Science.gov

Sample records for bond dissociation energy

  1. The Bond Dissociation Energies of 1-Butene

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The bond dissociation energies of 1-butene and several calibration systems are computed using the G2(MP2) approach. The agreement between the calibration systems and experiment is very good. The computed values for 1-butene are compared with calibration systems and the agreement between the computed results for 1-butene and the "rule of thumb" values from the smaller systems is remarkably good.

  2. Theoretical study of the bond dissociation energies of methanol

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.

    1992-01-01

    A theoretical study of the bond dissociation energies for H2O and CH3OH is presented. The C-H and O-H bond energies are computed accurately with the modified coupled-pair functional method using a large basis set. For these bonds, an accuracy of +/- 2 kcal/mol is achieved, which is consistent with the C-H and C-C single bond energies of other molecules. The C-O bond is much more difficult to compute accurately because it requires higher levels of correlation treatment and more extensive one-particle basis sets.

  3. Accurate bond dissociation energies (D 0) for FHF- isotopologues

    NASA Astrophysics Data System (ADS)

    Stein, Christopher; Oswald, Rainer; Sebald, Peter; Botschwina, Peter; Stoll, Hermann; Peterson, Kirk A.

    2013-09-01

    Accurate bond dissociation energies (D 0) are determined for three isotopologues of the bifluoride ion (FHF-). While the zero-point vibrational contributions are taken from our previous work (P. Sebald, A. Bargholz, R. Oswald, C. Stein, P. Botschwina, J. Phys. Chem. A, DOI: 10.1021/jp3123677), the equilibrium dissociation energy (D e ) of the reaction ? was obtained by a composite method including frozen-core (fc) CCSD(T) calculations with basis sets up to cardinal number n = 7 followed by extrapolation to the complete basis set limit. Smaller terms beyond fc-CCSD(T) cancel each other almost completely. The D 0 values of FHF-, FDF-, and FTF- are predicted to be 15,176, 15,191, and 15,198 cm-1, respectively, with an uncertainty of ca. 15 cm-1.

  4. Predissociation measurements of bond dissociation energies: VC, VN, and VS.

    PubMed

    Johnson, Eric L; Davis, Quincy C; Morse, Michael D

    2016-06-21

    The abrupt onset of predissociation in the congested electronic spectra of jet-cooled VC, VN, and VS has been observed using resonant two-photon ionization spectroscopy. It is argued that because of the high density of electronic states in these molecules, the predissociation threshold occurs at the thermochemical threshold for the production of separated atoms in their ground electronic states. As a result, the measured threshold represents the bond dissociation energy. Using this method, bond dissociation energies of D0(V C) = 4.1086(25) eV, D0(V N) = 4.9968(20) eV, and D0(V S) = 4.5353(25) eV are obtained. From these values, enthalpies of formation are derived as Δf,0KH°(V C(g)) = 827.0 ± 8 kJ mol(-1), Δf,0KH°(V N(g)) = 500.9 ± 8 kJ mol(-1), and Δf,0KH°(V S(g)) = 349.3 ± 8 kJ mol(-1). Using a thermochemical cycle and the well-known ionization energies of V, VC, and VN, our results also provide D0(V(+)-C) = 3.7242(25) eV and D0(V(+)-N) = 4.6871(20) eV. These values are compared to previous measurements and to computational results. The precision of these bond dissociation energies makes them good candidates for testing computational chemistry methods, particularly those that employ density functional theory. PMID:27334161

  5. Predissociation measurements of bond dissociation energies: VC, VN, and VS

    NASA Astrophysics Data System (ADS)

    Johnson, Eric L.; Davis, Quincy C.; Morse, Michael D.

    2016-06-01

    The abrupt onset of predissociation in the congested electronic spectra of jet-cooled VC, VN, and VS has been observed using resonant two-photon ionization spectroscopy. It is argued that because of the high density of electronic states in these molecules, the predissociation threshold occurs at the thermochemical threshold for the production of separated atoms in their ground electronic states. As a result, the measured threshold represents the bond dissociation energy. Using this method, bond dissociation energies of D0(V C) = 4.1086(25) eV, D0(V N) = 4.9968(20) eV, and D0(V S) = 4.5353(25) eV are obtained. From these values, enthalpies of formation are derived as Δf,0KH°(V C(g)) = 827.0 ± 8 kJ mol-1, Δf,0KH°(V N(g)) = 500.9 ± 8 kJ mol-1, and Δf,0KH°(V S(g)) = 349.3 ± 8 kJ mol-1. Using a thermochemical cycle and the well-known ionization energies of V, VC, and VN, our results also provide D0(V+-C) = 3.7242(25) eV and D0(V+-N) = 4.6871(20) eV. These values are compared to previous measurements and to computational results. The precision of these bond dissociation energies makes them good candidates for testing computational chemistry methods, particularly those that employ density functional theory.

  6. Bond Dissociation Energies in Second-Row Compounds

    SciTech Connect

    Grant, Daniel J.; Matus, Myrna H.; Switzer, Jackson R.; Dixon, David A.; Francisco, Joseph S.; Christe, Karl O.

    2008-04-10

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Heats of formation at 0 and 298 K are predicted for PF₃, PF₅, PF₃O, SF₂, SF₄, SF₆, SF₂O, SF₂O₂, and SF₄O as well as a number of radicals derived from these stable compounds on the basis of coupled cluster theory [CCSD(T)] calculations extrapolated to the complete basis set limit. In order to achieve near chemical accuracy (±1 kcal/mol), additional corrections were added to the complete basis set binding energies based on frozen core coupled cluster theory energies: a correction for core-valence effects, a correction for scalar relativistic effects, a correction for first-order atomic spin-orbit effects, and vibrational zero-point energies. The calculated values substantially reduce the error limits for these species. A detailed comparison of adiabatic and diabatic bond dissociation energies (BDEs) is made and used to explain trends in the BDEs. Because the adiabatic BDEs of polyatomic molecules represent not only the energy required for breaking a specific bond but also contain any reorganization energies of the bonds in the resulting products, these BDEs can be quite different for each step in the stepwise loss of ligands in binary compounds. For example, the adiabatic BDE for the removal of one fluorine ligand from the very stable closed-shell SF₆ molecule to give the unstable SF₅ radical is 2.8 times the BDE needed for the removal of one fluorine ligand from the unstable SF₅ radical to give the stable closed-shell SF₄ molecule. Similarly, the BDE for the removal of one fluorine ligand from the stable closed-shell PF₃O molecule to give the unstable PF₂O radical is higher than the BDE needed to remove the oxygen atom to give the stable closed

  7. Calculation of bond dissociation energies of diatomic molecules using bond function basis sets with counterpoise corrections

    SciTech Connect

    Li, Z.; Pan, Y.K.; Tao, F.M.

    1996-01-15

    Bond function basis sets combined with the counterpoise procedure are used to calculate the molecular dissociation energies D{sub e} of 24 diatomic molecules and ions. The calculated values of D{sub e} are compared to those without bond functions and/or counterpoise corrections. The equilibrium bond lengths r{sub e}, and harmonic frequencies w{sub e} are also calculated for a few selected molecules. The calculations at the fourth-order-Moller-Plesset approximation (MP4) have consistently recovered about 95-99% of the experimental values for D{sub e}, compared to as low as 75% without use of bond functions. The calculated values of r{sub 3} are typically 0.01 {Angstrom} larger than the experimental values, and the calculated values of w{sub e} are over 95% of the experimental values. 37 refs., 2 tabs.

  8. The dissociative bond.

    PubMed

    Gordon, Nirit

    2013-01-01

    Dissociation leaves a psychic void and a lingering sense of psychic absence. How do 2 people bond while they are both suffering from dissociation? The author explores the notion of a dissociative bond that occurs in the aftermath of trauma--a bond that holds at its core an understanding and shared detachment from the self. Such a bond is confined to unspoken terms that are established in the relational unconscious. The author proposes understanding the dissociative bond as a transitional space that may not lead to full integration of dissociated knowledge yet offers some healing. This is exemplified by R. Prince's (2009) clinical case study. A relational perspective is adopted, focusing on the intersubjective aspects of a dyadic relationship. In the dissociative bond, recognition of the need to experience mutual dissociation can accommodate a psychic state that yearns for relationship when the psyche cannot fully confront past wounds. Such a bond speaks to the need to reestablish a sense of human relatedness and connection when both parties in the relationship suffer from disconnection. This bond is bound to a silence that becomes both a means of protection against the horror of traumatic memory and a way to convey unspoken gestures toward the other. PMID:23282044

  9. Bond dissociation energies from the topology of the charge density using gradient bundle analysis

    NASA Astrophysics Data System (ADS)

    Morgenstern, Amanda; Eberhart, Mark

    2016-02-01

    New and more robust models of chemical bonding are necessary to further our understanding of chemical phenomena. Among these are bond bundle and gradient bundle methods, which analyze bonding interactions in terms of property distributions over geometrically defined volumes. These methods have been shown to provide a systematic framework from which to search for structure-property relationships. In addition to providing a brief review of some of the relationships found using this framework, we present new findings that relate the lowering of kinetic energy in bonding regions to bond dissociation energy.

  10. The effect of bond functions on dissociation energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.

    1985-01-01

    The procedure employing bond functions recently suggested by Wright and Buenker has been applied to the N2 X 1 Sigma g + potential curve within the CAS SCF + MRSD CI treatment of electron correlation. The basis set used herein is identical to that employed by these authors in their SCF + CI calculations. The De and and the shape of the resulting potential curve, as judged by the computed vibrational levels, is not so accurate as would be expected from the results reported by Wright and Buenker (1984). The results indicate that using the CI superposition errors associated with bond functions to cancel basis set incompleteness depends on the treatment of the electron correlation.

  11. Understanding selenocysteine through conformational analysis, proton affinities, acidities and bond dissociation energies

    NASA Astrophysics Data System (ADS)

    Kaur, Damanjit; Sharma, Punita; Bharatam, Prasad V.; Kaur, Mondeep

    Density functional methods have been employed to characterize the gas phase conformations of selenocysteine. The 33 stable conformers of selenocysteine have been located on the potential energy surface using density functional B3LYP/6-31+G* method. The conformers are analyzed in terms of intramolecular hydrogen bonding interactions. The proton affinity, gas phase acidities, and bond dissociation energies have also been evaluated for different reactive sites of selenocysteine for the five lowest energy conformers at B3LYP/6-311++G*//B3LYP/6-31+G* level. Evaluation of these intrinsic properties reflects the antioxidant activity of selenium in selenocysteine.0

  12. The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1989-01-01

    The bond dissociation energies (D sub e) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of D sub e with respect to the one particle basis is studied at the single reference modified coupled-pair functional (MCPF) level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration interaction (MRCI) D sub e values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size extensive averaged coupled pair functional (ACPF) method. It was found that the full valence complete active space self consistent field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds. To achieve chemical accuracy (1 kcal/mole) for the D sub e values of the doubly bonded species C2H4 and N2H2 requires one particle basis sets including up through h angular momentum functions (l = 5) and a multireference treatment of electron correlation: still higher levels of calculation are required to achieve chemical accuracy for the triply bonded species C2H2 and N2.

  13. Theoretical study of the C-H bond dissociation energy of acetylene

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    The authors present a theoretical study of the convergence of the C-H bond dissociation energy (D sub o) of acetylene with respect to both the one- and n-particle spaces. Their best estimate for D sub o of 130.1 plus or minus 1.0 kcal/mole is slightly below previous theoretical estimates, but substantially above the value determined using Stark anticrossing spectroscopy that is asserted to be an upper bound.

  14. Computation of Bond Dissociation Energies for Removal of Nitrogen Dioxide Groups in Certain Aliphatic Nitro Compounds

    NASA Astrophysics Data System (ADS)

    Shao, Ju-Xiang; Cheng, Xin-Lu; Yang, Xiang-Dong; Xiang, Shi-Kai

    2006-04-01

    Bond dissociation energies for removal of nitrogen dioxide groups in 10 aliphatic nitro compounds, including nitromethane, nitroethylene, nitroethane, dinitromethane, 1-nitropropane, 2-nitropropane, 1-nitrobutane, 2-methyl-2-nitropropane, nitropentane, and nitrohexane, are calculated using the highly accurate complete basis set (CBS-Q) and the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B3P86 with 6-31G** basis set. By comparing the computed bond dissociation energies and experimental results, we find that the B3LYP/6-31G** and B3PW91/6-31G** methods are incapable of predicting the satisfactory bond dissociation energy (BDE). However, B3P86/6-31G** and CBS-Q computations are capable of giving the calculated BDEs, which are in extraordinary agreement with the experimental data. Nevertheless, since CBS-Q computational demands increase rapidly with the number of containing atoms in molecules, larger molecules soon become prohibitively expensive. Therefore, we suggest to take the B3P86/6-31G** method as a reliable method of computing the BDEs for removal of the NO2 groups in the aliphatic nitro compounds.

  15. The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1991-01-01

    The bond dissociation energies (De) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of De with respect to the one-particle basis is studied at the single-reference modified coupled-pair-functional (MCPF)level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration-interaction (MRCI) De values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size-extensive averaged-coupled-pair-functional (ACPF) method. The full-valence complete-active-space self-consistent-field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds.

  16. Theoretical study of the bond dissociation energies of propyne (C3H4)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1992-01-01

    The C-C and C-H bond dissociation energies (BDEs) of propyne have been computed using the modified coupled-pair functional method. Due to hyperconjugation, the C-C and methyl C-H single bonds are stronger and weaker, respectively than those in ethane. The acetylenic C-H and C triple bond C BDEs are larger and smaller, respectively, than in acetylene, also as a result of the hyperconjugation. Our best estimate of 92.5 +/- 2 kcal/mol for the methyl C-H BDE in propyne is slightly larger than the experimental value. For the acetylenic C-H BDE in propyne we predict 135.9 +/- 2 kcal/mol.

  17. Relationships between bond dissociation energies, electron density minima and electrostatic potential minima

    NASA Astrophysics Data System (ADS)

    Wiener, John J. M.; Murray, Jane S.; Grice, M. Edward; Politzer, Peter

    The experimental dissociation energies of a group of homonuclear diatomic molecules are found to correlate with computed electron densities pho(r) and electrostatic potentials V (r) at the bond midpoints, supporting an earlier prediction based on density functional arguments (N. H. March, P. M. Kozlowski and F. Perrot 1990, J. molec. Struct. Theochem, 209, 433). The relationships are generalized to 45 molecules of various types, focusing upon the minima of pho(r) and V (r) along internuclear axes. Dissociation energies are shown to be related distinctly more closely to the minimum values of V (r) than to those of pho(r). This complements previous findings for negative monatomic ions as well as the recent observation that the V (r) minima provide the more realistic boundary points between bonded atoms (relative to literature values of covalent radii), and thus further establishes the significance of electrostatic potential axial minima with respect to covalent bonding. In the present work, all calculations were carried out by a density functional procedure (Becke exchange, Lee, Yang and Parr correlation, 6-31G** basis sets).

  18. Theoretical study of the C-H bond dissociation energy of C2H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    A theoretical study of the convergence of the C-H bond dissociation energy D(0) in C2H with respect to both the one- and n-particle spaces is presented. The calculated C-H bond energies of C2H2 and C2H4, which are in excellent agreement with experiment, are used for calibration. The best estimate for D(0) of 112.4 + or - 2.0 kcal/mol is slightly below the recent experimental value of 116.3 + or - 2.6 kcal/mol, but substantially above a previous theoretical estimate of 102 kcal/mol. The remaining discrepancy with experiment may reflect primarily the uncertainty in the experimental D(0) value of C2 required in the analysis.

  19. A single theoretical descriptor for the bond-dissociation energy of substituted phenols.

    PubMed

    Aliaga, Carolina; Almodovar, Iriux; Rezende, Marcos Caroli

    2015-01-01

    Relative to the corresponding value of phenol, the bond-dissociation energies (BDE) of substituted phenols correlate well with a single descriptor: the Mulliken charge on the oxygen atom of the phenoxyl radical. However, the correlation fails for phenols ortho-substituted with polar groups. Internal reaction coordinates (IRC) for the model reaction of hydrogen abstraction by the hydroperoxyl radical from various 2- and 4-substituted phenols were calculated in order to investigate the role of intra-molecular hydrogen bonds and steric effects on the process. Calculations yielded theoretical values in good agreement with experimental ΔBDE values. The hydrogen-abstraction process was further analyzed in terms of density functional theory (DFT)-based reactivity indices such as local electrophilicity, the Fukui function for nucleophilic attack, and dual descriptor values of the phenolic hydroxyl oxygen along the IRC. PMID:25617211

  20. Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO){sub 6}

    SciTech Connect

    Nash, C.S.; Bursten, B.E.

    1999-11-24

    The recent syntheses of several new elements (including the recent reports of elements 116 and 118), coupled with the controversy surrounding the naming of elements 104--109, have stimulated a great interest in the chemistry of the transactinide elements. This contribution addresses hypothetical hexacarbonyl complex of seaborgium (Sg, element 106), which is predicted to be a 6d-block transition element with six valence electrons, analogous to Cr, Mo, and W. The authors have previously predicted that, if it were to exist, Sg(CO){sub 6} would exhibit metal-carbonyl bonding that is very similar to that in Cr(CO){sub 6}, Mo(CO){sub 6}, and W(CO){sub 6}, and quite unlike that of the unknown valence isoelectronic actinide complex U(CO){sub 6}. This finding is in accord with the scant experimental data available for Sg. The relativistic DV-X{alpha} method used in the earlier paper facilitated the analysis of the molecular orbitals of Sg(CO){sub 6}, but did not allow for the calculation of total-energy properties, such as bond lengths and vibrational frequencies. Here the authors will use the superior methodology they have applied to other transactinide molecules to compare the bond lengths, vibrational frequencies, and CO dissociation energy of hypothetical Sg(CO){sub 6} to those of Mo(CO){sub 6} and W(CO){sub 6}.

  1. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies.

    PubMed

    Feng, Yong; Liu, Lei; Wang, Jin-Ti; Huang, Hao; Guo, Qing-Xiang

    2003-01-01

    Composite ab initio CBS-Q and G3 methods were used to calculate the bond dissociation energies (BDEs) of over 200 compounds listed in CRC Handbook of Chemistry and Physics (2002 ed.). It was found that these two methods agree with each other excellently in the calculation of BDEs, and they can predict BDEs within 10 kJ/mol of the experimental values. Using these two methods, it was found that among the examined compounds 161 experimental BDEs are valid because the standard deviation between the experimental and theoretical values for them is only 8.6 kJ/mol. Nevertheless, 40 BDEs listed in the Handbook may be highly inaccurate as the experimental and theoretical values for them differ by over 20 kJ/mol. Furthermore, 11 BDEs listed in the Handbook may be seriously flawed as the experimental and theoretical values for them differ by over 40 kJ/mol. Using the 161 cautiously validated experimental BDEs, we then assessed the performances of the standard density functional (DFT) methods including B3LYP, B3P86, B3PW91, and BH&HLYP in the calculation of BDEs. It was found that the BH&HLYP method performed poorly for the BDE calculations. B3LYP, B3P86, and B3PW91, however, performed reasonably well for the calculation of BDEs with standard deviations of about 12.1-18.0 kJ/mol. Nonetheless, all the DFT methods underestimated the BDEs by 4-17 kJ/mol in average. Sometimes, the underestimation by the DFT methods could be as high as 40-60 kJ/mol. Therefore, the DFT methods were more reliable for relative BDE calculations than for absolute BDE calculations. Finally, it was observed that the basis set effects on the BDEs calculated by the DFT methods were usually small except for the heteroatom-hydrogen BDEs. PMID:14632451

  2. A QSPR study of O-H bond dissociation energy in phenols.

    PubMed

    Bosque, Ramón; Sales, Joaquim

    2003-01-01

    A Quantitative Structure-Property Relationship (QSPR) is developed for the O-H bond dissociation energy (BDE) of a set of 78 phenols. The data set was composed of monosubstituted, disubstituted, and polysubstituted phenolic derivatives containing substituents with different steric and electronic effects in the ortho-, meta-, and para-positions of the aromatic ring. The proposed model, derived from multiple linear regression, contains seven descriptors calculated solely from the molecular structure of compounds. The average absolute relative errors are 1.37% (R(2) = 0.8978; SD: 6.67) and 1.13% (R(2) = 0.9076; SD: 4.26) for the working set (62 compounds) and the prediction set (16 compounds), respectively. These results are better than those obtained from DFT calculations, QSAR approach, and correlations with Hammet parameters. PMID:12653532

  3. Equilibrium Acidities and Homolytic Bond Dissociation Energies of Acidic C H Bonds in Alpha-Arylacetophenones and Related Compounds

    SciTech Connect

    Alnajjar, Mikhail S. ); Zhang, Xian-Man; Gleicher, Gerald J.; Truksa, Scott V.; Franz, James A. )

    2002-12-13

    The equilibrium acidities (pKAHs) and the oxidation potentials of the conjugate anions (Eox(A?{approx})s) were determined in dimethyl sulfoxide (DMSO) for eight ketones of the structure GCOCH3 and twenty of the structure RCOCH2G, (where R= alkyl, phenyl and G= alkyl, aryl). The homolytic bond dissociation energies (BDEs) for the acidic C H bonds of the ketones were estimated using the equation, BDEAH= 1.37pKAH+ 23.1Eox(A?{approx})+ 73.3. While the equilibrium acidities of GCOCH3 were found to be dependent on the remote substituent G, the BDE values for the C H bonds remained essentially invariant (93.5+ 0.5 kcal/mol). A linear correlation between pKAH values and (Eox(A?{approx})s) was found for the ketones. For RCOCH2G ketones, both pKAH and BDE values for the adjacent C-H bonds are sensitive to the nature of the substituent G. However, the steric bulk of the aryl group tends to exert a leveling effect on BDE's. The BDE of?p-9-anthracenylacetophenone is higher than that of??-2-anthracenylacetophenone by 3 kcal/mole, reflecting significant steric inhibition of resonance in the 9-substituted system. A range of 80.7 - 84.4 kcal/mole is observed for RCOCH2G ketones. The results are discussed in terms of solvation, steric, and resonance effects. Ab initio density functional theory (DFT) calculations are employed to illustrate the effect of steric interactions on radical and anion geometries. The DFT results parallel the trends in the experimental BDEs of??-arylacetophenones.

  4. Bond Dissociation Energies for Substituted Polycyclic Aromatic Hydrocarbons and Their Cations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP/4-31G approach is used to compute bond energies for a series of substituted benzene, naphthalene, and anthracene molecules and their cations. The benzene bond energies are compared with experiment. The trends in the bond energies are discussed. The ionization energies are also reported and compared with available experiments.

  5. Isolation, Characterization of an Intermediate in an Oxygen Atom-Transfer Reaction, and the Determination of the Bond Dissociation Energy

    SciTech Connect

    Nemykin, Victor N.; Laskin, Julia; Basu, Partha

    2004-07-19

    Redox reactions coupled with the formal loss or gain of an oxygen atom are ubiquitous in chemical processes. Such reactions proceed through the reduction of the donor center (XO) and the oxidation of the acceptor (Y) molecule. Among many examples of the metal centered oxygen atom transfer (OAT) reactivity, those involving molybdenum complexes have been widely investigated due to their involvement in mononuclear molybdenum enzymes. The heat of reaction of the overall atom transfer process can be expressed as a difference between the bond dissociation energies (BDEs) of the oxygen-donor(X) and oxygen-acceptor(Y) bond, i.e., H=DX=o-DY=O.

  6. Bond Dissociation Energies of the Tungsten Fluorides and Their Singly-Charged Ions: A Density Functional Survey

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Arnold, James (Technical Monitor)

    1999-01-01

    The dissociation of WF6 and the related singly-charged cations and anions into the lower fluorides and fluorine atoms has been investigated theoretically using density functional theory (B3LYP) and relativistic effective core potentials, with estimates of spin-orbit effects included using a simple model. The inclusion of spin-orbit is essential for a correct description of the thermochemistry. The total atomization energy of the neutral and anionic WF6 is reproduced to within 25 kcal/mol, but comparison of individual bond dissociation energies with available experimental data shows discrepancies of up to 10 kcal/mol. The results are nevertheless useful to help resolve discrepancies in experimental data and provide estimates of missing data.

  7. Renewable energy liberation by nonthermal intermolecular bond dissociation in water and ethanol

    NASA Astrophysics Data System (ADS)

    Graneau, N.; Verdoold, S.; Oudakker, G.; Yurteri, C. U.; Marijnissen, J. C. M.

    2011-02-01

    Prior indication that renewable energy can be extracted from hydrogen bonds in water has led to several investigations of the energy balance when bulk liquid is converted into micron scale droplets by directional (nonthermal) forces. The demonstration of this effect has previously involved pulsed high current arcs in water which produce large electrodynamic forces. Here, we show that renewable energy is also liberated during the creation of droplets by electrostatic forces in electrohydrodynamic atomization (electrospray) experiments. Using both ethanol and water, the energy outputs, primarily the droplet kinetic energy, were always greater than the energy inputs, implying that stored energy was liberated from the liquid. The energetics of generic chemical bonding are investigated to demonstrate that although this discovery was not publicly anticipated, it is consistent with conventional theory. This experimental breakthrough should have a major impact on the quest for renewable energy sources, capable of powering electricity generators.

  8. Computationally efficient methodology to calculate C-H and C-X (X = F, Cl, and Br) bond dissociation energies in haloalkanes

    SciTech Connect

    McGivern, W.S.; Derecskei-Kovacs, A.; North, S.W.; Francisco, J.S.

    2000-01-20

    A computationally efficient method for calculating C-H and C-X (X = F, Cl, and Br) bond dissociation energies in haloalkanes has been developed by determining correction factors to MP2/cc-pVtz energies. Corrections for basis set effects were determined by the difference in bond dissociation energies calculated at the MP2/cc-pVtz and MP2/cc-pV5z levels, and correlation effects were corrected by calculating the difference in energies at the MP2/cc-pVtz and CCSD(T)/cc-pVtz levels. Subsequent corrections for the spin-orbit energy of the atomic fragment and zero-point energy were applied to give a final bond dissociation energy. The correction factors were determined using CH{sub 4}, CH{sub 3}F, CH{sub 3}Cl, and CH{sub 3}Br and are found to yield bond dissociation energies in excellent agreement with experimental results. This correction may also be broadly applied to multihalogen compounds, as shown in calculations of the C-H and C-X bond dissociation energies of CH{sub 2}X{sub 2} and CHX{sub 3} (X = F, Cl, and Br) compounds, which accurately reproduce experimental values.

  9. Negligible Isotopic Effect on Dissociation of Hydrogen Bonds.

    PubMed

    Ge, Chuanqi; Shen, Yuneng; Deng, Gang-Hua; Tian, Yuhuan; Yu, Dongqi; Yang, Xueming; Yuan, Kaijun; Zheng, Junrong

    2016-03-31

    Isotopic effects on the formation and dissociation kinetics of hydrogen bonds are studied in real time with ultrafast chemical exchange spectroscopy. The dissociation time of hydrogen bond between phenol-OH and p-xylene (or mesitylene) is found to be identical to that between phenol-OD and p-xylene (or mesitylene) in the same solvents. The experimental results demonstrate that the isotope substitution (D for H) has negligible effects on the hydrogen bond kinetics. DFT calculations show that the isotope substitution does not significantly change the frequencies of vibrational modes that may be along the hydrogen bond formation and dissociation coordinate. The zero point energy differences of these modes between hydrogen bonds with OH and OD are too small to affect the activation energy of the hydrogen bond dissociation in a detectible way at room temperature. PMID:26967376

  10. Bond-Specific Dissociation Following Excitation Energy Transfer for Distance Constraint Determination in the Gas Phase

    PubMed Central

    2015-01-01

    Herein, we report chemistry that enables excitation energy transfer (EET) to be accurately measured via action spectroscopy on gaseous ions in an ion trap. It is demonstrated that EET between tryptophan or tyrosine and a disulfide bond leads to excited state, homolytic fragmentation of the disulfide bond. This phenomenon exhibits a tight distance dependence, which is consistent with Dexter exchange transfer. The extent of fragmentation of the disulfide bond can be used to determine the distance between the chromophore and disulfide bond. The chemistry is well suited for the examination of protein structure in the gas phase because native amino acids can serve as the donor/acceptor moieties. Furthermore, both tyrosine and tryptophan exhibit unique action spectra, meaning that the identity of the donating chromophore can be easily determined in addition to the distance between donor/acceptor. Application of the method to the Trpcage miniprotein reveals distance constraints that are consistent with a native-like fold for the +2 charge state in the gas phase. This structure is stabilized by several salt bridges, which have also been observed to be important previously in proteins that retain native-like structures in the gas phase. The ability of this method to measure specific distance constraints, potentially at numerous positions if combined with site-directed mutagenesis, significantly enhances our ability to examine protein structure in the gas phase. PMID:25174489

  11. Bond-specific dissociation following excitation energy transfer for distance constraint determination in the gas phase.

    PubMed

    Hendricks, Nathan G; Lareau, Nichole M; Stow, Sarah M; McLean, John A; Julian, Ryan R

    2014-09-24

    Herein, we report chemistry that enables excitation energy transfer (EET) to be accurately measured via action spectroscopy on gaseous ions in an ion trap. It is demonstrated that EET between tryptophan or tyrosine and a disulfide bond leads to excited state, homolytic fragmentation of the disulfide bond. This phenomenon exhibits a tight distance dependence, which is consistent with Dexter exchange transfer. The extent of fragmentation of the disulfide bond can be used to determine the distance between the chromophore and disulfide bond. The chemistry is well suited for the examination of protein structure in the gas phase because native amino acids can serve as the donor/acceptor moieties. Furthermore, both tyrosine and tryptophan exhibit unique action spectra, meaning that the identity of the donating chromophore can be easily determined in addition to the distance between donor/acceptor. Application of the method to the Trpcage miniprotein reveals distance constraints that are consistent with a native-like fold for the +2 charge state in the gas phase. This structure is stabilized by several salt bridges, which have also been observed to be important previously in proteins that retain native-like structures in the gas phase. The ability of this method to measure specific distance constraints, potentially at numerous positions if combined with site-directed mutagenesis, significantly enhances our ability to examine protein structure in the gas phase. PMID:25174489

  12. Calculation of structures and bond dissociation energies of radical cations: The importance of through-bond delocalization in bibenzylic systems

    SciTech Connect

    Camaioni, D.M. )

    1990-12-19

    Structures ad energies ({Delta}H{degree}{sub f}) of radical cations and their radical and cationic fragments have been calculated by use of AM1 semiempirical molecular orbital theory and compared with experimental data in the literature. Experimental {Delta}H{degree}{sub f} correlate linearly with calculated heats giving nonzero intercepts and nonunit slopes. The best correlations as judged by the variance of the fit are obtained when performed according to structure types, i.e., aromatic radical cations, alkane radical cations, radicals, and cations. These correlations enable corrections to AM1 values that allow prediction of experimental {Delta}H{degree}{sub f} with uncertainties that approach experimental uncertainties. Used in this way, AM1 can augment experimental thermochemical data and enable confident predictions of reaction enthalpies. Bibenzylic radical cations are calculated to have charge and sin localized in only one of the aromatic rings ether through space or through the ethylenic bond are found.

  13. Theoretical study of the C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The successive C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O (ketene) are determined using large-basis sets and a high level of correlation treatment. For CH4, C2H2, and C2H4 the computed values are in excellent agreement with experiment. Using these results, the values 107.9 + or - 2.0 and 96.7 + or - 2.0 kcal/mol are recommended for the C-H bond dissociation energies of H2C2O and HC2O, respectively.

  14. On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl

    SciTech Connect

    Ruscic, Branko; Wagner, Albert F.; Harding, Lawerence B.; Asher, Robert L.; Feller, David F. ); Dixon, David A. ); Peterson, Kirk A.; Song, Yang; Qian, Ximei; Ng, C Y.; Liu, Jianbo; Wenwu, Chen

    2001-12-01

    Several photoionization experiments utilizing the positive ion cycle to derive the O-H bond energy converge to a consensus value of AE0(OH+/H2O)= 146117? 24 cm-1 (18.1162? 0.0030 eV). With the most accurate currently available ZEKE value. IE(OH)= 104989? 2 cm-1, corroborated by a number of photoelectron measurements,Error! Bookmark not defined.,Error! Bookmark not defined.,Error! Bookmark not defined.,Error! Bookmark not defined. this leads to D0(H?OH)= 41128? 24 cm-1= 117.59? 0.07 kcal/mol. This corresponds to DHf 0(OH)= 8.85? 0.07 kcal/mol, and implies D0(OH)= 35593? 24 cm-1= 101.76? 0.07 kcal/mol. The most sophisticated theoretical calculations performed so far on the HxO system, CCSD(T)/aug-cc-pVnZ, n=Q, 5, 6, and 7, extrapolated to the CBS limit and including corrections for core-valence effects, scalar relativistic effects, incomplete correlation recovery, and diagonal Born-Oppenheimer corrections reproduce the experimental results to within 0.0 - 0.2 k cal/mol. The new values of the two successive bond dissociation energies of water supersede the previously accepted values,Error! Bookmark not defined.,Error! Bookmark not defined. which were based on spectroscopic determinationsError! Bookmark not defined.,Error! Bookmark not defined. of D0(OH) using a very short Birge-Sponer extrapolation on OH/OD A1S+. An exhaustive analysis of the latter approach, combined with the application of the same procedure on a calculated potential energy curve for the state in question, demonstrates that the Birge-Sponer extrapolation underestimates the bond dissociation energy, in spite of the fact that only the last vibrational level was not observed experimentally. The new values affect a large number of other thermochemical quantities which directly or indirectly rely on or refer to D0(H-OH), D0(OH), or DHf?(OH).

  15. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    SciTech Connect

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-28

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  16. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons.

    PubMed

    Oyeyemi, Victor B; Krisiloff, David B; Keith, John A; Libisch, Florian; Pavone, Michele; Carter, Emily A

    2014-01-28

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs. PMID:25669533

  17. Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Oyeyemi, Victor B.; Krisiloff, David B.; Keith, John A.; Libisch, Florian; Pavone, Michele; Carter, Emily A.

    2014-01-01

    Oxygenated hydrocarbons play important roles in combustion science as renewable fuels and additives, but many details about their combustion chemistry remain poorly understood. Although many methods exist for computing accurate electronic energies of molecules at equilibrium geometries, a consistent description of entire combustion reaction potential energy surfaces (PESs) requires multireference correlated wavefunction theories. Here we use bond dissociation energies (BDEs) as a foundational metric to benchmark methods based on multireference configuration interaction (MRCI) for several classes of oxygenated compounds (alcohols, aldehydes, carboxylic acids, and methyl esters). We compare results from multireference singles and doubles configuration interaction to those utilizing a posteriori and a priori size-extensivity corrections, benchmarked against experiment and coupled cluster theory. We demonstrate that size-extensivity corrections are necessary for chemically accurate BDE predictions even in relatively small molecules and furnish examples of unphysical BDE predictions resulting from using too-small orbital active spaces. We also outline the specific challenges in using MRCI methods for carbonyl-containing compounds. The resulting complete basis set extrapolated, size-extensivity-corrected MRCI scheme produces BDEs generally accurate to within 1 kcal/mol, laying the foundation for this scheme's use on larger molecules and for more complex regions of combustion PESs.

  18. Molecular models of site-isolated cobalt, rhodium, and iridium catalysts supported on zeolites: Ligand bond dissociation energies

    DOE PAGESBeta

    Chen, Mingyang; Serna, Pedro; Lu, Jing; Gates, Bruce C.; Dixon, David A.

    2015-09-28

    The chemistry of zeolite-supported site-isolated cobalt, rhodium, and iridium complexes that are essentially molecular was investigated with density functional theory (DFT) and the results compared with experimentally determined spectra characterizing rhodium and iridium species formed by the reactions of Rh(C2H4)2(acac) and Ir(C2H4)2(acac) (acac = acetylacetonate) with acidic zeolites such as dealuminated HY zeolite. The experimental results characterize ligand exchange reactions and catalytic reactions of adsorbed ligands, including olefin hydrogenation and dimerization. Two molecular models were used to characterize various binding sites of the metal complexes in the zeolites, and the agreement between experimental and calculated infrared frequencies and metal-ligand distancesmore » determined by extended X-ray absorption fine structure spectroscopy was generally very good. The calculated structures and energies indicate a metal-support-oxygen (M(I)-O) coordination number of two for most of the supported complexes and a value of three when the ligands include the radicals C2H5 or H. The results characterizing various isomers of the supported metal complexes incorporating hydrocarbon ligands indicate that some carbene and carbyne ligands could form. Ligand bond dissociation energies (LDEs) are reported to explain the observed reactivity trends. The experimental observations of a stronger M-CO bond than M-(C2H4) bond for both Ir and Rh match the calculated LDEs, which show that the single-ligand LDEs of the mono and dual-ligand complexes for CO are similar to 12 and similar to 15 kcal/mol higher in energy (when the metal is Rh) and similar to 17 and similar to 20 kcal/mol higher (when the metal is Ir) than the single-ligand LDEs of the mono and dual ligand complexes for C2H4, respectively. The results provide a foundation for the prediction of the catalytic properties of numerous supported metal complexes, as summarized in detail here.« less

  19. Molecular models of site-isolated cobalt, rhodium, and iridium catalysts supported on zeolites: Ligand bond dissociation energies

    SciTech Connect

    Chen, Mingyang; Serna, Pedro; Lu, Jing; Gates, Bruce C.; Dixon, David A.

    2015-09-28

    The chemistry of zeolite-supported site-isolated cobalt, rhodium, and iridium complexes that are essentially molecular was investigated with density functional theory (DFT) and the results compared with experimentally determined spectra characterizing rhodium and iridium species formed by the reactions of Rh(C2H4)2(acac) and Ir(C2H4)2(acac) (acac = acetylacetonate) with acidic zeolites such as dealuminated HY zeolite. The experimental results characterize ligand exchange reactions and catalytic reactions of adsorbed ligands, including olefin hydrogenation and dimerization. Two molecular models were used to characterize various binding sites of the metal complexes in the zeolites, and the agreement between experimental and calculated infrared frequencies and metal-ligand distances determined by extended X-ray absorption fine structure spectroscopy was generally very good. The calculated structures and energies indicate a metal-support-oxygen (M(I)-O) coordination number of two for most of the supported complexes and a value of three when the ligands include the radicals C2H5 or H. The results characterizing various isomers of the supported metal complexes incorporating hydrocarbon ligands indicate that some carbene and carbyne ligands could form. Ligand bond dissociation energies (LDEs) are reported to explain the observed reactivity trends. The experimental observations of a stronger M-CO bond than M-(C2H4) bond for both Ir and Rh match the calculated LDEs, which show that the single-ligand LDEs of the mono and dual-ligand complexes for CO are similar to 12 and similar to 15 kcal/mol higher in energy (when the metal is Rh) and similar to 17 and similar to 20 kcal/mol higher (when the metal is Ir) than the single-ligand LDEs of the mono and dual ligand complexes for C2H4, respectively. The results provide a foundation for the prediction

  20. Copper Complexes with NH-Imidazolyl and NH-Pyrazolyl Units and Determination of Their Bond Dissociation Gibbs Energies.

    PubMed

    Wilting, Alexander; Kügler, Merle; Siewert, Inke

    2016-02-01

    We synthesized two dinuclear copper complexes, which have ionizable N imidazole and N pyrazole protons in the ligand, respectively, and determined the BDFE of the hypothetical H atom transfer reactions Cu(II)(LH(-1)) + H(•) ↔ Cu(I)(L) in MeOH/H2O (BDFE: bond dissociation Gibbs (free) energy). The ligands have two adjacent N,N',O-binding pockets, which differ in one N-heterocycle: L(a) has an imidazole unit and L(c), a pyrazole unit. The copper(II) complexes of L(a) and L(c) have been characterized, and the substitution pattern has only little influence on the structural properties. The BDFEs of the hypothetical PCET reactions have been determined by means of the species distribution and the redox potentials of the involved species in MeOH/H2O (80/20 by weight). The pyrazole copper complex 3 exhibits a lower BDFE than the isoelectronic imidazole copper complex 1 (1, 292(3) kJ mol(-1); 3, 279(1) kJ mol(-1)). The difference is mainly caused by the higher acidity of the N pyrazole proton of 3 compared to the N imidazole proton of 1. The redox potentials of 1 and 3 are very similar. PMID:26788812

  1. The Dissociation Energies of He2, HeH, and ArH; A Bond Function Study

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    1998-01-01

    The bond energies and bond lengths are determined for He2, HeH, and ArH at the CCSD(T) level using both atom-centered basis sets and those that include bond functions. The addition of bond functions dramatically improves the rate of convergence of the results with respect to the size of the atom-centered basis set; with bond functions, triple zeta atom-centered basis set, outperform quintuple zeta basis sets without bond functions. The addition of bond functions also reduces the number of diffuse functions that must be added to the atom-centered sets. Employing bond functions appear to offer a very cost effective method of computing the interaction between weakly bound systems, especially for He.

