Science.gov

Sample records for boltzmann equilibrium distribution

  1. Equilibrium between radiation and matter for classical relativistic multiperiodic systems. Derivation of Maxwell-Boltzmann distribution from Rayleigh-Jeans spectrum

    NASA Astrophysics Data System (ADS)

    Blanco, R.; Pesquera, L.; Santos, E.

    1983-03-01

    The motion of a charged pointlike relativistic particle under the action of a given force field plus a random electromagnetic radiation is studied. It is assumed that the given force field alone should produce a multiply periodic motion, which is perturbed by the action of both the random radiation and the reaction damping. The random radiation is represented by a stochastic process and an equation is obtained for the equilibrium probability density of the particle in phase space. In the particular case of a random radiation with Rayleigh-Jeans spectrum, it is shown that the stationary solution, corresponding to radiation-matter equilibrium, is given by the Maxwell-Boltzmann distribution.

  2. Boltzmann equation solver adapted to emergent chemical non-equilibrium

    SciTech Connect

    Birrell, Jeremiah; Wilkening, Jon; Rafelski, Johann

    2015-01-15

    We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow for emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature T(t) and phase space occupation factor ϒ(t). In this first paper we address (effectively) massless fermions and derive dynamical equations for T(t) and ϒ(t) such that the zeroth order term of the basis alone captures the particle number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to easily represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component (e{sup ±}-annihilation)

  3. Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Lu, Wei-Zhen; Xue, Yu; He, Hong-Di

    2016-02-01

    A revised lattice Boltzmann model concerning the equilibrium traffic pressure is proposed in this study to tackle the phase transition phenomena of traffic flow system. The traditional lattice Boltzmann model has limitation to investigate the complex traffic phase transitions due to its difficulty for modeling the equilibrium velocity distribution. Concerning this drawback, the equilibrium traffic pressure is taken into account to derive the equilibrium velocity distribution in the revised lattice Boltzmann model. In the proposed model, a three-dimensional velocity-space is assumed to determine the equilibrium velocity distribution functions and an alternative, new derivative approach is introduced to deduct the macroscopic equations with the first-order accuracy level from the lattice Boltzmann model. Based on the linear stability theory, the stability conditions of the corresponding macroscopic equations can be obtained. The outputs indicate that the stability curve is divided into three regions, i.e., the stable region, the neutral stability region, and the unstable region. In the stable region, small disturbance appears in the initial uniform flow and will vanish after long term evolution, while in the unstable region, the disturbance will be enlarged and finally leads to the traffic system entering the congested state. In the neutral stability region, small disturbance does not vanish with time and maintains its amplitude in the traffic system. Conclusively, the stability of traffic system is found to be enhanced as the equilibrium traffic pressure increases. Finally, the numerical outputs of the proposed model are found to be consistent with the recognized, theoretical results.

  4. Operational derivation of Boltzmann distribution with Maxwell's demon model.

    PubMed

    Hosoya, Akio; Maruyama, Koji; Shikano, Yutaka

    2015-01-01

    The resolution of the Maxwell's demon paradox linked thermodynamics with information theory through information erasure principle. By considering a demon endowed with a Turing-machine consisting of a memory tape and a processor, we attempt to explore the link towards the foundations of statistical mechanics and to derive results therein in an operational manner. Here, we present a derivation of the Boltzmann distribution in equilibrium as an example, without hypothesizing the principle of maximum entropy. Further, since the model can be applied to non-equilibrium processes, in principle, we demonstrate the dissipation-fluctuation relation to show the possibility in this direction. PMID:26598363

  5. Exponential trend to equilibrium for the inelastic Boltzmann equation driven by a particle bath

    NASA Astrophysics Data System (ADS)

    Cañizo, José A.; Lods, Bertrand

    2016-05-01

    We consider the spatially homogeneous Boltzmann equation for inelastic hard spheres (with constant restitution coefficient α \\in (0,1) ) under the thermalization induced by a host medium with a fixed Maxwellian distribution. We prove that the solution to the associated initial-value problem converges exponentially fast towards the unique equilibrium solution. The proof combines a careful spectral analysis of the linearised semigroup as well as entropy estimates. The trend towards equilibrium holds in the weakly inelastic regime in which α is close to 1, and the rate of convergence is explicit and depends solely on the spectral gap of the elastic linear collision operator.

  6. Nonlinear Boltzmann equation for the homogeneous isotropic case: Some improvements to deterministic methods and applications to relaxation towards local equilibrium

    NASA Astrophysics Data System (ADS)

    Asinari, P.

    2011-03-01

    Boltzmann equation is one the most powerful paradigms for explaining transport phenomena in fluids. Since early fifties, it received a lot of attention due to aerodynamic requirements for high altitude vehicles, vacuum technology requirements and nowadays, micro-electro-mechanical systems (MEMs). Because of the intrinsic mathematical complexity of the problem, Boltzmann himself started his work by considering first the case when the distribution function does not depend on space (homogeneous case), but only on time and the magnitude of the molecular velocity (isotropic collisional integral). The interest with regards to the homogeneous isotropic Boltzmann equation goes beyond simple dilute gases. In the so-called econophysics, a Boltzmann type model is sometimes introduced for studying the distribution of wealth in a simple market. Another recent application of the homogeneous isotropic Boltzmann equation is given by opinion formation modeling in quantitative sociology, also called socio-dynamics or sociophysics. The present work [1] aims to improve the deterministic method for solving homogenous isotropic Boltzmann equation proposed by Aristov [2] by two ideas: (a) the homogeneous isotropic problem is reformulated first in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium).

  7. An alternative approach to the Boltzmann distribution through the chemical potential

    NASA Astrophysics Data System (ADS)

    D'Anna, Michele; Job, Georg

    2016-05-01

    The Boltzmann distribution is one of the most significant results of classical physics. Despite its importance and its wide range of application, at high school level it is mostly presented without any derivation or link to some basic ideas. In this contribution we present an approach based on the chemical potential that allows to derive it directly from the basic idea of thermodynamical equilibrium.

  8. Permit allocation in emissions trading using the Boltzmann distribution

    NASA Astrophysics Data System (ADS)

    Park, Ji-Won; Kim, Chae Un; Isard, Walter

    2012-10-01

    In emissions trading, the initial allocation of permits is an intractable issue because it needs to be essentially fair to the participating countries. There are many ways to distribute a given total amount of emissions permits among countries, but the existing distribution methods, such as auctioning and grandfathering, have been debated. In this paper we describe a new method for allocating permits in emissions trading using the Boltzmann distribution. We introduce the Boltzmann distribution to permit allocation by combining it with concepts in emissions trading. We then demonstrate through empirical data analysis how emissions permits can be allocated in practice among participating countries. The new allocation method using the Boltzmann distribution describes the most probable, natural, and unbiased distribution of emissions permits among multiple countries. Simple and versatile, this new method holds potential for many economic and environmental applications.

  9. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem

    PubMed Central

    Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J. Javier; González-Flores, Carlos

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA. PMID:27413369

  10. Boltzmann

    SciTech Connect

    Lin, X.

    1991-01-01

    This paper reports the development of an object-oriented programming methodology for particle simulations. It is established on the (m reductionist) view that many physical phenomena cana be reduced to many-body problems. By doing the reduction, many seemly unrelated physical phenomena can be simulated in a systematic way and a high-level programming system can be constructed to facilitate the programming and the solution of the simulations. In the object-oriented particle simulation methodology, a hierarchy of abstract particles is defined to represent a variety of characteristics in physical system simulations. A simulation program is constructed from particles derived from the abstract particles. The object- oriented particle simulation methodology provides a unifying modeling and simulation framework for a variety of simulation applications with the use of particle methods. It allows easy composition of simulation programs from predefined software modules and facilitates software reusability. It greatly increase the productivity of simulation program constructions. Boltzmann (after Ludwig Boltzmann, 1844-1906) is a prototype programming system in the object-oriented particle simulation methodology. Boltzmann is implemented in C++ and the X Window System. It contains a library of data types and functions that support simulations in particle methods. Moreover, it provides a visualization window to support friendly user-computer interaction. Examples of the application of the Boltzmann programming system are presented. The effectiveness of the object-oriented particle simulation methodology is demonstrated. A user's manual is included in the appendix.

  11. Operational derivation of Boltzmann distribution with Maxwell’s demon model

    PubMed Central

    Hosoya, Akio; Maruyama, Koji; Shikano, Yutaka

    2015-01-01

    The resolution of the Maxwell’s demon paradox linked thermodynamics with information theory through information erasure principle. By considering a demon endowed with a Turing-machine consisting of a memory tape and a processor, we attempt to explore the link towards the foundations of statistical mechanics and to derive results therein in an operational manner. Here, we present a derivation of the Boltzmann distribution in equilibrium as an example, without hypothesizing the principle of maximum entropy. Further, since the model can be applied to non-equilibrium processes, in principle, we demonstrate the dissipation-fluctuation relation to show the possibility in this direction. PMID:26598363

  12. Operational derivation of Boltzmann distribution with Maxwell’s demon model

    NASA Astrophysics Data System (ADS)

    Hosoya, Akio; Maruyama, Koji; Shikano, Yutaka

    2015-11-01

    The resolution of the Maxwell’s demon paradox linked thermodynamics with information theory through information erasure principle. By considering a demon endowed with a Turing-machine consisting of a memory tape and a processor, we attempt to explore the link towards the foundations of statistical mechanics and to derive results therein in an operational manner. Here, we present a derivation of the Boltzmann distribution in equilibrium as an example, without hypothesizing the principle of maximum entropy. Further, since the model can be applied to non-equilibrium processes, in principle, we demonstrate the dissipation-fluctuation relation to show the possibility in this direction.

  13. Gas-kinetic theory and Boltzmann equation of share price within an equilibrium market hypothesis and ad hoc strategy

    NASA Astrophysics Data System (ADS)

    Ausloos, M.

    2000-09-01

    Recent observations have indicated that the traditional equilibrium market hypothesis (EMH; also known as Efficient Market Hypothesis) is unrealistic. It is shown here that it is the analog of a Boltzmann equation in physics, thus having some bad properties of mean-field approximations like a Gaussian distribution of price fluctuations. A kinetic theory for prices can be simply derived, considering in a first approach that market actors have all identical relaxation times, and solved within a Chapman-Enskog like formalism. In closing the set of equations, (i) an equation of state with a pressure and (ii) the equilibrium (isothermal) equation for the price (taken as the order parameter) of a stock as a function of the volume of money available are obtained.

  14. The Boltzmann Equation for a Multi-species Mixture Close to Global Equilibrium

    NASA Astrophysics Data System (ADS)

    Briant, Marc; Daus, Esther S.

    2016-07-01

    We study the Cauchy theory for a multi-species mixture, where the different species can have different masses, in a perturbative setting on the three dimensional torus. The ultimate aim of this work is to obtain the existence, uniqueness and exponential trend to equilibrium of solutions to the multi-species Boltzmann equation in {L^1_vL^∞_x(m)} , where {m˜ (1+ |v|^k)} is a polynomial weight. We prove the existence of a spectral gap for the linear multi-species Boltzmann operator allowing different masses, and then we establish a semigroup property thanks to a new explicit coercive estimate for the Boltzmann operator. Then we develop an {L^2-L^E&infty}; theory à la Guo for the linear perturbed equation. Finally, we combine the latter results with a decomposition of the multi-species Boltzmann equation in order to deal with the full equation. We emphasize that dealing with different masses induces a loss of symmetry in the Boltzmann operator which prevents the direct adaptation of standard mono-species methods (for example Carleman representation, Povzner inequality). Of important note is the fact that all methods used and developed in this work are constructive. Moreover, they do not require any Sobolev regularity and the {L^1_vL^∞_x} framework is dealt with for any {k > k_0} , recovering the optimal physical threshold of finite energy {k_0=2} in the particular case of a multi-species hard spheres mixture with the same masses.

  15. Beyond Boltzmann-Gibbs statistics: Maximum entropy hyperensemblesout-of-equilibrium

    SciTech Connect

    Crooks, Gavin E.

    2006-02-23

    What is the best description that we can construct of athermodynamic system that is not in equilibrium, given only one, or afew, extra parameters over and above those needed for a description ofthe same system at equilibrium? Here, we argue the most appropriateadditional parameter is the non-equilibrium entropy of the system, andthat we should not attempt to estimate the probability distribution ofthe system, but rather the metaprobability (or hyperensemble) that thesystem is described by a particular probability distribution. The resultis an entropic distribution with two parameters, one a non-equilibriumtemperature, and the other a measure of distance from equilibrium. Thisdispersion parameter smoothly interpolates between certainty of acanonical distribution at equilibrium and great uncertainty as to theprobability distribution as we move away from equilibrium. We deducethat, in general, large, rare fluctuations become far more common as wemove away from equilibrium.

  16. Boltzmann Gibbs distribution of fortune and broken time reversible symmetry in econodynamics

    NASA Astrophysics Data System (ADS)

    Ao, P.

    2007-08-01

    Within the framework of stochastic differential equations it is demonstrated that the existence of Boltzmann-Gibbs type distribution in economy is independent of the time reversal symmetry in econodynamics. Both power law and exponential distributions can be accommodated naturally. The demonstration is based on a mathematical structure discovered during a study in gene regulatory network dynamics. Further possible analogy between equilibrium economy and thermodynamics is explored, suggesting that statistical physics methods can indeed play an important role in the study of complex systems.

  17. Polyelectrolyte Microcapsules: Ion Distributions from a Poisson-Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Tang, Qiyun; Denton, Alan R.; Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Recent experiments have shown that polystyrene-polyacrylic-acid-polystyrene (PS-PAA-PS) triblock copolymers in a solvent mixture of water and toluene can self-assemble into spherical microcapsules. Suspended in water, the microcapsules have a toluene core surrounded by an elastomer triblock shell. The longer, hydrophilic PAA blocks remain near the outer surface of the shell, becoming charged through dissociation of OH functional groups in water, while the shorter, hydrophobic PS blocks form a networked (glass or gel) structure. Within a mean-field Poisson-Boltzmann theory, we model these polyelectrolyte microcapsules as spherical charged shells, assuming different dielectric constants inside and outside the capsule. By numerically solving the nonlinear Poisson-Boltzmann equation, we calculate the radial distribution of anions and cations and the osmotic pressure within the shell as a function of salt concentration. Our predictions, which can be tested by comparison with experiments, may guide the design of microcapsules for practical applications, such as drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  18. Derivation of the Second Law of Thermodynamics from Boltzmann's Distribution Law.

    ERIC Educational Resources Information Center

    Nelson, P. G.

    1988-01-01

    Shows how the thermodynamic condition for equilibrium in an isolated system can be derived by the application of Boltzmann's law to a simple physical system. States that this derivation could be included in an introductory course on chemical equilibrium to help prepare students for a statistical mechanical treatment presented in the curriculum.…

  19. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length

    PubMed Central

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-01-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes. PMID:24465094

  20. Equilibrium Tail Distribution Due to Touschek Scattering

    SciTech Connect

    Nash,B.; Krinsky, S.

    2009-05-04

    Single large angle Coulomb scattering is referred to as Touschek scattering. In addition to causing particle loss when the scattered particles are outside the momentum aperture, the process also results in a non-Gaussian tail, which is an equilibrium between the Touschek scattering and radiation damping. Here we present an analytical calculation for this equilibrium distribution.

  1. A precise Boltzmann distribution law for the fluorescence intensity ratio of two thermally coupled levels

    NASA Astrophysics Data System (ADS)

    Qin, Feng; Zhao, Hua; Cai, Wei; Zhang, Zhiguo; Cao, Wenwu

    2016-06-01

    Noncontact monitoring temperature is very important in modern medicine, science, and technologies. The fluorescence intensity ratio (FIR) technique based on the Boltzmann distribution law exhibits excellent application potential, but the observed FIR deviates from the Boltzmann distribution law in the low temperature range. We propose a fluorescence intensity ratio relation FIR* = ηFIR by introducing a quantity η representing thermal population degree, which can be obtained from measured fluorescence decay curves of the upper emitting level. Using Eu3+ as an example, the method is confirmed that the deviated FIR is able to be corrected and return to follow the Boltzmann law.

  2. Thermodynamics of noncommutative geometry inspired black holes based on Maxwell-Boltzmann smeared mass distribution

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Liu, Yan-Chun; Zhu, Qiao

    2014-02-01

    In order to further explore the effects of non-Gaussian smeared mass distribution on the thermodynamical properties of noncommutative black holes, we consider noncommutative black holes based on Maxwell-Boltzmann smeared mass distribution in (2+1)-dimensional spacetime. The thermodynamical properties of the black holes are investigated, including Hawking temperature, heat capacity, entropy and free energy. We find that multiple black holes with the same temperature do not exist, while there exists a possible decay of the noncommutative black hole based on Maxwell-Boltzmann smeared mass distribution into the rotating (commutative) BTZ black hole.

  3. [Equilibrium surface charge distribution in phospholipid vesicles. I. Method of calculation].

    PubMed

    Tenchov, B G; Raĭchev, B D

    1977-01-01

    This paper presents a method of calculation of the surface charge equilibrium distribution between the two surfaces of a spherically closed phospholipid bilayer suspended in aqueous electrolyte solution. The net surface charge is supposed to be provided by the ionized polar groups of the phospholipid molecules. Its equilibrium distribution is found by minimization of the free electrostatic energy. The procedure of minimization utilizes the solution of the Poisson-Boltzmann equation which describes the double electric layers of the membrane and an expression for the membrane potential derived under the assumption of absence of charges in the membrane phase. An analytical solution of the problem in the range of validity of the linearized Poisson-Boltzman equation is obtained. It is shown that in this case an equilibrium transmembrane potential exists, and the surface charge density is greater at the outer surface of the vesicle. PMID:588604

  4. Second law considerations on the third law: From Boltzmann and Loschmidt paradox to non equilibrium temperature

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-02-01

    The balance of forces and processes between the system and the environment and the processes inside the system are the result of the flows of the quanta. Moreover, the transition between two thermodynamic states is the consequence of absorption or emission of quanta, but, during the transition, the entropy variation due to the irreversibility occurs and it breaks any symmetry of time. Consequently, the irreversibility is the result of a transition, a process, an interaction between the system and its environment. This interaction results completely time-irreversible for any real process because of irreversibility. As a consequence, a proof of the third law is obtained proving that the zero temperature state can be achieved only for an infinite work lost for dissipation or in an infinite time. The fundamental role of time both in equilibrium and in non equilibrium analysis is pointed out. Moreover, the non equilibrium temperature is related to the entropy generation and its fluctuation rate; indeed, non-stationary temperature means that the system has not yet attained free energy minimum state, i.e., the maximum entropy state; the consequence is that the zero temperature state can be achieved only for an infinite work lost for dissipation or in an infinite time. In engineering thermodynamics the efficiency is always obtained without any consideration on time, while, here, just the time is introduced as a fundamental quantity of the analysis of non equilibrium states.

  5. Consistent Application of the Boltzmann Distribution to Residual Entropy in Crystals

    ERIC Educational Resources Information Center

    Kozliak, Evguenii I.

    2007-01-01

    Four different approaches to residual entropy (the entropy remaining in crystals comprised of nonsymmetric molecules like CO, N[subscript 2]O, FClO[subscript 3], and H[subscript 2]O as temperatures approach 0 K) are analyzed and a new method of its calculation is developed based on application of the Boltzmann distribution. The inherent connection…

  6. High-Resolution Vibration-Rotation Spectroscopy of CO[subscript 2]: Understanding the Boltzmann Distribution

    ERIC Educational Resources Information Center

    Castle, Karen J.

    2007-01-01

    In this undergraduate physical chemistry laboratory experiment, students acquire a high-resolution infrared absorption spectrum of carbon dioxide and use their data to show that the rotational-vibrational state populations follow a Boltzmann distribution. Data are acquired with a mid-infrared laser source and infrared detector. Appropriate…

  7. Kinetic Equation for Two-Particle Distribution Function in Boltzmann Gas Mixtures and Equation of Motion for Quasiparticle Pairs

    NASA Astrophysics Data System (ADS)

    Saveliev, V. L.

    2011-05-01

    Pair collisions is the main interaction process in the Boltzmann gas dynamics. By making use of exactly the same physical assumptions as was used by Ludwig Boltzmann we write the kinetic equation for two-particle distribution function of molecules in the gas mixtures. Instead of the collision integral, there are the linear scattering operator and the chaos projector in the right part of this equation. Because the scattering operator is more simple then Boltzmann collision integral this equation opens new opportunities for mathematical description of the Boltzmann gas dynamics.

  8. Far-from-equilibrium distribution from near-steady-state work fluctuations.

    PubMed

    Marsland, Robert; England, Jeremy

    2015-11-01

    A long-standing goal of nonequilibrium statistical mechanics has been to extend the conceptual power of the Boltzmann distribution to driven systems. We report some new progress towards this goal. Instead of writing the nonequilibrium steady-state distribution in terms of perturbations around thermal equilibrium, we start from the linearized driven dynamics of observables about their stable fixed point, and expand in the strength of the nonlinearities encountered during typical fluctuations away from the fixed point. The first terms in this expansion retain the simplicity of known expansions about equilibrium, but can correctly describe the statistics of a certain class of systems even under strong driving. We illustrate this approach by comparison with a numerical simulation of a sheared Brownian colloid, where we find that the first two terms in our expansion are sufficient to account for the shear thinning behavior at high shear rates. PMID:26651660

  9. Energy Distributions in Small Populations: Pascal versus Boltzmann

    ERIC Educational Resources Information Center

    Kugel, Roger W.; Weiner, Paul A.

    2010-01-01

    The theoretical distributions of a limited amount of energy among small numbers of particles with discrete, evenly-spaced quantum levels are examined systematically. The average populations of energy states reveal the pattern of Pascal's triangle. An exact formula for the probability that a particle will be in any given energy state is derived.…

  10. Multi-term approximation to the Boltzmann transport equation for electron energy distribution functions in nitrogen

    NASA Astrophysics Data System (ADS)

    Feng, Yue

    Plasma is currently a hot topic and it has many significant applications due to its composition of both positively and negatively charged particles. The energy distribution function is important in plasma science since it characterizes the ability of the plasma to affect chemical reactions, affect physical outcomes, and drive various applications. The Boltzmann Transport Equation is an important kinetic equation that provides an accurate basis for characterizing the distribution function---both in energy and space. This dissertation research proposes a multi-term approximation to solve the Boltzmann Transport Equation by treating the relaxation process using an expansion of the electron distribution function in Legendre polynomials. The elastic and 29 inelastic cross sections for electron collisions with nitrogen molecules (N2) and singly ionized nitrogen molecules ( N+2 ) have been used in this application of the Boltzmann Transport Equation. Different numerical methods have been considered to compare the results. The numerical methods discussed in this thesis are the implicit time-independent method, the time-dependent Euler method, the time-dependent Runge-Kutta method, and finally the implicit time-dependent relaxation method by generating the 4-way grid with a matrix solver. The results show that the implicit time-dependent relaxation method is the most accurate and stable method for obtaining reliable results. The results were observed to match with the published experimental data rather well.

  11. Symmetric deformed binomial distributions: An analytical example where the Boltzmann-Gibbs entropy is not extensive

    NASA Astrophysics Data System (ADS)

    Bergeron, H.; Curado, E. M. F.; Gazeau, J. P.; Rodrigues, Ligia M. C. S.

    2016-02-01

    Asymptotic behavior (with respect to the number of trials) of symmetric generalizations of binomial distributions and their related entropies is studied through three examples. The first one has the q-exponential as the generating function, the second one involves the modified Abel polynomials, and the third one has Hermite polynomials. We prove analytically that the Rényi entropy is extensive for these three cases, i.e., it is proportional (asymptotically) to the number n of events and that q-exponential and Hermite cases have also extensive Boltzmann-Gibbs. The Abel case is exceptional in the sense that its Boltzmann-Gibbs entropy is not extensive and behaves asymptotically as the square root of n. This result is obtained numerically and also confirmed analytically, under reasonable assumptions, by using a regularization of the beta function and its derivative. Probabilistic urn and genetic models are presented for illustrating this remarkable case.

  12. Deterministic photon kerma distribution based on the Boltzmann equation for external beam radiation therapy

    SciTech Connect

    Yuan Jiankui; Jette, David; Chen Weimin

    2008-09-15

    A photon transport algorithm for fully three-dimensional radiotherapy treatment planning has been developed based on the discrete ordinates (S{sub N}) solution of the Boltzmann equation. The algorithm is characterized by orthogonal adaptive meshes, which place additional points where large gradients occur and a procedure to evaluate the collided flux using the representation of spherical harmonic expansion instead of the summation of the volume-weighted contribution from discrete angles. The Boltzmann equation was solved in the form of S{sub N} spatial, energy, and angular discretization with mitigation of ray effects by the first-collision source method. Unlike existing S{sub N} codes, which were designed for general purpose for multiparticle transport in areas such as nuclear engineering, our code is optimized for medical radiation transport. To validate the algorithm, several examples were employed to calculate the photon flux distribution. Numerical results show good agreement with the Monte Carlo calculations using EGSnrc.

  13. Fully relativistic lattice Boltzmann algorithm

    SciTech Connect

    Romatschke, P.; Mendoza, M.; Succi, S.

    2011-09-15

    Starting from the Maxwell-Juettner equilibrium distribution, we develop a relativistic lattice Boltzmann (LB) algorithm capable of handling ultrarelativistic systems with flat, but expanding, spacetimes. The algorithm is validated through simulations of a quark-gluon plasma, yielding excellent agreement with hydrodynamic simulations. The present scheme opens the possibility of transferring the recognized computational advantages of lattice kinetic theory to the context of both weakly and ultrarelativistic systems.

  14. Ion-acoustic supersolitons in plasmas with two-temperature electrons: Boltzmann and kappa distributions

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.; Kourakis, Ioannis

    2013-08-15

    Acoustic supersolitons arise when a plasma model is able to support three consecutive local extrema of the Sagdeev pseudopotential between the undisturbed conditions and an accessible root. This leads to a characteristic electric field signature, where a simple bipolar shape is enriched by subsidiary maxima. Large-amplitude nonlinear acoustic modes are investigated, using a pseudopotential approach, for plasmas containing two-temperature electrons having Boltzmann or kappa distributions, in the presence of cold fluid ions. The existence domains for positive supersolitons are derived in a methodological way, both for structure velocities and amplitudes, in terms of plasma compositional parameters. In addition, typical pseudopotentials, soliton, and electric field profiles have been given to illustrate that positive supersolitons can be found in the whole range of electron distributions from Maxwellian to a very hard nonthermal spectrum in kappa. However, it is found that the parameter ranges that support supersolitons vary significantly over the wide range of kappa considered.

  15. Comparison of equilibrium and non-equilibrium distribution coefficients for the human drug carbamazepine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution coefficient (KD) for the human drug carbamazepine was measured using a non-equilibrium technique. Repacked soil columns were prepared using an Airport silt loam (Typic Natrustalf) with an average organic matter content of 2.45%. Carbamazepine solutions were then leached through th...

  16. Simulation of multilayered resonant tunneling diodes using coupled Wigner and Boltzmann distribution function approaches

    NASA Astrophysics Data System (ADS)

    García-García, J.; Martín, F.

    2000-11-01

    From a coupling model between the Boltzmann transport equation and the quantum Liouville equation, we have developed a simulator based on the Wigner distribution function (WDF) approach that can be applied to resonant tunneling diodes (RTDs) and other vertical transport quantum devices. In comparison to previous WDF simulators, the tool allows one to extend the simulation domains up to hundreds of nanometers, which are the typical dimensions required for the study of actual multilayer structures. With these improvements, a level of agreement between theory and experiment comparable to that obtained by using other simulators based on Green functions has been achieved. The results of this work reveal that the WDF formalism can be alternatively used to study the behavior of actual multilayered RTDs.

  17. Dependence of the Population on the Temperature in the Boltzmann Distribution: A Simple Relation Involving the Average Energy

    ERIC Educational Resources Information Center

    Angeli, Celestino; Cimiraglia, Renzo; Dallo, Federico; Guareschi, Riccardo; Tenti, Lorenzo

    2013-01-01

    The dependence on the temperature of the population of the "i"th state, "P"[subscript "i"], in the Boltzmann distribution is analyzed by studying its derivative with respect to the temperature, "T." A simple expression is found, involving "P"[subscript "i"], the energy of the state,…

  18. The Equilibrium Distribution of Income and the Market for Status.

    ERIC Educational Resources Information Center

    Becker, Gary S.; Murphy, Kevin M.; Werning, Ivan

    2005-01-01

    This paper explores the implications for risk-taking behavior and the equilibrium distribution of income of assuming that the desire for status positions is a powerful motive and that it raises the marginal utility of consumption. In contrast to previous analyses, we consider the case in which status positions are sold in a hedonic market. We show…

  19. Capturing Non-equilibrium Effects of Micro/Nano Scale Gaseous Flow Using a Novel Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Norouzi, Ali; Esfahani, Javad Abolfazli

    2016-02-01

    In this study, gaseous flow through a micro/nano-channel is investigated via a novel two relaxation time lattice Boltzmann method. In this method, the slip velocity at the fluid-solid interface is realized by defining the free relaxation parameter. Furthermore, in order to capture the non-linear phenomena associated with the Knudsen layer, the wall function correction is employed. To this respect, different available wall functions are implemented. The objective of the study is to provide a comparative study on the accuracy, range of applicability and computational efficiency of these wall functions in a wide range of Knudsen numbers. The results of the present study are compared against direct simulation Mont Carlo and information preservation data. It is found that only a few of the implemented wall functions are capable of predicting the flow behavior with reasonable accuracy, particularly when the Knudsen number lies in the transition flow regime.

  20. Lattice Boltzmann model for compressible fluids

    NASA Technical Reports Server (NTRS)

    Alexander, F. J.; Chen, H.; Chen, S.; Doolen, G. D.

    1992-01-01

    A lattice Boltzmann model is derived which simulates compressible fluids. By choosing the parameters of the equilibrium distribution appropriately, the sound speed (which may be set arbitrarily low), bulk viscosity, and kinematic viscosity can be selected. This model simulates compressible flows and can include shocks. With a proper rescaling and zero-sound speed, this model simulates Burgers's equation. The viscosity determined by a Chapman-Enskog expansion compares well with that measured form simulations. The exact solutions of Burgers's equation on the unit circle are compared to solutions of lattice Boltzmann model finding reasonable agreement.

  1. Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution.

    PubMed

    Chang, Chien C; Kuo, Chih-Yu; Wang, Chang-Yi

    2011-11-01

    The present study is concerned with unsteady electroosmotic flow (EOF) in a microchannel with the electric charge distribution described by the Poisson-Boltzmann (PB) equation. The nonlinear PB equation is solved by a systematic perturbation with respect to the parameter λ which measures the strength of the wall zeta potential relative to the thermal potential. In the small λ limits (λ<1), we recover the linearized PB equation - the Debye-Hückel approximation. The solutions obtained by using only three terms in the perturbation series are shown to be accurate with errors <1% for λ up to 2. The accurate solution to the PB equation is then used to solve the electrokinetic fluid transport equation for two types of unsteady flow: transient flow driven by a suddenly applied voltage and oscillatory flow driven by a time-harmonic voltage. The solution for the transient flow has important implications on EOF as an effective means for transporting electrolytes in microchannels with various electrokinetic widths. On the other hand, the solution for the oscillatory flow is shown to have important physical implications on EOF in mixing electrolytes in terms of the amplitude and phase of the resulting time-harmonic EOF rate, which depends on the applied frequency and the electrokinetic width of the microchannel as well as on the parameter λ. PMID:22072500

  2. Application of the multi distribution function lattice Boltzmann approach to thermal flows

    NASA Astrophysics Data System (ADS)

    Parmigiani, A.; Huber, C.; Chopard, B.; Latt, J.; Bachmann, O.

    2009-04-01

    Numerical methods able to model high Rayleigh ( Ra) and high Prandtl ( Pr) number thermal convection are important to study large-scale geophysical phenomena occuring in very viscous fluids such as magma chamber dynamics (104 < Pr < 107 and 107 < Ra < 1011). The important variable to quantify the thermal state of a convective fluid is a generalized dimensionless heat transfer coefficient (the Nusselt number) whose measure indicates the relative efficiency of the thermal convection. In this paper we test the ability of Multi-distribution Function approach (MDF) Thermal Lattice Boltzmann method to study the well-established scaling result for the Nusselt number ( Nu ∝ Ra 1/3) in Rayleigh Bénard convection for 104 ≤ Ra ≤ 109 and 101 ≤ Pr ≤ 104. We explore its main drawbacks in the range of Pr and Ra number under investigation: (1) high computational time N c required for the algorithm to converge and (2) high spatial accuracy needed to resolve the thickness of thermal plumes and both thermal and velocity boundary layer. We try to decrease the computational demands of the method using a multiscale approach based on the implicit dependence of the Pr number on the relaxation time, the spatial and temporal resolution characteristic of the MDF thermal model.

  3. Spatial distributions at equilibrium under heterogeneous transient subdiffusion

    PubMed Central

    Berry, Hugues; Soula, Hédi A.

    2014-01-01

    Experimental measurements of the mobility of macromolecules, especially proteins, in cells and their membranes consistently report transient subdiffusion with possibly position-dependent—non-homogeneous—properties. However, the spatiotemporal dynamics of protein mobility when transient subdiffusion is restricted to a subregion of space is still unclear. Here, we investigated the spatial distribution at equilibrium of proteins undergoing transient subdiffusion due to continuous-time random walks (CTRW) in a restricted subregion of a two-dimensional space. Our Monte-Carlo simulations suggest that this process leads to a non-homogeneous spatial distribution of the proteins at equilibrium, where proteins increasingly accumulate in the CTRW subregion as its anomalous properties are increasingly marked. In the case of transient CTRW, we show that this accumulation is dictated by the asymptotic Brownian regime and not by the initial anomalous transient dynamics. Moreover, our results also show that this dominance of the asymptotic Brownian regime cannot be simply generalized to other scenarios of transient subdiffusion. In particular, non-homogeneous transient subdiffusion due to hindrance by randomly-located immobile obstacles does not lead to such a strong local accumulation. These results suggest that, even though they exhibit the same time-dependence of the mean-squared displacement, the different scenarios proposed to account for subdiffusion in the cell lead to different protein distribution in space, even at equilibrium and without coupling with reaction. PMID:25429273

  4. Boltzmann equation and Monte Carlo analysis of electron-electron interactions on electron distributions in nonthermal cold plasmas

    SciTech Connect

    Yousfi, M.; Himoudi, A.; Gaouar, A. )

    1992-12-15

    Electron distribution functions in nonthermal cold plasmas generated by classical electrical discharges have been calculated from a powerful Boltzmann equation solution and an original Monte Carlo simulation. In these two methods both classical (i.e., elastic, inelastic, and superelastic) electron-atom (or molecule) collisions and electron-electron interactions are taken into account. The approximations considered to include long-range (electron-electron) and short-range (electron-atom) interactions in the same Monte Carlo algorithm are first validated by comparing with Boltzmann equation results. Then, the influence of electron-electron interactions on electron distribution functions, swarm parameters, and reaction rates under nonthermal cold plasma conditions are analyzed and discussed as a function of reduced electric field [ital E]/[ital N] and ionization degree [ital n][sub [ital e

  5. Equilibrium Distributions and the Nanostructure Diagram for Epitaxial Quantum Dots

    SciTech Connect

    Rudd, R E; Briggs, G D; Sutton, A P; Medeiros-Ribeiro, G; Williams, R S

    2006-05-01

    We present in detail a thermodynamic equilibrium model for the growth of nanostructures on semiconductor substrates in heteroepitaxy and its application to germanium deposition on silicon. Some results of this model have been published previously, but the details of the formulation of the model are given here for the first time. The model allows the computation of the shape and size distributions of the surface nanostructures, as well as other properties of the system. We discuss the results of the model, and their incorporation into a nanostructure diagram that summarizes the relative stability of domes and pyramids in the bimodal size distributions.

  6. Heavy-tailed phase-space distributions beyond Boltzmann-Gibbs: Confined laser-cooled atoms in a nonthermal state.

    PubMed

    Dechant, Andreas; Shafier, Shalom Tzvi; Kessler, David A; Barkai, Eli

    2016-08-01

    The Boltzmann-Gibbs density, a central result of equilibrium statistical mechanics, relates the energy of a system in contact with a thermal bath to its equilibrium statistics. This relation is lost for nonthermal systems such as cold atoms in optical lattices, where the heat bath is replaced with the laser beams of the lattice. We investigate in detail the stationary phase-space probability for Sisyphus cooling under harmonic confinement. In particular, we elucidate whether the total energy of the system still describes its stationary state statistics. We find that this is true for the center part of the phase-space density for deep lattices, where the Boltzmann-Gibbs density provides an approximate description. The relation between energy and statistics also persists for strong confinement and in the limit of high energies, where the system becomes underdamped. However, the phase-space density now exhibits heavy power-law tails. In all three cases we find expressions for the leading-order phase-space density and corrections which break the equivalence of probability and energy and violate energy equipartition. The nonequilibrium nature of the steady state is corroborated by explicit violations of detailed balance. We complement these analytical results with numerical simulations to map out the intricate structure of the phase-space density. PMID:27627290

  7. Analysis of the compatibility between the Maxwell-Boltzmann distribution and the Rayleigh-Jeans spectrum for classical systems

    NASA Astrophysics Data System (ADS)

    Blanco, R.; Pesquera, L.

    1986-01-01

    We analyze in detail the validity of the compatibility between the Maxwell-Boltzmann (MB) distribution and the Rayleigh-Jeans (RJ) spectrum obtained in recent works by the authors for classical relativistic systems. We show that the MB distribution and the RJ spectrum are not compatible if we do not remove high enough frequencies. By analyzing the applicability of the approximation methods used in previous works to obtain the MB distribution from the RJ spectrum, we conclude that these methods are valid only if we introduce a high-frequency cutoff in the RJ spectrum. A short discussion is made on the meaning of this cutoff.

  8. Thermal Equilibrium Between Radiation and Matter: A Lead to the Maxwell-Boltzmann and Planck Distributions

    NASA Technical Reports Server (NTRS)

    Lanyi, Gabor E.

    2003-01-01

    This viewgraph presentation reviews the 1901 work in Planck's constant and blackbody radiation law and the 1916 Einstein rederivation of the blackbody radiation law. It also reviews Wien's law. It also presents equations that demonstrate the thermal balance between radiation and matter.

  9. Comparison of equilibrium and non-equilibrium distribution coefficients for the human drug carbamazepine in soil.

    PubMed

    Williams, C F; Watson, J E; Nelson, S D

    2014-01-01

    The distribution coefficient (KD) for the human drug carbamazepine was measured using a non-equilibrium technique. Repacked soil columns were prepared using an Airport silt loam (Typic Natrustalf) with an average organic matter content of 2.45%. Carbamazepine solutions were then leached through the columns at 0.5, 1.0 and 1.5 mL min(-1) representing average linear velocities of 1.8, 3.5 and 5.3 cm h(-1) respectively. Each flow rate was replicated three times and three carbamazepine pulses were applied to each column resulting in a total of 9 columns with 27 total carbamazepine pulses. Breakthrough curves were used to determine KD using the parameter fitting software CXTFIT. Results indicate that as flow rate decreased from 5.3 to 1.8 cm h(-1), KD increased an average of 21%. Additionally, KD determined by column leaching (14.7-22.7 L kg(-1)) was greater than KD determined by a 2h batch equilibrium adsorption (12.6 L kg(-1)). Based on these KD's carbamazepine would be generally characterized as non-mobile in the soil investigated. However, repeated carbamazepine applications resulted in an average 22% decrease in KD between the first and third applications. Decreasing KD is attributed to differences in sorption site kinetics and carbamazepine residence time in contact with the soil. This would indicate that the repeated use of reclaimed wastewater at high application rates for long-term irrigation or groundwater recharge has the potential to lead to greater transport of carbamazepine than KD determined by batch equilibrium would predict. PMID:24050717

  10. Truncated Thermal Equilibrium Distribution for Intense Beam Propagation

    SciTech Connect

    Ronald C. Davidson; Hong Qin; Steven M. Lund

    2003-02-26

    An intense charged-particle beam with directed kinetic energy ({lambda}{sub b}-1)m{sub b}c{sup 2} propagates in the z-direction through an applied focusing field with transverse focusing force modeled by F{sub foc} = -{lambda}{sub b}m{sub b}{omega}{sub beta}{sup 2} {perpendicular} x {perpendicular} in the smooth focusing approximation. This paper examines properties of the axisymmetric, truncated thermal equilibrium distribution F(sub)b(r,p perpendicular) = A exp (-H Perpendicular/T perpendicular (sub)b) = (H perpendicular-E(sub)b), where A, T perpendicular (sub)b, and E (sub)b are positive constants, and H perpendicular is the Hamiltonian for transverse particle motion. The equilibrium profiles for beam number density, n(sub)b(r) = * d{sup 2}pF(sub)b(r,p perpendicular), and transverse temperature, T perpendicular (sub)b(r) = * d{sup 2}p(p{sup 2} perpendicular/2 lambda (sbu)bm (sub)b)F(sub)b(r,p perpendicular), are calculated self-consistently including space-charge effects. Several properties of the equilibrium profiles are noteworthy. For example, the beam has a sharp outer edge radius r(sub)b with n(sub)b(r greater than or equal to rb) = 0, where r(sub)b depends on the value of E(sub)b/T (sub)perpendicular(sub)b. In addition, unlike the choice of a semi-Gaussian distribution, F{sup SG}(sub)b = A exp (-p{sup 2}(sub)perpendicular/2lambda(sub)bm(sub)bTperpendicular(sub)b) = (r-r(sub)b), the truncated thermal equilibrium distribution F(sub)b(r,p) depends on (r,p) only through the single-particle constant of the motion Hperpendiuclar and is therefore a true steady-state solution (*/*t = 0) of the nonlinear Vlasov-Maxwell equations.

  11. Extended Tonks-Langmuir-type model with non-Boltzmann-distributed electrons and cold ion sources

    NASA Astrophysics Data System (ADS)

    Kamran, M.; Kuhn, S.; Tskhakaya, D. D.; Khan, M.; Khan

    2013-04-01

    kinetic Tonks-Langmuir model. Phys. Plasmas 13, 063508) or bi-Maxwellian (Godyak, V. A. et al. 1995 Tonks-Langmuir problem for a bi-Maxwellian plasma. IEEE Trans. Plasma Sci. 23, 728) electron velocity distribution functions (VDFs), which satisfy the zero-CSS-term (Vlasov) kinetic equation and imply zero electron currents, we here propose a more general class of electron VDFs allowing, in an approximate manner, for non-zero CSS terms and finite electron currents inside the plasma region. The sheath-edge and floating-wall potentials are calculated by balancing the ion and electron current densities at sheath-edge singularities. In a first detailed application, the type-t and type-p electron VDFs are assumed to be `inner' and `outer' cut-off Maxwellians respectively, with different amplitudes and `formal' temperatures, implying the perfectly CSS-free limit. For the special case of equal type-t and type-p electron VDF amplitudes and formal temperatures, the classical Boltzmann distribution for electrons is formally retrieved. Special cases with other amplitude and formal-temperature ratios show significant deviations from the classical case.

  12. Modeling flue pipes: Subsonic flow, lattice Boltzmann, and parallel distributed computers

    NASA Astrophysics Data System (ADS)

    Skordos, Panayotis A.

    1995-01-01

    The problem of simulating the hydrodynamics and the acoustic waves inside wind musical instruments such as the recorder the organ, and the flute is considered. The problem is attacked by developing suitable local-interaction algorithms and a parallel simulation system on a cluster of non-dedicated workstations. Physical measurements of the acoustic signal of various flue pipes show good agreement with the simulations. Previous attempts at this problem have been frustrated because the modeling of acoustic waves requires small integration time steps which make the simulation very compute-intensive. In addition, the simulation of subsonic viscous compressible flow at high Reynolds numbers is susceptible to slow-growing numerical instabilities which are triggered by high-frequency acoustic modes. The numerical instabilities are mitigated by employing suitable explicit algorithms: lattice Boltzmann method, compressible finite differences, and fourth-order artificial-viscosity filter. Further, a technique for accurate initial and boundary conditions for the lattice Boltzmann method is developed, and the second-order accuracy of the lattice Boltzmann method is demonstrated. The compute-intensive requirements are handled by developing a parallel simulation system on a cluster of non-dedicated workstations. The system achieves 80 percent parallel efficiency (speedup/processors) using 20 HP-Apollo workstations. The system is built on UNIX and TCP/IP communication routines, and includes automatic process migration from busy hosts to free hosts.

  13. Modeling Flue Pipes: Subsonic Flow, Lattice Boltzmann, and Parallel Distributed Computers.

    NASA Astrophysics Data System (ADS)

    Skordos, Panayotis A.

    1995-01-01

    The problem of simulating the hydrodynamics and the acoustic waves inside wind musical instruments such as the recorder, the organ, and the flute is considered. The problem is attacked by developing suitable local-interaction algorithms and a parallel simulation system on a cluster of non-dedicated workstations. Physical measurements of the acoustic signal of various flue pipes show good agreement with the simulations. Previous attempts at this problem have been frustrated because the modeling of acoustic waves requires small integration time steps which make the simulation very compute-intensive. In addition, the simulation of subsonic viscous compressible flow at high Reynolds numbers is susceptible to slow-growing numerical instabilities which are triggered by high-frequency acoustic modes. The numerical instabilities are mitigated by employing suitable explicit algorithms: lattice Boltzmann method, compressible finite differences, and fourth-order artificial -viscosity filter. Further, a technique for accurate initial and boundary conditions for the lattice Boltzmann method is developed, and the second-order accuracy of the lattice Boltzmann method is demonstrated. The compute-intensive requirements are handled by developing a parallel simulation system on a cluster of non-dedicated workstations. The system achieves 80% parallel efficiency (speedup/processors) using 20 HP-Apollo workstations. The system is built on UNIX and TCP/IP communication routines, and includes automatic process migration from busy hosts to free hosts. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  14. On the electron equilibrium distribution function in the kinetic theory of electron cyclotron maser

    NASA Astrophysics Data System (ADS)

    Shenggang, Liu

    1981-11-01

    The problems concerning the specification of electron equilibrium distribution function for the kinetic theory of ECRM are investigated in this paper. After detailed analysis of the published equilibium distribution functions, several conclusion have been achieved.

  15. Equilibrium distribution of shapes for linear and star macromolecules

    NASA Astrophysics Data System (ADS)

    Cannon, Joel W.; Aronovitz, Joseph A.; Goldbart, Paul

    1991-05-01

    We investigate the equilibrium distribution of three-dimensional shapes adopted by isolated linear and star-shaped macromolecules, both with and without intramolecular interactions, using an implementation of the Monte Carlo method suitable for macromolecules with branches. We compute the joint probability distribution function for two quantities which together characterise invariant features of the normalised radius of gyration tensor associated with the shape (rather than size) of macromolecular configurations. Amongst other things, knowledge of this distribution function allows us to compute the expectation values <~ngle Δ0rangle and <~ngle S0rangle introduced by Aronovitz and Nelson (J. Phys. France 47 (1986) 1445) to characterise the extent and nature of anisotropy of typical shapes drawn from the ensemble of macromolecular configurations. We also compute a third expectation value <~ngle Σ0rangle which isolates the nature of the anisotropy from its extent. Furthermore, our simulation permits a comparison of <~ngle Δ0rangle and <~ngle S0rangle with the less natural (but analytically tractable) alternative quantities Δ, the asphericity examined by Rudnick and Gaspari (J. Phys. A 19 (1986) L191) and by Aronovitz and Nelson, and S, examined by Aronovitz and Nelson, which have enhanced sensititvity to larger configurations and therefore convolve shape information with size information. It is found that although Δ and S do provide some characterisation of anisotropy, they differ considerably from the natural measures <~ngle Δ0rangle and <~ngle S0rangle. In particular, if Δ and S are regarded as approximations to Δ0rangle and <~ngle S0rangle then, for both linear and branched macromolecules, they severely underestimate the increase (or overestimate the decrease) in extent and prolateness of anisotropy due to intramolecular interactions. Nous examinons la distribution à l'équilibre des formes tri-dimensionnelles prises par des macromolécules isolées de

  16. Modified lattice Boltzmann method for compressible fluid simulations.

    PubMed

    Hinton, F L; Rosenbluth, M N; Wong, S K; Lin-Liu, Y R; Miller, R L

    2001-06-01

    A modified lattice Boltzmann algorithm is shown to have much better stability to growing temperature perturbations, when compared with the standard lattice Boltzmann algorithm. The damping rates of long-wavelength waves, which determine stability, are derived using a collisional equilibrium distribution function which has the property that the Euler equations are obtained exactly in the limit of zero time step. Using this equilibrium distribution function, we show that our algorithm has inherent positive hyperviscosity and hyperdiffusivity, for very small values of viscosity and thermal diffusivity, which are lacking in the standard algorithm. Short-wavelength modes are shown to be stable for temperatures greater than a lower limit. Results from a computer code are used to compare these algorithms, and to confirm the damping rate predictions made analytically. Finite amplitude sound waves in the simulated fluid steepen, as expected from gas dynamic theory. PMID:11415085

  17. Static analysis of possible emittance growth of intense charged particle beams with thermal equilibrium distribution

    SciTech Connect

    Kikuchi, Takashi; Horioka, Kazuhiko

    2009-05-15

    Possible emittance growths of intense, nonuniform beams during a transport in a focusing channel are derived as a function of nonlinear field energy and space charge tune depression factors. The nonlinear field energy of the beam with thermal equilibrium distribution is estimated by considering the particle distribution across the cross section of the beam. The results show that the possible emittance growth can be suppressed by keeping the beam particle in thermal equilibrium distribution during the beam transport.

  18. IS THE SIZE DISTRIBUTION OF URBAN AEROSOLS DETERMINED BY THERMODYNAMIC EQUILIBRIUM? (R826371C005)

    EPA Science Inventory

    A size-resolved equilibrium model, SELIQUID, is presented and used to simulate the size–composition distribution of semi-volatile inorganic aerosol in an urban environment. The model uses the efflorescence branch of aerosol behavior to predict the equilibrium partitioni...

  19. Equilibrium and non-equilibrium charge-state distributions of 2.0 MeV/u carbon ions passing through carbon foils

    NASA Astrophysics Data System (ADS)

    Imai, M.; Sataka, M.; Matsuda, M.; Okayasu, S.; Kawatsura, K.; Takahiro, K.; Komaki, K.; Shibata, H.; Nishio, K.

    2015-07-01

    Both equilibrium and non-equilibrium charge-state distributions were studied experimentally for 2.0 MeV/u carbon ions after passing through carbon foils. Measured charge-state distribution established the equilibrium at a target thickness of 10 μg/cm2 and this remained unchanged until a maximum target thickness of 98 μg/cm2. The equilibrium charge-state distribution, the equilibrium mean charge-state, and the width and skewness of the equilibrium distribution were compared with predictions using existing semi-empirical formulae as well as simulation results, including the ETACHA code. It was found that charge-state distributions, mean charge states, and distribution widths for C2+, C3+, and C4+ incident ions merged into quasi-equilibrium values at a target thickness of 5.7 μg/cm2 in the pre-equilibrium region and evolved simultaneously to the 'real equilibrium' values for all of the initial charge states, including C5+ and C6+ ions, as previously demonstrated for sulfur projectile ions at the same velocity (Imai et al., 2009). Two kinds of simulation, ETACHA and solution of rate equations taking only single electron transfers into account, were used, and both of them reproduced the measured charge evolution qualitatively. The quasi-equilibrium behavior could be reproduced with the ETACHA code, but not with solution of elementary rate equations.

  20. Coulomb-Boltzmann-Shifted distribution in laser-generated plasmas from 1010 up to 1019 W/cm2 intensities

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2016-02-01

    The charge production from laser-generated plasmas generates not isotropically ion acceleration in vacuum and with mean kinetic energy proportional to the ion charge state. The ion velocity depends on many factors of which the most important are the plasma temperature, the adiabatic gas expansion in vacuum and the Coulomb acceleration. The ion energy distributions of the emitted ions from the plasma can be well explained by the Coulomb-Boltzmann-Shifted function, with a cut-off limitation at high energy for a wide range of laser intensities. It can be applied for intensities of 1010 W/cm2, when plasma is produced only in the backward direction from thick targets (backward plasma acceleration regime), as well as at intensities of the order of 1019 W/cm2, when plasma is produced in the forward direction from thin targets in target-normal sheath acceleration regime. It loses of validity in radiation pressure acceleration regime, at which ions are emitted near mono-energetically.

  1. Near equilibrium distributions for beams with space charge in linear and nonlinear periodic focusing systems

    SciTech Connect

    Sonnad, Kiran G.; Cary, John R.

