ni-20Cr)-coated T-91 steel sample performed better than all other coated samples in the given environment.

  16. Design and experience with utility-scale CFB boilers

    SciTech Connect

    Darling, S.L.; Hennenfent, M.

    1995-12-31

    Circulating fluidized bed (CFB) boilers have been in operation for many years in industrial steam and power generation applications, primarily in the 50-100 MWe range. In the past few years, however, several utility-scale CFB boilers have entered service. The scale-up of the Foster Wheeler Pyropower, Inc. CFB boilers has proceeded smoothly, and today FWPI CFB boilers up to 180 MWe are in operation, two 235 MWe boilers are now under construction, and other large units are in the design stage.

  17. Digital radiographic systems detect boiler tube cracks

    SciTech Connect

    Walker, S.

    2008-06-15

    Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

  18. Micronized coal solves mushroom grower's boiler headaches

    SciTech Connect

    Reason, J.

    1984-03-01

    A brief account is given of a Utah mushroom grower who has replaced two underfeed stoker-fired boilers requiring 7 attendants by an ultra-fine pulverised coal-fired system. The coal is ground in a proprietary rotary grinder to 80% through a 325-mesh screen. Information is presented on the mill and the special refractory burners required.

  19. Microphone Detects Boiler-Tube Leaks

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.

    1985-01-01

    Unit simple, sensitive, rugged, and reliable. Diaphragmless microphone detects leaks from small boiler tubes. Porous plug retains carbon granules in tube while allowing pressure changes to penetrate to granules. Has greater life expectancy than previous controllers and used in variety of hot corrosive atmospheres.

  20. Is That Boiler Ready To Blow?

    ERIC Educational Resources Information Center

    Robinson, Glenn S.; Trombley, Robert E.

    2001-01-01

    Discusses implementation of a thorough assessment program to determine the condition of boilers, pressure vessels and other plant equipment to determine the feasibility of part or entire system replacement. Assessment basics are examined as are tips for selecting the right inspection and engineering contractor for assessments. (GR)

  1. 30 CFR 57.13030 - Boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Stamp for Safety and Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers §...

  2. 30 CFR 57.13030 - Boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Stamp for Safety and Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers §...

  3. 30 CFR 56.13030 - Boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control System for Repairers of... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers §...

  4. 30 CFR 57.13030 - Boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Stamp for Safety and Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers §...

  5. 30 CFR 56.13030 - Boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control System for Repairers of... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers §...

  6. 30 CFR 56.13030 - Boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control System for Repairers of... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers §...

  7. 30 CFR 56.13030 - Boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control System for Repairers of... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers §...

  8. 30 CFR 57.13030 - Boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Stamp for Safety and Safety Relief Valves D-VR2Outline of Basic Elements of Written Quality Control... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers §...

  9. New thinking for the boiler room.

    PubMed

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction. PMID:18822819

  10. Final test report on the combustion of solvent-refined coal in a 100 hp firetube boiler

    SciTech Connect

    Pan, Y.S.; Wieczenski, D.E.; Snedden, R.B.; Bellas, G.T.; Joubert, J.I.; Curio, A.R.; Wildman, D.J.