  2. Mechanistic Investigation of Phosphate Ester Bond Cleavages of Glycylphosphoserinyltryptophan Radical Cations under Low-Energy Collision-Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Quan, Quan; Hao, Qiang; Song, Tao; Siu, Chi-Kit; Chu, Ivan K.

    2013-04-01

    Under the conditions of low-energy collision-induced dissociation (CID), the canonical glycylphosphoserinyltryptophan radical cation having its radical located on the side chain of the tryptophan residue ([G p SW]•+) fragments differently from its tautomer with the radical initially generated on the α-carbon atom of the glycine residue ([G• p SW]+). The dissociation of [G• p SW]+ is dominated by the neutral loss of H3PO4 (98 Da), with backbone cleavage forming the [b2 - H]•+/y1 + pair as the minor products. In contrast, for [G p SW]•+, competitive cleavages along the peptide backbone, such as the formation of [G p SW - CO2]•+ and the [c2 + 2H]+/[z1 - H]•+ pair, significantly suppress the loss of neutral H3PO4. In this study, we used density functional theory (DFT) to examine the mechanisms for the tautomerizations of [G• p SW]+ and [G p SW]•+ and their dissociation pathways. Our results suggest that the dissociation reactions of these two peptide radical cations are more efficient than their tautomerizations, as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. We also propose that the loss of H3PO4 from both of these two radical cationic tautomers is preferentially charge-driven, similar to the analogous dissociations of even-electron protonated peptides. The distonic radical cationic character of [G• p SW]+ results in its charge being more mobile, thereby favoring charge-driven loss of H3PO4; in contrast, radical-driven pathways are more competitive during the CID of [G p SW]•+.

  3. The antimony-group 11 chemical bond: Dissociation energies of the diatomic molecules CuSb, AgSb, and AuSb

    SciTech Connect

    Carta, V.; Ciccioli, A. E-mail: andrea.ciccioli@uniroma1.it; Gigli, G. E-mail: andrea.ciccioli@uniroma1.it

    2014-02-14

    The intermetallic molecules CuSb, AgSb, and AuSb were identified in the effusive molecular beam produced at high temperature under equilibrium conditions in a double-cell-like Knudsen source. Several gaseous equilibria involving these species were studied by mass spectrometry as a function of temperature in the overall range 1349–1822 K, and the strength of the chemical bond formed between antimony and the group 11 metals was for the first time measured deriving the following thermochemical dissociation energies (D{sub 0}{sup ∘}, kJ/mol): 186.7 ± 5.1 (CuSb), 156.3 ± 4.9 (AgSb), 241.3 ± 5.8 (AuSb). The three species were also investigated computationally at the coupled cluster level with single, double, and noniterative quasiperturbative triple excitations (CCSD(T)). The spectroscopic parameters were calculated from the potential energy curves and the dissociation energies were evaluated at the Complete Basis Set limit, resulting in an overall good agreement with experimental values. An approximate evaluation of the spin-orbit effect was also performed. CCSD(T) calculations were further extended to the corresponding group 11 arsenide species which are here studied for the first time and the following dissociation energies (D{sub 0}{sup ∘}, kJ/mol): 190 ± 10 (CuAs), 151 ± 10 (AgAs), 240 ± 15 (AuAs) are proposed. Taking advantage of the new experimental and computational information here presented, the bond energy trends along group 11 and 4th and 5th periods of the periodic table were analyzed and the bond energies of the diatomic species CuBi and AuBi, yet experimentally unobserved, were predicted on an empirical basis.

  4. Dissociation energy of molecules in dense gases

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.

    1992-01-01

    A general approach is presented for calculating the reduction of the dissociation energy of diatomic molecules immersed in a dense (n = less than 10 exp 22/cu cm) gas of molecules and atoms. The dissociation energy of a molecule in a dense gas differs from that of the molecule in vacuum because the intermolecular forces change the intramolecular dynamics of the molecule, and, consequently, the energy of the molecular bond.

  5. Dispersion-correcting potentials can significantly improve the bond dissociation enthalpies and noncovalent binding energies predicted by density-functional theory

    SciTech Connect

    DiLabio, Gino A.; Koleini, Mohammad

    2014-05-14

    Dispersion-correcting potentials (DCPs) are atom-centered Gaussian functions that are applied in a manner that is similar to effective core potentials. Previous work on DCPs has focussed on their use as a simple means of improving the ability of conventional density-functional theory methods to predict the binding energies of noncovalently bonded molecular dimers. We show in this work that DCPs developed for use with the LC-ωPBE functional along with 6-31+G(2d,2p) basis sets are capable of simultaneously improving predicted noncovalent binding energies of van der Waals dimer complexes and covalent bond dissociation enthalpies in molecules. Specifically, the DCPs developed herein for the C, H, N, and O atoms provide binding energies for a set of 66 noncovalently bonded molecular dimers (the “S66” set) with a mean absolute error (MAE) of 0.21 kcal/mol, which represents an improvement of more than a factor of 10 over unadorned LC-ωPBE/6-31+G(2d,2p) and almost a factor of two improvement over LC-ωPBE/6-31+G(2d,2p) used in conjunction with the “D3” pairwise dispersion energy corrections. In addition, the DCPs reduce the MAE of calculated X-H and X-Y (X,Y = C, H, N, O) bond dissociation enthalpies for a set of 40 species from 3.2 kcal/mol obtained with unadorned LC-ωPBE/6-31+G(2d,2p) to 1.6 kcal/mol. Our findings demonstrate that broad improvements to the performance of DFT methods may be achievable through the use of DCPs.

  6. Anchoring the Gas-Phase Acidity Scale from Hydrogen Sulfide to Pyrrole. Experimental Bond Dissociation Energies of Nitromethane, Ethanethiol, and Cyclopentadiene.

    PubMed

    Ervin, Kent M; Nickel, Alex A; Lanorio, Jerry G; Ghale, Surja B

    2015-07-16

    A meta-analysis of experimental information from a variety of sources is combined with statistical thermodynamics calculations to refine the gas-phase acidity scale from hydrogen sulfide to pyrrole. The absolute acidities of hydrogen sulfide, methanethiol, and pyrrole are evaluated from literature R-H bond energies and radical electron affinities to anchor the scale. Relative acidities from proton-transfer equilibrium experiments are used in a local thermochemical network optimized by least-squares analysis to obtain absolute acidities of 14 additional acids in the region. Thermal enthalpy and entropy corrections are applied using molecular parameters from density functional theory, with explicit calculation of hindered rotor energy levels for torsional modes. The analysis reduces the uncertainties of the absolute acidities of the 14 acids to within ±1.2 to ±3.3 kJ/mol, expressed as estimates of the 95% confidence level. The experimental gas-phase acidities are compared with calculations, with generally good agreement. For nitromethane, ethanethiol, and cyclopentadiene, the refined acidities can be combined with electron affinities of the corresponding radicals from photoelectron spectroscopy to obtain improved values of the C-H or S-H bond dissociation energies, yielding D298(H-CH2NO2) = 423.5 ± 2.2 kJ mol(-1), D298(C2H5S-H) = 364.7 ± 2.2 kJ mol(-1), and D298(C5H5-H) = 347.4 ± 2.2 kJ mol(-1). These values represent the best-available experimental bond dissociation energies for these species. PMID:25549109

  7. Signatures of bond formation and bond scission dynamics in dissociative electron attachment to methane.

    PubMed

    Douguet, N; Slaughter, D S; Adaniya, H; Belkacem, A; Orel, A E; Rescigno, T N

    2015-10-14

    We present a combined experimental and theoretical investigation of the dynamics and angular dependence of dissociative electron attachment to methane. We show that a triply degenerate (T2) Feshbach resonance is responsible for the broad 10 eV dissociation peak in methane. This resonance alone is shown to correlate asymptotically to the various dissociation channels observed experimentally. The molecular-frame entrance amplitude for electron attachment is calculated for each component of the threefold degenerate resonance. By investigating the topology of the anion potential energy surfaces, we deduce the main pathways to two- and three-body breakup channels involving both bond scission and bond formation. The computed fragment angular distributions reproduce the main trends of the experimental measurements. PMID:26371546

  8. Photodissociation of CS2 in the vacuum ultraviolet - Determination of bond dissociation energy from the lowest vibrational level of the ground state CS2.

    NASA Technical Reports Server (NTRS)

    Okabe, H.

    1972-01-01

    Photolysis in the vacuum ultraviolet results almost exclusively in the production of S(super-3)P atoms, which is in apparent violation of spin conservation. The threshold energy of incident photons required to produce fluorescence was used to calculate the bond dissociation energy (from the lowest vibrational level of the ground state), and the result agrees with the value previously derived from the photoionization of CS2. The fluorescence excitation spectrum shows peaks corresponding to Rydberg series I and II, indicating that the observed photodissociation of CS2 in the vacuum ultraviolet is mainly the result of predissociation from Rydberg states. The absorption coefficient of CS2 was measured in the region of 1200 to 1400 A.

  9. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems

    NASA Astrophysics Data System (ADS)

    van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2014-01-01

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ωα and oscillator strengths fα for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ωα(R) curves along the bond dissociation coordinate R for the molecules LiH, Li2, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate.

  10. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems

    SciTech Connect

    Meer, R. van; Gritsenko, O. V.; Baerends, E. J.

    2014-01-14

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ω{sub α} and oscillator strengths f{sub α} for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ω{sub α}(R) curves along the bond dissociation coordinate R for the molecules LiH, Li{sub 2}, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate.

  11. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems.

    PubMed

    van Meer, R; Gritsenko, O V; Baerends, E J

    2014-01-14

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ωα and oscillator strengths fα for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ωα(R) curves along the bond dissociation coordinate R for the molecules LiH, Li2, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate. PMID:24437859

  12. Intrinsic affinities of alkali cations for 15-crown-5 and 18-crown-6: Bond dissociation energies of gas-phase M{sup +}-crown ether complexes

    SciTech Connect

    More, M.B.; Ray, D.; Armentrout, P.B.

    1999-01-20

    Bond dissociation energies (BDEs) of M{sup +}[c-(C{sub 2}H{sub 4}O){sub 5}] and M{sup +}[c-(C{sub 2}H{sub 4}O){sub 6}] for M = Na, K, Rb, and Cs are reported. The BDEs are determined experimentally by analysis of the thresholds for collision-induced dissociation of the cation-crown ether complexes by xenon measured by using guided ion beam mass spectrometry. In all cases, the primary and lowest energy dissociation channel observed experimentally in endothermic loss of the ligand molecule. The cross section thresholds are interpreted to yield 0 and 298 K BDEs after accounting for the effects of multiple ion-molecule collisions, internal energy of the complexes, and unimolecular decay rates. For both 18-crown-6 and 15-crown-5, the BDEs decrease monotonically with increasing cation size. These results indicate that the intrinsic affinity of c-(C{sub 2}H{sub 4}O){sub 5} and c-(C{sub 2}H{sub 4}O){sub 6} for M{sup +} is determined principally by the charge density of the cation not by the ratio of the ionic radius to the cavity size. The BDEs reported here are in fair agreement with recent ab initio calculations at the MP2 level with 6-31+G* basis sets. The experimental values are systematically smaller than the computed values by 8 {+-} 2 kJ/mol per metal-oxygen interaction. The existence of less strongly bound isomers in the experimental apparatus for Rb{sup +}(15-crown-5) and Cs{sup +}(15-crown-5) appears likely, but their absence for Na{sup +} and K{sup +} complexes indicates interesting metal-dependent dynamics to the formation of such isomers.

  13. Effect of the Hydrogen Bond in Photoinduced Water Dissociation: A Double-Edged Sword.

    PubMed

    Yang, Wenshao; Wei, Dong; Jin, Xianchi; Xu, Chenbiao; Geng, Zhenhua; Guo, Qing; Ma, Zhibo; Dai, Dongxu; Fan, Hongjun; Yang, Xueming

    2016-02-18

    Photoinduced water dissociation on rutile-TiO2 was investigated using various methods. Experimental results reveal that the water dissociation occurs via transferring an H atom to a bridge bonded oxygen site and ejecting an OH radical to the gas phase during irradiation. The reaction is strongly suppressed as the water coverage increases. Further scanning tunneling microscopy study demonstrates that hydrogen bonds between water molecules have a dramatic effect on the reaction. Interestingly, a single hydrogen bond in water dimer enhances the water dissociation reaction, while one-dimensional hydrogen bonds in water chains inhibit the reaction. Density functional theory calculations indicate that the effect of hydrogen bonds on the OH dissociation energy is likely the origin of this remarkable behavior. The results suggest that avoiding a strong hydrogen bond network between water molecules is crucial for water splitting. PMID:26810945

  14. Strong-field dissociative ionization of a linear triatomic molecule: Relationship between Coulomb-explosion energies and bond angle

    SciTech Connect

    Zhao, K.; Zhang, G.; Hill, W.T. III

    2003-12-01

    Correlation images of the symmetric six-electron Coulomb-explosion channel of CO{sub 2} were used to isolate specific geometries (linear and bent) for angular-resolved analysis of the Coulomb-explosion energy in the framework of both the critical radius R{sub c} and dynamic screening models. We show that it is possible to connect the R{sub c} and screening pictures through a single parameter, a charge defect {sigma}, which depends on the charge state and the ratio between R{sub c} and the equilibrium bond length. Our data show that R{sub c} and hence {sigma} are slow varying functions of bond angle between 145 deg. and 180 deg. with R{sub c}{approx}4 a.u. and {sigma}{approx}0.5 for the symmetric six-electron channel of CO{sub 2}. In the R{sub c} picture, the experimental value for R{sub c} is consistent with a theoretical value associated with CO{sub 2}{sup 3+}, which is considerably smaller than that associated with CO{sub 2}{sup +}({approx}6 a.u.)

  15. S-OO bond dissociation energies and enthalpies of formation of the thiomethyl peroxyl radicals CH{sub 3}S(O){sub n}OO (n=0,1,2)

    SciTech Connect

    Salta, Zoi; Kosmas, Agnie Mylona; Lesar, Antonija

    2014-10-06

    Optimized geometries, S-OO bond dissociation energies and enthalpies of formation for a series of thiomethyl peroxyl radicals are investigated using high level ab initio and density functional theory methods. The results show that the S-OO bond dissociation energy is largest in the methylsulfonyl peroxyl radical, CH{sub 3}S(O){sub 2}OO, which contains two sulfonic type oxygen atoms followed by the methylthiyl peroxyl radical, CH{sub 3}SOO. The methylsulfinyl peroxyl radical, CH{sub 3}S(O)OO, which contains only one sulfonic type oxygen shows the least stability with regard to dissociation to CH{sub 3}S(O)+O{sub 2}. This stabilization trend is nicely reflected in the variations of the S-OO bond distance which is found to be shortest in CH{sub 3}S(O){sub 2}OO and longest in CH{sub 3}S(O)OO.

  16. Does Electron Capture Dissociation Cleave Protein Disulfide Bonds?

    PubMed Central

    Ganisl, Barbara; Breuker, Kathrin

    2012-01-01

    Peptide and protein characterization by mass spectrometry (MS) relies on their dissociation in the gas phase into specific fragments whose mass values can be aligned as ‘mass ladders’ to provide sequence information and to localize possible posttranslational modifications. The most common dissociation method involves slow heating of even-electron (M+n H)n+ ions from electrospray ionization by energetic collisions with inert gas, and cleavage of amide backbone bonds. More recently, dissociation methods based on electron capture or transfer were found to provide far more extensive sequence coverage through unselective cleavage of backbone N–Cα bonds. As another important feature of electron capture dissociation (ECD) and electron transfer dissociation (ETD), their unique unimolecular radical ion chemistry generally preserves labile posttranslational modifications such as glycosylation and phosphorylation. Moreover, it was postulated that disulfide bond cleavage is preferred over backbone cleavage, and that capture of a single electron can break both a backbone and a disulfide bond, or even two disulfide bonds between two peptide chains. However, the proposal of preferential disulfide bond cleavage in ECD or ETD has recently been debated. The experimental data presented here reveal that the mechanism of protein disulfide bond cleavage is much more intricate than previously anticipated. PMID:24363980

  17. C-C and C-Heteroatom Bond Dissociation Energies in CH 3 R'C(OH) 2 : Energetics for Photocatalytic Processes of Organic Diolates on TiO 2 Surfaces

    SciTech Connect

    Wang, Tsang-Hsiu; Dixon, David A.; Henderson, Michael A.

    2010-08-26

    The bond energies of a range of gem-diols, CH3R'C(OH)2 (R' = H, F, Cl, Br, CN, NO2, CF3, CH3CH2, CH3CH2CH2, CH3CH2CH2CH2, ((CH3)2)CH, (CH3)3C, ((CH3)2CH)CH2, (CH3CH2)(CH3)CH, C6H5 (CH3CH2)(CH3)CH) which serve as models for binding to a surface have been studied with density functional theory (DFT) and the molecular orbital G3(MP2) methods to provide thermodynamic data for the analysis of the photochemistry of ketones on TiO2. The ultraviolet (UV) photon-induced photodecomposition of adsorbed acetone and 3,3-dimethylbutanone on the rutile TiO2 (110) surface have been investigated with photon stimulated desorption (PSD) and temperature programmed desorption (TPD). The C-CH3 and C-C(R') bond dissociation energies in CH3R'C(OH)2 were predicted, and our calculated bond dissociation energies are in excellent agreement with the available experimental values. We used a series of isodemic reactions to provide small corrections to the various bond dissociation energies. The calculated bond dissociation energies are in agreement with the observed photodissociation processes except for R' = CF3, suggesting that these processes are under thermodynamic control. For R' = CF3, reaction dynamics also play a role in determining the photodissociation mechanism. The gas phase Brönsted acidities of the gem-diols were calculated. For three molecules, R' = Cl, Br, and NO2, loss of a proton leads to the formation of a complex of acetic acid with the anion Cl-, Br-, and NO2-. The acidities of these three species are very high with the former two having acidities comparable to CF3SO3H. The ketones (R'RC(=O)) are weak Lewis acids except where addition of OH- leads to the dissociation of the complex to form an anion bonded to acetic acid, R' = NO2, Cl, and Br. The X-C bond dissociation energies for a number of X-CO2- species were calculated and these should be useful in correlating with photochemical reactivity studies.

  18. Exploring the energy disposal immediately after bond-breaking in solution: the wavelength-dependent excited state dissociation pathways of para-methylthiophenol.

    PubMed

    Zhang, Yuyuan; Oliver, Thomas A A; Das, Saptaparna; Roy, Anirban; Ashfold, Michael N R; Bradforth, Stephen E

    2013-11-21

    radicals as solvent motion encourages recrossing of the S2/S0 CI. The average separation distance, , between the H + p-MePhS products arising in successful dissociation events is seen to increase with decreasing photolysis wavelength. This finding accords with the previous gas phase results, which determined that most of the excess energy following population of the dissociative S2 state (directly, or by ultrafast coupling from the S3 state) is released as product translation, and the expectation that should scale with the total kinetic energy release. The present work also confirms that geminate recombination of the H + p-MePhS products leads not just to reformation of parent p-MePhSH molecules but also to alternative adducts wherein the H atom bonds to the benzene ring. Analysis of the present data and results of high level ab initio calculations together with recent UV-IR pump-probe measurements (Murdock, D.; Harris, S. J.; Karsili, T. N. V.; Greetham, G. M.; Clark, I. P.; Towrie, M.; Orr-Ewing, A. J.; Ashfold, M. N. R. J. Phys. Chem. Lett. 2012, 3, 3715) allows identification of the likely adduct structures. PMID:24047130

  19. Thermochemical Properties and Bond Dissociation Energies for Fluorinated Methanol, CH3-xFxOH, and Fluorinated Methyl Hydroperoxides, CH3-xFxOOH: Group Additivity.

    PubMed

    Wang, Heng; Bozzelli, Joseph W

    2016-09-01

    Oxygenated fluorocarbons are routinely found in sampling of environmental soils and waters as a result of the widespread use of fluoro and chlorofluoro carbons as heat transfer fluids, inert materials, polymers, fire retardants and solvents; the influence of these chemicals on the environment is a growing concern. The thermochemical properties of these species are needed for understanding their stability and reactions in the environment and in thermal process. Structures and thermochemical properties on the mono- to trifluoromethanol, CH3-xFxOH, and fluoromethyl hydroperoxide, CH3-xFxOOH (1 ≤ x ≤ 3), are determined by CBS-QB3, CBS-APNO, and G4 calculations. Entropy, S°298, and heat capacities, Cp(T)'s (300 ≤ T/K ≤ 1500) from vibration, translation, and external rotation contributions are calculated on the basis of the vibration frequencies and structures obtained from the B3LYP/6-31+G(d,p) density functional method. Potential barriers for the internal rotations are also calculated from this method and used to calculate hindered rotor contributions to S°298 and Cp(T)'s using direct integration over energy levels of the internal rotational potentials. Standard enthalpies of formation, ΔfH°298 (units in kcal mol(-1)) are CH2FOOH (-83.7), CHF2OOH (-138.1), CF3OOH (-193.6), CH2FOO(•) (-44.9), CHF2OO(•) (-99.6), CF3OO(•) (-153.8), CH2FOH (-101.9), CHF2OH (-161.6), CF3OH (-218.1), CH2FO(•) (-49.1), CHF2O(•) (-97.8), CF3O(•) (-150.5), CH2F(•) (-7.6), CHF2(•) (-58.8), and CF3(•) (-112.6). Bond dissociation energies for the R-OOH, RO-OH, ROO-H, R-OO(•), RO-O(•), R-OH, RO-H, R-O(•), and R-H bonds are determined and compared with methyl hydroperoxide to observe the trends from added fluoro substitutions. Enthalpy of formation for the fluoro-hydrocarbon oxygen groups C/F/H2/O, C/F2/H/O, C/F3/O, are derived from the above fluorinated methanol and fluorinated hydroperoxide species for use in Benson's Group Additivity. It was determined that

  20. Three methods to measure RH bond energies

    SciTech Connect

    Berkowitz, J.; Ellison, G.B.; Gutman, D.

    1993-03-21

    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies.

  1. Structure, energetics, and vibrational properties of Si-H bond dissociation in silicon

    SciTech Connect

    Tuttle, B.; Van de Walle, C.G.

    1999-05-01

    We investigate hydrogen dissociation from an isolated Si-H bond in bulk silicon, using {ital ab initio} density-functional total-energy calculations. From the bonding site, we find that hydrogen needs to overcome a barrier of less than 2.0 eV in order to reach the next lowest local minimum in the energy surface. This minimum occurs at the antibonding site and is 1.2 eV higher in energy than the ground state. In addition, we consider the role of lattice relaxations and free carriers during the dissociation process. We discuss the relevance of our results for Si-H dissociation in several systems, including the Si-SiO{sub 2} interface. {copyright} {ital 1999} {ital The American Physical Society}

  2. On the dissociation energy of Mg2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Mclean, A. D.; Liu, Bowen

    1990-01-01

    The bonding in the X 1Sigma(+)g state of Mg2 is investigated using near-complete valence one-particle Slater and Gaussian basis sets containing up to h functions. It is shown that the four-electron complete CI limit can be approached using a sequence of either second-order CI (SOCI) or interacting correlated fragment (ICF) calculations. At the valence level, the best estimate of the dissociation energy D(e) was 464/cm. This is a lower limit and is probably within 5/cm of the complete basis value.

  3. Hydrogen-bond symmetrization and molecular dissociation in hydrogen halids

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Katoh, E.; Yamawaki, H.; Sakashita, M.; Fujihisa, H.

    1999-04-01

    Hydrogen chloride is a simple diatomic molecule forming a planar zig-zag chain of molecules connected by hydrogen bonds in the solid phase. Raman spectra were measured for solid HCl to 60 GPa at room temperature. The molecular stretching frequency falls toward zero at about 51 GPa, where the molecular vibrational peaks disappear and the lattice peaks remain. The spectral changes are very similar to those observed for HBr at about 42 GPa and interpreted as hydrogen bond symmetrization. Molecular dissociation into diatomic halogen molecules, which has been observed for HBr, does not occur in HCl.

  4. Competition between Covalent and Noncovalent Bond Cleavages in Dissociation of Phosphopeptide-Amine Complexes

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Woods, Amina S.

    2011-04-21

    Interactions between quaternary amino or guanidino groups with anions are ubiquitous in nature. Here, we present a first study focused on quantifying such interactions using complexes of phosphorylated A3pXA3-NH2 (X=S, T, Y) peptides with decamethonium (DCM) or diaguanidinodecane (DGD) ligands as model systems. Time- and collision energy-resolved surface-induced dissociation (SID) of the singly charged complexes was examined using a specially configured Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). Dissociation thresholds and activation energies were obtained from RRKM modeling of the experimental data that has been described and carefully characterized in our previous studies. We demonstrate that covalent bond cleavages resulting in phosphate abstraction by the cationic ligand are characterized by low dissociation thresholds and relatively tight transition states. In contrast, high dissociation barriers and large positive activation entropies were obtained for cleavages of non-covalent bonds. Dissociation parameters obtained from the modeling of the experimental data are in excellent agreement with the results of density functional theory (DFT) calculations. Comparison between the experimental data and theoretical calculations indicate that phosphate abstraction by the ligand is rather localized and mainly affected by the identity of the phosphorylated side chain. The hydrogen bonding in the peptide and ligand properties play a minor role in determining the energetics and dynamics of the phosphate abstraction channel

  5. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond

    NASA Astrophysics Data System (ADS)

    Rožman, Marko

    2016-01-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.

  6. Evidence for a lower enthalpy of formation of hydroxyl radical and a lower gas-phase bond dissociation energy of water.

    SciTech Connect

    Ruscic, B.; Feller, D.; Dixon, D.; Peterson, K.; Harding, L.; Asher, R.; Wagner, A.; Chemistry; PNNL; Washington State Univ.

    2001-01-11

    There are two experimental approaches to determining {Delta}H{sub f0}{sup o}(OH), which produce values of this key thermodynamic quantity that differ by >0.5 kcal/mol. The apparent uncertainty of the positive ion cycle approach resides in the measurement of the appearance energy of OH{sup +} from H{sub 2}O, while the uncertainty of the spectroscopic approach resides in the determination of the dissociation energy of OH(A{sup 2}{Sigma}{sup +}). In this note we present an independent experimental determination of the appearance energy that confirms the accuracy and enhances the precision of the existing positive ion cycle value for {Delta}H{sub f0}{sup o}(OH). We also present electronic structure calculations of the OH(A{sup 2}{Sigma}{sup +}) potential energy curve, which suggest that the extrapolation method used to obtain the spectroscopic dissociation energy is in error. Finally, we present the largest ab initio electronic structure calculations ever performed for {Delta}H{sub f0}{sup o}(OH) that have an apparent uncertainty much less than 0.5 kcal/mol and support only the positive ion cycle value. Although all major thermochemical tables recommend a value of {Delta}H{sub f0}{sup o}(OH) based on the spectroscopic approach, the correct value is that of the positive ion cycle, {Delta}H{sub f0}{sup o}(OH) = 8.83 {+-} 0.09 kcal/mol, D{sub 0}(H-OH) = 117.57 {+-} 0.09 kcal/mol, and D{sub 0}(OH) = 101.79 {+-} 0.09 kcal/mol.

  7. Which Ab Initio Wave Function Methods Are Adequate for Quantitative Calculations of the Energies of Biradicals? The Performance of Coupled-Cluster and Multi-Reference Methods Along a Single-Bond Dissociation Coordinate

    SciTech Connect

    Yang, Ke; Jalan, Amrit; Green, William H.; Truhlar, Donald G.

    2013-01-08

    We examine the accuracy of single-reference and multireference correlated wave function methods for predicting accurate energies and potential energy curves of biradicals. The biradicals considered are intermediate species along the bond dissociation coordinates for breaking the F-F bond in F2, the O-O bond in H2O2, and the C-C bond in CH3CH3. We apply a host of single-reference and multireference approximations in a consistent way to the same cases to provide a better assessment of their relative accuracies than was previously possible. The most accurate method studied is coupled cluster theory with all connected excitations through quadruples, CCSDTQ. Without explicit quadruple excitations, the most accurate potential energy curves are obtained by the single-reference RCCSDt method, followed, in order of decreasing accuracy, by UCCSDT, RCCSDT, UCCSDt, seven multireference methods, including perturbation theory, configuration interaction, and coupled-cluster methods (with MRCI+Q being the best and Mk-MR-CCSD the least accurate), four CCSD(T) methods, and then CCSD.

  8. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond

    NASA Astrophysics Data System (ADS)

    Evans, Evan; Leung, Andrew; Heinrich, Volkmar; Zhu, Cheng

    2004-08-01

    Many biomolecular bonds exhibit a mechanical strength that increases in proportion to the logarithm of the rate of force application. Consistent with exponential decrease in bond lifetime under rising force, this kinetically limited failure reflects dissociation along a single thermodynamic pathway impeded by a sharp free energy barrier. Using a sensitive force probe to test the leukocyte adhesion bond P-selectin glycoprotein ligand 1 (PSGL-1)-P-selectin, we observed a linear increase of bond strength with each 10-fold increase in the rate of force application from 300 to 30,000 pN/sec, implying a single pathway for failure. However, the strength and lifetime of PSGL-1-P-selectin bonds dropped anomalously when loaded below 300 pN/sec, demonstrating unexpectedly faster dissociation and a possible second pathway for failure. Remarkably, if first loaded by a "jump" in force to 20-30 pN, the bonds became strong when subjected to a force ramp as slow as 30 pN/sec and exhibited the same single-pathway kinetics under all force rates. Applied in this way, a new "jump/ramp" mode of force spectroscopy was used to show that the PSGL-1-P-selectin bond behaves as a mechanochemical switch where force history selects between two dissociation pathways with markedly different properties. Furthermore, replacing PSGL-1 by variants of its 19-aa N terminus and by the crucial tetrasaccharide sialyl LewisX produces dramatic changes in the failure kinetics, suggesting a structural basis for the two pathways. The two-pathway switch seems to provide a mechanism for the "catch bond" response observed recently with PSGL-1-P-selectin bonds subjected to small-constant forces.

  9. Pulsed field-ionization photoelectron-photoion coincidence study of the process N{sub 2}+h{nu}{yields}N{sup +}+N+e{sup -}: Bond dissociation energies of N{sub 2} and N{sub 2}{sup +}

    SciTech Connect

    Tang Xiaonan; Hou Yu; Ng, C.Y.; Ruscic, Branko

    2005-08-15

    We have examined the dissociative photoionization reaction N{sub 2}+h{nu}{yields}N{sup +}+N+e{sup -} near its threshold using the pulsed field-ionization photoelectron-photoion coincidence (PFI-PEPICO) time-of-flight (TOF) method. By examining the kinetic-energy release based on the simulation of the N{sup +} PFI-PEPICO TOF peak profile as a function of vacuum ultraviolet photon energy and by analyzing the breakdown curves of N{sup +} and N{sub 2}{sup +}, we have determined the 0-K threshold or appearance energy (AE) of this reaction to be 24.2884{+-}0.0010 eV. Using this 0-K AE, together with known ionization energies of N and N{sub 2}, results in more precise values for the 0-K bond dissociation energies of N-N (9.7543{+-}0.0010 eV) and N-N{sup +} (8.7076{+-}0.0010 eV) and the 0-K heats of formation for N (112.469{+-}0.012 kcal/mol) and N{sup +} (447.634{+-}0.012 kcal/mol)

  10. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.

    PubMed

    Ruscic, Branko

    2015-07-16

    Active Thermochemical Tables (ATcT) thermochemistry for the sequential bond dissociations of methane, ethane, and methanol systems were obtained by analyzing and solving a very large thermochemical network (TN). Values for all possible C-H, C-C, C-O, and O-H bond dissociation enthalpies at 298.15 K (BDE298) and bond dissociation energies at 0 K (D0) are presented. The corresponding ATcT standard gas-phase enthalpies of formation of the resulting CHn, n = 4-0 species (methane, methyl, methylene, methylidyne, and carbon atom), C2Hn, n = 6-0 species (ethane, ethyl, ethylene, ethylidene, vinyl, ethylidyne, acetylene, vinylidene, ethynyl, and ethynylene), and COHn, n = 4-0 species (methanol, hydroxymethyl, methoxy, formaldehyde, hydroxymethylene, formyl, isoformyl, and carbon monoxide) are also presented. The ATcT thermochemistry of carbon dioxide, water, hydroxyl, and carbon, oxygen, and hydrogen atoms is also included, together with the sequential BDEs of CO2 and H2O. The provenances of the ATcT enthalpies of formation, which are quite distributed and involve a large number of relevant determinations, are analyzed by variance decomposition and discussed in terms of principal contributions. The underlying reasons for periodic appearances of remarkably low and/or unusually high BDEs, alternating along the dissociation sequences, are analyzed and quantitatively rationalized. The present ATcT results are the most accurate thermochemical values currently available for these species. PMID:25760799

  11. Ab initio characterization of the HCO{sup x} (x = {minus}1, 0, +1) species: Structures, vibrational frequencies, CH bond dissociation energies, and HCO ionization potential and electron affinity

    SciTech Connect

    Mourik, T. van; Dunning, T.H. Jr.; Peterson, K.A.

    2000-03-23

    The potential energy surfaces of the HCO{sup x} (x = +1, 0, -1) species near their equilibrium geometries have been calculated employing coupled cluster methods with augmented correlation consistent basis sets. The equilibrium structures, vibrational frequencies, zero point energies, and dissociation energies were computed for all three species. Valence-electron CCSD(T) calculations with the aug-cc-pV5Z basis set predict CH bond dissociation energies, D{sub 0}, of 140.3 kcal/mol for HCO{sup +}, 14.0 kcal/mol for HCO, and 4.5 kcal/mol for HCO{sup {minus}}, in good agreement with experiment (140.1 {+-} 1, 13.9--14.3, and 5.2 {+-} 0.2 kcal/mol, respectively). The same calculations predict the electron affinity, EA{sub 0}, and ionization potential, IP{sub 0}, of HCO to be 7.7 and 187.3 kcal/mol; these values are within 0.5 kcal/mol of the measured values. Inclusion of core-valence correlation corrections has only a minor effect on the calculated energetics.

  12. Assessment of Orbital-Optimized MP2.5 for Thermochemistry and Kinetics: Dramatic Failures of Standard Perturbation Theory Approaches for Aromatic Bond Dissociation Energies and Barrier Heights of Radical Reactions.

    PubMed

    Soydaş, Emine; Bozkaya, Uğur

    2015-04-14

    An assessment of orbital-optimized MP2.5 (OMP2.5) [ Bozkaya, U.; Sherrill, C. D. J. Chem. Phys. 2014, 141, 204105 ] for thermochemistry and kinetics is presented. The OMP2.5 method is applied to closed- and open-shell reaction energies, barrier heights, and aromatic bond dissociation energies. The performance of OMP2.5 is compared with that of the MP2, OMP2, MP2.5, MP3, OMP3, CCSD, and CCSD(T) methods. For most of the test sets, the OMP2.5 method performs better than MP2.5 and CCSD, and provides accurate results. For barrier heights of radical reactions and aromatic bond dissociation energies OMP2.5-MP2.5, OMP2-MP2, and OMP3-MP3 differences become obvious. Especially, for aromatic bond dissociation energies, standard perturbation theory (MP) approaches dramatically fail, providing mean absolute errors (MAEs) of 22.5 (MP2), 17.7 (MP2.5), and 12.8 (MP3) kcal mol(-1), while the MAE values of the orbital-optimized counterparts are 2.7, 2.4, and 2.4 kcal mol(-1), respectively. Hence, there are 5-8-folds reductions in errors when optimized orbitals are employed. Our results demonstrate that standard MP approaches dramatically fail when the reference wave function suffers from the spin-contamination problem. On the other hand, the OMP2.5 method can reduce spin-contamination in the unrestricted Hartree-Fock (UHF) initial guess orbitals. For overall evaluation, we conclude that the OMP2.5 method is very helpful not only for challenging open-shell systems and transition-states but also for closed-shell molecules. Hence, one may prefer OMP2.5 over MP2.5 and CCSD as an O(N(6)) method, where N is the number of basis functions, for thermochemistry and kinetics. The cost of the OMP2.5 method is comparable with that of CCSD for energy computations. However, for analytic gradient computations, the OMP2.5 method is only half as expensive as CCSD. PMID:26574366

  13. C---lH...O and O...H...O bonded intermediates in the dissociation of low energy methyl glycolate radical cations

    NASA Astrophysics Data System (ADS)

    Suh, Dennis; Kingsmill, Carol A.; Ruttink, Paul J. A.; Burgers, Peter C.; Terlouw, Johan K.

    1995-08-01

    Low energy methyl glycolate radical cations HOCH2C(=O)OCH3+, 1, abundantly lose HCO, yielding protonated methyl formate H---C(OH)OCH3+. Tandem mass spectrometry based experiments on 2H, 13C and 18O labelled isotopologues show that this loss is largely (about 75%) atom specific. Analysis of the atom connectivity in the product ions indicates that the reaction proceeds analogously to the loss of HCO and CH3CO from ionized acetol HOCH2C(=O)CH3+ and acetoin HOCH(CH3)C(=O)CH3+, respectively. The mechanism, it is proposed, involves isomerization of 1 to the key intermediate CH2=O... H---C(=O)OCH3+, an H-bridged ion-dipole complex of neutral formaldehyde and ionized methyl formate. Next, charge transfer takes place to produce CH3OC(H)=O...HC(H)=O+, an H-bridged ion-dipole complex of ionized formaldehyde and neutral methyl formate, followed by proton transfer to generate the products. Preliminary ab initio calculations executed at the UMP3/6-31G*//6-31G*+ZPVE level of theory are presented in support of this proposal. The non-specific loss of HCO from 1 (about 25%) is rationalized to occur via the same mechanism, but after communication with isomeric dimethyl carbonate ions CH3OC(=O)OCH3+, 2, via the O...H...O bonded intermediate [CH2=O...H...O=C---OCH3]+. The latter pathway is even more important in the formation of CH2OH+ ions from 1 which, it is shown, is not a simple bond cleavage reaction, but may involve consecutive or concerted losses of CH3 and CO2 from the above O...H...O bonded species. Ionized methyl lactate HOCH(CH3)C(=O)OCH3+, the higher homologue of 1, shows a unimolecular chemistry which is akin to that of 1.

  14. Dissociative Electron Attachment to Thymine: Bond and Site Selectivity in Different Molecular Environments

    NASA Astrophysics Data System (ADS)

    Denifl, Stephan; Ptasińska, Sylwia; Zappa, Fabio; Mähr, Ingo; Grill, Verena; Probst, Michael; Illenberger, Eugen; Märk, Tilmann D.; Scheier, Paul

    2007-04-01

    Low energy electrons effectively decompose thymine via dissociative electron attachment inducing H loss below 3 eV and H- loss above 5 eV. Experiments with partially deuterated or methylated thymine show that the site of dehydrogenation can be precisely controlled by the incident electron energy. Such bond and site selectivity also remains in more complex environments when thymine is a moiety of thymidine (base+sugar unit) and of a thymine cluster embedded in a superfluid helium droplet. Implications for the interpretation of strand breaks in plasmid DNA induced by low energy electrons are discussed.

  15. The Effect of Hydrogen on the Bonding and Dissociation of Carbon Monoxide on AN IRON(100) Surface

    NASA Astrophysics Data System (ADS)

    Nassir, Mohamed Husain

    1993-01-01

    Adsorption and coadsorption of CO and H _2 on Fe(100) was studied using the following six methods: Temperature programmed desorption (TPD), x -ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), high resolution electron energy loss spectroscopy (HREELS), single reflection Fourier transform infrared spectroscopy (FTIR) and low-energy electron diffraction (LEED). The binding and dissociation of CO on a clean and hydrogen presaturated Fe(100) surface were investigated to provide better understanding of the first step in the Fischer-Tropsch synthesis, an important industrial catalytic reaction for converting CO and hydrogen to hydrocarbon. CO adsorbs molecularly on the clean surface in three states alpha_1, alpha_2 and alpha_3 . At temperatures above 350 K but below 440 K, CO is bound to the surface only in the highly perturbed alpha_3 state (pi -bonded geometry). The CO alpha_3 molecules are believed to occupy the 4-fold hollow sites. When the surface temperature is raised above 440 K, a fraction of the alpha_3 desorbs and the remainder dissociates. The dissociation fragments replace the CO alpha_3 molecules in the 4-fold hollow sites. These fragments recombine at higher temperatures and appear as beta CO. The bonding and dissociation of CO in the alpha_3 received more attention because it is believed that this state is a precursor to dissociation. A model describing the partitioning between desorption and dissociation is proposed in which the dissociation fragments displace the strongly bound CO in the beta -bonded state. The stoichiometry of this reaction at saturation requires that only half the original CO adsorbed in the beta-bonded CO state can dissociate. Presaturating the surface with hydrogen affects the bonding and dissociation of CO on the iron surface. One effect is to weaken CO-Fe bonds which results in a very weakly bound state (alpha^' _1). In addition to the alpha ^'_1 state, presaturating the surface with hydrogen

  16. Combustion pathways of the alkylated heteroaromatics: bond dissociation enthalpies and alkyl group fragmentations

    SciTech Connect

    Hayes, C.J.; Hadad, C.M.