    2015-04-15

    A procedure to obtain a near equilibrium phase space distribution function has been derived for beams with space charge effects in a generalized periodic focusing transport channel. The method utilizes the Lie transform perturbation theory to canonically transform to slowly oscillating phase space coordinates. The procedure results in transforming the periodic focusing system to a constant focusing one, where equilibrium distributions can be found. Transforming back to the original phase space coordinates yields an equilibrium distribution function corresponding to a constant focusing system along with perturbations resulting from the periodicity in the focusing. Examples used here include linear and nonlinear alternating gradient focusing systems. It is shown that the nonlinear focusing components can be chosen such that the system is close to integrability. The equilibrium distribution functions are numerically calculated, and their properties associated with the corresponding focusing system are discussed.

  2. Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena

    NASA Astrophysics Data System (ADS)

    Lin, Chuan-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Li, Ying-Jun

    2014-11-01

    A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed.

  3. Size-frequency distribution of crater populations in equilibrium on the Moon

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Werner, Stephanie C.

    2015-12-01

    Overprinting of craters by subsequent impacts and topographic degradation complicates crater statistics, especially for old surfaces and small-diameter crater populations. A crater population is regarded as in equilibrium at a particular crater size when smaller craters are being produced at the same rate at which they are being destroyed. Evaluating the equilibrium state of crater populations is challenging, and empirical equilibrium densities are frequently inferred. By performing careful crater counts and cross comparisons on several lunar surfaces, we study the size-frequency distributions (SFD) for the crater populations, which have portions in equilibrium. The results are one of the few observational constraints on the SFD of crater populations in equilibrium, showing that referring to empirical equilibrium densities is not safe for evaluating the equilibrium states of crater populations. Equilibrium densities are not positively correlated with the ages of crater populations, and some populations in equilibrium have crater densities less than those previously believed to represent equilibrium conditions. Besides the SFD of the production population, different crater removal rates at different diameters also affect the SFD of crater populations in equilibrium. The equilibrium onset diameter (Deq) of a crater population can be translated to model ages because older populations have larger Deq, and those for same-aged surfaces are comparable. We show that the crater populations studied here are in equilibrium at much smaller diameters than those predicted for same-aged surfaces by crater degradation models, thus indicating lower crater degradation rates on the Moon, and/or younger ages of the counting areas.

  4. Transition in the Equilibrium Distribution Function of Relativistic Particles

    PubMed Central

    Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed. PMID:22937220

  5. Transition in the Equilibrium Distribution Function of Relativistic Particles

    NASA Astrophysics Data System (ADS)

    Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.

    2012-08-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.

  6. Equilibrium and non-equilibrium charge-state distributions of 2 MeV/u sulfur ions passing through carbon foils

    NASA Astrophysics Data System (ADS)

    Imai, M.; Sataka, M.; Kawatsura, K.; Takahiro, K.; Komaki, K.; Shibata, H.; Sugai, H.; Nishio, K.

    2009-08-01

    Both equilibrium and non-equilibrium charge-state distributions for 2.0 MeV/u sulfur ions after passing through carbon foils were studied experimentally. For the equilibrium charge-state distribution, incident ions of S 7+, S 12+, S 14+ and S 16+ were injected into carbon foils 54, 98, 150 and 200 μg/cm 2 in thickness, whereas for the non-equilibrium distributions, new measurements for S 15+ and S 16+ incidences were made through carbon foils of 0.9-10 μg/cm 2 to supplement our previous experiments regarding S 6+-S 14+ incidences [M. Imai, M. Sataka, K. Kawatsura, K. Takahiro, K. Komaki, H. Shibata, H. Sugai, K. Nishio, Nucl. Instr. and Meth. B 230 (2005) 63; M. Imai, M. Sataka, K. Kawatsura, K. Takahiro, K. Komaki, H. Shibata, H. Sugai, K. Nishio, Nucl. Instr. and Meth. B 256 (2007) 11]. Mean charge states for S 6+-S 14+ incidences as functions of the penetration thickness merged at 6.9 μg/cm 2 and changed together until reaching equilibrium at around 100 μg/cm 2, while those for S 15+ and S 16+ incidences took different paths to equilibrium, which was also the case for distribution widths for S 6+-S 14+, S 15+ and S 16+ incidences. An equilibrium mean charge state of 12.68 and distribution width of 1.11 were attained with equilibrium charge distributions between 6+ and 16+.

  7. New lifting relations for estimating LBM distribution functions from corresponding macroscopic quantities, based on equilibrium and non-equilibrium moments

    NASA Astrophysics Data System (ADS)

    Salimi, M. R.; Taeibi-Rahni, M.

    2015-12-01

    Due to superior accuracy and stability of multiple relaxation time (MRT) collision operator over its single relaxation time (SRT) counterpart, new lifting relations are proposed here to construct single particle distribution functions for MRT-LBM from macroscopic variables. Using these lifting relations, a new hybrid FVM-LB method is presented (called Finite type-LB hybrid method), which is consistent with MRT-LBM. In this new hybrid method, single-particle distribution functions in MRT-LBM sub-domain boundaries are computed, using equilibrium and non-equilibrium moments. These moments are computed in Navier-Stokes/FVM sub-domain boundaries, using macroscopic variables and their derivatives. The new method is validated by solving three benchmark problems, i.e., two- and three-dimensional lid driven cavity flows and two-dimensional unsteady flow around a squared section cylinder. These problems are analyzed with pure FVM, pure LBM, and Finite type-LB hybrid method (FTLBHM) and the related results are compared with each other and with benchmark data. These comparisons clearly demonstrate the accuracy of the present novel methodology for simulating steady/unsteady flow fields in two and three dimensions.

  8. A MODIFIED POISSON–BOLTZMANN STUDY OF THE SINGLET ION DISTRIBUTION AT CONTACT WITH THE ELECTRODE FOR A PLANAR ELECTRIC DOUBLE LAYER

    PubMed Central

    Silvestre-Alcantara, Whasington; Bhuiyan, Lutful B.; Outhwaite, Christopher W.; Henderson, Douglas

    2010-01-01

    The properties of the singlet ion distributions at and around contact in a restricted primitive model double layer are characterized in the modified Poisson–Boltzmann theory. Comparisons are made with the corresponding exact Monte Carlo simulation data, the results from the Gouy–Chapman–Stern theory coupled to an exclusion volume term, and the mean spherical approximation. Particular emphasis is given to the behaviour of the theoretical predictions in relation to the contact value theorem involving the charge profile. The simultaneous behaviour of the coion and counterion contact values is also examined. The performance of the modified Poisson–Boltzmann theory in regard to the contact value theorems is very reasonable with the contact characteristics showing semi-quantitative or better agreement overall with the simulation results. The exclusion-volume-treated Gouy–Chapman–Stern theory reveals a fortuitous cancellation of errors, while the mean spherical approximation is poor. PMID:20664814

  9. A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles.

    PubMed

    Ramachandran, S; Sunil Kumar, P B; Pagonabarraga, I

    2006-06-01

    We present a Lattice-Boltzmann method for simulating self-propelling (active) colloidal particles in two dimensions. Active particles with symmetric and asymmetric force distribution on their surface are considered. The velocity field generated by a single active particle, changing its orientation randomly, and the different time scales involved are characterized in detail. The steady-state speed distribution in the fluid, resulting from the activity, is shown to deviate considerably from the equilibrium distribution. PMID:16779527

  10. A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles

    NASA Astrophysics Data System (ADS)

    Ramachandran, S.; Kumar, P. B. Sunil; Pagonabarraga, I.

    2006-06-01

    We present a Lattice-Boltzmann method for simulating self-propelling (active) colloidal particles in two dimensions. Active particles with symmetric and asymmetric force distribution on their surface are considered. The velocity field generated by a single active particle, changing its orientation randomly, and the different time scales involved are characterized in detail. The steady-state speed distribution in the fluid, resulting from the activity, is shown to deviate considerably from the equilibrium distribution.

  11. Exact solution for the equilibrium problem between radiation and classical nonrelativistic extended charges

    NASA Astrophysics Data System (ADS)

    Blanco, R.; Pesquera, L.

    1986-08-01

    The problem of radiation-matter equilibrium for classical nonrelativistic rigid extended charges is studied by using the dipolar approximation for the fields. An exact solution is obtained for a large class of spherically symmetric distribution charges. It is shown that equilibrium holds with the Rayleigh-Jeans radiation. As concerns the equilibrium distribution for the matter, the Maxwell-Boltzmann law is obtained only when the radius is large enough for the electromagnetic mass to be negligible.

  12. Equilibrium Distribution of Subgrid Convection: A Grand Canonic Ensemble Approach

    NASA Astrophysics Data System (ADS)

    Bao, J.; Penland, M. C.

    2011-12-01

    Moist convection on scales smaller than the horizontal grid spacing that is commonly used in operational numerical weather and climate prediction models is turbulent and therefore its interaction with the environment is stochastic. Traditionally in operational weather and climate prediction models, the effect of unresolved subgrid convection on the prediction of resolved scales is parameterized deterministically as an ensemble mean, and the stochastic fluctuations about this ensemble mean are ignored. It has recently been advocated that the stochastic fluctuations should be properly accounted for in the subgrid parameterization in order to address a persistent issue in operational ensemble prediction: the spread of ensemble members tends to be underestimated. In this study, the probability of requiring n mutually independently convective plumes and a total cloud-base mass flux M for subgrid convection to occur in a given grid box is derived based on the concept of the grand canonical ensemble, which is well known in classic statistical mechanics. The probability distribution functions of the cloud-base mass flux and the number of subgrid convective plumes are dependent on the average of each of the two quantities. For a large number of such grid boxes in a given area, the concept can be extended to a homogenous stochastic situation. In this situation, the probability of finding exact k subgrid convective plumes in one of the grid boxes is given by the binomial distribution, which converges to the Poisson distribution when the number of the boxes approaches to infinity. The latter result provides an alternative way to derive and interpret the previous theoretical results obtained by Craig and Cohen (2006, JAS, Vol. 63, p. 1996-2015).

  13. Equilibrium distribution of the wave energy in a carbyne chain

    NASA Astrophysics Data System (ADS)

    Kovriguine, D. A.; Nikitenkova, S. P.

    2016-03-01

    The steady-state energy distribution of thermal vibrations at a given ambient temperature has been investigated based on a simple mathematical model that takes into account central and noncentral interactions between carbon atoms in a one-dimensional carbyne chain. The investigation has been performed using standard asymptotic methods of nonlinear dynamics in terms of the classical mechanics. In the first-order nonlinear approximation, there have been revealed resonant wave triads that are formed at a typical nonlinearity of the system under phase matching conditions. Each resonant triad consists of one longitudinal and two transverse vibration modes. In the general case, the chain is characterized by a superposition of similar resonant triplets of different spectral scales. It has been found that the energy equipartition of nonlinear stationary waves in the carbyne chain at a given temperature completely obeys the standard Rayleigh-Jeans law due to the proportional amplitude dispersion. The possibility of spontaneous formation of three-frequency envelope solitons in carbyne has been demonstrated. Heat in the form of such solitons can propagate in a chain of carbon atoms without diffusion, like localized waves.

  14. Modelling spectral properties of non-equilibrium atomic hydrogen plasma

    NASA Astrophysics Data System (ADS)

    D'Ammando, G.; Pietanza, L. D.; Colonna, G.; Longo, S.; Capitelli, M.

    2010-02-01

    A model to predict the emissivity and absorption coefficient of atomic hydrogen plasma is presented in detail. Non-equilibrium plasma is studied through coupling of the model with a collisional-radiative code for the excited states population as well as with the Boltzmann equation for the electron energy distribution function.

  15. The Approach to Equilibrium: Detailed Balance and the Master Equation

    ERIC Educational Resources Information Center

    Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.

    2011-01-01

    The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…

  16. A probable probability distribution of a series nonequilibrium states in a simple system out of equilibrium

    NASA Astrophysics Data System (ADS)

    Gao, Haixia; Li, Ting; Xiao, Changming

    2016-05-01

    When a simple system is in its nonequilibrium state, it will shift to its equilibrium state. Obviously, in this process, there are a series of nonequilibrium states. With the assistance of Bayesian statistics and hyperensemble, a probable probability distribution of these nonequilibrium states can be determined by maximizing the hyperensemble entropy. It is known that the largest probability is the equilibrium state, and the far a nonequilibrium state is away from the equilibrium one, the smaller the probability will be, and the same conclusion can also be obtained in the multi-state space. Furthermore, if the probability stands for the relative time the corresponding nonequilibrium state can stay, then the velocity of a nonequilibrium state returning back to its equilibrium can also be determined through the reciprocal of the derivative of this probability. It tells us that the far away the state from the equilibrium is, the faster the returning velocity will be; if the system is near to its equilibrium state, the velocity will tend to be smaller and smaller, and finally tends to 0 when it gets the equilibrium state.

  17. High-frequency spectral distribution of the equilibrium radiation energy in a plasma

    NASA Astrophysics Data System (ADS)

    Bobrov, V. B.; Trigger, S. A.

    2016-04-01

    We establish that the difference of the spectral distribution of the equilibrium radiation energy in matter from the Planck formula in the high-frequency range is determined by the imaginary part of the transverse dielectric permittivity of the matter. Based on this, we show that in a rarified high-temperature fully ionized nonrelativistic plasma, the high-frequency spectral distribution of the equilibrium radiation energy differs essentially from the Planck formula because of the power-law character of the decrease in the frequency, which is due to the presence of matter.

  18. Relativistic distribution function for particles with spin at local thermodynamical equilibrium

    SciTech Connect

    Becattini, F.; Chandra, V.; Del Zanna, L.; Grossi, E.

    2013-11-15

    We present an extension of relativistic single-particle distribution function for weakly interacting particles at local thermodynamical equilibrium including spin degrees of freedom, for massive spin 1/2 particles. We infer, on the basis of the global equilibrium case, that at local thermodynamical equilibrium particles acquire a net polarization proportional to the vorticity of the inverse temperature four-vector field. The obtained formula for polarization also implies that a steady gradient of temperature entails a polarization orthogonal to particle momentum. The single-particle distribution function in momentum space extends the so-called Cooper–Frye formula to particles with spin 1/2 and allows us to predict their polarization in relativistic heavy ion collisions at the freeze-out. -- Highlights: •Single-particle distribution function in local thermodynamical equilibrium with spin. •Polarization of spin 1/2 particles in a fluid at local thermodynamical equilibrium. •Prediction of a new effect: a steady gradient of temperature induces a polarization. •Application to the calculation of polarization in relativistic heavy ion collisions.

  19. Numerical scheme for a spatially inhomogeneous matrix-valued quantum Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Mendl, Christian B.

    2015-06-01

    We develop an efficient algorithm for a spatially inhomogeneous matrix-valued quantum Boltzmann equation derived from the Hubbard model. The distribution functions are 2 × 2 matrix-valued to accommodate the spin degree of freedom, and the scalar quantum Boltzmann equation is recovered as a special case when all matrices are proportional to the identity. We use Fourier discretization and fast Fourier transform to efficiently evaluate the collision kernel with spectral accuracy, and numerically investigate periodic, Dirichlet and Maxwell boundary conditions. Model simulations quantify the convergence to local and global thermal equilibrium.

  20. A multispeed Discrete Boltzmann Model for transcritical 2D shallow water flows

    NASA Astrophysics Data System (ADS)

    La Rocca, Michele; Montessori, Andrea; Prestininzi, Pietro; Succi, Sauro

    2015-03-01

    In this work a Discrete Boltzmann Model for the solution of transcritical 2D shallow water flows is presented and validated. In order to provide the model with transcritical capabilities, a particular multispeed velocity set has been employed for the discretization of the Boltzmann equation. It is shown that this particular set naturally yields a simple and closed procedure to determine higher order equilibrium distribution functions needed to simulate transcritical flow. The model is validated through several classical benchmarks and is proven to correctly and accurately simulate both 1D and 2D transitions between the two flow regimes.

  1. Stability analysis of lattice Boltzmann methods

    SciTech Connect

    Sterling, J.D.; Chen, Shiyi

    1996-01-01

    The lattice Boltzmann equation describes the evolution of the velocity distribution function on a lattice in a manner that macroscopic fluid dynamical behavior is recovered. Although the equation is a derivative of lattice gas automata, it may be interpreted as a Lagrangian finite-difference method for the numerical simulation of the discrete-velocity Boltzmann equation that makes use of a BGK collision operator. As a result, it is not surprising that numericaI instability of lattice Boltzmann methods have been frequently encountered by researchers. We present an analysis of the stability of perturbations of the particle populations linearized about equilibrium values corresponding to a constant-density uniform mean flow. The linear stability depends on the following parameters: the distribution of the mass at a site between the different discrete speeds, the BGK relaxation time, the mean velocity, and the wave-number of the perturbations. This parameter space is too large to compute the complete stability characteristics. We report some stability results for a subset of the parameter space for a 7-velocity hexagonal lattice, a 9-velocity square lattice, and a 15-velocity cubic lattice. Results common to all three lattices are (1) the BGK relaxation time {tau} must be greater than 1/2 corresponding to positive shear viscosity, (2) there exists a maximum stable mean velocity for fixed values of theother parameters, and (3) as {tau} is increased from 1/2 the maximum stable velocity increases monotonically until some fixed velocity is reached which does not change for larger {tau}.

  2. Relaxation of non-equilibrium hydrogen distributions in a-Si:H

    SciTech Connect

    Adriaenssens, G.J.; Zhang, Q.

    1998-12-31

    It is shown that a reduction of the three-level energy diagram proposed by Van de Walle (Phys. Rev. B 53, 11292, 1996) to describe the relaxation of non-equilibrium hydrogen distributions, to just the interstitial transport level and a distribution of traps, allows an essentially equivalent formulation of the hydrogen relaxation kinetics. The modified formulation offers the possibility of accounting for dispersive diffusion while preserving the essential multiple retrapping aspect of the original proposal.

  3. On return to thermal equilibrium for the excess charge distribution in semiconductors

    NASA Astrophysics Data System (ADS)

    Paranjape, V. V.

    1985-04-01

    The relaxation time for the return to thermal equilibrium for the excess charge distribution in metals and in semiconductors is shown to be longer than the relaxation time derived in many textbooks. In semiconductors the relaxation of charge is accompanied by an increase in temperature of the charged carriers. The time of decay τT for the temperature is considerably longer than the time of decay for the excess charge. Hence the overall relaxation time for attaining thermal equilibrium is determined by τT.

  4. Equilibrium distribution of hard-sphere systems and revised Enskog theory

    NASA Astrophysics Data System (ADS)

    van Beijeren, H.

    1983-10-01

    A revised Enskog theory (RET) is shown to lead to a correct equilibrium distribution in hard-sphere systems in a stationary external potential, while the standard Enskog theory (SET) does not. Attention is given to the s-component hard-sphere mixture with constant external potential acting on particles of a particular species. The different definition of the pair correlation function at a contact point of two different species used in RET is demonstrated to be consistent with equilibrium statistical mechanics, whereas the definition chosen for the contact point in SET is not.

  5. The Equilibrium Allele Frequency Distribution for a Population with Reproductive Skew

    PubMed Central

    Der, Ricky; Plotkin, Joshua B.

    2014-01-01

    We study the population genetics of two neutral alleles under reversible mutation in a model that features a skewed offspring distribution, called the Λ-Fleming–Viot process. We describe the shape of the equilibrium allele frequency distribution as a function of the model parameters. We show that the mutation rates can be uniquely identified from this equilibrium distribution, but the form of the offspring distribution cannot itself always be so identified. We introduce an estimator for the mutation rate that is consistent, independent of the form of reproductive skew. We also introduce a two-allele infinite-sites version of the Λ-Fleming–Viot process, and we use it to study how reproductive skew influences standing genetic diversity in a population. We derive asymptotic formulas for the expected number of segregating sites as a function of sample size and offspring distribution. We find that the Wright–Fisher model minimizes the equilibrium genetic diversity, for a given mutation rate and variance effective population size, compared to all other Λ-processes. PMID:24473932

  6. Variance-reduced particle simulation of the Boltzmann transport equation in the relaxation-time approximation.

    PubMed

    Radtke, Gregg A; Hadjiconstantinou, Nicolas G

    2009-05-01

    We present an efficient variance-reduced particle simulation technique for solving the linearized Boltzmann transport equation in the relaxation-time approximation used for phonon, electron, and radiative transport, as well as for kinetic gas flows. The variance reduction is achieved by simulating only the deviation from equilibrium. We show that in the limit of small deviation from equilibrium of interest here, the proposed formulation achieves low relative statistical uncertainty that is also independent of the magnitude of the deviation from equilibrium, in stark contrast to standard particle simulation methods. Our results demonstrate that a space-dependent equilibrium distribution improves the variance reduction achieved, especially in the collision-dominated regime where local equilibrium conditions prevail. We also show that by exploiting the physics of relaxation to equilibrium inherent in the relaxation-time approximation, a very simple collision algorithm with a clear physical interpretation can be formulated. PMID:19518597

  7. Temperature based Restricted Boltzmann Machines

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Deng, Lei; Xu, Yi; Wen, Changyun; Wang, Wei; Pei, Jing; Shi, Luping

    2016-01-01

    Restricted Boltzmann machines (RBMs), which apply graphical models to learning probability distribution over a set of inputs, have attracted much attention recently since being proposed as building blocks of multi-layer learning systems called deep belief networks (DBNs). Note that temperature is a key factor of the Boltzmann distribution that RBMs originate from. However, none of existing schemes have considered the impact of temperature in the graphical model of DBNs. In this work, we propose temperature based restricted Boltzmann machines (TRBMs) which reveals that temperature is an essential parameter controlling the selectivity of the firing neurons in the hidden layers. We theoretically prove that the effect of temperature can be adjusted by setting the parameter of the sharpness of the logistic function in the proposed TRBMs. The performance of RBMs can be improved by adjusting the temperature parameter of TRBMs. This work provides a comprehensive insights into the deep belief networks and deep learning architectures from a physical point of view.

  8. Virial Theorem and Non-Equilibrium Canonical-Dissipative Distributions Characterizing Parkinson Tremor

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    The virial theorem and the concept of canonical-statistical distributions represent two fundamental elements of statistical physics. We apply these concepts to hand tremor oscillations recorded from six Parkinson patients. We find that the virial theorem holds for Parkinson tremor oscillations. In contrast, we find that the concept of canonical distributions fails to a certain extent and needs to be replaced by the notion of non-canonical (i.e., canonical-dissipative) distributions. In doing so, our analysis reveals both general statistical aspects and non-equilibrium aspects of Parkinson hand tremor.

  9. Three-dimensional lattice Boltzmann model for compressible flows.

    PubMed

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade. PMID:12935242

  10. Importance of Pore Size Distribution of Fine-grained Sediments on Gas Hydrate Equilibrium

    NASA Astrophysics Data System (ADS)

    Kwon, T. H.; Kim, H. S.; Cho, G. C.; Park, T. H.

    2015-12-01

    Gas hydrates have been considered as a new source of natural gases. For the gas hydrate production, the gas hydrate reservoir should be depressurized below the equilibrium pressure of gas hydrates. Therefore, it is important to predict the equilibrium of gas hydrates in the reservoir conditions because it can be affected by the pore size of the host sediments due to the capillary effect. In this study, gas hydrates were synthesized in fine-grained sediment samples including a pure silt sample and a natural clayey silt sample cored from a hydrate occurrence region in Ulleung Basin, East Sea, offshore Korea. Pore size distributions of the samples were obtained by the nitrogen adsorption and desorption test and the mercury intrusion porosimetry. The equilibrium curve of gas hydrates in the fine-grained sediments were found to be significantly influenced by the clay fraction and the corresponding small pores (>50 nm in diameter). For the clayey silt sample, the equilibrium pressure was higher by ~1.4 MPa than the bulk equilibrium pressure. In most cases of oceanic gas hydrate reservoirs, sandy layers are found interbedded with fine-grained sediment layers while gas hydrates are intensively accumulated in the sandy layers. Our experiment results reveal the inhibition effect of fine-grained sediments against gas hydrate formation, in which greater driving forces (e.g., higher pressure or lower temperature) are required during natural gas migration. Therefore, gas hydrate distribution in interbedded layers of sandy and fine-grained sediments can be explained by such capillary effect induced by the pore size distribution of host sediments.

  11. High-precision work distributions for extreme non-equilibrium processes in large systems

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander

    2014-03-01

    The distributions of work for strongly non-equilibrium processes are studied using a very general form of a large-deviation approach, which allows one to study distributions down to extremely small probabilities of almost arbitrary quantities of interest for equilibrium, non-equilibrium stationary and even non-stationary processes. The method is applied to varying quickly the external field in a wide range B = 3 <--> 0 for critical (T = 2 . 269) two-dimensional Ising system of size L × L = 128 × 128 . To obtain free energy differences from the work distributions, they must be studied in ranges where the probabilities are as small as 10-240, which is not possible using direct simulation approaches. By comparison with the exact free energies, one sees that the present approach allows one to obtain the free energy with a very high relative precision of 10-4. This works well also for non-zero field, i.e., for a case where standard umbrella-sampling methods seem to be not so efficient to calculate free energies. Furthermore, for the present case it is verified that the resulting distributions of work fulfill Crooks theorem with high precision. Finally, the free energy for the Ising magnet as a function of the field strength is obtained.

  12. The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics

    NASA Astrophysics Data System (ADS)

    Tirnakli, Ugur; Borges, Ernesto P.

    2016-03-01

    As well known, Boltzmann-Gibbs statistics is the correct way of thermostatistically approaching ergodic systems. On the other hand, nontrivial ergodicity breakdown and strong correlations typically drag the system into out-of-equilibrium states where Boltzmann-Gibbs statistics fails. For a wide class of such systems, it has been shown in recent years that the correct approach is to use Tsallis statistics instead. Here we show how the dynamics of the paradigmatic conservative (area-preserving) stan-dard map exhibits, in an exceptionally clear manner, the crossing from one statistics to the other. Our results unambiguously illustrate the domains of validity of both Boltzmann-Gibbs and Tsallis statistical distributions. Since various important physical systems from particle confinement in magnetic traps to autoionization of molecular Rydberg states, through particle dynamics in accelerators and comet dynamics, can be reduced to the standard map, our results are expected to enlighten and enable an improved interpretation of diverse experimental and observational results.

  13. The lattice Boltzmann model for the second-order Benjamin-Ono equations

    NASA Astrophysics Data System (ADS)

    Lai, Huilin; Ma, Changfeng

    2010-04-01

    In this paper, in order to extend the lattice Boltzmann method to deal with more complicated nonlinear equations, we propose a 1D lattice Boltzmann scheme with an amending function for the second-order (1 + 1)-dimensional Benjamin-Ono equation. With the Taylor expansion and the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The equilibrium distribution function and the amending function are obtained. Numerical simulations are carried out for the 'good' Boussinesq equation and the 'bad' one to validate the proposed model. It is found that the numerical results agree well with the analytical solutions. The present model can be used to solve more kinds of nonlinear partial differential equations.

  14. Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.

    PubMed

    Coelho, Rodrigo C V; Ilha, Anderson; Doria, Mauro M; Pereira, R M; Aibe, Valter Yoshihiko

    2014-04-01

    The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389 (2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the Hermite polynomials. PMID:24827360

  15. Equilibrium distribution of samarium and europium between fluoride salt melts and liquid bismuth

    NASA Astrophysics Data System (ADS)

    Zagnit'ko, A. V.; Ignat'ev, V. V.

    2016-01-01

    The extraction of samarium and europium from a melt of a molar composition 73LiF-27BeF2 into liquid bismuth with additions of lithium as a reducing agent at a temperature of 600-610°C was studied. The equilibrium distribution coefficients of samarium and europium were measured. In the metal fluoride salt melt under study, the valence of samarium and europium was shown to be equal to two.

  16. Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks

    PubMed Central

    Mélykúti, Bence; Hespanha, João P.; Khammash, Mustafa

    2014-01-01

    Many biochemical reaction networks are inherently multiscale in time and in the counts of participating molecular species. A standard technique to treat different time scales in the stochastic kinetics framework is averaging or quasi-steady-state analysis: it is assumed that the fast dynamics reaches its equilibrium (stationary) distribution on a time scale where the slowly varying molecular counts are unlikely to have changed. We derive analytic equilibrium distributions for various simple biochemical systems, such as enzymatic reactions and gene regulation models. These can be directly inserted into simulations of the slow time-scale dynamics. They also provide insight into the stimulus–response of these systems. An important model for which we derive the analytic equilibrium distribution is the binding of dimer transcription factors (TFs) that first have to form from monomers. This gene regulation mechanism is compared to the cases of the binding of simple monomer TFs to one gene or to multiple copies of a gene, and to the cases of the cooperative binding of two or multiple TFs to a gene. The results apply equally to ligands binding to enzyme molecules. PMID:24920118

  17. Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks.

    PubMed

    Mélykúti, Bence; Hespanha, João P; Khammash, Mustafa

    2014-08-01

    Many biochemical reaction networks are inherently multiscale in time and in the counts of participating molecular species. A standard technique to treat different time scales in the stochastic kinetics framework is averaging or quasi-steady-state analysis: it is assumed that the fast dynamics reaches its equilibrium (stationary) distribution on a time scale where the slowly varying molecular counts are unlikely to have changed. We derive analytic equilibrium distributions for various simple biochemical systems, such as enzymatic reactions and gene regulation models. These can be directly inserted into simulations of the slow time-scale dynamics. They also provide insight into the stimulus-response of these systems. An important model for which we derive the analytic equilibrium distribution is the binding of dimer transcription factors (TFs) that first have to form from monomers. This gene regulation mechanism is compared to the cases of the binding of simple monomer TFs to one gene or to multiple copies of a gene, and to the cases of the cooperative binding of two or multiple TFs to a gene. The results apply equally to ligands binding to enzyme molecules. PMID:24920118

  18. Equilibrium distribution of lanthanum, neodymium, and thorium between lithium chloride melt and liquid bismuth

    NASA Astrophysics Data System (ADS)

    Zagnit'ko, A. V.; Ignat'ev, V. V.

    2013-04-01

    The distribution of lanthanum, neodymium, and thorium between a lithium chloride melt and liquid bismuth with additions of lithium as a reducing agent are investigated at 650°C. Equilibrium values of their distribution constants are measured. It is shown that in contrast to neodymium and lanthanum, thorium cannot be extracted from bismuth into lithium chloride. This allows us to propose an efficient scheme for separating lanthanides and thorium in a system for the extraction of fuel salts in molten-salt nuclear reactors.

  19. Boltzmann's Approach to Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Goldstein, Sheldon

    In the last quarter of the nineteenth century, Ludwig Boltzmann explained how irreversible macroscopic laws, in particular the second law of thermodynamics, originate in the time-reversible laws of microscopic physics. Boltzmann's analysis, the essence of which I shall review here, is basically correct. The most famous criticisms of Boltzmann's later work on the subject have little merit. Most twentieth century innovations - such as the identification of the state of a physical system with a probability distribution \\varrho on its phase space, of its thermodynamic entropy with the Gibbs entropy of \\varrho, and the invocation of the notions of ergodicity and mixing for the justification of the foundations of statistical mechanics - are thoroughly misguided.

  20. The Universal Statistical Distributions of the Affinity, Equilibrium Constants, Kinetics and Specificity in Biomolecular Recognition

    PubMed Central

    Zheng, Xiliang; Wang, Jin

    2015-01-01

    We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics. PMID:25885453

  1. The universal statistical distributions of the affinity, equilibrium constants, kinetics and specificity in biomolecular recognition.

    PubMed

    Zheng, Xiliang; Wang, Jin

    2015-04-01

    We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics. PMID:25885453

  2. Ionisation Equilibrium for the Non-Maxwellian Electron n-Distributions in Solar Flares: Updated Calculations

    NASA Astrophysics Data System (ADS)

    Dzifčáková, Elena; Dudík, Jaroslav

    2015-12-01

    We use the latest available atomic data to calculate the ionisation and recombination rates for the non-Maxwellian n-distributions, which were shown previously to provide a good fit to the enhanced intensities of dielectronic satellite lines during solar flares. The ionisation and recombination coefficients are subsequently used to derive the ionisation equilibrium. To do so, we consider odd values of n ranging from 1 to 19, i.e., from Maxwellian to strongly non-Maxwellian cases. These calculations involve all elements with proton number up to 30, i.e., H to Zn. The n-distributions modify both the ionisation and the recombination rates. The ionisation rates decrease more steeply at lower pseudo-temperatures, while the radiative recombination rate is reduced due to a lower number of low-energy electrons. The peaks of the dielectronic recombination rates become narrower. These changes are reflected in the ionisation equilibrium. Ion abundance peaks become narrower and can also be shifted, mostly towards higher temperatures. The He-like ions are an important exception, as they are formed in a larger temperature range than that for the Maxwellian distribution. The ions Si xiii - xiv used previously for the diagnostics of the n-distributions are affected only weakly, confirming the determination of n. The ionisation equilibria are available as the electronic supplementary material in a format compatible with the CHIANTI database.

  3. Lattice Boltzmann modeling of phonon transport

    NASA Astrophysics Data System (ADS)

    Guo, Yangyu; Wang, Moran

    2016-06-01

    A novel lattice Boltzmann scheme is proposed for phonon transport based on the phonon Boltzmann equation. Through the Chapman-Enskog expansion, the phonon lattice Boltzmann equation under the gray relaxation time approximation recovers the classical Fourier's law in the diffusive limit. The numerical parameters in the lattice Boltzmann model are therefore rigorously correlated to the bulk material properties. The new scheme does not only eliminate the fictitious phonon speed in the diagonal direction of a square lattice system in the previous lattice Boltzmann models, but also displays very robust performances in predicting both temperature and heat flux distributions consistent with analytical solutions for diverse numerical cases, including steady-state and transient, macroscale and microscale, one-dimensional and multi-dimensional phonon heat transport. This method may provide a powerful numerical tool for deep studies of nonlinear and nonlocal heat transports in nanosystems.

  4. U.S. stock market interaction network as learned by the Boltzmann machine

    NASA Astrophysics Data System (ADS)

    Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.

    2015-12-01

    We study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as the market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model's parameters might be used as a precursor of financial instabilities.

  5. U.S. stock market interaction network as learned by the Boltzmann machine

    SciTech Connect

    Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.

    2015-12-07

    Here, we study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as the market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model’s parameters might be used as a precursor of financial instabilities.

  6. Effects of non-equilibrium particle distributions in deuterium-tritium burning

    SciTech Connect

    Michta, D; Graziani, F; Pruet, J; Luu, T

    2009-08-18

    We investigate the effects of non-equilibrium particle distributions resulting from rapid deuterium-tritium burning in plasmas using a Fokker-Planck code that incorporates small-angle Coulomb scattering, Brehmsstrahlung, Compton scattering, and thermal-nuclear burning. We find that in inertial confinement fusion environments, deviations away from Maxwellian distributions for either deuterium or tritium ions are small and result in 1% changes in the energy production rates. The deuterium and tritium effective temperatures are not equal, but differ by only about 2.5% near the time of peak burn rate. Simulations with high Z (Xe) dopants show that the dopant temperature closely tracks that of the fuel. On the other hand, fusion product ion distributions are highly non-Maxwellian, and careful treatments of energy-exchange between these ions and other particles is important for determining burn rates.

  7. H to Zn Ionization Equilibrium for the Non-Maxwellian Electron κ-distributions: Updated Calculations

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Dudík, J.

    2013-05-01

    New data for the calculation of ionization and recombination rates have been published in the past few years, most of which are included in the CHIANTI database. We used these data to calculate collisional ionization and recombination rates for the non-Maxwellian κ-distributions with an enhanced number of particles in the high-energy tail, which have been detected in the solar transition region and the solar wind. Ionization equilibria for elements H to Zn are derived. The κ-distributions significantly influence both the ionization and recombination rates and widen the ion abundance peaks. In comparison with the Maxwellian distribution, the ion abundance peaks can also be shifted to lower or higher temperatures. The updated ionization equilibrium calculations result in large changes for several ions, notably Fe VIII-Fe XIV. The results are supplied in electronic form compatible with the CHIANTI database.

  8. Bayesian derivation of plasma equilibrium distribution function for tokamak scenarios and the associated Landau collision operator

    NASA Astrophysics Data System (ADS)

    Di Troia, C.

    2015-11-01

    A class of parametric distribution functions was proposed in (Di Troia 2012 Plasma Phys. Control. Fusion 54 105017) as equilibrium distribution functions (EDFs) for charged particles in fusion plasmas, representing supra-thermal particles in anisotropic equilibria for Neutral Beam Injection and Ion Cyclotron Heating scenarios. Moreover, those EDFs can be used to represent also nearly isotropic equilibria for Slowing-Down alpha particles and core thermal plasma populations. Such EDFs depend on constants of motion (COMs). In axisymmetric system with no equilibrium electric field, they depend on toroidal canonical momentum {{P}φ} , kinetic energy w and magnetic moment μ. In the present work, the same EDFs are obtained from first principles and general hypothesis. The derivation is probabilistic and makes use of the Bayes’ Theorem. The bayesian argument is used to describe how the plasma is far from the prior probability distribution function (pdf), e.g. Maxwellian, based on the information obtained from magnetic moment and guiding center velocity pdf. Once the general functional form of the EDF has been settled, it is shown how to associate a modified Landau collision operator in the Fokker-Planck equation, to describe the system relaxation towards the proposed EDF.

  9. Equilibrium poloidal field distributions in reversed-field-pinch toroidal discharges

    SciTech Connect

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1982-04-01

    A comparison between the analytic formulae of Shafranov for equilibrium in axisymmetric toroidal reversed field pinch (RFP) systems and fully toroidal numerical solutions of the Grad-Shafranov equation is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal field distribution is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one-third of the minor toroidal radius. The analytic description for the center shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one-tenth of the minor conducting boundary radius. The behavior of the magnetic axis shift as a function of plasma parameters is included. The Shafranov formulae provide a convenient method for describing the equilibrium behavior of an RFP discharge. Examples illustrating the application of the analytic formulae to the Los Alamos ZT-40M RFP experiment are given.

  10. Non-equilibrium steady-state distributions of colloids in a tilted periodic potential

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoguang; Lai, Pik-Yin; Ackerson, Bruce; Tong, Penger

    A two-layer colloidal system is constructed to study the effects of the external force F on the non-equilibrium steady-state (NESS) dynamics of the diffusing particles over a tilted periodic potential, in which detailed balance is broken due to the presence of a steady particle flux. The periodic potential is provided by the bottom layer colloidal spheres forming a fixed crystalline pattern on a glass substrate. The corrugated surface of the bottom colloidal crystal provides a gravitational potential field for the top layer diffusing particles. By tilting the sample with respect to gravity, a tangential component F is applied to the diffusing particles. The measured NESS probability density function Pss (x , y) of the particles is found to deviate from the equilibrium distribution depending on the driving or distance from equilibrium. The experimental results are compared with the exact solution of the 1D Smoluchowski equation and the numerical results of the 2D Smoluchowski equation. Moreover, from the obtained exact 1D solution, we develop an analytical method to accurately extract the 1D potential U0 (x) from the measured Pss (x) . Work supported in part by the Research Grants Council of Hong Kong SAR.

  11. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage.

    PubMed

    Silvast, Tuomo S; Kokkonen, Harri T; Jurvelin, Jukka S; Quinn, Thomas M; Nieminen, Miika T; Töyräs, Juha

    2009-11-21

    Charged contrast agents have been used both in vitro and in vivo for estimation of the fixed charge density (FCD) in articular cartilage. In the present study, the effects of molecular size and charge on the diffusion and equilibrium distribution of several magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were investigated. Full thickness cartilage disks (Ø = 4.0 mm, n = 64) were prepared from fresh bovine patellae. Contrast agent (gadopentetate: Magnevist((R)), gadodiamide: Omniscan, ioxaglate: Hexabrix or sodium iodide: NaI) diffusion was allowed either through the articular surface or through the deep cartilage. CT imaging of the samples was conducted before contrast agent administration and after 1, 5, 9, 16, 25 and 29 h (and with three samples after 2, 3, 4 and 5 days) diffusion using a clinical peripheral quantitative computed tomography (pQCT) instrument. With all contrast agents, the diffusion through the deep cartilage was slower when compared to the diffusion through the articular surface. With ioxaglate, gadopentetate and gadodiamide it took over 29 h for diffusion to reach the near-equilibrium state. The slow diffusion of the contrast agents raise concerns regarding the validity of techniques for FCD estimation, as these contrast agents may not reach the equilibrium state that is assumed. However, since cartilage composition, i.e. deep versus superficial, had a significant effect on diffusion, imaging of the nonequilibrium diffusion process might enable more accurate assessment of cartilage integrity. PMID:19864699

  12. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    SciTech Connect

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-12-09

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.

  13. Comparison of monovalent and divalent ion distributions around a DNA duplex with molecular dynamics simulation and a Poisson-Boltzmann approach

    PubMed Central

    Robbins, Timothy J.; Ziebarth, Jesse D.; Wang, Yongmei

    2014-01-01

    The ion atmosphere created by monovalent (Na+) or divalent (Mg2+) cations surrounding a B-form DNA duplex were examined using atomistic molecular dynamics (MD) simulations and the nonlinear Poisson-Boltzmann (PB) equation. The ion distributions predicted by the two methods were compared using plots of radial and two-dimensional cation concentrations and by calculating the total number of cations and net solution charge surrounding the DNA. Na+ ion distributions near the DNA were more diffuse in PB calculations than in corresponding MD simulations, with PB calculations predicting lower concentrations near DNA groove sites and phosphate groups and a higher concentration in the region between these locations. Other than this difference, the Na+ distributions generated by the two methods largely agreed, as both predicted similar locations of high Na+ concentration and nearly identical values of the number of cations and the net solution charge at all distances from the DNA. In contrast, there was greater disagreement between the two methods for Mg2+ cation concentration profiles, as both the locations and magnitudes of peaks in Mg2+ concentration were different. Despite experimental and simulation observations that Mg2+ typically maintains its first solvation shell when interacting with nucleic acids, modeling Mg2+ as an unsolvated ion during PB calculations improved the agreement of the Mg2+ ion atmosphere predicted by the two methods and allowed for values of the number of bound ions and net solution charge surrounding the DNA from PB calculations that approached the values observed in MD simulations. PMID:24443090

  14. [Equilibrium surface charge distribution in phospholipid vesicles. II. Results of calculations].

    PubMed

    Tenchov, B G; Raĭchev, B D

    1977-01-01

    The results of the calculations of the equilibrium potential and surface charge distribution in a vesicle with radii r1=55 A and r2=100 A are presented. The calculations were carried out for the electrolyte concentrations 100 mM, 10mM, 1mM and 0.1 mM. The digitally obtained solutions of the Poisson-Boltzman equation for the case of spherical symmetry were utilized in the exact solution of the problem. The predictions of the exact solution differ significantly from these of the linear approximation in the range of low electrolyte concentrations. The influence of the membrane dielectric permeability on the charge distribution is negligible. PMID:588605

  15. Equilibrium and stability in a heliotron with anisotropic hot particle slowing-down distribution

    SciTech Connect

    Cooper, W. A.; Asahi, Y.; Narushima, Y.; Suzuki, Y.; Watanabe, K. Y.; Graves, J. P.; Isaev, M. Yu.

    2012-10-15

    The equilibrium and linear fluid Magnetohydrodynamic (MHD) stability in an inward-shifted large helical device heliotron configuration are investigated with the 3D ANIMEC and TERPSICHORE codes, respectively. A modified slowing-down distribution function is invoked to study anisotropic pressure conditions. An appropriate choice of coefficients and exponents allows the simulation of neutral beam injection in which the angle of injection is varied from parallel to perpendicular. The fluid stability analysis concentrates on the application of the Johnson-Kulsrud-Weimer energy principle. The growth rates are maximum at <{beta}>{approx}2%, decrease significantly at <{beta}>{approx}4.5%, do not vary significantly with variations of the injection angle and are similar to those predicted with a bi-Maxwellian hot particle distribution function model. Stability is predicted at <{beta}>{approx}2.5% with a sufficiently peaked energetic particle pressure profile. Electrostatic potential forms from the MHD instability necessary for guiding centre orbit following are calculated.

  16. Non-equilibrium work distribution for interacting colloidal particles under friction

    NASA Astrophysics Data System (ADS)

    Ruben Gomez-Solano, Juan; July, Christoph; Mehl, Jakob; Bechinger, Clemens

    2015-04-01

    We experimentally investigate the non-equilibrium steady-state distribution of the work done by an external force on a mesoscopic system with many coupled degrees of freedom: a colloidal crystal mechanically driven across a commensurate periodic light field. Since this system mimics the spatiotemporal dynamics of a crystalline surface moving on a corrugated substrate, our results show general properties of the work distribution for atomically flat surfaces undergoing friction. We address the role of several parameters which can influence the shape of the work distribution, e.g. the number of particles used to locally probe the properties of the system and the time interval to measure the work. We find that, when tuning the control parameters to induce particle depinning from the substrate, there is an abrupt change of the shape of the work distribution. While in the completely static and sliding friction regimes the work distribution is Gaussian, non-Gaussian tails show up due to the spatiotemporal heterogeneity of the particle dynamics during the transition between these two regimes.

  17. Chaotic Boltzmann machines

    PubMed Central

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425

  18. Entropic lattice Boltzmann model for compressible flows.

    PubMed

    Frapolli, N; Chikatamarla, S S; Karlin, I V

    2015-12-01

    We present a lattice Boltzmann model (LBM) that covers the entire range of fluid flows, from low Mach weakly compressible to transonic and supersonic flows. One of the most restrictive limitations of the lattice Boltzmann method, the low Mach number limit, is overcome here by three fundamental changes to the LBM scheme: use of an appropriately chosen multispeed lattice, accurate evaluation of the equilibrium, and the entropic relaxation for the collision. The range of applications is demonstrated through the simulation of a bow shock in front of an airfoil and the simulation of decaying compressible turbulence with shocklets. PMID:26764625

  19. Entropic lattice Boltzmann model for compressible flows

    NASA Astrophysics Data System (ADS)

    Frapolli, N.; Chikatamarla, S. S.; Karlin, I. V.

    2015-12-01

    We present a lattice Boltzmann model (LBM) that covers the entire range of fluid flows, from low Mach weakly compressible to transonic and supersonic flows. One of the most restrictive limitations of the lattice Boltzmann method, the low Mach number limit, is overcome here by three fundamental changes to the LBM scheme: use of an appropriately chosen multispeed lattice, accurate evaluation of the equilibrium, and the entropic relaxation for the collision. The range of applications is demonstrated through the simulation of a bow shock in front of an airfoil and the simulation of decaying compressible turbulence with shocklets.

  20. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Molnár, Etele; Niemi, Harri; Rischke, Dirk H.

    2016-06-01

    Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, f^0 k, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from f^0 k. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.

  1. Lattice Boltzmann formulation for Braginskii magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Dellar, Paul

    2012-03-01

    We present a lattice Boltzmann formulation of the Braginskii magnetohydrodynamic equations that describe large-scale motions in strongly magnetised plasmas. Fluid quantities, density, velocity and stress, are represented by a finite set of distribution functions associated with particles moving on a square or cubic lattice. Equilibrium distributions are constructed from Hermite moment expansions, so slowly varying solutions of the discrete kinetic equation exactly satisfy the Navier--Stokes or MHD momentum equations. Electromagnetic quantities are represented by a second kinetic equation for a set of vector-valued distribution functions. Maxwell's equations and the resistive MHD induction equation may be recovered from slowly varying solutions using different scalings. The resulting algorithm, comprising only local operations at grid points and data copying between adjacent points, readily lends itself to large-scale parallel computations. We modify the collision operator to apply different relaxation times to components of the stress parallel and perpendicular to the local magnetic field, simulating a form of the Braginskii MHD equations encountered in astrophysics. Large shears develop in simulations where the fluid velocity perpendicular to the field lines reverses.

  2. Boltzmann kinetic equation for filtered fluid turbulence.

    PubMed

    Girimaji, Sharath S

    2007-07-20

    We develop a kinetic Boltzmann equation for describing filtered fluid turbulence applicable for continuum and noncontinuum effects. The effect of unresolved turbulent motion on the resolved distribution function is elucidated and closure modeling issues of kinetic Boltzmann and Navier-Stokes descriptions are reconciled. This could pave the way for unifying turbulence modeling at kinetic and continuum levels and the development of numerical methods that are valid over a wide range of flow physics. PMID:17678288

  3. Pore size distribution and methane equilibrium conditions at Walker Ridge Block 313, northern Gulf of Mexico

    SciTech Connect

    Bihani, Abhishek; Daigle, Hugh; Cook, Ann; Glosser, Deborah; Shushtarian, Arash

    2015-12-15

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  4. Pore Size Distribution and Methane Equilibrium Conditions at Walker Ridge Block 313, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Bihani, A. D.; Daigle, H.; Cook, A.; Glosser, D.; Shushtarian, A.

    2015-12-01

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  5. Capital accumulation, income distribution and endogenous fertility in an overlapping generations general equilibrium model.

    PubMed

    Raut, L K

    1991-01-01

    A study is conducted in attempts to increase the understanding of the links between macroeconomic effects and causes of population growth in formulating policy. An overlapping generations general equilibrium model is employed aggregating household decisions about fertility, savings, and investment in the human capital of children with the objective of studying intertemporal relationships among population growth, income distribution, inter-generation social mobility, skill composition of the labor force, and household income. As a result of endogenous fertility, the equilibrium path attains steady state from the second generation. Income tax transfer, child taxation, and social security taxation policies are also examined in the paper. A structural explanation is given for the inverse household income-child quantity and negative child quality-quantity relationships seen in developing countries. In a Cobb-Douglas economy, these relationships hold in the short-run, potentially working over the long-run in other economies. Overall, the model shows that group interests may hinder emergence of perfect capital markets with private initiatives. Where developing countries are concerned, these results have strong implications for population policy. A policy mix of building good quality schools, or subsidizing rural education, introducing a formal social security program, and providing high-yield, risk-free investments, banking, and insurance services to the poor is recommended. PMID:12284076

  6. Pharmacokinetics, tissue distribution, and the lactone/carboxylate equilibrium of hydroxycamptothecin delivered via aerosol in mice.