    1982-01-01

    Although solid Solvent-Refined Coal (SRC-I) was burned successfully in a coal-designed utility boiler in 1977, the feasibility of using this fuel in more compact oil- or gas-designed units at signficantly higher heat liberation rates remained uncertain. Combustion tests were conducted at the Pittsburgh Energy Technology Center using a 100 hp (3450 lb of steam per hour) firetube boiler, designed to burn No. 6 oil. The fuel was produced at an SRC pilot plant in Wilsonville, Alabama, from high-sulfur Kentucky coal, and 0.8% sulfur and 0.3% ash. In the combustion tests, SRC was fed to the boiler in three different physical forms: (1) a slurry composed of 70% by weight SRC-I process solvent and 30% by weight solid SRC pulverized to 92% minus 200 mesh; (2) a molten liquid at approx. 600/sup 0/F, using superheated steam at 800/sup 0/F for atomization, and preheated combustion air at 400/sup 0/F in a conventional oil burner; and (3) a solid, pulverized to 90% minus 325 mesh, using preheated secondary combustion air at 550/sup 0/F. The slurry and molten forms were burned at full boiler load at a heat liberation rate of 184,000 Btu/ft/sup 3/-hr. Carbon conversion efficiencies were generally 99.7% or greater, and boiler efficiencies were about 82%, the same as when burning No. 6 fuel oil. The pulverized SRC was burned at approx. 50% of full boiler load (1656 to 1803 lb of steam per hour) due to the limitations on the burner that was available. Carbon conversion efficiencies ranged from 98.6 to 99.6%, and boiler efficiency again was about 82%. The test results indicate that SRC-I, including the solid form, can probably be burned without derating in larger oil-designed industrial boilers of watertube design. Such units usually operate at heat liberation rates in the range of 25,000-50,000 Btu/ft/sup 3/-hr, significantly lower than rates employed in these tests.

  11. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Final project report

    SciTech Connect

    Not Available

    1994-02-01

    As part of the US Department of Energy`s (DOE`s) Innovative Clean Coal Technology Program, under Round 2, a project for Full Scale Demonstration of Coal Reburning for Cyclone Boiler Nitrogen Oxide (NO{sub x},) Control was selected. DOE sponsored The Babcock & Wilcox (B&W) Company, with Wisconsin Power & Light (WP&L) as the host utility, to demonstrate coal reburning technology at WP&L`s 110 MW{sub c}, cyclone-fired Unit No.2 at the Nelson Dewey Generating Station in Cassville, Wisconsin. The coal reburning demonstration was justified based on two prior studies. An Electric Power Research Institute (EPRI) and B&W sponsored engineering feasibility study indicated that the majority of cyclone-equipped boilers could successfully apply reburning technology to reduce NO{sub x}, emissions by 50 to 70%. An EPRI/Gas Research Institute (GRI)/B&W pilot-scale evaluation substantiated this conclusion through pilot-scale testing in B&W`s 6 million Btu/hr Small Boiler Simulator. Three different reburning fuels, natural gas, No. 6 oil, and pulverized coal were tested. This work showed that coal as a reburning fuel performs nearly as well as gas/oil without deleterious effects of combustion efficiency. Coal was selected for a full scale demonstration since it is available to all cyclone units and represents the highest level of technical difficulty-in demonstrating the technology.

  12. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1995-12-31

    The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.

  13. A study of LNCFS III coal burners on boiler waterwall tube wastage

    SciTech Connect

    Abbott, R.C.; Gordon, C.M.; Saunders, M.M.; Bray, A.J.

    1996-07-01

    Ultrasonic Testing (UT) of waterwall tubing of a tangentially-fired, sub-critical boiler at Milliken Station of New York State Electric and Gas (NYSEG) was undertaken to determine the effects of the newly installed low NO{sub x} firing system on waterwall tube wastage. During a 1993 outage, the pulverized coal-fired boiler was equipped with an ABB CE Low NO, Concentric Firing System (LNCFS) of the third generation (III) including Staged Overfire Air (SOFA) and a coal pulverizing system capable of improving mill fineness by approximately 30 percent. The study was in conjunction with a Department of Energy Clean Coal Demonstration Project. Three separate thickness, surveys were compared using the Electric Power Research Institute`s (EPRI) Boiler Maintenance Workstation (BMW). The Tube Condition Module of BMW compared a total of 20,556 test locations of the three surveys. The evaluations of the surveys indicate that the short-term effect of low NO{sub x} firing with LNCFS III and increased fineness has moderately reduced the remaining life of the carbon steel boiler tubing in selected locations of the waterfall. Approximately 5 percent of the test locations are experiencing an annual tube wastage of 0.008 inches or greater. Additional testing and analyses are recommended to better understand the longer term effects of the low NO{sub x} firing system and the wastage of selected tubing The influence of boiler operating parameters, such as cyclic duty, proportioning of secondary air, or fuel changes, on waterwall tube wastage should also be evaluated over a longer operating period.