    2009-11-15

    The bond dissociation enthalpies (BDEs) of the alkyl groups of the alkyl-substituted heterocycles have been studied and compiled using DFT methodology, with the intent of modeling the larger heterocyclic functionalities found in coal. DFT results were calibrated against CBS-QB3 calculations, and qualitative trends were reproduced between these methods. Loss of hydrogen at the benzylic position provided the most favorable route to radical formation, for both the azabenzenes and five-membered heterocycles. The ethyl derivatives had lower BDE values than the methyl derivatives due to increased stabilization of the corresponding radicals. Calculated spin densities correlated well with bond dissociation enthalpies for these compounds, while geometric effects were minimal with respect to the heterocycles themselves. Temperature effects on the bond dissociation enthalpies were minor, ranging by about 5 kcal/mol from 298 to 2000 K; the free energies of reaction dropped significantly over the same range due to entropic effects. Monocyclic heteroaromatic rings were seen to replicate the chemistry of multicyclic heteroaromatic systems.

  17. Energy pulse bonding

    NASA Technical Reports Server (NTRS)

    Smith, G. C.

    1972-01-01

    To eliminate many of the present termination problems a technique called energy pulse bonding (EPB) was developed. The process demonstrated the capability of: (1) joining conductors without prior removal of insulations, (2) joining conductors without danger of brittle intermetallics, (3) increased joint temperature capability, (4) simultaneous formation of several bonds, (5) capability of higher joint density, and (6) a production oriented process. The following metals were successfully bonded in the solid state: copper, beryllium copper, phosphor bronze, aluminum, brass, and Kovar.

  18. Characterization and Modeling of the Collision Induced Dissociation Patterns of Deprotonated Glycosphingolipids: Cleavage of the Glycosidic Bond.

    PubMed

    Rožman, Marko

    2016-01-01

    Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates. PMID:26297186

  19. The dissociative chemisorption of water on Ni(111): Mode- and bond-selective chemistry on metal surfaces.

    PubMed

    Farjamnia, Azar; Jackson, Bret

    2015-06-21

    A fully quantum approach based on an expansion in vibrationally adiabatic eigenstates is used to explore the dissociative chemisorption of H2O, HOD, and D2O on Ni(111). For this late barrier system, excitation of both the bending and stretching modes significantly enhances dissociative sticking. The vibrational efficacies vary somewhat from mode-to-mode but are all relatively close to one, in contrast to methane dissociation, where the behavior is less statistical. Similar to methane dissociation, the motion of lattice atoms near the dissociating molecule can significantly modify the height of the barrier to dissociation, leading to a strong variation in dissociative sticking with substrate temperature. Given a rescaling of the barrier height, our results are in reasonable agreement with measurements of the dissociative sticking of D2O on Ni(111), for both laser-excited molecules with one or two quanta of excitation in the antisymmetric stretch and in the absence of laser excitation. Even without laser excitation, the beam contains vibrationally excited molecules populated at the experimental source temperature, and these make significant contributions to the sticking probability. At high collision energies, above the adiabatic barrier heights, our results correlate with these barrier heights and mode softening effects. At lower energies, dissociative sticking occurs primarily via vibrationally nonadiabatic pathways. We find a preference for O-H over O-D bond cleavage for ground state HOD molecules at all but the highest collision energies, and excitation of the O-H stretch gives close to 100% O-H selectivity at lower energies. Excitation of the O-D stretch gives a lower O-D cleavage selectivity, as the interaction with the surface leads to energy transfer from the O-D stretch into the O-H bond, when mode softening makes these vibrations nearly degenerate. PMID:26093571

  20. The dissociative chemisorption of water on Ni(111): Mode- and bond-selective chemistry on metal surfaces

    SciTech Connect

    Farjamnia, Azar; Jackson, Bret

    2015-06-21

    A fully quantum approach based on an expansion in vibrationally adiabatic eigenstates is used to explore the dissociative chemisorption of H{sub 2}O, HOD, and D{sub 2}O on Ni(111). For this late barrier system, excitation of both the bending and stretching modes significantly enhances dissociative sticking. The vibrational efficacies vary somewhat from mode-to-mode but are all relatively close to one, in contrast to methane dissociation, where the behavior is less statistical. Similar to methane dissociation, the motion of lattice atoms near the dissociating molecule can significantly modify the height of the barrier to dissociation, leading to a strong variation in dissociative sticking with substrate temperature. Given a rescaling of the barrier height, our results are in reasonable agreement with measurements of the dissociative sticking of D{sub 2}O on Ni(111), for both laser-excited molecules with one or two quanta of excitation in the antisymmetric stretch and in the absence of laser excitation. Even without laser excitation, the beam contains vibrationally excited molecules populated at the experimental source temperature, and these make significant contributions to the sticking probability. At high collision energies, above the adiabatic barrier heights, our results correlate with these barrier heights and mode softening effects. At lower energies, dissociative sticking occurs primarily via vibrationally nonadiabatic pathways. We find a preference for O–H over O–D bond cleavage for ground state HOD molecules at all but the highest collision energies, and excitation of the O–H stretch gives close to 100% O–H selectivity at lower energies. Excitation of the O–D stretch gives a lower O–D cleavage selectivity, as the interaction with the surface leads to energy transfer from the O–D stretch into the O–H bond, when mode softening makes these vibrations nearly degenerate.

  1. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation ofAcetylene

    SciTech Connect

    Domin, D.; Braida, Benoit; Lester Jr., William A.

    2008-05-30

    This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 {+-} 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 {+-} 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 {+-} 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 {+-} 0.5 kcal/mol).

  2. A study of the ground and excited states of Al3 and Al3-. II. Computational analysis of the 488 nm anion photoelectron spectrum and a reconsideration of the Al3 bond dissociation energy

    NASA Astrophysics Data System (ADS)

    Miller, Stephen R.; Schultz, Nathan E.; Truhlar, Donald G.; Leopold, Doreen G.

    2009-01-01

    Computational results are reported for the ground and low-lying excited electronic states of Al3- and Al3 and compared with the available spectroscopic data. In agreement with previous assignments, the six photodetachment transitions observed in the vibrationally resolved 488nm photoelectron spectrum of Al3- are assigned as arising from the ground X˜A1'1(A11) and excited B23 states of Al3- and accessing the ground X˜A1'2(A12) and excited A2″2(B12), A24, and B22 states of Al3 (with C2v labels for D3h states in parentheses). Geometries and vibrational frequencies obtained by PBE0 hybrid density functional calculations using the 6-311+G(3d2f) basis set and energies calculated using coupled cluster theory with single and double excitations and a quasiperturbative treatment of connected triple excitations (CCSD(T)) with the aug-cc-pVxZ {x =D, T, Q} basis sets with exponential extrapolation to the complete basis set limit are in good agreement with experiment. Franck-Condon spectra calculated in the harmonic approximation, using either the Sharp-Rosenstock-Chen method which includes Duschinsky rotation or the parallel-mode Hutchisson method, also agree well with the observed spectra. Possible assignments for the higher-energy bands observed in the previously reported UV photoelectron spectra are suggested. Descriptions of the photodetachment transition between the Al3- and Al3 ground states in terms of natural bond order (NBO) analyses and total electron density difference distributions are discussed. A reinterpretation of the vibrational structure in the resonant two-photon ionization spectrum of Al3 is proposed, which supports its original assignment as arising from the X˜A1'2 ground state, giving an Al3 bond dissociation energy, D0(Al2-Al), of 2.403±0.001eV. With this reduction by 0.3eV from the currently recommended value, the present calculated dissociation energies of Al3, Al3-, and Al3+ are consistent with the experimental data.

  3. The Dissociation Energies of CH4 and C2H2 Revisited

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The bond dissociation energies of CH4 and C2H2 and their fragments are investigated using basis set extrapolations and high levels of correlation. The computed bond dissociation energies (D(sub e)) are accurate to within 0.2 kcal/mol. The agreement with the experimental (D(sub 0)) values is excellent if we assume that the zero-point energy of C2H is 9.18 kcal/mol. The effect of core (1s) correlation on the bond dissociation energies of C-H bonds is shown to vary from 0.2 to 0.7 kcal/mol and that for C-C bonds varies from 0.4 to 2.2 kcal/mol.

  4. The C-H Dissociation Energy of C2H6

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The C-H bond energy in C2H6 is computed to be 99.76 +/- 0.35 kcal/mol, which is in excellent agreement with the most recent experimental values. The calculation of the C-H bond energy by direct dissociation and by an isodesmic reaction is discussed.

  5. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of cobalt carbide (CoC) and its cation (CoC+)

    NASA Astrophysics Data System (ADS)

    Lau, Kai-Chung; Pan, Yi; Lam, Chow-Shing; Huang, Huang; Chang, Yih-Chung; Luo, Zhihong; Shi, Xiaoyu; Ng, C. Y.

    2013-03-01

    The ionization energy (IE) of CoC and the 0 K bond dissociation energies (D0) and the heats of formation at 0 K (ΔH°f0) and 298 K (ΔH°f298) for CoC and CoC+ are predicted by the wavefunction based coupled-cluster theory with single, double, triple and quadruple excitations (CCSDTQ) and complete basis set (CBS) approach. The CCSDTQ/CBS calculations presented here involve the approximation to the CBS limit at the coupled cluster level up to full quadruple excitations along with the zero-point vibrational energy, high-order correlation, core-valence (CV) electronic, spin-orbit coupling, and scalar relativistic effect corrections. The present calculations provide the correct symmetry, 1Σ+, for the ground state of CoC+. The CCSDTQ/CBS IE(CoC) = 7.740 eV is found in good agreement with the experimental IE value of 7.73467 ± 0.00007 eV, determined in a two-color laser photoion and pulsed field ionization-photoelectron study. This work together with the previous experimental and theoretical investigations support the conclusion that the CCSDTQ/CBS method is capable of providing reliable IE predictions for 3d-transition metal carbides, such as FeC, CoC, and NiC. Among the single-reference based coupled-cluster methods and multi-reference configuration interaction (MRCI) approach, the CCSDTQ and MRCI methods give the best predictions to the harmonic frequencies ωe (ωe+) = 956 (992) and 976 (1004) cm-1 and the bond lengths re (re+) = 1.560 (1.528) and 1.550 (1.522) Å, respectively, for CoC (CoC+) in comparison with the experimental values. The CCSDTQ/CBS calculations give the prediction of D0(Co+-C) - D0(Co-C) = 0.175 eV, which is also consistent with the experimental determination of 0.14630 ± 0.00014 eV. The theoretical results show that the CV and valence-valence electronic correlations beyond CCSD(T) wavefunction and the relativistic effect make significant contributions to the calculated thermochemical properties of CoC/CoC+. For the experimental D0 and ΔHof0

  6. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of cobalt carbide (CoC) and its cation (CoC+).

    PubMed

    Lau, Kai-Chung; Pan, Yi; Lam, Chow-Shing; Huang, Huang; Chang, Yih-Chung; Luo, Zhihong; Shi, Xiaoyu; Ng, C Y

    2013-03-01

    The ionization energy (IE) of CoC and the 0 K bond dissociation energies (D0) and the heats of formation at 0 K (ΔH°f0) and 298 K (ΔH°f298) for CoC and CoC(+) are predicted by the wavefunction based coupled-cluster theory with single, double, triple and quadruple excitations (CCSDTQ) and complete basis set (CBS) approach. The CCSDTQ∕CBS calculations presented here involve the approximation to the CBS limit at the coupled cluster level up to full quadruple excitations along with the zero-point vibrational energy, high-order correlation, core-valence (CV) electronic, spin-orbit coupling, and scalar relativistic effect corrections. The present calculations provide the correct symmetry, (1)Σ(+), for the ground state of CoC(+). The CCSDTQ∕CBS IE(CoC) = 7.740 eV is found in good agreement with the experimental IE value of 7.73467 ± 0.00007 eV, determined in a two-color laser photoion and pulsed field ionization-photoelectron study. This work together with the previous experimental and theoretical investigations support the conclusion that the CCSDTQ∕CBS method is capable of providing reliable IE predictions for 3d-transition metal carbides, such as FeC, CoC, and NiC. Among the single-reference based coupled-cluster methods and multi-reference configuration interaction (MRCI) approach, the CCSDTQ and MRCI methods give the best predictions to the harmonic frequencies ωe (ωe (+)) = 956 (992) and 976 (1004) cm(-1) and the bond lengths re (re (+)) = 1.560 (1.528) and 1.550 (1.522) Å, respectively, for CoC (CoC(+)) in comparison with the experimental values. The CCSDTQ∕CBS calculations give the prediction of D0(Co(+)-C) - D0(Co-C) = 0.175 eV, which is also consistent with the experimental determination of 0.14630 ± 0.00014 eV. The theoretical results show that the CV and valence-valence electronic correlations beyond CCSD(T) wavefunction and the relativistic effect make significant contributions to the calculated thermochemical properties of Co

  7. Generation of pyridyl coordinated organosilicon cation pool by oxidative Si-Si bond dissociation

    PubMed Central

    Nokami, Toshiki; Soma, Ryoji; Yamamoto, Yoshimasa; Kamei, Toshiyuki; Itami, Kenichiro; Yoshida, Jun-ichi

    2007-01-01

    An organosilicon cation stabilized by intramolecular pyridyl coordination was effectively generated and accumulated by oxidative Si-Si bond dissociation of the corresponding disilane using low temperature electrolysis, and was characterized by NMR and CSI-MS. PMID:17288603

  8. Generation of pyridyl coordinated organosilicon cation pool by oxidative Si-Si bond dissociation.

    PubMed

    Nokami, Toshiki; Soma, Ryoji; Yamamoto, Yoshimasa; Kamei, Toshiyuki; Itami, Kenichiro; Yoshida, Jun-Ichi

    2007-01-01

    An organosilicon cation stabilized by intramolecular pyridyl coordination was effectively generated and accumulated by oxidative Si-Si bond dissociation of the corresponding disilane using low temperature electrolysis, and was characterized by NMR and CSI-MS. PMID:17288603

  9. Benchmark Calculations for Bond Dissociation Enthalpies of Unsaturated Methyl Esters and the Bond Dissociation Enthalpies of Methyl Linolenate.

    PubMed

    Li, Xiaoyu; Xu, Xuefei; You, Xiaoqing; Truhlar, Donald G

    2016-06-16

    It is important to determine an appropriate computational method for obtaining accurate thermochemical properties of large biodiesel molecules such as methyl linolenate. In this study, we use Kohn-Sham density functional theory (DFT) and coupled cluster theory to calculate bond dissociation enthalpies (BDEs) of seven fragment molecules of methyl linolenate, in particular, propene, methyl formate, cis-3-hexene, 1,4-pentadiene, 1-pentene, butane, and methyl butanoate. The results are compared to BDEs obtained from experiments and to Oyeyemi et al.'s multireference averaged coupled pair functional (MRACPF2) calculations. We found that with extrapolation to the complete basis set (CBS) limit, the BDEs derived from coupled cluster calculations with single, double, and triple excitations (CCSDT) and from CCSDT with a perturbative treatment of connected quadruple excitations, CCSDT(2)Q/CBS, are closer to the available experimental values than those obtained by MRACPF2 for propene and methyl formate. The CCSDT/CBS calculations were chosen as the reference for validating the DFT methods. Among the density functionals, we found that M08-HX has the best performance with a mean unsigned deviation (MUD) from CCSDT/CBS of only 1.0 kcal/mol, whereas the much more expensive MRACPF2 has an MUD of 1.1 kcal/mol. We then used the most successfully validated density functionals to calculate the BDEs of methyl linolenate and compared the results with the MRACPF2 BDEs. The present study identifies several Kohn-Sham exchange-correlation functionals that should be useful for modeling ester combustion, especially the M08-HX, M06-2X, M05-2X, M08-SO, and MPWB1K global-hybrid meta functionals, the M11 and MN12-SX range-separated-hybrid meta functionals, the ωB97 range-separated hybrid gradient approximation functional, and the SOGGA11-X global-hybrid gradient approximation functional. PMID:27191950

  10. Birge-Sponer Estimation of the C-H Bond Dissociation Energy in Chloroform Using Infrared, Near-Infrared, and Visible Absorption Spectroscopy: An Experiment in Physical Chemistry

    ERIC Educational Resources Information Center

    Myrick, M. L.; Greer, A. E.; Nieuwland, A. A.; Priore, R. J.; Scaffidi, J.; Andreatta, Danielle; Colavita, Paula

    2008-01-01

    The fundamental and overtone vibrational absorption spectroscopy of the C-H unit in CHCl[subscript 3] is measured for transitions from the v = 0 energy level to v = 1 through v = 5 energy levels. The energies of the transitions exhibit a linearly-decreasing spacing between adjacent vibrational levels as the vibrational quantum number increases.…

  11. Computational Study of Bond Dissociation Enthalpies for Lignin Model Compounds. Substituent Effects in Phenethyl Phenyl Ethers

    SciTech Connect

    Beste, Ariana; Buchanan III, A C

    2009-01-01

    Lignin is an abundant natural resource that is a potential source of valuable chemicals. Improved understanding of the pyrolysis of lignin occurs through the study of model compounds for which phenethyl phenyl ether (PhCH2CH2OPh, PPE) is the simplest example representing the dominant -O-4 ether linkage. The initial step in the thermal decomposition of PPE is the homolytic cleavage of the oxygen-carbon bond. The rate of this key step will depend on the bond dissociation enthalpy, which in turn will depend on the nature and location of relevant substituents. We used modern density functional methods to calculate the oxygen-carbon bond dissociation enthalpies for PPE and several oxygen substituted derivatives. Since carbon-carbon bond cleavage in PPE could be a competitive initial reaction under high temperature pyrolysis conditions, we also calculated substituent effects on these bond dissociation enthalpies. We found that the oxygen-carbon bond dissociation enthalpy is substantially lowered by oxygen substituents situated at the phenyl ring adjacent to the ether oxygen. On the other hand, the carbon-carbon bond dissociation enthalpy shows little variation with different substitution patterns on either phenyl ring.

  12. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers.

    PubMed

    Beste, Ariana; Buchanan, A C

    2009-04-01

    Lignin is an abundant natural resource that is a potential source of valuable chemicals. Improved understanding of the pyrolysis of lignin occurs through the study of model compounds for which phenethyl phenyl ether (PhCH(2)CH(2)OPh, PPE) is the simplest example representing the dominant beta-O-4 ether linkage. The initial step in the thermal decomposition of PPE is the homolytic cleavage of the oxygen-carbon bond. The rate of this key step will depend on the bond dissociation enthalpy, which in turn will depend on the nature and location of relevant substituents. We used modern density functional methods to calculate the oxygen-carbon bond dissociation enthalpies for PPE and several oxygen-substituted derivatives. Since carbon-carbon bond cleavage in PPE could be a competitive initial reaction under high-temperature pyrolysis conditions, we also calculated substituent effects on these bond dissociation enthalpies. We found that the oxygen-carbon bond dissociation enthalpy is substantially lowered by oxygen substituents situated at the phenyl ring adjacent to the ether oxygen. On the other hand, the carbon-carbon bond dissociation enthalpy shows little variation with different substitution patterns on either phenyl ring. PMID:19260664

  13. Action Spectroscopy and Dissociation Energy of Ammonia Trimer

    NASA Astrophysics Data System (ADS)

    Heid, Cornelia G.; Case, Amanda S.; Western, Colin M.; Crim, F. Fleming

    2012-06-01

    We have investigated the energy dependence for the vibrational predissociation of ammonia trimer, (NH_3)_3 → (NH_3)_2 + NH_3, using infrared-action spectroscopy. The action spectra come from detecting specific rovibrational states of the monomer fragment via (2+1) resonance enhanced multiphoton excitation (REMPI) while scanning the IR excitation laser over the NH stretch transitions of the trimer as well as the dimer. The relative intensities of the dimer and trimer features in the action spectra depend on the amount of energy available for breaking the hydrogen bonds in the clusters. For example, the action spectra of ammonia fragments with large amounts of internal energy (v_2=3) show almost no trimer contribution since there is not enough energy available to break two bonds in the cyclic trimer. The action spectra for fragments with low internal energies (v_2=1), on the other hand, exhibit a substantial trimer component as more energy remains available to dissociate the cluster. Using the threshold at which the trimer feature becomes apparent in our spectra as an upper limit (Edissmax = hνvib-Eint(NH_3)), we determine the dissociation energy of ammonia trimer to be in the range between 1700-1800 cm-1. This range agrees well with theoretical predictions.

  14. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+).

    PubMed

    Lau, Kai-Chung; Chang, Yih Chung; Shi, Xiaoyu; Ng, C Y

    2010-09-21

    The ionization energy (IE) of NiC and the 0 K bond dissociation energies (D(0)) and heats of formation at 0 K (ΔH(o)(f0)) and 298 K (ΔH(o)(f298)) for NiC and NiC(+) are predicted by the wavefunction based CCSDTQ(Full)/CBS approach and the multireference configuration interaction (MRCI) method with Davidson correction (MRCI+Q). The CCSDTQ(Full)/CBS calculations presented here involve the approximation to the complete basis set (CBS) limit at the coupled cluster level up to full quadruple excitations along with the zero-point vibrational energy (ZPVE), high-order correlation, core-valence electronic (CV), spin-orbit coupling (SO), and scalar relativistic effect (SR) corrections. The present calculations provide the correct symmetry predictions for the ground states of NiC and NiC(+) to be (1)∑(+) and (2)∑(+), respectively. The CCSDTQ(Full)/CBS IE(NiC)=8.356 eV is found to compare favorably with the experimental IE value of 8.372 05±0.000 06 eV. The predicted IE(NiC) value at the MRCI+Q/cc-pwCV5Z level, including the ZPVE, SO, and SR effects is 8.00 eV, which is 0.37 eV lower than the experimental value. This work together with the previous experimental and theoretical investigations supports the conclusion that the CCSDTQ(Full)/CBS method is capable of providing reliable IE predictions for 3d-transition metal carbides, such as FeC and NiC. Furthermore, the CCSDTQ(Full)/CBS calculations give the prediction of D(0)(Ni-C)-D(0)(Ni(+)-C)=0.688 eV, which is also consistent with the experimental determination of 0.732 21±0.000 06 eV, whereas the MRCI+Q calculations (with relativistic and CV effects) predict a significantly lower value of 0.39 eV for D(0)(Ni-C)-D(0)(Ni(+)-C). The analysis of the correction terms shows that the CV and valence-valence electronic correlations beyond CCSD(T) wavefunction and the relativistic effect make significant contributions to the calculated thermochemical properties of NiC/NiC(+). For the experimental D(0) and ΔH(o)(f0) values of

  15. Theoretical dissociation energies for ionic molecules

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides.

  16. Selectivity of peptide bond dissociation on excitation of a core electron: Effects of a phenyl group

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Cheng; Chen, Jien-Lian; Hu, Wei-Ping; Lin, Yi-Shiue; Lin, Huei-Ru; Lee, Tsai-Yun; Lee, Yuan T.; Ni, Chi-Kung; Liu, Chen-Lin

    2016-09-01

    The selective dissociation of a peptide bond upon excitation of a core electron in acetanilide and N-benzylacetamide was investigated. The total-ion-yield near-edge X-ray absorption fine structure spectra were recorded and compared with the predictions from time-dependent density functional theory. The branching ratios for the dissociation of a peptide bond are observed as 16-34% which is quite significant. This study explores the core-excitation, the X-ray photodissociation pathways, and the theoretical explanation of the NEXAFS spectra of organic molecules containing both a peptide bond and a phenyl group.

  17. On the energetics of P-P bond dissociation of sterically strained tetraamino-diphosphanes.

    PubMed

    Blum, M; Puntigam, O; Plebst, S; Ehret, F; Bender, J; Nieger, M; Gudat, D

    2016-02-01

    The homolytic P-P bond fission in a series of sterically congested tetraaminodiphosphanes (R2N)2P-P(NR2)2 ({4}2-{9}2, two of which were newly synthesized and fully characterized) into diaminophosphanyl radicals (R2N)2P˙ (4-9) was monitored by VT EPR spectroscopy. Determination of the radical concentration from the EPR spectra permitted to calculate free dissociation energies ΔGDiss(295) as well as dissociation enthalpies ΔHDiss and entropies ΔSDiss, respectively. Large positive values of ΔGDiss(295) indicate that the degree of dissociation is in most cases low, and the concentration of persistent radicals--even if they are spectroscopically observable at ambient temperature--remains small. Appreciable dissociation was established only for the sterically highly congested acyclic derivative {9}2. Analysis of the trends in experimental data in connection with DFT studies indicate that radical formation is favoured by large entropy contributions and the energetic effect of structural relaxation (geometrical distortions and conformational changes in acyclic derivatives) in the radicals, and disfavoured by attractive dispersion forces. Comparison of the energetics of formation for CC-saturated N-heterocyclic diphosphanes and the 7π-radical 3c indicates that the effect of energetic stabilization by π-electron delocalization in the latter is visible, but stands back behind those of steric and entropic contributions. Evaluation of spectroscopic and computational data indicates that diaminophosphanyl radicals exhibit, in contrast to aminophosphenium cations, no strong energetic preference for a planar arrangement of the (R2N)2P unit. PMID:26337501

  18. Quantum dynamics of polyatomic dissociative chemisorption on transition metal surfaces: mode specificity and bond selectivity.

    PubMed

    Jiang, Bin; Yang, Minghui; Xie, Daiqian; Guo, Hua

    2016-06-27

    Dissociative chemisorption is the initial and often rate-limiting step in many heterogeneous processes. As a result, an in-depth understanding of the reaction dynamics of such processes is of great importance for the establishment of a predictive model of heterogeneous catalysis. Overwhelming experimental evidence has suggested that these processes have a non-statistical nature and excitations in various reactant modes have a significant impact on reactivity. A comprehensive characterization of the reaction dynamics requires a quantum mechanical treatment on a global potential energy surface. In this review, we summarize recent progress in constructing high-dimensional potential energy surfaces for polyatomic molecules interacting with transition metal surfaces based on the plane-wave density functional theory and in quantum dynamical studies of dissociative chemisorption on these potential energy surfaces. A special focus is placed on the mode specificity and bond selectivity in these gas-surface collisional processes, and their rationalization in terms of the recently proposed Sudden Vector Projection model. PMID:26100606

  19. The dissociation energy of N2

    NASA Technical Reports Server (NTRS)

    Almloef, Jan; Deleeuw, Bradley J.; Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Siegbahn, Per

    1989-01-01

    The requirements for very accurate ab initio quantum chemical prediction of dissociation energies are examined using a detailed investigation of the nitrogen molecule. Although agreement with experiment to within 1 kcal/mol is not achieved even with the most elaborate multireference CI (configuration interaction) wave functions and largest basis sets currently feasible, it is possible to obtain agreement to within about 2 kcal/mol, or 1 percent of the dissociation energy. At this level it is necessary to account for core-valence correlation effects and to include up to h-type functions in the basis. The effect of i-type functions, the use of different reference configuration spaces, and basis set superposition error were also investigated. After discussing these results, the remaining sources of error in our best calculations are examined.

  20. A Redetermination of the Dissociation Energy of MgO(+)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1994-01-01

    In 1986, we reported a dissociation energy (D(sub 0) of 2.31 eV for the X(sup 2)Pi ground state of MgO(+). This value was determined by computing the dissociation energy to the Mg(2+) + O(-) limit and adjusting the value to the Mg(+) + O limit using the experimental Ionization Potential (IP) of Mg(+) and the Electron Affinity (EA) of O. The success of this method relies on the assumption that there is little covalent contribution to the bonding. The very small (0.04 eV) correlation contribution to the binding energy was taken as corroboration for the validity of this approach. Our earlier theoretical value was estimated to be accurate to at least 0.2 eV. It is in excellent agreement with the subsequent value of 2.30 +/- 0.13 eV determined by Freiser and co-workers from photodissociation experiments. It is also consistent with the upper (less than 3.1 eV) and lower (greater than 1.1 eV) bounds determined by Rowe obtained by studying the reactions of Mg(+) with 03 and NO2. However, it is inconsistent with an upper bound of 1.7 eV reported by Kappes and Staley based on their failure to observe MgO(+) in the reaction of Mg(+) with N2O. The picture became somewhat clouded, however, by the recent guided-ion beam mass spectrometric studies of Dalleska and Armentrout. Their initial analysis of the reaction data for Mg(+) + O2 lead to a bond dissociation energy of 2.92 +/- 0.25 eV, which is considerably larger than the value of 2.47 +/- 0.06 eV deduced from their studies of the Mg(+)+NO2 reaction.

  1. Dissociation of biological catch-bond by periodic perturbation.

    PubMed

    Pereverzev, Yuriy V; Prezhdo, Oleg V

    2006-07-15

    The analysis of the P-selectin/PSGL-1 catch-slip bond that is periodically driven by a detaching force predicts that in the frequency range on the order of 1 s(-1) the bond lifetime undergoes significant changes with respect to both frequency and amplitude of the force. The result indicates how variations in the heart rate could have a substantial effect on leukocyte and lymphoid cell transport and adhesion to endothelial cells and platelets during inflammatory processes. PMID:16698784

  2. Dynamics of C-Br bond dissociation in methyl 2-bromopropionate at 235 nm: A resonance-enhanced multiphoton ionization study

    NASA Astrophysics Data System (ADS)

    Saha, Ankur; Kumar, Awadhesh; Naik, Prakash D.

    2016-01-01

    The dynamics of the C-Br bond dissociation on UV excitation of methyl 2-bromopropionate mainly to the 1(nσ*) state, repulsive in the C-Br bond, has been investigated, employing resonance-enhanced multiphoton ionization. Both the ground state and spin-orbits excited bromine atoms were detected, with the former being the major channel. Bromine fragments show bimodal translational energy distributions, with slow and fast (major) bromine atoms arising mainly from the ground and excited electronic states, respectively. The measured recoil anisotropy suggests isotropic angular distributions of bromine atoms. Molecular orbital calculations reveal an important role of avoided curve crossing on C-Br bond dissociation dynamics.

  3. Bond dissociation mechanism of ethanol during carbon nanotube synthesis via alcohol catalytic CVD technique: Ab initio molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Oguri, Tomoya; Shimamura, Kohei; Shibuta, Yasushi; Shimojo, Fuyuki; Yamaguchi, Shu

    2014-03-01

    Dissociation of ethanol on a nickel cluster is investigated by ab initio molecular dynamics simulation to reveal the bond dissociation mechanism of carbon source molecules during carbon nanotube synthesis. C-C bonds in only CHxCO fragments are dissociated on the nickel cluster, whereas there is no preferential structure among the fragments for C-O bond dissociation. The dissociation preference is uncorrelated with the bond dissociation energy of corresponding bonds in freestanding molecules but is correlated with the energy difference between fragment molecules before and after dissociation on the nickel surface. Moreover, carbon-chain formation occurs after C-C bond dissociation in a continuous simulation. What determines the chirality of CNTs? What happens at the dissociation stage of carbon source molecules? Regarding the former question, many researchers have pointed out the good epitaxial relationship between a graphite network and a close-packed facet (i.e., fcc(1 1 1) or hcp(0 0 0 1)) of transition metals [17-19]. Therefore, the correlation between the chirality of CNTs and the angle of the step edge on metal (or metal carbide) surfaces has been closely investigated [20-22]. In association with this geometric matching, the epitaxial growth of graphene on Cu(1 1 1) and Ni(1 1 1) surfaces has recently been achieved via CCVD technique [23-25], which is a promising technique for the synthesis of large-area and monolayer graphene.Regarding the latter question, it is empirically known that the yield and quality of CNT products strongly depend on the choice of carbon source molecules and additives. For example, it is well known that the use of ethanol as carbon source molecules yields a large amount of SWNTs without amorphous carbons (called the alcohol CCVD (ACCVD) technique) compared with the CCVD process using hydrocarbons [4]. Moreover, the addition of a small amount of water dramatically enhances the activity and lifetime of the catalytic metal (called the

  4. Competitive bond rupture in the photodissociation of bromoacetyl chloride and 2- and 3-bromopropionyl chloride: adiabatic versus diabatic dissociation.

    PubMed

    Hsu, Ming-Yi; Tsai, Po-Yu; Wei, Zheng-Rong; Chao, Meng-Hsuan; Zhang, Bing; Kasai, Toshio; Lin, King-Chuen

    2013-04-01

    Competitive bond dissociation mechanisms for bromoacetyl chloride and 2- and 3-bromopropionyl chloride following the (1) [n(O)→π*(C=O)] transition at 234-235 nm are investigated. Branching ratios for C−Br/C−Cl bond fission are found by using the (2+1) resonance-enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the C=O chromophore. C−Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(C=O) and np (Cl)σ*(C−Cl) bands. In contrast, C−Br bond fission is subject to much weaker coupling between n(O)π*(C=O) and np (Br)σ*(C−Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2-bromopropionyl chloride, which leads to excited-state products. For 3-bromopropionyl chloride, the available energy is not high enough to reach the excited-state products such that C−Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted. PMID:23400968

  5. Force modulating dynamic disorder: a physical model of catch-slip bond transitions in receptor-ligand forced dissociation experiments.

    PubMed

    Liu, Fei; Ou-Yang, Zhong-can

    2006-11-01

    Recent experiments found that some adhesive receptor-ligand complexes have counterintuitive catch-slip transition behaviors: the mean lifetimes of these complexes first increase (catch) with initial application of a small external force, and then decrease (slip) when the force is beyond some threshold. In this work we suggest that the forced dissociation of these complexes might be a typical rate process with dynamic disorder. The one-dimensional force modulating Agmon-Hopfield model is used to describe the transitions in the single-bond P-selectin glycoprotein ligand 1-P-selectin forced dissociation experiments, which were respectively performed in the constant force [Marshall, Nature (Landon) 423, 190 (2003)] and the ramping force [Evans, Proc. Natl. Acad. Sci. U.S.A 98, 11281 (2004)] modes. We find that, an external force can not only accelerate the bond dissociation, but also modulate the complex from the lower-energy barrier to the higher one; the catch-slip bond transition can arise from a particular energy barrier shape. The agreement between our calculation and the experimental data is satisfactory. PMID:17279936

  6. Effect of loading conditions on the dissociation behaviour of catch bond clusters

    PubMed Central

    Sun, L.; Cheng, Q. H.; Gao, H. J.; Zhang, Y. W.

    2012-01-01

    Under increasing tensile load, the lifetime of a single catch bond counterintuitively increases up to a maximum and then decreases exponentially like a slip bond. So far, the characteristics of single catch bond dissociation have been extensively studied. However, it remains unclear how a cluster of catch bonds behaves under tensile load. We perform computational analysis on the following models to examine the characteristics of clustered catch bonds: (i) clusters of catch bonds with equal load sharing, (ii) clusters of catch bonds with linear load sharing, and (iii) clusters of catch bonds in micropipette-manipulated cell detachment. We focus on the differences between the slip and catch bond clusters, identifying the critical factors for exhibiting the characteristics of catch bond mechanism for the multiple-bond system. Our computation reveals that for a multiple-bond cluster, the catch bond behaviour could only manifest itself under relatively uniform loading conditions and at certain stages of decohesion, explaining the difficulties in observing the catch bond mechanism under real biological conditions. PMID:21937488

  7. Effect of loading conditions on the dissociation behaviour of catch bond clusters.

    PubMed

    Sun, L; Cheng, Q H; Gao, H J; Zhang, Y W

    2012-05-01

    Under increasing tensile load, the lifetime of a single catch bond counterintuitively increases up to a maximum and then decreases exponentially like a slip bond. So far, the characteristics of single catch bond dissociation have been extensively studied. However, it remains unclear how a cluster of catch bonds behaves under tensile load. We perform computational analysis on the following models to examine the characteristics of clustered catch bonds: (i) clusters of catch bonds with equal load sharing, (ii) clusters of catch bonds with linear load sharing, and (iii) clusters of catch bonds in micropipette-manipulated cell detachment. We focus on the differences between the slip and catch bond clusters, identifying the critical factors for exhibiting the characteristics of catch bond mechanism for the multiple-bond system. Our computation reveals that for a multiple-bond cluster, the catch bond behaviour could only manifest itself under relatively uniform loading conditions and at certain stages of decohesion, explaining the difficulties in observing the catch bond mechanism under real biological conditions. PMID:21937488

  8. Molecular Dynamics Study of Hsp90 and ADP: Hydrogen Bond Analysis for ADP Dissociation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kazutomo; Saito, Hiroaki; Nagao, Hidemi

    The contacts between the N-terminal domain of heat shock protein 90 (N-Hsp90) and ADP involve both direct and water-mediated hydrogen bonds in X-ray crystallographic structure. We perform all-atom molecular dynamics (MD) simulations of N-Hsp90 and ADP to investigate the changes of the hydrogen bond lengths during ADP dissociation. We show the difference between the hydrogen bonds in the crystal structure and MD simulations. Moreover, the N6 group of ADP does not contact with the Cγ group of Asp93, and the hydrogen bonds between Asn51 side chain and ADP are stable in the early step of ADP dissociation.

  9. Dissociation energies of some high temperature molecules containing aluminum

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.

    1972-01-01

    The Knudsen cell mass spectrometric method has been used to investigate the gaseous molecules Al2, AlSi,AlSiO, AlC2, Al2C2, and AlAuC2. Special attention was given to the experimental considerations and techniques needed to identify and to measure ion intensities for very low abundance molecular species. Second- and third-law procedures were used to obtain reaction enthalpies for pressure calibration independent and isomolecular exchange reactions. Dissociation energies for the molecules were derived from the measured ion intensities, free-energy functions obtained from estimated molecular constants, and auxiliary thermodynamic data. The bonding and stability of these aluminum containing molecules are compared with other similar species.

  10. Coupling of disulfide bond and distal histidine dissociation in human ferrous cytoglobin regulates ligand binding.

    PubMed

    Beckerson, Penny; Reeder, Brandon J; Wilson, Michael T

    2015-02-13

    Earlier kinetics studies on cytoglobin did not assign functional properties to specific structural forms. Here, we used defined monomeric and dimeric forms and cysteine mutants to show that an intramolecular disulfide bond (C38-C83) alters the dissociation rate constant of the intrinsic histidine (H81) (∼1000 fold), thus controlling binding of extrinsic ligands. Through time-resolved spectra we have unequivocally assigned CO binding to hexa- and penta-coordinate forms and have made direct measurement of histidine rebinding following photolysis. We present a model that describes how the cysteine redox state of the monomer controls histidine dissociation rate constants and hence extrinsic ligand binding. PMID:25601563

  11. Entropic-elasticity-controlled dissociation and energetic-elasticity-controlled rupture induce catch-to-slip bonds in cell-adhesion molecules.

    PubMed

    Wei, YuJie

    2008-03-01

    We develop a physical model to describe the kinetic behavior in cell-adhesion molecules. Unbinding of noncovalent biological bonds is assumed to occur by both bond dissociation and bond rupture. Such a decomposition of debonding processes is a space decomposition of the debonding events. Dissociation under thermal fluctuation is nondirectional in a three-dimensional space, and its energy barrier to escape is not influenced by a tensile force, but the microstates that could lead to dissociation are changed by the tensile force; rupture happens along the tensile force direction. An applied force effectively lowers the energy barrier to escape along the loading direction. The lifetime of the biological bond, due to the two concurrent off rates, may grow with increasing tensile force to a moderate amount and then decrease with further increasing load. We hypothesize that a catch-to-slip bond transition is a generic feature in biological bonds. The model also predicts that catch bonds in a more flexible molecular structure have longer lifetimes and need less force to be fully activated. PMID:18517425

  12. Entropic-elasticity-controlled dissociation and energetic-elasticity-controlled rupture induce catch-to-slip bonds in cell-adhesion molecules

    NASA Astrophysics Data System (ADS)

    Wei, Yujie

    2008-03-01

    We develop a physical model to describe the kinetic behavior in cell-adhesion molecules. Unbinding of noncovalent biological bonds is assumed to occur by both bond dissociation and bond rupture. Such a decomposition of debonding processes is a space decomposition of the debonding events. Dissociation under thermal fluctuation is nondirectional in a three-dimensional space, and its energy barrier to escape is not influenced by a tensile force, but the microstates that could lead to dissociation are changed by the tensile force; rupture happens along the tensile force direction. An applied force effectively lowers the energy barrier to escape along the loading direction. The lifetime of the biological bond, due to the two concurrent off rates, may grow with increasing tensile force to a moderate amount and then decrease with further increasing load. We hypothesize that a catch-to-slip bond transition is a generic feature in biological bonds. The model also predicts that catch bonds in a more flexible molecular structure have longer lifetimes and need less force to be fully activated.