    PubMed

    Hu, Wei; Zhang, Chao; Hu, Wenjin; Fang, Yun; Hou, Wenjie

    2012-10-01

    Aerosol delivery is a route which is advantageous to the therapy of pulmonary diseases, such as lung cancer. The pharmacokinetics and tissue distribution after aerosol delivery of carboxylate form of hydroxycamptothecin (C-HCPT) were investigated. The concentrations of the three different types (lactone, carboxylate and the total of both forms) of HCPT were measured by HPLC analysis. The initial experiment showed no evident difference between lactone and carboxylate in the lungs during the aerosol treatment, compared with the HCPT content in plasma. The AUC(inf) value of lactone in the lungs was higher than that of carboxylate, which was 138,176.00 min ng g⁻¹ and 128,460.00 min ng g⁻¹, respectively. Meanwhile, AUC(inf) in the plasma during the entire treatment indicated that the lactone content was always at a lower level, and the carboxylate form tended to predominate, as shown by the lactone/carboxylate (L/C) equilibrium. The tissue distribution results showed that the lactone proportion in the liver increased up to the maximum value of 69.69% after aerosol administration, whereas the mean L/C equilibrium index for the liver was 2.07±1.06, and the C(max) and AUC(0-∞) values of the total HCPT were highest in the tissues. Based on these results we speculated that the initial wholly carboxylate form of the HCPT atomized liquid did not influence the transformation to lactone form. Moreover, the deposition of the total HCPT and lactone was higher in the lungs and other tissues than in the plasma after the aerosol treatment. This study will be beneficial to the therapy of pulmonary carcinoma. PMID:22858157

  7. Comparison between natural Rain drop size distributions and corresponding models near equilibrium state during warm rain

    NASA Astrophysics Data System (ADS)

    Barthes, Laurent; Mallet, Cécile

    2010-05-01

    Keywords: Rain Drop Size Distribution, Breakup, coalescence, disdrometer The study of the vertical evolution of raindrop size distributions (DSDs) during rainfall, from the freezing level isotherm to ground level, is a key to improving our understanding of the microphysics of rain. In numerous domains such as remote sensing, telecommunications, soil erosion, and the study of the rain's efficiency in 'washing' the atmosphere, the DSD plays an important role. Among the different processes affecting the evolution of DSD, breakup and coalescence are two of the most significant. Models of coalescence and breakup lead to equilibrium of the raindrop size distribution (DSD) after a fall through sufficient vertical height. At equilibrium, the DSD no longer evolves, and its shape is unique whatever the rain rate or LWC. This implies that the DSD is known, to within a multiplication constant. These models based on experimental measurements have been developed over the past 40 years. The Low and List (1982a,b) parameterization (hereinafter LL82) and the Greg M. McFarquhar (2004) model are both based on the same laboratory experiments, which lead to an equilibrium drop size distribution (EDSD) with two or three peaks, and an exponential tail with a slope of approximately Λ=65 cm-1. Numerous measurements using disdrometer collected in different climatic areas: Paris, France (Mars to October 2000), Iowa-City (April to October 2002), and Djougou (Benin June to September 2006) corresponding to 537 hours of rain period have shown that for high rain rates, close to a state of equilibrium, this slope lies between Λ=20 - 22 cm-1. This latter value is corroborated by others measurements found in the literature (Hu & Srivastava, 1995). Hu & Srivastava suggested that the Low and List parameterization may overestimate the effects of the breakup process. This hypothesis is in adequation with recent laboratory experiments (A.P. Barros 2008) in which the authors conclude that the number of

  8. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation

    SciTech Connect

    He, Xiaoyi; Lou, Li-Shi Lou, Li-Shi

    1997-12-01

    In this paper, the lattice Boltzmann equation is directly derived from the Boltzmann equation. It is shown that the lattice Boltzmann equation is a special discretized form of the Boltzmann equation. Various approximations for the discretization of the Boltzmann equation in both time and phase space are discussed in detail. A general procedure to derive the lattice Boltzmann model from the continuous Boltzmann equation is demonstrated explicitly. The lattice Boltzmann models derived include the two-dimensional 6-bit, 7-bit, and 9-bit, and three-dimensional 27-bit models. {copyright} {ital 1997} {ital The American Physical Society}

  9. Temperature based Restricted Boltzmann Machines

    PubMed Central

    Li, Guoqi; Deng, Lei; Xu, Yi; Wen, Changyun; Wang, Wei; Pei, Jing; Shi, Luping

    2016-01-01

    Restricted Boltzmann machines (RBMs), which apply graphical models to learning probability distribution over a set of inputs, have attracted much attention recently since being proposed as building blocks of multi-layer learning systems called deep belief networks (DBNs). Note that temperature is a key factor of the Boltzmann distribution that RBMs originate from. However, none of existing schemes have considered the impact of temperature in the graphical model of DBNs. In this work, we propose temperature based restricted Boltzmann machines (TRBMs) which reveals that temperature is an essential parameter controlling the selectivity of the firing neurons in the hidden layers. We theoretically prove that the effect of temperature can be adjusted by setting the parameter of the sharpness of the logistic function in the proposed TRBMs. The performance of RBMs can be improved by adjusting the temperature parameter of TRBMs. This work provides a comprehensive insights into the deep belief networks and deep learning architectures from a physical point of view. PMID:26758235

  10. A lattice Boltzmann model for the Burgers-Fisher equation.

    PubMed

    Zhang, Jianying; Yan, Guangwu

    2010-06-01

    A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. PMID:20590325

  11. Energy distribution and heat transfer mechanisms in atmospheric pressure non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Miyazaki, Yu; Unno, Yasuko; Okazaki, Ken

    2001-12-01

    Energy distribution and heat transfer mechanisms in atmospheric pressure non-equilibrium plasmas were investigated extensively through energy balance analysis, emission spectroscopy of the rotational band of CH (A2Δ→X2Π), and gas chromatographic analysis. Two plasma sources were examined: methane-fed dielectric barrier discharge (DBD) and atmospheric pressure glow-discharge (APG). The DBD features filamentary microdischarges accompanied by surface discharge along a dielectric barrier. As a result, 60% of the input power was measured as heat transfer to the dielectric electrode, whereas 20% was to the metallic electrode. Consequently, feed gas average temperature was increased only by 20-40 K. On the other hand, rotational temperature of the corresponding emission region exceeded average gas temperature by 100 K. In APG, heat transfer to electrodes was dominated by formation of negative glow regardless of whether the electrode was covered by a dielectric. However, negative glow tended to be thinner and more intense when it formed on a metallic electrode, leading to slightly higher metallic heating. Rotational temperature in APG was close to average gas temperature since APG does not show radial localization of plasma. Energy efficiency for methane decomposition process to produce ethane, ethylene, and hydrogen was about 1% regardless of the plasma source. Energy distribution and heat transfer mechanisms depend strongly on the plasma spatial structure rather than flow fields or feed gas physical properties.

  12. Influence of Electron-Impact Multiple Ionization on Equilibrium and Dynamic Charge State Distributions: A Case Study Using Iron

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Savin, D. W.

    2015-02-01

    We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. Previous ionization balance calculations have largely neglected EIMI. Here, EIMI cross-section data are incorporated into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

  13. INFLUENCE OF ELECTRON-IMPACT MULTIPLE IONIZATION ON EQUILIBRIUM AND DYNAMIC CHARGE STATE DISTRIBUTIONS: A CASE STUDY USING IRON

    SciTech Connect

    Hahn, M.; Savin, D. W.

    2015-02-10

    We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. Previous ionization balance calculations have largely neglected EIMI. Here, EIMI cross-section data are incorporated into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

  14. Multiple anisotropic collisions for advection-diffusion Lattice Boltzmann schemes

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina

    2013-01-01

    This paper develops a symmetrized framework for the analysis of the anisotropic advection-diffusion Lattice Boltzmann schemes. Two main approaches build the anisotropic diffusion coefficients either from the anisotropic anti-symmetric collision matrix or from the anisotropic symmetric equilibrium distribution. We combine and extend existing approaches for all commonly used velocity sets, prescribe most general equilibrium and build the diffusion and numerical-diffusion forms, then derive and compare solvability conditions, examine available anisotropy and stable velocity magnitudes in the presence of advection. Besides the deterioration of accuracy, the numerical diffusion dictates the stable velocity range. Three techniques are proposed for its elimination: (i) velocity-dependent relaxation entries; (ii) their combination with the coordinate-link equilibrium correction; and (iii) equilibrium correction for all links. Two first techniques are also available for the minimal (coordinate) velocity sets. Even then, the two-relaxation-times model with the isotropic rates often gains in effective stability and accuracy. The key point is that the symmetric collision mode does not modify the modeled diffusion tensor but it controls the effective accuracy and stability, via eigenvalue combinations of the opposite parity eigenmodes. We propose to reduce the eigenvalue spectrum by properly combining different anisotropic collision elements. The stability role of the symmetric, multiple-relaxation-times component, is further investigated with the exact von Neumann stability analysis developed in diffusion-dominant limit.

  15. MEASURING NEBULAR TEMPERATURES: THE EFFECT OF NEW COLLISION STRENGTHS WITH EQUILIBRIUM AND {kappa}-DISTRIBUTED ELECTRON ENERGIES

    SciTech Connect

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Kewley, Lisa J.; Palay, Ethan

    2013-08-15

    In this paper we develop tools for observers to use when analyzing nebular spectra for temperatures and metallicities, with two goals: to present a new, simple method to calculate equilibrium electron temperatures for collisionally excited line flux ratios, using the latest atomic data; and to adapt current methods to include the effects of possible non-equilibrium ''{kappa}'' electron energy distributions. Adopting recent collision strength data for [O III], [S III], [O II], [S II], and [N II], we find that existing methods based on older atomic data seriously overestimate the electron temperatures, even when considering purely Maxwellian statistics. If {kappa} distributions exist in H II regions and planetary nebulae as they do in solar system plasmas, it is important to investigate the observational consequences. This paper continues our previous work on the {kappa} distribution. We present simple formulaic methods that allow observers to (1) measure equilibrium electron temperatures and atomic abundances using the latest atomic data, and (2) to apply simple corrections to existing equilibrium analysis techniques to allow for possible non-equilibrium effects. These tools should lead to better consistency in temperature and abundance measurements, and a clearer understanding of the physics of H II regions and planetary nebulae.

  16. Equilibrium distribution of permeants in polyelectrolyte microcapsules filled with negatively charged polyelectrolyte: the influence of ionic strength and solvent polarity.

    PubMed

    Tong, Weijun; Song, Haiqing; Gao, Changyou; Möhwald, Helmuth

    2006-07-01

    The effects of ionic strength and solvent polarity on the equilibrium distribution of fluorescein (FL) and FITC-dextran between the interior of polyelectrolyte multilayer microcapsules filled with negatively charged strong polyelectrolyte and the bulk solution were systematically investigated. A negatively charged strong polyelectrolyte, poly(styrene sulfonate) (PSS), used for CaCO3 core fabrication, was entrapped inside the capsules. Due to the semipermeability of the capsule wall, a Donnan equilibrium between the inner solution within the capsules and the bulk solution was created. The equilibrium distribution of the negatively charged permeants was investigated by means of confocal laser scanning microscopy as a function of ionic strength and solvent polarity. The equilibrium distribution of the negatively charged permeants could be tuned by increasing the bulk ionic strength to decrease the Donnan potential. Decreasing the solvent polarity also could enhance the permeation of FL, which induces a sudden increase of permeation when the ethanol volume fraction was higher than 0.7. This is mainly attributed to the precipitation of PSS. A theoretical model combining the Donnan equilibrium and Manning counterion condensation was employed to discuss the results. PMID:16805590

  17. Theory for non-equilibrium statistical mechanics.

    PubMed

    Attard, Phil

    2006-08-21

    This paper reviews a new theory for non-equilibrium statistical mechanics. This gives the non-equilibrium analogue of the Boltzmann probability distribution, and the generalization of entropy to dynamic states. It is shown that this so-called second entropy is maximized in the steady state, in contrast to the rate of production of the conventional entropy, which is not an extremum. The relationships of the new theory to Onsager's regression hypothesis, Prigogine's minimal entropy production theorem, the Langevin equation, the formula of Green and Kubo, the Kawasaki distribution, and the non-equilibrium fluctuation and work theorems, are discussed. The theory is worked through in full detail for the case of steady heat flow down an imposed temperature gradient. A Monte Carlo algorithm based upon the steady state probability density is summarized, and results for the thermal conductivity of a Lennard-Jones fluid are shown to be in agreement with known values. Also discussed is the generalization to non-equilibrium mechanical work, and to non-equilibrium quantum statistical mechanics. As examples of the new theory two general applications are briefly explored: a non-equilibrium version of the second law of thermodynamics, and the origin and evolution of life. PMID:16883388

  18. Student understanding of the Boltzmann factor

    NASA Astrophysics Data System (ADS)

    Smith, Trevor I.; Mountcastle, Donald B.; Thompson, John R.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us to develop a guided-inquiry tutorial activity, centered around the derivation of the Boltzmann factor, for use in undergraduate statistical mechanics courses. We report on the development process of our tutorial, including data from teaching interviews and classroom observations of student discussions about the Boltzmann factor and its derivation during the tutorial development process. This additional information informed modifications that improved students' abilities to complete the tutorial during the allowed class time without sacrificing the effectiveness as we have measured it. These data also show an increase in students' appreciation of the origin and significance of the Boltzmann factor during the student discussions. Our findings provide evidence that working in groups to better understand the physical origins of the canonical probability distribution helps students gain a better understanding of when the Boltzmann factor is applicable and how to use it appropriately in answering relevant questions.

  19. Non-equilibrium Statistical Mechanics and the Sea Ice Thickness Distribution

    NASA Astrophysics Data System (ADS)

    Wettlaufer, John; Toppaladoddi, Srikanth

    We use concepts from non-equilibrium statistical physics to transform the original evolution equation for the sea ice thickness distribution g (h) due to Thorndike et al., (1975) into a Fokker-Planck like conservation law. The steady solution is g (h) = calN (q) hqe - h / H , where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h << 1 , g (h) is controlled by both thermodynamics and mechanics, whereas for h >> 1 only mechanics controls g (h) . Finally, we derive the underlying Langevin equation governing the dynamics of the ice thickness h, from which we predict the observed g (h) . This allows us to demonstrate that the ice thickness field is ergodic. The genericity of our approach provides a framework for studying the geophysical scale structure of the ice pack using methods of broad relevance in statistical mechanics. Swedish Research Council Grant No. 638-2013-9243, NASA Grant NNH13ZDA001N-CRYO and the National Science Foundation and the Office of Naval Research under OCE-1332750 for support.

  20. Force-Field Functor Theory: Classical Force-Fields which Reproduce Equilibrium Quantum Distributions

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alan

    2013-10-01

    Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory.

  1. Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions

    PubMed Central

    Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alán

    2013-01-01

    Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory. PMID:24790954

  2. Moment Closure Approximations of the Boltzmann Equation Based on \\varphi -Divergences

    NASA Astrophysics Data System (ADS)

    Abdelmalik, M. R. A.; van Brummelen, E. H.

    2016-07-01

    This paper is concerned with approximations of the Boltzmann equation based on the method of moments. We propose a generalization of the setting of the moment-closure problem from relative entropy to \\varphi -divergences and a corresponding closure procedure based on minimization of \\varphi -divergences. The proposed description encapsulates as special cases Grad's classical closure based on expansion in Hermite polynomials and Levermore's entropy-based closure. We establish that the generalization to divergence-based closures enables the construction of extended thermodynamic theories that avoid essential limitations of the standard moment-closure formulations such as inadmissibility of the approximate phase-space distribution, potential loss of hyperbolicity and singularity of flux functions at local equilibrium. The divergence-based closure leads to a hierarchy of tractable symmetric hyperbolic systems that retain the fundamental structural properties of the Boltzmann equation.

  3. Calculating Equilibrium Phase Distribution during the Formation of Secondary Organic Aerosol Using COSMOtherm.

    PubMed

    Wang, Chen; Goss, Kai-Uwe; Lei, Ying Duan; Abbatt, Jonathan P D; Wania, Frank

    2015-07-21

    Challenges in the parametrization of compound distribution between the gas and particle phase contribute significantly to the uncertainty in the prediction of secondary organic aerosol (SOA) formation and are rooted in the complexity and variability of atmospheric condensed matter, which includes water, salts, and a multitude of organic oxidation products, often in two separated phases. Here, we explore the use of the commercial quantum-chemistry-based software COSMOtherm to predict equilibrium partitioning and Setchenow coefficients of a suite of oxidation products of α-pinene ozonolysis in an aerosol that is assumed to separate into an organic-enriched phase and an electrolyte-enriched aqueous phase. The predicted coefficients are used to estimate the phase distribution of the organic compounds, water and ammonium sulfate, the resulting phase composition, and the SOA yield. Four scenarios that differ in terms of organic loading, liquid water content, and chemical aging are compared. The organic compounds partition preferentially to the organic phase rather than the aqueous phase for the studied aerosol scenarios, partially due to the salting-out effect. Extremely low volatile organic compounds are predicted to be the dominant species in the organic aerosols at low loadings and an important component at higher loadings. The highest concentration of oxidation products in the condensed phase is predicted for a scenario assuming the presence of non-phase-separated cloud droplets. Partitioning into an organic aerosol phase composed of the oxidation products is predicted to be similar to partitioning into a phase composed of a single organic surrogate molecule, suggesting that the calculation procedure can be simplified without major loss of accuracy. COSMOtherm is shown to produce results that are comparable to those obtained using group contribution methods. COSMOtherm is likely to have a much larger application domain than those group contribution methods because

  4. Problem of photochemical equilibrium of ozone in planetary atmospheres: Ozone distribution in the lower atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Grams, G. W.; SHARDANAND

    1972-01-01

    The inherent errors of applying terrestrial atmospheric ozone distribution studies to the atmosphere of other planets are discussed. Limitations associated with some of the earlier treatments of photochemical equilibrium distributions of ozone in planetary atmospheres are described. A technique having more universal application is presented. Ozone concentration profiles for the Martian atmosphere based on the results of the Mariner 4 radio occultation experiment and the more recent results with Mariner 6 and Mariner 7 have been calculated using this approach.

  5. Gauss Quadratures - the Keystone of Lattice Boltzmann Models

    NASA Astrophysics Data System (ADS)

    Piaud, Benjamin; Blanco, Stéphane; Fournier, Richard; Ambruş, Victor Eugen; Sofonea, Victor

    2014-01-01

    In this paper, we compare two families of Lattice Boltzmann (LB) models derived by means of Gauss quadratures in the momentum space. The first one is the HLB(N;Qx,Qy,Qz) family, derived by using the Cartesian coordinate system and the Gauss-Hermite quadrature. The second one is the SLB(N;K,L,M) family, derived by using the spherical coordinate system and the Gauss-Laguerre, as well as the Gauss-Legendre quadratures. These models order themselves according to the maximum order N of the moments of the equilibrium distribution function that are exactly recovered. Microfluidics effects (slip velocity, temperature jump, as well as the longitudinal heat flux that is not driven by a temperature gradient) are accurately captured during the simulation of Couette flow for Knudsen number (kn) up to 0.25.

  6. A Boltzmann treatment for the vorton excess problem

    SciTech Connect

    Peter, Patrick; Ringeval, Christophe E-mail: christophe.ringeval@uclouvain.be

    2013-05-01

    We derive and solve a Boltzmann equation governing the cosmological evolution of the number density of current carrying cosmic string loops, whose centrifugally supported equilibrium configurations are also referred to as vortons. The phase space is three-dimensional and consists of the time variable, the loop size, and a conserved quantum number. Our approach includes gravitational wave emission, a possibly finite lifetime for the vortons and works with any initial loop distribution and for any loop production function. We then show how our results generalize previous approaches on the vorton excess problem by tracking down the time evolution of the various sub-populations of current-carrying loops in a string network.

  7. Lattice Boltzmann model for generalized nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Lai, Huilin; Ma, Changfeng

    2011-10-01

    In this paper, a lattice Boltzmann model is developed to solve a class of the nonlinear wave equations. Through selecting equilibrium distribution function and an amending function properly, the governing evolution equation can be recovered correctly according to our proposed scheme, in which the Chapman-Enskog expansion is employed. We validate the algorithm on some problems where analytic solutions are available, including the second-order telegraph equation, the nonlinear Klein-Gordon equation, and the damped, driven sine-Gordon equation. It is found that the numerical results agree well with the analytic solutions, which indicates that the present algorithm is very effective and can be used to solve more general nonlinear problems.

  8. Local non-equilibrium thermodynamics

    PubMed Central

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  9. Local non-equilibrium thermodynamics.

    PubMed

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  10. Lattice Boltzmann model for a steady radiative transfer equation.

    PubMed

    Yi, Hong-Liang; Yao, Feng-Ju; Tan, He-Ping

    2016-08-01

    A complete lattice Boltzmann model (LBM) is proposed for the steady radiative transfer equation (RTE). The RTE can be regarded as a pure convection equation with a source term. To derive the expressions for the equilibrium distribution function and the relaxation time, an artificial isotropic diffusion term is introduced to form a convection-diffusion equation. When the dimensionless relaxation time has a value of 0.5, the lattice Boltzmann equation (LBE) is exactly applicable to the original steady RTE. We also perform a multiscale analysis based on the Chapman-Enskog expansion to recover the macroscopic RTE from the mesoscopic LBE. The D2Q9 model is used to solve the LBE, and the numerical results obtained by the LBM are comparable to the results obtained by other methods or analytical solutions, which demonstrates that the proposed model is highly accurate and stable in simulating multidimensional radiative transfer. In addition, we find that the convergence rate of the LBM depends on the transport properties of RTE: for diffusion-dominated RTE with a large optical thickness, the LBM shows a second-order convergence rate in space, while for convection-dominated RTE with a small optical thickness, a lower convergence rate is observed. PMID:27627417

  11. Lattice Boltzmann Stokesian dynamics.

    PubMed

    Ding, E J

    2015-11-01

    Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape. PMID:26651812

  12. Lattice Boltzmann Stokesian dynamics

    NASA Astrophysics Data System (ADS)

    Ding, E. J.

    2015-11-01

    Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape.

  13. Boltzmann H function and entropy in the plasma sheet

    NASA Astrophysics Data System (ADS)

    Kaufmann, Richard L.; Paterson, William R.

    2009-09-01

    Boltzmann's H function was evaluated using 10 years of 1-min distribution functions. These results were used to study the long-term averaged spatial distributions of four entropy parameters. The average entropy density sa(x), where a = i for ions and a = e for electrons, increased when moving Earthward or toward the flanks. The magnitudes of these entropy changes were similar for ions and electrons. The entropy per unit flux tube Sf,a(x) decreased when moving Earthward or toward midnight. The spatial changes of sa(x) and of Sf,a(x) were attributed primarily to variations of the particle density na(x) and of the particle content of each unit flux tube Nf(x), respectively. A dimensionless parameter (S/Ncv)H,i that is proportional to the average entropy per ion increased when moving Earthward or toward midnight near the neutral sheet. The dimensionless parameter proportional to the entropy per ion that would exist in a plasma with the measured pressure and density but with a Maxwellian distribution function (S/Ncv)P,i was also calculated. Differences between (S/Ncv)P,i and (S/Ncv)H,i showed that the plasma was closer to equilibrium near the neutral sheet at x = -10 RE than at x = -28 RE. These gradients of the entropy per ion and of the deviations from equilibrium suggest that nonadiabatic processes and particle scattering are significant throughout the region studied.

  14. Kinetic-MHD hybrid equilibrium model using a Monte-Carlo calculation of runaway electron distribution function

    NASA Astrophysics Data System (ADS)

    Matsuyama, Akinobu; Aiba, Nobuyuki; Yagi, Masatoshi

    2015-11-01

    An axisymmetric MHD equilibrium model is studied to allow the inclusion of both beam inertia and energy spectrum for runaway electron beam. Following kinetic-MHD hybrid approach, we evaluate the RE beam current from the integrals of the RE distribution function. The distribution function is here evaluated by a relativistic guiding-center trace code ETC-Rel, where we have implemented the effects of collisions, radiations, and exponential growth into the code. Because to directly treat the Dreicer mechanism in particle simulations is time consuming, the primary RE source is modeled by a Monte-Carlo weighing scheme taking into account the instantaneous generation rate. This paper applies ETC-Rel to the parametric study of the MHD equilibrium with different RE beam parameters. Kinetic effects on the MHD equilibrium appears, e.g., as enhanced Shafranov shifts due to the inertia of highly relativistic electrons. A kinetic modification to the equilibrium becomes significant if the contribution of the beam inertia - being increased with the total electron mass of multi-MeV RE populations - becomes large enough to affect the radial force balance. This work was supported in part by MEXT KAKENHI Grant No. 23561009 and 26820404.

  15. Quantum Boltzmann Machine

    NASA Astrophysics Data System (ADS)

    Kulchytskyy, Bohdan; Andriyash, Evgeny; Amin, Mohammed; Melko, Roger

    The field of machine learning has been revolutionized by the recent improvements in the training of deep networks. Their architecture is based on a set of stacked layers of simpler modules. One of the most successful building blocks, known as a restricted Boltzmann machine, is an energetic model based on the classical Ising Hamiltonian. In our work, we investigate the benefits of quantum effects on the learning capacity of Boltzmann machines by extending its underlying Hamiltonian with a transverse field. For this purpose, we employ exact and stochastic training procedures on data sets with physical origins.

  16. The halo Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Racco, Davide; Riotto, Antonio

    2016-04-01

    Dark matter halos are the building blocks of the universe as they host galaxies and clusters. The knowledge of the clustering properties of halos is therefore essential for the understanding of the galaxy statistical properties. We derive an effective halo Boltzmann equation which can be used to describe the halo clustering statistics. In particular, we show how the halo Boltzmann equation encodes a statistically biased gravitational force which generates a bias in the peculiar velocities of virialized halos with respect to the underlying dark matter, as recently observed in N-body simulations.

  17. Theory and lattice Boltzmann simulations of rapidly oscillating flows: Application to nanofluidics

    NASA Astrophysics Data System (ADS)

    Colosqui, Carlos Esteban

    This dissertation investigates oscillating flows of simple fluids in a wide range of frequency and density variation. Understanding these flows is of fundamental importance for state-of-the-art engineering applications such as nano/microelectromechanical systems (N/MEMS) operating in diverse fluidic environments. A fluid weakly perturbed from thermodynamic equilibrium relaxes back to equilibrium state on a time scale tau ˜lambda/ cs. In the low frequency limit tauo << 1 a predominantly viscous behavior is accurately predicted by the Navier-Stokes equations. We demonstrate that in the high-frequency limit tauo >> 1 a novel transition to viscoelastic flow occurs. The viscoelastic flow of simple fluids is mathematically described via analytical solution of the Boltzmann-BGK equation of kinetic gas theory. Theoretically predicted phenomena are numerically simulated via kinetic-based approaches (i.e. high-order lattice Boltzmann methods) and observed in physical experiments with nanomechanical resonators operating over a wide pressure (10-1 ≤ p ≤ 103torr) and frequency range (103 ≤ o ≤ 108sec-1). The principal results of this dissertation are: (1) We state that the limit tauo >> 1 of high-frequency flows is governed by a damped-wave equation (i.e. the telegraph equation); (2) A universal function for the energy dissipation rate in the entire range of frequency and pressure variation is derived and favorably compared against experimental and numerical data; (3) The derived extended hydrodynamic description predicts a novel viscoelastic transition of simple fluids that holds fundamental importance from both scientific and technological standpoints. (4) We prove that high-order lattice Boltzmann schemes employing finite Hermite expansions of the Boltzmann distribution and proper regularization procedures can accurately represent macroscopic physics of the investigated flows. (5) Qualitative and quantitative agreement between theory, simulation and experiment

  18. Equilibrium fluctuation theorems compatible with anomalous response

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Curilef, S.

    2010-12-01

    Previously, we have derived a generalization of the canonical fluctuation relation between heat capacity and energy fluctuations C = β2langδU2rang, which is able to describe the existence of macrostates with negative heat capacities C < 0. In this work, we extend our previous results for an equilibrium situation with several control parameters to account for the existence of states with anomalous values in other response functions. Our analysis leads to the derivation of three different equilibrium fluctuation theorems: the fundamental and the complementary fluctuation theorems, which represent the generalization of two fluctuation identities already obtained in previous works, and the associated fluctuation theorem, a result that has no counterpart in the framework of Boltzmann-Gibbs distributions. These results are applied to study the anomalous susceptibility of a ferromagnetic system, in particular, the case of the 2D Ising model.

  19. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Cao, Jianshu

    2016-08-01

    The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

  20. Boltzmann-Electron Model in Aleph.

    SciTech Connect

    Hughes, Thomas Patrick; Hooper, Russell

    2014-11-01

    We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite- element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution for the electrons, the model eliminates the need to resolve the electron plasma fre- quency, and avoids the numerical "grid instability" that can cause unphysical heating of electrons. This allows much larger timesteps to be used than with kinetic electrons. Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re- quires solution of a nonlinear Poisson equation, for which we use an iterative Newton solver (NOX) from the Trilinos Project. Results for the spatial variation of density and voltage in the plasma sheath agree well with an analytic model

  1. Equivalence of equations describing trace element distribution during equilibrium partial melting

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.; Drake, M. J.

    1976-01-01

    It is shown that four equations used for calculating the evolution of trace-element abundances during equilibrium partial melting are mathematically equivalent. The equations include those of Hertogen and Gijbels (1976), Shaw (1970), Schilling (1971), and O'Nions and Clarke (1972). The general form to which all these equations reduce is presented, and an analysis is performed to demonstrate their mathematical equivalence. It is noted that the utility of the general equation flows from the nature of equilibrium (i.e., the final state is independent of the path by which that state is attained).

  2. Re-analysis of narcotic critical body residue data using the equilibrium distribution concept and refined partition coefficients.

    PubMed

    Endo, Satoshi

    2016-08-10

    Narcosis occurs as a result of the accumulation of chemicals in the phospholipid membrane. The toxic threshold concentration in the membrane is thought to be relatively constant across different chemicals and species. Hence, estimating chemical concentrations in the membrane is expected to reduce the variability of narcotic critical body residue (CBR) data. In this study, a high quality CBR dataset for three aquatic species reported recently in the literature was evaluated with the internal equilibrium distribution concept. The raw wet-weight-based CBR values were converted to membrane-weight-based CBR values by assuming that the chemical is distributed in storage lipids, membranes, proteins, and water according to the respective equilibrium partition coefficients. Several sets of partition coefficients were compared for this analysis. The results were consistent with the notion that the use of a structural protein instead of serum albumin as a surrogate for the body protein fraction could reduce the variability of CBRs. Partition coefficients predicted by polyparameter linear free energy relationships (PP-LFERs) reduced the variability of CBRs as much as or even more than experimental partition coefficients did. It is suggested that CBR data for chemicals with larger structural diversity and biological species with more distinct compositions are needed to evaluate further the equilibrium distribution concept and the constant membrane threshold hypothesis. PMID:27136717

  3. Full Boltzmann equations for leptogenesis including scattering

    SciTech Connect

    Hahn-Woernle, F.; Plümacher, M.; Wong, Y.Y.Y. E-mail: pluemi@mppmu.mpg.de

    2009-08-01

    We study the evolution of a cosmological baryon asymmetry produced via leptogenesis by means of the full classical Boltzmann equations, without the assumption of kinetic equilibrium and including all quantum statistical factors. Beginning with the full mode equations, we derive the usual equations of motion for the right-handed neutrino number density and integrated lepton asymmetry, and show explicitly the impact of each assumption on these quantities. For the first time, we investigate also the effects of scattering of the right-handed neutrino with the top quark to leading order in the Yukawa couplings by means of the full Boltzmann equations. We find that in our full Boltzmann treatment the final lepton asymmetry can be suppressed by as much as a factor of ∼ 1.5 in the weak wash-out regime (K ∼< 1), compared to the usual integrated approach which assumes kinetic equilibrium and neglects quantum statistics. This suppression is in contrast with the enhancement seen in some previous studies that considered only decay and inverse decay of the right-handed neutrino. However, this suppression quickly decreases as we increase K. In the strong wash-out regime (K ∼> 1), the full Boltzmann treatment and the integrated approach give nearly identical final lepton asymmetries (within 10% of each other at K > 3). Finally, we show that the opposing effects of quantum statistics on decays/inverse decays and the scattering processes tend to reduce the net importance of scattering on leptogenesis in the full treatment compared to the integrated approach.

  4. Equilibrium and kinetic Si isotope fractionation factors and their implications on Si isotope distributions in the Earth's surface environments

    NASA Astrophysics Data System (ADS)

    Tang, M.; Zhang, S.; Liu, Y.

    2015-12-01

    Several important equilibrium Si isotope fractionation factors among minerals, organic molecules and the H4SiO4 solution are complemented to facilitate explanation of distributions of Si isotope in the Earth's surface environments. The results reveal that heavy Si isotopes will be significantly enriched in the secondary silicate minerals in comparison to aqueous H4SiO4. On the contrary, quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution. The extent of 28Si-enrichment in hyper-coordinated organosilicon complexes is found the largest. In addition, the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer is calculated and the result supports previous statement that highly 28Si-enrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations. With equilibrium Si isotope fractionation factors provided here, Si isotope distributions in many surface systems of the Earth can be explained. For example, the change of bulk soil δ30Si can be predicted as a concave pattern with respect to weathering degree, with the minimum value where allophane completely dissolves and the total amount of sesqui-oxides and poorly crystalline minerals reaches its maximum. When well-crystallized clays start to precipitate from pore solutions under equilibrium conditions, the bulk soil δ30Si will increase again and reach a constant value. Similarly, the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain δ30Si variations in the ground water profile. Equilibrium Si isotope fractionations among quadra-coordinated organosilicon complexes and the H4SiO4 solution may also shed the light on the Si isotope distributions in Si-accumulating plants.

  5. Boltzmann's H theorem for systems with frictional dissipation.

    PubMed

    Bizarro, João P S

    2011-03-01

    By use of Boltzmann's equation to describe an ensemble of particles under the influence of a friction force, Boltzmann's H theorem is refined to explicitly include frictional dissipation, the accompanying fluctuations being modeled via an added diffusive, Fokker-Planck term. If the friction force per particle mass is proportional to velocity, as is the case with viscous drag with a friction coefficient γ, Boltzmann's H theorem for the time rate of change of the quantity H reads dH/dt ≤ γ. The classical formulation stating that H can never increase is thus replaced by the statement that H cannot increase at a rate higher than γ, a general result but of particular relevance when fluctuations are negligible and the system is far from equilibrium. When the particles are not far from thermal equilibrium, an alternative, more suitable expression emerges which can be written in the form of a Clausius inequality. PMID:21517545

  6. Polar-coordinate lattice Boltzmann modeling of compressible flows

    NASA Astrophysics Data System (ADS)

    Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Succi, Sauro

    2014-01-01

    We present a polar coordinate lattice Boltzmann kinetic model for compressible flows. A method to recover the continuum distribution function from the discrete distribution function is indicated. Within the model, a hybrid scheme being similar to, but different from, the operator splitting is proposed. The temporal evolution is calculated analytically, and the convection term is solved via a modified Warming-Beam (MWB) scheme. Within the MWB scheme a suitable switch function is introduced. The current model works not only for subsonic flows but also for supersonic flows. It is validated and verified via the following well-known benchmark tests: (i) the rotational flow, (ii) the stable shock tube problem, (iii) the Richtmyer-Meshkov (RM) instability, and (iv) the Kelvin-Helmholtz instability. As an original application, we studied the nonequilibrium characteristics of the system around three kinds of interfaces, the shock wave, the rarefaction wave, and the material interface, for two specific cases. In one of the two cases, the material interface is initially perturbed, and consequently the RM instability occurs. It is found that the macroscopic effects due to deviating from thermodynamic equilibrium around the material interface differ significantly from those around the mechanical interfaces. The initial perturbation at the material interface enhances the coupling of molecular motions in different degrees of freedom. The amplitude of deviation from thermodynamic equilibrium around the shock wave is much higher than those around the rarefaction wave and material interface. By comparing each component of the high-order moments and its value in equilibrium, we can draw qualitatively the main behavior of the actual distribution function. These results deepen our understanding of the mechanical and material interfaces from a more fundamental level, which is indicative for constructing macroscopic models and other kinds of kinetic models.

  7. Lattice Boltzmann morphodynamic model

    NASA Astrophysics Data System (ADS)

    Zhou, Jian Guo

    2014-08-01

    Morphological change due to sediment transport is a common natural phenomenon in real flows. It involves complex processes of erosion and deposition such as those along beaches and in river beds, imposing a strong strain on human beings. Studying and understanding morphodynamic evolution are essential to protect living environment. Although there are conventional numerical methods like finite difference method and finite volume method for forecast of morphological change by solving flow and morphodynamic equations, the methods are too complex/inefficient to be applied to a real large scale problem. To overcome this, a lattice Boltzmann method is developed to simulate morphological evolution under flows. It provides an alternative way of studying morphodynamics at the full advantages of the lattice Boltzmann methodology. The model is verified by applications to the evolution of one and two dimensional sand dunes under shallow water flows.

  8. The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics.

    PubMed

    Tirnakli, Ugur; Borges, Ernesto P

    2016-01-01

    As well known, Boltzmann-Gibbs statistics is the correct way of thermostatistically approaching ergodic systems. On the other hand, nontrivial ergodicity breakdown and strong correlations typically drag the system into out-of-equilibrium states where Boltzmann-Gibbs statistics fails. For a wide class of such systems, it has been shown in recent years that the correct approach is to use Tsallis statistics instead. Here we show how the dynamics of the paradigmatic conservative (area-preserving) stan-dard map exhibits, in an exceptionally clear manner, the crossing from one statistics to the other. Our results unambiguously illustrate the domains of validity of both Boltzmann-Gibbs and Tsallis statistical distributions. Since various important physical systems from particle confinement in magnetic traps to autoionization of molecular Rydberg states, through particle dynamics in accelerators and comet dynamics, can be reduced to the standard map, our results are expected to enlighten and enable an improved interpretation of diverse experimental and observational results. PMID:27004989

  9. The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics

    PubMed Central

    Tirnakli, Ugur; Borges, Ernesto P.

    2016-01-01

    As well known, Boltzmann-Gibbs statistics is the correct way of thermostatistically approaching ergodic systems. On the other hand, nontrivial ergodicity breakdown and strong correlations typically drag the system into out-of-equilibrium states where Boltzmann-Gibbs statistics fails. For a wide class of such systems, it has been shown in recent years that the correct approach is to use Tsallis statistics instead. Here we show how the dynamics of the paradigmatic conservative (area-preserving) stan-dard map exhibits, in an exceptionally clear manner, the crossing from one statistics to the other. Our results unambiguously illustrate the domains of validity of both Boltzmann-Gibbs and Tsallis statistical distributions. Since various important physical systems from particle confinement in magnetic traps to autoionization of molecular Rydberg states, through particle dynamics in accelerators and comet dynamics, can be reduced to the standard map, our results are expected to enlighten and enable an improved interpretation of diverse experimental and observational results. PMID:27004989

  10. Description of the non-equilibrium extension of Tolman's law in terms of kinetic theory: suppression of the acceleration term and the use of the geodesic in the treatment of Boltzmann's equation

    NASA Astrophysics Data System (ADS)

    Brun-Battistini, Dominique; Mondragon-Suarez, Jose Humberto; Sandoval-Villalbazo, Alfredo; García-Perciante, Ana Laura

    2015-11-01

    In 1936, Richard C. Tolman showed that in thermodynamic equilibrium a temperature gradient can be compensated by a gravitational potential gradient. In reference, in a linearized gravity approximation, Tolman's law was extended for inhomogeneous non-equilibrium systems, suggesting that the contribution of the gravitational field to heat flow can be seen as a cross effect. In this work this contribution to the heat flux for a dilute simple fluid in an isotropic Schwarzschild metric is analyzed. In this case, the effect of the field is contained in the covariant derivative, such that the molecules follow geodesics. The results show that the effect of the field on the heat flux does not vanish, in contrast with what is suggested by other authors. The authors acknowledge support from CONACyT through grant CB2011/167563.

  11. Classical non-Markovian Boltzmann equation

    SciTech Connect

    Alexanian, Moorad

    2014-08-01

    The modeling of particle transport involves anomalous diffusion, (x²(t) ) ∝ t{sup α} with α ≠ 1, with subdiffusive transport corresponding to 0 < α < 1 and superdiffusive transport to α > 1. These anomalies give rise to fractional advection-dispersion equations with memory in space and time. The usual Boltzmann equation, with only isolated binary collisions, is Markovian and, in particular, the contributions of the three-particle distribution function are neglected. We show that the inclusion of higher-order distribution functions give rise to an exact, non-Markovian Boltzmann equation with resulting transport equations for mass, momentum, and kinetic energy with memory in both time and space. The two- and the three-particle distribution functions are considered under the assumption that the two- and the three-particle correlation functions are translationally invariant that allows us to obtain advection-dispersion equations for modeling transport in terms of spatial and temporal fractional derivatives.

  12. Fermion particle production in semiclassical Boltzmann-Vlasov transport theory

    SciTech Connect

    Dawson, John F.; Mihaila, Bogdan; Cooper, Fred

    2009-07-01

    We present numerical solutions of the semiclassical Boltzmann-Vlasov equation for fermion particle-antiparticle production by strong electric fields in boost-invariant coordinates in (1+1) and (3+1) dimensional QED. We compare the Boltzmann-Vlasov results with those of recent quantum field theory calculations and find good agreement. We conclude that extending the Boltzmann-Vlasov approach to the case of QCD should allow us to do a thorough investigation of how backreaction affects recent results on the dependence of the transverse momentum distribution of quarks and antiquarks on a second Casimir invariant of color SU(3)

  13. Processive and Distributive Extension of Human Telomeres by Telomerase Under Homeostatic and Non-equilibrium Conditions

    PubMed Central

    Zhao, Yong; Abreu, Eladio; Kim, Jinyong; Stadler, Guido; Eskiocak, Ugur; Terns, Michael P.; Terns, Rebecca M.; Shay, Jerry W.; Wright, Woodring E.

    2011-01-01

    SUMMARY Specific information about how telomerase acts in vivo is necessary for understanding telomere dynamics in human tumor cells. Our results imply that under homeostatic telomere length-maintenance conditions only one molecule of telomerase acts at each telomere during every cell division and processively adds ~60 nt to each end. In contrast, multiple molecules of telomerase act at each telomere when telomeres are elongating (non-equilibrium conditions). Telomerase extension is less processive during the first few weeks following the reversal of long-term treatment with the telomerase inhibitor GRN163L, a time when Cajal bodies fail to deliver telomerase RNA to telomeres. This result implies that processing of telomerase by Cajal bodies may affect its processivity. Overexpressed telomerase is also less processive than the endogenously expressed telomerase. These findings reveal two major distinct extension modes adopted by telomerase in vivo. PMID:21549308

  14. Equilibrium distributions and relaxation times in gaslike economic models: an analytical derivation.

    PubMed

    Calbet, Xavier; López, José-Luis; López-Ruiz, Ricardo

    2011-03-01

    A step-by-step procedure to derive analytically the exact dynamical evolution equations of the probability density functions (PDFs) of well-known kinetic wealth exchange economic models is shown. This technique gives a dynamical insight into the evolution of the PDF, for example, allowing the calculation of its relaxation times. Their equilibrium PDFs can also be calculated by finding its stationary solutions. This gives as a result an integro-differential equation, which can be solved analytically in some cases and numerically in others. This should provide some guidance into the type of PDFs that can be derived from particular economic agent exchange rules or, for that matter, any other kinetic model of gases with particular collision physics. PMID:21517559

  15. Equilibrium distributions and relaxation times in gaslike economic models: An analytical derivation

    NASA Astrophysics Data System (ADS)

    Calbet, Xavier; López, José-Luis; López-Ruiz, Ricardo

    2011-03-01

    A step-by-step procedure to derive analytically the exact dynamical evolution equations of the probability density functions (PDFs) of well-known kinetic wealth exchange economic models is shown. This technique gives a dynamical insight into the evolution of the PDF, for example, allowing the calculation of its relaxation times. Their equilibrium PDFs can also be calculated by finding its stationary solutions. This gives as a result an integro-differential equation, which can be solved analytically in some cases and numerically in others. This should provide some guidance into the type of PDFs that can be derived from particular economic agent exchange rules or, for that matter, any other kinetic model of gases with particular collision physics.

  16. Statistical mechanics of red blood cell aggregation: The distribution of rouleaux in thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Wiegel, Frederik W.; Perelson, Alan S.

    1982-12-01

    When placed in suspension red blood cells adhere face-to-face and form long, cylindrical, and sometimes branched structures called rouleaux. We use methods developed in statistical mechanics to compute various statistical properties describing the size and shape of rouleaux in thermodynamic equilibrium. This leads to analytical expressions for (1) the average number of rouleaux consisting of n cells and having m branch points; (2) the average number of cells per rouleau; (3) the average number of branch points per rouleau; and (4) the number of rouleaux with n cells in a system containing a total of N cells. We also derive asymptotic formulas that simplify these analytic expressions, and present numerical comparisons of the exact and asymptotic results.

  17. Accurate deterministic solutions for the classic Boltzmann shock profile

    NASA Astrophysics Data System (ADS)

    Yue, Yubei

    The Boltzmann equation or Boltzmann transport equation is a classical kinetic equation devised by Ludwig Boltzmann in 1872. It is regarded as a fundamental law in rarefied gas dynamics. Rather than using macroscopic quantities such as density, temperature, and pressure to describe the underlying physics, the Boltzmann equation uses a distribution function in phase space to describe the physical system, and all the macroscopic quantities are weighted averages of the distribution function. The information contained in the Boltzmann equation is surprisingly rich, and the Euler and Navier-Stokes equations of fluid dynamics can be derived from it using series expansions. Moreover, the Boltzmann equation can reach regimes far from the capabilities of fluid dynamical equations, such as the realm of rarefied gases---the topic of this thesis. Although the Boltzmann equation is very powerful, it is extremely difficult to solve in most situations. Thus the only hope is to solve it numerically. But soon one finds that even a numerical simulation of the equation is extremely difficult, due to both the complex and high-dimensional integral in the collision operator, and the hyperbolic phase-space advection terms. For this reason, until few years ago most numerical simulations had to rely on Monte Carlo techniques. In this thesis I will present a new and robust numerical scheme to compute direct deterministic solutions of the Boltzmann equation, and I will use it to explore some classical gas-dynamical problems. In particular, I will study in detail one of the most famous and intrinsically nonlinear problems in rarefied gas dynamics, namely the accurate determination of the Boltzmann shock profile for a gas of hard spheres.

  18. On the Solution of a Boltzmann System for Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Sotirov, Alexander; Yu, Shih-Hsien

    2010-02-01

    We study the Boltzmann equation for a mixture of two gases in one space dimension with initial condition of one gas near vacuum and the other near a Maxwellian equilibrium state. A qualitative-quantitative mathematical analysis is developed to study this mass diffusion problem based on the Green’s function of the Boltzmann equation for the single species hard sphere collision model in Liu andYu (Commun Pure Appl Math 57:1543-1608, 2004). The cross-species resonance of the mass diffusion and the diffusion-sound wave is investigated. An exponentially sharp global solution is obtained.

  19. Spherical Harmonic Expansion Method for Coupled Electron-Phonon Boltzmann Transport

    NASA Astrophysics Data System (ADS)

    Santia, Marco; Albrecht, John

    2014-03-01

    Thermoelectric transport modeling often relies on independent Boltzmann transport equations (BTEs) for electrons and phonons which work best near equilibrium (linearized) and steady-state. Device design relies heavily on this baseline approximation. Monte Carlo methods can allow for complex physical interactions (e.g., anharmonicity) but their stochastic nature has practical limits. Distribution functions with wide disparities in population (e.g., ratios >108 between majority and minority carriers.[1]) are a computational challenge. We present a coupled BTE solver based on a k-space spherical harmonic expansion (SHE) of the distribution functions and eigenstates of electrons and phonons. The method is deterministic and allows for detailed treatments of scattering processes, yet ameliorates the issues with population disparity within phase space. We set the formalism and examine the accuracy of the SHE for phonon band structures, calculate scattering rates determined within that representation, and compare our preliminary results for distribution statistics in control examples such as thermal conductivity and drift velocity.

  20. U.S. stock market interaction network as learned by the Boltzmann machine

    DOE PAGESBeta

    Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.

    2015-12-07

    Here, we study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as themore » market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model’s parameters might be used as a precursor of financial instabilities.« less

  1. Boltzmann Solver with Adaptive Mesh in Velocity Space

    SciTech Connect

    Kolobov, Vladimir I.; Arslanbekov, Robert R.; Frolova, Anna A.

    2011-05-20

    We describe the implementation of direct Boltzmann solver with Adaptive Mesh in Velocity Space (AMVS) using quad/octree data structure. The benefits of the AMVS technique are demonstrated for the charged particle transport in weakly ionized plasmas where the collision integral is linear. We also describe the implementation of AMVS for the nonlinear Boltzmann collision integral. Test computations demonstrate both advantages and deficiencies of the current method for calculations of narrow-kernel distributions.

  2. [Welding arc temperature field measurements based on Boltzmann spectrometry].

    PubMed

    Si, Hong; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-09-01

    Arc plasma, as non-uniform plasma, has complicated energy and mass transport processes in its internal, so plasma temperature measurement is of great significance. Compared with absolute spectral line intensity method and standard temperature method, Boltzmann plot measuring is more accurate and convenient. Based on the Boltzmann theory, the present paper calculates the temperature distribution of the plasma and analyzes the principle of lines selection by real time scanning the space of the TIG are measurements. PMID:23240385

  3. Sheet beam model for intense space-charge: with application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam

    SciTech Connect

    Lund, Steven M.; Friedman, Alex; Bazouin, Guillaume

    2011-01-10

    A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple framework for analysis of space-charge effects. Centroid and rms envelope equations including image charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse models of unbunched beams are established. This sheet beam model is then applied to analyze several problems of fundamental interest. A sheet beam thermal equilibrium distribution in a continuous focusing channel is constructed and shown to have analogous properties to two- d three-dimensional thermal equilibrium models in terms of the equilibrium structure and Deybe screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved stability.

  4. Magnetic Diagnostics for Equilibrium Reconstructions in the Presence of Nonaxisymmetric Eddy Current Distributions in Tokamaks

    SciTech Connect

    Kaita, R.; Kozub, T.; Logan, N.; Majeski, R.; Menard, J.; Zakharov, L.

    2010-12-10

    The lithium tokamak experiment LTX is a modest-sized spherical tokamak R0=0.4 m and a =0.26 m designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 oC. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.

  5. Magnetic diagnostics for equilibrium reconstructions in the presence of nonaxisymmetric eddy current distributions in tokamaks (invited)

    SciTech Connect

    Berzak, L.; Jones, A. D.; Kaita, R.; Kozub, T.; Logan, N.; Majeski, R.; Menard, J.; Zakharov, L.

    2010-10-15

    The lithium tokamak experiment (LTX) is a modest-sized spherical tokamak (R{sub 0}=0.4 m and a=0.26 m) designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 deg. C. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.

  6. A Multi-Scale Distribution Model for Non-Equilibrium Populations Suggests Resource Limitation in an Endangered Rodent

    PubMed Central

    Bean, William T.; Stafford, Robert; Butterfield, H. Scott; Brashares, Justin S.

    2014-01-01

    Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define “available” habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining “available” habitat in habitat selection studies, and suggests a way to create distribution models at spatial and temporal scales

  7. A multi-scale distribution model for non-equilibrium populations suggests resource limitation in an endangered rodent.

    PubMed

    Bean, William T; Stafford, Robert; Butterfield, H Scott; Brashares, Justin S

    2014-01-01

    Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define "available" habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining "available" habitat in habitat selection studies, and suggests a way to create distribution models at spatial and temporal scales

  8. First Principles Calculation on Equilibrium Si Isotope Fractionation Factors and its Implementation on Si Isotope Distributions in Earth Surface Environments

    NASA Astrophysics Data System (ADS)

    Liu, Y.; He, H. T.; Zhu, C.

    2014-12-01

    Several important equilibrium Si isotope fractionation factors are calculated here. We use a so-called volume-variable-cluster-model (VVCM) method for solids and the "water-droplet" method for aqueous species for isotope fractionation calculation at the same quantum chemistry level. The calculation results show that several silicate minerals, such as quartz, feldspar, kaolinite, etc., all enrich heavy Si isotopes relative to aqueous H4SiO4 and can be up to 3.3‰ at 25°C, different from most field observations. Meanwhile stable organosilicon complexes can enrich even lighter Si isotopes than aqueous H4SiO4. For explaining the difference between the calculation results and field observations, we calculate the kinetic isotope effect (KIE) associated with the formation of amorphous silica, and find that amorphous silica will enrich extremely light Si isotopes. From amorphous silica to crystalline quartz, the structural adjustment & transition needs getting rid of small amount of Si to re-organize the structure. Light Si isotopes will be preferentially lost and let the final crystalline quartz with a little bit more heavy Si isotopes. However, such late-stage Si heavy isotope enrichment cannot erase the total isotopic signal, crystalline quartz still inherit much light Si isotopic composition from amorphous quartz. That is the reason for the discrepancy between the calculation results and the field observations, because the formation of amorphous quartz is under a non-equilibrium process but theoretical calculations are for equilibrium isotope fractionations. With accurate equilibrium fractionation factors provided here, Si isotope distributions in earth surface environments including soil, groundwater and plants can be further interpreted. We find that δ30Si variations in soil are mainly driven by secondary minerals precipitation and adsorption. Also, bulk soil δ30Si maybe have a parabolic distribution with soil age, with a minimum value at where allophane is

  9. Thermal equilibrium of non-neutral plasma in dipole magnetic field

    SciTech Connect

    Sato, N.; Kasaoka, N.; Yoshida, Z.

    2015-04-15

    Self-organization of a long-lived structure is one of the remarkable characteristics of macroscopic systems governed by long-range interactions. In a homogeneous magnetic field, a non-neutral plasma creates a “thermal equilibrium,” which is a Boltzmann distribution on a rigidly rotating frame. Here, we study how a non-neutral plasma self-organizes in inhomogeneous magnetic field; as a typical system, we consider a dipole magnetic field. In this generalized setting, the plasma exhibits its fundamental mechanism that determines the relaxed state. The scale hierarchy of adiabatic invariants is the determinant; the Boltzmann distribution under the topological constraint by the robust adiabatic invariants (hence, the homogeneous distribution with respect to the fragile invariant) is the relevant relaxed state, which turns out to be a rigidly rotating clump of particles (just same as in a homogeneous magnetic field), while the density is no longer homogeneous.

  10. The temperature and size distribution of large water clusters from a non-equilibrium model.

    PubMed

    Gimelshein, N; Gimelshein, S; Pradzynski, C C; Zeuch, T; Buck, U

    2015-06-28

    A hybrid Lagrangian-Eulerian approach is used to examine the properties of water clusters formed in neon-water vapor mixtures expanding through microscale conical nozzles. Experimental size distributions were reliably determined by the sodium doping technique in a molecular beam machine. The comparison of computed size distributions and experimental data shows satisfactory agreement, especially for (H2O)n clusters with n larger than 50. Thus validated simulations provide size selected cluster temperature profiles in and outside the nozzle. This information is used for an in-depth analysis of the crystallization and water cluster aggregation dynamics of recently reported supersonic jet expansion experiments. PMID:26133426

  11. The temperature and size distribution of large water clusters from a non-equilibrium model

    SciTech Connect

    Gimelshein, N.; Gimelshein, S.; Pradzynski, C. C.; Zeuch, T.; Buck, U.

    2015-06-28

    A hybrid Lagrangian-Eulerian approach is used to examine the properties of water clusters formed in neon-water vapor mixtures expanding through microscale conical nozzles. Experimental size distributions were reliably determined by the sodium doping technique in a molecular beam machine. The comparison of computed size distributions and experimental data shows satisfactory agreement, especially for (H{sub 2}O){sub n} clusters with n larger than 50. Thus validated simulations provide size selected cluster temperature profiles in and outside the nozzle. This information is used for an in-depth analysis of the crystallization and water cluster aggregation dynamics of recently reported supersonic jet expansion experiments.