  14. Residual carbon from pulverized coal fired boilers 1: Size distribution and combustion reactivity

    SciTech Connect

    Hurt, R.H.; Gibbins, J.R.

    1994-08-01

    The amount of residual, or unburned, carbon in fly ash is an important concern in the design and operation of pulverized coal-fired boilers. Char oxidation is the slowest step in the coal combustion process, and the rate at which this heterogeneous reaction-proceeds has an important effect on the degree of carbon burnout. There is an extensive literature on char combustion kinetics based on data in the early and intermediate stages of carbon conversion. A critical fundamental question is whether the small fraction of the fuel carbon that passes unreacted through a boiler is representative of the char during the main portion of the combustion process. This article addresses that question through a detailed characterization of eight carbon-containing fly ash samples acquired from commercial-scale combustion systems. The fly ash characterization included measurement-of joint carbon/size distribution and determination.of the combustion reactivity of the residual carbon. To minimize mineral matter interactions in the reactivity tests, the technique of incipient fluidization was developed for separation of carbon-rich extracts from the inorganic portion of the fly ash. Reactivity measurements were made at 1400--1800 K to represent conditions in pulverized coal fired boilers. Measurements were also made at 700--1100 K to. minimize transport effects and isolate the influence of char chemistry and microstructure. In both temperature regimes, the residual carbon extracts. were significantly less reactive than chars extracted from a laboratory-scale laminar flow reactor in the early-to-intermediate stages of combustion. It is concluded that the boiler environment deactivates chars, making high carbon burnout more difficult to achieve than is predicted by existing char combustion kinetic models that were developed from data on the laboratory chars. Finally, the results are used to discuss potential char deactivation mechanisms, both thermal and oxidative, in coal-fired boilers.

  15. Performance improvement of a converted fluid bed boiler (from traveling grate type) for agro waste combustion -- A case study

    SciTech Connect

    Sethumadhavan, R.; Karthikeyan, G.; Raviprakash, A.V.; Vasudevan, R.

    1997-12-31

    This paper investigates the operational difficulty encountered while operating a fluid bed boiler--which was earlier serving with a traveling grate for agrowaste combustion. This boiler, although operating on fluid bed technology principle, could not produce required combustion efficiency while burning any of the agrowastes such as rice husk, de-oiled bran, ground nut shell, etc. While carrying out the performance assessment study, it was found that, this inefficient combustion was mainly due to the improper operating parameters and partly due to incorrect furnace configuration. The drawbacks of the system have been attended to and set right incurring a very minor expenditure. This has led to an annual fuel saving of approximately US $40,000. The major results achieved are: (1) boiler thermal efficiency increased from 66--73%; (2) boiler was loaded uniformly and on-time operation has increased to 100% from earlier 60%; (3) boiler shut down time due to operational problems has come down from 35 hours per month to 15 hours per month; (4) very effective dust collection system was achieved resulting in reduced ID fan erosion; and (5) an annual saving of US $100,000 (both direct and indirect) was achieved.

  16. Stress Assisted Corrosion in Boiler Tubes - Failure Analysis

    SciTech Connect

    Singh, Preet M; Pawel, Steven J; Yang, Dong; Mahmood, Jamshad

    2007-01-01

    Stress assisted corrosion (SAC) of carbon steel boiler tubes is one of the major causes of waterside failure in industrial boilers. SAC is a major concern for kraft recovery boilers in the pulp and paper industry as any water leak into the furnace can cause a smelt-water explosion in the boiler. Failed carbon steel boiler tubes from different kraft recovery boilers were examined to understand the role of carbon steel microstructure on crack initiation and SAC crack morphology. A number of carbon steel tubes showed a deep decarburized layer on the inner surface (water-touched) and also an unusually large grain size at the inner tube surface. SAC cracks were found to initiate in these areas with large-graineddecarburized microstructure. Tubes without such microstructure were also found to have SAC cracks. It was found that the decarburization and large grained microstructure may facilitate initiation and growth but is not necessary for SAC of carbon steel boiler tubes.

  17. Review of Individual Technology Assessment Reports (ITAR) for industrial boiler applications

    SciTech Connect

    Archer, T.; Bakshi, P.; Weisenberg, I.J.