  13. A Comprehensive Analysis in Terms of Molecule-Intrinsic Quasi-Atomic Orbitals. IV. Bond Breaking and Bond Forming along the Dissociative Reaction Path of Dioxetane.

    PubMed

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2015-10-15

    The quantitative analysis of molecular density matrices in terms of oriented quasi-atomic orbitals (QUAOs) is shown to yield detailed conceptual insight into the dissociation of dioxetane on the basis of ab initio wave functions. The QUAOs persist and can be followed throughout the reaction path. The kinetic bond orders and the orbital populations of the QUAOs quantitatively reveal the changes of the bonding interactions along the reaction path. At the transition state the OO bond is broken, and the molecule becomes a biradical. After the transition state the reaction path bifurcates. The minimum energy path gently descends from the transition state via a valley-ridge inflection point to a second saddle point, from which two new minimum energy paths lead to two equivalent formaldehyde dimers. The CC bond breaks, and the π-bonds of the formaldehyde fragments form in close vicinity of the second saddle point. The changes of the interactions in this region are elucidated by the analysis of the rearrangements of the QUAOs. PMID:26371996

  14. Selective dissociation of the stronger bond in HCN using an optical centrifuge

    NASA Astrophysics Data System (ADS)

    Hasbani, R.; Ostojic, B.; Bunker, P. R.; Ivanov, M. Yu.

    2002-06-01

    Using the example of the HCN molecule, we study theoretically the possibility of selectively breaking the stronger bond in a triatomic molecule by rotationally accelerating it in an optical centrifuge using a combination of two oppositely chirped and counter-rotating strong laser fields. In our simulation the resultant field forces rotational acceleration of the HCN molecule to a point where the centrifugal force between the two heavy atoms (C and N) exceeds the strength of their (triple) bond. The effects of bending, rovibrational coupling, and the Coriolis force, which conspire to prevent the molecule from rotational dissociation into HC+N, can be efficiently counteracted by simple optimization of the frequency chirp.

  15. Bond energy analysis revisited and designed toward a rigorous methodology

    NASA Astrophysics Data System (ADS)

    Nakai, Hiromi; Ohashi, Hideaki; Imamura, Yutaka; Kikuchi, Yasuaki

    2011-09-01

    The present study theoretically revisits and numerically assesses two-body energy decomposition schemes including a newly proposed one. The new decomposition scheme is designed to make the equilibrium bond distance equivalent with the minimum point of bond energies. Although the other decomposition schemes generally predict the wrong order of the C-C bond strengths of C2H2, C2H4, and C2H6, the new decomposition scheme is capable of reproducing the C-C bond strengths. Numerical assessment on a training set of molecules demonstrates that the present scheme exhibits a stronger correlation with bond dissociation energies than the other decomposition schemes do, which suggests that the new decomposition scheme is a reliable and powerful analysis methodology.

  16. Zero-Point Energy Constraint for Unimolecular Dissociation Reactions. Giving Trajectories Multiple Chances To Dissociate Correctly.

    PubMed

    Paul, Amit K; Hase, William L

    2016-01-28

    A zero-point energy (ZPE) constraint model is proposed for classical trajectory simulations of unimolecular decomposition and applied to CH4* → H + CH3 decomposition. With this model trajectories are not allowed to dissociate unless they have ZPE in the CH3 product. If not, they are returned to the CH4* region of phase space and, if necessary, given additional opportunities to dissociate with ZPE. The lifetime for dissociation of an individual trajectory is the time it takes to dissociate with ZPE in CH3, including multiple possible returns to CH4*. With this ZPE constraint the dissociation of CH4* is exponential in time as expected for intrinsic RRKM dynamics and the resulting rate constant is in good agreement with the harmonic quantum value of RRKM theory. In contrast, a model that discards trajectories without ZPE in the reaction products gives a CH4* → H + CH3 rate constant that agrees with the classical and not quantum RRKM value. The rate constant for the purely classical simulation indicates that anharmonicity may be important and the rate constant from the ZPE constrained classical trajectory simulation may not represent the complete anharmonicity of the RRKM quantum dynamics. The ZPE constraint model proposed here is compared with previous models for restricting ZPE flow in intramolecular dynamics, and connecting product and reactant/product quantum energy levels in chemical dynamics simulations. PMID:26738691

  17. Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Spectroscopic parameters are accurately determined for the alkali and alkaline-earth monofluorides and monochlorides by means of ab initio self-consistent field and correlated wave function calculations. Numerical Hartree-Fock calculations are performed on selected systems to ensure that the extended Slater basis sets employed are near the Hartree-Fock limit. Since the bonding is predominantly electrostatic in origin, a strong correlation exists between the dissociation energy (to ions) and the spectroscopic parameter r(e). By dissociating to the ionic limits, most of the differential correlation effects can be embedded in the accurate experimental electron affinities and ionization potentials.

  18. Hydrogen Bond and Ligand Dissociation Dynamics in Fluoride Sensing of Re(I)-Polypyridyl Complex.

    PubMed

    Verma, Sandeep; Aute, Sunil; Das, Amitava; Ghosh, Hirendra N

    2015-11-25

    Hydrogen bonding interaction plays an essential role in the early phases of molecular recognition and colorimetric sensing of various anions in aprotic media. In this work, the host-guest interaction between fac-[Re(CO)3Cl(L)] with L = 4-([2,2'-bipyridin]-4-yl)phenol and fluoride ions is investigated for the hydrogen bond dynamics and the changing local coordination environment. The stoichiometric studies using (1)H NMR and ESI-MS spectroscopies have shown that proton transfer in the H-bonded phenol-fluoride complex activates the dissociation of the CO ligand in the Re(I) center. The phenol-to-phenolate conversion during formation of HF2(-) ion induces nucleophilic lability of the CO ligand which is probed by intraligand charge transfer (ILCT) and ligand-to-metal charge transfer (LMCT) transitions in transient absorption spectroscopy. After photoexcitation, phenol-phenoxide conversion rapidly equilibrates in 280 fs time scale and the ensuing excited state [Re(II)(bpy•(-)-phenolate¯) (CO)3Cl]* undergoes CO dissociation in the ultrafast time scale of ∼3 ps. A concerted mechanism of hydrogen cleavage and coordination change is established in anion sensing studies of the rhenium complex. PMID:26514688

  19. The bond length and bond energy of gaseous CrW.

    PubMed

    Matthew, Daniel J; Oh, Sang Hoon; Sevy, Andrew; Morse, Michael D

    2016-06-01

    Supersonically cooled CrW was studied using resonant two-photon ionization spectroscopy. The vibronically resolved spectrum was recorded over the region 21 100 to 23 400 cm(-1), showing a very large number of bands. Seventeen of these bands, across three different isotopologues, were rotationally resolved and analyzed. All were found to arise from the ground (1)Σ(+) state of the molecule and to terminate on states with Ω' = 0. The average r0 bond length across the three isotopic forms was determined to be 1.8814(4) Å. A predissociation threshold was observed in this dense manifold of vibronic states at 23 127(10) cm(-1), indicating a bond dissociation energy of D0(CrW) = 2.867(1) eV. Using the multiple bonding radius determined for atomic Cr in previous work, the multiple bonding radius for tungsten was calculated to be 1.037 Å. Comparisons are made between CrW and the previously investigated group 6 diatomic metals, Cr2, CrMo, and Mo2, and to previous computational studies of this molecule. It is also found that the accurately known bond dissociation energies of group 5/6 metal diatomics Cr2, V2, CrW, NbCr, VNb, Mo2, and Nb2 display a qualitative linear dependence on the sum of the d-orbital radial expectation values, r; this relationship allows the bond dissociation energies of other molecules of this type to be estimated. PMID:27276956

  20. Choice of Bond Dissociation Enthalpies on which to Base the Stabilization Energies of Simple Radicals: DH(R-H)is Preferred because DH(R-Me) is Perturbed by Changes in Chain Branching

    SciTech Connect

    Poutsma, Marvin L

    2008-01-01

    The relative stabilization energies of radicals, SE(R ), along the simple series methyl/ethyl/i-propyl/t-butyl are known to vary in spread and even direction dependent on which dissociation enthalpies, DH(R-X), they are based on. Using a highly electronegative X is recognized as unwise, but it is not clear whether a choice of X = Me or X = R might not be preferred over the almost universal use of R = H. The enthalpies of isomerization of C4 radical pairs that vary only in the substitution pattern at the radical center but not in carbon skeleton illustrate that R = H is indeed the better choice. Comparisons in the context of recent predictive models for alkane and radical stability indicate that, while relative DH(R-H) values highlight the desired difference in substitution pattern at the radical center, relative DH(R-Me) values are perturbed by differences in skeletal branching or protobranching which are well-known to affect thermochemistry. As a result, SE(R ) values derived from relative DH(R-Me) values are consistently too small. The same pattern is illustrated for prim, sec, and tert allylic and benzylic radicals (larger SE(R )) and for the parent vinyl, phenyl, and ethynyl radicals (negative SE(R )).

  1. Hydrogen Dissociation in Generalized Hartree-Fock Theory: Breaking the diatomic bond

    NASA Astrophysics Data System (ADS)

    Jerke, Jonathan; Masood, Samina; Tymczak, Cj

    Generalized Hartree Fock theory predicts molecular Hydrogen dissociation without correlation. A variational Gaussian-Sinc linear superposition is the basis of 50 calculations with 3-4 significant digits of quality. The spin singlet covalent bond spontaneously breaks into a pair of uncorrelated doublets at atomic separation of 1.22 Angstroms. Quantum spin numbers and energetic comparison with Configuration Interaction theory--correlation--point to a first order phase transition in the molecular Hydrogen bond without correlation. Welch Foundation (Grant J-1675), the ARO (Grant W911Nf-13-1-0162), the Texas Southern University High Performance Computing Center (http:/hpcc.tsu.edu/; Grant PHY-1126251) and NSF-CREST CRCN project (Grant HRD-1137732).

  2. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn–Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?

    SciTech Connect

    Xu, Xuefei; Zhang, Wenjing; Tang, Mingsheng; Truhlar, Donald G.

    2015-05-12

    Coupled-cluster (CC) methods have been extensively used as the high-level approach in quantum electronic structure theory to predict various properties of molecules when experimental results are unavailable. It is often assumed that CC methods, if they include at least up to connected-triple-excitation quasiperturbative corrections to a full treatment of single and double excitations (in particular, CCSD(T)), and a very large basis set, are more accurate than Kohn–Sham (KS) density functional theory (DFT). In the present work, we tested and compared the performance of standard CC and KS methods on bond energy calculations of 20 3d transition metal-containing diatomic molecules against the most reliable experimental data available, as collected in a database called 3dMLBE20. It is found that, although the CCSD(T) and higher levels CC methods have mean unsigned deviations from experiment that are smaller than most exchange-correlation functionals for metal–ligand bond energies of transition metals, the improvement is less than one standard deviation of the mean unsigned deviation. Furthermore, on average, almost half of the 42 exchange-correlation functionals that we tested are closer to experiment than CCSD(T) with the same extended basis set for the same molecule. The results show that, when both relativistic and core–valence correlation effects are considered, even the very high-level (expensive) CC method with single, double, triple, and perturbative quadruple cluster operators, namely, CCSDT(2)Q, averaged over 20 bond energies, gives a mean unsigned deviation (MUD(20) = 4.7 kcal/mol when one correlates only valence, 3p, and 3s electrons of transition metals and only valence electrons of ligands, or 4.6 kcal/mol when one correlates all core electrons except for 1s shells of transition metals, S, and Cl); and that is similar to some good xc functionals (e.g., B97-1 (MUD(20) = 4.5 kcal/mol) and PW6B95 (MUD(20) = 4.9 kcal/mol)) when the same basis set is used

  3. Computational Study of Bond Dissociation Enthalpies for Substituted $\\beta$-O-4 Lignin Model Compounds

    SciTech Connect

    Younker, Jarod M; Beste, Ariana; Buchanan III, A C

    2011-01-01

    The biopolymer lignin is a potential source of valuable chemicals. Phenethyl phenyl ether (PPE) is representative of the dominant $\\beta$-O-4 ether linkage. Density functional theory (DFT) is used to calculate the Boltzmann-weighted carbon-oxygen and carbon-carbon bond dissociation enthalpies (BDEs) of substituted PPE. These values are important in order to understand lignin decomposition. Exclusion of all conformers that have distributions of less than 5\\% at 298 K impacts the BDE by less than 1 kcal mol$^{-1}$. We find that aliphatic hydroxyl/methylhydroxyl substituents introduce only small changes to the BDEs (0-3 kcal mol$^{-1}$). Substitution on the phenyl ring at the $ortho$ position substantially lowers the C-O BDE, except in combination with the hydroxyl/methylhydroxyl substituents, where the effect of methoxy substitution is reduced by hydrogen bonding. Hydrogen bonding between the aliphatic substituents and the ether oxygen in the PPE derivatives has a significant influence on the BDE. CCSD(T)-calculated BDEs and hydrogen bond strengths of $ortho$-substituted anisoles when compared with M06-2X values confirm that the latter method is sufficient to describe the molecules studied and provide an important benchmark for lignin model compounds.

  4. Molecular dissociation in the presence of catalysts: interpreting bond breaking as a quantum dynamical phase transition

    NASA Astrophysics Data System (ADS)

    Ruderman, A.; Dente, A. D.; Santos, E.; Pastawski, H. M.

    2015-08-01

    In this work we show that molecular chemical bond formation and dissociation in the presence of the d-band of a metal catalyst can be described as a quantum dynamical phase transition (QDPT). This agrees with DFT calculations that predict sudden jumps in some observables as the molecule breaks. According to our model this phenomenon emerges because the catalyst provides for a non-Hermitian Hamiltonian. We show that when the molecule approaches the surface, as occurs in the Heyrovsky reaction of H2, the bonding H2 orbital has a smooth crossover into a bonding molecular orbital built with the closest H orbital and the surface metal d-states. The same occurs for the antibonding state. Meanwhile, two resonances appear within the continuous spectrum of the d-band, which are associated with bonding and antibonding orbitals between the furthest H atom and the d-states at the second metallic layer. These move toward the band center, where they collapse into a pure metallic resonance and an almost isolated H orbital. This phenomenon constitutes a striking example of the non-trivial physics enabled when one deals with non-Hermitian Hamiltonian beyond the usual wide band approximation.

  5. Energy and Entropy Effects in Dissociation of Peptide Radical Anions

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Lam, Corey; Chu, Ivan K.

    2012-04-15

    Time- and collision energy-resolved surface-induced dissociation (SID) of peptide radical anions was studied for the first time using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for SID experiments. Peptide radical cations and anions were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes. The effect of the charge, radical, and the presence of a basic residue on the energetics and dynamics of dissociation of peptide ions was examined using RVYIHPF (1) and HVYIHPF (2) as model systems. Comparison of the survival curves for of [M+H]{sup +}, [M-H]{sup -}, M{sup +{sm_bullet}}, and [M-2H]{sup -{sm_bullet}} ions of these precursors demonstrated that even-electron ions are more stable towards fragmentation than their odd-electron counterparts. RRKM modeling of the experimental data demonstrated that the lower stability of the positive radicals is mainly attributed to lower dissociation thresholds while entropy effects are responsible the relative instability of the negative radicals. Substitution of arginine with less basic histidine residue has a strong destabilizing effect on the [M+H]{sup +} ions and a measurable stabilizing effect on the odd-electron ions. Lower threshold energies for dissociation of both positive and negative radicals of 1 are attributed to the presence of lower-energy dissociation pathways that are most likely promoted by the presence of the basic residue.

  6. Bond length effects during the dissociation of O2 on Ni(1 1 1)

    NASA Astrophysics Data System (ADS)

    Shuttleworth, I. G.

    2015-08-01

    The interaction between O2 and Ni(1 1 1) has been investigated using spin-polarised density functional theory. A series of low activation energy (EA = 103-315 meV) reaction pathways corresponding to precursor and non-precursor mediated adsorption have been identified. It has been seen that a predominantly pathway-independent correlation exists between Osbnd Ni bond order and the O2 bond length. This correlation demonstrates that the Osbnd O interaction predominantly determines the bonding of this system.

  7. Computational Study of Bond Dissociation Enthalpies for Lignin Model Compounds: $\\beta$-5 Arylcoumaran

    SciTech Connect

    Beste, Ariana; Buchanan III, A C; Younker, Jarod M

    2012-01-01

    The biopolymer lignin is a potential source of valuable chemicals. The $\\beta$-5 linkage comprises $\\sim$10\\% of the linkages in lignin. Density Functional Theory (DFT) was used to calculate the $\\alpha$C-O and $\\alpha$C-$\\beta$C bond dissociation enthalpies (BDEs) for $\\beta$-5 models with varied substituents, which are important for understanding initial lignin decomposition. The $\\alpha$C-O ($\\alpha$C-$\\beta$C) BDEs were in the range of 40-44 (57-62) kcal/mol. The products resulting from either homolysis are bi-radicals with multi-determinant character in the singlet electronic state. Multiconfiguration self-consistent field (MCSCF) theory results were used to verify that unrestricted DFT and broken-symmetry DFT were sufficient to study these reactions.

  8. Effects of Carbonyl Bond and Metal Cluster Dissociation and Evaporation Rates on Predictions of Nanotube Production in HiPco

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Smalley, Richard E.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNT) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the co-formation of CO2. It is shown that the production of CO2 is significantly greater for FeCO due to its lower bond energy as compared with that ofNiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  9. The Kinetics of Dissociations of Aluminum - Oxygen Bonds in Aqueous Complexes - An NMR Study

    SciTech Connect

    Dr. William Casey

    2003-09-03

    OAK B262 The Kinetics of Dissociations of Aluminum--Oxygen Bonds in Aqueous Complexes--An NMR Study. In this project we determined rates and mechanisms of Al(III)-O bond rupture at mineral surfaces and in dissolved aluminum complexes. We then compared the experimental results to simulations in an attempt to predict rate coefficients. Most of the low-temperature reactions that are geochemically important involve a bonded atom or molecule that is replaced with another. We probe these reactions at the most fundamental level in order to establish a model to predict rates for the wide range of reactions that cannot be experimentally studied. The chemistry of small aluminum cluster (Figure) provides a window into the hydrolytic processes that control rates of mineral formation and the transformation of adsorbates into extended structures. The molecule shown below as an example exposes several types of oxygens to the bulk solution including seven structurally distinct sets of bridging hydroxyls. This molecule is a rich model for the aqueous interface of aluminum (hydr)oxide minerals, since it approaches colloidal dimensions in size, yet is a dissolved complex with +18 charge. We have conducted both {sup 17}O- {sup 27}Al- and {sup 19}F-NMR experiments to identify the reactive sites and to determine the rates of isotopic exchange between these sites and the bulk solution. The research was enormously successful and led to a series of papers that are being used as touchstones for assessing the accuracy of computer models of bond ruptures in water.

  10. The dissociation energy and the charge state of a copper-pair center in silicon

    SciTech Connect

    Istratov, A.A.; Hieslmair, H.; Heiser, T.; Flink, C.; Weber, E.R.

    1998-01-01

    Thermal dissociation of Cu pairs was studied in {ital p}-type silicon. The dissociation energy of the Cu pair was found to be 1.02{plus_minus}0.07eV, twice as high as the binding energy of a Coulombically bound donor-acceptor pair placed on nearest neighbor {l_angle}111{r_angle} sites. This implies that the pair is either covalently bonded, or it consists of an ionically bonded doubly negatively charged acceptor and a singly charged donor. To distinguish between these two models, the dependence of the hole emission rate on the electric field in the depletion region was studied. The absence of the Pool-Frenkel emission enhancement ruled out the acceptor nature of the center and the purely ionic type of bonding. On the other hand, the polarization potential describing emission from a neutral impurity gave a satisfactory fit to the experimental data. It is concluded that the Cu pair is a donor with either covalent or mixed type of bonding. {copyright} {ital 1998 American Institute of Physics.}

  11. The Dissociation Energy of Hydrogen and of Deuterium

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Ashok

    The ab initio computation and experimental determination of the dissociation energy (D_0) of the hydrogen and deuterium molecules has long been an important problem in molecular spectroscopy. Kolos, Monkhorst, and Szalewicz (1986) have calculated D_0 with an accuracy of +/-0.1 cm^{-1} while including fine interactions such as relativistic effects, non-adiabatic mixing, and radiative shifts. These terms introduce corrections as small as 0.2 cm^{-1}, and experimental precision must exceed this to test the calculation in all of its aspects. In our experiment, a jet of H_2 (or D_2 ) was probed with coherent and tunable radiation at ~84 nm, near the second dissociation limit which leads to the products H(n = 2) + H(1s). Molecules in their ground state were excited into the highest vibronic levels of the electronic states B, B^' , and C, and into the dissociation continuum by tuning the radiation across the dissociation threshold. Metastable H(2s) photofragments were detected by applying a delayed electric field to mix the 2s with 2p states, thereby quenching H(2s) atoms to yield fluorescence at the Lyman- alpha wavelength. The onset of quenched fluorescence marked the second dissociation limit; from this energy, the atomic 2s-1s interval was subtracted, thus yielding D_0. We obtained the values D _0(H_2) = 36 118.11 +/- 0.08 cm^{ -1} and D_0(D _2) = 36 748.38 +/- 0.07 cm^{-1}, which are in excellent agreement with the most recent theoretical calculations. Thus, a long-standing discrepancy between experiment and theory has been resolved, and the ab initio calculation of D_0 appears to be successful. Finally, from our D_0 values, the dissociation energies of the molecular ions were deduced, and they also confirm the latest (1991) ab initio values of D_0(H_sp {2}{+}) and D_0 (D_sp{2}{+}).

  12. Dissociation, transformation, and recombination of Si-H bonds in hydrogenated crystalline silicon determined by in situ micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Huang, Y. L.; Job, R.; Fahrner, W. R.

    2005-01-01

    In situ Raman measurements are applied on plasma hydrogenated Czochralski (Cz) silicon samples. The thermal evolutions of several hydrogen related defects, i.e., Si-H bonds (corresponding Raman peak at ˜2095cm-1 ) at the thin surface layer of the sample, Si-H bonds (Raman peaks at ˜2105 and ˜2110cm-1 ) at the inner surfaces of the hydrogen induced platelets (HIPs), and H2 molecules (Raman peak at ˜4150cm-1 ) in the open space of the HIPs are investigated. We find strong evidence for an Si-H bond dissociation and recombination at elevated temperatures (T⩾350°C) and at room temperature (RT), respectively. The dissociation energies of about 2.2 and 2.4eV (assuming a jump frequency of 1013s-1 ) for the Si-H bonds at the thin surface layer and at the inner surfaces of the HIPs are obtained, respectively. It is found that at RT the hydrogen atoms which are released at elevated temperatures are trapped again by the HIPs and passivate the silicon dangling bonds at the inner surfaces of the HIPs or form H2 molecules in the open HIP volume, possibly relating to the basic mechanism of the hydrogen-induced exfoliation of the silicon wafer and the so-called “smart-cut” process.

  13. Mass spectrometric and theoretical studies on dissociation of the Ssbnd S bond in the allicin: Homolytic cleavage vs heterolytic cleavage

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang

    2012-08-01

    On the basis of the tandem mass spectrometry (ESI-MS/MS) technique and DFT calculations, an experimental and theoretical investigation has been conducted into the gas-phase dissociation of the S1sbnd S1' bond in the allicin as well as that of the Ssbnd C (S1sbnd C2, S1'sbnd C2') bond. Meanwhile, the influence of protonation, alkali metal ion and electron transfer on the dissociation of the S1sbnd S1' bond has been taken into account. ESI-MS/MS experiments and DFT calculations show that in the neutral allicin, [allicin + Li]+ and [allicin + Na]+, the S1sbnd S1' bond favors homolytic cleavage, while in the allicin radical cation and protonated allicin, the S1sbnd S1' bond prefers heterolytic cleavage. In addition, alkali metal ions can strengthen the S1sbnd S1' bond in the allicin, while protonation or the loss of an electron will weaken the S1sbnd S1' bond.

  14. The C-H bond dissociation enthalpies in fused N-heterocyclic compounds

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Xing; Zheng, Wen-Rui; Ding, Lan-Lan

    2016-03-01

    The C-H bond dissociation enthalpies (BDEs) of the 26 N, O, S-containing mono-heterocyclic compounds were evaluated using the composite high-level ab initio methods G3 and G4. The C-H BDEs for 32 heterocyclic compounds were calculated using 8 types of density functional theory (DFT) methods. Comparing with the experimental values, the BMK method gave the lowest root mean square error (RMSE) of 7.2 kJ/mol. Therefore, the C-H BDEs of N-fused-heterocyclic compounds at different positions were investigated by the BMK method. By NBO analysis two linear relationships between the C-H BDEs of quinoline and isoquinoline with natural charges qC/ e in molecules and with natural charges qC/ e in radicals were found. The substituent effects on C(α)-H BDEs in N-fused-heterocyclic compounds were also discussed. It was found that there are two linear relationships between the C(α)-H BDEs of quinoline and isoquinoline derivatives with natural charges qC(α)/ e for the EDGs and CEGs substituents.

  15. Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging

    NASA Astrophysics Data System (ADS)

    Tang, Xiaofeng; Zhou, Xiaoguo; Sun, Zhongfa; Liu, Shilin; Liu, Fuyi; Sheng, Liusi; Yan, Bing

    2014-01-01

    Dissociative photoionization of methyl bromide (CH3Br) in an excitation energy range of 10.45-16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X2E of CH3Br+ is stable, and both A2A1 and B2E ionic excited states are fully dissociative to produce the unique fragment ion of CH3+. From TPEPICO 3D time-sliced velocity images of CH3+ dissociated from specific state-selected CH3Br+ ion, kinetic energy release distribution (KERD) and angular distribution of CH3+ fragment ion are directly obtained. Both spin-orbit states of Br(2P) atom can be clearly observed in fast dissociation of CH3Br+(A2A1) ion along C-Br rupture, while a KERD of Maxwell-Boltzmann profile is obtained in dissociation of CH3Br+(B2E) ion. With the aid of the re-calculated potential energy curves of CH3Br+ including spin-orbit coupling, dissociation mechanisms of CH3Br+ ion in A2A1 and B2E states along C-Br rupture are revealed. For CH3Br+(A2A1) ion, the CH3+ + Br(2P1/2) channel is occurred via an adiabatic dissociation by vibration, while the Br(2P3/2) formation is through vibronic coupling to the high vibrational level of X2E state followed by rapid dissociation. C-Br bond breaking of CH3Br+(B2E) ion can occur via slow internal conversion to the excited vibrational level of the lower electronic states and then dissociation.

  16. Potential function and dissociation energy of alkali halide

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhay P.; Pandey, Anjani K.; Pandey, Brijesh K.

    2016-05-01

    Dissociation energy of some alkali halides have been calculated by using different interaction potential function such as Born-Mayer, Varshani-Shukla and L5 potential model. The theoretical calculation is compared with experimental values. The Result shows that the values of dissociation energy as calculated by using different potential models have an equal amount of deviation with experimental values. The above said deviation with experimental values can be explained by consideration of rotational-vibrational coupling between the constituents of molecules in the limelight of molecular spectroscopy. Findings of present work suggest that the existing potential model need to be reviewed in view of the correction factors solely depending on the rotational, vibrational and electronic coupling between the constituents of molecules.

  17. The thermodynamics and kinetics of phosphoester bond formation, use, and dissociation in biology, with the example of polyphosphate in platelet activation, trasience, and mineralization.

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.

    2014-12-01

    Mitochondria condense orthophosphates (Pi), forming phosphoester bonds for ATP production that is important to life. This represents an exchange of energy from dissociated carbohydrate bonds to phosophoester bonds. These bonds are available to phosphorylate organic compounds or hydrolyze to Pi, driving many biochemical processes. The benthic bacteria T. namibiensis 1 and Beggiatoa 2 condense Pi into phosphate polymers in oxygenated environments. These polyphosphates (polyPs) are stored until the environment becomes anoxic, when these bacteria retrieve the energy from polyP dissociation into Pi3. Dissociated Pi is released outside of the bacteria, where it precipitates as apatite.The Gibbs free energy of polyP phosphoester bond hydrolysis is negative, however, the kinetics are slow4. Diatoms contain a polyP pool that is stable until after death, after which the polyPs hydrolyze and form apatite5. The roles of polyP in eukaryotic organism biochemistry continue to be discovered. PolyPs have a range of biochemical roles, such as bioavailable P-storage, stress adaptation, and blood clotting6. PolyP-containing granules are released from anuclear platelets to activate factor V7 and factor XII in the blood clotting process due to their polyanionic charge8. Platelets have a lifespan of approximately 8 days, after which they undergo apoptosis9. Data will be presented that demonstrate the bioactive, thermodynamically unstable polyP pool within older platelets in vitro can spontaneously hydrolyze and form phosphate minerals. This process is likely avoided by platelet digestion in the spleen and liver, possibly recycling platelet polyPs with their phosphoester bond energy for other biochemical roles. 1 Schulz HN et al. Science (2005) 307: 416-4182 Brüchert V et al. Geochim Cosmochim Acta (2003) 67: 4505-45183 Goldhammer T et al. Nat Geosci (2010) 3: 557-5614 de Jager H-J et al. J Phys Chem A (1988) 102: 2838-28415 Diaz, J et al. Science (2008) 320: 652-6556 Mason KD et al

  18. Combined use of ion mobility and collision-induced dissociation to investigate the opening of disulfide bridges by electron-transfer dissociation in peptides bearing two disulfide bonds.

    PubMed

    Massonnet, Philippe; Upert, Gregory; Smargiasso, Nicolas; Gilles, Nicolas; Quinton, Loïc; De Pauw, Edwin

    2015-01-01

    Disulfide bonds are post-translational modifications (PTMs) often found in peptides and proteins. They increase their stability toward enzymatic degradations and provide the structure and (consequently) the activity of such folded proteins. The characterization of disulfide patterns, i.e., the cysteine connectivity, is crucial to achieve a global picture of the active conformation of the protein of interest. Electron-transfer dissociation (ETD) constitutes a valuable tool to cleave the disulfide bonds in the gas phase, avoiding chemical reduction/alkylation in solution. To characterize the cysteine pairing, the present work proposes (i) to reduce by ETD one of the two disulfide bridges of model peptides, resulting in the opening of the cyclic structures, (ii) to separate the generated species by ion mobility, and (iii) to characterize the species using collision-induced dissociation (CID). Results of this strategy applied to several peptides show different behaviors depending on the connectivity. The loss of SH· radical species, observed for all the peptides, confirms the cleavage of the disulfides during the ETD process. PMID:25915795

  19. Theoretical determination of the alkali-metal superoxide bond energies

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    The bond dissociation energies for the alkali-metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional level. Our computed D0 values are 61.4, 37.2, 40.6, and 38.4 kcal/mol for LiO2, NaO2, KO2, and RbO2, respectively. These values, which are expected to be lower bounds and accurate to 2 kcal/mol, agree well with some of the older flame data, but rule out several recent experimental measurements.

  20. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations

    SciTech Connect

    Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor–acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene–perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  1. Accurate calculation of the dissociation energy of the highly anharmonic system ClHCl(-).

    PubMed

    Stein, Christopher; Oswald, Rainer; Botschwina, Peter; Peterson, Kirk A

    2015-05-28

    Accurate bond dissociation energies (D0) are reported for different isotopologues of the highly anharmonic system ClHCl(-). The mass-independent equilibrium dissociation energy De was obtained by a composite method with frozen-core (fc) CCSD(T) as the basic contribution. Basis sets as large as aug-cc-pV8(+d)Z were employed, and extrapolation to the complete basis set (CBS) limit was carried out. Explicitly correlated calculations with the CCSD(T)-F12b method were also performed to support the conventionally calculated values. Core-core and core-valence correlation, scalar relativity, and higher-order correlation were considered as well. Two mass-dependent contributions, namely, the diagonal Born-Oppenheimer correction and the difference in zero-point energies between the complex and the HCl fragment, were then added in order to arrive at precise D0 values. Results for (35)ClH(35)Cl(-) and (35)ClD(35)Cl(-) are 23.81 and 23.63 kcal/mol, respectively, with estimated uncertainties of 0.05 kcal/mol. In contrast to FHF(-) ( Stein , C. ; Oswald , R. ; Sebald , P. ; Botschwina , P. ; Stoll , H. , Peterson , K. A. Mol. Phys. 2013 , 111 , 2647 - 2652 ), the D0 values of the bichloride species are larger than their De counterparts, which is an unusual situation in hydrogen-bonded systems. PMID:25405989

  2. Identification of disulfide bonds in wheat gluten proteins by means of mass spectrometry/electron transfer dissociation.

    PubMed

    Lutz, Elena; Wieser, Herbert; Koehler, Peter

    2012-04-11

    Disulfide bonds within gluten proteins play a key role in the breadmaking performance of wheat flour. In the present study, disulfide bonds of wheat gluten proteins were identified by using a new liquid chromatography-mass spectrometry (LC-MS) technique with alternating electron transfer dissociation (ETD)/collision-induced dissociation (CID). Wheat flour was partially hydrolyzed with thermolysin (pH 6.5, 37 °C, 16 h), and the digest was subjected to LC-MS with alternating ETD/CID fragmentation. Whereas CID provided peptide fragments with intact disulfide bonds, cleavage of disulfide bonds was preferred over peptide backbone fragmentations in ETD. The simultaneous observation of disulfide-linked and disulfide-cleaved peptide ions in the mass spectra not only provided distinct interpretation with high confidence but also simplified the conventional approach for determination of disulfide bonds, which often requires two separate experiments with and without chemical reduction. By application of the new method 14 cystine peptides were identified. Eight peptides confirmed previously established disulfide bonds within gluten proteins, and the other six cystine peptides were identified for the first time. One of the newly identified cystine peptides represented a "head-to-tail" cross-link between high molecular weight glutenin subunits. This type of cross-link, which has been postulated as an integral part of glutenin models published previously, has now been proven experimentally for the first time. From the six remaining cystine peptides interchain disulfide bonds between α-gliadins, γ-gliadins, and low molecular weight glutenin subunits were established. PMID:22439977

  3. Electron Transfer Dissociation Reveals Changes in the Cleavage Frequencies of Backbone Bonds Distant to Amide-to-Ester Substitutions in Polypeptides

    NASA Astrophysics Data System (ADS)

    Hansen, Thomas A.; Jung, Hye R.; Kjeldsen, Frank

    2011-11-01

    Interrogation of electron transfer dissociation (ETD) mass spectra of peptide amide-to-ester backbone bond substituted analogues (depsipeptides) reveals substantial differences in the entire backbone cleavage frequencies. It is suggested that the point permutation of backbone bonds leads to changes in the predominant ion structures by removal/weakening of specific hydrogen bonding. ETD responds to these changes by redistributing the cleavage frequencies of the peptide backbone bonds. In comparison, no distinction between depsi-/peptide was observed using collision-activated dissociation, which is consistent with a general unfolding and elimination of structural information of these ions. These results should encourage further exploration of depsipeptides for gas-phase structural characterization.

  4. Multi-component molecular orbital study on positron attachment to alkali-metal hydride molecules: nature of chemical bonding and dissociation limits of [LiH; e+

    NASA Astrophysics Data System (ADS)

    Oyamada, Takayuki; Tachikawa, Masanori

    2014-08-01

    We have performed multi-component full-configuration interaction calculations to investigate the nature of chemical bonding of [LiH;e+] at the small and large internuclear distance. We discuss the importance of geometrical changes in positronic compounds induced by a positron attachment in terms of the virial theorem, with a comparison of the adiabatic- and vertical-positron affinity (PA). The systematic improvement of the PA values achieved by optimisation of (i) the molecular geometry and (ii) the positronic basis centre is also discussed. The stable dissociation channel of [LiH;e+] is compared with the ionic- and neutral-dissociation channels of its parent molecule LiH through the analysis of the potential energy curve and the electronic and positronic densities. The vertical PA as a function of is also presented, which is the difference between the potential energy curve of the parent molecule (LiH → Li + H) and its positronic compound ([LiH; e+] → Li + [H; e+]). Unlike the preceding study of [M. Mella et al., J. Chem. Phys. 113, 6154 (2000)], it took more than bohr to converge the vertical PA due to the long-range ionic bonding interaction.

  5. Rovibrational energy transfer and dissociation in O2-O collisions

    NASA Astrophysics Data System (ADS)

    Andrienko, Daniil A.; Boyd, Iain D.

    2016-03-01

    A set of state-specific transition rates for each rovibrational level is generated for the O 2 ( X 3 Σg - ) - O (" separators=" 3 P ) system using the quasi-classical trajectory method at temperatures observed in hypersonic flows. A system of master equations describes the relaxation of the rovibrational ensemble to thermal equilibrium under ideal heat bath conditions at a constant translational temperature. Vibrational and rotational relaxation times, obtained from the average internal energies, exhibit a pattern inherent in a chemically reactive collisional pair. An intrinsic feature of the O3 molecular system with a large attractive potential is a weak temperature dependence of the rovibrational transition rates. For this reason, the quasi-steady vibrational and rotational temperatures experience a maximum at increasing translational temperature. The energy rate coefficients, that characterize the average loss of internal energy due to dissociation, quickly diminish at high temperatures, compared to other molecular systems.

  6. Rovibrational energy transfer and dissociation in O2-O collisions.

    PubMed

    Andrienko, Daniil A; Boyd, Iain D

    2016-03-14

    A set of state-specific transition rates for each rovibrational level is generated for the O2(X(3)Σ(g)(-))-O(3)P system using the quasi-classical trajectory method at temperatures observed in hypersonic flows. A system of master equations describes the relaxation of the rovibrational ensemble to thermal equilibrium under ideal heat bath conditions at a constant translational temperature. Vibrational and rotational relaxation times, obtained from the average internal energies, exhibit a pattern inherent in a chemically reactive collisional pair. An intrinsic feature of the O3 molecular system with a large attractive potential is a weak temperature dependence of the rovibrational transition rates. For this reason, the quasi-steady vibrational and rotational temperatures experience a maximum at increasing translational temperature. The energy rate coefficients, that characterize the average loss of internal energy due to dissociation, quickly diminish at high temperatures, compared to other molecular systems. PMID:26979687

  7. Computational methods for the description of pharmacologically relevant platinum complexes--molecular structure and bond dissociation.

    PubMed

    Kokoschka, Malte; Galgonek, Jakub; Vondrasek, Jiri; Hobza, Pavel

    2016-02-01

    Cancer is after cardiovascular disease the most frequent cause of death in Europe. In 28 of 53 countries considered in this area it is already the leading cause of death and expected to gain even more importance until the year 2020. Amongst the large arsenal of different anti-cancer drugs, platinum drugs belong to the first developed anticancer drugs and still have a large impact on cancer therapy. Nevertheless therapy with platinum-anticancer drugs is accompanied by severe adverse effects caused by frequent interactions with the amino acids of different human proteins. Computational chemistry offers methods to study such interactions and even those of not yet synthesized drugs in silico. For such studies a profound knowledge of the prediction quality of various computational methods towards platinum-drug-like complexes is necessary. By this article we are aiming on delivering important accuracy information of the frequently used computational methods. Most important findings are the high performance of the double hybrid functional B2PLYP for the calculation of geometries, even in small basis sets, followed by BP86 and PBE and the still acceptable performance of the semi-empirical Method PM6-D3H4X for extremely large systems. To follow absolute energies of the dissociation process, LPNO-CEPA and B3LYP-D3 can be suggested while SCS-MP2 shows an extremely narrow standard deviation and a low maximum error, which make it an ideal candidate for relative energy calculations in the exploration of reaction mechanisms. PMID:26777459

  8. Low-energy dissociative electron attachment to CF2

    NASA Astrophysics Data System (ADS)

    Chourou, S. T.; Larson, Ã.; Orel, A. E.

    2015-08-01

    We present the results of a theoretical study of dissociative electron attachment (DEA) of low-energy electrons to CF2. We carried out electron scattering calculations using the complex Kohn variational method at the static-exchange and relaxed self-consistent field (SCF) level at the equilibrium geometry and compare our differential cross sections to other results. We then repeated these calculations as a function of the three internal degrees of freedom to obtain the resonance energy surfaces and autoionization widths. We use this data as input to form the Hamiltonian relevant to the nuclear dynamics. The multidimensional wave equation is solved using the multiconfiguration time-dependent Hartree (MCTDH) approach within the local approximation.