  12. Generalizing the Boltzmann equation in complex phase space.

    PubMed

    Zadehgol, Abed

    2016-08-01

    In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014)JCTPAH0021-999110.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015)PLEEE81539-375510.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others. PMID:27627421

  13. ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE

    SciTech Connect

    Zaheer, S.; Yoon, P. H.

    2013-10-01

    A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the κ distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized κ distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvénic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index α, where f{sub e} ∼ v {sup –α} is close to the average index observed during the quiet-time solar wind condition, i.e., α ∼ O(6.5) whereas α{sub average} ∼ 6.69, according to observation.

  14. An application of statistical mechanics for representing equilibrium perimeter distributions of tropical convective clouds

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Alva, S.; Glenn, I. B.; Krueger, S. K.

    2015-12-01

    There are two possible approaches for parameterizing sub-grid cloud dynamics in a coarser grid model. The most common is to use a fine scale model to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to parameterize these behaviors cloud state for the coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical mechanics. This approach avoids any requirement to resolve time-dependent processes in order to arrive at a suitable solution. The second approach is widely used elsewhere in the atmospheric sciences: for example the Planck function for blackbody radiation is derived this way, where no mention is made of the complexities of modeling a large ensemble of time-dependent radiation-dipole interactions in order to obtain the "grid-scale" spectrum of thermal emission by the blackbody as a whole. We find that this statistical approach may be equally suitable for modeling convective clouds. Specifically, we make the physical argument that the dissipation of buoyant energy in convective clouds is done through mixing across a cloud perimeter. From thermodynamic reasoning, one might then anticipate that vertically stacked isentropic surfaces are characterized by a power law dlnN/dlnP = -1, where N(P) is the number clouds of perimeter P. In a Giga-LES simulation of convective clouds within a 100 km square domain we find that such a power law does appear to characterize simulated cloud perimeters along isentropes, provided a sufficient cloudy sample. The suggestion is that it may be possible to parameterize certain important aspects of cloud state without appealing to computationally expensive dynamic simulations.

  15. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS2 Ⓧ S2

    DOE PAGESBeta

    Noronha, Jorge; Denicol, Gabriel S.

    2015-12-30

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS2 Ⓧ S2. We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not matchmore » the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Furthermore, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production.« less

  16. SEDFIT-MSTAR: Molecular weight and molecular weight distribution analysis of polymers by sedimentation equilibrium in the ultracentrifuge

    PubMed Central

    Schuck, Peter; Gillis, Richard B.; Besong, Tabot M.D.; Almutairi, Fahad; Adams, Gary G.; Rowe, Arthur J.; Harding, Stephen E.

    2014-01-01

    Sedimentation equilibrium (analytical ultracentrifugation) is one of the most inherently suitable methods for the determination of average molecular weights and molecular weight distributions of polymers, because of its absolute basis (no conformation assumptions) and inherent fractionation ability (without the need for columns or membranes and associated assumptions over inertness). With modern instrumentation it is also possible to run up to 21 samples simultaneously in a single run. Its application has been severely hampered because of difficulties in terms of baseline determination (incorporating estimation of the concentration at the air/solution meniscus) and complexity of the analysis procedures. We describe a new method for baseline determination based on a smart-smoothing principle and built into the highly popular platform SEDFIT for the analysis of the sedimentation behavior of natural and synthetic polymer materials. The SEDFIT-MSTAR procedure – which takes only a few minutes to perform - is tested with four synthetic data sets (including a significantly non-ideal system) a naturally occurring protein (human IgG1) and two naturally occurring carbohydrate polymers (pullulan and λ–carrageenan) in terms of (i) weight average molecular weight for the whole distribution of species in the sample (ii) the variation in “point” average molecular weight with local concentration in the ultracentrifuge cell and (iii) molecular weight distribution. PMID:24244936

  17. On the Non-Equilibrium Population Distribution of E-Methanol in Dark Clouds

    NASA Astrophysics Data System (ADS)

    Wollman, Emma

    2007-12-01

    The goal of this project was to determine the typical distribution of rotational level populations in the k=0 ladder of E-methanol in dark clouds in order to provide another observational test for theoretical models of pumping. We used our own observations of several sources with the 12-m ARO telescope on Kitt Peak as well as the published observational results by Slysh et al. (1999). The relative level populations (excitation temperatures) were determined from the measured intensity ratios of a series of the J(0)-J(-1) transitions of E-methanol under the assumption of spontaneous, optically thin emission. We observed the J(0)-J(-1) lines in six sources: W75N, DR21N, DR21, and three positions at DR21OH. The J=1 to J=5 lines were observed for all sources and the J=7 line was observed for W75N, DR21N, and one position in DR21OH. We also used Slysh et al.'s results for the J=1 through 4 lines in 52 sources, for the J=5 line in 50 sources, for the J=6 line in 15 sources, and for the J=7 and 8 lines in 2 sources. We determined the excitation temperatures of the involved levels in the k=0 ladder relative to the 1(0) level for each source and averaged the results over the sources. The average excitation temperatures demonstrate strong evidence of overcooling in the k=0 ladder - the excitation temperature increases linearly with increasing energy, from 8 K to 35 K. Our observations confirm this tendency of overcooling. We will discuss the agreement of these results with the predictions of the current models of methanol pumping. The author thanks the technical staff of the 12-m ARO telescope for help with the observations. This project was supported by the NSF/REU grant AST-0354056 and the Nantucket Maria Mitchell Association.

  18. Predictive modelling for packaging design: equilibrium modified atmosphere packages of fresh-cut vegetables subjected to a simulated distribution chain.

    PubMed

    Jacxsens, L; Devlieghere, F; Debevere, J

    2002-03-01

    The impact of temperature fluctuations in a simulated cold distribution chain, typical of commercial practice, was investigated on both the microbial and sensorial quality of equilibrium modified atmosphere (EMA) packaged minimally processed vegetables. The internal O2 concentration of the designed packages could be predicted for the different steps of the simulated distribution chain by applying an integrated mathematical system. The internal atmosphere in the packages remained in its aerobic range during storage in the chain due to the application of high permeable packaging films for O2 and CO2. Spoilage microorganisms were proliferating fast on minimally processed bell peppers and lettuce. Yeasts showed to be the shelf-life limiting group. Visual properties limited the sensorial shelf-life. Listeria monocytogenes was able to multiply on cucumber slices, survived on minimally processed lettuce and decreased in number on bell peppers due to the combination of low pH and refrigeration. Aeromonas caviae was multiplying on both cucumber slices and mixed lettuce, but was as well inhibited by the low pH of bell peppers. Storage temperature control was found to be of paramount importance for the microbial (spoilage and safety) and sensorial quality evaluation of EMA-packaged minimally processed vegetables. PMID:11934040

  19. Information geometry of Boltzmann machines.

    PubMed

    Amari, S; Kurata, K; Nagaoka, H

    1992-01-01

    A Boltzmann machine is a network of stochastic neurons. The set of all the Boltzmann machines with a fixed topology forms a geometric manifold of high dimension, where modifiable synaptic weights of connections play the role of a coordinate system to specify networks. A learning trajectory, for example, is a curve in this manifold. It is important to study the geometry of the neural manifold, rather than the behavior of a single network, in order to know the capabilities and limitations of neural networks of a fixed topology. Using the new theory of information geometry, a natural invariant Riemannian metric and a dual pair of affine connections on the Boltzmann neural network manifold are established. The meaning of geometrical structures is elucidated from the stochastic and the statistical point of view. This leads to a natural modification of the Boltzmann machine learning rule. PMID:18276427

  20. Boltzmann Fluctuations in Numerical Simulations of Nonequilibrium Lattice Threshold Systems

    SciTech Connect

    Rundle, J.B.; Klein, W.; Gross, S.; Turcotte, D.L.

    1995-08-21

    Nonequilibrium threshold systems such as slider blocks are now used to model a variety of dynamical systems, including earthquake faults, driven neural networks, and sliding charge density waves. We show that for general mean field models driven at low rates fluctuations in the internal energy field are characterized by Boltzmann statistics. Numerical simulations confirm this prediction. Our results indicate that mean field models can be effectively treated as equilibrium systems.

  1. Brownian motion from Boltzmann's equation.

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1971-01-01

    Two apparently disparate lines of inquiry in kinetic theory are shown to be equivalent: (1) Brownian motion as treated by the (stochastic) Langevin equation and Fokker-Planck equation; and (2) Boltzmann's equation. The method is to derive the kinetic equation for Brownian motion from the Boltzmann equation for a two-component neutral gas by a simultaneous expansion in the density and mass ratios.

  2. Generalized Metropolis acceptance criterion for hybrid non-equilibrium molecular dynamics—Monte Carlo simulations

    SciTech Connect

    Chen, Yunjie; Roux, Benoît

    2015-01-14

    A family of hybrid simulation methods that combines the advantages of Monte Carlo (MC) with the strengths of classical molecular dynamics (MD) consists in carrying out short non-equilibrium MD (neMD) trajectories to generate new configurations that are subsequently accepted or rejected via an MC process. In the simplest case where a deterministic dynamic propagator is used to generate the neMD trajectories, the familiar Metropolis acceptance criterion based on the change in the total energy ΔE, min[1,  exp( − βΔE)], guarantees that the hybrid algorithm will yield the equilibrium Boltzmann distribution. However, the functional form of the acceptance probability is more complex when the non-equilibrium switching process is generated via a non-deterministic stochastic dissipative propagator coupled to a heat bath. Here, we clarify the conditions under which the Metropolis criterion remains valid to rigorously yield a proper equilibrium Boltzmann distribution within hybrid neMD-MC algorithm.

  3. Predictions of polarized multilayer theory of solute distribution confirmed from a study of the equilibrium distribution in frog muscle of twenty-one nonelectrolytes including five cryoprotectants.

    PubMed

    Ling, G N; Niu, Z; Ochsenfeld, M

    1993-01-01

    We determined the equilibrium distribution of twenty-one nonmetabolized nonelectrolytes in frog muscle cells. In all cases, plots of the equilibrium intracellular concentrations of a solute in the cell water against the external concentrations of the solute yielded straight lines in agreement with the prediction of such a rectilinear plot by the polarized multilayer (PM) theory. The slopes of these straight lines yield the equilibrium distribution coefficients or q-value of that solute. It was shown that, again in agreement with the PM theory, the q-values of fourteen nonelectrolytes vary with the molecular volumes of the nonelectrolytes, obeying the "size rule", i.e., the larger the solute, the lower its q-value. The q-values of the remaining seven nonelectrolytes also decrease with their molecular volumes but on a separate curve. These q-value vs. molecular volume plots (q-v plots) show strong resemblance to similar q-v plots of solutes in dialysis sacs containing proteins and polymers assuming the fully-extended conformation (extrovert models) but no, or only weak, resemblance to q-v plots of solutions containing native globular proteins (introvert models). These findings also support the PM theory, according to which some protein(s) pervasively present in cells are in the fully-extended conformation; and that these fully extended cell protein(s) polarize(s) in multilayers all or virtually all cell water. The relationship between the q-values of the nonelectrolytes and the solutes' respective molecular volume are described by two sets of theoretical curves, calculated from an equation introduced in the preceding paper. Both curves were computed on the basis of the same exclusion intensity (Uvp = 126 cal/mole). This factor measures the extra water-to-water interaction of the polarized water which acts to keep solute out of the cell water in degree according to the size of the solute. The two curves are computed on the basis of two different values of U(s), which

  4. Crystallographic Lattice Boltzmann Method.

    PubMed

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-01-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098

  5. Crystallographic Lattice Boltzmann Method

    PubMed Central

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-01-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098

  6. Crystallographic Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-06-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows.

  7. Three-dimensional lattice Boltzmann model for magnetic reconnection

    SciTech Connect

    Mendoza, M.; Munoz, J. D.

    2008-02-15

    We develop a three-dimensional (3D) lattice Boltzmann model that recovers in the continuous limit the two-fluids theory for plasmas, and consequently includes the generalized Ohm's law. The model reproduces the magnetic reconnection process just by giving the right initial equilibrium conditions in the magnetotail, without any assumption on the resistivity in the diffusive region. In this model, the plasma is handled similar to two fluids with an interaction term, each one with distribution functions associated to a cubic lattice with 19 velocities (D3Q19). The electromagnetic fields are considered as a third fluid with an external force on a cubic lattice with 13 velocities (D3Q13). The model can simulate either viscous fluids in the incompressible limit or nonviscous compressible fluids, and successfully reproduces both the Hartmann flow and the magnetic reconnection in the magnetotail. The reconnection rate in the magnetotail obtained with this model lies between R=0.062 and R=0.073, in good agreement with the observations.

  8. Three-dimensional lattice Boltzmann model for magnetic reconnection.

    PubMed

    Mendoza, M; Muñoz, J D

    2008-02-01

    We develop a three-dimensional (3D) lattice Boltzmann model that recovers in the continuous limit the two-fluids theory for plasmas, and consequently includes the generalized Ohm's law. The model reproduces the magnetic reconnection process just by giving the right initial equilibrium conditions in the magnetotail, without any assumption on the resistivity in the diffusive region. In this model, the plasma is handled similar to two fluids with an interaction term, each one with distribution functions associated to a cubic lattice with 19 velocities (D3Q19). The electromagnetic fields are considered as a third fluid with an external force on a cubic lattice with 13 velocities (D3Q13). The model can simulate either viscous fluids in the incompressible limit or nonviscous compressible fluids, and successfully reproduces both the Hartmann flow and the magnetic reconnection in the magnetotail. The reconnection rate in the magnetotail obtained with this model lies between R=0.062 and R=0.073, in good agreement with the observations. PMID:18352154

  9. Treatment of moving boundaries in lattice-Boltzmann simulations.

    NASA Astrophysics Data System (ADS)

    Indireshkumar, K.; Pal, A.; Brasseur, J. G.

    2000-11-01

    We consider the treatment of moving boundaries with the lattice-Boltzmann (LB) technique, where the treatment of the boundary often does not precisely conserve mass and spurious fluctuations in density/pressure result from boundary motion through fixed grids. First, we applied the extrapolation method proposed by Chen et. al.(S. Y. Chen, D. Martinez, and R Mei, Phys. Fluids) 8, 2527 (1996) to incompressible flow induced by the movement of a piston in a 2D ``cylinder'' with mass flow out of or into the cylinder. In these simulations, the velocity of the boundary nodes is set equal to the (known) velocity of the boundary (piston) in the equilibrium distribution function (Method I). In a second set of simulations, the boundary node velocities are obtained by interpolating between interior nodes and the boundary, thus including the effect of boundary position more precisely (Method II). Comparison of LB predictions with simulations using FIDAP show pressure agreement to witnin 2 %. The total mass is conserved to within 0.1% with Method I and improves to within 0.02 % using method II. Spurious fluctuations in density/pressure due to boundary movement is about 0.9% with Method I, which improves significantly to about 0.3% with Method II. The application of these simple techniques to more complex geometries and wall (and fluid) motions in a stomach during gastric emptying will be presented.

  10. Observation of a Persistent Non-Equilibrium State in an Extremely Isotropic Harmonic Potential

    NASA Astrophysics Data System (ADS)

    Lobser, D. S.

    Ludwig Boltzmann made tremendously important contributions to the problem of con- necting macroscopic, empirical phenomena with microscopic, atomistic dynamics. At the end of the nineteenth century, Boltzmann was confronted with various strong objections to his work. For example, Boltzmann's atomistic explanations presuppose the reality of atoms, a notion that was vigorously rejected in some circles [14, 38]. Then too, there was the critique by Loschmidt that Boltzmann's H-theorem, put forth as a microscopic explanation for the Second Law of Thermodynamics, could hardly account for irreversible physics when the individual two-atom collisions were each reversible [18, 42]. Still intriguing today is the existence of special cases of the Boltzmann equation in which time-varying distributions of atoms re- sist the imperative of equilibration, even in the presence of collisions. Boltzmann discussed such situations in a paper dedicated to responding to Loschmidt's critique [7, 4]. Perhaps Boltzmann's motivation was to enumerate special cases where his famous H value does not relax as it should, and by enumerating them, point out their nonnaturalness, their artificiality. Damping, or relaxation to equilibrium, of a time-invariant phase-space distribution, is an all-but universal result predicted by the Boltzmann equation. Such improbable systems of atoms have only very recently been realized experimentally. Kinoshita et al. [36] experimentally confirmed that atoms constrained to move in a quasi one-dimensional potential, an atomistic Newtons cradle, exhibit vastly suppressed relaxation. Chevy et al. [15] observed long-lived breathe-mode oscillations in highly elongated but still 3D geometries. Perhaps one of the more interesting cases is the vanishing damping of the monopole breathe-mode oscillation in a spherically symmetric harmonic oscillator [29], where a cloud of atoms experiences undamped temperature oscillations, causing the cloud to expand and contract as if it

  11. Lattice Boltzmann Modeling of Gaseous Diffusion in Unsaturated Porous Media under Variable Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Chau, J. F.; Or, D.; Jones, S.; Sukop, M.

    2004-05-01

    Liquid distribution in unsaturated porous media under different gravitational forces and resulting gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. Different fluid behavior in plant growth media under microgravity conditions as compared to earth presents a challenge to plant growth in long duration space exploration missions. Our primary objective was to provide qualitative description and quantitative measures of the role of reduced gravity on hydraulic and gaseous transport properties in simulated porous media. We implemented a multi-phase lattice Boltzmann code for equilibrium distribution of liquid in an idealized two-dimensional porous medium under microgravity and "normal" gravity conditions. The information was then used to provide boundary conditions for simulation of gaseous diffusion through the equilibrium domains (considering diffusion through liquid phase negligibly small). The models were tested by comparison with several analytical solutions to the diffusion equation, with excellent results. The relative diffusion coefficient for both series of simulations (with and without gravity) as functions of air-filled porosity was in good agreement with established models of Millington-Quirk. Liquid distribution under earth's gravity featured increased water content at the lower part of the medium relative to the distribution in reduced gravity, which resulted in decreased gas diffusion through a vertically oriented column of a porous medium. Simulation results for larger domains under various orientations will be presented.

  12. Analysis of H atoms in a negative ion source plasma with the non-equilibrium electron energy distribution function

    SciTech Connect

    Koga, S.; Shibata, T.; Terasaki, R.; Kameyama, N.; Hatayama, A.; Bacal, M.; Tsumori, K.

    2012-02-15

    In negative ion sources for the neutral beam injection, it is important to calculate H atom flux onto the plasma grid (PG) surface for the evaluation of H{sup -} production on the PG surface. We have developed a neutral (H{sub 2} molecules and H atoms) transport code. In the present study, the neutral transport code is applied to the analysis of the H{sub 2} and H transport in a NIFS-R and D ion source in order to calculate the flux onto the PG surface. Taking into account non-equilibrium feature of the electron energy distribution function (EEDF), i.e., the fast electron component, we have done the neutral transport simulation. The results suggest that the precise evaluation of the EEDF, especially in the energy range 15 eV < E < 30 eV is important for the dissociation rate of H{sub 2} molecules by the electron impact collision and the resultant H atom flux on the PG.

  13. Lattice Boltzmann method for the age concentration equation in shallow water

    NASA Astrophysics Data System (ADS)

    Liu, Haifei; Ding, Yu; Wang, Hongda; Zhang, Jie

    2015-10-01

    Water age is a critical parameter in reflecting the extent of water exchange. It represents the time that water parcels or contaminants are transported from source to current positions. In this study, an equilibrium distribution function for water age concentration is proposed within the Eulerian framework based on the existing theory of water age, and it can recover the age concentration equation. In addition, the lattice Boltzmann method for water age in the Lagrangian procedures is developed. This method also enables the Lagrangian age to be fundamentally simulated under computationally expensive conditions. In numerical tests, cubic and circular reservoirs with narrow inflow-outflow boundaries are used to verify the applicability of the model. Finally, the proposed approaches are applied to the Baiyangdian Lake, the biggest freshwater lake in northern China. The result is compared with that acquired by the Environmental Fluid Dynamic Code (EFDC) as well.

  14. A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying

    2014-10-01

    A modified lattice Boltzmann model with multiple relaxation times (MRT) for the convection-diffusion equation (CDE) is proposed. By modifying the relaxation matrix, as well as choosing the corresponding equilibrium distribution function properly, the present model can recover the CDE with anisotropic diffusion coefficient with no deviation term even when the velocity vector varies generally with space or time through the Chapman-Enskog analysis. This model is firstly validated by simulating the diffusion of a Gaussian hill, which demonstrates it can handle the anisotropic diffusion problem correctly. Then it is adopted to calculate the longitudinal dispersion coefficient of the Taylo-Aris dispersion. Numerical results show that the present model can further reduce the numerical error under the condition of non-zero velocity vector, especially when the dimensionless relaxation time is relatively large.

  15. A new lattice Boltzmann model for solving the coupled viscous Burgers’ equation

    NASA Astrophysics Data System (ADS)

    Lai, Huilin; Ma, Changfeng

    2014-02-01

    In this paper, a new lattice Boltzmann model for the coupled nonlinear system of viscous Burgers’ equation is proposed by using the double evolutionary equations. Through selecting equilibrium distribution functions and amending functions properly, the governing evolution system can be recovered correctly according to our proposed scheme, in which the Chapman-Enskog expansion is employed. The effects of space and time resolutions on the accuracy and stability of the model are numerically investigated in detail. The numerical solutions for various initial and boundary conditions are calculated and validated against analytic solutions or other numerical solutions reported in previous studies. It is found that the numerical results agree well with the analytic solutions, which indicates the potential of the present algorithm for solving the coupled nonlinear system of viscous Burgers’ equation.

  16. Privacy-Preserving Restricted Boltzmann Machine

    PubMed Central

    Li, Yu

    2014-01-01

    With the arrival of the big data era, it is predicted that distributed data mining will lead to an information technology revolution. To motivate different institutes to collaborate with each other, the crucial issue is to eliminate their concerns regarding data privacy. In this paper, we propose a privacy-preserving method for training a restricted boltzmann machine (RBM). The RBM can be got without revealing their private data to each other when using our privacy-preserving method. We provide a correctness and efficiency analysis of our algorithms. The comparative experiment shows that the accuracy is very close to the original RBM model. PMID:25101139

  17. Privacy-preserving restricted boltzmann machine.

    PubMed

    Li, Yu; Zhang, Yuan; Ji, Yue

    2014-01-01

    With the arrival of the big data era, it is predicted that distributed data mining will lead to an information technology revolution. To motivate different institutes to collaborate with each other, the crucial issue is to eliminate their concerns regarding data privacy. In this paper, we propose a privacy-preserving method for training a restricted boltzmann machine (RBM). The RBM can be got without revealing their private data to each other when using our privacy-preserving method. We provide a correctness and efficiency analysis of our algorithms. The comparative experiment shows that the accuracy is very close to the original RBM model. PMID:25101139

  18. Determining Equilibrium Position For Acoustical Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Aveni, G.; Putterman, S.; Rudnick, J.

    1989-01-01

    Equilibrium position and orientation of acoustically-levitated weightless object determined by calibration technique on Earth. From calibration data, possible to calculate equilibrium position and orientation in presence of Earth gravitation. Sample not levitated acoustically during calibration. Technique relies on Boltzmann-Ehrenfest adiabatic-invariance principle. One converts resonant-frequency-shift data into data on normalized acoustical potential energy. Minimum of energy occurs at equilibrium point. From gradients of acoustical potential energy, one calculates acoustical restoring force or torque on objects as function of deviation from equilibrium position or orientation.

  19. A simple approximation of moments of the quasi-equilibrium distribution of an extended stochastic theta-logistic model with non-integer powers.

    PubMed

    Bhowmick, Amiya Ranjan; Bandyopadhyay, Subhadip; Rana, Sourav; Bhattacharya, Sabyasachi

    2016-01-01

    The stochastic versions of the logistic and extended logistic growth models are applied successfully to explain many real-life population dynamics and share a central body of literature in stochastic modeling of ecological systems. To understand the randomness in the population dynamics of the underlying processes completely, it is important to have a clear idea about the quasi-equilibrium distribution and its moments. Bartlett et al. (1960) took a pioneering attempt for estimating the moments of the quasi-equilibrium distribution of the stochastic logistic model. Matis and Kiffe (1996) obtain a set of more accurate and elegant approximations for the mean, variance and skewness of the quasi-equilibrium distribution of the same model using cumulant truncation method. The method is extended for stochastic power law logistic family by the same and several other authors (Nasell, 2003; Singh and Hespanha, 2007). Cumulant truncation and some alternative methods e.g. saddle point approximation, derivative matching approach can be applied if the powers involved in the extended logistic set up are integers, although plenty of evidence is available for non-integer powers in many practical situations (Sibly et al., 2005). In this paper, we develop a set of new approximations for mean, variance and skewness of the quasi-equilibrium distribution under more general family of growth curves, which is applicable for both integer and non-integer powers. The deterministic counterpart of this family of models captures both monotonic and non-monotonic behavior of the per capita growth rate, of which theta-logistic is a special case. The approximations accurately estimate the first three order moments of the quasi-equilibrium distribution. The proposed method is illustrated with simulated data and real data from global population dynamics database. PMID:26561778

  20. A note on Boltzmann brains

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori

    2015-10-01

    Understanding the observed arrow of time is equivalent, under general assumptions, to explaining why Boltzmann brains do not overwhelm ordinary observers. It is usually thought that this provides a condition on the decay rate of every cosmologically accessible de Sitter vacuum, and that this condition is determined by the production rate of Boltzmann brains calculated using semiclassical theory built on each such vacuum. We argue, based on a recently developed picture of microscopic quantum gravitational degrees of freedom, that this thinking needs to be modified. In particular, depending on the structure of the fundamental theory, the decay rate of a de Sitter vacuum may not have to satisfy any condition except for the one imposed by the Poincaré recurrence. The framework discussed here also addresses the question of whether a Minkowski vacuum may produce Boltzmann brains.

  1. Zermelo, Boltzmann, and the recurrence paradox

    NASA Astrophysics Data System (ADS)

    Steckline, Vincent S.

    1983-10-01

    The papers exchanged by Ludwig Boltzmann and Ernst Zermelo concerning the recurrence paradox are summarized. The historical context of the paradox, Zermelo's proof of the paradox, his opinions of its consequences, Boltzmann's reply, and the ensuing discussion are described.

  2. Regional Assessment of Storm-triggered Shall Landslide Risks using the SLIDE (SLope-Infiltration-Distributed Equilibrium) Model

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Kirschbaum, D. B.; Fukuoka, H.

    2011-12-01

    The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. An early warning system applying such physical models has been developed to predict rainfall-induced shallow landslides over Java Island in Indonesia and Honduras. The prototyped early warning system integrates three major components: (1) a susceptibility mapping or hotspot identification component based on a land surface geospatial database (topographical information, maps of soil properties, and local landslide inventory etc.); (2) a satellite-based precipitation monitoring system (http://trmm.gsfc.nasa.gov) and a precipitation forecasting model (i.e. Weather Research Forecast); and (3) a physically-based, rainfall-induced landslide prediction model SLIDE (SLope-Infiltration-Distributed Equilibrium). The system utilizes the modified physical model to calculate a Factor of Safety (FS) that accounts for the contribution of rainfall infiltration and partial saturation to the shear strength of the soil in topographically complex terrains. The system's prediction performance has been evaluated using a local landslide inventory. In Java Island, Indonesia, evaluation of SLIDE modeling results by local news reports shows that the system successfully predicted landslides in correspondence to the time of occurrence of the real landslide events. Further study of SLIDE is implemented in Honduras where Hurricane Mitch triggered widespread landslides in 1998. Results shows within the approximately 1,200 square kilometers study areas, the values of hit rates reached as high as 78% and 75%, while the error indices were 35% and 49%. Despite positive model performance, the SLIDE model is limited in the early warning system by several assumptions including, using general parameter calibration rather than in situ tests and neglecting

  3. Equilibrium Shaping

    NASA Astrophysics Data System (ADS)

    Izzo, Dario; Petazzi, Lorenzo

    2006-08-01

    We present a satellite path planning technique able to make identical spacecraft aquire a given configuration. The technique exploits a behaviour-based approach to achieve an autonomous and distributed control over the relative geometry making use of limited sensorial information. A desired velocity is defined for each satellite as a sum of different contributions coming from generic high level behaviours: forcing the final desired configuration the behaviours are further defined by an inverse dynamic calculation dubbed Equilibrium Shaping. We show how considering only three different kind of behaviours it is possible to acquire a number of interesting formations and we set down the theoretical framework to find the entire set. We find that allowing a limited amount of communication the technique may be used also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced and discussed. Our results suggest that sliding mode control is particularly appropriate in connection with the developed technique.

  4. The Poisson-Boltzmann model for tRNA

    PubMed Central

    Gruziel, Magdalena; Grochowski, Pawel; Trylska, Joanna

    2008-01-01

    Using tRNA molecule as an example, we evaluate the applicability of the Poisson-Boltzmann model to highly charged systems such as nucleic acids. Particularly, we describe the effect of explicit crystallographic divalent ions and water molecules, ionic strength of the solvent, and the linear approximation to the Poisson-Boltzmann equation on the electrostatic potential and electrostatic free energy. We calculate and compare typical similarity indices and measures, such as Hodgkin index and root mean square deviation. Finally, we introduce a modification to the nonlinear Poisson-Boltzmann equation, which accounts in a simple way for the finite size of mobile ions, by applying a cutoff in the concentration formula for ionic distribution at regions of high electrostatic potentials. We test the influence of this ionic concentration cutoff on the electrostatic properties of tRNA. PMID:18432617

  5. Navier-Stokes Dynamics by a Discrete Boltzmann Model

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robet

    2010-01-01

    This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.

  6. Lattice Boltzmann method simulations of Stokes number effects on particle motion in a channel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Lenan; Jebakumar, Anand Samuel; Abraham, John

    2016-06-01

    In a recent experimental study by Lau and Nathan ["Influence of Stokes number on the velocity and concentration distributions in particle-laden jets," J. Fluid Mech. 757, 432 (2014)], it was found that particles in a turbulent pipe flow tend to migrate preferentially toward the wall or the axis depending on their Stokes number (St). Particles with a higher St (>10) are concentrated near the axis while those with lower St (<1) move toward the walls. Jebakumar et al. ["Lattice Boltzmann method simulations of Stokes number effects on particle trajectories in a wall-bounded flow," Comput. Fluids 124, 208 (2016)] have carried out simulations of a particle in a laminar channel flow to investigate this behavior. In their work, they report a similar behavior where particles with low St migrate toward the wall and oscillate about a mean position near the wall while those with high St oscillate about the channel center plane. They have explained this behavior in terms of the Saffman lift, Magnus lift, and wall repulsion forces acting on the particle. The present work extends the previous work done by Jebakumar et al. and aims to study the behavior of particles at intermediate St ranging from 10 to 20. It is in this range where the equilibrium position of the particle changes from near the wall to the axis and the particle starts oscillating about the axis. The Lattice Boltzmann method is employed to carry out this study. It is shown that the change in mean equilibrium position is related to increasing oscillations of the particle with mean position near the wall which results in the particle moving past the center plane to the opposite side. The responsible mechanisms are explained in detail.

  7. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS2 Ⓧ S2

    SciTech Connect

    Noronha, Jorge; Denicol, Gabriel S.

    2015-12-30

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS2 Ⓧ S2. We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not match the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Furthermore, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production.

  8. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS2⊗S2

    NASA Astrophysics Data System (ADS)

    Noronha, Jorge; Denicol, Gabriel S.

    2015-12-01

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS2⊗S2 . We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not match the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Thus, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production.

  9. Interface-capturing lattice Boltzmann equation model for two-phase flows

    NASA Astrophysics Data System (ADS)

    Lou, Qin; Guo, Zhaoli

    2015-01-01

    In this work, an interface-capturing lattice Boltzmann equation (LBE) model is proposed for two-phase flows. In the model, a Lax-Wendroff propagation scheme and a properly chosen equilibrium distribution function are employed. The Lax-Wendroff scheme is used to provide an adjustable Courant-Friedrichs-Lewy (CFL) number, and the equilibrium distribution is presented to remove the dependence of the relaxation time on the CFL number. As a result, the interface can be captured accurately by decreasing the CFL number. A theoretical expression is derived for the chemical potential gradient by solving the LBE directly for a two-phase system with a flat interface. The result shows that the gradient of the chemical potential is proportional to the square of the CFL number, which explains why the proposed model is able to capture the interface naturally with a small CFL number, and why large interface error exists in the standard LBE model. Numerical tests, including a one-dimensional flat interface problem, a two-dimensional circular droplet problem, and a three-dimensional spherical droplet problem, demonstrate that the proposed LBE model performs well and can capture a sharp interface with a suitable CFL number.

  10. Multi-Species Thermal Lattice Boltzmann Models

    NASA Astrophysics Data System (ADS)

    Wah, Darren; Vahala, George; Vahala, Linda; Pavlo, Pavol; Carter, Jonathan

    1998-11-01

    Thermal Lattice Boltzmann models (TLBM) are ideal for simulating nonlinear macroscopic conservation systems because of their inherent parallelizeability (nearly all operations are purely local). The TLBM solves a linear BGK-like kinetic equation so that the standard nonlinear convective terms in the standard fluid codes are now replaced by a simple shift operator (linear advection) at the kinetic level. Here we extend our previous TLBM to handle a two-species system, utilizing the models of Morse (1964),Greene (1973) and Kotelnikov & Montgomery (1997). Each kinetic equation now has 2 BGK-like relaxation terms : the first is due to self-collisions and the other is due to different- species collisions. The relaxation rates used are appropriate for electron-ion collisions. Certain constraints can be imposed on the relaxed distribution functions so that the cross-species momentum and energy evolutions relax at the rate determined from the full nonlinear Boltzmann integral collision operator. Ionization and recombination processes will also be examined. Both hexagonal and octagonal lattices are studied.

  11. Reduction of the temperature jump in the immersed boundary-thermal lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Seta, Takeshi; Hayashi, Kosuke; Tomiyama, Akio

    2015-11-01

    We analytically and numerically investigate the boundary errors computed by the immersed boundary-thermal lattice Boltzmann method (IB-TLBM) with the two-relaxation-time (TRT) collision operator. In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part. We derive the theoretical relation between the relaxation parameters for the symmetric and antisymmetric parts of the distribution function so as to eliminate the temperature jump. The simple TRT collision operator succeeds in reducing the temperature jump occurring at the high relaxation time in the IB-TLBM calculation. The porous plate problem numerically and analytically demonstrate that the velocity squared terms should be neglected in the equilibrium distribution function in order to eliminate the effect of the advection velocity on the temperature jump in the IB-TLBMs. The passive scalar model without the velocity squared terms more accurately calculates the incompressible temperature equation in the IB-TLBMs, compared to the double distribution model, which is based on the relation of the distribution function gk = (ek - u)2fk / 2 . We apply the passive scalar model without the velocity squared terms to the simulation of the natural convection between a hot circular cylinder and a cold square enclosure. The proposed method adequately sets the boundary values and provides reasonable average Nusselt numbers and maximum absolute values of the stream function.

  12. Podolsky electromagnetism at finite temperature: Implications on the Stefan-Boltzmann law

    SciTech Connect

    Bonin, C. A.; Bufalo, R.; Pimentel, B. M.; Zambrano, G. E. R.

    2010-01-15

    In this work we study Podolsky electromagnetism in thermodynamic equilibrium. We show that a Podolsky mass-dependent modification to the Stefan-Boltzmann law is induced and we use experimental data to limit the possible values for this free parameter.

  13. Boltzmann equation and hydrodynamic fluctuations.

    PubMed

    Colangeli, Matteo; Kröger, Martin; Ottinger, Hans Christian

    2009-11-01

    We apply the method of invariant manifolds to derive equations of generalized hydrodynamics from the linearized Boltzmann equation and determine exact transport coefficients, obeying Green-Kubo formulas. Numerical calculations are performed in the special case of Maxwell molecules. We investigate, through the comparison with experimental data and former approaches, the spectrum of density fluctuations and address the regime of finite Knudsen numbers and finite frequencies hydrodynamics. PMID:20364972

  14. Equilibrium K-, L-, and M-shell ionizations and charge-state distribution of sulfur projectiles passing through solid targets

    SciTech Connect

    Braziewicz, J.; Majewska, U.; Banas, D.; Polasik, M.; Slabkowska, K.; Koziol, K.; Jaskola, M.; Korman, A.; Kretschmer, W.; Choinski, J.

    2010-08-15

    In the present work, an alternative approach for the evaluation of the equilibrium K-, L-, and M-shell ionizations and the mean charge state q for projectiles passing through various targets has been proposed. The approach is based on measured K x-ray energy shifts and line intensity ratios and utilizes the theoretical analysis of projectile spectra using multiconfiguration Dirac-Fock calculations. It was applied for the satellite and hypersatellite K lines in the x-ray spectra emitted by sulfur projectiles passing with energies of 9.6-122 MeV through carbon, aluminium, titanium, and iron targets, recorded by a Si(Li) detector. It was found that only in the high projectile energy region there was significant dependence of mean equilibrium K-shell ionization on the target atomic number. The equilibrium L-shell ionization rises with the increase of sulfur energy until 32 MeV, but for higher energies the changes are very weak. The equilibrium M-shell ionization changes very weakly for low projectile energy while for higher energies this ionization is practically constant. For each target, the estimated value of q rises with the increase of the sulfur energy value. The dependence of the sulfur charge state on the target atomic number was discussed by taking into account the cross sections for ionization, decay, and electron capture processes. The data were compared with the experimental data measured by other authors and with the predictions of Shima's and Schiwietz and Grande's semiempirical formulas. The presented good agreement points out that this alternative approach delivers quantitative results.

  15. Equilibrium K-, L-, and M-shell ionizations and charge-state distribution of sulfur projectiles passing through solid targets

    NASA Astrophysics Data System (ADS)

    Braziewicz, J.; Polasik, M.; Słabkowska, K.; Majewska, U.; Banaś, D.; Jaskóła, M.; Korman, A.; Kozioł, K.; Kretschmer, W.; Choinski, J.

    2010-08-01

    In the present work, an alternative approach for the evaluation of the equilibrium K-, L-, and M-shell ionizations and the mean charge state q¯ for projectiles passing through various targets has been proposed. The approach is based on measured K x-ray energy shifts and line intensity ratios and utilizes the theoretical analysis of projectile spectra using multiconfiguration Dirac-Fock calculations. It was applied for the satellite and hypersatellite K lines in the x-ray spectra emitted by sulfur projectiles passing with energies of 9.6-122 MeV through carbon, aluminium, titanium, and iron targets, recorded by a Si(Li) detector. It was found that only in the high projectile energy region there was significant dependence of mean equilibrium K-shell ionization on the target atomic number. The equilibrium L-shell ionization rises with the increase of sulfur energy until 32 MeV, but for higher energies the changes are very weak. The equilibrium M-shell ionization changes very weakly for low projectile energy while for higher energies this ionization is practically constant. For each target, the estimated value of q¯ rises with the increase of the sulfur energy value. The dependence of the sulfur charge state on the target atomic number was discussed by taking into account the cross sections for ionization, decay, and electron capture processes. The data were compared with the experimental data measured by other authors and with the predictions of Shima’s and Schiwietz and Grande’s semiempirical formulas. The presented good agreement points out that this alternative approach delivers quantitative results.

  16. A note on a Discrete Boltzmann Equation with multiple collisions

    NASA Astrophysics Data System (ADS)

    Oliveira, Filipe; Soares, Ana Jacinta

    2008-05-01

    We compute a non-trivial explicit solution for the one-dimensional plane 6-velocity discrete Boltzmann model with multiple collisions introduced in [E. Longo, R. Monaco, On the discrete kinetic theory with multiple collisions: Plane six-velocity and unsteady Couette flow, in: Muntz, et al. (Eds.), The Proceedings of Rarefied Gas Dynamics, in: AIAA Publ., vol. 118, 1989, pp. 118-130] which asymptotically connects two particular equilibrium states. We prove that such a solution exists provided that a suitable condition on the differential elastic cross sections holds.

  17. Simulations of the fusion of necklace-ring pattern in the complex Ginzburg-Landau equation by lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Zhang, Jianying; Yan, Guangwu

    2016-04-01

    A lattice Boltzmann model for solving the (2+1) dimensional cubic-quintic complex Ginzburg-Landau equation (CQCGLE) is proposed. Different from the classic lattice Boltzmann models, this lattice Boltzmann model is based on uniformly distributed lattice points in a two-dimensional space, and the evolution of the model is about a spatial axis rather than time. The algorithm provides advantages similar to the lattice Boltzmann method in that it is easily adapted to complex Ginzburg-Landau equations. Numerical results reproduce the phenomena of the fusion of necklace-ring pattern and the effect of non-linearity on the soliton in the CQCGLE.

  18. Spatiotemporal lattice Boltzmann model for the three-dimensional cubic-quintic complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Zhang, Jianying; Yan, Guangwu

    2015-12-01

    A spatiotemporal lattice Boltzmann model for solving the three-dimensional cubic-quintic complex Ginzburg-Landau equation (CQCGLE) is proposed. Different from the classic lattice Boltzmann models, this lattice Boltzmann model is based on uniformly distributed lattice points in a three-dimensional spatiotemporal space, and the evolution of the model is about a spatial axis rather than time. The algorithm possesses advantages similar to the lattice Boltzmann method in that it is easily adapted to complex Ginzburg-Landau equations. Examples show that the model reproduces the phenomena in the CQCGLE accurately.

  19. Partition Equilibrium

    NASA Astrophysics Data System (ADS)

    Feldman, Michal; Tennenholtz, Moshe

    We introduce partition equilibrium and study its existence in resource selection games (RSG). In partition equilibrium the agents are partitioned into coalitions, and only deviations by the prescribed coalitions are considered. This is in difference to the classical concept of strong equilibrium according to which any subset of the agents may deviate. In resource selection games, each agent selects a resource from a set of resources, and its payoff is an increasing (or non-decreasing) function of the number of agents selecting its resource. While it has been shown that strong equilibrium exists in resource selection games, these games do not possess super-strong equilibrium, in which a fruitful deviation benefits at least one deviator without hurting any other deviator, even in the case of two identical resources with increasing cost functions. Similarly, strong equilibrium does not exist for that restricted two identical resources setting when the game is played repeatedly. We prove that for any given partition there exists a super-strong equilibrium for resource selection games of identical resources with increasing cost functions; we also show similar existence results for a variety of other classes of resource selection games. For the case of repeated games we identify partitions that guarantee the existence of strong equilibrium. Together, our work introduces a natural concept, which turns out to lead to positive and applicable results in one of the basic domains studied in the literature.

  20. Lattice-Boltzmann Simulation of Tablet Disintegration

    NASA Astrophysics Data System (ADS)

    Jiang, Jiaolong; Sun, Ning; Gersappe, Dilip

    Using the lattice-Boltzmann method, we developed a 2D model to study the tablet disintegration involving the swelling and wicking mechanisms. The surface area and disintegration profile of each component were obtained by tracking the tablet structure in the simulation. Compared to pure wicking, the total surface area is larger for swelling and wicking, which indicates that the swelling force breaks the neighboring bonds. The disintegration profiles show that the tablet disintegrates faster than pure wicking, and there are more wetted active pharmaceutical ingredient particles distributed on smaller clusters. Our results indicate how the porosity would affect the disintegration process by changing the wetting area of the tablet as well as by changing the swelling force propagation.

  1. Boltzmann babies in the proper time measure

    SciTech Connect

    Bousso, Raphael; Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng

    2007-12-20

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  2. Boltzmann babies in the proper time measure

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Freivogel, Ben; Yang, I.-Sheng

    2008-05-01

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  3. Numerical treatment of the spherically symmetric general-relativistic Boltzmann equation for massless and massive particles

    SciTech Connect

    Harleston, H. Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Distrito Federal ); Vishniac, E.T. )

    1992-06-15

    The Arnowitt-Deser-Misner formalism is used to write the Einstein-Boltzmann coupled system of equations. The sources of gravitational field are represented by ordinary matter described by a perfect-fluid approximation together with a particle gas described by a phase-space distribution function obeying the general-relativistic Boltzmann transport equation. Through the use of the Liouville operator in phase space, we obtain a form of the Boltzmann equation that makes it very amenable for numerical treatment. The resulting system of equations can be used for the numerical study of either massless or massive particles interacting with ordinary matter.

  4. Equilibrium distribution of dissolved sulphur species in water at 25°C and 1 atm total pressure

    USGS Publications Warehouse

    Garrels, R.M.; Naeser, C.R.

    1958-01-01

    The Eh-pH diagrams for the equilibrium concentrations in aqueous solution at 25°C of native sulphur and all the various sulphur-containing ions and acids from which the ions are produced have been constructed for systems having a total sulphur concentration of 0.1 molar. The composite of these diagrams indicates that elemental sulphur, H2S, HS− HSO4− and SO4 are the species that predominate in the environments that might be found in nature. This indication is in agreement with the composition of all sulphur-containing minerals.

  5. Effect of translational and angular momentum conservation on energy equipartition in microcanonical equilibrium in small clusters.

    PubMed

    Niiyama, Tomoaki; Shimizu, Yasushi; Kobayashi, Taizo R; Okushima, Teruaki; Ikeda, Kensuke S

    2009-05-01

    We investigate numerically and analytically the effects of conservation of total translational and angular momentum on the distribution of kinetic energy among particles in microcanonical particle systems with small number of degrees of freedom, specifically microclusters. Molecular dynamics simulations of microclusters with constant total energy and momenta, using Lennard-Jones, Morse, and Coulomb plus Born-Mayer-type potentials, show that the distribution of kinetic energy among particles can be inhomogeneous and depend on particle mass and position even in thermal equilibrium. Statistical analysis using a microcanonical measure taking into account of the additional conserved quantities gives theoretical expressions for kinetic energy as a function of the mass and position of a particle with only O(1/N;{2}) deviation from the Maxwell-Boltzmann distribution. These expressions fit numerical results well. Finally, we propose an intuitive interpretation for the inhomogeneity of the kinetic energy distributions. PMID:19518410

  6. Spectrum structure and behavior of the Vlasov-Maxwell-Boltzmann system without angular cutoff

    NASA Astrophysics Data System (ADS)

    Huang, Yongting

    2016-02-01

    The spectrum structure and behavior of the Vlasov-Maxwell-Boltzmann (VMB) system with physical angular non-cutoff intermolecular collisions are studied in this paper. The analysis shows the effect of the Lorentz force induced by the electro-magnetic field leads to some different spectrum structure from the non-cutoff Boltzmann equation. The spectrum structure in high frequency, quite different from the VMB system with angular cutoff assumption, also illustrates the hyperbolic structure of the Maxwell equation. Furthermore, the large time behavior and optimal convergence rates to the equilibrium of the non-cutoff VMB system are established on the spectrum analysis.

  7. Helical equilibrium

    SciTech Connect

    Yoshikawa, S.

    1981-08-01

    A straight, helical plasma equilibrium equation is solved numerically for a plasma with a helical magnetic axis. As is expected, by a suitable choice of the plasma boundary, the vacuum configuration is made line ..integral.. dl/B stable. As the plasma pressure increases, the line ..integral.. dl/B criterion will improve (again as expected). There is apparently no limit on the plasma ..beta.. from the equilibrium consideration. Thus helical-axis stellarator ..beta.. will presumably be limited by MHD stability ..beta.., and not by equilibrium ..beta...

  8. Lattice Boltzmann simulation of turbulence-induced flocculation of cohesive sediment

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.; Qiao, Guang-Quan

    2013-10-01

    Both the floc formation and floc breakup of cohesive sediment are affected by turbulent shear which is recognized as one of the most important parameters, and thus, on the settling and transport of cohesive sediment. In this study, the development of floc characteristics at early stage and steady-state of flocculation were investigated via a three-dimensional lattice Boltzmann numerical model for turbulence-induced flocculation. Simulations for collision and aggregation of various size particles, floc growth, and breakup in isotropic and homogenous turbulent flows with different shear stresses were conducted. Model results for the temporal evolution of floc size distribution show that the normalized floc size distributions is time-independent during early stage of flocculation, and at steady-state, shear rate has no effect on the shape of normalized floc size distribution. Furthermore, the size, settling velocity, and effective density of flocs at the non-equilibrium flocculation stage do not change significantly for shear stresses in the range 0-0.4 N m-2. The relationships between floc size and settling velocity established during floc growth stages and that during steady-states are different.

  9. Lattice Boltzmann methods in Geosciences

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Parmigiani, Andrea; Su, Yanqing

    2014-05-01

    Numerical models often offer the only possible approach to study the complex non-linear dynamics of geodynamical processes that are difficult or impossible to scale for laboratory experiments. The development of improved computer resources has allowed the emergence of large-scale parallel computations in Earth Sciences. These resources have lead to an increasing complexity in models where a greater number of adjustable parameters arise. Although the increasing number of free parameters offers a greater flexibility to fit satisfyingly the set of available constraints (e.g. geochemical, structural) it also provides new challenges in terms of the size of the parameter space and non-uniqueness of model solutions. Another significant challenge associated with state-of-the-art models is that their complexity is in general associated with the addition of parameterizations of the unresolved (small) scale processes. This trend calls for the development of complementary high-performance models to constrain the physics at small-scales where mass, momentum and energy exchanges at interfaces between different phases control the dynamics in heterogeneous media. We argue that more attention should be devoted to the development of multiphase numerical modeling at the granular (pore) scale to investigate the dynamical behavior of heterogeneous media and the emergence of feedbacks that influence the response of these media at much greater scales. The lattice Boltzmann method is a paradigm that emerged almost three decades ago. It is based on kinetic theory and follows a bottom-up approach that contrast the top-down strategy of standard methods such as Finite Volumes, FEM and Finite Differences. Lattice Boltzmann is ideally suited to handle the complex dynamics of multiphase systems at small spatial scales and is very efficient for parallel programing. In this presentation, we discuss the development of different lattice Boltzmann models developed in our group over the last years

  10. Hot atom populations in the terrestrial atmosphere. A comparison of the nonlinear and linearized Boltzmann equations

    NASA Astrophysics Data System (ADS)

    Sospedra-Alfonso, Reinel; Shizgal, Bernie D.

    2012-11-01

    We use a finite difference discretization method to solve the space homogeneous, isotropic nonlinear Boltzmann equation. We study the time evolution of the distribution function in relation to the solution of the linearized Boltzmann equation for three different initial conditions. The relaxation process is described in terms of the Laguerre moments and the spectral properties of the linearized collision operator. The motivation is the need to include self-collisions in the study of suprathermal oxygen atoms in the terrestrial exosphere.

  11. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    NASA Astrophysics Data System (ADS)

    Louis-Martinez, Domingo

    2011-04-01

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.

  12. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    NASA Astrophysics Data System (ADS)

    Louis-Martinez, Domingo J.

    2011-02-01

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well-known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.

  13. Design and Quasi-Equilibrium Analysis of a Distributed Frequency-Restoration Controller for Inverter-Based Microgrids

    SciTech Connect

    Ainsworth, Nathan G; Grijalva, Prof. Santiago

    2013-01-01

    This paper discusses a proposed frequency restoration controller which operates as an outer loop to frequency droop for voltage-source inverters. By quasi-equilibrium analysis, we show that the proposed controller is able to provide arbitrarily small steady-state frequency error while maintaing power sharing between inverters without need for communication or centralized control. We derive rate of convergence, discuss design considerations (including a fundamental trade-off that must be made in design), present a design procedure to meet a maximum frequency error requirement, and show simulation results verifying our analysis and design method. The proposed controller will allow flexible plug-and-play inverter-based networks to meet a specified maximum frequency error requirement.

  14. A Lattice Boltzmann Method for Turbomachinery Simulations

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Lopez, I.

    2003-01-01

    Lattice Boltzmann (LB) Method is a relatively new method for flow simulations. The start point of LB method is statistic mechanics and Boltzmann equation. The LB method tries to set up its model at molecular scale and simulate the flow at macroscopic scale. LBM has been applied to mostly incompressible flows and simple geometry.

  15. Lattice Boltzmann equation for relativistic quantum mechanics.

    PubMed

    Succi, Sauro

    2002-03-15

    Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation. PMID:16210189

  16. Student Understanding of the Boltzmann Factor

    ERIC Educational Resources Information Center

    Smith, Trevor I.; Mountcastle, Donald B.; Thompson, John R.

    2015-01-01

    We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data…

  17. Recent advances in lattice Boltzmann methods

    SciTech Connect

    Chen, S.; Doolen, G.D.; He, X.; Nie, X.; Zhang, R.

    1998-12-31

    In this paper, the authors briefly present the basic principles of lattice Boltzmann method and summarize recent advances of the method, including the application of the lattice Boltzmann method for fluid flows in MEMS and simulation of the multiphase mixing and turbulence.