    1980-01-01

    Eight Individual Technology Assessment Reports and one Background Study in Support of New Source Performance Standards for Industrial Boilers are reviewed. These ITARs were prepared for the EPA and include studies of particulate control, flue-gas desulfurization, fluidized-bed combustion, NO/sub x/ combustion modification, NO/sub x/ flue-gas treatment, coal cleaning, synthetic fuels, and oil cleaning. The ITARs provide engineering and cost data for the air pollution control technologies that will be required to meet the New Source Performance Standards for industrial boilers. The pollutants considered were SO/sub x/, NO/sub x/, and particulates. Each ITAR is reviewed from the standpoint of engineering, demonstrated technology, and costing methodology. The cost review includes a comparison of the costing methodology of each ITAR with the costing methodology recommended by the EPA background document.

  18. Acid rain legislation challenges coal pulverizer designers to minimize impact on boiler performance

    SciTech Connect

    Piepho, R.R.

    1994-12-31

    Major coal consumers are evaluating tactical plans for SO{sub x} emissions compliance required by the 1990 Clean Air Act Amendments. Switching to low sulfur coal is often a favored option. The use of Powder River Basin (PRB) or Eastern low-sulfur (ELS) coals in power plants designed for high-sulfur bituminous coals typically leads to reduced pulverizer capacity and/or performance, which can reduce overall boiler capacity. Many fuel switching studies confirm that existing boilers will be de-rated unless existing pulverizers are upgraded. In extreme cases, complete pulverizer replacement will be required. The use of low NO{sub x} burner retrofits for increased combustion performance and rotating classifiers to improve pulverizer performance are discussed.

  19. Computer simulation of vortex combustion processes in fire-tube boilers

    NASA Astrophysics Data System (ADS)

    Khaustov, Sergei A.; Zavorin, Alexander S.; Buvakov, Konstantin V.; Kudryashova, Lidiya D.; Tshelkunova, Anastasiya V.

    2015-01-01

    The article describes computer simulation of the turbulent methane-air combustion in a fire-tube boiler furnace. Computer simulations performed for variants of once-through fire-tube furnace and reversive flame furnace. Options with various twist parameters of the fuel-air jet were examined. The flame structure has been determined computationally, contours of average speed, temperature and concentrations have been acquired. The results of calculations are presented in graphical form. Dependence of construction characteristics on vortex aerodynamic parameters was estimated. Turbulent combustion of natural gas in the reverse flame of fire-tube boiler was studied by means of the ANSYS Fluent 12.1.4 engineering simulation software.

  20. Use of a polishing scrubber with a fluid bed boiler

    SciTech Connect

    Toher, J.G.

    1996-12-31

    Once viewed as {open_quotes}competitive{close_quotes} technologies, the circulating dry scrubber (CDS){reg_sign} and circulating fluid bed (CFB) boiler are being used together to achieve enhanced performance with lower overall costs. The need to understand the synergy between these two technologies is driven by deregulation of the power industry and the 1990 Clean Air Act Amendments. Deregulation of power production in the US has spurred the growth of Independent Power Producers (IPP) who are responding to Industry`s demand for lower cost fuels, and close attention to annual operating costs. Utilities have to provide {open_quotes}open{close_quotes} access to their transmission lines allowing various IPP`s to connect with the end user. Industrial users can now choose from one of several sources of electricity with prices per kilowatt hour that are much lower than what they are currently being charged. The race is on to reduce power production costs and fuel can be the key in many cases. IPP`s and industry are banding together in very logical ways that can benefit both. Industry`s byproducts with heating value can be sold {open_quotes}over the fence{close_quotes} to an IPP who provides the industry with low cost steam and or electricity in return. However, many alternative lower cost fuels also have a higher emissions potential for criteria pollutants such a SO{sub 2}, NO{sub X}, particulate, or other emissions such as VOC`s and mercury which are more recently receiving attention. Cost effective management of these environmental issues must be an integral part of the project planning process. Three such cases are examined that involve the use of CFB`s with the CDS{reg_sign} as a polishing scrubber for SO{sub 2}. The first two cases involve repowering of existing facilities with petroleum coke as the fuel. The last case involves a new facility powered with low sulfur coal.