  9. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  10. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  11. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  12. Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging

    SciTech Connect

    Tang, Xiaofeng; Zhou, Xiaoguo E-mail: yanbing@jlu.edu.cn; Liu, Shilin; Sun, Zhongfa; Liu, Fuyi; Sheng, Liusi; Yan, Bing E-mail: yanbing@jlu.edu.cn

    2014-01-28

    Dissociative photoionization of methyl bromide (CH{sub 3}Br) in an excitation energy range of 10.45–16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X{sup 2}E of CH{sub 3}Br{sup +} is stable, and both A{sup 2}A{sub 1} and B{sup 2}E ionic excited states are fully dissociative to produce the unique fragment ion of CH{sub 3}{sup +}. From TPEPICO 3D time-sliced velocity images of CH{sub 3}{sup +} dissociated from specific state-selected CH{sub 3}Br{sup +} ion, kinetic energy release distribution (KERD) and angular distribution of CH{sub 3}{sup +} fragment ion are directly obtained. Both spin-orbit states of Br({sup 2}P) atom can be clearly observed in fast dissociation of CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion along C–Br rupture, while a KERD of Maxwell-Boltzmann profile is obtained in dissociation of CH{sub 3}Br{sup +}(B{sup 2}E) ion. With the aid of the re-calculated potential energy curves of CH{sub 3}Br{sup +} including spin-orbit coupling, dissociation mechanisms of CH{sub 3}Br{sup +} ion in A{sup 2}A{sub 1} and B{sup 2}E states along C–Br rupture are revealed. For CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion, the CH{sub 3}{sup +} + Br({sup 2}P{sub 1/2}) channel is occurred via an adiabatic dissociation by vibration, while the Br({sup 2}P{sub 3/2}) formation is through vibronic coupling to the high vibrational level of X{sup 2}E state followed by rapid dissociation. C–Br bond breaking of CH{sub 3}Br{sup +}(B{sup 2}E) ion can occur via slow internal conversion to the excited vibrational level of the lower electronic states and then dissociation.

  13. Towards an understanding of the bonding in polyoxometalates through bond order and bond energy analysis.

    PubMed

    Bridgeman, Adam J; Cavigliasso, Germán

    2003-01-01

    The molecular and electronic structures of transition metal complexes, [MOCl5]n- (n = 2 for M = V,Nb,Ta and n = 1 for Mo,W) and mixed-metal polyoxometalates, [M'M5O19]3-V,Nb,Ta, M = Mo,W) containing a single terminal oxo group on each metal, and of complexes of the uranyl ion [UO2]2+, [UO2(H2O)5]2+ and [UO2Cl4]2-, have been calculated using density functional methods. The calculated structures of the complexes are in good agreement with available experimental parameters. For the mixed-metal hexametalates, for which no crystallographic data is available, the calculations predict a small tetragonal compression of the clusters with only minor structural changes compared to the parent molybdate and tungstate. The metal oxygen bonding in these anions has been probed using Mayer-Mulliken, bond energy and atoms in molecule analyses (AIM). These methods provide a consistent description of the bonding in polyoxometalates. The terminal bonds between transition metal or uranium and oxygen atoms have large sigma and pi components with the pi contributions exceeding the sigma bonding. The transition metals utilize their d orbitals almost exclusively to bond to oxygen whilst uranium uses both its 5f and 6d orbitals. Oxygen atom charges increase and covalency indexes decrease with coordination number, with a marked separation of these terms according to the oxygen atom type. The total valency and AIM energies of the oxygen atoms are predicted to be almost constant for all types of oxygen site. The constancy of the bonding power of the oxygen atoms appears to be an important factor in determining the gross structures and details of the bonding in polyoxometalates. The Mayer Mulliken approach provides direct characterization of the bonding power of atoms and the extent of the interaction between pairs of atoms that is consistent with the results of the considerably more computationally demanding bond energy and AIM approaches. PMID:14527219

  14. Bond-Energy and Surface-Energy Calculations in Metals

    ERIC Educational Resources Information Center

    Eberhart, James G.; Horner, Steve

    2010-01-01

    A simple technique appropriate for introductory materials science courses is outlined for the calculation of bond energies in metals from lattice energies. The approach is applied to body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal-closest-packed (hcp) metals. The strength of these bonds is tabulated for a variety metals and is…

  15. An Energetic Guide for Estimating Trifluoromethyl Cation Donor Abilities of Electrophilic Trifluoromethylating Reagents: Computations of X-CF3 Bond Heterolytic Dissociation Enthalpies.

    PubMed

    Li, Man; Xue, Xiao-Song; Guo, Jinping; Wang, Ya; Cheng, Jin-Pei

    2016-04-15

    This work established an energetic guide for estimating the trifluoromethyl cation-donating abilities (TC(+)DA) of electrophilic trifluoromethylating reagents through computing X-CF3 bond (X = O, S, Se, Te, and I) heterolytic dissociation enthalpies. TC(+)DA values for a wide range of popular reagents were derived on the basis of density functional calculations (M06-2X). A good correspondence has been identified between the computed TC(+)DA values and the experimentally observed relative trifluoromethylating capabilities of the reagents. Substituent effects hold good linear free energy relationships on the TC(+)DAs of the most widely used reagents including Umemoto reagent, Yagupolskii-Umemoto reagent, and Togni reagents, which allow their trifluoromethylating capabilities to be rationally tuned by substituents and thus extend their synthetic utility. All the information disclosed in this work would contribute to future rational exploration of the electrophilic trifluoromethylation chemistry. PMID:26999452

  16. N-Cα Bond Cleavage of Zinc-Polyhistidine Complexes in Electron Transfer Dissociation Mediated by Zwitterion Formation: Experimental Evidence and Theoretical Analysis of the Utah-Washington Model.

    PubMed

    Asakawa, Daiki; Yamashita, Asuka; Kawai, Shikiho; Takeuchi, Takae; Wada, Yoshinao

    2016-02-11

    Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of gas-phase ions are widely used for peptide/protein sequencing by mass spectrometry. To understand the general mechanism of ECD/ETD of peptides, we focused on the ETD fragmentation of metal-peptide complexes in the absence of remote protons. Since Zn(2+) strongly binds to neutral histidine residues in peptides, Zn(2+)-polyhistidine complexation does not generate any remote protons. However, in the absence of remote protons, electron transfer to the Zn(2+)-polyhistidine complex induced the N-Cα bond cleavage. The formation pathway for the ETD products was investigated by density functional theory calculations. The calculations showed that the charge-reduced zinc-peptide radical, [M + Zn](•+), can exist in the low-energy zwitterionic amide π* states, which underwent homolytic N-Cα bond dissociation. The homolytic cleavage resulted in the donation of an electron from the N-Cα bond to the nitrogen atom, producing an iminoenol c' anion. The counterpart z(•) radical contained a radical site on the α-carbon atom. The iminoenol c' anion then abstracted a proton to presumably form the more stable amide c' fragment. The current experimental and computational joint study strongly suggested that the N-Cα bond cleavage occurred through the aminoketyl radical-anion formation for Zn(2+)-polyhistidine complexes in ETD. PMID:26673038

  17. Mechanistic Examination of Cβ–Cγ Bond Cleavages of Tryptophan Residues during Dissociations of Molecular Peptide Radical Cations

    SciTech Connect

    Song, Tao; Ma, Ching-Yung; Chu, Ivan K.; Siu, Chi-Kit; Laskin, Julia

    2013-02-14

    In this study, we used collision-induced dissociation (CID) to examine the gas-phase fragmentations of [GnW]•+ (n = 2-4) and [GXW]•+ (X = C, S, L, F, Y, Q) species. The Cβ–Cγ bond cleavage of a C-terminal decarboxylated tryptophan residue ([M - CO2]•+) can generate [M - CO2 - 116]+, [M - CO2 - 117]•+, and [1H-indole]•+ (m/z 117) species as possible product ions. Competition between the formation of [M - CO2 - 116]+ and [1H-indole]•+ systems implies the existence of a proton-bound dimer formed between the indole ring and peptide backbone. Formation of such a proton-bound dimer is facile via a protonation of the tryptophan γ-carbon atom as suggested by density functional theory (DFT) calculations. DFT calculations also suggested the initially formed ion 2--the decarboxylated species that is active against Cβ–Cγ bond cleavage -can efficiently isomerize to form a more-stable -radical isomer (ion 9) as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. The Cβ–Cγ bond cleavage of a tryptophan residue also can occur directly from peptide radical cations containing a basic residue. CID of [WGnR]•+ (n = 1-3) radical cations consistently resulted in predominant formation of [M-116]+ product ions. It appears that the basic arginine residue tightly sequesters the proton and allows the charge-remote Cβ–Cγ bond cleavage to prevail over the charge-directed one. DFT calculations predicted the barrier for the former is 6.2 kcal mol -1 lower than that of the latter. Furthermore, the pathway involving a salt-bridge intermediate also was accessible during such a bond cleavage event.

  18. Intramolecular Interaction, Photoisomerization, and Mechanical C-C Bond Dissociation of 1,2-Di(9-anthryl)benzene and Its Photoisomer: A Fundamental Moiety of Anthracene-Based π-Cluster Molecules.

    PubMed

    Nishiuchi, Tomohiko; Uno, Shin-Ya; Hirao, Yasukazu; Kubo, Takashi

    2016-03-01

    We report variable and unique properties of 1,2-di(9-anthryl)benzene 1 as a fundamental moiety of anthracene-based π-cluster molecules. Due to a through-space π-conjugation between anthracene units, excimer emission at room temperature and charge delocalized state in radical cation state of 1 could be observed. Photoirradiation to 1 afforded an intramolecular [4 + 4] cyclized anthracene dimer 1' having a high strain energy with long C-C bond that exceeded 1.68 Å, resulting in C-C bond dissociation by simple mechanical grinding. PMID:26828776

  19. Shattering dissociation in high-energy molecular collisions between nitrate esters

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor V.; Dunlap, Brett I.

    2011-09-01

    We present ab initio molecular dynamics simulations of head-on collisions between ethyl nitrate molecules at collisional energies from 200 to 1200 kJ/mol. Above a threshold energy, an increasing fraction of the collisions led to rapid dissociation on impact—"shattering." The probability of the shattering dissociation was derived from the quasiclassical trajectories sampling the initial vibrational motion at Tvib = 300 K. Even for the zero impact parameter and a fixed orientation considered, the observed dissociation probability exhibited a wide spread (much larger than kTvib) as a function of the collision energy. This is attributed to variations in the initial vibrational phase. We propose a closed-form expression for the energy-dependent dissociation probability that captures the dependence on the phase and use it to analyze the probability of the shattering dissociation of a larger nitrate ester, pentaerythritol tetranitrate.

  20. Bond Energies in Models of the Schrock Metathesis Catalyst

    SciTech Connect

    Vasiliu, Monica; Li, Shenggang; Arduengo, Anthony J.; Dixon, David A.

    2011-06-23

    Heats of formation, adiabatic and diabatic bond dissociation energies (BDEs) of the model Schrock-type metal complexes M(NH)(CRR)(OH)₂ (M = Cr, Mo, W; CRR = CH₂, CHF, CF₂) and MO₂(OH)₂ compounds, and Brønsted acidities and fluoride affinities for the M(NH)(CH₂)(OH) ₂ transition metal complexes are predicted using high level CCSD(T) calculations. The metallacycle intermediates formed by reaction of C₂H4 with M(NH)-(CH₂)(OH)2 and MO₂(OH)₂ are investigated at the same level of theory. Additional corrections were added to the complete basis set limit to obtain near chemical accuracy ((1 kcal/mol). A comparison between adiabatic and diabatic BDEs is made and provides an explanation of trends in the BDEs. Electronegative groups bonded on the carbenic carbon lead to less stable Schrock-type complexes as the adiabatic BDEs ofMdCF₂ andMdCHF bonds are much lower than theMdCH₂ bonds. The Cr compounds have smaller BDEs than theWorMo complexes and should be less stable. Different M(NH)(OH)₂(C₃H₆) and MO(OH)₂(OC₂H4) metallacycle intermediates are investigated, and the lowest-energy metallacycles have a square pyramidal geometry. The results show that consideration of the singlet_triplet splitting in the carbene in the initial catalyst as well as in the metal product formed by the retro [2+2] cycloaddition is a critical component in the design of an effective olefin metathesis catalyst in terms of the parent catalyst and the groups being transferred.

  1. Isotope effects and bond softening in intense-laser-field multiphoton dissociation of H[sub 2][sup +

    SciTech Connect

    Miret-Artes, S. ); Atabek, O. )

    1994-02-01

    Isotope effects in the H[sub 2][sup +-]D[sub 2][sup +] fragmentation by intense laser fields offer the possibility of a multiphoton interpretation of the bond-softening mechanism. Surprisingly, the calculations indicate that the one-photon dissociation of D[sub 2][sup +] is favored with respect to that of H[sub 2][sup +]. This cannot be understood, as has previously been done, by a single-photon mechanism following tunneling through a lowered potential barrier, obviously more transparent for the lighter H[sub 2][sup +]. It is rather a competition between this single-photon mechanism and a five-photon mechanism which is suggested for a more realistic interpretation.

  2. Theoretical enthalpies of formation and O H bond dissociation enthalpy of an α-tocopherol model and its free radical

    NASA Astrophysics Data System (ADS)

    Espinosa-García, J.

    2004-04-01

    Using DFT computations (B3LYP and BHandHLYP functionals) with isodesmic reactions as working chemical reactions, and extended basis sets with diffuse functions, the standard enthalpies of formation of an α-tocopherol model (where the aliphatic chain and the neighbour methyl group have been changed to hydrogen atoms) and its free radical α-tocopheroxy were theoretically estimated for the first time: -79.4 ± 2.0, and -54.9 ± 2.0 kcal mol -1, respectively. These enthalpies of formation correspond to the O-H bond dissociation enthalpy of BDE(O-H)=76.6 ± 2.0 kcal mol -1, in excellent agreement with the gas-phase experimental value for natural α-tocopherol, which lends confidence to the method and model used.

  3. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNTs) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the conformation of CO2. It is shown that the production of CO2 is significantly greater for FeCO because of its lower bond energy as compared with that of NiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  4. Size, Kinetics, and Free Energy of Clusters Formed by Ultraweak Carbohydrate-Carbohydrate Bonds.

    PubMed

    Witt, Hannes; Savić, Filip; Oelkers, Marieelen; Awan, Shahid I; Werz, Daniel B; Geil, Burkhard; Janshoff, Andreas

    2016-04-12

    Weak noncovalent intermolecular interactions play a pivotal role in many biological processes such as cell adhesion or immunology, where the overall binding strength is controlled through bond association and dissociation dynamics as well as the cooperative action of many parallel bonds. Among the various molecules participating in weak bonds, carbohydrate-carbohydrate interactions are probably the most ancient ones allowing individual cells to reversibly enter the multicellular state and to tell apart self and nonself cells. Here, we scrutinized the kinetics and thermodynamics of small homomeric Lewis X-Lewis X ensembles formed in the contact zone of a membrane-coated colloidal probe and a solid supported membrane ensuring minimal nonspecific background interactions. We used an atomic force microscope to measure force distance curves at Piconewton resolution, which allowed us to measure the force due to unbinding of the colloidal probe and the planar membrane as a function of contact time. Applying a contact model, we could estimate the free binding energy of the formed adhesion cluster as a function of dwell time and thereby determine the precise size of the contact zone, the number of participating bonds, and the intrinsic rates of association and dissociation in the presence of calcium ions. The unbinding energy per bond was found to be on the order of 1 kBT. Approximately 30 bonds were opened simultaneously at an off-rate of koff = 7 ± 0.2 s(-1). PMID:27074683

  5. Electron transfer dissociation reveals changes in the cleavage frequencies of backbone bonds distant to amide-to-ester substitutions in polypeptides.

    PubMed

    Hansen, Thomas A; Jung, Hye R; Kjeldsen, Frank

    2011-11-01

    Interrogation of electron transfer dissociation (ETD) mass spectra of peptide amide-to-ester backbone bond substituted analogues (depsipeptides) reveals substantial differences in the entire backbone cleavage frequencies. It is suggested that the point permutation of backbone bonds leads to changes in the predominant ion structures by removal/weakening of specific hydrogen bonding. ETD responds to these changes by redistributing the cleavage frequencies of the peptide backbone bonds. In comparison, no distinction between depsi-/peptide was observed using collision-activated dissociation, which is consistent with a general unfolding and elimination of structural information of these ions. These results should encourage further exploration of depsipeptides for gas-phase structural characterization. PMID:21952783

  6. Ab Initio Quantum Mechanical Description of Noncovalent Interactions at Its Limits: Approaching the Experimental Dissociation Energy of the HF Dimer.

    PubMed

    Řezáč, Jan; Hobza, Pavel

    2014-08-12

    Hydrogen fluoride dimer is a perfect model system for studying hydrogen bonding. Its size makes it possible to apply the most advanced theoretical methods available, yet it is a full-featured complex of molecules with nontrivial electronic structure and dynamic properties. Moreover, the dissociation energy of the HF dimer has been measured experimentally with an unparalleled accuracy of ±1 cm(-1)(Bohac et al. J. Chem. Phys. 1992, 9, 6681). In this work, we attempt to reproduce it by purely ab initio means, using advanced quantum-mechanical computational methods free of any empiricism. The purpose of this study is to demonstrate the capabilities of today's computational chemistry and to point out its limitations by identifying the contributions that introduce the largest uncertainty into the result. The dissociation energy is calculated using a composite scheme including large basis set CCSD(T) calculations, contributions of higher excitations up to CCSDTQ, relativistic and diagonal Born-Oppenheimer corrections and anharmonic vibrational calculations. The error of the calculated dissociation energy is 0.07 kcal/mol (25 cm(-1), 2.5%) when compared to the experiment. The major part of this error can be attributed to the inaccuracy of the calculations of the zero-point vibrational energy. PMID:26588277

  7. Zero kinetic energy photoelectron spectroscopy of tryptamine and the dissociation pathway of the singly hydrated cation cluster

    NASA Astrophysics Data System (ADS)

    Gu, Quanli; Knee, J. L.

    2012-09-01

    The relative ionization energies of tryptamine conformations are determined by zero kinetic energy photoelectron spectroscopy and photoionization efficiency measurements. The relative cationic conformational stabilities are compared to the published results for the neutral molecule. In the cation, the interaction strength changes significantly between amino group and either the phenyl or the pyrrole moiety of the indole chromophore where most of the positive charge is located, leading to different conformational structures and relative conformer energies in the cation. In particular, the measured adiabatic ionization potential of isomer B is 60 928 ± 5 cm-1, at least 400 cm-1 higher than any of the 6 other tryptamine isomers which all have ionization potentials within 200 cm-1 of each other. In addition to the monomer, measurements were made on the A conformer of the tryptamine+-H2O complex including the ionization threshold and cation dissociation energy measured using a threshold photoionization fragmentation method. The water cluster exhibits an unexpectedly high ionization potential of 60 307 ± 100 cm-1, close to the conformer A monomer of 60 320 ± 100 cm-1. It also exhibits surprisingly low dissociation energy of 1750 ± 150 cm-1 compared to other H-bonding involved cation-H2O complexes which are typically several thousands of wavenumbers higher. Quantum chemical calculations indicate that upon ionization the structure of the parent molecule in the water complex remains mostly unchanged due to the rigid intermolecular double hydrogen bonded water molecule bridging the monomer backbone and its side chain thus leading to the high ionization potential in the water cluster. The surprisingly low dissociation energy measured in the cationic water complex is attributed to the formation of a much more stable structural isomer H+ in the exit channel.

  8. Aromatic C-H bond activation revealed by infrared multiphoton dissociation spectroscopy.

    PubMed

    Jašíková, Lucie; Hanikýřová, Eva; Schröder, Detlef; Roithová, Jana

    2012-04-01

    Metal-oxide cations are models of catalyst mediating the C-H bond activation of organic substrates. One of the most powerful reagents suggested in the gas phase is based on CuO(+) . Here, we describe the activation of the aromatic C-H bonds of phenanthroline in its complex with CuO(+) . The reaction sequence starts with a hydrogen atom abstraction by the oxygen atom from the 2-position of the phenanthroline ring, followed by OH migration to the ring. Using infrared multiphoton spectroscopy, it is shown that the reaction can be energetically facilitated by additional coordination of a water ligand to the copper ion. As the reaction is intramolecular, a spectroscopic characterization of the product is mandatory in order to unambiguously address the reaction mechanism. PMID:22689621

  9. Potential energy surface for C2H4I2+ dissociation including spin-orbit effects

    SciTech Connect

    Siebert, Matthew R.; Aquino, Adelia J.; De Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-24

    Previous experiments [Baer, et al. J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation (C2H4I2+•) and found a one-dimensional distribution of translational energy; an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction C2H4I2+• - C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single point (energy) calculations, and multi-reference calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the C2H4I2+• reactant has a substantial effect on the role of SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for C2H4I2+• similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for C2H4I2+•, similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcal/mol. Also, we find that for this system single point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  10. Precision measurements of ionization and dissociation energies by extrapolation of Rydberg series: from H2 to larger molecules.

    PubMed

    Sprecher, D; Beyer, M; Merkt, F

    2013-01-01

    Recent experiments are reviewed which have led to the determination of the ionization and dissociation energies of molecular hydrogen with a precision of 0.0007 cm(-)1 (8 mJ/mol or 20 MHz) using a procedure based on high-resolution spectroscopic measurements of high Rydberg states and the extrapolation of the Rydberg series to the ionization thresholds. Molecular hydrogen, with only two protons and two electrons, is the simplest molecule with which all aspects of a chemical bond, including electron correlation effects, can be studied. Highly precise values of its ionization and dissociation energies provide stringent tests of the precision of molecular quantum mechanics and of quantum-electrodynamics calculations in molecules. The comparison of experimental and theoretical values for these quantities enable one to quantify the contributions to a chemical bond that are neglected when making the Born-Oppenheimer approximation, i.e. adiabatic, nonadiabatic, relativistic, and radiative corrections. Ionization energies of a broad range of molecules can now be determined experimentally with high accuracy (i.e. about 0.01 cm(-1)). Calculations at similar accuracies are extremely challenging for systems containing more than two electrons. The combination of precision measurements of molecular ionization energies with highly accurateab initio calculations has the potential to provide, in future, fully reliable sets of thermochemical quantities for gas-phase reactions. PMID:23967701

  11. A complete look at the multi-channel dissociation of propenal photoexcited at 193 nm: branching ratios and distributions of kinetic energy.

    PubMed

    Chaudhuri, Chanchal; Lee, Shih-Huang

    2011-04-28

    We observed fifteen photofragments upon photolysis of propenal (acrolein, CH(2)CHCHO) at 193 nm using photofragment translational spectroscopy and selective vacuum-ultraviolet (VUV) photoionization. All the photoproducts arise from nine primary and two secondary dissociation pathways. We measured distributions of kinetic energy of products and determined branching ratios of dissociation channels. Dissociation to CH(2)CHCO + H and CH(2)CH + HCO are two major primary channels with equivalent branching ratios of 33%. The CH(2)CHCO fragment spontaneously decomposes to CH(2)CH + CO. A proportion of primary products CH(2)CH from the fission of bond C-C of propenal further decompose to CHCH + H but secondary dissociation HCO → H + CO is negligibly small. Binary dissociation to CH(2)CH(2) (or CH(3)CH) + CO and concerted three-body dissociation to C(2)H(2) + CO + H(2) have equivalent branching ratios of 14%-15%. The other channels have individual branching ratios of ∼1%. The production of HCCO + CH(3) indicates the formation of intermediate methyl ketene (CH(3)CHCO) and the production of CH(2)CCH + OH and CH(2)CC + H(2)O indicate the formation of intermediate hydroxyl propadiene (CH(2)CCHOH) from isomerization of propenal. Distributions of kinetic energy release and dissociation mechanisms are discussed. This work provides a complete look and profound insight into the multi-channel dissociation mechanisms of propenal. The combination of a molecular beam apparatus and synchrotron VUV ionization allowed us to untangle the complex mechanisms of nine primary and two secondary dissociation channels. PMID:21423979

  12. Dual-Regge approach to high-energy, low-mass diffraction dissociation

    NASA Astrophysics Data System (ADS)

    Jenkovszky, L. L.; Kuprash, O. E.; Lämsä, J. W.; Magas, V. K.; Orava, R.

    2011-03-01

    A dual-Regge model with a nonlinear proton Regge trajectory in the missing mass (MX2) channel, describing the experimental data on low-mass single diffraction dissociation (SDD), is constructed. Predictions for the LHC energies are given.

  13. Energy threshold effects in the collisionless dissociation of polyatomic molecules by ir laser radiation

    NASA Technical Reports Server (NTRS)

    Gower, M. C.; Billman, K. W.

    1977-01-01

    The threshold for collisionless dissociation of SF6, SiF4, and CF2Cl2 by focused CO2 laser radiation has been measured. This threshold is a laser pulse energy effect and, within experimental error, is found to be the same for all three gases. Provided collisions cannot occur during the laser pulse, the degree of dissociation produced depends only on the energy in the pulse, which is consistent with simple adiabatic vibrational heating of the molecules by the laser.

  14. How low can you go? Minimum energy pathways for O2 dissociation on Pt(111).

    PubMed

    McEwen, J-S; Bray, J M; Wu, C; Schneider, W F

    2012-12-28

    Many DFT studies of O(2) dissociation on Pt(111) give conflicting information on preferred paths and final states. Here we report large p(4 × 4) unit cell minimum energy pathway evaluations and compare O(2) adsorption and dissociated states on Pt(111). Calculations reveal how the pathways for O(2) dissociation starting from top-fcc-bridge, top-hcp-bridge, and top-bridge-top sites are interconnected. They also provide a direct reaction pathway for the dissociation of an O(2) molecule from a top-fcc-bridge into an hcp and an fcc site, which is consistent with low temperature scanning tunneling microscope experiments. Such a pathway is shown to be considerably perturbed by the presence of co-adsorbed oxygen atoms. We quantify the coverage dependence through the construction of a Brønsted-Evans-Polanyi relationship relating the O(2) dissociation activation energies to the binding energies of the dissociated O atoms. We also show that all pathways starting from a top-fcc-bridge site give the smallest barriers for O(2) dissociation. PMID:23093349

  15. Mass analyzed threshold ionization of phenolṡCO: Intermolecular binding energies of a hydrogen-bonded complex

    NASA Astrophysics Data System (ADS)

    Haines, Stephen R.; Dessent, Caroline E. H.; Müller-Dethlefs, Klaus

    1999-08-01

    [PhenolṡCO]+ was studied using a combination of two-color resonant zero kinetic energy (ZEKE) spectroscopy and mass analyzed threshold ionization (MATI) spectroscopy to investigate the interaction of the CO ligand with a hydrogen-bonding cation. Vibrational progressions were observed in three intermolecular modes, the in-plane bend (42 cm-1), stretch (130 cm-1), and in-plane wag (160 cm-1), and are consistent with a planar hydrogen-bonded structure where the CO bonds through the carbon atom to the phenol OH group. Dissociation energies for the S0, S1, and D0 states were determined as 659±20, 849±20, and 2425±10 cm-1, respectively. The cationic and neutral dissociation energies of the phenolṡCO complex are considerably stronger than those of phenolṡN2, demonstrating the extent to which the larger quadrupole of CO affects the strength of binding.

  16. Electron-nuclear energy sharing in above-threshold multiphoton dissociative ionization of H2.

    PubMed

    Wu, J; Kunitski, M; Pitzer, M; Trinter, F; Schmidt, L Ph H; Jahnke, T; Magrakvelidze, M; Madsen, C B; Madsen, L B; Thumm, U; Dörner, R

    2013-07-12

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles. PMID:23889391

  17. Performance of diffusion Monte Carlo for the first dissociation energies of transition metal carbonyls

    NASA Astrophysics Data System (ADS)

    Diedrich, Christian; Lüchow, Arne; Grimme, Stefan

    2005-01-01

    Fixed node diffusion Monte Carlo (FNDMC) calculations are carried out for the first ligand dissociation energies of the prototype transition metal carbonyls Cr(CO)6, Fe(CO)5, Ni(CO)4, and Fe(CO)4N2. Since Hartree-Fock theory performs particularly badly for these type of compounds they are difficult to treat with conventional ab initio methods. We find that a Kohn-Sham determinant from a standard density functional provides a balanced description of the fermionic nodal hyper surfaces of all compounds involved in the dissociation reaction. With one exception, the experimental dissociation enthalpies are reproduced by FNDMC within the statistical accuracy of the method.

  18. Tubulin Bond Energies and Microtubule Biomechanics Determined from Nanoindentation in Silico

    PubMed Central

    2015-01-01

    Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral noncovalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physicochemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force–deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9 ± 0.4 kcal/mol) and longitudinal (14.9 ± 1.5 kcal/mol) tubulin–tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000–26,000 pN·nm2) support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblies. PMID:25389565

  19. X-ray structure of the metcyano form of dehaloperoxidase from Amphitrite ornata: evidence for photoreductive dissociation of the iron-cyanide bond

    SciTech Connect

    de Serrano, V.S.; Davis, M.F.; Gaff, J.F.; Zhang, Q.; Chen, Z.; D'Antonio, E.L.; Bowden, E.F.; Rose, R.; Franzen, S.

    2010-11-09

    X-ray crystal structures of the metcyano form of dehaloperoxidase-hemoglobin (DHP A) from Amphitrite ornata (DHPCN) and the C73S mutant of DHP A (C73SCN) were determined using synchrotron radiation in order to further investigate the geometry of diatomic ligands coordinated to the heme iron. The DHPCN structure was also determined using a rotating-anode source. The structures show evidence of photoreduction of the iron accompanied by dissociation of bound cyanide ion (CN{sup -}) that depend on the intensity of the X-ray radiation and the exposure time. The electron density is consistent with diatomic molecules located in two sites in the distal pocket of DHPCN. However, the identities of the diatomic ligands at these two sites are not uniquely determined by the electron-density map. Consequently, density functional theory calculations were conducted in order to determine whether the bond lengths, angles and dissociation energies are consistent with bound CN{sup -} or O{sub 2} in the iron-bound site. In addition, molecular-dynamics simulations were carried out in order to determine whether the dynamics are consistent with trapped CN{sup -} or O{sub 2} in the second site of the distal pocket. Based on these calculations and comparison with a previously determined X-ray crystal structure of the C73S-O{sub 2} form of DHP [de Serrano et al. (2007), Acta Cryst. D63, 1094-1101], it is concluded that CN{sup -} is gradually replaced by O{sub 2} as crystalline DHP is photoreduced at 100 K. The ease of photoreduction of DHP A is consistent with the reduction potential, but suggests an alternative activation mechanism for DHP A compared with other peroxidases, which typically have reduction potentials that are 0.5 V more negative. The lability of CN{sup -} at 100 K suggests that the distal pocket of DHP A has greater flexibility than most other hemoglobins.

  20. Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface

    SciTech Connect

    Valentini, Paolo Schwartzentruber, Thomas E. Bender, Jason D. Nompelis, Ioannis Candler, Graham V.

    2015-08-15

    The direct molecular simulation (DMS) approach is used to predict the internal energy relaxation and dissociation dynamics of high-temperature nitrogen. An ab initio potential energy surface (PES) is used to calculate the dynamics of two interacting nitrogen molecules by providing forces between the four atoms. In the near-equilibrium limit, it is shown that DMS reproduces the results obtained from well-established quasiclassical trajectory (QCT) analysis, verifying the validity of the approach. DMS is used to predict the vibrational relaxation time constant for N{sub 2}–N{sub 2} collisions and its temperature dependence, which are in close agreement with existing experiments and theory. Using both QCT and DMS with the same PES, we find that dissociation significantly depletes the upper vibrational energy levels. As a result, across a wide temperature range, the dissociation rate is found to be approximately 4–5 times lower compared to the rates computed using QCT with Boltzmann energy distributions. DMS calculations predict a quasi-steady-state distribution of rotational and vibrational energies in which the rate of depletion of high-energy states due to dissociation is balanced by their rate of repopulation due to collisional processes. The DMS approach simulates the evolution of internal energy distributions and their coupling to dissociation without the need to precompute rates or cross sections for all possible energy transitions. These benchmark results could be used to develop new computational fluid dynamics models for high-enthalpy flow applications.

  1. Oxygen-carbon bond dissociation enthalpies of benzyl phenyl ethers and anisoles. An example of temperature dependent substituent effects.

    PubMed

    Pratt, D A; de Heer, M I; Mulder, P; Ingold, K U

    2001-06-13

    For some time it has been assumed that the direction and magnitude of the effects of Y-substituents on the Z-X bond dissociation enthalpies (BDE's) in compounds of the general formula 4-YC(6)H(4)Z-X could be correlated with the polarity of the Z-X bond undergoing homolysis. Recently we have shown by DFT calculations on 4-YC(6)H(4)CH(2)-X (X = H, F, Cl, Br) that the effects of Y on CH(2)-X BDE's are small and roughly equal for each X, despite large changes in C-X bond polarity. We then proposed that when Y have significant effects on Z-X BDE's it is due to their stabilization or destabilization of the radical. This proposal has been examined by studying 4-YC(6)H(4)O-X BDE's for X = H, CH(3), and CH(2)C(6)H(5) both by theory and experiment. The magnitudes of the effects of Y on O-X BDE's were quantified by Hammett type plots of DeltaBDE's vs sigma(+) (Y). Calculations reveal that changes in O-X BDE's induced by changing Y are large and essentially identical (rho(+) = 6.7-6.9 kcal mol(-)(1)) for these three classes of compounds. The calculated rho(+) values are close to those obtained experimentally for X = H at ca. 300 K and for X = CH(2)C(6)H(5) at ca. 550 K. However, early literature reports of the effects of Y on O-X BDE's for X = CH(3) with measurements made at ca. 1000 K gave rho(+) approximately 3 kcal mol(-)(1). We have confirmed some of these earlier, high-temperature O-CH(3) BDE's and propose that at 1000 K, conjugating groups such as -OCH(3) are essentially free rotors, and no longer lie mainly in the plane of the aromatic ring. As a consequence, the 298 K DFT-calculated DeltaBDE for 4-OCH(3)-anisole of -6.1 kcal mol(-)(1) decreases to -3.8 kcal mol(-)(1) for free rotation, in agreement with the ca. 1000 K experimental value. In contrast, high-temperature O-CH(3) DeltaBDE's for three anisoles with strongly hindered substituent rotation are essentially identical to those that would be observed at ambient temperatures. We conclude that substituent effects

  2. Theoretical investigation on the bond dissociation enthalpies of phenolic compounds extracted from Artocarpus altilis using ONIOM(ROB3LYP/6-311++G(2df,2p):PM6) method

    NASA Astrophysics Data System (ADS)

    Thong, Nguyen Minh; Duong, Tran; Pham, Linh Thuy; Nam, Pham Cam

    2014-10-01

    Theoretical calculations have been performed to predict the antioxidant property of phenolic compounds extracted from Artocarpus altilis. The Osbnd H bond dissociation enthalpy (BDE), ionization energy (IE), and proton dissociation enthalpy (PDE) of the phenolic compounds have been computed. The ONIOM(ROB3LYP/6-311++G(2df,2p):PM6) method is able to provide reliable evaluation for the BDE(Osbnd H) in phenolic compounds. An important property of antioxidants is determined via the BDE(Osbnd H) of those compounds extracted from A. altilis. Based on the BDE(Osbnd H), compound 12 is considered as a potential antioxidant with the estimated BDE value of 77.3 kcal/mol in the gas phase.

  3. Towards an accurate dissociative potential for water

    NASA Astrophysics Data System (ADS)

    Akin-Ojo, Omololu

    2014-03-01

    Most models of water describe the molecule as rigid, i.e., with fixed bond angles and bond lengths, or as flexible in which the bond angles and bond lengths vary but the chemical bonds cannot be broken. In this work we present our progress in the development of a water model which allows for the breaking and formation of chemical bonds. The force field was obtained by fitting ab initio (not DFT) energies, forces, and molecular properties. The ability of the model to predict properties of water at ambient and extreme conditions will be presented. We will also report on the modeling of small clusters of water using the dissociative force field.

  4. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation.

    PubMed

    Rombouts, Ine; Lagrain, Bert; Scherf, Katharina A; Lambrecht, Marlies A; Koehler, Peter; Delcour, Jan A

    2015-01-01

    Thermolysin hydrolyzates of freshly isolated, extensively stored (6 years, 6 °C, dry) and heated (60 min, 90 °C, in excess water) bovine serum albumin (BSA) samples were analyzed with liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using alternating electron-transfer dissociation (ETD) and collision-induced dissociation (CID). The positions of disulfide bonds and free thiol groups in the different samples were compared to those deduced from the crystal structure of native BSA. Results revealed non-enzymatic posttranslational modifications of cysteine during isolation, extensive dry storage, and heating. Heat-induced extractability loss of BSA was linked to the impact of protein unfolding on the involvement of specific cysteine residues in intermolecular and intramolecular thiol-disulfide interchange and thiol oxidation reactions. The here developed approach holds promise for exploring disulfide bond formation and reshuffling in various proteins under conditions relevant for chemical, biochemical, pharmaceutical and food processing. PMID:26193081

  5. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    SciTech Connect

    Medford, Andrew

    2012-02-16

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  6. Study of gas-phase O-H bond dissociation enthalpies and ionization potentials of substituted phenols - Applicability of ab initio and DFT/B3LYP methods

    NASA Astrophysics Data System (ADS)

    Klein, Erik; Lukeš, Vladimír

    2006-11-01

    In this paper, the study of phenol and 37 compounds representing various ortho-, para-, and meta-substituted phenols is presented. Molecules and their radical structures were studied using ab initio methods with inclusion of correlation energy and DFT in order to calculate the O-H bond dissociation enthalpies (BDEs) and vertical ionization potentials (IPs). Calculated BDEs and IPs were compared with available experimental values to ascertain the suitability of used methods, especially for the description of the substituent induced changes in BDE and IP. MP2, MP3, and MP4 methods do not give reliable results, since they significantly underestimate substituent induced changes in BDE and do not reflect distinct effect of substituents related to para and meta position correctly. DFT/B3LYP method reflects the effect of substituents on BDE satisfactorily, though ΔBDEs are in narrower range than experimental values. BDE of phenol was calculated also using CCSD(T) method in various basis sets. Both, DFT and HF methods describe the effect of substituents on IP identically. However, DFT considerably underestimates individual values. HF method gives IPs in very good agreement with experimental data. Obtained results show that dependences of BDEs and IPs on Hammett constants of the substituents are linear. Linearity of DFT BDE vs. IP dependence is even better than the dependences on Hammett constants and obtained equations allow estimating of O-H BDEs of meta- and para-substituted phenols from calculated IPs.

  7. Iridium porphyrins in CD3OD: reduction of Ir(III), CD3-OD bond cleavage, Ir-D acid dissociation and alkene reactions.

    PubMed

    Bhagan, Salome; Imler, Gregory H; Wayland, Bradford B

    2013-04-15

    Methanol solutions of iridium(III) tetra(p-sulfonatophenyl)porphyrin [(TSPP)Ir(III)] form an equilibrium distribution of methanol and methoxide complexes ([(TSPP)Ir(III)(CD3OD)(2-n)(OCD3)n]((3+n)-)). Reaction of [(TSPP)Ir(III) with dihydrogen (D2) in methanol produces an iridium hydride [(TSPP)Ir(III)-D(CD3OD)](4-) in equilibrium with an iridium(I) complex ([(TSPP)Ir(I)(CD3OD)](5-)). The acid dissociation constant of the iridium hydride (Ir-D) in methanol at 298 K is 3.5 × 10(-12). The iridium(I) complex ([(TSPP)Ir(I)(CD3OD)](5-)) catalyzes reaction of [(TSPP)Ir(III)-D(CD3OD)](4-) with CD3-OD to produce an iridium methyl complex [(TSPP)Ir(III)-CD3(CD3OD)](4-) and D2O. Reactions of the iridium hydride with ethene and propene produce iridium alkyl complexes, but the Ir-D complex fails to give observable addition with acetaldehyde and carbon monoxide in methanol. Reaction of the iridium hydride with propene forms both the isopropyl and propyl complexes with free energy changes (ΔG° 298 K) of -1.3 and -0.4 kcal mol(-1) respectively. Equilibrium thermodynamics and reactivity studies are used in discussing relative Ir-D, Ir-OCD3 and Ir-CD2- bond energetics in methanol. PMID:23540797

  8. Methanol Oxidative Dehydrogenation on Oxide Catalysts: Molecular and Dissociative Routes and Hydrogen Addition Energies as Descriptors of Reactivity

    SciTech Connect

    Deshlahra, Prashant; Iglesia, Enrique

    2014-11-13

    The oxidative dehydrogenation (ODH) of alkanols on oxide catalysts is generally described as involving H-abstraction from alkoxy species formed via O–H dissociation. Kinetic and isotopic data cannot discern between such routes and those involving kinetically-relevant H-abstraction from undissociated alkanols. Here, we combine such experiments with theoretical estimates of activation energies and entropies to show that the latter molecular routes prevail over dissociative routes for methanol reactions on polyoxometalate (POM) clusters at all practical reaction temperatures. The stability of the late transition states that mediate H-abstraction depend predominantly on the stability of the O–H bond formed, making H-addition energies (HAE) accurate and single-valued descriptors of reactivity. Density functional theory-derived activation energies depend linearly on HAE values at each O-atom location on clusters with a range of composition (H3PMo12, H4SiMo12, H3PW12, H4PV1Mo11, and H4PV1W11); both barriers and HAE values reflect the lowest unoccupied molecular orbital energy of metal centers that accept the electron and the protonation energy of O-atoms that accept the proton involved in the H-atom transfer. Bridging O-atoms form O–H bonds that are stronger than those of terminal atoms and therefore exhibit more negative HAE values and higher ODH reactivity on all POM clusters. For each cluster composition, ODH turnover rates reflect the reactivity-averaged HAE of all accessible O-atoms, which can be evaluated for each cluster composition to provide a rigorous and accurate predictor of ODH reactivity for catalysts with known structure. These relations together with oxidation reactivity measurements can then be used to estimate HAE values and to infer plausible structures for catalysts with uncertain active site structures.