  18. Diffusion, sedimentation equilibrium, and harmonic trapping of run-and-tumble nanoswimmers.

    PubMed

    Wang, Zhengjia; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2014-05-14

    The diffusion of self-propelling nanoswimmers is explored by dissipative particle dynamics in which a nanoswimmer swims by forming an instantaneous force dipole with one of its nearest neighboring solvent beads. Our simulations mimic run-and-tumble behavior by letting the swimmer run for a time τ, then it randomly changes its direction for the next run period. Our simulations show that the swimming speed (ν(a)) of a nanoswimmer is proportional to the propulsion force and the mobility of a pusher is the same as that of a puller. The effective diffusivity is determined by three methods: mean squared displacement, velocity autocorrelation function, and sedimentation equilibrium. The active colloid undergoes directed propulsion at short time scales but changes to random motion at long time scales. The velocity autocorrelation function decreases with time and becomes zero beyond the run time. Under gravity, the concentration profile of active colloids follows Boltzmann distribution with a sedimentation length consistent with that acquired from the drift-diffusion equation. In our simulation, all three methods yield the same result, the effective diffusivity of an active colloid is the sum of the diffusivity of a passive colloid and ν(a)²τ/6. When the active colloids are confined by a harmonic well, they are trapped within a confinement length defined by the balance between the swimmer active force and restoring force of the well. When the confinement length is large compared to the run length, the stationary density profile follows the Boltzmann distribution. However, when the run length exceeds the confinement length, the density distribution is no longer described by Boltzmann distribution, instead we found a bimodal distribution. PMID:24718999

  19. An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium

    NASA Technical Reports Server (NTRS)

    Eppard, W. M.; Grossman, B.

    1993-01-01

    We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.

  20. Geometric aspects in extended approach of equilibrium classical fluctuation theory

    NASA Astrophysics Data System (ADS)

    Velazquez, L.

    2011-11-01

    Previously, an extended approach of equilibrium classical fluctuation theory was developed compatible with the existence of anomalous response functions, e.g. states with negative heat capacities. Now, the geometric aspects associated with this new framework are analyzed. The analysis starts from the so-called reparametrization invariance: a special symmetry of distribution functions dp (I|θ) employed in classical equilibrium statistical mechanics that allows us to express the thermo-statistical relations in the same mathematical appearance in different coordinate representations. The existence of reparametrization invariance can be related to three different geometric frameworks: (1) a non-Riemannian formulation for classical fluctuation theory based on the concept of reparametrization dualities; (2) a Riemannian formulation defined on the manifold {P} of control parameters θ, where the main theorems of inference theory appear as dual counterparts of general fluctuation theorems, and Boltzmann-Gibbs distributions ωBG(I|θ) = exp(-θiIi)/Z(θ) admit a geometric generalization; and finally, (3) a Riemannian formulation defined on the manifold {M}_{\\theta } of macroscopic observables I, which appears as a counterpart approach of inference geometry.

  1. Study for optical manipulation of a surfactant-covered droplet using lattice Boltzmann method

    PubMed Central

    Choi, Se Bin; Kondaraju, Sasidhar; Sang Lee, Joon

    2014-01-01

    In this study, we simulated deformation and surfactant distribution on the interface of a surfactant-covered droplet using optical tweezers as an external source. Two optical forces attracted a single droplet from the center to both sides. This resulted in an elliptical shape deformation. The droplet deformation was characterized as the change of the magnitudes of surface tension and optical force. In this process, a non-linear relationship among deformation, surface tension, and optical forces was observed. The change in the local surfactant concentration resulting from the application of optical forces was also analyzed and compared with the concentration of surfactants subjected to an extensional flow. Under the optical force influence, the surfactant molecules were concentrated at the droplet equator, which is totally opposite to the surfactants behavior under extensional flow, where the molecules were concentrated at the poles. Lastly, the quasi-equilibrium surfactant distribution was obtained by combining the effects of the optical forces with the extensional flow. All simulations were executed by the lattice Boltzmann method which is a powerful tool for solving micro-scale problems. PMID:24753737

  2. Deviations from Boltzmann-Gibbs Statistics in Confined Optical Lattices.

    PubMed

    Dechant, Andreas; Kessler, David A; Barkai, Eli

    2015-10-23

    We investigate the semiclassical phase-space probability distribution P(x,p) of cold atoms in a Sisyphus cooling lattice with an additional harmonic confinement. We pose the question of whether this nonequilibrium steady state satisfies the equivalence of energy and probability. This equivalence is the foundation of Boltzmann-Gibbs and generalized thermostatic statistics, and a prerequisite for the description in terms of a temperature. At large energies, P(x,p) depends only on the Hamiltonian H(x,p) and the answer to the question is yes. In distinction to the Boltzmann-Gibbs state, the large-energy tails are power laws P(x,p)∝H(x,p)(-1/D), where D is related to the depth of the optical lattice. At intermediate energies, however, P(x,p) cannot be expressed as a function of the Hamiltonian and the equivalence between energy and probability breaks down. As a consequence the average potential and kinetic energy differ and no well-defined temperature can be assigned. The Boltzmann-Gibbs state is regained only in the limit of deep optical lattices. For strong confinement relative to the damping, we derive an explicit expression for the stationary phase-space distribution. PMID:26551114

  3. Numerical solution of Boltzmann equation using discrete velocity grids

    NASA Astrophysics Data System (ADS)

    Vedula, Prakash

    2015-11-01

    An importance sampling based approach for numerical solution of the (single species) Boltzmann equation using discrete velocity grids is proposed. This approach involves a stochastic method for evaluation of the collision integral based on sampling of depleting/replenishing collisions and is designed to preserve important symmetries of the collision operator, including collision invariants. The underlying particle distribution function is represented as a collection of delta functions with associated weights that are non-negative. A key feature in the construction of the proposed method is that it ensures that the weights associated with the distribution function remain non-negative during collisional relaxation, thereby satisfying an important realizability condition. Performance of the proposed approach will be studied using test problems involving spatially homogeneous collisional relaxation flow and microchannel flows. Results obtained from the proposed method will be compared with those obtained from the (deterministic) collisional Lattice Boltzmann Method (cLBM) and the traditional direct simulation Monte Carlo (DSMC) method for solution of Boltzmann equation. Extension of the proposed method using discrete velocity grids for multicomponent mixtures will also be discussed.

  4. Physical symmetry and lattice symmetry in the lattice Boltzmann method

    SciTech Connect

    Cao, N.; Chen, S.; Jin, S.; Martinez, D.

    1997-01-01

    The lattice Boltzmann method (LBM) is regarded as a specific finite difference discretization for the kinetic equation of the discrete velocity distribution function. We argue that for finite sets of discrete velocity models, such as LBM, the physical symmetry is necessary for obtaining the correct macroscopic Navier-Stokes equations. In contrast, the lattice symmetry and the Lagrangian nature of the scheme, which is often used in the lattice gas automaton method and the existing lattice Boltzmann methods and directly associated with the property of particle dynamics, is not necessary for recovering the correct macroscopic dynamics. By relaxing the lattice symmetry constraint and introducing other numerical discretization, one can also obtain correct hydrodynamics. In addition, numerical simulations for applications, such as nonuniform meshes and thermohydrodynamics can be easily carried out and numerical stability can be ensured by the Courant-Friedricks-Lewey condition and using the semi-implicit collision scheme. {copyright} {ital 1997} {ital The American Physical Society}

  5. Conservative deterministic spectral Boltzmann solver near the grazing collisions limit

    NASA Astrophysics Data System (ADS)

    Haack, Jeffrey R.; Gamba, Irene M.

    2012-11-01

    We present new results building on the conservative deterministic spectral method for the space homogeneous Boltzmann equation developed by Gamba and Tharkabhushaman. This approach is a two-step process that acts on the weak form of the Boltzmann equation, and uses the machinery of the Fourier transform to reformulate the collisional integral into a weighted convolution in Fourier space. A constrained optimization problem is solved to preserve the mass, momentum, and energy of the resulting distribution. Within this framework we have extended the formulation to the case of more general case of collision operators with anisotropic scattering mechanisms, which requires a new formulation of the convolution weights. We also derive the grazing collisions limit for the method, and show that it is consistent with the Fokker-Planck-Landau equations as the grazing collisions parameter goes to zero.

  6. An Infinite Restricted Boltzmann Machine.

    PubMed

    Côté, Marc-Alexandre; Larochelle, Hugo

    2016-07-01

    We present a mathematical construction for the restricted Boltzmann machine (RBM) that does not require specifying the number of hidden units. In fact, the hidden layer size is adaptive and can grow during training. This is obtained by first extending the RBM to be sensitive to the ordering of its hidden units. Then, with a carefully chosen definition of the energy function, we show that the limit of infinitely many hidden units is well defined. As with RBM, approximate maximum likelihood training can be performed, resulting in an algorithm that naturally and adaptively adds trained hidden units during learning. We empirically study the behavior of this infinite RBM, showing that its performance is competitive to that of the RBM, while not requiring the tuning of a hidden layer size. PMID:27171012

  7. Boltzmann: The Genius of Disorder

    NASA Astrophysics Data System (ADS)

    Mussardo, G.; Merlone, A.

    2010-07-01

    The tragedy and greatness of the contribution of Ludwig Boltzmann cannot be understood without taking into account for the relevant scientific developments that took place in the nineteenth century, one of the most eventful periods in the history of science. The kinetic theory opened a new theoretical perspective in understanding natural phenomena. The introduction of new categories of order and disorder changed radically the point of view of those physicists that accepted Boltzmann’s thesis and led, at the same time, to strong opposition to the Viennese Scientist. In this article, we present the academic situation, scientific theories, and disputes involving the Boltzmann’s theories. A short introduction on the birth of the atomistic theories opens the article, while a view on the evolution of the concept of temperature and the definition of its unit quantity closes it.

  8. Using the chemical equilibrium partitioning space to explore factors influencing the phase distribution of compounds involved in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Wania, F.; Lei, Y. D.; Wang, C.; Abbatt, J. P. D.; Goss, K.-U.

    2015-03-01

    Many atmospheric and chemical variables influence the partitioning equilibrium between gas phase and condensed phases of compounds implicated in the formation of secondary organic aerosol (SOA). The large number of factors and their interaction makes it often difficult to assess their relative importance and concerted impact. Here we introduce a two-dimensional space which maps regions of dominant atmospheric phase distribution within a coordinate system defined by equilibrium partition coefficients between the gas phase, an aqueous phase and a water-insoluble organic matter (WIOM) phase. Placing compounds formed from the oxidation of n-alkanes, terpenes and mono-aromatic hydrocarbons on the maps based on their predicted partitioning properties allows for a simple graphical assessment of their equilibrium phase distribution behaviour. Specifically, it allows for the simultaneous visualisation and quantitative comparison of the impact on phase distribution of changes in atmospheric parameters (such as temperature, salinity, WIOM-phase polarity, organic aerosol load, and liquid water content) and chemical properties (such as oxidation state, molecular size, functionalisation, and dimerisation). The graphical analysis reveals that the addition of hydroxyl, carbonyl and carboxyl groups increases the affinity of aliphatic, alicyclic and aromatic hydrocarbons for the aqueous phase more rapidly than their affinity for WIOM, suggesting that the aqueous phase may often be relevant even for substances that are considerably larger than the C2 and C3 compounds that are typically believed to be associated with aqueous SOA. In particular, the maps identify some compounds that contribute to SOA formation if partitioning to both WIOM and aqueous phase is considered but would remain in the gas phase if either condensed phase were neglected. For example, many semi-volatile α-pinene oxidation products will contribute to aqueous SOA under the conditions of high liquid water content

  9. Using the chemical equilibrium partitioning space to explore factors influencing the phase distribution of compounds involved in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Wania, F.; Lei, Y. D.; Wang, C.; Abbatt, J. P. D.; Goss, K.-U.

    2014-10-01

    Many atmospheric and chemical variables influence the partitioning equilibrium between gas phase and condensed phases of compounds implicated in the formation of secondary organic aerosol (SOA). The large number of factors and their interaction makes it often difficult to assess their relative importance and concerted impact. Here we introduce a two-dimensional space, which maps regions of dominant atmospheric phase distribution within a coordinate system defined by equilibrium partitioning coefficients between the gas phase, an aqueous phase and a water insoluble organic matter (WIOM) phase. Placing compounds formed from the oxidation of n-alkanes, terpenes and mono-aromatic hydrocarbons on the maps based on their predicted partitioning properties allows for a simple graphical assessment of their equilibrium phase distribution behaviour. Specifically, it allows for the simultaneous visualization and quantitative comparison of the impact on phase distribution of changes in atmospheric parameters (such as temperature, salinity, WIOM phase polarity, organic aerosol load, and liquid water content), and chemical properties (such as oxidation state, molecular size, functionalization, and dimerisation). The graphical analysis reveals that the addition of hydroxyl, carbonyl and carboxyl groups increases the affinity of aliphatic, alicyclic and aromatic hydrocarbons for the aqueous phase more rapidly than their affinity for WIOM, suggesting that the aqueous phase may often be relevant even for substances that are considerably larger than the C2 and C3 compounds that are typically believed to be associated with aqueous SOA. In particular, the maps identify some compounds that contribute to SOA formation if partitioning to both WIOM and aqueous phase is considered, but would remain in the gas phase if either condensed phase were neglected. For example, many semi-volatile α-pinene oxidation products will contribute to aqueous SOA under the high liquid water content

  10. Equilibrium charge state distributions of Ni, Co, and Cu beams in molybdenum foil at 2 MeV/u

    NASA Astrophysics Data System (ADS)

    Gastis, Panagiotis; Perdikakis, George; Robertson, Daniel; Bauder, Will; Skulski, Michael; Collon, Phillipe; Anderson, Tyler; Ostdiek, Karen; Aprahamian, Ani; Lu, Wenting; Almus, Robert

    2015-10-01

    The charge states of heavy-ions are important for the study of nuclear reactions in inverse kinematics when electromagnetic recoil mass spectrometers are used. The passage of recoil products through a material, like the windows of gas cells or charge state boosters, results a charge state distribution (CSD) in the exit. This distribution must be known for the extraction of any cross section since only few charge-state can be transmitted through a magnetic separator separator for a given setting. The calculation of CSDs for heavy ions is challenging. Currently we rely on semi-empirical models with unknown accuracy for ion/target combinations in the Z > 20 region. In the present study were measured the CSDs of the stable 60Ni, 59Co, and 63Cu beams while passing through a 1 μm molybdenum foil. The beam energies were 1.84 MeV/u, 2.09 MeV/u, and 2.11 MeV/u for the 60Ni, 59Co, and 63Cu respectively. The results of this study mainly check the accuracy of the semi-empirical models used by the program LISE++, on calculating CSDs for ion/target combinations of Z > 20. In addition, other empirical models on calculating mean charge states were compared and checked.

  11. Application of a Boltzmann-entropy-like concept in an agent-based multilane traffic model

    NASA Astrophysics Data System (ADS)

    Sugihakim, Ryan; Alatas, Husin

    2016-01-01

    We discuss the dynamics of an agent-based multilane traffic model using three defined rules. The dynamical characteristics of the model are described by a Boltzmann traffic entropy quantity adopting the concept of Boltzmann entropy in statistical physics. The results are analyzed using fundamental diagrams based on lane density, entropy and its derivative with respect to density. We show that there are three classifications of allowed initial to equilibrium state transition process out of four possibilities and demonstrate that density and entropy fluctuations occur during the transition from the initial to equilibrium states, exhibiting the well-known expected self-organization process. The related concept of entropy can therefore be considered as a new alternative quantity to describe the complexity of traffic dynamics.

  12. Lattice gas and lattice Boltzmann computational physics

    SciTech Connect

    Chen, S.

    1993-05-01

    Recent developments of the lattice gas automata method and its extension to the lattice Boltzmann method have provided new computational schemes for solving a variety of partial differential equations and modeling different physics systems. The lattice gas method, regarded as the simplest microscopic and kinetic approach which generates meaningful macroscopic dynamics, is fully parallel and can be easily programmed on parallel machines. In this talk, the author will review basic principles of the lattice gas and lattice Boltzmann method, its mathematical foundation and its numerical implementation. A detailed comparison of the lattice Boltzmann method with the lattice gas technique and other traditional numerical schemes, including the finite-difference scheme and the pseudo-spectral method, for solving the Navier-Stokes hydrodynamic fluid flows, will be discussed. Recent achievements of the lattice gas and the the lattice Boltzmann method and their applications in surface phenomena, spinodal decomposition and pattern formation in chemical reaction-diffusion systems will be presented.

  13. Ergodicity, ensembles, irreversibility in Boltzmann and beyond

    NASA Astrophysics Data System (ADS)

    Gallavotti, Giovanni

    1995-03-01

    The contents of a not too well-known paper by Boltzmann are critically examined. The etymology of the word ergodic and its implications are discussed. A connection with the modern theory of Ruelle is attempted.

  14. Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances

    NASA Astrophysics Data System (ADS)

    Lahanas, Ab; Mavromatos, Ne; Nanopoulos, Dv

    In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements.

  15. Geographical distribution and anisotropy of the inverse kinetic energy cascade, and its role in the eddy equilibrium processes

    NASA Astrophysics Data System (ADS)

    Wang, Shihong; Liu, Zhiliang; Pang, Chongguang

    2015-07-01

    The geographic character of the inverse cascade is analyzed based on the spectral kinetic energy flux calculated in the global ocean, using sea surface height (SSH) data from satellites, reanalysis data, and model outputs. It is shown that the strongest inverse cascade occurs mostly in high-energy eastward-flowing currents, such as the Antarctic Circumpolar Current (ACC), the Kuroshio Extension, and the Gulf Stream, which matches the global distribution pattern of the eddy kinetic energy (EKE). Hence, the eddy scales predicted by the local linear baroclinic instability Lbci and from the altimeter observation Leddy are mapped out and compared with the energy injection scale Linj and the arrest-start scale Larrest-start of the inverse cascade, respectively. Generally, Lbci agrees well with Linj in the midlatitude and high-latitude oceans, especially in the Northern Hemisphere. Leddy falls within the arrest ranges of the inverse cascade and is quite close to Larrest-start. Finally, the depth dependence and the anisotropy of the inverse kinetic energy cascade are also diagnosed in the global ocean. We have found that the strength of the inverse cascades decreases with increasing depth, but the global pattern of the strength is nearly invariable. Meanwhile, the variations in depth hardly affect the Linj and Larrest-start. After considering the anisotropy in the spectral flux calculation, a possible inertial range for the zonal spectral kinetic energy flux is expected, where the cascade magnitude will keep a nearly constant negative value associated with the oceanic zonal jets.

  16. Lattice Boltzmann approach for complex nonequilibrium flows.

    PubMed

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion. PMID:26565365

  17. Analytical methods for solving the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Struminskii, V. V.

    The principal analytical methods for solving the Boltzmann equation are reviewed, and a very general solution is proposed. The method makes it possible to obtain a solution to the Cauchy problem for the nonlinear Boltzmann equation and thus determine the applicability regions for the various analytical methods. The method proposed here also makes it possible to demonstrate that Hilbert's theorem of macroscopic causality does not apply and Hilbert's paradox does not exist.

  18. Alternating minimization and Boltzmann machine learning.

    PubMed

    Byrne, W

    1992-01-01

    Training a Boltzmann machine with hidden units is appropriately treated in information geometry using the information divergence and the technique of alternating minimization. The resulting algorithm is shown to be closely related to gradient descent Boltzmann machine learning rules, and the close relationship of both to the EM algorithm is described. An iterative proportional fitting procedure for training machines without hidden units is described and incorporated into the alternating minimization algorithm. PMID:18276461

  19. Poisson-Boltzmann-Nernst-Planck model

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-01

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  20. Poisson-Boltzmann-Nernst-Planck model.

    PubMed

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  1. Poisson-Boltzmann-Nernst-Planck model

    SciTech Connect

    Zheng Qiong; Wei Guowei

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  2. Lattice Boltzmann algorithm for continuum multicomponent flow.

    PubMed

    Halliday, I; Hollis, A P; Care, C M

    2007-08-01

    We present a multicomponent lattice Boltzmann simulation for continuum fluid mechanics, paying particular attention to the component segregation part of the underlying algorithm. In the principal result of this paper, the dynamics of a component index, or phase field, is obtained for a segregation method after U. D'Ortona [Phys. Rev. E 51, 3718 (1995)], due to Latva-Kokko and Rothman [Phys. Rev. E 71 056702 (2005)]. The said dynamics accord with a simulation designed to address multicomponent flow in the continuum approximation and underwrite improved simulation performance in two main ways: (i) by reducing the interfacial microcurrent activity considerably and (ii) by facilitating simulational access to regimes of flow with a low capillary number and drop Reynolds number [I. Halliday, R. Law, C. M. Care, and A. Hollis, Phys. Rev. E 73, 056708 (2006)]. The component segregation method studied, used in conjunction with Lishchuk's method [S. V. Lishchuk, C. M. Care, and I. Halliday, Phys. Rev. E 67, 036701 (2003)], produces an interface, which is distributed in terms of its component index; however, the hydrodynamic boundary conditions which emerge are shown to support the notion of a sharp, unstructured, continuum interface. PMID:17930175

  3. Non-equilibrium hot carrier dynamics in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Narang, Prineha; Sundararaman, Ravishankar; Jermyn, Adam; Cortes, Emiliano; Maier, Stefan A.; Goddard, William A., III

    Decay of surface plasmons to hot carriers is a new direction that has attracted considerable fundamental and application interest, yet a fundamental understanding of ultrafast plasmon decay processes and the underlying microscopic mechanisms remain incomplete. Ultrafast experiments provide insights into the relaxation of non-equilibrium carriers at the tens and hundreds of femtoseconds time scales, but do not yet directly probe shorter times with nanometer spatial resolution. Here we report the first ab initio calculations of non equilibrium transport of plasmonic hot carriers in metals and experimental observation of the injection of these carriers into molecules tethered to the metal surface. Specifically, metallic nanoantennas functionalized with a molecular monolayer allow for the direct probing of electron injection via surface enhanced Raman spectroscopy of the original and reduced molecular species. We combine first principles calculations of electron-electron and electron-phonon scattering rates with Boltzmann transport simulations to predict the ultrafast dynamics and transport of carriers in real materials. We also predict and compare the evolution of electron distributions in ultrafast experiments on noble metal nanoparticles.

  4. Equilibrium cluster fluids: pair interactions via inverse design.

    PubMed

    Jadrich, R B; Bollinger, J A; Lindquist, B A; Truskett, T M

    2015-12-28

    Inverse methods of statistical mechanics are becoming productive tools in the design of materials with specific microstructures or properties. While initial studies have focused on solid-state design targets (e.g., assembly of colloidal superlattices), one can alternatively design fluid states with desired morphologies. This work addresses the latter and demonstrates how a simple iterative Boltzmann inversion strategy can be used to determine the isotropic pair potential that reproduces the radial distribution function of a fluid of amorphous clusters with prescribed size. The inverse designed pair potential of this "ideal" cluster fluid, with its broad attractive well and narrow repulsive barrier at larger separations, is qualitatively different from the so-called SALR form most commonly associated with equilibrium cluster formation in colloids, which features short-range attractive (SA) and long-range repulsive (LR) contributions. These differences reflect alternative mechanisms for promoting cluster formation with an isotropic pair potential, and they in turn produce structured fluids with qualitatively different static and dynamic properties. Specifically, equilibrium simulations show that the amorphous clusters resulting from the inverse designed potentials display more uniformity in size and shape, and they also show greater spatial and temporal resolution than those resulting from SALR interactions. PMID:26434352

  5. A comparison of the dose distributions between the brachytherapy 125I source models, STM1251 and Oncoseed 6711, in a geometry lacking radiation equilibrium scatter conditions.

    PubMed

    Tanaka, Kenichi; Kamo, Ken-ichi; Tateoka, Kunihiko; Asanuma, Osamu; Sato, Kaori; Takeda, Hiromitsu; Sakata, Koh-ichi; Takada, Jun

    2015-03-01

    The purpose of this study was to estimate the uncertainty in the dose distribution for the (125)I source STM1251, as measured with a radiophotoluminescent glass rod dosimeter and calculated using the Monte Carlo code EGS5 in geometry that included the source structure reported by Kirov et al. This was performed at a range of positions in and on a water phantom 18 cm in diameter and 16 cm in length. Some dosimetry positions were so close to the surface that the backscatter margin was insufficient for photons. Consequently, the combined standard uncertainty (CSU) at the coverage factor k of 1 was 11.0-11.2% for the measurement and 1.8-3.6% for the calculation. The calculation successfully reproduced the measured dose distribution within 13%, with CSU at k ≤ 1.6 (P > 0.3). Dose distributions were then compared with those for the (125)I source Oncoseed 6711. Our results supported the American Association of Physicists in Medicine Task Group No. 43 Updated Protocol (TG43U1) formalism, in which STM1251 dose distributions were more penetrating than those of Oncoseed 6711. This trend was also observed in the region near the phantom surface lacking the equilibrium radiation scatter conditions. In this region, the difference between the TG43U1 formalism and the measurement and calculation performed in the present study was not significant (P > 0.3) for either of the source models. Selection of the source model based on the treatment plans according to the TG43U1 formalism will be practical. PMID:25618137

  6. Lattice Boltzmann simulations for the vortex tori pattern in the three-dimensional cubic-quintic complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Zhang, Jianying; Yan, Guangwu; Wang, Moran

    2016-02-01

    A lattice Boltzmann model for solving the three-dimensional cubic-quintic complex Ginzburg-Landau equation (CQCGLE) is proposed. Differently from the classic lattice Boltzmann models, this lattice Boltzmann model is based on uniformly distributed lattice points in a three-dimensional space, and the evolution of the model is about a spatial axis rather than time. The algorithm provides advantages similar to the lattice Boltzmann method in that it is easily adapted to complex Ginzburg-Landau equations. Examples show that the model accurately reproduces the vortex tori pattern in the CQCGLE.

  7. Relativistic causal hydrodynamics derived from Boltzmann equation: A novel reduction theoretical approach

    NASA Astrophysics Data System (ADS)

    Tsumura, Kyosuke; Kikuchi, Yuta; Kunihiro, Teiji

    2015-10-01

    We derive the second-order hydrodynamic equation and the microscopic formulas of the relaxation times as well as the transport coefficients systematically from the relativistic Boltzmann equation. Our derivation is based on a novel development of the renormalization-group method, a powerful reduction theory of dynamical systems, which has been applied successfully to derive the nonrelativistic second-order hydrodynamic equation. Our theory nicely gives a compact expression of the deviation of the distribution function in terms of the linearized collision operator, which is different from those used as an ansatz in the conventional fourteen-moment method. It is confirmed that the resultant microscopic expressions of the transport coefficients coincide with those derived in the Chapman-Enskog expansion method. Furthermore, we show that the microscopic expressions of the relaxation times have natural and physically plausible forms. We prove that the propagating velocities of the fluctuations of the hydrodynamical variables do not exceed the light velocity, and hence our second-order equation ensures the desired causality. It is also confirmed that the equilibrium state is stable for any perturbation described by our equation.

  8. Maximum-entropy reconstruction method for moment-based solution of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Summy, Dustin; Pullin, Dale

    2013-11-01

    We describe a method for a moment-based solution of the Boltzmann equation. This starts with moment equations for a 10 + 9 N , N = 0 , 1 , 2 . . . -moment representation. The partial-differential equations (PDEs) for these moments are unclosed, containing both higher-order moments and molecular-collision terms. These are evaluated using a maximum-entropy construction of the velocity distribution function f (c , x , t) , using the known moments, within a finite-box domain of single-particle-velocity (c) space. Use of a finite-domain alleviates known problems (Junk and Unterreiter, Continuum Mech. Thermodyn., 2002) concerning existence and uniqueness of the reconstruction. Unclosed moments are evaluated with quadrature while collision terms are calculated using a Monte-Carlo method. This allows integration of the moment PDEs in time. Illustrative examples will include zero-space- dimensional relaxation of f (c , t) from a Mott-Smith-like initial condition toward equilibrium and one-space dimensional, finite Knudsen number, planar Couette flow. Comparison with results using the direct-simulation Monte-Carlo method will be presented.

  9. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation.

    PubMed

    Ren, Feng; Song, Baowei; Sukop, Michael C; Hu, Haibao

    2016-08-01

    The primary and key task of binary fluid flow modeling is to track the interface with good accuracy, which is usually challenging due to the sharp-interface limit and numerical dispersion. This article concentrates on further development of the conservative Allen-Cahn equation (ACE) [Geier et al., Phys. Rev. E 91, 063309 (2015)10.1103/PhysRevE.91.063309] under the framework of the lattice Boltzmann method (LBM), with incorporation of the incompressible hydrodynamic equations [Liang et al., Phys. Rev. E 89, 053320 (2014)10.1103/PhysRevE.89.053320]. Utilizing a modified equilibrium distribution function and an additional source term, this model is capable of correctly recovering the conservative ACE through the Chapman-Enskog analysis. We also simulate four phase-tracking benchmark cases, including one three-dimensional case; all show good accuracy as well as low numerical dispersion. By coupling the incompressible hydrodynamic equations, we also simulate layered Poiseuille flow and the Rayleigh-Taylor instability, illustrating satisfying performance in dealing with complex flow problems, e.g., high viscosity ratio, high density ratio, and high Reynolds number situations. The present work provides a reliable and efficient solution for binary flow modeling. PMID:27627416

  10. Large-scale parallel lattice Boltzmann-cellular automaton model of two-dimensional dendritic growth

    NASA Astrophysics Data System (ADS)

    Jelinek, Bohumir; Eshraghi, Mohsen; Felicelli, Sergio; Peters, John F.

    2014-03-01

    An extremely scalable lattice Boltzmann (LB)-cellular automaton (CA) model for simulations of two-dimensional (2D) dendritic solidification under forced convection is presented. The model incorporates effects of phase change, solute diffusion, melt convection, and heat transport. The LB model represents the diffusion, convection, and heat transfer phenomena. The dendrite growth is driven by a difference between actual and equilibrium liquid composition at the solid-liquid interface. The CA technique is deployed to track the new interface cells. The computer program was parallelized using the Message Passing Interface (MPI) technique. Parallel scaling of the algorithm was studied and major scalability bottlenecks were identified. Efficiency loss attributable to the high memory bandwidth requirement of the algorithm was observed when using multiple cores per processor. Parallel writing of the output variables of interest was implemented in the binary Hierarchical Data Format 5 (HDF5) to improve the output performance, and to simplify visualization. Calculations were carried out in single precision arithmetic without significant loss in accuracy, resulting in 50% reduction of memory and computational time requirements. The presented solidification model shows a very good scalability up to centimeter size domains, including more than ten million of dendrites. Catalogue identifier: AEQZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 29,767 No. of bytes in distributed program, including test data, etc.: 3131,367 Distribution format: tar.gz Programming language: Fortran 90. Computer: Linux PC and clusters. Operating system: Linux. Has the code been vectorized or parallelized?: Yes. Program is parallelized using MPI

  11. Relativity, nonextensivity, and extended power law distributions.

    PubMed

    Silva, R; Lima, J A S

    2005-11-01

    A proof of the relativistic theorem by including nonextensive effects is given. As it happens in the nonrelativistic limit, the molecular chaos hypothesis advanced by Boltzmann does not remain valid, and the second law of thermodynamics combined with a duality transformation implies that the parameter lies on the interval [0,2]. It is also proven that the collisional equilibrium states (null entropy source term) are described by the relativistic power law extension of the exponential Juttner distribution which reduces, in the nonrelativistic domain, to the Tsallis power law function. As a simple illustration of the basic approach, we derive the relativistic nonextensive equilibrium distribution for a dilute charged gas under the action of an electromagnetic field . Such results reduce to the standard ones in the extensive limit, thereby showing that the nonextensive entropic framework can be harmonized with the space-time ideas contained in the special relativity theory. PMID:16383791

  12. Local boundary reflections in lattice Boltzmann schemes: Spurious boundary layers and their impact on the velocity, diffusion and dispersion

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Roux, Laetitia; Silva, Goncalo

    2015-10-01

    This work demonstrates that in advection-diffusion Lattice Boltzmann schemes, the local mass-conserving boundary rules, such as bounce-back and local specular reflection, may modify the transport coefficients predicted by the Chapman-Enskog expansion when they enforce to zero not only the normal, but also the tangential boundary flux. In order to accommodate it to the bulk solution, the system develops a Knudsen-layer correction to the non-equilibrium part of the population solution. Two principal secondary effects-(i) decrease in the diffusion coefficient, and (ii) retardation of the average advection velocity, obtained in a closed analytical form, are proportional, respectively, to freely assigned diagonal weights for equilibrium mass and velocity terms. In addition, due to their transverse velocity gradients, the boundary layers affect the longitudinal diffusion coefficient similarly to Taylor dispersion, as they grow as the square of the Péclet number. These numerical artifacts can be eliminated or reduced by a proper space distribution of the free-tunable collision eigenvalue in two-relaxation-time schemes.

  13. On a derivation of the Boltzmann equation in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Leiler, Gregor

    The Boltzmann equation (BE) is a commonly used tool for the study of non-equilibrium many particle systems. It has been introduced in 1872 by Ludwig Boltzmann and has been widely generalized throughout the years. Today it is commonly used in physical applications, from the study of ordinary fluids to problems in particle Cosmology where Quantum Field Theoretical techniques are essential. Despite its numerous experimental successes, the conceptual basis of the BE is not entirely clear. For instance, it is well known that it is not a fundamental equation of physics like, say, the Heisenberg equation (HE). A natural question then arises whether it is possible to derive the BE from physical first principles, i.e. the Heisenberg equation in Quantum Field Theory. In this work we attempted to answer this question and succeeded in deriving the BE from the HE, thus further clarifying its conceptual status. In particular, the results we have obtained are as follows. Firstly, we establish the non-perturbative validity of what we call the "pre-Boltzmann equation". The crucial point here is that this latter equation is equivalent to the Heisenberg equation. Secondly, we proceed to consider various limits of the pre-Boltzmann equation, namly the "low density" and the "weak coupling" limits, to obtain two equations that can be considered as generalizations of the BE. These limits are always taken together with the "long time" limit, which allows us to interpret the BE as an appropriate long time limit of the HE. The generalization we obtain consists in additional "correction" terms to the usual Boltzmann collision factor, and can be associated to multiple particle scattering. Unlike the pre-Boltzmann equation, these latter results are only valid pertubatively. Finally, we briefly consider the possibility to extend these results beyond said limits and outline some important aspects in this case.

  14. On the Cauchy Problem for the Homogeneous Boltzmann-Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments

    NASA Astrophysics Data System (ADS)

    Briant, Marc; Einav, Amit

    2016-06-01

    The Boltzmann-Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann-Nordheim equation for bosons, in dimension d≥slant 3. We show existence and uniqueness locally in time for any initial data in L^∞ (1+| v| ^s) with finite mass and energy, for a suitable s, as well as the instantaneous creation of moments of all order.

  15. On the Cauchy Problem for the Homogeneous Boltzmann-Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments

    NASA Astrophysics Data System (ADS)

    Briant, Marc; Einav, Amit

    2016-04-01

    The Boltzmann-Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann-Nordheim equation for bosons, in dimension d≥slant 3 . We show existence and uniqueness locally in time for any initial data in L^∞ (1+| v| ^s) with finite mass and energy, for a suitable s, as well as the instantaneous creation of moments of all order.

  16. Nonlinear Boltzmann equation for the homogeneous isotropic case: Minimal deterministic Matlab program

    NASA Astrophysics Data System (ADS)

    Asinari, Pietro

    2010-10-01

    The homogeneous isotropic Boltzmann equation (HIBE) is a fundamental dynamic model for many applications in thermodynamics, econophysics and sociodynamics. Despite recent hardware improvements, the solution of the Boltzmann equation remains extremely challenging from the computational point of view, in particular by deterministic methods (free of stochastic noise). This work aims to improve a deterministic direct method recently proposed [V.V. Aristov, Kluwer Academic Publishers, 2001] for solving the HIBE with a generic collisional kernel and, in particular, for taking care of the late dynamics of the relaxation towards the equilibrium. Essentially (a) the original problem is reformulated in terms of particle kinetic energy (exact particle number and energy conservation during microscopic collisions) and (b) the computation of the relaxation rates is improved by the DVM-like correction, where DVM stands for Discrete Velocity Model (ensuring that the macroscopic conservation laws are exactly satisfied). Both these corrections make possible to derive very accurate reference solutions for this test case. Moreover this work aims to distribute an open-source program (called HOMISBOLTZ), which can be redistributed and/or modified for dealing with different applications, under the terms of the GNU General Public License. The program has been purposely designed in order to be minimal, not only with regards to the reduced number of lines (less than 1000), but also with regards to the coding style (as simple as possible). Program summaryProgram title: HOMISBOLTZ Catalogue identifier: AEGN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 23 340 No. of bytes in distributed program, including test data, etc.: 7 635 236 Distribution format: tar

  17. A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows

    NASA Astrophysics Data System (ADS)

    Li, Kai; Zhong, Cheng-Wen

    2015-05-01

    This paper presents a coupling compressible model of the lattice Boltzmann method. In this model, the multiple-relaxation-time lattice Boltzmann scheme is used for the evolution of density distribution functions, whereas the modified single-relaxation-time (SRT) lattice Boltzmann scheme is applied for the evolution of potential energy distribution functions. The governing equations are discretized with the third-order Monotone Upwind Schemes for scalar conservation laws finite volume scheme. The choice of relaxation coefficients is discussed simply. Through the numerical simulations, it is found that compressible flows with strong shocks can be well simulated by present model. The numerical results agree well with the reference results and are better than that of the SRT version. Project supported by the Innovation Fund for Aerospace Science and Technology of China (Grant No. 2009200066) and the Aeronautical Science Fund of China (Grant No. 20111453012).

  18. An implicit Lagrangian lattice Boltzmann method for the compressible flows

    NASA Astrophysics Data System (ADS)

    Yan, Guangwu; Dong, Yinfeng; Liu, Yanhong

    2006-08-01

    In this paper, we propose a new Lagrangian lattice Boltzmann method (LBM) for simulating the compressible flows. The new scheme simulates fluid flows based on the displacement distribution functions. The compressible flows, such as shock waves and contact discontinuities are modelled by using Lagrangian LBM. In this model, we select the element in the Lagrangian coordinate to satisfy the basic fluid laws. This model is a simpler version than the corresponding Eulerian coordinates, because the convection term of the Euler equations disappears. The numerical simulations conform to classical results.

  19. A novel construction of thermodynamically compatible models and its correspondence with Boltzmann-equation-based moment-closure hierarchies

    NASA Astrophysics Data System (ADS)

    Hong, Liu; Yang, Zaibao; Zhu, Yi; Yong, Wen-An

    2015-12-01

    In this article, we propose a novel approach to construct macroscopic balance equations and constitutive equations describing various irreversible phenomena. It is based on the general principles of non-equilibrium thermodynamics and consists of four basic steps: picking suitable state variables, choosing a strictly concave entropy function, properly separating entropy fluxes and production rates, and determining a dissipation matrix. Our approach takes advantage of both extended irreversible thermodynamics and GENERIC formalisms and shows a direct correspondence with Levermore's moment-closure hierarchies for the Boltzmann equation. As a direct application, a new ten-moment model beyond the classical hierarchies is constructed and is shown to recover the Euler equations in the equilibrium state. These interesting results may put various macroscopic modeling approaches, starting from the general principles of non-equilibrium thermodynamics, on a solid microscopic foundation based on the Boltzmann equation.

  20. Lattice-Boltzmann Simulation of Coalescence-Driven Island Coarsening

    SciTech Connect

    Hakan Basagaoglu; Christopher T. Green; Paul Meakin; Benjamin J. McCoy

    2004-10-01

    A two-dimensional lattice-Boltzmann model (LBM) with fluid-fluid interactions was used to simulate first-order phase separation in a thin fluid film. The intermediate asymptotic time dependence of the mean island size, island number concentration, and polydispersity were determined and compared with the predictions of the distribution-kinetics model. The comparison revealed that the combined effects of growth, coalescence, and Ostwald ripening control the phase transition process in the LBM simulations. However, the overall process is dominated by coalescence, which is independent of island mass. As the phase transition advances, the mean island size increases, the number of islands decrease, and the polydispersity approaches unity, which conforms to the predictions of the distribution-kinetics model. The effects of the domain size on the intermediate asymptotic island size distribution, scaling form of the island size distribution, and the crossover to the long-term asymptotic behavior were elucidated. (C) 2004 American Institute of Physics.

  1. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    SciTech Connect

    Munafò, A. Alfuhaid, S. A. Panesi, M.; Cambier, J.-L.

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  2. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    NASA Astrophysics Data System (ADS)

    Munafò, A.; Alfuhaid, S. A.; Cambier, J.-L.; Panesi, M.

    2015-10-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  3. Analytic solutions of the relativistic Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Martinez, Mauricio; Xiao, Bo-Wen

    2015-04-01

    We present new analytic solutions to the relativistic Boltzmann equation within the relaxation time approximation. We first obtain spherically expanding solutions which are the kinetic counterparts of the exact solutions of the Israel-Stewart equation in the literature. This allows us to compare the solutions of the kinetic and hydrodynamic equations at an analytical level. We then derive a novel boost-invariant solution of the Boltzmann equation which has an unconventional dependence on the proper time. The existence of such a solution is also suggested in second-order hydrodynamics and fluid-gravity correspondence.

  4. Fast Lattice Boltzmann Solver for Relativistic Hydrodynamics

    SciTech Connect

    Mendoza, M.; Herrmann, H. J.; Boghosian, B. M.; Succi, S.

    2010-07-02

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  5. The solution of the relaxation problem for the Boltzmann equation by the integral iteration method

    NASA Technical Reports Server (NTRS)

    Limar, Y. F.

    1972-01-01

    The Boltzmann equation is considered in terms of the problem of relaxation of some initial distribution function which depends only on velocities, to Maxwell's distribution function. The Boltzmann equation is given for the relaxation problem in which the distribution function f(t, u, v) is time dependent and is also dependent on two other variables u and v (the velocities of rigid spherical molecules). An iteration process is discussed in which the velocity space u, v is subdivided into squares, the distribution function in each square being approximated by the second-order surface from the values of the distribution function at nine points. The set of all of these points forms a network of u, v values at the nodes of which the distribution function can be found.

  6. The Influence of Trapped Ions and Non-equilibrium EDF on Dust Particle Charging

    SciTech Connect

    Sukhinin, G. I.; Fedoseev, A. V.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    Dust particles charging in a low-pressure glow discharge was investigated theoretically with the help of model for trapped and free ions coupled with the self-consistent solution of Poisson equation for electric potential. Non-equilibrium (non-Maxwellian) character of electron energy distribution function depending on gas pressure and electric field was also taken into account on the basis of the solution of kinetic Boltzmann equation. The results were compared with the experimental measurements of dust particle charge depending on gas pressure. It was shown that the calculated effective charge, i.e. the difference of the dust particle charge and trapped ion charge, is in a fairly good agreement with the experimental data.

  7. The nuclear liquid-vapor phase transition: Equilibrium between phases or free decay in vacuum?

    SciTech Connect

    Phair, L.; Moretto, L.G.; Elliott, J.B.; Wozniak, G.J.

    2002-11-14

    Recent analyses of multifragmentation in terms of Fisher's model and the related construction of a phase diagram brings forth the problem of the true existence of the vapor phase and the meaning of its associated pressure. Our analysis shows that a thermal emission picture is equivalent to a Fisher-like equilibrium description which avoids the problem of the vapor and explains the recently observed Boltzmann-like distribution of the emission times. In this picture a simple Fermi gas thermometric relation is naturally justified. Low energy compound nucleus emission of intermediate mass fragments is shown to scale according to Fisher's formula and can be simultaneously fit with the much higher energy ISiS multifragmentation data.

  8. The one-dimensional Boltzmann gas: The ergodic hypothesis and the phase portrait of small systems

    SciTech Connect

    Rouet, J.L. ); Blasco, F.; Feix, M.R. )

    1993-04-01

    The concept of ergodicity and its application to microcanonical systems composed of few particles of different masses are clarified. The distribution functions in position and velocity are theoretically derived and numerically verified. Moreover, the authors deal with a one-dimensional Boltzmann gas where the order relation (connected to the one dimensionality) brings constraints depending on the two classes of boundary conditions enforced (reflecting, periodic). The numerical simulations on a one-dimensional Boltzmann gas act as real experiments and allow them to play on the constraints to which the system is subjected. 9 refs., 11 figs.

  9. iAPBS: a programming interface to Adaptive Poisson-Boltzmann Solver (APBS).

    PubMed

    Konecny, Robert; Baker, Nathan A; McCammon, J Andrew

    2012-07-26

    The Adaptive Poisson-Boltzmann Solver (APBS) is a state-of-the-art suite for performing Poisson-Boltzmann electrostatic calculations on biomolecules. The iAPBS package provides a modular programmatic interface to the APBS library of electrostatic calculation routines. The iAPBS interface library can be linked with a FORTRAN or C/C++ program thus making all of the APBS functionality available from within the application. Several application modules for popular molecular dynamics simulation packages - Amber, NAMD and CHARMM are distributed with iAPBS allowing users of these packages to perform implicit solvent electrostatic calculations with APBS. PMID:22905037

  10. iAPBS: a programming interface to Adaptive Poisson-Boltzmann Solver

    SciTech Connect

    Konecny, Robert; Baker, Nathan A.; McCammon, J. A.

    2012-07-26

    The Adaptive Poisson-Boltzmann Solver (APBS) is a state-of-the-art suite for performing Poisson-Boltzmann electrostatic calculations on biomolecules. The iAPBS package provides a modular programmatic interface to the APBS library of electrostatic calculation routines. The iAPBS interface library can be linked with a Fortran or C/C++ program thus making all of the APBS functionality available from within the application. Several application modules for popular molecular dynamics simulation packages -- Amber, NAMD and CHARMM are distributed with iAPBS allowing users of these packages to perform implicit solvent electrostatic calculations with APBS.

  11. Lattice Boltzmann simulation of a fluid flow around a triangular unit of three isothermal cylinders

    NASA Astrophysics Data System (ADS)

    Alinejad, J.

    2016-01-01

    The lattice Boltzmann method is employed to simulate heat transfer in the flow past three arrangements of elliptical and circular cylinders under an isothermal boundary condition. The lattice Boltzmann equations and the Bhatnagar-Gross-Krook model are used to simulate two-dimensional forced convection at 30 ≤ Re ≤ 100 and Pr = 0.71. Pressure distributions, isotherms, and streamlines are obtained. Vortex shedding maps are observed in detail for several cases. The present results are in good agreement with available experimental and numerical data.

  12. An improved lattice Boltzmann scheme for multiphase fluid with multi-range interactions

    SciTech Connect

    Maquignon, Nicolas; Duchateau, Julien; Roussel, Gilles; Rousselle, François; Renaud, Christophe

    2014-10-06

    Modeling of fluids with liquid to gas phase transition has become important for understanding many environmental or industrial processes. Such simulations need new techniques, because traditional solvers are often limited. The Lattice Boltzmann Model (LBM) allows simulate complex fluids, because its mesoscopic nature gives possibility to incorporate additional physics in comparison to usual methods. In this work, an improved lattice Boltzmann model for phase transition flow will be introduced. First, the state of art for Shan and Chen (SC) type of LBM will be reminded. Then, link to real thermodynamics will be established with Maxwell equal areas construction. Convergence to isothermal liquid vapor equilibrium will be shown and discussed. Inclusion of an equation of state for real fluid and better incorporation of force term is presented. Multi-range interactions have been used for SC model, but it hasn't been yet applied to real fluid with non-ideal equation of state. In this work, we evaluate this model when it is applied to real liquid-vapor equilibrium. We show that important differences are found for evaluation of gas density. In order to recover thermodynamic consistency, we use a new scheme for calculation of force term, which is a combination of multi range model and numerical weighting used by Gong and Cheng. We show the superiority of our new model by studying convergence to equilibrium values over a large temperature range. We prove that spurious velocities remaining at equilibrium are decreased.

  13. Connection Between the Lattice Boltzmann Equation and the Beam Scheme

    NASA Technical Reports Server (NTRS)

    Xu, Kun; Luo, Li-Shi

    1999-01-01

    In this paper we analyze and compare the lattice Boltzmann equation with the beam scheme in details. We notice the similarity and differences between the lattice Boltzmann equation and the beam scheme. We show that the accuracy of the lattice Boltzmann equation is indeed second order in space. We discuss the advantages and limitations of lattice Boltzmann equation and the beam scheme. Based on our analysis, we propose an improved multi-dimensional beam scheme.

  14. Measurement of the equilibrium charge state distributions of Ni, Co, and Cu beams in Mo at 2 MeV/u: Review and evaluation of the relevant semi-empirical models

    NASA Astrophysics Data System (ADS)

    Gastis, P.; Perdikakis, G.; Robertson, D.; Almus, R.; Anderson, T.; Bauder, W.; Collon, P.; Lu, W.; Ostdiek, K.; Skulski, M.

    2016-04-01

    Equilibrium charge state distributions of stable 60Ni, 59Co, and 63Cu beams passing through a 1 μm thick Mo foil were measured at beam energies of 1.84 MeV/u, 2.09 MeV/u, and 2.11 MeV/u respectively. A 1-D position sensitive Parallel Grid Avalanche Counter detector (PGAC) was used at the exit of a spectrograph magnet, enabling us to measure the intensity of several charge states simultaneously. The number of charge states measured for each beam constituted more than 99% of the total equilibrium charge state distribution for that element. Currently, little experimental data exists for equilibrium charge state distributions for heavy ions with 19 ≲Zp,Zt ≲ 54 (Zp and Zt, are the projectile's and target's atomic numbers respectively). Hence the success of the semi-empirical models in predicting typical characteristics of equilibrium CSDs (mean charge states and distribution widths), has not been thoroughly tested at the energy region of interest. A number of semi-empirical models from the literature were evaluated in this study, regarding their ability to reproduce the characteristics of the measured charge state distributions. The evaluated models were selected from the literature based on whether they are suitable for the given range of atomic numbers and on their frequent use by the nuclear physics community. Finally, an attempt was made to combine model predictions for the mean charge state, the distribution width and the distribution shape, to come up with a more reliable model. We discuss this new "combinatorial" prescription and compare its results with our experimental data and with calculations using the other semi-empirical models studied in this work.

  15. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods

    NASA Technical Reports Server (NTRS)

    Chau, Jessica Furrer; Or, Dani; Sukop, Michael C.; Steinberg, S. L. (Principal Investigator)

    2005-01-01

    Liquid distributions in unsaturated porous media under different gravitational accelerations and corresponding macroscopic gaseous diffusion coefficients were investigated to enhance understanding of plant growth conditions in microgravity. We used a single-component, multiphase lattice Boltzmann code to simulate liquid configurations in two-dimensional porous media at varying water contents for different gravity conditions and measured gas diffusion through the media using a multicomponent lattice Boltzmann code. The relative diffusion coefficients (D rel) for simulations with and without gravity as functions of air-filled porosity were in good agreement with measured data and established models. We found significant differences in liquid configuration in porous media, leading to reductions in D rel of up to 25% under zero gravity. The study highlights potential applications of the lattice Boltzmann method for rapid and cost-effective evaluation of alternative plant growth media designs under variable gravity.

  16. A Boltzmann Transport Simulation Using Open Source Physics

    NASA Astrophysics Data System (ADS)

    Hasbun, Javier

    2004-03-01

    The speed of a charged particle, under an applied electric field, in a conducting media, is, usually, simply modelled by writing Newton's 2nd law in the form mfrac ddtv=qE-mfrac vτ ; (1), where v is the speed, E is the applied electric field, q is the charge, m is the mass, and τ is the scattering time between collisions. Here, we simulate a numerical solution of the Boltzmann transport equation,frac partial partial tf+ vot nabla _rf+Fot nabla _pf=frac partial partial tf|_coll (2), where in general the Boltzmann distribution function f=f(r,p,t) depends on position, momentum, and time. Our numerical solution is made possible by neglecting the 2nd term on the LHS, and by modelling the RHS collision term as fracpartial partial tf|_coll=-frac 1τ . With these approximations, in addition to considering only one dimension, we find, our numerical solution of (2). The average velocity numerically obtained through the resulting distribution is compared to that obtained by the analytic solution of (1). An efficient method of carrying out the numerical solution of (2) due to P. Drallos and M. Wadehra [Journal of Applied Physics 63, 5601(1988)] is incorporated here. A final version of an applet that performs the full Java simulation will be located at http://www.westga.edu/ jhasbun/osp/osp.htm.