  1. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Beal, H.R.; Gralton, G.W.; Gronauer, T.W.; Liljedahl, G.N.; Love, B.F.

    1987-06-01

    Activities conducted under this contract include studies on the combustion and fireside behavior of numerous coal-water fuels (CWFs). The work has been broken down into the following areas: Task 1 -- Selection of Candidate Fuels; Task 2 -- Bench Scale Tests; Task 3 -- CWF Preparation and Supply; Task 4 -- Combustion Characterization; Task 5 -- Ash Deposition and Performance Testing; Task 6 -- Commercial Applications. This report covers Task 6, the study of commercial applications of CWFs as related to the technical and economic aspects of the conversion of existing boilers and heaters to CWF firing. This work involves the analysis of seven units of various sizes and configurations firing several selected CWFs. Three utility boilers, two industrial boilers, and two process heater designs are included. Each of the units was considered with four primary selected CWFs. A fifth fuel was considered for one of the utility units. A sixth fuel, a microfine grind CWF, was evaluated on two utility units and one industrial unit. The particular fuels were chosen with the objective of examining the effects of coal source, ash level, ash properties, and beneficiation on the CWF performance and economics of the seven units. 10 refs., 81 figs., 80 tabs.

  2. Burning indecision: analyzing your fuel options

    SciTech Connect

    Rodgers, G.M.; Dean, J.W.; Shelley, D.

    1982-09-01

    Indecision on the part of boiler purchasers reflects their uncertainty over whether to shift to coal or to count on a long-term stability in oil prices. The tradeoffs between coal and natural gas costs are another factor as are the size of the capital investment, environmental standards, and government incentives. A fuel-choice analysis of a Michigan gas-burning facility illustrates the complexity of boiler investment decisions. Each site requires a specific evaluation of all the fuel and regulatory factors before a realistic decision is possible. 4 figures, 1 table. (DCK)

  3. Oxy-Combustion Boiler Material Development

    SciTech Connect

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  4. Oxy-Combustion Boiler Material Development

    SciTech Connect

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  5. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    SciTech Connect

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  6. Combine waste-to-energy, recycling with fluid-bed boiler

    SciTech Connect

    Murphy, M.L.

    1995-04-01

    This article describes a plant that will be the first to incorporate a fluidized-bed boiler to burn refuse-derived fuel exclusively. An effective long-term solid-waste management program will soon be a reality for Bladen, Cumberland, and Hoke counties, North Carolina. The key element of the program is a 600-ton/day waste-to-energy (WTE) facility, scheduled to begin commercial operation later this year. The BCH Energy project, which gets its name from the initials of the three counties it serves, will become the first fluidized-bed boiler in the US designed to be fueled solely by refuse-derived fuel (RDF). As such, it provides an innovative and efficient approach to solid-waste management in several ways: (1) Maximizes community participation in a recovery and recycling effort. (2) Maximizes additional waste handling and hauling efforts. (3) Significantly reducing waste flow into landfill. (4) Eliminating use of fossil fuel for a nearby chemical plant`s energy load. (5) Substantially improves air quality through use of the latest combustion and emissions control technology.

  7. Startup, Commissioning and Operation of Fenyi 100MW CFB Boiler

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwei; Yu, Wugao; Bo, Shi

    The first 100MW CFB boiler, designed by the Thermal Power Research Institute and manufactured by Harbin Boiler Company Limited, has been successfully running in Jiangxi Fenyi Power Plant since 2003. Local high ash content anthracite and lean coal that are very difficult to burn out are used in the 100 MW CFB boiler. The results of the 100MW CFB boiler shows that the CFB boiler can run in 30% MCR and startup with two under bed burners, and the boiler efficiency higher than 88% can be got after the combustion modification test. The CFB boiler can be operated with full load and reaches design parameters. The emissions of NO, N2O and CO are less than 7Omg/m3, 30mg/m3, and 125mg/m3, respectively, and SO2 less than 400mg/m3 after limestone injection. The bottom ash temperature from bed ash coolers is less than 120°C after its modification. Coal blockage at the coal storage silo is the main problem influencing the CFB boiler continuous operation. The running experiences for 5 years proved that the CFB boiler performance is successful, and the results were applied in 210 MW and 330 MW CFB Boiler design of Fenyi Power Plant.