  9. Experimental and Theoretical Determination of Dissociation Energies of Dispersion-Dominated Aromatic Molecular Complexes.

    PubMed

    Frey, Jann A; Holzer, Christof; Klopper, Wim; Leutwyler, Samuel

    2016-05-11

    The dissociation energy (D0) of an isolated and cold molecular complex in the gas-phase is a fundamental measure of the strength of the intermolecular interactions between its constituent moieties. Accurate D0 values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations, and for the parametrization of force-field models used in fields ranging from crystallography to biochemistry. We review experimental and theoretical methods for determining gas-phase D0 values of M·S complexes, where M is a (hetero)aromatic molecule and S is a closed-shell "solvent" atom or molecule. The experimental methods discussed involve M-centered (S0 → S1) electronic excitation, which is often followed by ionization to the M(+)·S ion. The D0 is measured by depositing a defined amount of vibrational energy in the neutral ground state, giving M(‡)·S, the neutral S1 excited state, giving M*·S, or the M(+)·S ion ground state. The experimental methods and their relative advantages and disadvantages are discussed. Based on the electronic structure of M and S, we classify the M·S complexes as Type I, II, or III, and discuss characteristic properties of their respective potential energy surfaces that affect or hinder the determination of D0. Current theoretical approaches are reviewed, which comprise methods based on a Kohn-Sham reference determinant as well as wave function-based methods based on coupled-cluster theory. PMID:27055105

  10. Vibrationally resolved electron-nuclear energy sharing in above-threshold multiphoton dissociation of CO

    NASA Astrophysics Data System (ADS)

    Sun, Xufei; Li, Min; Shao, Yun; Liu, Ming-Ming; Xie, Xiguo; Deng, Yongkai; Wu, Chengyin; Gong, Qihuang; Liu, Yunquan

    2016-07-01

    We study the photon energy sharing between the photoelectron and the nuclei in the process of above-threshold multiphoton dissociative ionization of CO molecules by measuring the joint energy spectra. The experimental observation shows that the electron-nuclear energy sharing strongly depends on the vibrational state. The experimental observation shows that both the energy deposited to the nuclei of C O+ and the emitted photoelectron decrease with increasing the vibrational level. Through studying the vibrationally resolved nuclear kinetic energy release and photoelectron energy spectra at different laser intensities, for each vibrational level of C O+ , the nuclei always tend to take the same amount of energy in every vibrational level regardless of the laser intensity, while the energy deposited to the photoelectron varies with respect to the laser intensity because of the ponderomotive shifted energy and the distinct dissociative ionization mechanisms.

  11. Temperature and collision energy effects on dissociation of hydrochloric acid on water surfaces.

    PubMed

    Partanen, Lauri; Murdachaew, Garold; Gerber, R Benny; Halonen, Lauri

    2016-05-21

    Collisions of HCl at the air-water interface modelled by a 72 molecule water slab are studied for a range of various impact energies and temperatures using ab initio molecular dynamics with density functional theory. A range of short-timescale events can follow the collision, from direct scattering to nondissociative trapping on the surface. In most cases, HCl dissociation occurs within a few picoseconds, followed by the formation of a solvent-separated ion pair, or rarely, the reformation of HCl. With increasing impact energy and/or system temperature, dissociation occurs more rapidly, with Cl(-) tending to diffuse deeper into the slab. At temperatures corresponding to the frozen water regime, dissociation is seen only once out of the five thermal collisions, but with the addition of a total of 4kT or more of kinetic energy to HCl, it occurs in all our trajectories within a few ps. PMID:27126973

  12. Hyperthermal Energy Collisions of CF3 + Ions with Modified Surfaces: Surface-Induced Dissociation

    SciTech Connect

    Rezayat, T.; Shukla, A.

    2004-01-01

    Collisions of low-energy ions, especially polyatomic ions, with surfaces have become an active area of research due to their numerous applications in chemistry, physics and material sciences. An interesting aspect of such collisions is the dissociation of ions which has been successfully exploited for the characterization of colliding ions, especially high mass ions from biological molecules. However, detailed studies of the energy transfer and dissociation have been performed only for a few simple systems and hence the mechanism(s) of ions’ excitation and dissociation are not as well understood even for small ions. We have therefore undertaken a study of the dissociation of a small polyatomic ion, CF3+, at several collision energies between 28.8 eV and 159 eV in collision with fluorinated alkyl thiol on gold 111 crystal and a LiF surface. These experiments were performed using a custom built tandem mass spectrometer where the energy and intensity distributions of the scattered fragment ions were measured as a function of the fragment ion mass and scattering angle. In contrast with the previous studies of the dissociation of ethanol and acetone cations where the inelastically scattered primary ions dominated the collision process (up to ~50 eV maximum energy used in those experiments), we did not observe a measurable abundance of inelastically scattered undissociated CF3+ ions at all energies studied here. We observed all fragment ions, CF2+, CF+, F+ and C+ at all energies studied with the relative intensity of the highest energy pathway, C+, increasing with collision energy. Also, the dissociation efficiency decreased significantly as the collision energy was increased from to 159 eV. The energy distributions of nearly all the fragment ions showed two distinct components, one corresponding to the loss of nearly all of the kinetic energy and scattered over a broad angular range while the other corresponding to smaller kinetic energy losses and scattered closer to

  13. Dissociation energy of diatomic molecules -comment on the work of Kaur and Mahajan

    NASA Astrophysics Data System (ADS)

    Chandra, Suresh

    2001-04-01

    When observed spectrum of a diatomic molecule is expressed in terms of the Dunham coefficients Y00, Y10, Y20, Y01, and Y11 only, dissociation energy of the molecule is given by Y00 + Y102/(-4 Y20). Kaur and Mahajan [1] have used the Dunham coefficients Y10, Y20, Y01, and Y11, for 15 vibrational states of 12 diatomic molecules (Y00 is zero for the cases accounted for), but their dissociation energy cannot be reproduced by the expression Y102/(-4 Y20). Probable reason for the discrepancy has been discussed.

  14. Kinetic-energy release in CO dissociation caused by fast F4+ impact

    NASA Astrophysics Data System (ADS)

    Ben-Itzhak, I.; Ginther, S. G.; Krishnamurthi, Vidhya; Carnes, K. D.

    1995-01-01

    The dissociation of CO caused by 1-MeV/amu F4+ impact has been studied using the coincidence time-of-flight technique. The kinetic energy released during the dissociation of COQ+ into ion pairs Cq1+ and Oq+2 was determined from the measured difference in the times of flight of the two charged fragments. The kinetic-energy distributions of CO2+ dissociating into C+ and O+ as a result of different impinging projectiles have been compared. These distributions shift towards higher kinetic-energy release values with increasing strength of interaction. A single Gaussian kinetic-energy distribution is in good agreement with the highly charged CO dissociation, while for doubly and triply charged CO, additional Gaussians are needed. While the Coulomb-explosion model approximately predicts the most likely value of a measured distribution, the widths of all distributions are grossly underestimated by the model. The measured widths of the distributions can be explained only by invoking the existence of potential-energy curves of the multiply charged ions that have steeper and shallower slopes as compared to the Coulombic curve. The reflection method was used to calculate the kinetic-energy release for F4++CO-->CO2+* transitions to all known CO2+ states. The final kinetic-energy distribution was then fitted to the data in order to evaluate the weights of the different transitions. The calculated fit is in fair agreement with the measured one, although the high-energy tail of the measured distribution could not be accounted for, indicating that contributions from highly excited dissociating states or from curve crossings need to be included.

  15. Breaking the carbon dimer: The challenges of multiple bond dissociation with full configuration interaction quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Booth, George H.; Cleland, Deidre; Thom, Alex J. W.; Alavi, Ali

    2011-08-01

    The full configuration interaction quantum Monte Carlo (FCIQMC) method, as well as its "initiator" extension (i-FCIQMC), is used to tackle the complex electronic structure of the carbon dimer across the entire dissociation reaction coordinate, as a prototypical example of a strongly correlated molecular system. Various basis sets of increasing size up to the large cc-pVQZ are used, spanning a fully accessible N-electron basis of over 1012 Slater determinants, and the accuracy of the method is demonstrated in each basis set. Convergence to the FCI limit is achieved in the largest basis with only O[10^7] walkers within random errorbars of a few tenths of a millihartree across the binding curve, and extensive comparisons to FCI, CCSD(T), MRCI, and CEEIS results are made where possible. A detailed exposition of the convergence properties of the FCIQMC methods is provided, considering convergence with elapsed imaginary time, number of walkers and size of the basis. Various symmetries which can be incorporated into the stochastic dynamic, beyond the standard abelian point group symmetry and spin polarisation are also described. These can have significant benefit to the computational effort of the calculations, as well as the ability to converge to various excited states. The results presented demonstrate a new benchmark accuracy in basis-set energies for systems of this size, significantly improving on previous state of the art estimates.

  16. Trajectory study of energy transfer and unimolecular dissociation of highly excited allyl with argon.

    PubMed

    Conte, Riccardo; Houston, Paul L; Bowman, Joel M

    2014-09-11

    The influence of rotational excitation on energy transfer in single collisions of allyl with argon and on allyl dissociation is investigated. About 90,000 classical scattering simulations are performed in order to determine collision-induced changes in internal energy and in allyl rotational angular momentum. Dissociation is studied by means of about 50,000 additional trajectories evolved for the isolated allyl under three different conditions: allyl with no angular momentum (J = 0); allyl with the same microcanonically sampled initial conditions used for the collisions (J*); allyl evolving from the corresponding exit conditions after the collision. The potential energy surface is the sum of an intramolecular potential and an interaction one, and it has already been used in a previous work on allyl-argon scattering (Conte, R.; Houston, P. L.; Bowman, J. M. J. Phys. Chem. A 2013, 117, 14028-14041). Energy transfer data show that increased initial rotation favors, on average, increased relaxation of the excited molecule. The availability of a high-level intramolecular potential energy surface permits us to study the dependence of energy transfer on the type of starting allyl isomer. A turning point analysis is presented, and highly efficient collisions are detected. Collision-induced variations in the allyl rotational angular momentum may be quite large and are found to be distributed according to three regimes. The roles of rotational angular momentum, collision, and type of isomer on allyl unimolecular dissociation are considered by looking at dissociations times, kinetic energies of the fragments, and branching ratios. Generally, rotational angular momentum has a strong influence on the dissociation dynamics, while the single collision and the type of starting isomer are less influential. PMID:25116695

  17. Structure, magnetism, and dissociation energy of small bimetallic cobalt-chromium oxide cluster cations: A density-functional-theory study

    NASA Astrophysics Data System (ADS)

    Pham, Hung Tan; Cuong, Ngo Tuan; Tam, Nguyen Minh; Lam, Vu Dinh; Tung, Nguyen Thanh

    2016-01-01

    We study CoxCryOm+ (x + y = 2, 3 and 1 ≤ m ≤ 4) clusters by means of density-functional-theory calculations. It is found that the clusters grow preferentially through maximizing the number of metal-oxygen bonds with a favor on Cr sites. The size- and composition-dependent magnetic behavior is discussed in relation with the local atomic magnetic moments. While doped species show an oscillatory magnetic behavior, the total magnetic moment of pure cobalt and chromium oxide clusters tends to enhance or reduce as increasing the oxygen content, respectively. The dissociation energies for different evaporation channels are also calculated to suggest the stable patterns, as fingerprints for future photofragmentation experiments.

  18. Measurement Of Kinetic Energy Distribution Of Positive Ions From Electron Induced Dissociation Of Pyrimidine Molecule

    NASA Astrophysics Data System (ADS)

    Milosavljevic, A. R.; Maljkovic, J. B.; Sevic, D.; Cadez, I.; Marinkovic, B. P.

    2010-07-01

    We report preliminary results on measurements of kinetic energy distribution of positive ions formed upon electron induced dissociative ionization of gaseous pyrimidine molecule (C4H4N2). The kinetic energy spectra were recorded without precedent mass/charge analysis, for different incident electron energies (50-250 eV) and different detection angles (40-90) with respect to the incident beam direction. An influence of the residual gas background to the recorded distributions has been investigated.

  19. Dual-Regge approach to high-energy, low-mass diffraction dissociation

    SciTech Connect

    Jenkovszky, L. L.; Kuprash, O. E.; Laemsae, J. W.; Magas, V. K.; Orava, R.

    2011-03-01

    A dual-Regge model with a nonlinear proton Regge trajectory in the missing mass (M{sub X}{sup 2}) channel, describing the experimental data on low-mass single diffraction dissociation (SDD), is constructed. Predictions for the LHC energies are given.

  20. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO₂ catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    DOE PAGESBeta

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; Liu, Zongyuan; Duchon, Tomas; Evans, Jaime; Senanayake, Sanjaya D.; Crumlin, Ethan J.; Matolin, Vladimir; Ganduglia-Pirovano, M. Veronica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO₂(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO₂(111) compared with pyramidal Ni₄ particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of thismore » support effect is the ability of ceria to stabilize oxidized Ni²⁺ species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO₂ has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.« less

  1. In situ and theoretical studies for the dissociation of water on an active Ni/CeO2 catalyst: importance of strong metal-support interactions for the cleavage of O-H bonds.

    PubMed

    Carrasco, Javier; López-Durán, David; Liu, Zongyuan; Duchoň, Tomáš; Evans, Jaime; Senanayake, Sanjaya D; Crumlin, Ethan J; Matolín, Vladimir; Rodríguez, José A; Ganduglia-Pirovano, M Verónica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Supported by experimental and density-functional theory results, the effect of the support on OH bond cleavage activity is elucidated for nickel/ceria systems. Ambient-pressure O 1s photoemission spectra at low Ni loadings on CeO2 (111) reveal a substantially larger amount of OH groups as compared to the bare support. Computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO2 (111) compared with pyramidal Ni4 particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni(2+) species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO2 has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions. PMID:25651288

  2. In-situ and theoretical studies for the dissociation of water on an active Ni/CeO₂ catalyst: Importance of strong metal-support interactions for the cleavage of O-H bonds

    SciTech Connect

    Carrasco, Javier; Rodriguez, Jose A.; Lopez-Duran, David; Liu, Zongyuan; Duchon, Tomas; Evans, Jaime; Senanayake, Sanjaya D.; Crumlin, Ethan J.; Matolin, Vladimir; Ganduglia-Pirovano, M. Veronica

    2015-03-23

    Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on CeO₂(111) reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on CeO₂(111) compared with pyramidal Ni₄ particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni²⁺ species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO₂ has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming reactions.

  3. Ion appearance energies at electron-impact dissociative ionization of sulfur hexafluoride molecule and its fragments

    NASA Astrophysics Data System (ADS)

    Demesh, Shandor Sh.; Remeta, Eugene Yu.

    2015-07-01

    Theoretical analysis of appearance energies for SF{/k +} ( k = 0- n) ion fragments of SF6 molecule as well as F+ and F{2/+} ions at electron-impact dissociative ionization of SF n ( n = 1-6) molecules is presented. Theoretical methods of GAMESS software package were used to calculate the total energies of neutral and charged molecular and atomic fragments. The dissociative ionization process is concluded to occur via repulsive highly-excited electronic states of the SF6 molecule and its fragments, due to which the observed appearance energies exceed the theoretical values. The electron binding energies on the molecular orbitals in the SF6 molecule are compared with the ion fragment appearance energies.

  4. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.

    PubMed

    Munafò, A; Panesi, M; Magin, T E

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models. PMID:25353565

  5. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Munafò, A.; Panesi, M.; Magin, T. E.

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N2-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N2 molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  6. Fragment appearance energies in dissociative ionization of a sulfur hexafluoride molecule by electron impact

    NASA Astrophysics Data System (ADS)

    Demesh, Sh. Sh.; Zavilopulo, A. N.; Shpenik, O. B.; Remeta, E. Yu.

    2015-06-01

    Theoretical analysis of the fragment appearance energies corresponding to possible channels of formation of SF{/k +} fragments in dissociative ionization of the SF6 molecule by an electron impact is carried out. The total energies of neutral and ion molecular and atomic fragments are calculated using the theoretical methods of the GAMESS program complex. It is concluded that apart from dissociative ionization via autoionizing repulsive electronic states of the SF6 molecule, the excitation channels for SF{/k +} fragments and F2 molecules play a significant role, which leads to higher values of the observed fragment appearance energy as compared to theoretical values. The dependence of the energy corresponding to the formation of SF{/k +} c fragments on the number k of fluorine atoms is considered.

  7. Bond selectivity in the dissociative adsorption of c-CH 2N 2 on single crystals: a comparative DFT-LSD investigation for Pd(110) and Cu(110)

    NASA Astrophysics Data System (ADS)

    Rochefort, Alain; McBreen, Peter H.; Salahub, Dennis R.

    1996-02-01

    A comparison between the reactivity of palladium and copper cluster models toward diazirine ( c-CH 2N 2) was made using the LCGTO-MCP-LSD method. Adsorption with the nitrogen pair directly over surface atoms (the μ-top site) is clearly more stable than when the NN pair is perpendicular to the rows of the (110) surface (the μ-bridge site). The NN bond is strongly affected by adsorption, a significant decrease of its bond order is observed for both palladium and copper. One main difference between palladium and copper with regards to the adsorption of c-CH 2N 2 is the magnitude of the MN bond order; palladium tends to form a stronger chemisorption bond than copper. A second difference is that partial occupation of the LUMO of diazirine only occurs for the copper cluster model systems. The concerted dissociation of CN bonds is energetically demanding but appears to be easier on Pd than on Cu by around 28 kcal mol -1. The study of electronically perturbed diazirine (excited, ionized or isomerized) provides insight on how chemisorption induces variations in bond lengths and vibrational frequencies as a result of charge transfer. The results of the calculations show that the μ-top adsorbed state is more similar to the n_ →π∗ first excited state of the free molecule than to the ionized state. A more striking result is obtained when the first excited states of the chemisorbed complexes are studied. A 0.4 eV electron excitation in the {c- CH2N2}/{Cu4} complex (μ-top) leads to a significant decrease of the bond order of the NN bond but does not induce even a small change for the {c- CH2N2}/{Pd4} complex. The calculations provide some insights on the markedly different bond scission selectivity observed in experimental studies of the thermal decomposition of diazirine on Pd and Cu surfaces. Experiments show that NN bond scission occurs with essentially 100% selectivity on copper, whereas NN bond retention as well as NN bond scission occurs on Pd(110).

  8. Photofragment energy distributions and dissociation pathways in dimethyl sulfoxide

    SciTech Connect

    Thorson, G.M.; Cheatum, C.M.; Coffey, M.J.; Fleming Crim, F.

    1999-06-01

    Photolysis of dimethyl sulfoxide in a molecular beam with 210 and 222 nm photons reveals the decomposition mechanism and energy disposal in the products. Using vacuum ultraviolet light and a time-of-flight spectrometer, we identify CH{sub 3} and CH{sub 3}SO as primary fragments and CH{sub 3} and SO as secondary fragments. From CH{sub 3} quantum yield measurements, we find that secondary decomposition is minor for 222 nm photolysis, occurring in only about 10{percent} of the fragments, but it increases to about 30{percent} in the 210 nm photolysis. Laser-induced fluorescence measurements on the B{sup 3}{Sigma}{sup {minus}}{l_arrow}X{sup 3}{Sigma}{sup {minus}} transition of SO in the 235 to 280 nm region determine the internal energy of that photoproduct. We compare our results to a simple statistical model that captures the essential features of the decomposition, predicting both the extent of secondary decomposition and the recoil energy of the primary and secondary methyl fragments. {copyright} {ital 1999 American Institute of Physics.}

  9. Novel 2-alkyl-1-ethylpyridinium ionic liquids: synthesis, dissociation energies and volatility.

    PubMed

    Vilas, Miguel; Rocha, Marisa A A; Fernandes, Ana M; Tojo, Emilia; Santos, Luís M N B F

    2015-01-28

    This work presents the synthesis, volatility study and electrospray ionization mass spectrometry with energy-variable collision induced dissociation of the isolated [(cation)2(anion)](+) of a novel series of 2-alkyl-1-ethyl pyridinium based ionic liquids, [(2)CN-2(1)C2Py][NTf2]. Compared to the imidazolium based ionic liquids, the new ionic liquid series presents a higher thermal stability and lower volatility. The [(cation)2(anion)](+) collision induced dissociation energies of both [(2)CN-2(1)C2Py][NTf2] and [CNPy][NTf2] pyridinium series show an identical trend with a pronounced decrease of the relative cation-anion interaction energy towards an almost constant value for N = 6. It was found that the lower volatility of [(2)CN-2(1)C2Py][NTf2] with a shorter alkyl chain length is due to its higher enthalpy of vaporization. Starting from [(2)C3(1)C2Py][NTf2], the lower volatility is governed by the combination of slightly lower entropies and higher enthalpies of vaporization, an indication of a higher structural disorder of the pyridinium based ionic liquids than the imidazolium based ionic liquids. Dissociation energies and volatility trends support the cohesive energy interpretation model based on the overlapping of the electrostatic and van der Waals functional interaction potentials. PMID:25493639

  10. A Unified Kinetics and Equilibrium Experiment: Rate Law, Activation Energy, and Equilibrium Constant for the Dissociation of Ferroin

    ERIC Educational Resources Information Center

    Sattar, Simeen

    2011-01-01

    Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…

  11. The Calculation of Accurate Metal-Ligand Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Partridge, Harry, III; Ricca, Alessandra; Arnold, James O. (Technical Monitor)

    1997-01-01

    The optimization of the geometry and calculation of zero-point energies are carried out at the B3LYP level of theory. The bond energies are determined at this level, as well as at the CCSD(T) level using very large basis sets. The successive OH bond energies to the first row transition metal cations are reported. For most systems there has been an experimental determination of the first OH. In general, the CCSD(T) values are in good agreement with experiment. The bonding changes from mostly covalent for the early metals to mostly electrostatic for the late transition metal systems.

  12. The Bond Order of C2 from a Strictly N-Representable Natural Orbital Energy Functional Perspective.

    PubMed

    Piris, Mario; Lopez, Xabier; Ugalde, Jesus M

    2016-03-14

    The bond order of the ground electronic state of the carbon dimer has been analyzed in the light of natural orbital functional theory calculations carried out with an approximate, albeit strictly N-representable, energy functional. Three distinct solutions have been found from the Euler equations of the minimization of the energy functional with respect to the natural orbitals and their occupation numbers, which expand upon increasing values of the internuclear coordinate. In the close vicinity of the minimum energy region, two of the solutions compete around a discontinuity point. The former, corresponding to the absolute minimum energy, features two valence natural orbitals of each of the following symmetries, σ, σ*, π and π*, and has three bonding interactions and one antibonding interaction, which is very suggestive of a bond order large than two but smaller than three. The latter, features one σ-σ* linked pair of natural orbitals and three degenerate pseudo-bonding like orbitals, paired each with one triply degenerate pseudo-antibonding orbital, which points to a bond order larger than three. When correlation effects, other than Hartree-Fock for example, between the paired natural orbitals are accounted for, this second solution vanishes yielding a smooth continuous dissociation curve. Comparison of the vibrational energies and electron ionization energies, calculated on this curve, with their corresponding experimental marks, lend further support to a bond order for C2 intermediate between acetylene and ethylene. PMID:26822104

  13. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation

    PubMed Central

    Rombouts, Ine; Lagrain, Bert; Scherf, Katharina A.; Koehler, Peter; Delcour, Jan A.

    2015-01-01

    Thermolysin hydrolyzates of freshly isolated, extensively stored (6 years, 6 °C, dry) and heated (60 min, 90 °C, in excess water) bovine serum albumin (BSA) samples were analyzed with liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using alternating electron-transfer dissociation (ETD) and collision-induced dissociation (CID). The positions of disulfide bonds and free thiol groups in the different samples were compared to those deduced from the crystal structure of native BSA. Results revealed non-enzymatic posttranslational modifications of cysteine during isolation, extensive dry storage, and heating. Heat-induced extractability loss of BSA was linked to the impact of protein unfolding on the involvement of specific cysteine residues in intermolecular and intramolecular thiol-disulfide interchange and thiol oxidation reactions. The here developed approach holds promise for exploring disulfide bond formation and reshuffling in various proteins under conditions relevant for chemical, biochemical, pharmaceutical and food processing. PMID:26193081

  14. Do Bond Functions Help for the Calculation of Accurate Bond Energies?

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James (Technical Monitor)

    1998-01-01

    The bond energies of 8 chemically bound diatomics are computed using several basis sets with and without bond functions (BF). The bond energies obtained using the aug-pVnZ+BF basis sets (with a correction for basis set superposition error, BSSE) tend to be slightly smaller that the results obtained using the aug-pV(n+I)Z basis sets, but slightly larger than the BSSE corrected aug-pV(n+I)Z results. The aug-cc-pVDZ+BF and aug-cc-pVTZ+BF basis sets yield reasonable estimates of bond energies, but, in most cases, these results cannot be considered highly accurate. Extrapolation of the results obtained with basis sets including bond functions appears to be inferior to the results obtained by extrapolation using atom-centered basis sets. Therefore bond functions do not appear to offer a path for obtaining highly accurate results for chemically bound systems at a lower computational cost than atom centered basis sets.

  15. Probing the Conformational and Functional Consequences of Disulfide Bond Engineering in Growth Hormone by Hydrogen-Deuterium Exchange Mass Spectrometry Coupled to Electron Transfer Dissociation.

    PubMed

    Seger, Signe T; Breinholt, Jens; Faber, Johan H; Andersen, Mette D; Wiberg, Charlotte; Schjødt, Christine B; Rand, Kasper D

    2015-06-16

    Human growth hormone (hGH), and its receptor interaction, is essential for cell growth. To stabilize a flexible loop between helices 3 and 4, while retaining affinity for the hGH receptor, we have engineered a new hGH variant (Q84C/Y143C). Here, we employ hydrogen-deuterium exchange mass spectrometry (HDX-MS) to map the impact of the new disulfide bond on the conformational dynamics of this new hGH variant. Compared to wild type hGH, the variant exhibits reduced loop dynamics, indicating a stabilizing effect of the introduced disulfide bond. Furthermore, the disulfide bond exhibits longer ranging effects, stabilizing a short α-helix quite distant from the mutation sites, but also rendering a part of the α-helical hGH core slightly more dynamic. In the regions where the hGH variant exhibits a different deuterium uptake than the wild type protein, electron transfer dissociation (ETD) fragmentation has been used to pinpoint the residues responsible for the observed differences (HDX-ETD). Finally, by use of surface plasmon resonance (SPR) measurements, we show that the new disulfide bond does not compromise receptor affinity. Our work highlight the analytical potential of HDX-ETD combined with functional assays to guide protein engineering. PMID:25978680

  16. Mass spectrometric determination of the dissociation energy of the AuMg diatomic molecule

    NASA Astrophysics Data System (ADS)

    Balducci, G.; Ciccioli, A.; Gigli, G.; Kudin, L. S.

    2003-02-01

    The dissociation energy of the intermetallic molecule AuMg was for the first time determined by the Knudsen-effusion mass spectrometry technique. Partial pressures of Au(g), Mg(g), AuMg(g) and Au 2(g) species produced under equilibrium vaporization of an appropriate alloy were monitored in the temperature range 1870-2333 K. The collected data were analyzed by the second- and third-law methods for the gaseous equilibria AuMg(g)=Au(g) + Mg(g) and AuMg(g) + Au(g)=Au 2(g) + Mg(g). The selected value for the dissociation energy of AuMg at 0 K is D0∘(AuMg)= 175.4±2.7 kJ/mol.

  17. Theoretical study of the dissociation energy and the red and violet band systems of CN

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The dissociation energy D0 is determined here for the CN ground-state and radiative lifetimes for the A 2Pi and B 2Sigma(+) states. D0 is found to be 7.65 + or - 0.06 eV, corresponding to Delta Hf (CN) = 105.3 + or - 1.5 kcal/mole. These results are compared with current experimental estimates and with previous theoretical calculations.

  18. On the dissociation energy of CaOH and LiOH

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Partridge, H.

    1984-01-01

    A technique for computing the dissociation energy of ionic diatomics is extended to the ionic triatomics LiOH and CaOH. The calculated Do values (with the recommended experimental values in parentheses) are 4.72 plus or minus 0.06 eV (4.53 plus or minus 0.04) for LiOH and 4.13 plus or minus 0.07 (4.23 eV) for CaOH.

  19. Graph-theoretical identification of dissociation pathways on free energy landscapes of biomolecular interaction.

    PubMed

    Wang, Ling; Stumm, Boris; Helms, Volkhard

    2010-03-01

    Biomolecular association and dissociation reactions take place on complicated interaction free energy landscapes that are still very hard to characterize computationally. For large enough distances, though, it often suffices to consider the six relative translational and rotational degrees of freedom of the two particles treated as rigid bodies. Here, we computed the six-dimensional free energy surface of a dimer of water-soluble alpha-helices by scanning these six degrees of freedom in about one million grid points. In each point, the relative free energy difference was computed as the sum of the polar and nonpolar solvation free energies of the helix dimer and of the intermolecular coulombic interaction energy. The Dijkstra graph algorithm was then applied to search for the lowest cost dissociation pathways based on a weighted, directed graph, where the vertices represent the grid points, the edges connect the grid points and their neighbors, and the weights are the reaction costs between adjacent pairs of grid points. As an example, the configuration of the bound state was chosen as the source node, and the eight corners of the translational cube were chosen as the destination nodes. With the strong electrostatic interaction of the two helices giving rise to a clearly funnel-shaped energy landscape, the eight lowest-energy cost pathways coming from different orientations converge into a well-defined pathway for association. We believe that the methodology presented here will prove useful for identifying low-energy association and dissociation pathways in future studies of complicated free energy landscapes for biomolecular interaction. PMID:19603501

  20. Molecular dissociation in presence of a catalyst: II. The bond breaking role of the transition from virtual to localized states

    NASA Astrophysics Data System (ADS)

    Ruderman, A.; Dente, A. D.; Santos, E.; Pastawski, H. M.

    2016-08-01

    We address a molecular dissociation mechanism that is known to occur when a H2 molecule approaches a catalyst with its molecular axis parallel to the surface. It is found that molecular dissociation is a form of quantum dynamical phase transition associated to an analytic discontinuity of quite unusual nature: the molecule is destabilized by the transition from non-physical virtual states into actual localized states. Current description complements our recent results for a molecule approaching the catalyst with its molecular axis perpendicular to the surface (Ruderman et al 2015 J. Phys.: Condens. Matter 27 315501). Also, such a description can be seen as a further successful implementation of a non-Hermitian Hamiltonian in a well defined model.

  1. Modeling of dissociation and energy transfer in shock-heated nitrogen flows

    SciTech Connect

    Munafò, A.; Liu, Y.; Panesi, M.

    2015-12-15

    This work addresses the modeling of dissociation and energy transfer processes in shock heated nitrogen flows by means of the maximum entropy linear model and a newly proposed hybrid bin vibrational collisional model. Both models aim at overcoming two of the main limitations of the state of the art non-equilibrium models: (i) the assumption of equilibrium between rotational and translational energy modes of the molecules and (ii) the reliance on the quasi-steady-state distribution for the description of the population of the internal levels. The formulation of the coarse-grained models is based on grouping the energy levels into bins, where the population is assumed to follow a Maxwell-Boltzmann distribution at its own temperature. Different grouping strategies are investigated. Following the maximum entropy principle, the governing equations are obtained by taking the zeroth and first-order moments of the rovibrational master equations. The accuracy of the proposed models is tested against the rovibrational master equation solution for both flow quantities and population distributions. Calculations performed for free-stream velocities ranging from 5 km/s to 10 km/s demonstrate that dissociation can be accurately predicted by using only 2-3 bins. It is also shown that a multi-temperature approach leads to an under-prediction of dissociation, due to the inability of the former to account for the faster excitation of high-lying vibrational states.

  2. Modeling of dissociation and energy transfer in shock-heated nitrogen flows

    NASA Astrophysics Data System (ADS)

    Munafò, A.; Liu, Y.; Panesi, M.

    2015-12-01

    This work addresses the modeling of dissociation and energy transfer processes in shock heated nitrogen flows by means of the maximum entropy linear model and a newly proposed hybrid bin vibrational collisional model. Both models aim at overcoming two of the main limitations of the state of the art non-equilibrium models: (i) the assumption of equilibrium between rotational and translational energy modes of the molecules and (ii) the reliance on the quasi-steady-state distribution for the description of the population of the internal levels. The formulation of the coarse-grained models is based on grouping the energy levels into bins, where the population is assumed to follow a Maxwell-Boltzmann distribution at its own temperature. Different grouping strategies are investigated. Following the maximum entropy principle, the governing equations are obtained by taking the zeroth and first-order moments of the rovibrational master equations. The accuracy of the proposed models is tested against the rovibrational master equation solution for both flow quantities and population distributions. Calculations performed for free-stream velocities ranging from 5 km/s to 10 km/s demonstrate that dissociation can be accurately predicted by using only 2-3 bins. It is also shown that a multi-temperature approach leads to an under-prediction of dissociation, due to the inability of the former to account for the faster excitation of high-lying vibrational states.

  3. Dissociation free-energy profiles of specific and nonspecific DNA-protein complexes.

    PubMed

    Yonetani, Yoshiteru; Kono, Hidetoshi

    2013-06-27

    DNA-binding proteins recognize DNA sequences with at least two different binding modes: specific and nonspecific. Experimental structures of such complexes provide us a static view of the bindings. However, it is difficult to reveal further mechanisms of their target-site search and recognition only from static information because the transition process between the bound and unbound states is not clarified by static information. What is the difference between specific and nonspecific bindings? Here we performed adaptive biasing force molecular dynamics simulations with the specific and nonspecific structures of DNA-Lac repressor complexes to investigate the dissociation process. The resultant free-energy profiles showed that the specific complex has a sharp, deep well consistent with tight binding, whereas the nonspecific complex has a broad, shallow well consistent with loose binding. The difference in the well depth, ~5 kcal/mol, was in fair agreement with the experimentally obtained value and was found to mainly come from the protein conformational difference, particularly in the C-terminal tail. Also, the free-energy profiles were found to be correlated with changes in the number of protein-DNA contacts and that of surface water molecules. The derived protein spatial distributions around the DNA indicate that any large dissociation occurs rarely, regardless of the specific and nonspecific sites. Comparison of the free-energy barrier for sliding [~8.7 kcal/mol; Furini J. Phys. Chem. B 2010, 114, 2238] and that for dissociation (at least ~16 kcal/mol) calculated in this study suggests that sliding is much preferred to dissociation. PMID:23713479

  4. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2016-08-02

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  5. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2014-08-05

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  6. How resonance assists hydrogen bonding interactions: an energy decomposition analysis.

    PubMed

    Beck, John Frederick; Mo, Yirong

    2007-01-15

    Block-localized wave function (BLW) method, which is a variant of the ab initio valence bond (VB) theory, was employed to explore the nature of resonance-assisted hydrogen bonds (RAHBs) and to investigate the mechanism of synergistic interplay between pi delocalization and hydrogen-bonding interactions. We examined the dimers of formic acid, formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxycyclopenta-2,4-dien-1-one. In addition, we studied the interactions in beta-diketone enols with a simplified model, namely the hydrogen bonds of 3-hydroxypropenal with both ethenol and formaldehyde. The intermolecular interaction energies, either with or without the involvement of pi resonance, were decomposed into the Hitler-London energy (DeltaEHL), polarization energy (DeltaEpol), charge transfer energy (DeltaECT), and electron correlation energy (DeltaEcor) terms. This allows for the examination of the character of hydrogen bonds and the impact of pi conjugation on hydrogen bonding interactions. Although it has been proposed that resonance-assisted hydrogen bonds are accompanied with an increasing of covalency character, our analyses showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction, as resonance redistributes the electron density and increases the dipole moments in monomers. The covalency of hydrogen bonds, however, changes very little. This disputes the belief that RAHB is primarily covalent in nature. Accordingly, we recommend the term "resonance-assisted binding (RAB)" instead of "resonance-assisted hydrogen bonding (RHAB)" to highlight the electrostatic, which is a long-range effect, rather than the electron transfer nature of the enhanced stabilization in RAHBs. PMID:17143867

  7. Communication: Towards the binding energy and vibrational red shift of the simplest organic hydrogen bond: Harmonic constraints for methanol dimer

    SciTech Connect

    Heger, Matthias; Suhm, Martin A.; Mata, Ricardo A.

    2014-09-14

    The discrepancy between experimental and harmonically predicted shifts of the OH stretching fundamental of methanol upon hydrogen bonding to a second methanol unit is too large to be blamed mostly on diagonal and off-diagonal anharmonicity corrections. It is shown that a decisive contribution comes from post-MP2 electron correlation effects, which appear not to be captured by any of the popular density functionals. We also identify that the major deficiency is in the description of the donor OH bond. Together with estimates for the electronic and harmonically zero-point corrected dimer binding energies, this work provides essential constraints for a quantitative description of this simple hydrogen bond. The spectroscopic dissociation energy is predicted to be larger than 18 kJ/mol and the harmonic OH-stretching fundamental shifts by about −121 cm{sup −1} upon dimerization, somewhat more than in the anharmonic experiment (−111 cm{sup −1})

  8. Importance of nonresonant scattering in low-energy dissociative electron attachment to molecular hydrogen.

    PubMed

    Rabli, Djamal; Morrison, Michael A

    2006-07-01

    A central premise of nearly all theories of dissociative electron attachment is that this process is resonance driven. Neglect of nonresonant scattering, although appropriate for electron-molecule systems with narrow (long-lived) resonances, is problematic for the e-H2 system, which has one of the broadest known resonances. Using the nonadiabatic phase-matrix method we have found that at energies from threshold to 6 eV contributions from nonresonant scattering to cross sections to dissociative attachment to in its ground vibrational and electronic state exceed 60%. Comparison of theoretical and experimental cross sections argue strongly for further efforts to resolve the considerable remaining discrepancies over this most elementary rearrangement process. PMID:16907375

  9. Energy-dependent branching between fluorescence and singlet exciton dissociation in sexithienyl thin films

    NASA Astrophysics Data System (ADS)

    Dippel, O.; Brandl, V.; Bässler, H.; Danieli, R.; Zamboni, R.; Taliani, C.

    1993-12-01

    The fluorescence yield of thin films of sexithienyl drops rapidly above the S 1←S 0 absorption edge while the yield of photocarrier generation increases simultaneously. This unusual behavior of a molecular solid is interpreted in terms of an energy-dependent branching between fluorescence and dissociation of a singlet excitation into a weakly bound electron—hole pair. This is shown to be a characteristic feature of a disordered system in which the energy levels of both neutral and charged excitations are subject to inhomogeneous broadening. In T6 the latter arises from torsional displacement of the thienylene moities.

  10. Dissociative double-photoionization of butadiene in the 25-45 eV energy range using 3-D multi-coincidence ion momentum imaging spectrometry

    SciTech Connect

    Oghbaie, Shabnam; Gisselbrecht, Mathieu; Laksman, Joakim; Månsson, Erik P.; Sankari, Anna; Sorensen, Stacey L.