  17. A discretization of Boltzmann's collision operator with provable convergence

    NASA Astrophysics Data System (ADS)

    Brechtken, Stefan

    2014-12-01

    The discretization of the right-hand side of the Boltzmann equation (aka the collision operator) on uniform grids generally suffers from some well known problems prohibiting the construction of deterministic high order discretizations which exactly sustain the basic properties of the collision operator. These problems mainly relate to problems arising from the discretization of spheres on uniform grids and the necessity that the discretization must possess some symmetry properties in order to provide the discrete versions of properties stemming from the continuous collision operator (number of collision invariants, avoidance of artificial collision invariants, type of equilibrium solutions, H-Theorem). We present a scheme to construct discretizations in 2 dimensions with arbitrarily high convergence orders on uniform grids, which are comparable to the approach by Rogier and Schneider [1] and the subsequent works by Michel and Schneider as well as Panferov and Heintz [2, 3] who used Farey sequences for the discretization. Moreover we take a closer look at this discretization in the framework of discrete velocity models to present results governing the correct collision invariants, lack of artificial collision invariants, the H-Theorem and the correct equilibrium solutions. Furthermore we classify lattice group models (LGpM) in the context of DVMs to transfer the high convergence order of these discretizations into the context of LGpMs and finally we take a short look at the numerical complexity.

  18. Modeling groundwater flow by lattice Boltzmann method in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Budinski, Ljubomir; Fabian, Julius; Stipic, Matija

    2015-07-01

    In order to promote the use of the lattice Boltzmann method (LBM) for the simulation of isotropic groundwater flow in a confined aquifer with arbitrary geometry, Poisson's equation was transformed into a curvilinear coordinate system. With the metric function between the physical and the computational domain established, Poisson's equation written in Cartesian coordinates was transformed in curvilinear coordinates. Following, the appropriate equilibrium function for the D2Q9 square lattice has been defined. The resulting curvilinear formulation of the LBM for groundwater flow is capable of modeling flow in domains of complex geometry with the opportunity of local refining/coarsening of the computational mesh corresponding to the complexity of the flow pattern and the required accuracy. Since the proposed form of the LBM uses the transformed equation of flow implemented in the equilibrium function, finding a solution does not require supplementary procedures along the curvilinear boundaries, nor in the zones requiring mesh density adjustments. Thus, the basic concept of the LBM is completely maintained. The improvement of the proposed LBM over the previously published classical methods is completely verified by three examples with analytical solutions. The results demonstrate the advantages of the proposed curvilinear LBM in modeling groundwater flow in complex flow domains.

  19. Equilibrium partitioning and subsequent re-distribution of halogens among apatite-biotite-amphibole assemblages from mantle-derived plutonic rocks: Complexities revealed

    NASA Astrophysics Data System (ADS)

    Teiber, Holger; Scharrer, Manuel; Marks, Michael A. W.; Arzamastsev, Andrei A.; Wenzel, Thomas; Markl, Gregor

    2015-04-01

    The concentration of halogens in apatite, biotite and amphibole is investigated for a large variety of mantle-derived plutonic rocks (gabbros, diorites, monzonites, olivine- and pyroxene-bearing monzonitic to granitic rocks, syenites, carbonatites and a phoscorite). In all rocks studied, apatite occurs as an early magmatic phase, whereas biotite and amphibole may occur either as a late magmatic phase or as late-stage, potentially hydrothermal product replacing precursor olivine, pyroxene and Fe-Ti oxides (ilmenite and magnetite). Based on electron microprobe analyses for F and Cl and detailed textural observations, we test existing models of halogen partitioning between apatite and biotite. Bromine concentration data for apatite, biotite and amphibole are used to further refine our understanding of the geochemical similarities and differences between Cl and Br during magmatic and hydrothermal processes. Our data suggests that F and Cl contents in apatite, biotite and amphibole can indeed be useful monitors of the halogen systematics in magmas, but they may also be subject to post-magmatic changes to variable extents. The relatively small radius and compatible F cation seems to be less prone to post-magmatic alteration and is likely to best reflect the original magmatic halogen abundances - especially in apatite. However, the larger and probably more incompatible Cl anion, is more easily re-mobilized as reflected by strong redistribution of Cl in biotite and amphibole which have been clearly overprinted by hydrothermal fluids. In certain cases, the ability of halogens to re-distribute themselves after magmatic equilibrium partitioning (as emphasized by our data) suggests that observed partitioning (especially between apatite and biotite) may also be used as a very sensitive indicator for post-magmatic hydrothermal processes.

  20. Phase segregation via Vlasov-Boltzmann particle dynamics

    SciTech Connect

    Bastea, S

    1999-01-19

    background, Vlasov potential. If the repulsive potential between the two species is sufficiently weak and long ranged (so no new inter-particle correlations are introduced), such an algorithm contains the essential ingredients of the Vlasov-Boltzmann kinetics. The structure of the interface separating the two phases coexisting inside the miscibility gap is related to the dominating coarsening mechanism. We compared the equilibrium interface profiles that result directly from the Vlasov-Boltzmann equations with the profiles obtained in simulations and found very good agreement. Our model and computational scheme provide a convenient framework for the study of another important problem, the influence of phase segrega- tion on an initially prescribed hydrodynamical flow. The approach to phase segregation kinetics described here takes advan- tage of an important analytical tool available in nonequilibrium physics, the Boltzmann equation, and has a computational simplicity that should make it useful for other interesting applications.

  1. An Updated Equilibrium Machine

    NASA Astrophysics Data System (ADS)

    Schultz, Emeric

    2008-08-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are applied. Equilibrium can be approached from different distributions of balls in the container under different conditions. The Le Châtelier principle can be demonstrated. Kinetic concepts can be demonstrated by changing the nature of the barrier, either changing the height or by having various sized holes in the barrier. Thermodynamic concepts can be demonstrated by taping over some or all of the openings and restricting air flow into container on either side of the barrier.

  2. Generalized Boltzmann formalism for oscillating neutrinos

    SciTech Connect

    Strack, P.; Burrows, A.

    2005-05-01

    In the standard approaches to neutrino transport in the simulation of core-collapse supernovas, one will often start from the classical Boltzmann equation for the neutrino's spatial, temporal, and spectral evolution. For each neutrino species, and its antiparticle, the classical density in phase space, or the associated specific intensity, will be calculated as a function of time. The neutrino radiation is coupled to matter by source and sink terms on the 'right-hand side' of the transport equation and together with the equations of hydrodynamics this set of coupled partial differential equations for classical densities describes, in principle, the evolution of core collapse and explosion. However, with the possibility of neutrino oscillations between species, a purely quantum-physical effect, how to generalize this set of Boltzmann equations for classical quantities to reflect oscillation physics has not been clear. To date, the formalisms developed have retained the character of quantum operator physics involving complex quantities and have not been suitable for easy incorporation into standard supernova codes. In this paper, we derive generalized Boltzmann equations for quasiclassical, real-valued phase-space densities that retain all the standard oscillation phenomenology, including the matter-enhanced resonant flavor conversion (Mikheev-Smirnov-Wolfenstein effect), neutrino self-interactions, and the interplay between decohering matter coupling and flavor oscillations. With this formalism, any code(s) that can now handle the solution of the classical Boltzmann or transport equation can easily be generalized to include neutrino oscillations in a quantum-physically consistent fashion.

  3. Stefan-Boltzmann Law for Massive Photons

    NASA Astrophysics Data System (ADS)

    Moreira, E. S.; Ribeiro, T. G.

    2016-08-01

    This paper generalizes the Stefan-Boltzmann law to include massive photons. A crucial ingredient to obtain the correct formula for the radiance is to realize that a massive photon does not travel at the speed of (massless) light. It follows that, contrary to what could be expected, the radiance is not proportional to the energy density times the speed of light.

  4. Simplified simulation of Boltzmann-Langevin equation

    SciTech Connect

    Ayik, S.; Randrup, J.

    1994-06-01

    We briefly recall the Boltzmann-Langevin model of nuclear dynamics. We then summarize recent progress in deriving approximate analytical expressions for the associated transport coefficients and describe a numerical method for simulating the stochastic evolution of the phase-space density.

  5. Stefan-Boltzmann Law for Massive Photons

    NASA Astrophysics Data System (ADS)

    Moreira, E. S.; Ribeiro, T. G.

    2016-04-01

    This paper generalizes the Stefan-Boltzmann law to include massive photons. A crucial ingredient to obtain the correct formula for the radiance is to realize that a massive photon does not travel at the speed of (massless) light. It follows that, contrary to what could be expected, the radiance is not proportional to the energy density times the speed of light.

  6. Blow-up rate estimates for the solutions of the bosonic Boltzmann-Nordheim equation

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, J.; Velázquez, J. J. L.

    2015-06-01

    In this paper, we study the behavior of a class of mild solutions of the homogeneous and isotropic bosonic Boltzmann-Nordheim equation near the blow-up. We obtain some estimates on the blow-up rate of the solutions and prove that, as long as a solution is bounded above by the critical singularity /1 x (the equilibrium solutions behave like this power law near the origin), it remains bounded in the uniform norm. In Sec. III of the paper, we prove a local existence result for a class of measure-valued mild solutions, which is of independent interest and which allows us to solve the Boltzmann-Nordheim equation for some classes of unbounded densities.

  7. Osmotic equilibrium of colloidal nanoparticles transiently confined in an optical trap

    NASA Astrophysics Data System (ADS)

    Fu, Jinxin; Ou-Yang, H. Daniel

    2015-03-01

    Equilibrium number density profile of colloidal particles in a potential force field depends on the particle number density, the force field and interactions between the particles. Einstein described the particle number density profile by an osmotic equilibrium equation relating colloidal osmotic pressure and the potential force in his 1905 paper on the Brownian motion. For a dilute suspension of colloids, when particle interactions are negligible, the osmotic equilibrium equation can be used to determine unknown potential energy profiles from the Boltzmann distribution of the particle number density. Using a known potential energy profile, one can determine the colloidal osmotic pressure as a function of particle density, i.e., the osmotic equation of state, from the density profiles of interacting colloids. We use particle density profiles determined by confocal imaging of fluorescent polystyrene nanoparticles transiently confined in an optical trap to determine the colloidal osmotic equation of state for colloids in the presence of KCl and neutral polymers. The osmotic compressibility and chemical potentials of the colloids are calculated from the osmotic equation of state to predict colloidal stability and phase transitions. This project is supported in part by funds from NSF DMR 0923299, Lehigh Center for Optical Technologies and the Emulsion Polymers Institute.

  8. Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows

    SciTech Connect

    Kustova, E. V.; Oblapenko, G. P.

    2015-01-15

    In the present paper, reaction and energy relaxation rates as well as the normal stress are studied for viscous gas flows with vibrational and chemical non-equilibrium. Using the modified Chapman-Enskog method, multi-temperature models based on the Treanor and Boltzmann vibrational distributions are developed for the general case taking into account all kinds of vibrational energy transitions, exchange reactions, dissociation, and recombination. Integral equations specifying the first-order corrections to the normal mean stress and reaction rates are derived, as well as approximate systems of linear equations for their numerical computation. Generalized thermodynamic driving forces associated with all non-equilibrium processes are introduced. It is shown that normal stresses and rates of non-equilibrium processes can be expressed in terms of the same driving forces; the symmetry of kinetic coefficients in these expressions is proven. The developed general model is applied to a particular case of a pure N{sub 2} viscous flow with slow VT relaxation. Normal stress and rates of vibrational relaxation are studied for various ratios of vibrational and translational temperatures. The cross effects between different vibrational transitions in viscous flows are evaluated, along with the influence of anharmonicity and flow compressibility on the first-order corrections to the relaxation rate. Limits of validity for the widely used Landau–Teller model of vibrational relaxation are indicated.

  9. Mixed quantum-classical equilibrium in global flux surface hopping

    SciTech Connect

    Sifain, Andrew E.; Wang, Linjun; Prezhdo, Oleg V.

    2015-06-14

    Global flux surface hopping (GFSH) generalizes fewest switches surface hopping (FSSH)—one of the most popular approaches to nonadiabatic molecular dynamics—for processes exhibiting superexchange. We show that GFSH satisfies detailed balance and leads to thermodynamic equilibrium with accuracy similar to FSSH. This feature is particularly important when studying electron-vibrational relaxation and phonon-assisted transport. By studying the dynamics in a three-level quantum system coupled to a classical atom in contact with a classical bath, we demonstrate that both FSSH and GFSH achieve the Boltzmann state populations. Thermal equilibrium is attained significantly faster with GFSH, since it accurately represents the superexchange process. GFSH converges closer to the Boltzmann averages than FSSH and exhibits significantly smaller statistical errors.

  10. Velocity-Field Theory, Boltzmann's Transport Equation and Geometry

    NASA Astrophysics Data System (ADS)

    Ichinose, Shoichi

    Boltzmann equation describes the time development of the velocity distribution in the continuum fluid matter. We formulate the equation using the field theory where the velocity-field plays the central role. The matter (constituent particles) fields appear as the density and the viscosity. Fluctuation is examined, and is clearly discriminated from the quantum effect. The time variable is emergently introduced through the computational process step. The collision term, for the (velocity)**4 potential (4-body interaction), is explicitly obtained and the (statistical) fluctuation is closely explained. The present field theory model does not conserve energy and is an open-system model. (One dimensional) Navier-Stokes equation or Burger's equation, appears. In the latter part, we present a way to directly define the distribution function by use of the geometry, appearing in the mechanical dynamics, and Feynman's path-integral.

  11. On applicability of the photochemical-equilibrium approach for retrieval of O and H mesospheric distributions from the satellite-based measurements of the airglow emission and ozone concentration

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Belikovich, Mikhail; Kulikov, Mikhail

    2016-04-01

    Atomic oxygen and hydrogen are known to be among key components for the photochemistry and energy balance of the Earth's atmosphere between approximately 80 and 100 km altitude (mesopause region). Therefore, obtaining information about the vertical distributions of O and H concentrations is an important task in studies of this region. Solving of this problem is rather difficult due to the absence of regular methods which allow one to direct measurements of distributions of these components in mesosphere. However, indirect methods used to retrieve O and H distributions from the satellite-based measurements of the OH and O2(1D) airglow emission, as well as the data of IR and microwave O3 measurements have a sufficiently long development history. These methods are rooted in the use of the condition of photochemical equilibrium of ozone density in the range of altitudes from 50 to 100 km. A significant factor is that an insufficient volume of such measurement data forces researchers to use approximate ("truncated") photochemical-equilibrium conditions. In particular, it is assumed that in the daytime the ozone production reaction is perfectly balanced by ozone photodissociation, whereas during the night the only ozone sink is the reaction of ozone with atomic hydrogen, which, in its turn, leads to formation of excited OH and airglow emission of the latter. The presentation analyzes applicability of the photochemical-equilibrium conditions both in the total and truncated forms for description of the spatio-temporal evolution of mesospheric ozone during a year. The analysis is based on year-long time series generated by a 3D chemical transport model, which reproduces correctly various types of atmosphere dynamics in the range of altitudes from 50 to 100 km. These data are used to determine statistics of the ratio between the correct (calculated dynamically) distributions of the O3 density and its uncontracted and truncated equilibrium values for the conditions of the

  12. Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1 (S151P in Human) Affects the Equilibrium Distribution of [2Fe-2S] Cluster and Generation of Superoxide*

    PubMed Central

    Borek, Arkadiusz; Kuleta, Patryk; Ekiert, Robert; Pietras, Rafał; Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Cytochrome bc1 is one of the key enzymes of many bioenergetic systems. Its operation involves a large scale movement of a head domain of iron-sulfur protein (ISP-HD), which functionally connects the catalytic quinol oxidation Qo site in cytochrome b with cytochrome c1. The Qo site under certain conditions can generate reactive oxygen species in the reaction scheme depending on the actual position of ISP-HD in respect to the Qo site. Here, using a bacterial system, we show that mutation G167P in cytochrome b shifts the equilibrium distribution of ISP-HD toward positions remote from the Qo site. This renders cytochrome bc1 non-functional in vivo. This effect is remediated by addition of alanine insertions (1Ala and 2Ala) in the neck region of the ISP subunit. These insertions, which on their own shift the equilibrium distribution of ISP-HD in the opposite direction (i.e. toward the Qo site), also act in this manner in the presence of G167P. Changes in the equilibrium distribution of ISP-HD in G167P lead to an increased propensity of cytochrome bc1 to generate superoxide, which becomes evident when the concentration of quinone increases. This result corroborates the recently proposed model in which “semireverse” electron transfer back to the Qo site, occurring when ISP-HD is remote from the site, favors reactive oxygen species production. G167P suggests possible molecular effects of S151P (corresponding in sequence to G167P) identified as a mitochondrial disease-related mutation in human cytochrome b. These effects may be valid for other human mutations that change the equilibrium distribution of ISP-HD in a manner similar to G167P. PMID:26245902

  13. Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1 (S151P in Human) Affects the Equilibrium Distribution of [2Fe-2S] Cluster and Generation of Superoxide.

    PubMed

    Borek, Arkadiusz; Kuleta, Patryk; Ekiert, Robert; Pietras, Rafał; Sarewicz, Marcin; Osyczka, Artur

    2015-09-25

    Cytochrome bc1 is one of the key enzymes of many bioenergetic systems. Its operation involves a large scale movement of a head domain of iron-sulfur protein (ISP-HD), which functionally connects the catalytic quinol oxidation Qo site in cytochrome b with cytochrome c1. The Qo site under certain conditions can generate reactive oxygen species in the reaction scheme depending on the actual position of ISP-HD in respect to the Qo site. Here, using a bacterial system, we show that mutation G167P in cytochrome b shifts the equilibrium distribution of ISP-HD toward positions remote from the Qo site. This renders cytochrome bc1 non-functional in vivo. This effect is remediated by addition of alanine insertions (1Ala and 2Ala) in the neck region of the ISP subunit. These insertions, which on their own shift the equilibrium distribution of ISP-HD in the opposite direction (i.e. toward the Qo site), also act in this manner in the presence of G167P. Changes in the equilibrium distribution of ISP-HD in G167P lead to an increased propensity of cytochrome bc1 to generate superoxide, which becomes evident when the concentration of quinone increases. This result corroborates the recently proposed model in which "semireverse" electron transfer back to the Qo site, occurring when ISP-HD is remote from the site, favors reactive oxygen species production. G167P suggests possible molecular effects of S151P (corresponding in sequence to G167P) identified as a mitochondrial disease-related mutation in human cytochrome b. These effects may be valid for other human mutations that change the equilibrium distribution of ISP-HD in a manner similar to G167P. PMID:26245902

  14. Numerical investigations of low-density nozzle flow by solving the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Deng, Zheng-Tao; Liaw, Goang-Shin; Chou, Lynn Chen

    A two-dimensional finite-difference code to solve the BGK-Boltzmann equation has been developed. The solution procedure consists of three steps: (1) transforming the BGK-Boltzmann equation into two simultaneous partial differential equations by taking moments of the distribution function with respect to the molecular velocity u(sub z), with weighting factors 1 and u(sub z)(sup 2); (2) solving the transformed equations in the physical space based on the time-marching technique and the four-stage Runge-Kutta time integration, for a given discrete-ordinate. The Roe's second-order upwind difference scheme is used to discretize the convective terms and the collision terms are treated as source terms; and (3) using the newly calculated distribution functions at each point in the physical space to calculate the macroscopic flow parameters by the modified Gaussian quadrature formula. Repeating steps 2 and 3, the time-marching procedure stops when the convergent criteria is reached. A low-density nozzle flow field has been calculated by this newly developed code. The BGK Boltzmann solution and experimental data show excellent agreement. It demonstrated that numerical solutions of the BGK-Boltzmann equation are ready to be experimentally validated.

  15. Numerical investigations of low-density nozzle flow by solving the Boltzmann equation

    NASA Technical Reports Server (NTRS)

    Deng, Zheng-Tao; Liaw, Goang-Shin; Chou, Lynn Chen

    1995-01-01

    A two-dimensional finite-difference code to solve the BGK-Boltzmann equation has been developed. The solution procedure consists of three steps: (1) transforming the BGK-Boltzmann equation into two simultaneous partial differential equations by taking moments of the distribution function with respect to the molecular velocity u(sub z), with weighting factors 1 and u(sub z)(sup 2); (2) solving the transformed equations in the physical space based on the time-marching technique and the four-stage Runge-Kutta time integration, for a given discrete-ordinate. The Roe's second-order upwind difference scheme is used to discretize the convective terms and the collision terms are treated as source terms; and (3) using the newly calculated distribution functions at each point in the physical space to calculate the macroscopic flow parameters by the modified Gaussian quadrature formula. Repeating steps 2 and 3, the time-marching procedure stops when the convergent criteria is reached. A low-density nozzle flow field has been calculated by this newly developed code. The BGK Boltzmann solution and experimental data show excellent agreement. It demonstrated that numerical solutions of the BGK-Boltzmann equation are ready to be experimentally validated.

  16. Non-equilibrium Warm Dense Gold: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Ng, Andrew

    2015-11-01

    This talk is an overview of a series of studies of non-equilibrium Warm Dense Matter using a broad range of measured properties of a single material, namely Au, as comprehensive benchmarks for theory. The measurements are made in fs-laser pump-probe experiments. For understanding lattice stability, our investigation reveals a solid phase at high energy density. This leads to the calculation of lattice dynamics using MD simulations and phonon hardening in DFT-MD simulations. For understanding electron transport in two-temperature states, AC conductivity is used to evaluate DFT-MD and Kubo-Greenwood calculations while DC conductivity is used to test Ziman calculations in a DFT average atom model. The electron density is also used to assess electronic structure calculations in DFT simulations. In our latest study of electron kinetics in states with a non-Fermi-Dirac distribution, three-body recombination is found to have a significant effect on electron thermalizaiton time. This is driving an effort to develop electron kinetics simulations using the Boltzmann equation method.

  17. Structural stability of Lattice Boltzmann schemes

    NASA Astrophysics Data System (ADS)

    David, Claire; Sagaut, Pierre

    2016-02-01

    The goal of this work is to determine classes of traveling solitary wave solutions for Lattice Boltzmann schemes by means of a hyperbolic ansatz. It is shown that spurious solitary waves can occur in finite-difference solutions of nonlinear wave equation. The occurrence of such a spurious solitary wave, which exhibits a very long life time, results in a non-vanishing numerical error for arbitrary time in unbounded numerical domain. Such a behavior is referred here to have a structural instability of the scheme, since the space of solutions spanned by the numerical scheme encompasses types of solutions (solitary waves in the present case) that are not solutions of the original continuous equations. This paper extends our previous work about classical schemes to Lattice Boltzmann schemes (David and Sagaut 2011; 2009a,b; David et al. 2007).

  18. Lattice Boltzmann model for wave propagation.

    PubMed

    Zhang, Jianying; Yan, Guangwu; Shi, Xiubo

    2009-08-01

    A lattice Boltzmann model for two-dimensional wave equation is proposed by using the higher-order moment method. The higher-order moment method is based on the solution of a series of partial differential equations obtained by using multiscale technique and Chapman-Enskog expansion. In order to obtain the lattice Boltzmann model for the wave equation with higher-order accuracy of truncation errors, we removed the second-order dissipation term and the third-order dispersion term by employing the moments up to fourth order. The reversibility in time appears owing to the absence of the second-order dissipation term and the third-order dispersion term. As numerical examples, some classical examples, such as interference, diffraction, and wave passing through a convex lens, are simulated. The numerical results show that this model can be used to simulate wave propagation. PMID:19792280

  19. Lattice Boltzmann model for simulation of magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William

    1991-01-01

    A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.

  20. The Boltzmann equation in the difference formulation

    SciTech Connect

    Szoke, Abraham; Brooks III, Eugene D.

    2015-05-06

    First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.

  1. Consistent lattice Boltzmann equations for phase transitions.

    PubMed

    Siebert, D N; Philippi, P C; Mattila, K K

    2014-11-01

    Unlike conventional computational fluid dynamics methods, the lattice Boltzmann method (LBM) describes the dynamic behavior of fluids in a mesoscopic scale based on discrete forms of kinetic equations. In this scale, complex macroscopic phenomena like the formation and collapse of interfaces can be naturally described as related to source terms incorporated into the kinetic equations. In this context, a novel athermal lattice Boltzmann scheme for the simulation of phase transition is proposed. The continuous kinetic model obtained from the Liouville equation using the mean-field interaction force approach is shown to be consistent with diffuse interface model using the Helmholtz free energy. Density profiles, interface thickness, and surface tension are analytically derived for a plane liquid-vapor interface. A discrete form of the kinetic equation is then obtained by applying the quadrature method based on prescribed abscissas together with a third-order scheme for the discretization of the streaming or advection term in the Boltzmann equation. Spatial derivatives in the source terms are approximated with high-order schemes. The numerical validation of the method is performed by measuring the speed of sound as well as by retrieving the coexistence curve and the interface density profiles. The appearance of spurious currents near the interface is investigated. The simulations are performed with the equations of state of Van der Waals, Redlich-Kwong, Redlich-Kwong-Soave, Peng-Robinson, and Carnahan-Starling. PMID:25493907

  2. Lattice Boltzmann method and channel flow

    NASA Astrophysics Data System (ADS)

    Stensholt, Sigvat; Mongstad Hope, Sigmund

    2016-07-01

    Lattice Boltzmann methods are presented at an introductory level with a focus on fairly simple simulations that can be used to test and illustrate the model’s capabilities. Two scenarios are presented. The first is a simple laminar flow in a straight channel driven by a pressure gradient (Poiseuille flow). The second is a more complex, including a wedge where Moffatt vortices may be induced if the wedge is deep enough. Simulations of the Poiseuille flow scenario accurately capture the theoretical velocity profile. The experiment shows the location of the fluid-wall boundary and the effects viscosity has on the velocity and convergence time. The numerical capabilities of the lattice Boltzmann model are tested further by simulating the more complex Moffatt vortex scenario. The method reproduces with high accuracy the theoretical predction that Moffat vortices will not form in a wedge if the vertex angle exceeds 146°. Practical issues limitations of the lattice Boltzmann method are discussed. In particular the accuracy of the bounce-back boundary condition is first order dependent on the grid resolution.

  3. Equilibrium sampling by reweighting nonequilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  4. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    PubMed

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems. PMID:27078486

  5. Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant

    SciTech Connect

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; Di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-05-23

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) {nu}{sub 1}+2{nu}{sub 2}{sup 0}+{nu}{sub 3} transition in CO{sub 2} gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of {approx}1.6x10{sup -4}.

  6. A lattice-Boltzmann scheme of the Navier-Stokes equations on a 3D cuboid lattice

    NASA Astrophysics Data System (ADS)

    Min, Haoda; Peng, Cheng; Wang, Lian-Ping

    2015-11-01

    The standard lattice-Boltzmann method (LBM) for fluid flow simulation is based on a square (in 2D) or cubic (in 3D) lattice grids. Recently, two new lattice Boltzmann schemes have been developed on a 2D rectangular grid using the MRT (multiple-relaxation-time) collision model, by adding a free parameter in the definition of moments or by extending the equilibrium moments. Here we developed a lattice Boltzmann model on 3D cuboid lattice, namely, a lattice grid with different grid lengths in different spatial directions. We designed our MRT-LBM model by matching the moment equations from the Chapman-Enskog expansion with the Navier-Stokes equations. The model guarantees correct hydrodynamics. A second-order term is added to the equilibrium moments in order to restore the isotropy of viscosity on a cuboid lattice. The form and the coefficients of the extended equilibrium moments are determined through an inverse design process. An additional benefit of the model is that the viscosity can be adjusted independent of the stress-moment relaxation parameter, thus improving the numerical stability of the model. The resulting cuboid MRT-LBM model is then validated through benchmark simulations using laminar channel flow, turbulent channel flow, and the 3D Taylor-Green vortex flow.

  7. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio.

    PubMed

    Ba, Yan; Liu, Haihu; Li, Qing; Kang, Qinjun; Sun, Jinju

    2016-08-01

    In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500. PMID:27627415

  8. Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change

    NASA Astrophysics Data System (ADS)

    Huang, Rongzong; Wu, Huiying

    2016-06-01

    A total enthalpy-based lattice Boltzmann (LB) method with adaptive mesh refinement (AMR) is developed in this paper to efficiently simulate solid-liquid phase change problem where variables vary significantly near the phase interface and thus finer grid is required. For the total enthalpy-based LB method, the velocity field is solved by an incompressible LB model with multiple-relaxation-time (MRT) collision scheme, and the temperature field is solved by a total enthalpy-based MRT LB model with the phase interface effects considered and the deviation term eliminated. With a kinetic assumption that the density distribution function for solid phase is at equilibrium state, a volumetric LB scheme is proposed to accurately realize the nonslip velocity condition on the diffusive phase interface and in the solid phase. As compared with the previous schemes, this scheme can avoid nonphysical flow in the solid phase. As for the AMR approach, it is developed based on multiblock grids. An indicator function is introduced to control the adaptive generation of multiblock grids, which can guarantee the existence of overlap area between adjacent blocks for information exchange. Since MRT collision schemes are used, the information exchange is directly carried out in the moment space. Numerical tests are firstly performed to validate the strict satisfaction of the nonslip velocity condition, and then melting problems in a square cavity with different Prandtl numbers and Rayleigh numbers are simulated, which demonstrate that the present method can handle solid-liquid phase change problem with high efficiency and accuracy.

  9. Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio

    NASA Astrophysics Data System (ADS)

    Ba, Yan; Liu, Haihu; Li, Qing; Kang, Qinjun; Sun, Jinju

    2016-08-01

    In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.

  10. Beyond Gibbs-Boltzmann-Shannon: General Entropies -- The Gibbs-Lorentzian Example

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf; Baumjohann, Wolfgang

    2014-08-01

    We propose a generalisation of Gibbs' statistical mechanics into the domain of non-negligible phase space correlations. Derived are the probability distribution and entropy as a generalised ensemble average, replacing Gibbs-Boltzmann-Shannon's entropy definition enabling construction of new forms of statistical mechanics. The general entropy may also be of importance in information theory and data analysis. Application to generalised Lorentzian phase space elements yields the Gibbs-Lorentzian power law probability distribution and statistical mechanics. The corresponding Boltzmann, Fermi and Bose-Einstein distributions are found. They apply only to finite temperature states including correlations. As a by-product any negative absolute temperatures are categorically excluded, supporting a recent ``no-negative T" claim.

  11. Conservation laws and exact solutions of the Boltzmann equation

    SciTech Connect

    Mattis, D.C.; Szpilka, A.M.; Chen, H.

    1989-03-10

    The distribution function f which satisfies the time-dependent Boltzmann equation (BE) for a Lorentz model with perfectly elastic random scatterers is proved nonnegative, and is computed exactly when backscattering dominates. Joule heating and Ohm's law are recovered, although f has no steady-state limit, contrary to the relaxation-time approximation. (The conventional approximation to the time-independent BE also yields OHm's law but not the Joule heating and, worse, it unphysically predicts f < O.) The exact solution is compared with various effective-temperature approximations, and is shown to remain very nearly unchanged over a wide range of times even in the presence of a small amount of inelastic scattering.

  12. LUDWIG: A parallel Lattice-Boltzmann code for complex fluids

    NASA Astrophysics Data System (ADS)

    Desplat, Jean-Christophe; Pagonabarraga, Ignacio; Bladon, Peter

    2001-03-01

    This paper describes Ludwig, a versatile code for the simulation of Lattice-Boltzmann (LB) models in 3D on cubic lattices. In fact, Ludwig is not a single code, but a set of codes that share certain common routines, such as I/O and communications. If Ludwig is used as intended, a variety of complex fluid models with different equilibrium free energies are simple to code, so that the user may concentrate on the physics of the problem, rather than on parallel computing issues. Thus far, Ludwig's main application has been to symmetric binary fluid mixtures. We first explain the philosophy and structure of Ludwig which is argued to be a very effective way of developing large codes for academic consortia. Next we elaborate on some parallel implementation issues such as parallel I/O, and the use of MPI to achieve full portability and good efficiency on both MPP and SMP systems. Finally, we describe how to implement generic solid boundaries, and look in detail at the particular case of a symmetric binary fluid mixture near a solid wall. We present a novel scheme for the thermodynamically consistent simulation of wetting phenomena, in the presence of static and moving solid boundaries, and check its performance.

  13. Lattice Boltzmann simulations of drops colliding with solid surfaces

    NASA Astrophysics Data System (ADS)

    Jia, X.; McLaughlin, J. B.; Kontomaris, K.

    2009-04-01

    Video images of drops colliding with solid surfaces shown by Rioboo et al. (2002) reveal that, for large drop velocities, the drops flatten and form a ring structure before receding and, in some cases, rebounding from the surface. They described the sequence of events in terms of four distinct regimes. During the initial kinematic phase, the dimensionless wetting radius of the drop follows a universal form if the drop Weber and Reynolds numbers are sufficiently large. In the second phase, the drop becomes highly flattened and the values of the Weber and Reynolds numbers influence the time evolution of the dimensionless wetting radius and its maximum value. This is followed by a third phase in which the wetting radius begins to decrease with time and the wettability of the surface influences the dynamics. This paper presents simulation results for the early stages of drop impact and spreading on a partially wetting solid surface. The simulations were performed with a modified version of the lattice Boltzmann method (LBM) developed by Inamuro et al. (2004) for a liquid-gas density ratio of 1000. The Inamuro et al. version of the LBM was modified by incorporating rigid, no-slip boundary conditions and incorporating a boundary condition on the normal derivative of the order parameter to impose the desired equilibrium contact angle.

  14. Linearized lattice Boltzmann method for micro- and nanoscale flow and heat transfer

    NASA Astrophysics Data System (ADS)

    Shi, Yong; Yap, Ying Wan; Sader, John E.

    2015-07-01

    Ability to characterize the heat transfer in flowing gases is important for a wide range of applications involving micro- and nanoscale devices. Gas flows away from the continuum limit can be captured using the Boltzmann equation, whose analytical solution poses a formidable challenge. An efficient and accurate numerical simulation of the Boltzmann equation is thus highly desirable. In this article, the linearized Boltzmann Bhatnagar-Gross-Krook equation is used to develop a hierarchy of thermal lattice Boltzmann (LB) models based on half-space Gaussian-Hermite (GH) quadrature ranging from low to high algebraic precision, using double distribution functions. Simplified versions of the LB models in the continuum limit are also derived, and are shown to be consistent with existing thermal LB models for noncontinuum heat transfer reported in the literature. Accuracy of the proposed LB hierarchy is assessed by simulating thermal Couette flows for a wide range of Knudsen numbers. Effects of the underlying quadrature schemes (half-space GH vs full-space GH) and continuum-limit simplifications on computational accuracy are also elaborated. The numerical findings in this article provide direct evidence of improved computational capability of the proposed LB models for modeling noncontinuum flows and heat transfer at small length scales.

  15. Linearized lattice Boltzmann method for micro- and nanoscale flow and heat transfer.

    PubMed

    Shi, Yong; Yap, Ying Wan; Sader, John E

    2015-07-01

    Ability to characterize the heat transfer in flowing gases is important for a wide range of applications involving micro- and nanoscale devices. Gas flows away from the continuum limit can be captured using the Boltzmann equation, whose analytical solution poses a formidable challenge. An efficient and accurate numerical simulation of the Boltzmann equation is thus highly desirable. In this article, the linearized Boltzmann Bhatnagar-Gross-Krook equation is used to develop a hierarchy of thermal lattice Boltzmann (LB) models based on half-space Gaussian-Hermite (GH) quadrature ranging from low to high algebraic precision, using double distribution functions. Simplified versions of the LB models in the continuum limit are also derived, and are shown to be consistent with existing thermal LB models for noncontinuum heat transfer reported in the literature. Accuracy of the proposed LB hierarchy is assessed by simulating thermal Couette flows for a wide range of Knudsen numbers. Effects of the underlying quadrature schemes (half-space GH vs full-space GH) and continuum-limit simplifications on computational accuracy are also elaborated. The numerical findings in this article provide direct evidence of improved computational capability of the proposed LB models for modeling noncontinuum flows and heat transfer at small length scales. PMID:26274307

  16. Pseudospectral Methods of Solution of the Linear and Linearized Boltzmann Equations; Transport and Relaxation

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.

    2011-05-01

    The study of the solution of the linearized Boltzmann equation has a very long history arising from the classic work by Chapman and Cowling. For small departures from a Maxwellian, the nonlinear Boltzmann equation can be linearized and the transport coefficients calculated with the Chapman-Enskog approach. This procedure leads to a set of linear integral equations which are generally solved with the expansion of the departure from Maxwellian in Sonine polynomials. The method has been used successfully for many decades to compare experimental transport data in atomic gases with theory generally carried out for realistic atom-atom differential cross sections. There are alternate pseudospectral methods which involve the discretization of the distribution function on a discrete grid. This paper considers a pseudospectral method of solution of the linearized hard sphere Boltzmann equation for the viscosity in a simple gas. The relaxation of a small departure from a Maxwellian is also considered for the linear test particle problem with unit mass ratio which is compared with the relaxation for the linearized one component Boltzmann equation.

  17. An efficient annealing in Boltzmann machine in Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Kin, Teoh Yeong; Hasan, Suzanawati Abu; Bulot, Norhisam; Ismail, Mohammad Hafiz

    2012-09-01

    This paper proposes and implements Boltzmann machine in Hopfield neural network doing logic programming based on the energy minimization system. The temperature scheduling in Boltzmann machine enhancing the performance of doing logic programming in Hopfield neural network. The finest temperature is determined by observing the ratio of global solution and final hamming distance using computer simulations. The study shows that Boltzmann Machine model is more stable and competent in term of representing and solving difficult combinatory problems.

  18. ``Thermal'' and ``superthermal'' two-class structure of the personal income distribution

    NASA Astrophysics Data System (ADS)

    Yakovenko, Victor

    2005-03-01

    In Ref. [1] we proposed an analogy between the thermal Boltzmann-Gibbs probability distribution of energy in physics and the probability distribution of money in economics in statistical equilibrium. In Ref. [2] we find that the probability distribution of personal income in the USA has a well-defined two-class structure. The majority of population (97-99%) belongs to the lower class characterized by the exponential Boltzmann-Gibbs (``thermal'') distribution, whereas the upper class (1-3% of population) has a Pareto power-law (``superthermal'') distribution. By analyzing the income data for 1983--2001 from IRS, we show that the ``thermal'' part is stationary in time, save for a gradual increase of the effective temperature, whereas the nonequilibrium ``superthermal'' tail swells and shrinks following the stock market. We discuss the concept of equilibrium inequality in a society, based on the principle of maximal entropy, and quantitatively show that it applies to the majority of the US population. [] [1] A. Dragulescu and V. M. Yakovenko, ``Statistical mechanics of money'', Eur. Phys. J. B 17, 723--729 (2000). [cond-mat/0001432] [] [2] A. C. Silva and V. M. Yakovenko, ``Temporal evolution of the `thermal' and `superthermal' income classes in the USA during 1983--2001'', accepted to Europhysics Letters. [cond- mat/0406385

  19. Possible evidence of thermodynamic equilibrium in dark matter halos

    SciTech Connect

    Davidson, Joshua; Sarker, Sanjoy K.; Stern, Allen E-mail: ssarker@ua.edu

    2014-06-10

    After deducing the density profiles and gravitational potential functions of eight galaxies from the rotation velocity data from THINGS, we find that the density decreases exponentially with the potential in substantial regions of the halos. This behavior is in agreement with that of a single-component isothermal Boltzmann gas, and it suggests that an effective description in terms of a Boltzmann gas is possible for dark matter in these regions. This could be an indication that dark matter self-interactions are sufficient in strength and number to lead to thermal equilibrium in these regions. We write down the dynamics and boundary conditions for a Boltzmann gas description and examine some of its qualitative and quantitative consequences. Solutions to the dynamical system are determined by three dimensionfull parameters, and they provide reasonable fits to the rotational velocity data in the regions where the Boltzmann-like behavior was found. Unlike in the usual approach to curve fitting, we do not assume a specific form for the dark matter density profile, and we do not require a detailed knowledge of the baryonic content of the galaxy.

  20. Deterministic numerical solutions of the Boltzmann equation using the fast spectral method

    NASA Astrophysics Data System (ADS)

    Wu, Lei; White, Craig; Scanlon, Thomas J.; Reese, Jason M.; Zhang, Yonghao

    2013-10-01

    The Boltzmann equation describes the dynamics of rarefied gas flows, but the multidimensional nature of its collision operator poses a real challenge for its numerical solution. In this paper, the fast spectral method [36], originally developed by Mouhot and Pareschi for the numerical approximation of the collision operator, is extended to deal with other collision kernels, such as those corresponding to the soft, Lennard-Jones, and rigid attracting potentials. The accuracy of the fast spectral method is checked by comparing our numerical solutions of the space-homogeneous Boltzmann equation with the exact Bobylev-Krook-Wu solutions for a gas of Maxwell molecules. It is found that the accuracy is improved by replacing the trapezoidal rule with Gauss-Legendre quadrature in the calculation of the kernel mode, and the conservation of momentum and energy are ensured by the Lagrangian multiplier method without loss of spectral accuracy. The relax-to-equilibrium processes of different collision kernels with the same value of shear viscosity are then compared; the numerical results indicate that different forms of the collision kernels can be used as long as the shear viscosity (not only the value, but also its temperature dependence) is recovered. An iteration scheme is employed to obtain stationary solutions of the space-inhomogeneous Boltzmann equation, where the numerical errors decay exponentially. Four classical benchmarking problems are investigated: the normal shock wave, and the planar Fourier/Couette/force-driven Poiseuille flows. For normal shock waves, our numerical results are compared with a finite difference solution of the Boltzmann equation for hard sphere molecules, experimental data, and molecular dynamics simulation of argon using the realistic Lennard-Jones potential. For planar Fourier/Couette/force-driven Poiseuille flows, our results are compared with the direct simulation Monte Carlo method. Excellent agreements are observed in all test cases

  1. Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems

    NASA Astrophysics Data System (ADS)

    Thüroff, Florian; Weber, Christoph A.; Frey, Erwin

    2014-10-01

    Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system's dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system's ordered state nematic, despite purely polar interactions on the level of single particles.

  2. Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Hagelaar, G. J. M.

    2016-02-01

    This paper investigates the effects of electron-electron and electron-ion Coulomb collisions on the electron distribution function and transport coefficients obtained from the Boltzmann equation for simple dc gas discharge conditions. Expressions are provided for the full Coulomb collision terms acting on both the isotropic and anisotropic parts of the electron distribution function, which are then incorporated in the freeware Boltzmann equation solver BOLSIG+. Different Coulomb collision effects are demonstrated and discussed on the basis of BOLSIG+  results for argon gas. It is shown that the anisotropic part of the electron-electron collision term, neglected in previous work, can in certain cases have a large effect on the electron mobility and is essential when describing the transition towards the Coulomb-collision dominated regime characterized by Spitzer transport coefficients. Finally, a brief overview is presented of the discharge conditions for which different Coulomb collision effects occur in different gases.

  3. Lattice Boltzmann approach to thermal transpiration

    SciTech Connect

    Sofonea, Victor

    2006-11-15

    Diffuse reflection boundary conditions are introduced in a thermal lattice Boltzmann model to allow for variable fluid density and temperature along the walls. The capability of this model to capture the main characteristics of the thermal transpiration phenomenon in a box at nonvanishing Knudsen numbers is demonstrated. The thermal creep velocity is found to be proportional to the temperature gradient imposed at the wall, whereas the accuracy of the simulation results are found to be of first or second order, depending on the numerical scheme.

  4. The Boltzmann constant from a snifter

    NASA Astrophysics Data System (ADS)

    Tyukodi, B.; Sárközi, Zs; Néda, Z.; Tunyagi, A.; Györke, E.

    2012-03-01

    Evaporation of a small glass of ethylic alcohol is studied both experimentally and through an elementary thermal physics approach. For a cylindrical beaker and no air flow in the room, a simple quadratic relation is found between the evaporation time and the mass of evaporated liquid. This problem and the obtained results offer excellent possibilities for simple student experiments and for testing basic principles of thermal physics. As an example, we use the obtained results for estimating the value of the Boltzmann constant from evaporation experiments.

  5. Lattice-Boltzmann-based Simulations of Diffusiophoresis

    NASA Astrophysics Data System (ADS)

    Castigliego, Joshua; Kreft Pearce, Jennifer

    We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on diffusiophoresis and the separation of particles within the system. A gradient in viscosity that simulates a concentration gradient in a dissolved polymer allows us to separate various types of particles by their deformability. As seen in previous experiments, simulated particles that have a higher deformability react differently to the polymer matrix than those with a lower deformability. Therefore, the particles can be separated from each other. This simulation, in particular, was intended to model an oceanic system where the particles of interest were zooplankton, phytoplankton and microplastics. The separation of plankton from the microplastics was achieved.

  6. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Chen, Shiyi; Matthaeus, William H.

    1992-01-01

    A lattice Boltzmann model is presented which gives the complete Navier-Stokes equation and may provide an efficient parallel numerical method for solving various fluid problems. The model uses the single-time relaxation approximation and a particular Maxwell-type distribution. The model eliminates exactly (1) the non-Galilean invariance caused by a density-dependent coefficient in the convection term and (2) a velocity-dependent equation of state.

  7. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    Self-consistent magnetospheric equilibrium with anisotropic pressure is obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distribution or particle distribution measured along the satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator due to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the tail-like surface. 23 refs., 17 figs.

  8. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Karani, Hamid; Huber, Christian

    2015-02-01

    In this paper, we propose an approach for studying conjugate heat transfer using the lattice Boltzmann method (LBM). The approach is based on reformulating the lattice Boltzmann equation for solving the conservative form of the energy equation. This leads to the appearance of a source term, which introduces the jump conditions at the interface between two phases or components with different thermal properties. The proposed source term formulation conserves conductive and advective heat flux simultaneously, which makes it suitable for modeling conjugate heat transfer in general multiphase or multicomponent systems. The simple implementation of the source term approach avoids any correction of distribution functions neighboring the interface and provides an algorithm that is independent from the topology of the interface. Moreover, our approach is independent of the choice of lattice discretization and can be easily applied to different advection-diffusion LBM solvers. The model is tested against several benchmark problems including steady-state convection-diffusion within two fluid layers with parallel and normal interfaces with respect to the flow direction, unsteady conduction in a three-layer stratified domain, and steady conduction in a two-layer annulus. The LBM results are in excellent agreement with analytical solution. Error analysis shows that our model is first-order accurate in space, but an extension to a second-order scheme is straightforward. We apply our LBM model to heat transfer in a two-component heterogeneous medium with a random microstructure. This example highlights that the method we propose is independent of the topology of interfaces between the different phases and, as such, is ideally suited for complex natural heterogeneous media. We further validate the present LBM formulation with a study of natural convection in a porous enclosure. The results confirm the reliability of the model in simulating complex coupled fluid and thermal dynamics

  9. Equilibrium separation in a high pressure helium plasma and its application to the determination of temperatures

    SciTech Connect

    Rodero, A.; Garcia, M.C.; Gamero, A.

    1995-12-31

    The spectroscopy method based on the Boltzmann-plot of emission lines has been usually employed for measuring the excitation temperature (T{sub exc}) in high pressure plasmas. In the present work, it is shown that this method can produce great errors in the temperature determination when equilibrium separation exists. In this way, the suitability of this determination is tested comparing with other alternative methods in a high pressure helium plasma and also studying its separation from the equilibrium situation, via the absolute population measurements of atomic levels and the estimation of its atomic state distribution function (ASDF). We have made this study using a new excitation structure, the axial injection torch (Torche A Injection Axiale or T.I.A.), which produces a high power microwave plasma at atmospheric pressure. The measurements were carried out at the beginning of the flame (the highest line intensity zone) for a 300-900 W power range at 2.45 GHz and 71/min. of helium gas flow.

  10. Backward mapping solutions of the Boltzmann equation in cylindrically symmetric, uniformly charged auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Ma, John Z. G.; St.-Maurice, J.-P.

    2015-06-01

    By applying a backward mapping technique, we solve the Boltzmann equation to investigate the effects of ion-neutral collisions on the ion velocity distribution and related transport properties in cylindrically symmetric, uniformly charged auroral ionosphere. Such a charge geometry introduces a radial electric field which increases linearly with distance from the axis of symmetry. In order to obtain complete analytical solutions for gaining physical insights into more complicated problems, we have substituted a relaxation collision model for the Boltzmann collision integral in the Boltzmann equation. Our calculations show that collisions drive the velocity distribution to a "horseshoe" shape after a few collision times. This feature extends to all radial positions as long as the electric field keeps increasing linearly versus radius. If the electric field is introduced suddenly, there is a transition from the collision-free pulsating Maxwellian distributions obtained in previous work (Ma and St.-Maurice, J. Geophys. Res., 113:A05312, 2008) to the "horseshoe" shapes on a time scale of within the few collision times. We also show how the transport properties evolve in a similar fashion, from oscillating to a non-oscillating features over the same time interval.

  11. Convolution Inequalities for the Boltzmann Collision Operator

    NASA Astrophysics Data System (ADS)

    Alonso, Ricardo J.; Carneiro, Emanuel; Gamba, Irene M.

    2010-09-01

    We study integrability properties of a general version of the Boltzmann collision operator for hard and soft potentials in n-dimensions. A reformulation of the collisional integrals allows us to write the weak form of the collision operator as a weighted convolution, where the weight is given by an operator invariant under rotations. Using a symmetrization technique in L p we prove a Young’s inequality for hard potentials, which is sharp for Maxwell molecules in the L 2 case. Further, we find a new Hardy-Littlewood-Sobolev type of inequality for Boltzmann collision integrals with soft potentials. The same method extends to radially symmetric, non-increasing potentials that lie in some {Ls_{weak}} or L s . The method we use resembles a Brascamp, Lieb and Luttinger approach for multilinear weighted convolution inequalities and follows a weak formulation setting. Consequently, it is closely connected to the classical analysis of Young and Hardy-Littlewood-Sobolev inequalities. In all cases, the inequality constants are explicitly given by formulas depending on integrability conditions of the angular cross section (in the spirit of Grad cut-off). As an additional application of the technique we also obtain estimates with exponential weights for hard potentials in both conservative and dissipative interactions.

  12. Multireflection boundary conditions for lattice Boltzmann models.

    PubMed

    Ginzburg, Irina; d'Humières, Dominique

    2003-12-01

    We present a general framework for several previously introduced boundary conditions for lattice Boltzmann models, such as the bounce-back rule and the linear and quadratic interpolations. The objectives are twofold: first to give theoretical tools to study the existing link-type boundary conditions and their corresponding accuracy; second to design boundary conditions for general flows which are third-order kinetic accurate. Using these new boundary conditions, Couette and Poiseuille flows are exact solutions of the lattice Boltzmann models for a Reynolds number Re=0 (Stokes limit) for arbitrary inclination with the lattice directions. Numerical comparisons are given for Stokes flows in periodic arrays of spheres and cylinders, linear periodic array of cylinders between moving plates, and for Navier-Stokes flows in periodic arrays of cylinders for Re<200. These results show a significant improvement of the overall accuracy when using the linear interpolations instead of the bounce-back reflection (up to an order of magnitude on the hydrodynamics fields). Further improvement is achieved with the new multireflection boundary conditions, reaching a level of accuracy close to the quasianalytical reference solutions, even for rather modest grid resolutions and few points in the narrowest channels. More important, the pressure and velocity fields in the vicinity of the obstacles are much smoother with multireflection than with the other boundary conditions. Finally the good stability of these schemes is highlighted by some simulations of moving obstacles: a cylinder between flat walls and a sphere in a cylinder. PMID:14754343

  13. Boltzmann's "H"-Theorem and the Assumption of Molecular Chaos

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2011-01-01

    We describe a simple dynamical model of a one-dimensional ideal gas and use computer simulations of the model to illustrate two fundamental results of kinetic theory: the Boltzmann transport equation and the Boltzmann "H"-theorem. Although the model is time-reversal invariant, both results predict that the behaviour of the gas is time-asymmetric.…

  14. Asymptotic behaviour of the Boltzmann equation as a cosmological model

    NASA Astrophysics Data System (ADS)

    Lee, Ho

    2016-08-01

    As a Newtonian cosmological model the Vlasov-Poisson-Boltzmann system is considered, and a slightly modified Boltzmann equation, which describes the stability of an expanding universe, is derived. Asymptotic behaviour of solutions turns out to depend on the expansion of the universe, and in this paper we consider the soft potential case and will obtain asymptotic behaviour.

  15. Thermal equation of state for lattice Boltzmann gases

    NASA Astrophysics Data System (ADS)

    Ran, Zheng

    2009-06-01

    The Galilean invariance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar-Gross-Krook model are proposed together with their rigorous theoretical background. From the viewpoint of group invariance, recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar-Gross-Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics.

  16. Coarse-grained distributions and superstatistics

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2006-01-01

    We show an interesting connection between non-standard (non-Boltzmannian) distribution functions arising in the theory of violent relaxation for collisionless stellar systems [D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136 (1967) 101.] and the notion of superstatistics recently introduced by [Beck and Cohen Physica A 322 (2003) 267]. The common link between these two theories is the emergence of coarse-grained distributions arising out of fine-grained distributions. The coarse-grained distribution functions are written as a superposition of Boltzmann factors weighted by a non-universal function. Even more general distributions can arise in case of incomplete violent relaxation (non-ergodicity). They are stable stationary solutions of the Vlasov equation. We also discuss analogies and differences between the statistical equilibrium state of a multi-components self-gravitating system and the metaequilibrium (or quasi-equilibrium) states of a collisionless stellar system. Finally, we stress the important distinction between entropies, generalized entropies, relative entropies and H-functions. We discuss applications of these ideas in two-dimensional turbulence and for other systems with long-range interactions.