  8. Design for a 350 MWe class CFB boiler

    SciTech Connect

    Darling, S.L.

    1998-07-01

    This paper describes Foster Wheeler's design for a 350 MWe Class boiler. Foster Wheeler's experience with large CFB boilers and with large suspension fired boilers is summarized. A reference 350 MWe CFB boiler design is presented and major design features are described along with expected performance. Areas in the CFB boiler design which benefit from suspension from boiler experience are highlighted. CFB boilers are now proven in the 150--250 MWe size range, with several in operation and many others scheduled to begin operation this year. The next step for CFB boiler technology is the 300 - 400 MWe size range. This paper will describe Foster Wheeler's design for a 350 MWe class CFB boiler, including the major design features and anticipated performance. The authors will demonstrate how Foster Wheeler's experience in designing large suspension-fired boilers in sizes over 900 MWe has been applied to the 350 MWe class CFB, in order to minimize scale-up risk and ensure high reliability. This design will bring the benefits of CFB technology, which include flexibility and low emissions, to the 350 MWe size range.

  9. Emissions During Co-Firing of RDF-5 with Coal in a 22 t/h Steam Bubbling Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Wan, Hou-Peng; Chen, Jia-Yuan; Juch, Ching-I.; Chang, Ying-Hsi; Lee, Hom-Ti

    The co-firing of biomass and fossil fuel in the same power plant is one of the most important issues when promoting the utilization of renewable energy in the world. Recently, the co-firing of coal together with biomass fuel, such as "densified refuse derived fuel" (d-RDF or RDF-5) or RPF (refuse paper & plastic fuel) from waste, has been considered as an environmentally sound and economical approach to both waste remediation and energy production in the world. Because of itscomplex characteristics when compared to fossil fuel, potential problems, such as combustion system stability, the corrosion of heat transfer tubes, the qualities of the ash, and the emissionof pollutants, are major concerns when co-firing the biomass fuel with fossil fuel in a traditional boiler. In this study, co-firing of coal with RDF-5 was conducted in a 22t/h bubbling fluidized bed (BFB) steam boiler to investigate the feasibility of utilizing RDF-5 as a sustainable fuels in a commercial coal-fired steam BFB boiler. The properties of the fly ash, bottom ash, and the emission of pollutants are analyzed and discussed in this study.

  10. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect

    Kung, Steven; Rapp, Robert

    2014-08-31

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in

  11. Stationary Engineers Apprenticeship. Related Training Modules. 12.1-12.9. Boilers.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with boilers. Addressed in the individual instructional packages included in the module are the following topics: firetube and watertube boilers; boiler construction; procedures for operating and cleaning boilers; and boiler fittings,…

  12. 32. (Credit CBF) Boilers in the McNeil Street Station, November ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. (Credit CBF) Boilers in the McNeil Street Station, November 1911: two 100 hp Atlas boilers and one Chattanooga boiler. The Atlas boilers were installed c1892, the Chattanooga boiler c1897. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  13. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1991--February 15, 1992

    SciTech Connect

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  14. Recent advances in microprocessor control and variable speed drive strategies for small wood-fired boilers: A case study

    SciTech Connect

    Clunie, R.; Guibord, R.; Gregoire, R.