    2015-09-21

    Dissociative double-photoionization of butadiene in the 25-45 eV energy range has been studied with tunable synchrotron radiation using full three-dimensional ion momentum imaging. Using ab initio calculations, the electronic states of the molecular dication below 33 eV are identified. The results of the measurement and calculation show that double ionization from π orbitals selectively triggers twisting about the terminal or central C–C bonds. We show that this conformational rearrangement depends upon the dication electronic state, which effectively acts as a gateway for the dissociation reaction pathway. For photon energies above 33 eV, three-body dissociation channels where neutral H-atom evaporation precedes C–C charge-separation in the dication species appear in the correlation map. The fragment angular distributions support a model where the dication species is initially aligned with the molecular backbone parallel to the polarization vector of the light, indicating a high probability for double-ionization to the “gateway states” for molecules with this orientation.

  11. Dissociative double-photoionization of butadiene in the 25-45 eV energy range using 3-D multi-coincidence ion momentum imaging spectrometry.

    PubMed

    Oghbaie, Shabnam; Gisselbrecht, Mathieu; Laksman, Joakim; Månsson, Erik P; Sankari, Anna; Sorensen, Stacey L

    2015-09-21

    Dissociative double-photoionization of butadiene in the 25-45 eV energy range has been studied with tunable synchrotron radiation using full three-dimensional ion momentum imaging. Using ab initio calculations, the electronic states of the molecular dication below 33 eV are identified. The results of the measurement and calculation show that double ionization from π orbitals selectively triggers twisting about the terminal or central C-C bonds. We show that this conformational rearrangement depends upon the dication electronic state, which effectively acts as a gateway for the dissociation reaction pathway. For photon energies above 33 eV, three-body dissociation channels where neutral H-atom evaporation precedes C-C charge-separation in the dication species appear in the correlation map. The fragment angular distributions support a model where the dication species is initially aligned with the molecular backbone parallel to the polarization vector of the light, indicating a high probability for double-ionization to the "gateway states" for molecules with this orientation. PMID:26395707

  12. Dissociative double-photoionization of butadiene in the 25-45 eV energy range using 3-D multi-coincidence ion momentum imaging spectrometry

    NASA Astrophysics Data System (ADS)

    Oghbaie, Shabnam; Gisselbrecht, Mathieu; Laksman, Joakim; Mânsson, Erik P.; Sankari, Anna; Sorensen, Stacey L.

    2015-09-01

    Dissociative double-photoionization of butadiene in the 25-45 eV energy range has been studied with tunable synchrotron radiation using full three-dimensional ion momentum imaging. Using ab initio calculations, the electronic states of the molecular dication below 33 eV are identified. The results of the measurement and calculation show that double ionization from π orbitals selectively triggers twisting about the terminal or central C-C bonds. We show that this conformational rearrangement depends upon the dication electronic state, which effectively acts as a gateway for the dissociation reaction pathway. For photon energies above 33 eV, three-body dissociation channels where neutral H-atom evaporation precedes C-C charge-separation in the dication species appear in the correlation map. The fragment angular distributions support a model where the dication species is initially aligned with the molecular backbone parallel to the polarization vector of the light, indicating a high probability for double-ionization to the "gateway states" for molecules with this orientation.

  13. An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions.

    PubMed

    Bender, Jason D; Valentini, Paolo; Nompelis, Ioannis; Paukku, Yuliya; Varga, Zoltan; Truhlar, Donald G; Schwartzentruber, Thomas; Candler, Graham V

    2015-08-01

    Accurate modeling of high-temperature hypersonic flows in the atmosphere requires consideration of collision-induced dissociation of molecular species and energy transfer between the translational and internal modes of the gas molecules. Here, we describe a study of the N2 + N2⟶N2 + 2N and N2 + N2⟶4N nitrogen dissociation reactions using the quasiclassical trajectory (QCT) method. The simulations used a new potential energy surface for the N4 system; the surface is an improved version of one that was presented previously. In the QCT calculations, initial conditions were determined based on a two-temperature model that approximately separates the translational-rotational temperature from the vibrational temperature of the N2 diatoms. Five values from 8000 K to 30,000 K were considered for each of the two temperatures. Over 2.4 × 10(9) trajectories were calculated. We present results for ensemble-averaged dissociation rate constants as functions of the translational-rotational temperature T and the vibrational temperature T(v). The rate constant depends more strongly on T when T(v) is low, and it depends more strongly on T(v) when T is low. Quasibound reactant states contribute significantly to the rate constants, as do exchange processes at higher temperatures. We discuss two sets of runs in detail: an equilibrium test set in which T = T(v) and a nonequilibrium test set in which T(v) < T. In the equilibrium test set, high-v and moderately-low-j molecules contribute most significantly to the overall dissociation rate, and this state specificity becomes stronger as the temperature decreases. Dissociating trajectories tend to result in a major loss of vibrational energy and a minor loss of rotational energy. In the nonequilibrium test set, as T(v) decreases while T is fixed, higher-j molecules contribute more significantly to the dissociation rate, dissociating trajectories tend to result in a greater rotational energy loss, and the dissociation probability

  14. An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions

    NASA Astrophysics Data System (ADS)

    Bender, Jason D.; Valentini, Paolo; Nompelis, Ioannis; Paukku, Yuliya; Varga, Zoltan; Truhlar, Donald G.; Schwartzentruber, Thomas; Candler, Graham V.

    2015-08-01

    Accurate modeling of high-temperature hypersonic flows in the atmosphere requires consideration of collision-induced dissociation of molecular species and energy transfer between the translational and internal modes of the gas molecules. Here, we describe a study of the N2 + N2⟶N2 + 2N and N2 + N2⟶4N nitrogen dissociation reactions using the quasiclassical trajectory (QCT) method. The simulations used a new potential energy surface for the N4 system; the surface is an improved version of one that was presented previously. In the QCT calculations, initial conditions were determined based on a two-temperature model that approximately separates the translational-rotational temperature from the vibrational temperature of the N2 diatoms. Five values from 8000 K to 30 000 K were considered for each of the two temperatures. Over 2.4 × 109 trajectories were calculated. We present results for ensemble-averaged dissociation rate constants as functions of the translational-rotational temperature T and the vibrational temperature Tv. The rate constant depends more strongly on T when Tv is low, and it depends more strongly on Tv when T is low. Quasibound reactant states contribute significantly to the rate constants, as do exchange processes at higher temperatures. We discuss two sets of runs in detail: an equilibrium test set in which T = Tv and a nonequilibrium test set in which Tv < T. In the equilibrium test set, high-v and moderately-low-j molecules contribute most significantly to the overall dissociation rate, and this state specificity becomes stronger as the temperature decreases. Dissociating trajectories tend to result in a major loss of vibrational energy and a minor loss of rotational energy. In the nonequilibrium test set, as Tv decreases while T is fixed, higher-j molecules contribute more significantly to the dissociation rate, dissociating trajectories tend to result in a greater rotational energy loss, and the dissociation probability's dependence on v

  15. Bond resonance energy and verification of the isolated pentagon rule

    SciTech Connect

    Aihara, Jun Ichi

    1995-04-12

    The isolated pentagon rule (IPR) states that fullerenes with isolated pentagons are kinetically much more stable than their fused pentagon counterparts. This rule can be verified in terms of a graph-theoretically defined bond resonance energy. In general, a {pi} bond shared by two pentagons has a large negative bond resonance energy, thus contributing significantly to the increase in kinetic instability or chemical reactivity of the molecule. The existence of such highly antiaromatic local structures sharply distinguishes IPR-violating fullerenes from isolated-pentagon isomers. {pi}bonds shared by two pentagons are shared by many antiaromatic conjugated circuits but not by relatively small aromatic conjugated circuits. 39 refs., 3 figs., 5 tabs.

  16. Estimating the energy of intramolecular hydrogen bonds in chitosan oligomers

    NASA Astrophysics Data System (ADS)

    Mikhailov, G. P.; Lazarev, V. V.

    2016-07-01

    The effect the number of chitosan monomer units CTS n ( n = 1-5), the protonation of chitosan dimers, and the interaction between CTS n ( n = 1-3) and acetate ions have on the energy of intramolecular hydrogen bonds is investigated by means of QTAIM analysis and solving the vibrational problem within the cluster-continuum model. It is established that the number of H-bonds in CTS n is 2 n - 1 and the total energy of H-bonds grows by ~20 kJ/mol. It is concluded that the hydrogen bonds between CTS and acetate ions play a major role in the stabilization of polyelectrolyte complexes in dilute acetic acid solutions of CTS.

  17. Effective coordination number: A simple indicator of activation energies for NO dissociation on Rh(100) surfaces

    SciTech Connect

    Ghosh, Prasenjit; Pushpa, Raghani; Gironcoli, Stefano de

    2009-12-15

    We have used density-functional theory to compute the activation energy for the dissociation of NO on two physical and two hypothetical systems: unstrained and strained Rh(100) surfaces and monolayers of Rh atoms on strained and unstrained MgO(100) surfaces. We find that the activation energy, relative to the gas phase, is reduced when a monolayer of Rh is placed on MgO, due both to the chemical nature of the substrate and the strain imposed by the substrate. The former effect is the dominant one, though both effects are of the same order of magnitude. We find that both effects are encapsulated in a simple quantity which we term as the 'effective coordination number'(n{sub e}); the activation energy is found to vary linearly with n{sub e}. We have compared the performance of n{sub e} as a predictor of activation energy of NO dissociation on the above-mentioned Rh surfaces with the two well-established indicators, namely, the position of the d-band center and the coadsorption energy of N and O. We find that for the present systems n{sub e} performs as well as the other two indicators.

  18. On the Dissociation of Methyl Orange: Spectrophotometric Investigation in Aqueous Solutions from 10 to 90ºC and Theoretical Evidence for Intramolecular Dihydrogen Bonding

    SciTech Connect

    Boily, Jean F.; Seward, Terry M.

    2005-12-01

    The dissociation of methyl orange was investigated by spectrophotometry in aqueous solutions from 10 to 90°C and by quantum chemical calculations. Combined chemometric and thermodynamic analyses of the spectrophotometric data were used to simultaneously extract the thermodynamic stabilities and the spectrophotometric attributes of the dominant methyl orange species in solutions containing less than 20.00 mmol kg-1 perchloric acid and submicromolal concentrations of methyl orange. The analyses revealed the presence of only one monomeric deprotonated and one monomeric protonated species. The spectra did not reveal any evidence for the presence of tautomeric equilibria between the protonated azo and ammonium species in the experimental range studied. Thermodynamic analyses of the temperature dependent dissociation constants showed the reactions to be endothermic and enthalpy driven reaction with increasing acidity and increasing temperature. All molar absorption coefficients in the 275-375 nm range can be adequately reproduced in the 10-90°C range with a set of Gauss-Lorentz parameters and used to predict the absorption spectra for any desired condition. The dominant features of the spectrophotometric attributes of the methyl orange species could also be retrieved in Time Dependent-Density Functional Theory (TD-DFT) calculations. Topological analyses of the electron density also revealed the formation of a dihydrogen bond between the azo proton and an adjacent phenyl ring hydridic hydrogen which increases the stability of the azo molecules relative to the ammonium molecule.

  19. Photodissociation of water in the first absorption band: A prototype for dissociation on a repulsive potential energy surface

    SciTech Connect

    Engel, V.; Staemmler, V.; Vander Wal, R.L.; Crim, F.F.

    1992-04-16

    The photodissociation of water in the first absorption band, H{sub 2}O(X) + {Dirac_h}{omega} {yields} H{sub 2}O(A{sup 1}B{sub 1}) {yields} H({sup 2}S) + OH({sup 2}II), is a prototype of fast and direct bond rupture in an excited electronic state. It has been investigated from several perspectives-absorption spectrum, final state distributions of the products, dissociation of vibrationally excited states, isotope effects, and emission spectroscopy. The availability of a calculated potential energy surface for the A state, including all three internal degrees of freedom, allows comparison of all experimental data with the results of rigorous quantum mechanical calculations without any fitting parameters or simplifying model assumptions. As the result of the confluence of ab initio electronic structure theory, dynamical theory, and experiment, water is probably the best studied and best understood polyatomic photodissociation system. In this article we review the joint experimental and theoretical advances which make water a unique system for studying molecular dynamics in excited electronic states. We focus our attention especially on the interrelation between the various perspectives and the correlation with the characteristic features of the upper-state potential energy surface. 80 refs., 14 figs.

  20. Precision Measurement of the Ionization and Dissociation Energies of H_2, HD and D_2

    NASA Astrophysics Data System (ADS)

    Sprecher, Daniel; Liu, Jinjun; Merkt, Frédéric; Jungen, Christian; Ubachs, Wim

    2010-06-01

    The ionization and dissociation energies of H_2, HD and D_2 are benchmark quantities in molecular quantum mechanics. Comparison between experimental and theoretical values for these quantities has a long history starting with the early measurement of Beutler and the calculations of James and Coolidge. Transition wave numbers from the EF ^1Σ g^+ (v=0,N=0,1) state to selected np Rydberg states (n ≈ 60) below the X+ ^2Σ^+u (v^+=0,N^+=0,1)} ionization threshold have been measured in H_2, HD and D_2 at a precision better than 10 MHz (0.0003 cm-1). Combining the results with previous experimental and theoretical data for other energy level intervals, the ionization and dissociation energies of H_2, HD and D_2 could be determined at an absolute accuracy of better than 20 MHz. These new results represent an improvement over previous experimental results by more than one order of magnitude and the most precise values of dissociation and ionization energies measured to date in a molecular system. The results therefore offer the opportunity of a comparison with theoretical values. In particular they will be compared to the latest ab initio calculations which include nonadiabatic, relativistic and radiative effects. The comparison indicates that relativistic and radiative quantum electrodynamics corrections of order up to α^4 are needed to account for the experimental results. H. Beutler, Z. Phys. Chem. 29, 315 (1935) H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933) J. Liu, E. J. Salumbides, U. Hollenstein, J. C. J. Koelemeij, K. S. E. Eikema, W. Ubachs, and F. Merkt, J. Chem. Phys. 130, 174306 (2009) J. Liu, D. Sprecher, Ch. Jungen, W. Ubachs, and F. Merkt, submitted to J. Chem. Phys. K. Piszczatowski, G. Łach, M. Przybytek, J. Komasa, K. Pachucki, and B. Jeziorski, J. Chem. Theory Comput. 5, 3039 (2009)

  1. The Chemical Bond in C2.

    PubMed

    Hermann, Markus; Frenking, Gernot

    2016-03-14

    Quantum chemical calculations using the complete active space of the valence orbitals have been carried out for Hn CCHn (n=0-3) and N2 . The quadratic force constants and the stretching potentials of Hn CCHn have been calculated at the CASSCF/cc-pVTZ level. The bond dissociation energies of the C-C bonds of C2 and HC≡CH were computed using explicitly correlated CASPT2-F12/cc-pVTZ-F12 wave functions. The bond dissociation energies and the force constants suggest that C2 has a weaker C-C bond than acetylene. The analysis of the CASSCF wavefunctions in conjunction with the effective bond orders of the multiple bonds shows that there are four bonding components in C2 , while there are only three in acetylene and in N2 . The bonding components in C2 consist of two weakly bonding σ bonds and two electron-sharing π bonds. The bonding situation in C2 can be described with the σ bonds in Be2 that are enforced by two π bonds. There is no single Lewis structure that adequately depicts the bonding situation in C2 . The assignment of quadruple bonding in C2 is misleading, because the bond is weaker than the triple bond in HC≡CH. PMID:26756311

  2. Potential energy curves via double electron-attachment calculations: Dissociation of alkali metal dimers

    NASA Astrophysics Data System (ADS)

    Musiał, Monika; Kowalska-Szojda, Katarzyna; Lyakh, Dmitry I.; Bartlett, Rodney J.

    2013-05-01

    The recently developed method [M. Musiał, J. Chem. Phys. 136, 134111 (2012), 10.1063/1.3700438] to study double electron attached states has been applied to the description of the ground and excited state potential energy curves of the alkali metal dimers. The method is based on the multireference coupled cluster scheme formulated within the Fock space formalism for the (2,0) sector. Due to the use of the efficient intermediate Hamiltonian formulation, the approach is free from the intruder states problem. The description of the neutral alkali metal dimers is accomplished via attaching two electrons to the corresponding doubly ionized system. This way is particularly advantageous when a closed shell molecule dissociates into open shell subunits while its doubly positive cation generates the closed shell fragments. In the current work, we generate the potential energy curves for the ground and multiple excited states of the Li2 and Na2 molecules. In all cases the potential energy curves are smooth for the entire range of interatomic distances (from the equilibrium point to the dissociation limit). Based on the calculated potential energy curves, we are able to compute spectroscopic parameters of the systems studied.

  3. Structure, energetics, and bonding of novel potential high energy density materials Rh2(N5)4: A DFT study

    NASA Astrophysics Data System (ADS)

    Tang, Lihong; Bao, Shuangyou; Peng, Jinhui; Li, Kai; Ning, Ping; Guo, Huibin; Zhu, Tingting; Gu, Junjie; Li, Qianshu

    2015-10-01

    Theoretical studies examining a series of binuclear transition metal pentazolides Rh2(N5)4 predict paddle wheel type structures with very short metal-metal distances. Natural bonding orbital analysis indicated that the bonding between the metal atom and the five-membered ring is predominantly ionic for Rh2(N5)4 species, and a high-order metal-metal multiple bonding exists between the two metal atoms. In addition, the presence of the delocalized π orbital plays an important role in the stabilization of Rh2(N5)4. Nucleus independent chemical shift values confirm that the planar N5- exhibits aromaticity. The dissociation energies into mononuclear fragments are predicted for Rh2(N5)4.

  4. Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking in small water and HCl clusters.

    PubMed

    Samanta, Amit K; Czakó, Gábor; Wang, Yimin; Mancini, John S; Bowman, Joel M; Reisler, Hanna

    2014-08-19

    Water is one of the most pervasive molecules on earth and other planetary bodies; it is the molecule that is searched for as the presumptive precursor to extraterrestrial life. It is also the paradigm substance illustrating ubiquitous hydrogen bonding (H-bonding) in the gas phase, liquids, crystals, and amorphous solids. Moreover, H-bonding with other molecules and between different molecules is of the utmost importance in chemistry and biology. It is no wonder, then, that for nearly a century theoreticians and experimentalists have tried to understand all aspects of H-bonding and its influence on reactivity. It is somewhat surprising, therefore, that several fundamental aspects of H-bonding that are particularly important for benchmarking theoretical models have remained unexplored experimentally. For example, even the binding strength between two gas-phase water molecules has never been determined with sufficient accuracy for comparison with high-level electronic structure calculations. Likewise, the effect of cooperativity (nonadditivity) in small H-bonded networks is not known with sufficient accuracy. An even greater challenge for both theory and experiment is the description of the dissociation dynamics of H-bonded small clusters upon acquiring vibrational excitation. This is because of the long lifetimes of many clusters, which requires running classical trajectories for many nanoseconds to achieve dissociation. In this Account, we describe recent progress and ongoing research that demonstrates how the combined and complementary efforts of theory and experiment are enlisted to determine bond dissociation energies (D0) of small dimers and cyclic trimers of water and HCl with unprecedented accuracy, describe dissociation dynamics, and assess the effects of cooperativity. The experimental techniques rely on IR excitation of H-bonded X-H stretch vibrations, measuring velocity distributions of fragments in specific rovibrational states, and determining product

  5. Photodissociation of CH2. I - Potential energy surfaces of the dissociation into CH and H

    NASA Technical Reports Server (NTRS)

    Bearda, Robert A.; Van Hemert, Marc C.; Van Dishoeck, Ewine F.

    1992-01-01

    The possible photodissociation pathways of the CH2 radical are studied using ab initio multireference configuration-interaction methods, and accurate photodissociation cross sections and branching ratios for the production of CH + H and C + H2 are obtained. Potential energy surfaces were calculated using the Wuppertal-Bonn self-consistent field plus a multireference single and double-excitation configuration interaction package of programs. Two-dimensional potential energy surfaces of the ten lowest triplet states correlating with the seven lowest states of CH were calculated as functions of bond angle and one C-H bond distance, keeping the other C-H bond distance fixed at the equilibrium CH2 value.

  6. Storing Renewable Energy in Chemical Bonds

    ScienceCinema

    Helm, Monte; Bullock, Morris

    2014-06-13

    With nearly 7 billion people, the world's population is demanding more electricity every year. Improved technologies are bringing wind and solar power to our electrical grid. However, wind turbines and solar panels only work when the wind blows or the sun shines. PNNL scientists discuss catalysis approaches for storing and releasing energy on demand.

  7. Storing Renewable Energy in Chemical Bonds

    SciTech Connect

    Helm, Monte; Bullock, Morris

    2013-03-27

    With nearly 7 billion people, the world's population is demanding more electricity every year. Improved technologies are bringing wind and solar power to our electrical grid. However, wind turbines and solar panels only work when the wind blows or the sun shines. PNNL scientists discuss catalysis approaches for storing and releasing energy on demand.

  8. How Many Water Molecules Does it Take to Dissociate HCl?

    PubMed

    Vargas-Caamal, Alba; Cabellos, Jose Luis; Ortiz-Chi, Filiberto; Rzepa, Henry S; Restrepo, Albeiro; Merino, Gabriel

    2016-02-18

    The potential energy surfaces of the HCl(H2O)n (n is the number of water molecules) clusters are systematically explored using density functional theory and high-level ab initio computations. On the basis of electronic energies, the number of water molecules needed for HCl dissociation is four as reported by some experimental groups. However, this number is five owing to the inclusion of entropic factors. Wiberg bond indices are calculated and analyzed, and the results provide a quadratic correlation and classification of clusters according to the nondissociated, partially dissociated, and fully dissociated character of the H-Cl bond. Our computations show that if temperature is not controlled during the experiment, the values obtained for the dipole moment (or for any measurable property) are susceptible to change, providing a different picture of the number of water molecules needed for HCl dissociation in a nanoscopic droplet. PMID:26774026

  9. Collision-Induced Dissociation of Fatty Acid [M - 2H + Na]- Ions: Charge-Directed Fragmentation and Assignment of Double Bond Position

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Altvater, Jens; Gallagher, Thomas J.; Nette, Geoffrey W.

    2014-08-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] - ions. In the current manuscript, the CID behavior of these [M - 2H + Na] - ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF]- ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na]- ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na]- ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆9,12,1518:3, ∆6,9,1218:3, and ∆5,8,1118:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  10. Effects of density functionals and dispersion interactions on geometries, bond energies and harmonic frequencies of Etbnd UX3 (E = N, P, CH; X = H, F, Cl)

    NASA Astrophysics Data System (ADS)

    Pandey, Krishna Kumar; Patidar, Pankaj; Patidar, Sunil Kumar; Vishwakarma, Ravi

    2014-12-01

    Quantum-chemical calculations have been performed to evaluate the geometries, bonding nature and harmonic frequencies of the compounds [Etbnd UX3] at DFT, DFT-D3, DFT-D3(BJ) and DFT-dDSc levels using different density functionals BP86, BLYP, PBE, revPBE, PW91, TPSS and M06-L. The stretching frequency of Utbnd N bond in [Ntbnd UF3] calculated with DFT/BLYP closely resembles with the experimental value. The performance of different density functionals for accurate Utbnd N vibrational frequencies follows the order BLYP > revPBE > BP86 > PW91 > TPSS > PBE > M06-L. The BLYP functional gives accurate value of the Utbnd E bond distances. The uranium atom in the studied compounds [Etbnd UX3] is positively charged. Upon going from [Etbnd UF3] to [Etbnd UCl3], the partial Hirshfeld charge on uranium atom decreases because of the lower electronegativity of chlorine compared to flourine. The Gopinathan-Jug bond order for Utbnd E bonds ranges from 2.90 to 3.29. The Utbnd E bond dissociation energies vary with different density functionals as M06-L < TPSS < BLYP < revPBE < BP86 < PBE ≈ PW91. The orbital interactions ΔEorb, in all studied compounds [Etbnd UX3] are larger than the electrostatic interaction ΔEelstat, which means the Utbnd N bonds in these compound have greater degree of covalent character (in the range 63.8-77.2%). The Usbnd E σ-bonding interaction is the dominant bonding interaction in the nitride and methylidyne complexes while it is weaker in [Ptbnd UX3]. The dispersion energy contributions to the total bond dissociation energies are rather small. Compared to the Grimme's D3(BJ) corrections, the Corminboeuf's dispersion corrections are larger with metaGGA functionals (TPSS, M06-L) while smaller with GGA functionals.

  11. Molecular dynamics study on the free energy profile for dissociation of ADP from N-terminal domain of Hsp90

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kazutomo; Saito, Hiroaki; Okazaki, Susumu; Nagao, Hidemi

    2013-11-01

    The free energy profile for dissociation of ADP from Hsp90 was calculated as a function of the distance r between the centers of mass of Hsp90 and ADP by using molecular dynamics simulations and the thermodynamic integration method. The free energy profile is defined as the difference from a reference state. We found that the free energy reaches a minimum at r = 0.8 nm and that the mean force at r = 1.0 nm was considerably difference-dependent on the trajectories. Our results suggest that Met98 blocks the dissociation pathway of ADP at r = 1.0 nm.

  12. Performance of an integrated approach for prediction of bond dissociation enthalpies of phenols extracted from ginger and tea

    NASA Astrophysics Data System (ADS)

    Nam, Pham Cam; Chandra, Asit K.; Nguyen, Minh Tho

    2013-01-01

    Integration of the (RO)B3LYP/6-311++G(2df,2p) with the PM6 method into a two-layer ONIOM is found to produce reasonably accurate BDE(O-H)s of phenolic compounds. The chosen ONIOM model contains only two atoms of the breaking bond as the core zone and is able to provide reliable evaluation for BDE(O-H) for phenols and tocopherol. Deviation of calculated values from experiment is ±(1-2) kcal/mol. BDE(O-H) of several curcuminoids and flavanoids extracted from ginger and tea are computed using the proposed model. The BDE(O-H) values of enol curcumin and epigallocatechin gallate are predicted to be 83.3 ± 2.0 and 76.0 ± 2.0 kcal/mol, respectively.

  13. Compact two-electron wave function for bond dissociation and Van der Waals interactions: A natural amplitude assessment

    SciTech Connect

    Giesbertz, Klaas J. H.; Leeuwen, Robert van

    2014-05-14

    Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r{sub 12}) depending on the interelectronic distance r{sub 12}. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r{sub 12}) needs to diverge for large r{sub 12} at large internuclear distances while for shorter bond distances it increases as a function of r{sub 12} to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.

  14. Energy-dependent dissociation of ATP from high affinity catalytic sites of beef heart mitochondrial adenosine triphosphatase

    SciTech Connect

    Penefsky, H.S.

    1985-11-05

    Incubation of (gamma-TSP)ATP with a molar excess of the membrane-bound form of mitochondrial ATPase (F1) results in binding of the bulk of the radioactive nucleotide in high affinity catalytic sites (Ka = 10(12) M-1). Subsequent initiation of respiration by addition of succinate or NADH is accompanied by a profound decrease in the affinity for ATP. About one-third of the bound radioactive ATP appears to dissociate, that is, the (gamma-TSP)ATP becomes accessible to hexokinase. The NADH-stimulated dissociation of (gamma-TSP)ATP is energy-dependent since the stimulation is inhibited by uncouplers of oxidative phosphorylation and is prevented by respiratory chain inhibitors. The rate of the energy-dependent dissociation of ATP that occurs in the presence of NADH, ADP, and Pi is commensurate with the measured initial rate of ATP synthesis in NADH-supported oxidative phosphorylation catalyzed by the same submitochondrial particles. Thus, the rate of dissociation of ATP from the high affinity catalytic site of submitochondrial particles meets the criterion of kinetic competency under the conditions of oxidative phosphorylation. These experiments provide evidence in support of the argument that energy conserved during the oxidation of substrates by the respiratory chain can be utilized to reduce the very tight binding of product ATP in high affinity catalytic sites and to promote dissociation of the nucleotide.

  15. Heats of Formation and Bond Energies in Group III Compounds

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Allendorf, Mark D.; Melius, Carl F.; Arnold, James O. (Technical Monitor)

    1999-01-01

    We present heats of formation and bond energies for Group-III compounds obtained from calculations of molecular ground-state I electronic energies. Data for compounds of the form MXn are presented, where M = B, Al, Ga, and In, X = He H, Cl, and CH3, and n = 1-3. Energies for the B, Al, and Ga compounds are obtained from G2 predictions, while those for the In compounds are obtained from CCSD(T)/CBS calculations; these are the most accurate calculations for indium-containing compounds published to date. In most cases, the calculated thermochemistry is in good agreement with published values derived from experiments for those species that have well-established heats of formation. Bond energies obtained from the heats of formation follow the expected trend (Cl much greater than CH3 approx. H). However, the CH3M-(CH3)2 bond energies obtained for trimethylgallium and trimethylindium are considerably stronger (greater than 15 kcal/mol) than currently accepted values.

  16. Studies of two-center three-electron S...S bonds in [n-Pr{sub 2}S...Sn-Pr{sub 2}]{sup +} and [i-Pr{sub 2}S...Si-Pr{sub 2}]{sup +}: Thermochemistry of adduct formation and MS/MS metastable and collision-induced dissociation spectra of the adducts

    SciTech Connect

    James, M.A.; Illies, A.J.

    1996-09-26

    Gas-phase ion-molecule association reactions of n-propyl sulfide radical cation ([n-Pr{sub 2}S]{sup +}) with n-propyl sulfide (n-Pr{sub 2}S) were studied by equilibrium methods in CO{sub 2} bath gas to investigate the bond energy of the 2c-3e bond. The 2c-3e S...S bond enthalpy in [n-Pr{sub 2}S...Sn-Pr{sub 2}]{sup +} was determined to be 119 kJ/mol at 507 K. This results in a scaled S...S bond energy of 123 kJ/mol. The S...S bond enthalpy in the i-propyl sulfide dimer cation ([i-Pr{sub 2}S...Si-Pr{sub 2}]{sup +}) could not be determined due to a fragmentation reaction, the loss of an i-propyl group. MS/MS metastable and collision-induced dissociation experiments were carried out to determine metastable fragmentation pathways and to aid in structure analysis. The results are consistent with association products containing 2c-3e bonds; statistical unimolecular metastable fragmentation of the association adduct, [i-Pr{sub 2}S...Si-Pr{sub 2}]{sup +}, confirms the loss of the i-propyl group, which prevented the equilibrium experiments. 21 refs., 11 figs., 1 tab.

  17. Model analysis of ground-state dissociation energies and equilibrium separations in alkali-metal diatomic compounds

    NASA Astrophysics Data System (ADS)

    Lombardi, Erminio; Jansen, Laurens

    1986-05-01

    Ground-state dissociation energies De and equilibrium distances Re for the series of homonuclear alkali-metal diatomic molecules Li2,Na2,..., as well as those for six heteronuclear alkali-metal diatomic compounds, are evaluated on the basis of a simple valence-bond model. Each alkali-metal atom in a diatomic molecule is characterized by two quantities: a Gaussian parameter βe of the valence-electron function and a valence-to-core ``relative-size'' parameter γ≡(βc/βe)2, with βc the Gaussian parameter for the core-electron charge distribution. For the homonuclear diatomic molecules, accurate results are obtained with a 2s Gaussian valence function (r2-a2)G orthogonalized to the core. For each homonuclear diatomic molecule there exists an optimal (βe,γ) set yielding values of De and Re in practically quantitative agreement with experiment. The quantities βe and γ exhibit the expected physical behavior over the series in that βe decreases from Li2 to Cs2, and γ is highest for the lightest diatomic molecule Li2. The compounds K2, Rb2, and Cs2 are found to be ``Heitler-London'' molecules to within 5% of their binding energies. An approximate, similar, analysis of six heteronuclear diatomic compounds yields close agreement with experiment for LiNa and RbCs, whereas with the other four compounds (LiK, NaK, NaRb, and NaCs) the agreement with experimental De and Re is to within at most 5%. Also RbCs is a ``Heitler-London'' molecule to a very good approximation.

  18. Dissociation of acetaldehyde in intense laser field: Coulomb explosion or field-assisted dissociation?

    NASA Astrophysics Data System (ADS)

    Elshakre, Mohamed E.; Gao, Lirong; Tang, Xiaoping; Wang, Sufan; Shu, Yafei; Kong, Fanao

    2003-09-01

    Dissociation of acetaldehyde in moderate strong laser field of 1013-1014W/cm2 was investigated. Singly charged parent ion CH3CHO+ and fragmental ions CH3+, CHO+, C2H4+, O+, CH2CHO+, and H+ were produced by 800 nm laser of 100 fs pulse duration and recorded by time-of-flight mass spectrometer. The CH3+ fragment further dissociated to CH2+, CH+, and C+ ions at higher intensity. Ab initio calculated results show that the singly-, doubly-, and triply charged parent ions are stable. So, the dissociation mechanism was not due to Coulomb explosion of multicharged ion. A field-assisted dissociation (FAD) theory, which assumes that only one bond undergoes dissociation while the rest of the molecular geometry stays unchanged, was employed to treat the dissociation dynamics. Accordingly, the dressed potential energy surfaces of the ground state for the parent and the fragment ions were calculated. Corresponding quasiclassical trajectory calculations show that the bond ruptures take place in the order of C-C, C-O, and C-H, agreeing with the observation. The observed angular dependence and charge distribution of the product ions can also be interpreted by the FAD theory.

  19. How Well Can New-Generation Density Functionals Describe the Energetics of Bond-Dissociation Reactions Producing Radicals?

    SciTech Connect

    Zhao, Yan; Truhlar, Donald G.

    2008-02-14

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The performance of various density functionals has been tested for three sets of reaction energies involving radicals. It is shown that two recently designed functionals, M05-2X and M06-2X, provide the best performance. These functionals provide useful and affordable methods for future mechanistic studies involving organic radicals.

  20. Scapulothoracic dissociation: An emerging high-energy trauma in medical literature

    PubMed Central

    McCague, Andrew; Schulte, Adam; Davis, Joseph Vivian

    2012-01-01

    Scapulothoracic dissociation (STD) is a devastating consequence of high-energy trauma sustained by the shoulder girdle that can easily result in rapid mortality. Since described by Oreck et al. in 1984, STD has been reported in a handful of journals and individual case series, though is still considered a rare occurrence in the context of shoulder injuries. In this report, we examine the case of a 25-year-old female involved in a high-speed rollover auto accident. Unique to this case was the discovery of a completely transected axillary artery and vein with intracorporeal bleeding and complete avulsion of the ipsilateral brachial plexus requiring immediate ligation of the vessels followed by interval above-elbow-amputation and later glenohumeral disarticulation. PMID:23248512

  1. The role of cold carriers and the multiple-carrier process of Si-H bond dissociation for hot-carrier degradation in n- and p-channel LDMOS devices

    NASA Astrophysics Data System (ADS)

    Sharma, Prateek; Tyaginov, Stanislav; Jech, Markus; Wimmer, Yannick; Rudolf, Florian; Enichlmair, Hubert; Park, Jong-Mun; Ceric, Hajdin; Grasser, Tibor

    2016-01-01

    We apply our hot-carrier degradation (HCD) model, which uses the information about the carrier energy distribution, to represent HCD data measured in n- and p-channel LDMOS transistors. In the first version of our model we use the spherical harmonics expansion approach to solve the Boltzmann transport equation (BTE), while in the second version we employ the drift-diffusion scheme. In the latter case the carrier energy distribution function is approximated by an analytic expression with parameters found using the drift-diffusion scheme. The model, which has already been verified with nLDMOS transistors, is used to represent the carrier distribution functions, interface state density profiles, and changes of the drain currents vs. stress time in pLDMOS transistor. Particular attention is paid to study the role of the cold fraction of the carrier ensemble. We check the validity of the model by neglecting the effect of cold carriers in HCD modeling in the case of nLDMOS devices stressed at high voltages. In our model, cold carriers are represented by the corresponding term in the analytic formula for the carrier distribution function as well as by the multiple-carrier process of the Si-H bond dissociation. We show that even in high-voltage devices stressed at high drain voltages the thermalized carriers still have a substantial contribution to HCD.

  2. Energy-based analysis of biochemical cycles using bond graphs

    PubMed Central

    Gawthrop, Peter J.; Crampin, Edmund J.

    2014-01-01

    Thermodynamic aspects of chemical reactions have a long history in the physical chemistry literature. In particular, biochemical cycles require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems, where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on the early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks. PMID:25383030

  3. Argon hydrochloride, Ar.HCl, bond energy by infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Miziolek, A. W.; Pimentel, G. C.

    1976-01-01

    The infrared absorption of argon (200 to 760 torr) and hydrogen chloride (2 to 6 torr) mixtures is reexamined in the missing Q branch region (spectral region between 2860 and 3010 wavelength/cm) at temperatures ranging from 195 to 298 K. The temperature dependence of two absorption features of the argon hydrogen chloride complex, at 2887 and 2879 wavelength/cm, leads to a bond energy estimate that depends on the assumptions made about the internal degrees of freedom of the complex. It is shown that agreement with experiment can be reached for well depths near 1.2 kcal/mole. This result is relatively insensitive to the choice of the vibrational frequencies and anharmonicities, but does depend on the extent to which the energy level manifolds are truncated to avoid molecular excitation in excess of the bond energy. The bond energy is found to deviate from the commonly accepted value of 0.4 kcal/mole. Possible causes for the discrepancy are considered.

  4. Energy-based analysis of biochemical cycles using bond graphs.

    PubMed

    Gawthrop, Peter J; Crampin, Edmund J

    2014-11-01

    Thermodynamic aspects of chemical reactions have a long history in the physical chemistry literature. In particular, biochemical cycles require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems, where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on the early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks. PMID:25383030

  5. Low energy electron induced cytosine base release in 2′-deoxycytidine-3′-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    SciTech Connect

    Bhaskaran, Renjith; Sarma, Manabendra

    2014-09-14

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2′-deoxycytidine-3′-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3′ C–O bond cleavage from the lowest π{sup *} shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the π{sup *} orbital of the base to the σ{sup *} orbital of the glycosidic N–C bond. In addition, the metastable state formed after impinging LEE (0–1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N–C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ∼35–55 fs. Comparison of salient features of the two dissociation events, i.e., 3′ C–O single strand break and glycosidic N–C bond cleavage in 3′-dCMPH molecule are also provided.

  6. Low energy electron induced cytosine base release in 2'-deoxycytidine-3'-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Renjith; Sarma, Manabendra

    2014-09-01

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2'-deoxycytidine-3'-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3' C-O bond cleavage from the lowest π* shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the π* orbital of the base to the σ* orbital of the glycosidic N-C bond. In addition, the metastable state formed after impinging LEE (0-1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N-C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ˜35-55 fs. Comparison of salient features of the two dissociation events, i.e., 3' C-O single strand break and glycosidic N-C bond cleavage in 3'-dCMPH molecule are also provided.

  7. Dissociation energies of Ag-RG (RG = Ar, Kr, Xe) and AgO molecules from velocity map imaging studies.

    PubMed

    Cooper, Graham A; Kartouzian, Aras; Gentleman, Alexander S; Iskra, Andreas; van Wijk, Robert; Mackenzie, Stuart R

    2015-09-28

    The near ultraviolet photodissociation dynamics of silver atom-rare gas dimers have been studied by velocity map imaging. Ag-RG (RG = Ar, Kr, Xe) species generated by laser ablation are excited in the region of the C ((2)Σ(+))←X ((2)Σ(+)) continuum leading to direct, near-threshold dissociation generating Ag* ((2)P3/2) + RG ((1)S0) products. Images recorded at excitation wavelengths throughout the C ((2)Σ(+))←X ((2)Σ(+)) continuum, coupled with known atomic energy levels, permit determination of the ground X ((2)Σ(+)) state dissociation energies of 85.9 ± 23.4 cm(-1) (Ag-Ar), 149.3 ± 22.4 cm(-1) (Ag-Kr), and 256.3 ± 16.0 cm(-1) (Ag-Xe). Three additional photolysis processes, each yielding Ag atom photoproducts, are observed in the same spectral region. Two of these are markedly enhanced in intensity upon seeding the molecular beam with nitrous oxide, and are assigned to photodissociation of AgO at the two-photon level. These features yield an improved ground state dissociation energy for AgO of 15 965 ± 81 cm(-1), which is in good agreement with high level calculations. The third process results in Ag atom fragments whose kinetic energy shows anomalously weak photon energy dependence and is assigned tentatively to dissociative ionization of the silver dimer Ag2. PMID:26429006

  8. Analysis of liquid metal embrittlement from a bond energy viewpoint

    NASA Technical Reports Server (NTRS)

    Kelley, M. J.; Stoloff, N. S.