  17. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    SciTech Connect

    Booth, T.E.

    1992-12-01

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed.

  18. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  19. Thermal equilibrium properties of surface hopping with an implicit Langevin bath

    SciTech Connect

    Sherman, M. C.; Corcelli, S. A.

    2015-01-14

    The ability of fewest switches surface hopping (FSSH) approach, where the classical degrees of freedom are coupled to an implicit Langevin bath, to establish and maintain an appropriate thermal equilibrium was evaluated in the context of a three site model for electron transfer. The electron transfer model consisted of three coupled diabatic states that each depends harmonically on the collective bath coordinate. This results in three states with increasing energy in the adiabatic representation. The adiabatic populations and distributions of the collective solvent coordinate were monitored during the course of 250 ns FSSH-Langevin (FSSH-L) simulations performed at a broad range of temperatures and for three different nonadiabatic coupling strengths. The agreement between the FSSH-L simulations and numerically exact results for the adiabatic population ratios and solvent coordinate distributions was generally favorable. The FSSH-L method produces a correct Boltzmann distribution of the solvent coordinate on each of the adiabats, but the integrated populations are slightly incorrect because FSSH does not rigorously obey detailed balance. The overall agreement is better at high temperatures and for high nonadiabatic coupling, which agrees with a previously reported analytical and simulation analysis [J. R. Schmidt, P. V. Parandekar, and J. C. Tully, J. Chem. Phys. 129, 044104 (2008)] on a two-level system coupled to a classical bath.

  20. Comparison of fluid neutral models for one-dimensional plasma edge modeling with a finite volume solution of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Horsten, N.; Dekeyser, W.; Samaey, G.; Baelmans, M.

    2016-01-01

    We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assuming equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.

  1. Poisson–Boltzmann versus Size-Modified Poisson–Boltzmann Electrostatics Applied to Lipid Bilayers

    PubMed Central

    2015-01-01

    Mean-field methods, such as the Poisson–Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson–Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation. PMID:25426875

  2. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.

    PubMed

    Munafò, A; Panesi, M; Magin, T E

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models. PMID:25353565

  3. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Munafò, A.; Panesi, M.; Magin, T. E.

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N2-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N2 molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  4. Lattice Boltzmann simulation of flow around two, three and four circular cylinders in close proximity

    NASA Astrophysics Data System (ADS)

    Kang, XiuYing; Su, YanPing

    2012-10-01

    Cross-flows around two, three and four circular cylinders in tandem, side-by-side, isosceles triangle and square arrangements are simulated using the incompressible lattice Boltzmann method with a second-order accurate curved boundary condition at Reynolds number 200 and the cylinder center-to-center transverse or/and longitudinal spacing 1.5 D, where D is the identical circular cylinder diameter. The wake patterns, pressure and force distributions on the cylinders and mechanism of flow dynamics are investigated and compared among the four cases. The results also show that flows around the three or four cylinders significantly differ from those of the two cylinders in the tandem and side-by-side arrangements although there are some common features among the four cases due to their similarity of structures, which are interesting, complex and useful for practical applications. This study provides a useful database to validate the simplicity, accuracy and robustness of the Lattice Boltzmann method.

  5. Regularized lattice Boltzmann model for a class of convection-diffusion equations.

    PubMed

    Wang, Lei; Shi, Baochang; Chai, Zhenhua

    2015-10-01

    In this paper, a regularized lattice Boltzmann model for a class of nonlinear convection-diffusion equations with variable coefficients is proposed. The main idea of the present model is to introduce a set of precollision distribution functions that are defined only in terms of macroscopic moments. The Chapman-Enskog analysis shows that the nonlinear convection-diffusion equations can be recovered correctly. Numerical tests, including Fokker-Planck equations, Buckley-Leverett equation with discontinuous initial function, nonlinear convection-diffusion equation with anisotropic diffusion, are carried out to validate the present model, and the results show that the present model is more accurate than some available lattice Boltzmann models. It is also demonstrated that the present model is more stable than the traditional single-relaxation-time model for the nonlinear convection-diffusion equations. PMID:26565368

  6. Thermal lattice Boltzmann method for complex microflows

    NASA Astrophysics Data System (ADS)

    Yasuoka, Haruka; Kaneda, Masayuki; Suga, Kazuhiko

    2016-07-01

    A methodology to simulate thermal fields in complex microflow geometries is proposed. For the flow fields, the regularized multiple-relaxation-time lattice Boltzmann method (LBM) is applied coupled with the diffusive-bounce-back boundary condition for wall boundaries. For the thermal fields, the regularized lattice Bhatnagar-Gross-Krook model is applied. For the thermal wall boundary condition, a newly developed boundary condition, which is a mixture of the diffuse scattering and constant temperature conditions, is applied. The proposed set of schemes is validated by reference data in the Fourier flows and square cylinder flows confined in a microchannel. The obtained results confirm that it is essential to apply the regularization to the thermal LBM for avoiding kinked temperature profiles in complex thermal flows. The proposed wall boundary condition is successful to obtain thermal jumps at the walls with good accuracy.

  7. Lattice Boltzmann model for numerical relativity.

    PubMed

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems. PMID:26986435

  8. Lattice Boltzmann simulations of lymphatic pumping

    NASA Astrophysics Data System (ADS)

    Kunert, Christian; Padera, Tim P.; Munn, Lance L.

    2012-02-01

    Lymphatic flow plays an important role in the progress of many diseases, including lymphedema and metastasis. However lymphatic pumping and flow is poorly understood. Here, we present a computer model that is based on biological observations of lymphatic pumping. Fluid flow is simulated by a D2Q9 lattice Boltzmann model. The boundary of the vessels moves according to shear-induced nitric oxide production, and wall motion transfers momentum to the fluid to induce flow. Because the model only includes local properties, it can be highly parallelized. In our case we utilize graphic processors (GPU) to achieve high performance computation. We show that the model provides stable pumping over a wide range of parameter values, with optimum flow achieved in the biological ranges. Furthermore, we investigate the efficiency by analyzing the flow rate and pumping frequency in order to compare the behavior of the model with existing in vivo data.

  9. Boltzmann active walkers and rough surfaces

    NASA Astrophysics Data System (ADS)

    Pochy, R. D.; Kayser, D. R.; Aberle, L. K.; Lam, L.

    1993-06-01

    An active walker model (AWM) was recently proposed by Freimuth and Lam for the generation of various filamentary patterns. In an AWM, the walker changes the landscape as it walks, and its steps are in turn influenced by the changing landscape. The landscape so obtained is a rough surface. In this paper, the properties of such a rough surface (with average height conserved) generated by a Boltzmann active walker in 1 + 1 dimensions is investigated in detail. The scaling properties of the surface thickness σ T is found to belong to a new class quite different from other types of fractal surfaces. For example, σ T is independent of the system size L, but is a function of the “temperature” T. Soliton propagation is found when T = 0.

  10. Lattice Boltzmann model for numerical relativity

    NASA Astrophysics Data System (ADS)

    Ilseven, E.; Mendoza, M.

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  11. Shock wave structure using nonlinear model Boltzmann equations

    NASA Technical Reports Server (NTRS)

    Segal, Ben Maurice

    1971-01-01

    The structure of a strong plane shock wave in a monatomic rarefied perfect gas is one of the simplest problems able to be posed in kinetic theory, and one of the hardest to solve. Its simplicity lies in the absence of solid boundaries, geometrical complications, or internal molecular energy. Its difficulty arises from the great departure of the gas from equilibrium within the shock, which invalidates many of the techniques used successfully elsewhere in kinetic theory. In addition to this theoretical challenge, the modern development of ballistics and hypersonic flight has helped to stimulate extensive theoretical and experimental interest in the shock problem. The experimenters in turn have encountered great difficulties on account of the very small physical dimensions of shocks. In fact, until very recently indeed, any close comparisons of theoretical and experimental shock structure results have been rather unprofitable due to the inadequacies of both theory and experiment. During the last few years this situation has been appreciably improved by development of the Monte Carlo method. This allows idealized 'experiments' to be performed on large computers instead of in wind tunnels, using a known intermolecular force law. The most developed of these methods has been shown to be equivalent theoretically to the Boltzmann equation and to give results which agree extremely closely with measurements of high accuracy. Thus Monte Carlo results not only form the soundest basis for our present theoretical knowledge of shock wave structure, but, for purposes of developing other theories, can also be considered a very valuable experimental resource. However, such results remain very expensive to obtain. In this thesis we develop more economical kinetic theory methods for the approximate prediction of shock structure, and compare our results with those of the Monte Carlo method.

  12. Thermostatistically approaching living systems: Boltzmann Gibbs or nonextensive statistical mechanics?

    NASA Astrophysics Data System (ADS)

    Tsallis, Constantino

    2006-03-01

    Boltzmann-Gibbs ( BG) statistical mechanics is, since well over one century, successfully used for many nonlinear dynamical systems which, in one way or another, exhibit strong chaos. A typical case is a classical many-body short-range-interacting Hamiltonian system (e.g., the Lennard-Jones model for a real gas at moderately high temperature). Its Lyapunov spectrum (which characterizes the sensitivity to initial conditions) includes positive values. This leads to ergodicity, the stationary state being thermal equilibrium, hence standard applicability of the BG theory is verified. The situation appears to be of a different nature for various phenomena occurring in living organisms. Indeed, such systems exhibit a complexity which does not really accommodate with this standard dynamical behavior. Life appears to emerge and evolve in a kind of delicate situation, at the frontier between large order (low adaptability and long memory; typically characterized by regular dynamics, hence only nonpositive Lyapunov exponents) and large disorder (high adaptability and short memory; typically characterized by strong chaos, hence at least one positive Lyapunov exponent). Along this frontier, the maximal relevant Lyapunov exponents are either zero or close to that, characterizing what is currently referred to as weak chaos. This type of situation is shared by a great variety of similar complex phenomena in economics, linguistics, to cite but a few. BG statistical mechanics is built upon the entropy S=-k∑plnp. A generalization of this form, S=k(1-∑piq)/(q-1) (with S=S), has been proposed in 1988 as a basis for formulating what is nowadays currently called nonextensive statistical mechanics. This theory appears to be particularly adapted for nonlinear dynamical systems exhibiting, precisely, weak chaos. Here, we briefly review the theory, its dynamical foundation, its applications in a variety of disciplines (with special emphasis to living systems), and its connections with

  13. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods.

    PubMed

    Alizadeh, A; Wang, J K; Pooyan, S; Mirbozorgi, S A; Wang, M

    2013-10-01

    In this paper, the effect of temperature difference between inlet flow and walls on the electro-osmotic flow through a two-dimensional microchannel is investigated. The main objective is to study the effect of temperature variations on the distribution of ions and consequently internal electric potential field, electric body force, and velocity fields in an electro-osmotic flow. We assume constant temperature and zeta potential on walls and use the mean temperature of each cross section to characterize the Boltzmann ion distribution across the channel. Based on these assumptions, the multiphysical transports are still able to be described by the classical Poisson-Boltzmann model. In this work, the Navier-Stokes equation for fluid flow, the Poisson-Boltzmann equation for ion distribution, and the energy equation for heat transfer are solved by a couple lattice Boltzmann method. The modeling results indicate that the temperature difference between walls and the inlet solution may lead to two symmetrical vortices at the entrance region of the microchannel which is appropriate for mixing enhancements. The advantage of this phenomenon for active control of mixing in electro-osmotic flow is the manageability of the vortex scale without extra efforts. For instance, the effective domain of this pattern could broaden by the following modulations: decreasing the external electric potential field, decreasing the electric double layer thickness, or increasing the temperature difference between inlet flow and walls. This work may provide a novel strategy for design or optimization of microsystems. PMID:23859813

  14. High-performance reconfigurable hardware architecture for restricted Boltzmann machines.

    PubMed

    Ly, Daniel Le; Chow, Paul

    2010-11-01

    Despite the popularity and success of neural networks in research, the number of resulting commercial or industrial applications has been limited. A primary cause for this lack of adoption is that neural networks are usually implemented as software running on general-purpose processors. Hence, a hardware implementation that can exploit the inherent parallelism in neural networks is desired. This paper investigates how the restricted Boltzmann machine (RBM), which is a popular type of neural network, can be mapped to a high-performance hardware architecture on field-programmable gate array (FPGA) platforms. The proposed modular framework is designed to reduce the time complexity of the computations through heavily customized hardware engines. A method to partition large RBMs into smaller congruent components is also presented, allowing the distribution of one RBM across multiple FPGA resources. The framework is tested on a platform of four Xilinx Virtex II-Pro XC2VP70 FPGAs running at 100 MHz through a variety of different configurations. The maximum performance was obtained by instantiating an RBM of 256 × 256 nodes distributed across four FPGAs, which resulted in a computational speed of 3.13 billion connection-updates-per-second and a speedup of 145-fold over an optimized C program running on a 2.8-GHz Intel processor. PMID:20858578

  15. Volumetric lattice Boltzmann simulation for blood flow in aorta arteries

    NASA Astrophysics Data System (ADS)

    Deep, Debanjan; Yu, Huidan (Whitney); Teague, Shawn

    2012-11-01

    Complicated moving boundaries pose a major challenge in computational fluid dynamics for complex flows, especially in the biomechanics of both blood flow in the cardiovascular system and air flow in the respiratory system where the compliant nature of the vessels can have significant effects on the flow rate and wall shear stress. We develop a computation approach to treat arbitrarily moving boundaries using a volumetric representation of lattice Boltzmann method, which distributes fluid particles inside lattice cells. A volumetric bounce-back procedure is applied in the streaming step while momentum exchange between the fluid and moving solid boundary are accounted for in the collision sub-step. Additional boundary-induced migration is introduced to conserve fluid mass as the boundary moves across fluid cells. The volumetric LBM (VLBM) is used to simulate blood flow in both normal and dilated aorta arteries. We first compare flow structure and pressure distribution in steady state with results from Navier-Stokes based solver and good agreements are achieved. Then we focus on wall stress within the aorta for different heart pumping condition and present quantitative measurement of wall shear and normal stress.

  16. Phonon Mapping in Flowing Equilibrium

    NASA Astrophysics Data System (ADS)

    Ruff, J. P. C.

    2015-03-01

    When a material conducts heat, a modification of the phonon population occurs. The equilibrium Bose-Einstein distribution is perturbed towards flowing-equilibrium, for which the distribution function is not analytically known. Here I argue that the altered phonon population can be efficiently mapped over broad regions of reciprocal space, via diffuse x-ray scattering or time-of-flight neutron scattering, while a thermal gradient is applied across a single crystal sample. When compared to traditional transport measurements, this technique offers a superior, information-rich new perspective on lattice thermal conductivity, wherein the band and momentum dependences of the phonon thermal current are directly resolved. The proposed method is benchmarked using x-ray thermal diffuse scattering measurements of single crystal diamond under transport conditions. CHESS is supported by the NSF & NIH/NIGMS via NSF Award DMR-1332208.

  17. Mode-analytical Examination of Vortex Dynamics of a Pure Electron Plasma in the Relaxation to a Meta-equilibrium Distribution

    SciTech Connect

    Kawai, Yosuke; Kiwamoto, Yasuhito; Soga, Yukihiro; Aoki, Jun; Ito, Kiyokazu; Sanpei, Akio; Itoh, Kimitaka

    2006-10-18

    Vortex patches of intense density generated by the diocotron instability in a magnetized pure electron plasma merge each other accompanied by the production of filaments and finally relax to a bell shape distribution surrounded by a halo of low-density electrons. Here we reexamine the vortical dynamics in terms of the time evolution of the power spectrum in the mode-number space. Triggered by the instability, the initial axisymmetric ring distribution is deformed and torn into mesoscopic blobs, and a distribution of radial flux is generated around the blobs. In the merging process between vortex patches, the energy spectrum expands toward higher mode-number space, while the dominant mode shifts downward to lower mode numbers as this process proceeds. The turbulent period characterized by the repeated mergers is accompanied by a fast reduction of the enstrophy. During this relaxation the energy and the angular momentum of the whole plasma system remain conserved. In a slow process after the rapid relaxation a convex profile appears in the density distribution accompanied by the recovery of a symmetric distribution of the azimuthal flux. The spectra in the final state concentrate at symmetric modes with a slight contribution from orbiting motion of the plasma column.

  18. Quantum statistical theory of semiconductor junctions in thermal equilibrium

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1977-01-01

    Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.

  19. Surface roughness effects on equilibrium temperature.

    NASA Technical Reports Server (NTRS)

    Houchens, A. F.; Hering, R. G.

    1972-01-01

    An analysis is presented for evaluation of equilibrium temperature distribution on radiatively adiabatic, adjoint planes which are uniformly irradiated by a collimated solar flux. The analysis employs a semigrey spectral model. Radiation properties for surface emitted radiation are obtained from the expressions of electromagnetic theory for smooth surfaces. Rough surface properties for solar radiation are given by the Beckmann bidirectional reflectance model. Numerical solutions to the governing equations yield equilibrium temperature distributions for a range of the influencing parameters. Surface roughness has little influence on equilibrium temperature for materials with high values for solar absorptance. However, for low or intermediate values of solar absorptance, roughness effects on the spatial distribution of reflected solar radiation can significantly alter equilibrium temperature particularly at surface elements where radiant interaction is small.

  20. Investigations of microscale fluid-thermal phenomena based on the deterministic Boltzmann-ESBGK model

    NASA Astrophysics Data System (ADS)

    Guo, Xiaohui

    Fluid and thermal problems are widely encountered in micro/nano-scale devices, the characteristic lengths of which are from hundreds of microns down to tens of nanometers. A great number of such devices involve fundamental components like microchannels, capillaries, membranes and cantilever beams. Continuum assumptions that lead to classical governing equations such as Navier-Stokes equations and Fourier Laws break down when the characteristic size shrinks by an order of millions. In addition, conventional sensors, actuators and controllers turn to be insufficient to depict the flow, thermal, or electrical fields in micro-devices without impacting the original conditions greatly. Therefore, the development of numerical methods becomes indispensable in design and performance analysis of micro-electro-mechanical systems (MEMS). The main goal of this PhD research is the development, implementation and application of comprehensive deterministic Boltzmann-ESBGK modeling framework to micro-scale fluid-thermal phenomena. Investigation of gas flows in short rectangular microchannels has been carried out to understand the rarefaction effects on the reduced mass-flow-rate as well as the non-equilibrium effects on the temperature components. At high Knudsen numbers, the reduced mass-flow-rate only depends on the pressure ratio and the temperature components deviate at the channel exit. For gas flows in long microchannels with and without constrictions, the Navier-Stokes equations with first-order slip boundary conditions are solved. Numerical results accurately predict the entrance pressure drop comparing to high-resolution experimental data using pressure-sensitive-paint (PSP). Simultions show clearly that the compressibility effects become less important than the rarefaction effects at low pressures. The coupled gas-phonon Boltzmann solver has been developed. The reduced distribution functions are used in the two-dimensional code to reduce the computational cost. The

  1. Thermal equilibrium in Einstein's elevator.

    PubMed

    Sánchez-Rey, Bernardo; Chacón-Acosta, Guillermo; Dagdug, Leonardo; Cubero, David

    2013-05-01

    We report fully relativistic molecular-dynamics simulations that verify the appearance of thermal equilibrium of a classical gas inside a uniformly accelerated container. The numerical experiments confirm that the local momentum distribution in this system is very well approximated by the Jüttner function-originally derived for a flat spacetime-via the Tolman-Ehrenfest effect. Moreover, it is shown that when the acceleration or the container size is large enough, the global momentum distribution can be described by the so-called modified Jüttner function, which was initially proposed as an alternative to the Jüttner function. PMID:23767501

  2. Pre-equilibrium decay processes in energetic heavy ion reactions

    SciTech Connect

    Blann, M.

    1986-04-15

    The Boltzmann master equation (BME) is defined for application to precompound decay in heavy ion reactions in the 10 100 MeV/nucleon regime. Predicted neutron spectra are compared with measured results for central collisions of /sup 20/Ne and /sup 12/C with /sup 165/Ho target nuclei. Comparisons are made with subthreshold ..pi../sup 0/ yields in heavy ion reactions between 35 and 84 MeV/nucleon, and with the ..pi../sup 0/ spectra. The BME is found to be an excellent tool for investigating these experimentally observed aspects of non-equilibrium heavy ion reactions. 18 refs., 8 figs.

  3. Boltzmann-type control of opinion consensus through leaders

    PubMed Central

    Albi, G.; Pareschi, L.; Zanella, M.

    2014-01-01

    The study of formations and dynamics of opinions leading to the so-called opinion consensus is one of the most important areas in mathematical modelling of social sciences. Following the Boltzmann-type control approach recently introduced by the first two authors, we consider a group of opinion leaders who modify their strategy accordingly to an objective functional with the aim of achieving opinion consensus. The main feature of the Boltzmann-type control is that, owing to an instantaneous binary control formulation, it permits the minimization of the cost functional to be embedded into the microscopic leaders’ interactions of the corresponding Boltzmann equation. The related Fokker–Planck asymptotic limits are also derived, which allow one to give explicit expressions of stationary solutions. The results demonstrate the validity of the Boltzmann-type control approach and the capability of the leaders’ control to strategically lead the followers’ opinion. PMID:25288820

  4. Fluctuations around equilibrium laws in ergodic continuous-time random walks.

    PubMed

    Schulz, Johannes H P; Barkai, Eli

    2015-06-01

    We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables. PMID:26172683

  5. Fluctuations around equilibrium laws in ergodic continuous-time random walks

    NASA Astrophysics Data System (ADS)

    Schulz, Johannes H. P.; Barkai, Eli

    2015-06-01

    We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.

  6. Getting Freshman in Equilibrium.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Various aspects of chemical equilibrium were discussed in six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). These include student problems in understanding hydrolysis, helping students discover/uncover topics, equilibrium demonstrations, instructional strategies, and flaws to kinetic…

  7. Multiple-Relaxation-Time Lattice Boltzmann Models in 3D

    NASA Technical Reports Server (NTRS)

    dHumieres, Dominique; Ginzburg, Irina; Krafczyk, Manfred; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann equation, with examples of fifteen-velocity and nineteen-velocity models in three dimensions. Simulation of a diagonally lid-driven cavity flow in three dimensions at Re=500 and 2000 is performed. The results clearly demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over the popular lattice Bhatnagar-Gross-Krook equation.

  8. An improved multiphase lattice Boltzmann flux solver for three-dimensional flows with large density ratio and high Reynolds number

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shu, C.; Yang, L. M.

    2015-12-01

    An improved multiphase lattice Boltzmann flux solver (MLBFS) is proposed in this work for effective simulation of three-dimensional (3D) multiphase flows with large density ratio and high Reynolds number. As a finite volume scheme, the MLBFS originally proposed in [27] applies the finite volume method to solve for macroscopic flow variables directly. The fluxes are reconstructed locally at each cell interface by using the standard LBM solutions. Due to the modeling error of the standard LBM, the reconstructed fluxes deviate from those in the Navier-Stokes equations; and to compensate this error, a complex tensor is introduced in the original MLBFS. However, the computation of the tensor introduces additional complexity and usually needs a relatively thicker interface thickness to maintain numerical stability, which makes the solver be complex and inefficient in the 3D case. To remove this drawback, in this work, a theoretical analysis to the formulations obtained from the Chapman-Enskog expansion is conducted. It is shown that the modeling error can be effectively removed by modifying the computation of the equilibrium density distribution function. With this improvement, the proposed 3D MLBFS not only avoids the calculation of the compensation tensor but also is able to maintain numerical stability with very thin interface thickness. Several benchmark cases, including the challenging droplet impacting on a dry surface, head-on collisions of binary droplets and droplet splashing on a thin film with density ratio 1000 and Reynolds number up to 3000, are studied to validate the proposed solver. The obtained results agree well with the published data.

  9. A Simple Method for Modeling Collision Processes in Plasmas with a Kappa Energy Distribution

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Savin, D. W.

    2015-08-01

    We demonstrate that a nonthermal distribution of particles described by a kappa distribution can be accurately approximated by a weighted sum of Maxwell-Boltzmann distributions. We apply this method to modeling collision processes in kappa-distribution plasmas, with a particular focus on atomic processes important for solar physics. The relevant collision process rate coefficients are generated by summing appropriately weighted Maxwellian rate coefficients. This method reproduces the rate coefficients for a kappa distribution to an estimated accuracy of better than 3%. This is equal to or better than the accuracy of rate coefficients generated using “reverse-engineering” methods, which attempt to extract the needed cross sections from the published Maxwellian rate coefficient data and then reconvolve the extracted cross sections with the desired kappa distribution. Our approach of summing Maxwellian rate coefficients is easy to implement using existing spectral analysis software. Moreover, the weights in the sum of the Maxwell-Boltzmann distribution rate coefficients can be found for any value of the parameter κ, thereby enabling one to model plasmas with a time-varying κ. Tabulated Maxwellian fitting parameters are given for specific values of κ from 1.7 to 100. We also provide polynomial fits to these parameters over this entire range. Several applications of our technique are presented, including the plasma equilibrium charge state distribution (CSD), predicting line ratios, modeling the influence of electron impact multiple ionization on the equilibrium CSD of kappa-distribution plasmas, and calculating the time-varying CSD of plasmas during a solar flare.

  10. Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.

  11. Lattice Boltzmann modeling of three-phase incompressible flows.

    PubMed

    Liang, H; Shi, B C; Chai, Z H

    2016-01-01

    In this paper, based on multicomponent phase-field theory we intend to develop an efficient lattice Boltzmann (LB) model for simulating three-phase incompressible flows. In this model, two LB equations are used to capture the interfaces among three different fluids, and another LB equation is adopted to solve the flow field, where a new distribution function for the forcing term is delicately designed. Different from previous multiphase LB models, the interfacial force is not used in the computation of fluid velocity, which is more reasonable from the perspective of the multiscale analysis. As a result, the computation of fluid velocity can be much simpler. Through the Chapman-Enskog analysis, it is shown that the present model can recover exactly the physical formulations for the three-phase system. Numerical simulations of extensive examples including two circular interfaces, ternary spinodal decomposition, spreading of a liquid lens, and Kelvin-Helmholtz instability are conducted to test the model. It is found that the present model can capture accurate interfaces among three different fluids, which is attributed to its algebraical and dynamical consistency properties with the two-component model. Furthermore, the numerical results of three-phase flows agree well with the theoretical results or some available data, which demonstrates that the present LB model is a reliable and efficient method for simulating three-phase flow problems. PMID:26871191

  12. An axisymmetric multiple-relaxation-time lattice Boltzmann scheme

    NASA Astrophysics Data System (ADS)

    Xie, Wenjun

    2015-01-01

    A multiple-relaxation-time (MRT) lattice Boltzmann (LB) scheme developed for axisymmetric flows recovers the complete continuity and Navier-Stokes equations. This scheme follows the strategy of the standard D2Q9 model by using a single particle distribution function and a simple "collision-streaming" updating rule. The extra terms related to axisymmetry in the macroscopic equations are recovered by adding source terms into the LB equation, which are simple and involve no gradients. The compressible effect retained in the Navier-Stokes equations is recovered by introducing a term related to the reversed transformation matrix for MRT collision operator, so as to produce a correct bulk viscosity, making it suitable for compressible flows with high frequency and low Mach number. The validity of the scheme is demonstrated by testing the Hagen-Poiseuille flow and 3D Womersley flow, as well as the standing acoustic waves in a closed cylindrical chamber. The numerical experiments show desirable stability at low viscosities, enabling to simulate a standing ultrasound field in centimeters space.

  13. Lattice Boltzmann modeling of three-phase incompressible flows

    NASA Astrophysics Data System (ADS)

    Liang, H.; Shi, B. C.; Chai, Z. H.

    2016-01-01

    In this paper, based on multicomponent phase-field theory we intend to develop an efficient lattice Boltzmann (LB) model for simulating three-phase incompressible flows. In this model, two LB equations are used to capture the interfaces among three different fluids, and another LB equation is adopted to solve the flow field, where a new distribution function for the forcing term is delicately designed. Different from previous multiphase LB models, the interfacial force is not used in the computation of fluid velocity, which is more reasonable from the perspective of the multiscale analysis. As a result, the computation of fluid velocity can be much simpler. Through the Chapman-Enskog analysis, it is shown that the present model can recover exactly the physical formulations for the three-phase system. Numerical simulations of extensive examples including two circular interfaces, ternary spinodal decomposition, spreading of a liquid lens, and Kelvin-Helmholtz instability are conducted to test the model. It is found that the present model can capture accurate interfaces among three different fluids, which is attributed to its algebraical and dynamical consistency properties with the two-component model. Furthermore, the numerical results of three-phase flows agree well with the theoretical results or some available data, which demonstrates that the present LB model is a reliable and efficient method for simulating three-phase flow problems.

  14. Force evaluation in the lattice Boltzmann method involving curved geometry

    NASA Astrophysics Data System (ADS)

    Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi

    2002-04-01

    The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum-exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second-order accuracy based on our recent works [Mei et al., J. Comput. Phys. 155, 307 (1999); ibid. 161, 680 (2000)]. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.

  15. Lattice Boltzmann method for one-dimensional vector radiative transfer.

    PubMed

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2016-02-01

    A one-dimensional vector radiative transfer (VRT) model based on lattice Boltzmann method (LBM) that considers polarization using four Stokes parameters is developed. The angular space is discretized by the discrete-ordinates approach, and the spatial discretization is conducted by LBM. LBM has such attractive properties as simple calculation procedure, straightforward and efficient handing of boundary conditions, and capability of stable and accurate simulation. To validate the performance of LBM for vector radiative transfer, four various test problems are examined. The first case investigates the non-scattering thermal-emitting atmosphere with no external collimated solar. For the other three cases, the external collimated solar and three different scattering types are considered. Particularly, the LBM is extended to solve VRT in the atmospheric aerosol system where the scattering function contains singularities and the hemisphere space distributions for the Stokes vector are presented and discussed. The accuracy and computational efficiency of this algorithm are discussed. Numerical results show that the LBM is accurate, flexible and effective to solve one-dimensional polarized radiative transfer problems. PMID:26906779

  16. Large-scale lattice-Boltzmann simulations over lambda networks

    NASA Astrophysics Data System (ADS)

    Saksena, R.; Coveney, P. V.; Pinning, R.; Booth, S.

    Amphiphilic molecules are of immense industrial importance, mainly due to their tendency to align at interfaces in a solution of immiscible species, e.g., oil and water, thereby reducing surface tension. Depending on the concentration of amphiphiles in the solution, they may assemble into a variety of morphologies, such as lamellae, micelles, sponge and cubic bicontinuous structures exhibiting non-trivial rheological properties. The main objective of this work is to study the rheological properties of very large, defect-containing gyroidal systems (of up to 10243 lattice sites) using the lattice-Boltzmann method. Memory requirements for the simulation of such large lattices exceed that available to us on most supercomputers and so we use MPICH-G2/MPIg to investigate geographically distributed domain decomposition simulations across HPCx in the UK and TeraGrid in the US. Use of MPICH-G2/MPIg requires the port-forwarder to work with the grid middleware on HPCx. Data from the simulations is streamed to a high performance visualisation resource at UCL (London) for rendering and visualisation. Lighting the Blue Touchpaper for UK e-Science - Closing Conference of ESLEA Project March 26-28 2007 The George Hotel, Edinburgh, UK

  17. Lattice Boltzmann simulation for forced two-dimensional turbulence.

    PubMed

    Xia, YuXian; Qian, YueHong

    2014-08-01

    The direct numerical simulations of forced two-dimensional turbulent flow are presented by using the lattice Boltzmann method. The development of an energy-enstrophy double cascade is investigated in the two cases of external force of two-dimensional turbulence, Gaussian force and Kolmogorov force. It is found that the friction force is a necessary condition of the occurrence of a double cascade. The energy spectrum k(-3) in the enstrophy inertial range is in accord with the classical Kraichnan theory for both external forces. The energy spectrum of the Gaussian force case in an inverse cascade is k(-2); however, the Kolmogorov force drives the k(-5/3) energy in a backscatter cascade. The result agrees with Scott's standpoint, which describes nonrobustness of the two-dimensional turbulent inverse cascade. Also, intermittency is found for the enstrophy cascade in two cases of the external force form. Intermittency refers to the nonuniform distribution of saddle points in the two-dimensional turbulent flow. PMID:25215817

  18. Lattice Boltzmann simulation for forced two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Xia, YuXian; Qian, YueHong

    2014-08-01

    The direct numerical simulations of forced two-dimensional turbulent flow are presented by using the lattice Boltzmann method. The development of an energy-enstrophy double cascade is investigated in the two cases of external force of two-dimensional turbulence, Gaussian force and Kolmogorov force. It is found that the friction force is a necessary condition of the occurrence of a double cascade. The energy spectrum k-3 in the enstrophy inertial range is in accord with the classical Kraichnan theory for both external forces. The energy spectrum of the Gaussian force case in an inverse cascade is k-2; however, the Kolmogorov force drives the k-5/3 energy in a backscatter cascade. The result agrees with Scott's standpoint, which describes nonrobustness of the two-dimensional turbulent inverse cascade. Also, intermittency is found for the enstrophy cascade in two cases of the external force form. Intermittency refers to the nonuniform distribution of saddle points in the two-dimensional turbulent flow.

  19. Lattice Boltzmann description of magnetization in porous media

    NASA Astrophysics Data System (ADS)

    Guyer, R. A.; McCall, K. R.

    2000-08-01

    The magnetic moments of fluid particles filling the pore space of a porous material (1) reside in a complex space, (2) are carried by the particles in diffusive exploration of the pore space, and (3) relax when the particles approach relaxation sites on the walls of the pore space. Further, when the magnetic moments are the object of a nuclear magnetic resonance experiment, they are manipulated by rf magnetic fields, internal magnetic field gradients, and applied magnetic field gradient pulses. In this paper, a lattice Boltzmann computational procedure is described that accounts for all of the vagaries in the experience of a magnetic moment in a porous material. The time evolution of the longitudinal and transverse magnetization, in a variety of experimental situations, can be simulated with this computational procedure. The z component of the magnetization, the longitudinal magnetization, is described by a set of coarse grained distribution functions for a scalar fluid. The time evolution of these distribution functions involves a scattering process (to account for diffusion) and a probability of transmission out of the pore space (to account for surface relaxation). A numerical example, involving a pore adjacent to a microporous region, is examined in detail. The transverse magnetization is a vector. Its x and y magnetization components are carried by separate scalar fluids. There is a set of coarse grained distribution functions for each fluid. Radio frequency magnetic fields, internal magnetic field gradients, applied magnetic field gradient pulses, etc., represent conversion processes in which the two fluids transform into one another. Two examples, one involving a periodic field gradient and a Hahn echo, and the other involving an isolated pore and a PFG sequence, are examined in detail.

  20. Relaxation of hot and massive tracers using numerical solutions of the Boltzmann equation.

    PubMed

    Khurana, Saheba; Thachuk, Mark

    2016-03-14

    A numerical method using B-splines is used to solve the linear Boltzmann equation describing the energy relaxation of massive tracer particles moving through a dilute bath gas. The smooth and rough hard sphere and Maxwell molecule models are used with a variety of mass ratios and initial energies to test the capability of the numerical method. Massive tracers are initialized with energies typically found in energy loss experiments in mass spectrometry using biomolecules. The method is also used to examine the applicability of known expressions for the kinetic energy decay from the Fokker-Planck equation for the Rayleigh gas, where we find that results are generally good provided that the initial energy is properly bounded. Otherwise, the energy decay is not constant and a more complex behaviour occurs. The validity of analytical expressions for drag coefficients for spherical particles under specular and diffuse scattering is also tested. We find such expressions are generally good for hard spheres but cannot account, as expected, for the softer repulsive walls of the Maxwell (and real) molecules. Overall, the numerical method performed well even when tracers more than 400 times as massive as the bath were initialized with energies very far from equilibrium. This is a range of applicability beyond many of the standard methods for solving the Boltzmann equation. PMID:26979675

  1. Poisson-Boltzmann thermodynamics of counterions confined by curved hard walls

    NASA Astrophysics Data System (ADS)

    Šamaj, Ladislav; Trizac, Emmanuel

    2016-01-01

    We consider a set of identical mobile pointlike charges (counterions) confined to a domain with curved hard walls carrying a uniform fixed surface charge density, the system as a whole being electroneutral. Three domain geometries are considered: a pair of parallel plates, the cylinder, and the sphere. The particle system in thermal equilibrium is assumed to be described by the nonlinear Poisson-Boltzmann theory. While the effectively one-dimensional plates and the two-dimensional cylinder have already been solved, the three-dimensional sphere problem is not integrable. It is shown that the contact density of particles at the charged surface is determined by a first-order Abel differential equation of the second kind which is a counterpart of Enig's equation in the critical theory of gravitation and combustion or explosion. This equation enables us to construct the exact series solutions of the contact density in the regions of small and large surface charge densities. The formalism provides, within the mean-field Poisson-Boltzmann framework, the complete thermodynamics of counterions inside a charged sphere (salt-free system).

  2. Poisson-Boltzmann thermodynamics of counterions confined by curved hard walls.

    PubMed

    Šamaj, Ladislav; Trizac, Emmanuel

    2016-01-01

    We consider a set of identical mobile pointlike charges (counterions) confined to a domain with curved hard walls carrying a uniform fixed surface charge density, the system as a whole being electroneutral. Three domain geometries are considered: a pair of parallel plates, the cylinder, and the sphere. The particle system in thermal equilibrium is assumed to be described by the nonlinear Poisson-Boltzmann theory. While the effectively one-dimensional plates and the two-dimensional cylinder have already been solved, the three-dimensional sphere problem is not integrable. It is shown that the contact density of particles at the charged surface is determined by a first-order Abel differential equation of the second kind which is a counterpart of Enig's equation in the critical theory of gravitation and combustion or explosion. This equation enables us to construct the exact series solutions of the contact density in the regions of small and large surface charge densities. The formalism provides, within the mean-field Poisson-Boltzmann framework, the complete thermodynamics of counterions inside a charged sphere (salt-free system). PMID:26871116

  3. Relaxation of hot and massive tracers using numerical solutions of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Khurana, Saheba; Thachuk, Mark

    2016-03-01

    A numerical method using B-splines is used to solve the linear Boltzmann equation describing the energy relaxation of massive tracer particles moving through a dilute bath gas. The smooth and rough hard sphere and Maxwell molecule models are used with a variety of mass ratios and initial energies to test the capability of the numerical method. Massive tracers are initialized with energies typically found in energy loss experiments in mass spectrometry using biomolecules. The method is also used to examine the applicability of known expressions for the kinetic energy decay from the Fokker-Planck equation for the Rayleigh gas, where we find that results are generally good provided that the initial energy is properly bounded. Otherwise, the energy decay is not constant and a more complex behaviour occurs. The validity of analytical expressions for drag coefficients for spherical particles under specular and diffuse scattering is also tested. We find such expressions are generally good for hard spheres but cannot account, as expected, for the softer repulsive walls of the Maxwell (and real) molecules. Overall, the numerical method performed well even when tracers more than 400 times as massive as the bath were initialized with energies very far from equilibrium. This is a range of applicability beyond many of the standard methods for solving the Boltzmann equation.

  4. Comparison of Boltzmann equations with quantum dynamics for scalar fields

    SciTech Connect

    Lindner, Manfred; Mueller, Markus Michael

    2006-06-15

    Boltzmann equations are often used to study the thermal evolution of particle reaction networks. Prominent examples are the computation of the baryon asymmetry of the universe and the evolution of the quark-gluon plasma after relativistic heavy ion collisions. However, Boltzmann equations are only a classical approximation of the quantum thermalization process which is described by the so-called Kadanoff-Baym equations. This raises the question how reliable Boltzmann equations are as approximations to the full Kadanoff-Baym equations. Therefore, we present in this paper a detailed comparison between the Kadanoff-Baym and Boltzmann equations in the framework of a scalar {phi}{sup 4} quantum field theory in 3+1 space-time dimensions. The obtained numerical solutions reveal significant discrepancies in the results predicted by both types of equations. Apart from quantitative discrepancies, on a qualitative level the universality respected by the Kadanoff-Baym equations is severely restricted in the case of Boltzmann equations. Furthermore, the Kadanoff-Baym equations strongly separate the time scales between kinetic and chemical equilibration. This separation of time scales is absent for the Boltzmann equation.

  5. Boltzmann-Langevin theory of Coulomb drag

    NASA Astrophysics Data System (ADS)

    Chen, W.; Andreev, A. V.; Levchenko, A.

    2015-06-01

    We develop a Boltzmann-Langevin description of the Coulomb drag effect in clean double-layer systems with large interlayer separation d as compared to the average interelectron distance λF. Coulomb drag arises from density fluctuations with spatial scales of order d . At low temperatures, their characteristic frequencies exceed the intralayer equilibration rate of the electron liquid, and Coulomb drag may be treated in the collisionless approximation. As temperature is raised, the electron mean free path becomes short due to electron-electron scattering. This leads to local equilibration of electron liquid, and consequently drag is determined by hydrodynamic density modes. Our theory applies to both the collisionless and the hydrodynamic regimes, and it enables us to describe the crossover between them. We find that drag resistivity exhibits a nonmonotonic temperature dependence with multiple crossovers at distinct energy scales. At the lowest temperatures, Coulomb drag is dominated by the particle-hole continuum, whereas at higher temperatures of the collision-dominated regime it is governed by the plasmon modes. We observe that fast intralayer equilibration mediated by electron-electron collisions ultimately renders a stronger drag effect.

  6. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.

    PubMed

    Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere. PMID:26382548

  7. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mohseni, F.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1 / 2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.

  8. Higher Order Thermal Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Sorathiya, Shahajhan; Ansumali, Santosh

    2013-03-01

    Lattice Boltzmann method (LBM) modelling of thermal flows, compressible and micro flows requires an accurate velocity space discretization. The sub optimality of Gauss-Hermite quadrature in this regard is well known. Most of the thermal LBM in the past have suffered from instability due to lack of proper H-theorem and accuracy. Motivated from these issues, the present work develops along the two works and and imposes an eighth higher order moment to get correct thermal physics. We show that this can be done by adding just 6 more velocities to D3Q27 model and obtain a ``multi-speed on lattice thermal LBM'' with 33 velocities in 3D and calO (u4) and calO (T4) accurate fieq with a consistent H-theorem and inherent numerical stability. Simulations for Rayleigh-Bernard as well as velocity and temperature slip in micro flows matches with analytical results. Lid driven cavity set up for grid convergence is studied. Finally, a novel data structure is developed for HPC. The authors express their gratitude for computational resources and financial support provide by Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India.

  9. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  10. Modeling adsorption with lattice Boltzmann equation

    PubMed Central

    Guo, Long; Xiao, Lizhi; Shan, Xiaowen; Zhang, Xiaoling

    2016-01-01

    The research of adsorption theory has recently gained renewed attention due to its critical relevance to a number of trending industrial applications, hydrogen storage and shale gas exploration for instance. The existing theoretical foundation, laid mostly in the early twentieth century, was largely based on simple heuristic molecular interaction models and static interaction potential which, although being insightful in illuminating the fundamental mechanisms, are insufficient for computations with realistic adsorbent structure and adsorbate hydrodynamics, both critical for real-life applications. Here we present and validate a novel lattice Boltzmann model incorporating both adsorbate-adsorbate and adsorbate-adsorbent interactions with hydrodynamics which, for the first time, allows adsorption to be computed with real-life details. Connection with the classic Ono-Kondo lattice theory is established and various adsorption isotherms, both within and beyond the IUPAC classification are observed as a pseudo-potential is varied. This new approach not only enables an important physical to be simulated for real-life applications, but also provides an enabling theoretical framework within which the fundamentals of adsorption can be studied. PMID:27256325

  11. Accurate lineshape spectroscopy and the Boltzmann constant.

    PubMed

    Truong, G-W; Anstie, J D; May, E F; Stace, T M; Luiten, A N

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  12. Modeling adsorption with lattice Boltzmann equation.

    PubMed

    Guo, Long; Xiao, Lizhi; Shan, Xiaowen; Zhang, Xiaoling

    2016-01-01

    The research of adsorption theory has recently gained renewed attention due to its critical relevance to a number of trending industrial applications, hydrogen storage and shale gas exploration for instance. The existing theoretical foundation, laid mostly in the early twentieth century, was largely based on simple heuristic molecular interaction models and static interaction potential which, although being insightful in illuminating the fundamental mechanisms, are insufficient for computations with realistic adsorbent structure and adsorbate hydrodynamics, both critical for real-life applications. Here we present and validate a novel lattice Boltzmann model incorporating both adsorbate-adsorbate and adsorbate-adsorbent interactions with hydrodynamics which, for the first time, allows adsorption to be computed with real-life details. Connection with the classic Ono-Kondo lattice theory is established and various adsorption isotherms, both within and beyond the IUPAC classification are observed as a pseudo-potential is varied. This new approach not only enables an important physical to be simulated for real-life applications, but also provides an enabling theoretical framework within which the fundamentals of adsorption can be studied. PMID:27256325

  13. Lattice Boltzmann Simulations of Peristaltic Particle Transport

    NASA Astrophysics Data System (ADS)

    Connington, Kevin; Kang, Qinjun; Viswanathan, Hari; Chen, Shiyi; Abdel-Fattah, Amr

    2008-11-01

    A peristaltic flow occurs when a tube or channel with flexible walls transports the contained fluid by progressing a series of contraction or expansion waves along the length of those walls. It is a mechanism used to transport fluid and immersed solid particles when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two dimensional channel using the Lattice Boltzmann Method (LBM). We systematically investigate the effect of variation of the relevant non-dimensional parameters of the system on the particle transport. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid ``trapping.'' Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles.

  14. The electrochemical potential and ionic activity coefficients. A possible correction for Debye-Hückel and Maxwell-Boltzmann equations for dilute electrolyte equilibria.

    PubMed

    van der Weg, P B

    2009-11-15

    When the electrical contribution in the electrochemical potential of ionic species is reduced with a factor two from its traditional value, the ionic activity coefficients are closer to unity and need to account only for the short-range interactions at high concentrations. Such a change is needed to remove inconsistencies in the models and to comply with basic electrostatic principles. This will have serious implications, in many applications. For example, it will cause changes in many of the fundamental models that are used to explain measured data in the dilute range for the various disciplines that embrace classical electrochemistry. Examples are Debye-Hückel and Gouy-Chapman theories; Maxwell-Boltzmann distribution; Nernst theory; Donnan equilibrium, etc. These theories impact a wide range of observable phenomena such as activity coefficients of electrolytes, diffuse double layer capacitance, electrode potentials, membrane potentials, streaming potentials, electro-osmosis, flotation, sedimentation, corrosion, charged micellar behaviour, space-charge semiconductor behaviour, and electrical phenomena in biological tissue, e.g. membranes; cells; and nerves, etcetera. PMID:19656523

  15. Derivation of the Linear Landau Equation and Linear Boltzmann Equation from the Lorentz Model with Magnetic Field

    NASA Astrophysics Data System (ADS)

    Marcozzi, M.; Nota, A.

    2016-03-01

    We consider a test particle moving in a random distribution of obstacles in the plane, under the action of a uniform magnetic field, orthogonal to the plane. We show that, in a weak coupling limit, the particle distribution behaves according to the linear Landau equation with a magnetic transport term. Moreover, we show that, in a low density regime, when each obstacle generates an inverse power law potential, the particle distribution behaves according to the linear Boltzmann equation with a magnetic transport term. We provide an explicit control of the error in the kinetic limit by estimating the contributions of the configurations which prevent the Markovianity. We compare these results with those ones obtained for a system of hard disks in Bobylev et al. (Phys Rev Lett 75:2, 1995), which show instead that the memory effects are not negligible in the Boltzmann-Grad limit.

  16. Lattice Boltzmann investigation of droplet inertial spreading on various porous surfaces

    NASA Astrophysics Data System (ADS)

    Frank, Xavier; Perré, Patrick; Li, Huai-Zhi

    2015-05-01

    The spreading of liquid drops on solid surfaces is a wide-spread phenomenon of both fundamental and industrial interest. In many applications, surfaces are porous and spreading patterns are very complex with respect to the case on smooth surfaces. Focusing on the inertial spreading just before the Tanner-like viscous regime, this work investigates the spreading of a low-viscosity droplet on a porous surface using lattice Boltzmann numerical simulations. The case of a flat surface is first considered, and it reveals a dependence on the solid equilibrium contact angle θse q, which is in good agreement with published experimental data. We conducted numerical experiments with various surfaces perforated by a regular pattern of holes of infinite length. The results show that the global spreading dynamics is independent of the porosity morphology. Through the assumption that, for wetting, the pores can be regarded as surface patches with a contact angle of θporee q=180∘ , we deduce an effective equilibrium contact angle θeffe q on the porous surface from the Cassie-Baxter law. A spreading model is then proposed to describe both a prefactor and an exponent that are similar to a flat surface whose equilibrium contact angle is θeffe q. This model compares satisfactorily with a large number of numerical experiments under varying conditions.

  17. Phonon-limited low-field mobility in silicon: Quantum transport vs. linearized Boltzmann Transport Equation

    NASA Astrophysics Data System (ADS)

    Rhyner, Reto; Luisier, Mathieu

    2013-12-01

    We propose to check and validate the approximations made in dissipative quantum transport (QT) simulations solved in the Non-equilibrium Green's Function formalism by comparing them with the exact solution of the linearized Boltzmann Transport Equation (LB) in the stationary regime. For that purpose, we calculate the phonon-limited electron and hole mobility in bulk Si and ultra-scaled Si nanowires for different crystal orientations ⟨100⟩, ⟨110⟩, and ⟨111⟩. In both QT and LB simulations, we use the same sp3d5s* tight-binding model to describe the electron/hole properties and the same valence-force-field approach to account for the phonon properties. It is found that the QT simplifications work well for electrons, but are less accurate for holes, where a renormalization of the phonon scattering strength is proved useful to improve the results.

  18. On the search of more stable second-order lattice-Boltzmann schemes in confined flows

    NASA Astrophysics Data System (ADS)

    Golbert, D. R.; Blanco, P. J.; Clausse, A.; Feijóo, R. A.

    2015-08-01

    The von Neumann linear analysis, restricted by a heuristic selection of wave-number vectors was applied to the search of explicit lattice Boltzmann schemes which exhibit more stability than existing methods. The relative stability of the family members of quasi-incompressible collision kernels, for the Navier-Stokes equations in confined flows, was analyzed. The linear stability analysis was simplified by assuming a uniform velocity level over the whole domain, where only the wave numbers of the first harmonic normal to the flow direction were permitted. A singular equilibrium function that maximizes the critical velocity level was identified, which was afterwards tested in particular cases of confined flows of interest, validating the resulting procedure.

  19. Automated method for determination of dissolved organic carbon-water distribution constants of structurally diverse pollutants using pre-equilibrium solid-phase microextraction.

    PubMed

    Ripszam, Matyas; Haglund, Peter

    2015-02-01

    Dissolved organic carbon (DOC) plays a key role in determining the environmental fate of semivolatile organic environmental contaminants. The goal of the present study was to develop a method using commercially available hardware to rapidly characterize the sorption properties of DOC in water samples. The resulting method uses negligible-depletion direct immersion solid-phase microextraction (SPME) and gas chromatography-mass spectrometry. Its performance was evaluated using Nordic reference fulvic acid and 40 priority environmental contaminants that cover a wide range of physicochemical properties. Two SPME fibers had to be used to cope with the span of properties, 1 coated with polydimethylsiloxane and 1 coated with polystyrene divinylbenzene polydimethylsiloxane, for nonpolar and semipolar contaminants, respectively. The measured DOC-water distribution constants showed reasonably good reproducibility (standard deviation ≤ 0.32) and good correlation (R(2)  = 0.80) with log octanol-water partition coefficients for nonpolar persistent organic pollutants. The sample pretreatment is limited to filtration, and the method is easy to adjust to different DOC concentrations. These experiments also utilized the latest SPME automation that largely decreases total cycle time (to 20 min or shorter) and increases sample throughput, which is advantageous in cases when many samples of DOC must be characterized or when the determinations must be performed quickly, for example, to avoid precipitation, aggregation, and other changes of DOC structure and properties. The data generated by this method are valuable as a basis for transport and fate modeling studies. PMID:25393710

  20. The rigorous stochastic matrix multiplication scheme for the calculations of reduced equilibrium density matrices of open multilevel quantum systems

    NASA Astrophysics Data System (ADS)

    Chen, Xin

    2014-04-01

    Understanding the roles of the temporary and spatial structures of quantum functional noise in open multilevel quantum molecular systems attracts a lot of theoretical interests. I want to establish a rigorous and general framework for functional quantum noises from the constructive and computational perspectives, i.e., how to generate the random trajectories to reproduce the kernel and path ordering of the influence functional with effective Monte Carlo methods for arbitrary spectral densities. This construction approach aims to unify the existing stochastic models to rigorously describe the temporary and spatial structure of Gaussian quantum noises. In this paper, I review the Euclidean imaginary time influence functional and propose the stochastic matrix multiplication scheme to calculate reduced equilibrium density matrices (REDM). In addition, I review and discuss the Feynman-Vernon influence functional according to the Gaussian quadratic integral, particularly its imaginary part which is critical to the rigorous description of the quantum detailed balance. As a result, I establish the conditions under which the influence functional can be interpreted as the average of exponential functional operator over real-valued Gaussian processes for open multilevel quantum systems. I also show the difference between the local and nonlocal phonons within this framework. With the stochastic matrix multiplication scheme, I compare the normalized REDM with the Boltzmann equilibrium distribution for open multilevel quantum systems.