    1994-01-01

    Saunders Brothers' wood products company has watched the steady growth of its neighboring community in Westbrook to the point where neighborhood housing is now within a few feet of the plant property. The Saunders Brothers' boiler plant consists of two HRT boilers which burn only bark and wood sawmill wastes and shavings generated by the manufacturing plant. Although technically in compliance with State of Maine environmental laws, Saunders Brothers was concerned with the visible emissions and fly ash emanating from the plant site. Wishing to maintain its status as a good neighbor, in 1989 Saunders Brothers' boiler plant was extensively renovated. Part of these modifications consisted of changing over to automatic microprocessor combustion controls and installing AC variable frequency drives on the combustion air fans and fuel feed screws. The purpose of adopting the microprocessor-based combustion control approach to solve the air pollution problem at Saunders Brothers was two-fold. The control package takes complete control of the fuel feed and combustion processes. By accurately metering the fuel supply and the air supply to the firebox, usual large air volumes and resultant velocities are reduced and controlled. At the same time all particulate emissions are greatly reduced, and all visible emissions are eliminated. A side benefit of installing the new combustion control system was an expected fuel savings of approximately 20% to 25%.

  15. Classification and quantification for boiler dust

    NASA Astrophysics Data System (ADS)

    Zeng, Zhoumo; Liang, Yi; Yang, Qing; Jin, Shijiu

    2002-09-01

    A non-intrusive optical technique for the study of moving particles and their statistics, laser phase Doppler anemometry (PDA), is used in on-line inspecting and quantifying boiler dusty. PDA collects and processes Doppler signals from moving scattering particles and provides a deterministic measure of particle velocity and statistical information about particles" size and size distribution. Furthermore, PDA is superior to the traditional intensity based optical particle analyzer, as Doppler frequency or phase shift is less susceptible to electronic noise than intensity. These features are important for reliable results, especially at in-situ application. The present system operated successfully in inspecting soot letting of coal-fired boiler, which leads to an active structure that can be applied in the conditions of limited optical access. The measuring results of soot parameters, as well as the statistics of soot are presented in this paper.

  16. Recycle device for circulating fluidized bed boilers

    SciTech Connect

    Wang, Q.; Luo, Z.Y.; Li, X.T.; Cheng, F.; Ni, M.J.; Cen, K.

    1997-12-31

    Because the pressure at the outlet of a separator is lower than that at an inlet of a furnace, a recycle device is one of the most important components of circulating fluidized bed boilers for handling circulating ash. Although it has been extensively used in circulating fluidized bed boilers, its properties have not yet been well understood. Many experiments have been conducted for a kind of recycle device and the operational properties were obtained. The experimental results show that the structure of the recycle device and aeration conditions have a strong influence on the solid flow rate and operational stability of the recycle device. The authors will discuss the effect of the major parameters, such as opening and aeration air at different locations, on solids flow rate. The operational considerations will be given in this paper.

  17. Maximising safety in the boiler house.

    PubMed

    Derry, Carr

    2013-03-01

    Last month's HEJ featured an article, the second in our new series of guidance pieces aimed principally at Technician-level engineers, highlighting some of the key steps that boiler operators can take to maximise system performance and efficiency, and thus reduce running both costs and carbon footprint. In the third such article, Derry Carr, C.Env, I.Eng, BSc (Hons), M.I.Plant.E., M.S.O.E., technical manager & group gas manager at Dalkia, who is vice-chairman of the Combustion Engineering Association, examines the key regulatory and safety obligations for hospital energy managers and boiler technicians, a number of which have seen changes in recent years with revision to guidance and other documentation. PMID:23573684

  18. Anthracite culm fired fluidized-bed boiler

    SciTech Connect

    Lentz, E.C.

    1984-01-01

    The author describes a fluidised-bed boiler that has been designed by FluiDyne Engineering Corp. for the combustion of anthracite culm, a material containing about 40% ash and consisting of coal particles embedded in mineral matter. There are some 900 million tons of anthracite culm in northeast Pennsylvania within easy reach of many large metropolitan areas. It is estimated that the material can be used economically within a distance of 200 miles.

  19. Waste combustion in boilers and industrial furnaces

    SciTech Connect

    1996-12-31

    This publication contains technical papers published as they were presented at a recent specialty conference sponsored by the Air & Waste Management Association, titled Waste Combustion in Boilers and Industrial Furnaces, held March 26-27, 1996, in Kansas City, Missouri. Papers touch on compilance concerns for air pollution, air monitoring methodologies, risk assessment, and problems related to public anxiety. Separate abstracts have been indexed into the database from this proceedings.

  20. A Rule-Based Industrial Boiler Selection System

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.