  1. The rigorous stochastic matrix multiplication scheme for the calculations of reduced equilibrium density matrices of open multilevel quantum systems

    SciTech Connect

    Chen, Xin

    2014-04-21

    Understanding the roles of the temporary and spatial structures of quantum functional noise in open multilevel quantum molecular systems attracts a lot of theoretical interests. I want to establish a rigorous and general framework for functional quantum noises from the constructive and computational perspectives, i.e., how to generate the random trajectories to reproduce the kernel and path ordering of the influence functional with effective Monte Carlo methods for arbitrary spectral densities. This construction approach aims to unify the existing stochastic models to rigorously describe the temporary and spatial structure of Gaussian quantum noises. In this paper, I review the Euclidean imaginary time influence functional and propose the stochastic matrix multiplication scheme to calculate reduced equilibrium density matrices (REDM). In addition, I review and discuss the Feynman-Vernon influence functional according to the Gaussian quadratic integral, particularly its imaginary part which is critical to the rigorous description of the quantum detailed balance. As a result, I establish the conditions under which the influence functional can be interpreted as the average of exponential functional operator over real-valued Gaussian processes for open multilevel quantum systems. I also show the difference between the local and nonlocal phonons within this framework. With the stochastic matrix multiplication scheme, I compare the normalized REDM with the Boltzmann equilibrium distribution for open multilevel quantum systems.

  2. Chemical Principles Revisited: Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1980-01-01

    Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)

  3. A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Xu, Kun; Sun, Quanhua; Cai, Qingdong

    2016-06-01

    where it is needed. The central ingredient of the UGKS is the coupled treatment of particle transport and collision in the flux evaluation across a cell interface, where a continuous flow dynamics from kinetic to hydrodynamic scales is modeled. The newly developed UGKS has the asymptotic preserving (AP) property of recovering the NS solutions in the continuum flow regime, and the full Boltzmann solution in the rarefied regime. In the mostly unexplored transition regime, the UGKS itself provides a valuable tool for the non-equilibrium flow study. The mathematical properties of the scheme, such as stability, accuracy, and the asymptotic preserving, will be analyzed in this paper as well.

  4. Two-relaxation-times Lattice Boltzmann schemes for solute transport in unsaturated water flow, with a focus on stability

    NASA Astrophysics Data System (ADS)

    Hammou, H.; Ginzburg, I.; Boulerhcha, M.

    2011-06-01

    We develop two-relaxation-times Lattice Boltzmann schemes (TRT) with two relaxation functions Λ±(r→,t) for solving highly non-linear equations for groundwater modeling in d-dimensions, namely, the Richards equation for water content distribution θ(r→,t) in unsaturated flow and the associated transport equation for solute concentration C(r→,t), advected by the local Darcian water flux. The method is verified against the analytical solutions and the HYDRUS code where the TRT schemes behave more robustly for small diffusion coefficients and sharp infiltration profiles. The focus is on the stability and efficiency of two transport schemes. The first scheme conventionally prescribes C for diffusive flux equilibrium variable while conserving θC. The second scheme prescribes θC for both variables, expecting to retain the stable parameter areas and velocity amplitudes recently predicted by linear von Neumann stability analysis. We show that the first scheme reduces the stable diffusion range, e.g. from Λ-/ d to θΛ-/ d for simplest velocity sets, but it also modifies the linearized numerical diffusion, from - Λ-UαUβ to - θΛ-UαUβ, giving rise to possible enhancement of stable velocity U2, max by a factor 1/ θ. This analysis indicates that the first scheme is most efficient for infiltration into dry soil. When the product Λ+Λ- is kept constant, we find a good agreement between the attainable velocity and our predictions providing that Λ- does not exceed ≈5. Otherwise, approaching two opposite stability limits, Λ+ → 0 when Λ- → ∞ , the stable velocity amplitude drastically falls for the two transport TRT schemes. At the same time, their BGK submodels Λ+ = Λ- may keep the optimal stability for diffusion-dominant problems but their boundary and bulk approximations are completely destroyed. The analysis presented here may serve as a starting point for construction of the suitable equilibrium transformations, based on the analytical stability

  5. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  6. Lattice-Boltzmann method for the simulation of multiphase mass transfer and reaction of dilute species

    NASA Astrophysics Data System (ADS)

    Riaud, Antoine; Zhao, Shufang; Wang, Kai; Cheng, Yi; Luo, Guangsheng

    2014-05-01

    Despite the popularity of the lattice-Boltzmann method (LBM) in simulating multiphase flows, a general approach for modeling dilute species in multiphase systems is still missing. In this report we propose to modify the collision operator of the solute by introducing a modified redistribution scheme. This operator is based on local fluid variables and keeps the parallelism inherent to LBM. After deriving macroscopic transport equations, an analytical equation of state of the solute is exhibited and the method is proven constituting a unified framework to simulate arbitrary solute distribution between phases, including single-phase soluble compounds, amphiphilic species with a partition coefficient, and surface-adsorbed compounds.

  7. Porous Substrate Effects on Thermal Flows Through a Rev-Scale Finite Volume Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Zarghami, Ahad; Francesco, Silvia Di; Biscarini, Chiara

    2014-09-01

    In this paper, fluid flows with enhanced heat transfer in porous channels are investigated through a stable finite volume (FV) formulation of the thermal lattice Boltzmann method (LBM). Temperature field is tracked through a double distribution function (DDF) model, while the porous media is modeled using Brinkman-Forchheimer assumptions. The method is tested against flows in channels partially filled with porous media and parametric studies are conducted to evaluate the effects of various parameters, highlighting their influence on the thermo-hydrodynamic behavior.

  8. Lattice-Boltzmann method for the simulation of multiphase mass transfer and reaction of dilute species.

    PubMed

    Riaud, Antoine; Zhao, Shufang; Wang, Kai; Cheng, Yi; Luo, Guangsheng

    2014-05-01

    Despite the popularity of the lattice-Boltzmann method (LBM) in simulating multiphase flows, a general approach for modeling dilute species in multiphase systems is still missing. In this report we propose to modify the collision operator of the solute by introducing a modified redistribution scheme. This operator is based on local fluid variables and keeps the parallelism inherent to LBM. After deriving macroscopic transport equations, an analytical equation of state of the solute is exhibited and the method is proven constituting a unified framework to simulate arbitrary solute distribution between phases, including single-phase soluble compounds, amphiphilic species with a partition coefficient, and surface-adsorbed compounds. PMID:25353915

  9. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z. )

    1992-02-01

    Self-consistent magnetospheric equilibria with anisotropic pressure are obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distributions or particle distributions measured along a satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibria including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator owing to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has a significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling the dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the taillike flux surface.

  10. Electrostatic interaction of two charged macroparticles in an equilibrium plasma

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Pal', A. F.; Starostin, A. N.

    2015-11-01

    This article is a critical review of publications devoted to studying the electrostatic interaction of two charged macroparticles in an equilibrium plasma. It is shown from an analysis of the force of interaction based on the Maxwell stress tensor that two macroparticles with identical charges in the Poisson-Boltzmann model always repel each other both in isothermal and nonisothermal plasmas. At distances between macroparticles for which the Boltzmann exponents can be linearized, the interaction between macroparticles is completely described by the Debye-Hückel model. The correction to free energy due to the electrostatic interaction in the system of two macroparticles is determined by integrating the correction to the internal energy and by direct calculation of the correction for entropy. It is shown that the free energy coincides with the Yukawa potential. The coincidence of the interaction energy obtained by integrating the force of interaction with the free energy leads to the conclusion about the potential nature of the force of interaction between two macroparticles in an equilibrium plasma. The effect of the outer boundary on the electrostatic interaction force is analyzed; it is shown that the type of interaction depends on the choice of the boundary conditions at the outer boundary. It is also shown that the accumulation of space charge near the outer boundary can lead to the attraction of similarly charged particles at distances comparable with the radius of the outer boundary.

  11. Electrostatic interaction of two charged macroparticles in an equilibrium plasma

    SciTech Connect

    Filippov, A. V. Pal’, A. F.; Starostin, A. N.

    2015-11-15

    This article is a critical review of publications devoted to studying the electrostatic interaction of two charged macroparticles in an equilibrium plasma. It is shown from an analysis of the force of interaction based on the Maxwell stress tensor that two macroparticles with identical charges in the Poisson–Boltzmann model always repel each other both in isothermal and nonisothermal plasmas. At distances between macroparticles for which the Boltzmann exponents can be linearized, the interaction between macroparticles is completely described by the Debye–Hückel model. The correction to free energy due to the electrostatic interaction in the system of two macroparticles is determined by integrating the correction to the internal energy and by direct calculation of the correction for entropy. It is shown that the free energy coincides with the Yukawa potential. The coincidence of the interaction energy obtained by integrating the force of interaction with the free energy leads to the conclusion about the potential nature of the force of interaction between two macroparticles in an equilibrium plasma. The effect of the outer boundary on the electrostatic interaction force is analyzed; it is shown that the type of interaction depends on the choice of the boundary conditions at the outer boundary. It is also shown that the accumulation of space charge near the outer boundary can lead to the attraction of similarly charged particles at distances comparable with the radius of the outer boundary.

  12. Kinetic analysis of thermally relativistic flow with dissipation. II. Relativistic Boltzmann equation versus its kinetic models

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Matsumoto, Jun; Suzuki, Kojiro

    2011-06-01

    Thermally relativistic flow with dissipation was analyzed by solving the rarefied supersonic flow of thermally relativistic matter around a triangle prism by Yano and Suzuki [Phys. Rev. DPRVDAQ1550-7998 83, 023517 (2011)10.1103/PhysRevD.83.023517], where the Anderson-Witting (AW) model was used as a solver. In this paper, we solve the same problem, which was analyzed by Yano and Suzuki, using the relativistic Boltzmann equation (RBE). To solve the RBE, the conventional direct simulation Monte Carlo method for the nonrelativistic Boltzmann equation is extended to a new direct simulation Monte Carlo method for the RBE. Additionally, we solve the modified Marle (MM) model proposed by Yano-Suzuki-Kuroda for comparisons. The solution of the thermally relativistic shock layer around the triangle prism obtained using the relativistic Boltzmann equation is considered by focusing on profiles of macroscopic quantities, such as the density, velocity, temperature, heat flux and dynamic pressure along the stagnation streamline (SSL). Differences among profiles of the number density, velocity and temperature along the SSL obtained using the RBE, the AW and MM. models are described in the framework of the relativistic Navier-Stokes-Fourier law. Finally, distribution functions on the SSL obtained using the RBE are compared with those obtained using the AW and MM models. The distribution function inside the shock wave obtained using the RBE does not indicate a bimodal form, which is obtained using the AW and MM models, but a smooth deceleration of thermally relativistic matter inside a shock wave.

  13. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    SciTech Connect

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  14. Equilibrium games in networks

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Zhang, Xiaohui; Pan, Yicheng; Peng, Pan

    2014-12-01

    It seems a universal phenomenon of networks that the attacks on a small number of nodes by an adversary player Alice may generate a global cascading failure of the networks. It has been shown (Li et al., 2013) that classic scale-free networks (Barabási and Albert, 1999, Barabási, 2009) are insecure against attacks of as small as O(logn) many nodes. This poses a natural and fundamental question: Can we introduce a second player Bob to prevent Alice from global cascading failure of the networks? We proposed a game in networks. We say that a network has an equilibrium game if the second player Bob has a strategy to balance the cascading influence of attacks by the adversary player Alice. It was shown that networks of the preferential attachment model (Barabási and Albert, 1999) fail to have equilibrium games, that random graphs of the Erdös-Rényi model (Erdös and Rényi, 1959, Erdös and Rényi, 1960) have, for which randomness is the mechanism, and that homophyly networks (Li et al., 2013) have equilibrium games, for which homophyly and preferential attachment are the underlying mechanisms. We found that some real networks have equilibrium games, but most real networks fail to have. We anticipate that our results lead to an interesting new direction of network theory, that is, equilibrium games in networks.

  15. Properties of the Boltzmann equation in the classical approximation

    DOE PAGESBeta

    Epelbaum, Thomas; Gelis, François; Tanji, Naoto; Wu, Bin

    2014-12-30

    We examine the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since onemore » has also access to the non-approximated result for comparison.« less

  16. Properties of the Boltzmann equation in the classical approximation

    SciTech Connect

    Epelbaum, Thomas; Gelis, François; Tanji, Naoto; Wu, Bin

    2014-12-30

    We examine the Boltzmann equation with elastic point-like scalar interactions in two different versions of the the classical approximation. Although solving numerically the Boltzmann equation with the unapproximated collision term poses no problem, this allows one to study the effect of the ultraviolet cutoff in these approximations. This cutoff dependence in the classical approximations of the Boltzmann equation is closely related to the non-renormalizability of the classical statistical approximation of the underlying quantum field theory. The kinetic theory setup that we consider here allows one to study in a much simpler way the dependence on the ultraviolet cutoff, since one has also access to the non-approximated result for comparison.

  17. Electrostatic forces in the Poisson-Boltzmann systems

    PubMed Central

    Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2013-01-01

    Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models. PMID:24028101

  18. George Hartley Bryan, Ludwig Boltzmann, and the Stability of Flight

    NASA Astrophysics Data System (ADS)

    Boyd, T. James M.

    2012-03-01

    A century ago, George Hartley Bryan (1864-1928) published his classic book, Stability in Aviation. I draw together some strands from events that awakened his interest in the nascent science of aviation, in particular the stability of flight. Prominent among those who influenced him was Ludwig Boltzmann (1844-1906), who held Bryan in high esteem for his contributions to thermodynamics and kinetic theory. I argue that the seeds of Bryan's interest in aviation were sown at the British Association meeting at Oxford in the summer of 1894, at which Boltzmann was guest of honor. A joint discussion between Section A (Mathematical and Physical Science) and Section G (Mechanical Science) was devoted to the problems of flight, during the course of which Boltzmann revealed a hitherto unsuspected enthusiasm for flying.

  19. Advanced mean-field theory of the restricted Boltzmann machine

    NASA Astrophysics Data System (ADS)

    Huang, Haiping; Toyoizumi, Taro

    2015-05-01

    Learning in restricted Boltzmann machine is typically hard due to the computation of gradients of log-likelihood function. To describe the network state statistics of the restricted Boltzmann machine, we develop an advanced mean-field theory based on the Bethe approximation. Our theory provides an efficient message-passing-based method that evaluates not only the partition function (free energy) but also its gradients without requiring statistical sampling. The results are compared with those obtained by the computationally expensive sampling-based method.

  20. Asymptotic-preserving Boltzmann model equations for binary gas mixture

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Liang, Yihua

    2016-02-01

    An improved system of Boltzmann model equations is developed for binary gas mixture. This system of model equations has a complete asymptotic preserving property that can strictly recover the Navier-Stokes equations in the continuum limit with the correct constitutive relations and the correct viscosity, thermal conduction, diffusion, and thermal diffusion coefficients. In this equation system, the self- and cross-collision terms in Boltzmann equations are replaced by single relaxation terms. In monocomponent case, this system of equations can be reduced to the commonly used Shakhov equation. The conservation property and the H theorem which are important for model equations are also satisfied by this system of model equations.

  1. Asymptotic-preserving Boltzmann model equations for binary gas mixture.

    PubMed

    Liu, Sha; Liang, Yihua

    2016-02-01

    An improved system of Boltzmann model equations is developed for binary gas mixture. This system of model equations has a complete asymptotic preserving property that can strictly recover the Navier-Stokes equations in the continuum limit with the correct constitutive relations and the correct viscosity, thermal conduction, diffusion, and thermal diffusion coefficients. In this equation system, the self- and cross-collision terms in Boltzmann equations are replaced by single relaxation terms. In monocomponent case, this system of equations can be reduced to the commonly used Shakhov equation. The conservation property and the H theorem which are important for model equations are also satisfied by this system of model equations. PMID:26986408

  2. Lattice Boltzmann method for weakly ionized isothermal plasmas

    SciTech Connect

    Li Huayu; Ki, Hyungson

    2007-12-15

    In this paper, a lattice Boltzmann method (LBM) for weakly ionized isothermal plasmas is presented by introducing a rescaling scheme for the Boltzmann transport equation. Without using this rescaling, we found that the nondimensional relaxation time used in the LBM is too large and the LBM does not produce physically realistic results. The developed model was applied to the electrostatic wave problem and the diffusion process of singly ionized helium plasmas with a 1-3% degree of ionization under an electric field. The obtained results agree well with theoretical values.

  3. Hierarchical condensation near phase equilibrium

    NASA Astrophysics Data System (ADS)

    Olemskoi, A. I.; Yushchenko, O. V.; Borisyuk, V. N.; Zhilenko, T. I.; Kosminska, Yu. O.; Perekrestov, V. I.

    2012-06-01

    A novel mechanism of new phase formation is studied both experimentally and theoretically in the example of quasi-equilibrium stationary condensation in an ion-plasma sputterer. Copper condensates are obtained to demonstrate that a specific network structure is formed as a result of self-assembly in the course of deposition. The fractal pattern related is inherent in the phenomena of diffusion limited aggregation. Condensate nuclei are shown to form statistical ensemble of hierarchically subordinated objects distributed in ultrametric space. The Langevin equation and the Fokker-Planck equation related are found to describe stationary distribution of thermodynamic potential variations at condensation. Time dependence of the formation probability of branching structures is found to clarify the experimental situation.

  4. Non-Equilibrium Transitions of Heliospheric plasma

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; McComas, D. J.

    2011-12-01

    Recent advances in Space Physics theory have established the connection between non-extensive Statistical Mechanics and space plasmas by providing a theoretical basis for the empirically derived kappa distributions commonly used to describe the phase space distribution functions of these systems [1]. The non-equilibrium temperature and the kappa index that govern these distributions are the two independent controlling parameters of non-equilibrium systems [1-3]. The significance of the kappa index is primarily given by its role in identifying the non-equilibrium stationary states, and measuring their "thermodynamic distance" from thermal equilibrium [4], while its physical meaning is connected to the correlation between the system's particles [5]. For example, analysis of the IBEX high Energetic Neutral Atom spectra [6] showed that the vast majority of measured kappa indices are between ~1.5 and ~2.5, consistent with the far-equilibrium "cavity" of minimum entropy discovered by Livadiotis & McComas [2]. Spontaneous procedures that can increase the entropy, move the system gradually toward equilibrium, that is the state with the maximum (infinite) kappa index. Other external factors that may decrease the entropy, move the system back to states further from equilibrium where the kappa indices are smaller. Newly formed pick-up ions can play this critical role in the solar wind and other space plasmas. We have analytically shown that their highly ordered motion can reduce the average entropy in the plasma beyond the termination shock, inside the inner heliosheath [7]. Non-equilibrium transitions have a key role in understanding the governing thermodynamical processes of space plasmas. References 1. Livadiotis, G., & McComas, D. J. 2009, JGR, 114, 11105. 2. Livadiotis, G., & McComas, D. J. 2010a, ApJ, 714, 971. 3. Livadiotis, G., & McComas, D. J. 2010c, in AIP Conf. Proc. 9, Pickup Ions Throughout the Heliosphere and Beyond, ed. J. LeRoux, V. Florinski, G. P. Zank, & A

  5. Combining effective media and multi-phase methods of Lattice Boltzmann modelling for the characterisation of liquid-vapour dynamics in multi-length scale heterogeneous structural materials

    NASA Astrophysics Data System (ADS)

    McDonald, P. J.; Turner, M. N.

    2016-01-01

    The combination of the lattice Boltzmann Shan-Chen pseudo-potential method for multiphase fluids (Shan and Chen 1993 Phys. Rev. E 47 1815) and a grey or partial bounce back lattice Boltzmann algorithm for effective media (Walsh et al 2009 Comput. Geosci. 35 1186), is demonstrated for application to liquid-vapour fluid dynamics in porous media with porosity spanning a very wide range of length scales. Liquid / vapour distributions in cellular like structures with cell walls of reduced permeability are seen to follow expectation.

  6. Formal analogy between the Dirac equation in its Majorana form and the discrete-velocity version of the Boltzmann kinetic equation.

    PubMed

    Fillion-Gourdeau, F; Herrmann, H J; Mendoza, M; Palpacelli, S; Succi, S

    2013-10-18

    We point out a formal analogy between the Dirac equation in Majorana form and the discrete-velocity version of the Boltzmann kinetic equation. By a systematic analysis based on the theory of operator splitting, this analogy is shown to turn into a concrete and efficient computational method, providing a unified treatment of relativistic and nonrelativistic quantum mechanics. This might have potentially far-reaching implications for both classical and quantum computing, because it shows that, by splitting time along the three spatial directions, quantum information (Dirac-Majorana wave function) propagates in space-time as a classical statistical process (Boltzmann distribution). PMID:24182245

  7. Generalized linear Boltzmann equation, describing non-classical particle transport, and related asymptotic solutions for small mean free paths

    NASA Astrophysics Data System (ADS)

    Rukolaine, Sergey A.

    2016-05-01

    In classical kinetic models a particle free path distribution is exponential, but this is more likely to be an exception than a rule. In this paper we derive a generalized linear Boltzmann equation (GLBE) for a general free path distribution in the framework of Alt's model. In the case that the free path distribution has at least first and second finite moments we construct an asymptotic solution to the initial value problem for the GLBE for small mean free paths. In the special case of the one-speed transport problem the asymptotic solution results in a diffusion approximation to the GLBE.

  8. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.

    PubMed

    Hejranfar, Kazem; Hajihassanpour, Mahya

    2015-01-01

    In this study, the Chebyshev collocation spectral lattice Boltzmann method (CCSLBM) is developed and assessed for the computation of low-speed flows. Both steady and unsteady flows are considered here. The discrete Boltzmann equation with the Bhatnagar-Gross-Krook approximation based on the pressure distribution function is considered and the space discretization is performed by the Chebyshev collocation spectral method to achieve a highly accurate flow solver. To provide accurate unsteady solutions, the time integration of the temporal term in the lattice Boltzmann equation is made by the fourth-order Runge-Kutta scheme. To achieve numerical stability and accuracy, physical boundary conditions based on the spectral solution of the governing equations implemented on the boundaries are used. An iterative procedure is applied to provide consistent initial conditions for the distribution function and the pressure field for the simulation of unsteady flows. The main advantage of using the CCSLBM over other high-order accurate lattice Boltzmann method (LBM)-based flow solvers is the decay of the error at exponential rather than at polynomial rates. Note also that the CCSLBM applied does not need any numerical dissipation or filtering for the solution to be stable, leading to highly accurate solutions. Three two-dimensional (2D) test cases are simulated herein that are a regularized cavity, the Taylor vortex problem, and doubly periodic shear layers. The results obtained for these test cases are thoroughly compared with the analytical and available numerical results and show excellent agreement. The computational efficiency of the proposed solution methodology based on the CCSLBM is also examined by comparison with those of the standard streaming-collision (classical) LBM and two finite-difference LBM solvers. The study indicates that the CCSLBM provides more accurate and efficient solutions than these LBM solvers in terms of CPU and memory usage and an exponential

  9. Optimal design for fluidic systems: Topology and shape optimization with the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Pingen, Georg

    The objective of this work is the development of a formal design approach for fluidic systems, providing conceptually novel design layouts with the provision of only boundary conditions and some basic parameters. The lattice Boltzmann method (LBM) is chosen as a flow model due to its simplicity, inherent use of immersed boundary methods, parallelizability, and general flexibility. Immersed Boundary Methods in the form of a Brinkmann penalization are used to continuously vary the flow from fluid to solid, leading to a material distribution based boundary representation. An analytical adjoint sensitivity analysis is derived for the lattice Boltzmann method, enabling the combination of the lattice Boltzmann method with optimization techniques. This results in the first application of design optimization with the lattice Boltzmann method. In particular, the first LBM topology optimization framework for 2D and 3D problems is developed and validated with numerical design optimization problems for drag and pressure drop minimization. To improve the parallel scalability of the LBM sensitivity analysis and permit the solution of large 2D and 3D problems, iterative solvers are studied and a parallel GMRES Schur Complement method is applied to the solution of the linear adjoint problem in the LBM sensitivity analysis. This leads to improved parallel scalability through reduced memory use and algorithmic speedup. The potential of the developed design approach for fluidic systems is illustrated with the optimization of a 3D dual-objective fixed-geometry valve. The use of a parametric level-set method coupled with the LBM material distribution based topology optimization framework is shown to provide further versatility for design applications. Finally, the use of a penalty formulation of the fluid volume constraint permits the topology optimization of flows at moderate Reynolds numbers for a steady-state pipe bend application. Concluding, this work has led to the development of

  10. Boltzmann equation modelling of Learning Dynamics. Comment on "Collective learning modeling based on the kinetic theory of active particles" by D. Burini et al.

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie

    2016-03-01

    The paper by Burini et al. [7] presents an interesting use of the Boltzmann equation of kinetic theory to model real learning processes. The authors provide a comprehensive discussion of the basic concepts involved in their modelling work. The Boltzmann equation as used by physicists and chemists to model a variety of transport processes in many diverse fields is based on the notion of the binary collisions between identifiable particles in the defined system [9]. The particles exchange energy on collision and the distribution function, which depends on the three velocity components and the three spatial coordinates, varies with time. The classical or quantum collision dynamics between particles play a central role in the definition of the kernels in the integral operators that define the Boltzmann equation [8].

  11. Study of three-dimensional electro-osmotic flow with curved boundary via lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Zhang, X. B.; Li, Q.; Jiang, X. S.; Zhou, H. P.

    2016-01-01

    A three-dimensional (3D) lattice Boltzmann model and boundary method is developed to simulate electro-osmotic flow (EOF) with a charged spherical particle immersed in an electrolyte solution. The general governing equations for electro-osmotic transport are Navier-Stokes equations for fluid flow and the Poisson-Boltzmann equation for electric potential distribution around the particle. Two sets of D3Q19 lattice structure with curved boundary conditions are implemented. The simulation results are compared with analytical predictions and are found to be in excellent agreement. The potential distribution appears circularly symmetric and the flow velocity decreases with the cross-sectional area for flow passage increasing due to the mass conservation. The effects of the ionic concentration, the sphere radius, electric potential and external electric field on the velocity profiles are investigated. The flow velocity increases with both the electric potential and the external electric field. However, the variation in flow velocity with the ionic concentration and the sphere radius is complex due to the change in electrical double layer (EDL) thickness.

  12. Boltzmann-conserving classical dynamics in quantum time-correlation functions: “Matsubara dynamics”

    SciTech Connect

    Hele, Timothy J. H.; Willatt, Michael J.; Muolo, Andrea; Althorpe, Stuart C.

    2015-04-07

    We show that a single change in the derivation of the linearized semiclassical-initial value representation (LSC-IVR or “classical Wigner approximation”) results in a classical dynamics which conserves the quantum Boltzmann distribution. We rederive the (standard) LSC-IVR approach by writing the (exact) quantum time-correlation function in terms of the normal modes of a free ring-polymer (i.e., a discrete imaginary-time Feynman path), taking the limit that the number of polymer beads N → ∞, such that the lowest normal-mode frequencies take their “Matsubara” values. The change we propose is to truncate the quantum Liouvillian, not explicitly in powers of ħ{sup 2} at ħ{sup 0} (which gives back the standard LSC-IVR approximation), but in the normal-mode derivatives corresponding to the lowest Matsubara frequencies. The resulting “Matsubara” dynamics is inherently classical (since all terms O(ħ{sup 2}) disappear from the Matsubara Liouvillian in the limit N → ∞) and conserves the quantum Boltzmann distribution because the Matsubara Hamiltonian is symmetric with respect to imaginary-time translation. Numerical tests show that the Matsubara approximation to the quantum time-correlation function converges with respect to the number of modes and gives better agreement than LSC-IVR with the exact quantum result. Matsubara dynamics is too computationally expensive to be applied to complex systems, but its further approximation may lead to practical methods.

  13. Lattice Boltzmann simulation and direct observation of pore fluid flow around irregularly shaped grains

    NASA Astrophysics Data System (ADS)

    Saomoto, H.; Kase, Y.; Matsushima, T.; Yamada, Y.

    2012-12-01

    An accurate velocity model of porous flow plays an important role in the prediction of the ground water pollution.To clarify the behavior of porous flow passing through irregularly shaped grains, we have been performed CFD simulation and direct observation based on the Lattice Boltzmann Method and the LAT-PIV visuallization technique respectively. The Lattice Boltzmann simulator, which works on a graphics processing unit(GPU), is employed to evaluate the pore fluid velocity distribution in an accurate three dimensional digital model involving Toyoura sand. From the simulation results, the pore fluid velocity distributions converge into a unique non-gaussian distribution under various Reynolds numbers ranging from 2 to 10. The features of the non-gaussian distribution are summarized as follows: (1)It has a long tail until sextuple of the mean velocity magnitude. (2)It has a peak frequency close to zero velocity magnitude. (3)It slightly contains negative velocities. The LAT-PIV visuallization technique, a kind of laser slicing visualization method combined LAT(Laser-Aided Tomography) and PIV (Particle Image Velocimetry), visualizes both grain edges and pore fluid behavior inside specimen which is composed of crashed glass grains and specially blended silicone oil. The pore fluid velocity distributions captured by the LAT-PIV images indicate a similar tendency compared with those measured by the LBM simulations. This supports that the LBM simulation has sufficient ability to predict the pore fluid flow even if the porous medium is composed of irregularly shaped grains. GPU accelerated LBM simulation for Toyoura sand model Pore fluid velocity magnitude distributions for several Reynolds numbers

  14. An Updated Equilibrium Machine

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are…

  15. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications

    NASA Astrophysics Data System (ADS)

    Wu, J.; Shu, C.

    2009-04-01

    A version of immersed boundary-lattice Boltzmann method (IB-LBM) is proposed in this work. It is based on the lattice Boltzmann equation with external forcing term proposed by Guo et al. [Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65 (2002) 046308], which can well consider the effect of external force to the momentum and momentum flux as well as the discrete lattice effect. In this model, the velocity is contributed by two parts. One is from the density distribution function and can be termed as intermediate velocity, and the other is from the external force and can be considered as velocity correction. In the conventional IB-LBM, the force density (external force) is explicitly computed in advance. As a result, we cannot manipulate the velocity correction to enforce the non-slip boundary condition at the boundary point. In the present work, the velocity corrections (force density) at all boundary points are considered as unknowns which are computed in such a way that the non-slip boundary condition at the boundary points is enforced. The solution procedure of present IB-LBM is exactly the same as the conventional IB-LBM except that the non-slip boundary condition can be satisfied in the present model while it is only approximately satisfied in the conventional model. Numerical experiments for the flows around a circular cylinder and an airfoil show that there is no any penetration of streamlines to the solid body in the present results. This is not the case for the results obtained by the conventional IB-LBM. Another advantage of the present method is its simple calculation of force on the boundary. The force can be directly calculated from the relationship between the velocity correction and the force density.

  16. Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms

    NASA Astrophysics Data System (ADS)

    Bouchard, Hugo; Bielajew, Alex

    2015-07-01

    To establish a theoretical framework for generalizing Monte Carlo transport algorithms by adding external electromagnetic fields to the Boltzmann radiation transport equation in a rigorous and consistent fashion. Using first principles, the Boltzmann radiation transport equation is modified by adding a term describing the variation of the particle distribution due to the Lorentz force. The implications of this new equation are evaluated by investigating the validity of Fano’s theorem. Additionally, Lewis’ approach to multiple scattering theory in infinite homogeneous media is redefined to account for the presence of external electromagnetic fields. The equation is modified and yields a description consistent with the deterministic laws of motion as well as probabilistic methods of solution. The time-independent Boltzmann radiation transport equation is generalized to account for the electromagnetic forces in an additional operator similar to the interaction term. Fano’s and Lewis’ approaches are stated in this new equation. Fano’s theorem is found not to apply in the presence of electromagnetic fields. Lewis’ theory for electron multiple scattering and moments, accounting for the coupling between the Lorentz force and multiple elastic scattering, is found. However, further investigation is required to develop useful algorithms for Monte Carlo and deterministic transport methods. To test the accuracy of Monte Carlo transport algorithms in the presence of electromagnetic fields, the Fano cavity test, as currently defined, cannot be applied. Therefore, new tests must be designed for this specific application. A multiple scattering theory that accurately couples the Lorentz force with elastic scattering could improve Monte Carlo efficiency. The present study proposes a new theoretical framework to develop such algorithms.

  17. Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms.

    PubMed

    Bouchard, Hugo; Bielajew, Alex

    2015-07-01

    To establish a theoretical framework for generalizing Monte Carlo transport algorithms by adding external electromagnetic fields to the Boltzmann radiation transport equation in a rigorous and consistent fashion. Using first principles, the Boltzmann radiation transport equation is modified by adding a term describing the variation of the particle distribution due to the Lorentz force. The implications of this new equation are evaluated by investigating the validity of Fano's theorem. Additionally, Lewis' approach to multiple scattering theory in infinite homogeneous media is redefined to account for the presence of external electromagnetic fields. The equation is modified and yields a description consistent with the deterministic laws of motion as well as probabilistic methods of solution. The time-independent Boltzmann radiation transport equation is generalized to account for the electromagnetic forces in an additional operator similar to the interaction term. Fano's and Lewis' approaches are stated in this new equation. Fano's theorem is found not to apply in the presence of electromagnetic fields. Lewis' theory for electron multiple scattering and moments, accounting for the coupling between the Lorentz force and multiple elastic scattering, is found. However, further investigation is required to develop useful algorithms for Monte Carlo and deterministic transport methods. To test the accuracy of Monte Carlo transport algorithms in the presence of electromagnetic fields, the Fano cavity test, as currently defined, cannot be applied. Therefore, new tests must be designed for this specific application. A multiple scattering theory that accurately couples the Lorentz force with elastic scattering could improve Monte Carlo efficiency. The present study proposes a new theoretical framework to develop such algorithms. PMID:26061045

  18. Development of an Innovative Algorithm for Aerodynamics-Structure Interaction Using Lattice Boltzmann Method

    NASA Technical Reports Server (NTRS)

    Mei, Ren-Wei; Shyy, Wei; Yu, Da-Zhi; Luo, Li-Shi; Rudy, David (Technical Monitor)

    2001-01-01

    The lattice Boltzmann equation (LBE) is a kinetic formulation which offers an alternative computational method capable of solving fluid dynamics for various systems. Major advantages of the method are owing to the fact that the solution for the particle distribution functions is explicit, easy to implement, and the algorithm is natural to parallelize. In this final report, we summarize the works accomplished in the past three years. Since most works have been published, the technical details can be found in the literature. Brief summary will be provided in this report. In this project, a second-order accurate treatment of boundary condition in the LBE method is developed for a curved boundary and tested successfully in various 2-D and 3-D configurations. To evaluate the aerodynamic force on a body in the context of LBE method, several force evaluation schemes have been investigated. A simple momentum exchange method is shown to give reliable and accurate values for the force on a body in both 2-D and 3-D cases. Various 3-D LBE models have been assessed in terms of efficiency, accuracy, and robustness. In general, accurate 3-D results can be obtained using LBE methods. The 3-D 19-bit model is found to be the best one among the 15-bit, 19-bit, and 27-bit LBE models. To achieve desired grid resolution and to accommodate the far field boundary conditions in aerodynamics computations, a multi-block LBE method is developed by dividing the flow field into various blocks each having constant lattice spacing. Substantial contribution to the LBE method is also made through the development of a new, generalized lattice Boltzmann equation constructed in the moment space in order to improve the computational stability, detailed theoretical analysis on the stability, dispersion, and dissipation characteristics of the LBE method, and computational studies of high Reynolds number flows with singular gradients. Finally, a finite difference-based lattice Boltzmann method is

  19. Symmetric time warping, Boltzmann pair probabilities and functional genomics.

    PubMed

    Clote, Peter; Straubhaar, Jürg

    2006-07-01

    Given two time series, possibly of different lengths, time warping is a method to construct an optimal alignment obtained by stretching or contracting time intervals. Unlike pairwise alignment of amino acid sequences, classical time warping, originally introduced for speech recognition, is not symmetric in the sense that the time warping distance between two time series is not necessarily equal to the time warping distance of the reversal of the time series. Here we design a new symmetric version of time warping, and present a formal proof of symmetry for our algorithm as well as for one of the variants of Aach and Church [1]. We additionally design quadratic time dynamic programming algorithms to compute both the forward and backward Boltzmann partition functions for symmetric time warping, and hence compute the Boltzmann probability that any two time series points are aligned. In the future, with the availability of increasingly long and accurate time series gene expression data, our algorithm can provide a sense of biological significance for aligned time points - e.g. our algorithm could be used to provide evidence that expression values of two genes have higher Boltzmann probability (say) in the G1 and S phase than in G2 and M phases. Algorithms, source code and web interface, developed by the first author, are made publicly available via the Boltzmann Time Warping web server at bioinformatics.bc.edu/clotelab/. PMID:16791652

  20. The lattice Boltzmann method and the problem of turbulence

    SciTech Connect

    Djenidi, L.

    2015-03-10

    This paper reports a brief review of numerical simulations of homogeneous isotopic turbulence (HIT) using the lattice Boltzmann method (LBM). The LBM results shows that the details of HIT are well captured and in agreement with existing data. This clearly indicates that the LBM is as good as current Navier-Stokes solvers and is very much adequate for investigating the problem of turbulence.

  1. Thermopower of SnTe from Boltzmann Transport Calculations

    SciTech Connect

    Singh, David J

    2010-01-01

    The doping and temperature dependent thermopower of SnTe is calculated from the first principles band structure using Boltzmann transport theory. We find that the p-type thermopower is inferior to PbTe consistent with experimental observations, but that the n-type thermopower is substantially more favorable.

  2. Simulation of the Boltzmann Process: An Energy Space Model.

    ERIC Educational Resources Information Center

    Eger, Martin; Kress, Michael

    1982-01-01

    A model is introduced for the simulation of Boltzmann-like binary interactions which may be extended to exhibit the effect of angular dependence in the scattering cross section and other dynamical aspects of two-body interactions. (Author/SK)

  3. Measuring Boltzmann's Constant with Carbon Dioxide

    ERIC Educational Resources Information Center

    Ivanov, Dragia; Nikolov, Stefan

    2013-01-01

    In this paper we present two experiments to measure Boltzmann's constant--one of the fundamental constants of modern-day physics, which lies at the base of statistical mechanics and thermodynamics. The experiments use very basic theory, simple equipment and cheap and safe materials yet provide very precise results. They are very easy and…

  4. Determining Planetary Temperatures with the Stefan-Boltzmann Law

    ERIC Educational Resources Information Center

    LoPresto, Michael C.; Hagoort, Nichole

    2011-01-01

    What follows is a description of several activities involving the Stefan-Boltzmann radiation law that can provide laboratory experience beyond what is normally found in traditional introductory thermodynamics experiments on thermal expansion, specific heat, and heats of transformation. The activities also provide more extensive coverage of and…

  5. Equilibrium Molecular Thermodynamics from Kirkwood Sampling

    PubMed Central

    2015-01-01

    We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys.2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte Carlo moves. Using this method, equilibrium distributions corresponding to different temperatures and potential energy functions can be generated from a given set of low-order correlations. Since Kirkwood samples are generated independently, this method is ideally suited for massively parallel distributed computing. The second approach is a variant of reservoir replica exchange, where Kirkwood sampling is used to construct a reservoir of conformations, which exchanges conformations with the replicas performing equilibrium sampling corresponding to different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide. PMID:25915525

  6. Modeling of non-equilibrium phenomena in expanding flows by means of a collisional-radiative model

    SciTech Connect

    Munafò, A.; Lani, A.; Bultel, A.; Panesi, M.

    2013-07-15

    The effects of non-equilibrium in a quasi-one-dimensional nozzle flow are investigated by means of a collisional-radiative model. The gas undergoing the expansion is an air plasma and consists of atoms, molecules, and free electrons. In the present analysis, the electronic excited states of atomic and molecular species are treated as separate pseudo-species. Rotational and vibrational energy modes are assumed to be populated according to Boltzmann distributions. The coupling between radiation and gas dynamics is accounted for, in simplified manner, by using escape factors. The flow governing equations for the steady quasi-one-dimensional flow are written in conservative form and discretized in space by means of a finite volume method. Steady-state solutions are obtained by using a fully implicit time integration scheme. The analysis of the evolution of the electronic distribution functions reveals a substantial over-population of the high-lying excited levels of atoms and molecules in correspondence of the nozzle exit. The influence of optical thickness is also studied. The results clearly demonstrate that the radiative transitions, within the optically thin approximation, drastically reduce the over-population of high-lying electronic levels.

  7. Electron Transport Coefficients and Effective Ionization Coefficients in SF6-O2 and SF6-Air Mixtures Using Boltzmann Analysis

    NASA Astrophysics Data System (ADS)

    Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong

    2014-10-01

    The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.

  8. A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow

    SciTech Connect

    Shi, Xing; Lin, Guang; Zou, Jianfeng; Fedosov, Dmitry A.

    2013-07-20

    To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse and fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.

  9. Numerical Analysis of Non-Darcy CH4 Flow in Fracture Network of Coal Using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Ju, Y.; Zheng, J.; Gong, W.

    2015-12-01

    Coal seams comprise fractured coal that is naturally separated by discontinuous fractures or joints. These discontinuous fractures constitute a complicated fracture network that leads to the Non-Darcy CH4 flow. It is intractable for conventional models to describe the behavior and its mechanism of Non-Darcy CH4 flow in fractured coal. This paper reports a promising numerical analysis of the complex CH4 flow in the fracture network of coal using Lattice Boltzmann Method (LBM). The flow properties of CH4 flow, including viscosity distribution, average flow speed, permeability coefficient, are derived using the LBM model. The analysis is validated by comparing the LBM results with the experimental observation data. Key words: Non-Darcy flow, CH4, fracture network, Lattice Boltzmann Method, Coal, Permeability

  10. Alternative curved-boundary treatment for the lattice Boltzmann method and its application in simulation of flow and potential fields.

    PubMed

    Mohammadipoor, O R; Niazmand, H; Mirbozorgi, S A

    2014-01-01

    Since the lattice Boltzmann method originally carries out the simulations on the regular Cartesian lattices, curved boundaries are often approximated as a series of stair steps. The most commonly employed technique for resolving curved-boundary problems is extrapolating or interpolating macroscopic properties of boundary nodes. Previous investigations have indicated that using more than one equation for extrapolation or interpolation in boundary conditions potentially causes abrupt changes in particle distributions. Therefore, a curved-boundary treatment is introduced to improve computational accuracy of the conventional stair-shaped approximation used in lattice Boltzmann simulations by using a unified equation for extrapolation of macroscopic variables. This boundary condition is not limited to fluid flow and can be extended to potential fields. The proposed treatment is tested against several well-established problems and the solutions order of accuracy is evaluated. Numerical results show that the present treatment is of second-order accuracy and has reliable stability characteristics. PMID:24580362

  11. Two-Class Structure of Income Distribution in the Usa:. Exponential Bulk and Power-Law Tail

    NASA Astrophysics Data System (ADS)

    Yakovenko, V. M.; Silva, A. Christian

    2007-07-01

    Personal income distribution in the USA has a well-defined two-class structure. The majority of population (97-99 %) belongs to the lower class characterized by the exponential Boltzmann-Gibbs ("thermal") distribution, whereas the upper class (1-3 % of population) has a Pareto power-law ("superthermal") distribution. By analyzing income data for 1983-2001, we show that the "thermal" part is stationary in time, save for a gradual increase of the effective temperature, whereas the "superthermal" tail swells and shrinks following the stock market. We discuss the concept of equilibrium inequality in a society, based on the principle of maximal entropy, and quantitatively show that it applies to the majority of population.

  12. TH-E-BRE-02: A Forward Scattering Approximation to Dose Calculation Using the Linear Boltzmann Transport Equation

    SciTech Connect

    Catt, B; Snyder, M

    2014-06-15

    Purpose: To investigate the use of the linear Boltzmann transport equation as a dose calculation tool which can account for interface effects, while still having faster computation times than Monte Carlo methods. In particular, we introduce a forward scattering approximation, in hopes of improving calculation time without a significant hindrance to accuracy. Methods: Two coupled Boltzmann transport equations were constructed, one representing the fluence of photons within the medium, and the other, the fluence of electrons. We neglect the scattering term within the electron transport equation, resulting in an extreme forward scattering approximation to reduce computational complexity. These equations were then solved using a numerical technique for solving partial differential equations, known as a finite difference scheme, where the fluence at each discrete point in space is calculated based on the fluence at the previous point in the particle's path. Using this scheme, it is possible to develop a solution to the Boltzmann transport equations by beginning with boundary conditions and iterating across the entire medium. The fluence of electrons can then be used to find the dose at any point within the medium. Results: Comparisons with Monte Carlo simulations indicate that even simplistic techniques for solving the linear Boltzmann transport equation yield expected interface effects, which many popular dose calculation algorithms are not capable of predicting. Implementation of a forward scattering approximation does not appear to drastically reduce the accuracy of this algorithm. Conclusion: Optimized implementations of this algorithm have been shown to be very accurate when compared with Monte Carlo simulations, even in build up regions where many models fail. Use of a forward scattering approximation could potentially give a reasonably accurate dose distribution in a shorter amount of time for situations where a completely accurate dose distribution is not

  13. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  14. The equilibrium dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Zavriyev, Anton; Hasegawa, Akira

    1989-01-01

    A method is presented of computing the dayside global earth magnetic field which is in equilibrium with the plasma pressure, based on satellite observations at a local region of the magnetosphere. The method, which utilizes a perturbation around a dipole magnetic field, involves computation of the global plasma pressure profile based on the equatorial (anisotropic) pressure data, derivation of the current profile which satisfies the equilibrium condition, and computation of the magnetic field using the current profile and the boundary current produced by the solar wind. The method is applied for the Active Magnetospheric Particle Tracer Explorers data, and the result of the computation is found to compare reasonably well with the observed magnetic field profile near the geomagnetic equator.

  15. RESOLVING THE ELECTRON TEMPERATURE DISCREPANCIES IN H II REGIONS AND PLANETARY NEBULAE: {kappa}-DISTRIBUTED ELECTRONS

    SciTech Connect

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.

    2012-06-20

    The measurement of electron temperatures and metallicities in H II regions and planetary nebulae (PNe) has-for several decades-presented a problem: results obtained using different techniques disagree. What is worse, they disagree consistently. There have been numerous attempts to explain these discrepancies, but none has provided a satisfactory solution to the problem. In this paper, we explore the possibility that electrons in H II regions and PNe depart from a Maxwell-Boltzmann equilibrium energy distribution. We adopt a '{kappa}-distribution' for the electron energies. Such distributions are widely found in solar system plasmas, where they can be directly measured. This simple assumption is able to explain the temperature and metallicity discrepancies in H II regions and PNe arising from the different measurement techniques. We find that the energy distribution does not need to depart dramatically from an equilibrium distribution. From an examination of data from H II regions and PNe, it appears that {kappa} {approx}> 10 is sufficient to encompass nearly all objects. We argue that the kappa-distribution offers an important new insight into the physics of gaseous nebulae, both in the Milky Way and elsewhere, and one that promises significantly more accurate estimates of temperature and metallicity in these regions.

  16. Solids Far from Equilibrium

    NASA Astrophysics Data System (ADS)

    Godrèche, C.

    2011-03-01

    Preface; 1. Shape and growth of crystals P. Nozières; 2. Instabilities of planar solidification fronts B. Caroli, C. Caroli and B. Roulet; 3. An introduction to the kinetics of first-order phase transition J. S. Langer; 4. Dendritic growth and related topics Y. Pomeau and M. Ben Amar; 5. Growth and aggregation far from equilibrium L. M. Sander; 6. Kinetic roughening of growing surfaces J. Krug and H. Spohn; Acknowledgements; References; Index.

  17. Local thermodynamic equilibrium and related metrological issues involving collisional-radiative model in laser-induced aluminum plasmas

    NASA Astrophysics Data System (ADS)

    Travaillé, G.; Peyrusse, O.; Bousquet, B.; Canioni, L.; Pierres, K. Michel-Le; Roy, S.

    2009-10-01

    We present a collisional-radiative approach of the theoretical analysis of laser-induced breakdown spectroscopy (LIBS) plasmas. This model, which relies on an optimized effective potential atomic structure code, was used to simulate a pure aluminum plasma. The description of aluminum involved a set of 220 atomic levels representative of three different stages of ionization (Al 0, Al + and Al ++). The calculations were carried for stationary plasmas, with input parameters ( ne and Te) ranging respectively between 10 13-18 cm - 3 and 0.3-2 eV. A comparison of our atomic data with some existing databases is made. The code was mainly developed to address the validity of the local thermodynamic equilibrium (LTE) assumption. For usual LIBS plasma parameters, we did not reveal a sizeable discrepancy of the radiative equilibrium of the plasma towards LTE. For cases where LTE was firmly believed to stand, the Boltzmann plot outputs of this code were used to check the physical accuracy of the Boltzmann temperature, as it is currently exploited in several calibration-free laser-induced breakdown spectroscopy (CF-LIBS) studies. In this paper, a deviation ranging between 10 and 30% of the measured Boltzmann temperature to the real excitation temperature is reported. This may be due to the huge dispersion induced on the line emissivities, on which the Boltzmann plots are based to extract this parameter. Consequences of this fact on the CF-LIBS procedure are discussed and further insights to be considered for the future are introduced.

  18. Exoplanet Equilibrium Chemistry Calculations

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, J.; Bowman, M.; Blecic, J.

    2013-10-01

    Recently, Agundez et al. (2012, A&A 548, A73) used a chemical kinetics code to study a model HD 209458b (equilibrium temperature of 1450 K, assuming full redistribution and 0 albedo). They found that thermochemistry dominates most of the dayside, but that significant compositional gradients may exist across the dayside. We calculate equilibrium-chemistry molecular abundances for several model exoplanets, using NASA's open-source Chemical Equilibrium Abundances code (McBride and Gordon 1996). We vary the degree of radiation redistribution to the dark side, ranging from total redistribution to instantaneous reradiation. Atomically, both the solar abundance multiple and the carbon fraction vary. Planet substellar temperatures range from just above 1200 K, where photochemistry should no longer be important, to those of hot planets (3000 K). We present synthetic abundance images for the key spectroscopic molecules CO, CH4, and H2O for several hot-Jupiter model planets. This work was supported by the NASA Planetary Atmospheres grant NNX12AI69G.

  19. Equilibrium Electroconvective Instability

    NASA Astrophysics Data System (ADS)

    Rubinstein, I.; Zaltzman, B.

    2015-03-01

    Since its prediction 15 years ago, hydrodynamic instability in concentration polarization at a charge-selective interface has been attributed to nonequilibrium electro-osmosis related to the extended space charge which develops at the limiting current. This attribution had a double basis. On the one hand, it has been recognized that neither equilibrium electro-osmosis nor bulk electroconvection can yield instability for a perfectly charge-selective solid. On the other hand, it has been shown that nonequilibrium electro-osmosis can. The first theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge selectivity for the sake of simplicity and so did the subsequent studies of various time-dependent and nonlinear features of electro-osmotic instability. In this Letter, we show that relaxing the assumption of perfect charge selectivity (tantamount to fixing the electrochemical potential of counterions in the solid) allows for the equilibrium electroconvective instability. In addition, we suggest a simple experimental test for determining the true, either equilibrium or nonequilibrium, origin of instability in concentration polarization.

  20. A numerical solution of the linear Boltzmann equation using cubic B-splines

    NASA Astrophysics Data System (ADS)

    Khurana, Saheba; Thachuk, Mark

    2012-03-01

    A numerical method using cubic B-splines is presented for solving the linear Boltzmann equation. The collision kernel for the system is chosen as the Wigner-Wilkins kernel. A total of three different representations for the distribution function are presented. Eigenvalues and eigenfunctions of the collision matrix are obtained for various mass ratios and compared with known values. Distribution functions, along with first and second moments, are evaluated for different mass and temperature ratios. Overall it is shown that the method is accurate and well behaved. In particular, moments can be predicted with very few points if the representation is chosen well. This method produces sparse matrices, can be easily generalized to higher dimensions, and can be cast into efficient parallel algorithms.