    1975-01-01

    Absorption induced embrittlement of solid metals by certain liquid metals is analyzed through an Engel-Brewer calculation of the solid-liquid interaction energy, and of the effect of the latter in reducing fracture surface energy. The reduction in fracture surface energy is estimated by comparison of the electronic contribution to the solid-liquid interaction energy with solid-solid bond energy for some 40 liquid-solid couples. Regular solution theory is used to estimate mutual solubility as the relative difference in parameter values. Embrittlement can be predicted by using reduction in fracture surface energy and solubility parameter difference as critical variables. The effect of solute additions to the liquid on the degree of embrittlement is interpreted via the same two variables; the principal effect of solutes is to modify solubility relationships at the solid-liquid interface.

  9. Internal Energy Exchange and Dissociation Probability in DSMC Molecular Collision Models

    NASA Astrophysics Data System (ADS)

    Chabut, E.

    2008-12-01

    The present work is related to the gas—gas collision models used in DSMC. It especially concerns the relaxation rates and the reactivity for diatomic molecules (but most of the models can be extended to polyatomic molecules). The Larsen-Borgnakke [1] model is often used in DSMC to describe the way of redistribution of the energies during collisions. A lot of information is provided by literature about links existing between macroscopic collision number, the fraction of inelastic collisions and the probability for a molecule to exchange energy during a collision in a specific mode. We then expose the main relations able to reproduce macroscopic relaxation rates. During collisions, the energy brought by the collision partners can be sufficient to generate a chemical reaction. The problematic is at first to determine an energetic condition for a possible reaction: which energy we have to consider and which threshold we have to compare with; and in second how to calculate the reaction probabilities. Then we often use the experimental results which put in light some phenomena (vibration—dissociation coupling for example) to built a qualitative basis for the models and, in a quantitative point of view, we determine probabilities such they can reproduce the macroscopic experimental rates reflected by the modified Arrhenius law. Some of the different chemical models used in DSMC will be exposed as the "TCE" [2]-3], "EAE" [3], "ME" [4] and "VFD" [5] models.

  10. Classification of zero-energy resonances by dissociation of Feshbach molecules

    SciTech Connect

    Hanna, Thomas M.; Goral, Krzysztof; Koehler, Thorsten; Witkowska, Emilia

    2006-08-15

    We study the dissociation of Feshbach molecules by a magnetic field sweep across a zero-energy resonance. In the limit of an instantaneous magnetic field change, the distribution of atomic kinetic energy can have a peak indicating dominance of the molecular closed-channel spin configuration over the entrance channel. The extent of this dominance influences physical properties such as stability with respect to collisions, and so the readily measurable presence or absence of the corresponding peak provides a practical method of classifying zero-energy resonances. Currently achievable ramp speeds, e.g., those demonstrated by Duerr et al. [Phys. Rev. A 70, 031601 (2005)], are fast enough to provide magnetic field changes that may be interpreted as instantaneous. We study the transition from sudden magnetic field changes to asymptotically wide, linear ramps. In the latter limit, the predicted form of the atomic kinetic energy distribution is independent of the specific implementation of the two-body physics, provided that the near-resonant scattering properties are properly accounted for.

  11. IR Spectra and Bond Energies Computed Using DFT

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles; Andrews, Lester; Arnold, James (Technical Monitor)

    2000-01-01

    The combination of density functional theory (DFT) frequencies and infrared (IR) intensities and experimental spectra is a very powerful tool in the identification of molecules and ions. The computed and measured isotopic ratios make the identification much more secure than frequencies and intensities alone. This will be illustrated using several examples, such as Mn(CO)n and Mn(CO)n-. The accuracy of DFT metal-ligand bond energies will also be discussed.

  12. Accurate Bond Energies of Hydrocarbons from Complete Basis Set Extrapolated Multi-Reference Singles and Doubles Configuration Interaction

    SciTech Connect

    Oyeyemi, Victor B.; Pavone, Michele; Carter, Emily A.

    2011-11-03

    Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: (1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; (2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and (3) DFT-B3LYP calculations of minimumenergy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of C*C and C*H bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules.

  13. Structures, energies, and bonding in the water heptamer.

    PubMed

    Acelas, Nancy; Hincapié, Gina; Guerra, Doris; David, Jorge; Restrepo, Albeiro

    2013-07-28

    In this paper we report the geometries and properties of 38 distinct geometrical motifs located on the B3LYP/6-31+G(d), MP2/6-311++G(d, p) potential energy surfaces of the water heptamer. Binding energies of up to 45 kcal/mol are calculated. All motifs fall within 10 kcal/mol of the most stable conformation, with at least 13 structural patterns located no more than 3 kcal/mol above, leading to a very complex potential energy surface, populated by a multitude of motifs each one allowing large numbers of conformations. Cluster stability does not seem to be correlated with the number of hydrogen bonds. Compact structures are energetically favored by electronic energies with zero-point energy corrections, while more open structures are preferred when temperature and entropy are accounted for. The molecular interactions holding the clusters as discrete units lead to large binding energies but are not strong enough to cause significant changes in the geometries of the interacting monomers. Our results indicate that bonding in the water heptamers can be considered as largely non-shared interactions with contributions from intermediate character of increasing covalency. PMID:23901983

  14. Double imaging photoelectron photoion coincidence sheds new light on the dissociation of energy-selected CH3Cl(+) ions.

    PubMed

    Tang, Xiaofeng; Lin, Xiaoxiao; Zhang, Weijun; Garcia, Gustavo A; Nahon, Laurent

    2016-09-14

    The vacuum ultraviolet (VUV) photoionization and dissociative photoionization of CH3Cl in the energy range of 11-17 eV have been investigated in detail by combining synchrotron radiation and double imaging photoelectron photoion coincidences (i(2)PEPICO). Three low-lying electronic states of the CH3Cl(+) molecular ion, X(2)E, A(2)A1 and B(2)E, were prepared and analyzed. The appearance energies of the energetically accessible fragment ions, CH2Cl(+), CHCl(+), CH3(+) and CH2(+), have been obtained from their respective mass-selected threshold photoelectron spectra (TPES) or photoionization efficiency (PIE) curves. The dissociation mechanisms of energy-selected CH3Cl(+) ions, prepared in the A(2)A1 and the B(2)E electronic states, as well as outside the Franck-Condon region, have been revealed to be state-specific via ion/electron kinetic energy correlation diagrams. In particular, the umbrella mode vibrational progression of the CH3(+) fragment ion in the direct dissociation of the A(2)A1 electronic state was identified and assigned indicating that this state correlates to the CH3(+)(1(1)A1') + Cl((2)P1/2) dissociation limit, in agreement with the theoretical calculations performed in this work. PMID:27524637

  15. Relative Proton Affinities from Kinetic Energy Release Distributions for Dissociation of Proton-Bound Dimers

    SciTech Connect

    Hache, John J.; Laskin, Julia ); Futrell, Jean H.)

    2002-12-19

    Kinetic energy release distributions (KERDs) upon dissociation of proton-bound dimers are utilized along with Finite Heat Bath theory analysis to obtain relative proton affinities of monomeric species composing the dimer. The proposed approach allows accurate measurement of relative proton affinities based on KERD measurements for the compound with unknown thermochemical properties versus a single reference base. It also allows distinguishing the cases when dissociation of proton-bound dimers is associated with reverse activation barrier, for which both our approach and the kinetic method become inapplicable. Results are reported for the n-butanol-n-propanol dimer, for which there is no significant difference in entropy effects for two reactions and for the pyrrolidine-1,2-ethylenediamine dimer, which is characterized by a significant difference in entropy effects for the two competing reactions. Relative protonation affinities of -1.0?0.3 kcal/mol for the n-butanol-n-propanol pair and 0.27?0.10 kcal/mol for the pyrrolidine-1,2-ethylenediamine pair are in good agreement with literature values. Relative reaction entropies were extracted from the branching ratio and KERD measurements. Good correspondence was found between the relative reaction entropies for the n-butanol-n-propanol dimer (D(DS?)=-0.3?1.5 cal/mol K) and the relative protonation entropy for the two monomers (D(DSp)=0). However, the relative reaction entropy for the pyrrolidine-1,2-ethylenediamine dimer is higher than the difference in protonation entropies (D(DS?)=8.2?0.5 cal/mol K vs. D(DSp)=5 cal/mol K).

  16. Dissociation mechanisms of the Ar trimer induced by a third atom in high-energy electron-impact ionization

    NASA Astrophysics Data System (ADS)

    Yan, S.; Zhang, P.; Ma, X.; Xu, S.; Tian, S. X.; Li, B.; Zhu, X. L.; Feng, W. T.; Zhao, D. M.

    2014-06-01

    We experimentally studied the dissociation dynamics of a highly charged Ar3 cluster initiated by a high-energy electron. The dissociation patterns of the correlated ions from a two-body and a three-body Coulombic explosion (CE) of (Ar3)2+ suggest that predissociation alters the evolution of radiative charge transfer. The three-body CE in (Ar3)4+ and (Ar3)5+ is driven, after double ionization of one constituent Ar atom, by single ionization with a simultaneous interatomic Coulombic decay process.

  17. Electron-impact dissociative double ionization of N2 and CO: Dependence of transition probability on impact energy

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Kumar, P.; Banerjee, S. B.; Subramanian, K. P.; Bapat, B.

    2016-04-01

    We present an experimental and computational analysis of dissociative double ionization of N2 and CO molecules under electron impact. Experiments are performed at three energies, viz. 1, 3, and 5 keV, in order to observe the effect of impact energy on the dissociative ionization kinematics. We compare the kinetic energy release (KER) distributions of the charge symmetric dissociation channels of N22 + and CO2 + at these impact energies. An approximately linear trend between the transition energy and the expected KER values is inferred on the basis of the calculated potential energy curves of the dications. Experimentally, the normalized differential KER cross sections for these channels show an increasing trend in the low KER range and a decreasing trend in the high KER range as the electron-impact energy is increased. This observation indicates that the transition probability for excitation to different molecular ion states is not only a function of energy difference between the ground and excited states, but also a complicated function of the impact energy. In addition, nature of the observed trend in the differential KER cross sections differs significantly from their differential transition probability, which are calculated using inelastic collision model for fast-electron-impact case.

  18. Effects of Exchange Energy and Spin-Orbit Coupling on Bond Energies

    ERIC Educational Resources Information Center

    Smith, Derek W.

    2004-01-01

    Since chemical reactions involve the breaking and making of bonds, understanding the relative strengths of bonds is of paramount importance in the study, teaching, and practice of chemistry. Further, it is showed that free atoms having p(super n) configuration with n = 2,3, or 4 are stabilized by exchange energy, and by spin-orbit coupling for n =…

  19. Bond length and local energy density property connections for non-transition-metal oxide-bonded interactions.

    PubMed

    Gibbs, G V; Spackman, M A; Jayatilaka, D; Rosso, K M; Cox, D F

    2006-11-01

    For a variety of molecules and earth materials, the theoretical local kinetic energy density, G(r(c)), increases and the local potential energy density, V(r(c)), decreases as the M-O bond lengths (M = first- and second-row metal atoms bonded to O) decrease and the electron density, rho(r(c)), accumulates at the bond critical points, r(c). Despite the claim that the local kinetic energy density per electronic charge, G(r(c))/rho(r(c)), classifies bonded interactions as shared interactions when less than unity and closed-shell when greater, the ratio was found to increase from 0.5 to 2.5 au as the local electronic energy density, H(r(c)) = G(r(c)) + V(r(c)), decreases and becomes progressively more negative. The ratio appears to be a measure of the character of a given M-O bonded interaction, the greater the ratio, the larger the value of rho(r(c)), the smaller the coordination number of the M atom and the more shared the bonded interaction. H(r(c))/rho(r(c)) versus G(r(c))/rho(r(c)) scatter diagrams categorize the M-O bonded interactions into domains with the local electronic energy density per electron charge, H(r(c))/rho(r(c)), tending to decrease as the electronegativity differences for the bonded pairs of atoms decrease. The values of G(r(c)) and V(r(c)), estimated with a gradient-corrected electron gas theory expression and the local virial theorem, are in good agreement with theoretical values, particularly for the bonded interactions involving second-row M atoms. The agreement is poorer for shared C-O and N-O bonded interactions. PMID:17078623

  20. High-energy collision-induced dissociation of [M+Na]+ ions desorbed by fast atom bombardment of ceramides isolated from the starfish Distolasterias nipon.

    PubMed

    Yoo, Ji Sun; Park, Taeseong; Bang, Geul; Lee, Chulhyun; Rho, Jung-Rae; Kim, Young Hwan

    2013-02-01

    Ten ceramides and four cerebrosides were extracted from the starfish Distolasterias nipon by solvent extraction, silica gel column chromatography and reversed-phase high-performance liquid chromatography. Structural identification was conducted using tandem mass spectrometry of monosodiated ions desorbed by fast atom bombardment. The complete structures of four cerebrosides were determined by a previously reported method. The high-energy collision-induced dissociation (CID) spectral characteristics of ceramides with various structures depend on the number and positions of double bonds on both the N-acyl and sphingoid chains, the presence of a hydroxyl group or a double bond at the C-4 position of the sphingoid chain and the presence of an α-hydroxy group on the N-acyl chain. The high-energy CID of the monosodiated ion, [M+Na](+), of each ceramide molecular species generated abundant ions, providing information on the composition of the fatty acyl chains and sphingoid long-chain bases. Each homologous ion series along the fatty acyl group and aliphatic chain of the sphingoid base was used for locating the double-bond positions of both chains and hydroxyl groups on the sphingoid base chain. The double-bond positions were also confirmed by the m/z values of abundant allylic even- and odd-electron ions, and the intensity ratio of the T ion peak relative to the O ion peak. This technique could determine the complete structures of ceramides and cerebrosides in an extract mixture and has great potential for determining other sphingolipids isolated from various biological sources. PMID:23378088

  1. Vibrational energy transfer near a dissociative adsorption transition state: State-to-state study of HCl collisions at Au(111)

    NASA Astrophysics Data System (ADS)

    Geweke, Jan; Shirhatti, Pranav R.; Rahinov, Igor; Bartels, Christof; Wodtke, Alec M.

    2016-08-01

    In this work we seek to examine the nature of collisional energy transfer between HCl and Au(111) for nonreactive scattering events that sample geometries near the transition state for dissociative adsorption by varying both the vibrational and translational energy of the incident HCl molecules in the range near the dissociation barrier. Specifically, we report absolute vibrational excitation probabilities for HCl(v = 0 → 1) and HCl(v = 1 → 2) scattering from clean Au(111) as a function of surface temperature and incidence translational energy. The HCl(v = 2 → 3) channel could not be observed—presumably due to the onset of dissociation. The excitation probabilities can be decomposed into adiabatic and nonadiabatic contributions. We find that both contributions strongly increase with incidence vibrational state by a factor of 24 and 9, respectively. This suggests that V-T as well as V-EHP coupling can be enhanced near the transition state for dissociative adsorption at a metal surface. We also show that previously reported HCl(v = 0 → 1) excitation probabilities [Q. Ran et al., Phys. Rev. Lett. 98, 237601 (2007)]—50 times smaller than those reported here—were influenced by erroneous assignment of spectroscopic lines used in the data analysis.

  2. Vibrational energy transfer near a dissociative adsorption transition state: State-to-state study of HCl collisions at Au(111).

    PubMed

    Geweke, Jan; Shirhatti, Pranav R; Rahinov, Igor; Bartels, Christof; Wodtke, Alec M

    2016-08-01

    In this work we seek to examine the nature of collisional energy transfer between HCl and Au(111) for nonreactive scattering events that sample geometries near the transition state for dissociative adsorption by varying both the vibrational and translational energy of the incident HCl molecules in the range near the dissociation barrier. Specifically, we report absolute vibrational excitation probabilities for HCl(v = 0 → 1) and HCl(v = 1 → 2) scattering from clean Au(111) as a function of surface temperature and incidence translational energy. The HCl(v = 2 → 3) channel could not be observed-presumably due to the onset of dissociation. The excitation probabilities can be decomposed into adiabatic and nonadiabatic contributions. We find that both contributions strongly increase with incidence vibrational state by a factor of 24 and 9, respectively. This suggests that V-T as well as V-EHP coupling can be enhanced near the transition state for dissociative adsorption at a metal surface. We also show that previously reported HCl(v = 0 → 1) excitation probabilities [Q. Ran et al., Phys. Rev. Lett. 98, 237601 (2007)]-50 times smaller than those reported here-were influenced by erroneous assignment of spectroscopic lines used in the data analysis. PMID:27497574

  3. Measuring the energy landscape of complex bonds using AFM

    NASA Astrophysics Data System (ADS)

    Mayyas, Essa; Hoffmann, Peter; Runyan, Lindsay

    2009-03-01

    We measured rupture force of a complex bond of two interacting proteins with atomic force microscopy. Proteins of interest were active and latent Matrix metalloproteinases (MMPs), type 2 and 9, and their tissue inhibitors TIMP1 and TIMP2. Measurements show that the rupture force depends on the pulling speed; it ranges from 30 pN to 150 pN at pulling speeds 30nm/s to 48000nm/s. Analyzing data using an extended theory enabled us to understand the mechanism of MMP-TIMP interaction; we determined all physical parameters that form the landscape energy of the interaction, in addition to the life time of the bond and its length. Moreover, we used the pulling experiment to study the interaction of TIMP2 with the receptor MT1-MMP on the surface of living cells.

  4. Strength of Chemical Bonds

    NASA Technical Reports Server (NTRS)

    Christian, Jerry D.

    1973-01-01

    Students are not generally made aware of the extraordinary magnitude of the strengths of chemical bonds in terms of the forces required to pull them apart. Molecular bonds are usually considered in terms of the energies required to break them, and we are not astonished at the values encountered. For example, the Cl2 bond energy, 57.00 kcal/mole, amounts to only 9.46 x 10(sup -20) cal/molecule, a very small amount of energy, indeed, and impossible to measure directly. However, the forces involved in realizing the energy when breaking the bond operate over a very small distance, only 2.94 A, and, thus, f(sub ave) approx. equals De/(r - r(sub e)) must be very large. The forces involved in dissociating the molecule are discussed in the following. In consideration of average forces, the molecule shall be assumed arbitrarily to be dissociated when the atoms are far enough separated so that the potential, relative to that of the infinitely separated atoms, is reduced by 99.5% from the potential of the molecule at the equilibrium bond length (r(sub e)) for Cl2 of 1.988 A this occurs at 4.928 A.

  5. Comparative anti-inflammatory activities of curcumin and tetrahydrocurcumin based on the phenolic O-H bond dissociation enthalpy, ionization potential and quantum chemical descriptor.

    PubMed

    Murakami, Yukio; Ishii, Hiroaki; Takada, Naoki; Tanaka, Shoji; Machino, Mamoru; Ito, Shigeru; Fujisawa, Seiichiro

    2008-01-01

    Curcumin and its reduced derivative tetrahydrocurcumin have been shown to exhibit chemopreventive activity. Cyclooxygenase-2 (COX-2) inhibition in lipopolysaccharide (LPS)- or Porphyromonas gingivalis fimbria-stimulated RAW 264.7 cells was investigated using Northern blot analysis. The fimbria-stimulated expression of the COX-2 gene was inhibited by curcumin but not by tetrahydrocurcumin. LPS-stimulated COX-2 gene expression was completely inhibited by curcumin, but an increase in the concentration of tetrahydrocurcumin did not cause complete inhibition of COX-2 expression. The inhibitory effect of curcumin on nuclear factor kappa B (NF-kappaB) activation in the cells was clearly observed, but that of tetrahydrocurcumin was incomplete even at a concentration of 20 microM. To explain the difference in effect between the two compounds, analysis of the frontier orbital was performed using ab initio 6-31G* wave function. The calculated chemical hardness (eta) for curcumin was clearly smaller, whereas its electronegativity (chi) and electrophilicity (omega) were clearly greater than the corresponding values for the curcumin-related compounds tetrahydrocurcumin, isoeugenol and eugenol. This suggested that the anti-inflammatory activities of curcumin may be related to eta-, chi- and/or omega-controlled enzymes. In addition, the bond dissociation enthalpy (BDE) of the phenolic OH was calculated using the density function theory (DFT)/B3LY. The total BDE values of curcumin and tetrahydrocurcumin were almost identical, but the BDE of one-electron oxidation and ionization potential (IP) for curcumin were lower than those for tetrahydrocurcumin, suggesting the highly pro-oxidative activity of curcumin. Curcumin has both oxidant and antioxidant properties. A causal link between the anti-inflammatory activities and molecular properties of phenolic antioxidants is suggested. PMID:18507010

  6. Controlling the bond scission sequence of oxygenates for energy applications

    NASA Astrophysics Data System (ADS)

    Stottlemyer, Alan L.

    The so called "Holy Grail" of heterogeneous catalysis is a fundamental understanding of catalyzed chemical transformations which span multidimensional scales of both length and time, enabling rational catalyst design. Such an undertaking is realizable only with an atomic level understanding of bond formation and destruction with respect to intrinsic properties of the metal catalyst. In this study, we investigate the bond scission sequence of small oxygenates (methanol, ethanol, ethylene glycol) on bimetallic transition metal catalysts and transition metal carbide catalysts. Oxygenates are of interest both as hydrogen carriers for reforming to H2 and CO and as fuels in direct alcohol fuel cells (DAFC). To address the so-called "materials gap" and "pressure gap" this work adopted three parallel research approaches: (1) ultra high vacuum (UHV) studies including temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) on polycrystalline surfaces; (2) DFT studies including thermodynamic and kinetic calculations; (3) electrochemical studies including cyclic voltammetry (CV) and chronoamperometry (CA). Recent studies have suggested that tungsten monocarbide (WC) may behave similarly to Pt for the electrooxidation of oxygenates. TPD was used to quantify the activity and selectivity of oxygenate decomposition for WC and Pt-modifiedWC (Pt/WC) as compared to Pt. While decomposition activity was generally higher on WC than on Pt, scission of the C-O bond resulted in alkane/alkene formation on WC, an undesired product for DAFC. When Pt was added to WC by physical vapor deposition C-O bond scission was limited, suggesting that Pt synergistically modifies WC to improve the selectivity toward C-H bond scission to produce H2 and CO. Additionally, TPD confirmed WC and Pt/WC to be more CO tolerant than Pt. HREELS results verified that surface intermediates were different on Pt/WC as compared to Pt or WC and evidence of aldehyde

  7. The Trouble with Chemical Energy: Why Understanding Bond Energies Requires an Interdisciplinary Systems Approach

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Klymkowsky, Michael W.

    2013-01-01

    Helping students understand "chemical energy" is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk…

  8. Response to the Comment by J. Grunenberg on "The Nature of the Fourth Bond in the Ground State of C2: The Quadruple Bond Conundrum''.

    PubMed

    Shaik, Sason; Danovich, David; Hiberty, Philippe C

    2015-11-16

    The quadruple bond structure in C2 emerges from solid quantum-chemical calculations and won't go away! There is no mystery in the rather small bond dissociation energy, and this cannot constitute the reason to reconsider the whole concept of quadruple bonding. PMID:26482677

  9. Theoretical study of the dissociation energy and the red and violet band systems of CN

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1987-01-01

    The dissociation energy (D sub O) of CN is determined to be 7.65 + or - 0.06 eV. This corresponds to delta H sub f (CN) = 105.3 + or - 1.5 kcal/mole, in excellent agreement with Engleman and Rouse (1975), but considerably larger than the recent value deduced from shock-tube studies by Colket (1984). The result is obtained not only from extensive ab initio MRCI calculations using a very large Gaussian basis set, but also from extrapolation of the directly computed value by comparison of computed and experimental results fo NO, C2, and N2. As an additional calibration of the methods, the D sub O value for CN was computed from the corresponding value for CN(-) using the experimental electron affinity data. The lifetime of the nu prime = 0 level of the violet (B 2 sigma + yields X 2 sigma +) system was computed to be 62.4 ns, in good agreement with both experiment and previous calculations. Lifetimes for the red (A 2 pi yields X 2 sigma +) system decrease with increasing nu prime, which is consistent both with the recent experiment and calculations. While the computed lifetimes are significantly longer that those obtained from the experiment, they are shorter than those deduced from an analysis of the solar spectrum. However the D sub O and f (sub OO) are consistent with Lambert's model for the solar spectrum.

  10. Low-energy collisionally activated dissociation of pentose-borate complexes

    NASA Astrophysics Data System (ADS)

    Pepi, Federico; Garzoli, Stefania; Tata, Alessandra; Giacomello, Pierluigi

    2010-01-01

    Pentose-borate 1:1 complexes were generated in the ESI source of a triple quadrupole and ion trap mass spectrometer by electrospray ionization of Na2B4O7 and pentose (arabinose, lyxose, ribose, xylose) 2:1 solution in CH3CN/H2O. The study of their low-energy collisionally activated dissociation (CAD) demonstrated that ribose and lyxose are preferentially complexed at the C2-C3 cis-diol function whereas arabinose and xylose are esterified at the C1-C2 hydroxyl groups. No evidence was found of the stronger affinity for ribose to borate. The ribose probiotic rule can be explained by considering its peculiar capability, among the investigated pentoses, to almost totally complex the borate anion at the C2-C3 hydroxyl group, thus enabling the subsequent stages of nucleotide assembly, such as phosphorylation and linkage to the nucleobases. Finally, the differences observed in the pentose-borate complex CAD spectra can be used for the mass spectrometric discrimination of isomeric pentoses in complex mixtures.

  11. Intrinsic errors in several ab initio methods. The dissociation energy of N{sub 2}

    SciTech Connect

    Peterson, K.A. |; Dunning, T.H. Jr.

    1995-03-23

    Using sequences of correlation consistent basis sets, complete basis set (CBS) limits for the dissociation energy D{sub c} of N{sub 2} have been estimated for a variety of commonly used electron correlation methods. After extrapolation to the CBS limit, the difference between theory and experiment corresponds to the error intrinsic to the chosen theoretical method. Correlated wave functions (valence electrons correlated only) for which intrinsic errors have been estimated include internally contracted multireference configuration interaction (CMRCI), singles and doubles coupled cluster theory with and without perturbative triple excitations [CCSD, CCSD(T)], and second-, third-, and fourth-order Moller-Plesset perturbation theory (MP2, MP3, MP4). For CMRCI and CCSD(T), D{sub c} converges smoothly from below the experimental value and yields the smallest intrinsic errors, -0.8 and -1.6 kcal/mol, respectively. In contrast, for MP2 and MP4, D{sub c} exhibits fortuitously good agreement with experiment for small basis sets but leads to CBS limits that are 11.6 and 3.4 kcal/mol larger than experiment, respectively. Correlation of the 1s core electrons is predicted to yield intrinsic errors of less than 1 kcal/mol for CMRCI and CCSD(T), while those for MP2 and MP4 increase still further. 38 refs., 1 fig., 1 tab.

  12. Dynamic disorder in receptor-ligand forced dissociation experiments.

    PubMed

    Liu, Fei; Ou-Yang, Zhong-can; Iwamoto, Mitsumasa

    2006-01-01

    Recently experiments showed that some biological noncovalent bonds increase their lifetimes when they are stretched by an external force, and their lifetimes will decrease when the force increases further. Several specific quantitative models have been proposed to explain the intriguing transitions from the "catch bond" to the "slip bond." In this work we propose that the dynamic disorder of the force-dependent dissociation rate can account for the counterintuitive behaviors of the bonds. A Gaussian stochastic rate model is used to quantitatively describe the transitions observed recently in the single bond P-selctin glycoprotein ligand 1-P-selectin force rupture experiment [Marshall, Nature 423, 190 (2003)]. Our model agrees well with the experimental data. We conclude that the catch bonds could arise from the stronger positive correlation between the height of the intrinsic energy barrier and the distance from the bound state to the barrier; classical pathway scenario or a priori catch bond assumption is not essential. PMID:16486112

  13. Dissociation energies of Ag–RG (RG = Ar, Kr, Xe) and AgO molecules from velocity map imaging studies

    SciTech Connect

    Cooper, Graham A.; Gentleman, Alexander S.; Iskra, Andreas; Wijk, Robert van; Mackenzie, Stuart R.; Kartouzian, Aras

    2015-09-28

    The near ultraviolet photodissociation dynamics of silver atom—rare gas dimers have been studied by velocity map imaging. Ag–RG (RG = Ar, Kr, Xe) species generated by laser ablation are excited in the region of the C ({sup 2}Σ{sup +})←X ({sup 2}Σ{sup +}) continuum leading to direct, near-threshold dissociation generating Ag* ({sup 2}P{sub 3/2}) + RG ({sup 1}S{sub 0}) products. Images recorded at excitation wavelengths throughout the C ({sup 2}Σ{sup +})←X ({sup 2}Σ{sup +}) continuum, coupled with known atomic energy levels, permit determination of the ground X ({sup 2}Σ{sup +}) state dissociation energies of 85.9 ± 23.4 cm{sup −1} (Ag–Ar), 149.3 ± 22.4 cm{sup −1} (Ag–Kr), and 256.3 ± 16.0 cm{sup −1} (Ag–Xe). Three additional photolysis processes, each yielding Ag atom photoproducts, are observed in the same spectral region. Two of these are markedly enhanced in intensity upon seeding the molecular beam with nitrous oxide, and are assigned to photodissociation of AgO at the two-photon level. These features yield an improved ground state dissociation energy for AgO of 15 965 ± 81 cm{sup −1}, which is in good agreement with high level calculations. The third process results in Ag atom fragments whose kinetic energy shows anomalously weak photon energy dependence and is assigned tentatively to dissociative ionization of the silver dimer Ag{sub 2}.

  14. Characterization of intact N- and O-linked glycopeptides using higher energy collisional dissociation

    SciTech Connect

    Cao, Li; Tolic, Nikola; Qu, Yi; Meng, Da; Zhao, Rui; Zhang, Qibin; Moore, Ronald J.; Zink, Erika M.; Lipton, Mary S.; Pasa-Tolic, Ljiljana; Wu, Si

    2014-01-15

    Simultaneous elucidation of the glycan structure and the glycosylation site are needed to reveal the biological function of protein glycosylation. In this study, we employed a recent type of fragmentation termed higher energy collisional dissociation (HCD) to examine fragmentation patterns of intact glycopeptides generated from a mixture of standard glycosylated proteins. The normalized collisional energy (NCE) value for HCD was varied from 30% to 60% to evaluate the optimal conditions for the fragmentation of peptide backbones and glycoconjugates. Our results indicated that HCD with lower NCE valuespreferentially fragmented the sugar chains attached to the peptides to generate a ladder of neutral loss of monosaccharides, thus enabling the putative glycan structure characterization. Also, detection of the oxonium ions enabled unambiguous differentiation of glycopeptides from non-glycopeptides. On the contrary, HCD with higher NCE values preferentially fragmented the peptide backbone and thus provided information needed for confident peptide identification. We evaluated the HCD approach with alternating NCE parameters for confident characterization of intact N-linked and O-linked glycopeptides in a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. In addition, we applied a novel data analysis pipeline, so-called GlycoFinder, to form a basis for automated data analysis. Overall, 38 unique intact glycopeptides corresponding to eight glycosylation sites (including six N-linked and two O-linked sites) were confidently identified from a standard protein mixture. This approach provided concurrent characterization of both, the peptide and the glycan, thus enabling comprehensive structural characterization of glycoproteins in a single LC-MS/MS analysis.

  15. Theoretical electron density distributions for Fe- and Cu-sulfide earth materials: a connection between bond length, bond critical point properties, local energy densities, and bonded interactions.

    PubMed

    Gibbs, G V; Cox, D F; Rosso, K M; Ross, N L; Downs, R T; Spackman, M A

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, rho(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, rho(rc), the Laplacian, triangle down2rho(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of rho(rc) and triangle down2rho(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of rho(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the high-spin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the rho(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite

  16. Theoretical Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions

    SciTech Connect

    Gibbs, Gerald V.; Cox, David F.; Rosso, Kevin M.; Ross, Nancy L.; Downs, R. T.; Spackman, M. A.

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, F(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, F(rc), the Laplacian, 32F(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of F(rc) and 32F(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of F(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the highspin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the F(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite, suggesting that the neutral Fe3S4 slabs are

  17. An isomer-specific high-energy collision-induced dissociation MS/MS database for forensic applications: a proof-of-concept on chemical warfare agent markers.

    PubMed

    Subramaniam, Raja; Östin, Anders; Nygren, Yvonne; Juhlin, Lars; Nilsson, Calle; Åstot, Crister

    2011-09-01

    Spectra database search has become the most popular technique for the identification of unknown chemicals, minimizing the need for authentic reference chemicals. In the present study, an isomer-specific high-energy collision-induced dissociation (CID) MS/MS spectra database of 12 isomeric O-hexyl methylphosphonic acids (degradation markers of nerve agents) was created. Phosphonate anions were produced by the electrospray ionization of phosphonic acids or negative-ion chemical ionization of their fluorinated derivatives and were analysed in a hybrid magnetic-sector-time-of-flight tandem mass spectrometer. A centre-of-mass energy (E(com)) of 65 eV led to an optimal sequential carbon-carbon bond breakage, which was interpreted in terms of charge remote fragmentation. The proposed mechanism is discussed in comparison with the routinely used low-energy CID MS/MS. Even-mass (odd-electron) charge remote fragmentation ion series were diagnostic of the O-alkyl chain structure and can be used to interpret unknown spectra. Together with the odd-mass ion series, they formed highly reproducible, isomer-specific spectra that gave significantly higher database matches and probability factors (by 1.5 times) than did the EI MS spectra of the trimethylsilyl derivatives of the same isomers. In addition, ionization by negative-ion chemical ionization and electrospray ionization resulted in similar spectra, which further highlights the general potential of the high-energy CID MS/MS technique. PMID:21915956

  18. The dynamic Auger Doppler effect in HF and DF: control of fragment velocities in femtosecond dissociation through photon energy detuning

    NASA Astrophysics Data System (ADS)

    Wiesner, K.; Naves de Brito, A.; Sorensen, S. L.; Burmeister, F.; Gisselbrecht, M.; Svensson, S.; Björneholm, O.

    2002-03-01

    The Auger-Doppler effect in the experimental spectra of HF and DF is presented, and the dynamics of ultra-fast dissociation in the core-excited state are discussed. The Doppler splitting of the atomic Auger peak is calculated and simulated using a classical model and a very good agreement is found between experiment and simulation. It is shown that the difference in photon energy relative to the resonance is transferred completely into the kinetic energy release (KER). This is expected to be a general phenomenon, but is clearly illuminated in the HF/DF case. Thus the fragment velocity can be controlled through photon energy detuning.

  19. Bond energy effects on strength, cooperativity and robustness of molecular structures.

    PubMed

    Chou, Chia-Ching; Buehler, Markus J

    2011-10-01

    A fundamental challenge in engineering biologically inspired materials and systems is the identification of molecular structures that define fundamental building blocks. Here, we report a systematic study of the effect of the energy of chemical bonds on the mechanical properties of molecular structures, specifically, their strength and robustness. By considering a simple model system of an assembly of bonds in a cluster, we demonstrate that weak bonding, as found for example in H-bonds, results in a highly cooperative behaviour where clusters of bonds operate synergistically to form relatively strong molecular clusters. The cooperative effect of bonding results in an enhanced robustness since the drop of strength owing to the loss of a bond in a larger cluster only results in a marginal reduction of the strength. Strong bonding, as found in covalent interactions such as disulphide bonds or in the backbone of proteins, results in a larger mechanical strength. However, the ability for bonds to interact cooperatively is lost, and, as a result, the overall robustness is lower since the mechanical strength hinges on individual bonds rather than a cluster of bonds. The systematic analysis presented here provides general insight into the interplay of bond energy, robustness and other geometric parameters such as bond spacing. We conclude our analysis with a correlation of structural data of natural protein structures, which confirms the conclusions derived from our study. PMID:23050078

  20. Kinetic Energy Release of the Singly and Doubly Charged Methylene Chloride Molecule: The Role of Fast Dissociation.

    PubMed

    Alcantara, K F; Rocha, A B; Gomes, A H A; Wolff, W; Sigaud, L; Santos, A C F

    2016-09-01

    The center of mass kinetic energy release distribution (KERD) spectra of selected ionic fragments, formed through dissociative single and double photoionization of CH2Cl2 at photon energies around the Cl 2p edge, were extracted from the shape and width of the experimentally obtained time-of-flight (TOF) distributions. The KERD spectra exhibit either smooth profiles or structures, depending on the moiety and photon energy. In general, the heavier the ionic fragments, the lower their average KERDs are. In contrast, the light H(+) fragments are observed with kinetic energies centered around 4.5-5.5 eV, depending on the photon energy. It was observed that the change in the photon energy involves a change in the KERDs, indicating different processes or transitions taking place in the breakup process. In the particular case of double ionization with the ejection of two charged fragments, the KERDs present have characteristics compatible with the Coulombic fragmentation model. Intending to interpret the experimental data, singlet and triplet states at Cl 2p edge of the CH2Cl2 molecule, corresponding to the Cl (2p → 10a1*) and Cl (2p → 4b1*) transitions, were calculated at multiconfigurational self-consistent field (MCSCF) level and multireference configuration interaction (MRCI). These states were selected to form the spin-orbit coupling matrix elements, which after diagonalization result in a spin-orbit manifold. Minimum energy pathways for dissociation of the molecule were additionally calculated aiming to give support to the presence of the ultrafast dissociation mechanism in the molecular breakup. PMID:27523328

  1. Metallic bond effects on mean excitation energies for stopping powers

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Xu, Y. J.

    1982-01-01

    Mean excitation energies for first row metals are evaluated by means of the local plasma approximation. Particle corrections based on Pines' (1953) procedure and the Wigner Seitz (1934) model of the metallic state are included. The agreement with experimental values is remarkably good. In contrast to previous work, the calculations given here estimate shifts in the plasma frequency according to the theory for plane wave states in an extended plasma as calculated by Pines. It is demonstrated that the effects of the metallic bond in lithium and beryllium are quite large and that they appear mainly as a result of collective oscillations in the 'free' electron gas formed from the valence electrons. The usefulness of the plasma frequency shift derived for a degenerate electron gas in predicting the plasma frequency shift within the ion core is considered surprising.

  2. Homolytic S-S bond dissociation of 11 bis(thiocarbonyl)disulfides R-C(=S)-S-S-C(=S)R and prediction of a novel rubber vulcanization accelerator.

    PubMed

    Mak, Adrian Matthew; Steudel, Ralf; Wong, Ming Wah

    2008-06-01

    The structures and energetics of eight substituted bis(thiocarbonyl)disulfides (RCS(2))(2), their associated radicals RCS(2)(*), and their coordination compounds with a lithium cation have been studied at the G3X(MP2) level of theory for R = H, Me, F, Cl, OMe, SMe, NMe(2), and PMe(2). The effects of substituents on the dissociation of (RCS(2))(2) to RCS(2)(*) were analyzed using isodesmic stabilization reactions. Electron-donating groups with an unshared pair of electrons have a pronounced stabilization effect on both (RCS(2))(2) and RCS(2)(*). The S-S bond dissociation enthalpy of tetramethylthiuram disulfide (TMTD, R = NMe(2)) is the lowest in the above series (155 kJ mol(-1)), attributed to the particular stability of the formed Me(2)NCS(2)(*) radical. Both (RCS(2))(2) and the fragmented radicals RCS(2)(*) form stable chelate complexes with a Li(+) cation. The S-S homolytic bond cleavage in (RCS(2))(2) is facilitated by the reaction [Li(RCS(2))(2)](+)+Li(+)-->2 [Li(RCS(2))](*+). Three other substituted bis(thiocarbonyl) disulfides with the unconventional substituents R = OSF(5), Gu(1), and Gu(2) have been explored to find suitable alternative rubber vulcanization accelerators. Bis(thiocarbonyl)disulfide with a guanidine-type substituent, (Gu(1)CS(2))(2), is predicted to be an effective accelerator in sulfur vulcanization of rubber. Compared to TMTD, (Gu(1)CS(2))(2) is calculated to have a lower bond dissociation enthalpy and smaller associated barrier for the S-S homolysis. PMID:18418826

  3. Vibrational and Electronic Energy Transfer and Dissociation of Diatomic Molecules by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also

  4. Calculation of activation energies for hydrogen-atom abstractions by radicals containing carbon triple bonds

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Laufer, A. H.

    1981-01-01

    Activation energies are calculated by the bond-energy-bond-order (BEBO) and the bond-strength-bond-length (BSBL) methods for the reactions of C2H radicals with H2, CH4, and C2H6 and for the reactions of CN radicals with H2 and CH4. The BSBL technique accurately predicts the activation energies for these reactions while the BEBO method yields energies averaging 9 kcal higher than those observed. A possible reason for the disagreement is considered.

  5. Adsorption of water on O(2x2)/Ru(0001): thermal stability and inhibition of dissociation by H2O-O bonding

    SciTech Connect

    Mugarza, Aitor; Shimizu, Tomoko; Cabrera-Sanfelix, Pepa; Sanchez-Portal, Daniel; Arnau, Andres; Salmeron, Miquel

    2008-08-01

    The effect of preadsorbed oxygen on the subsequent adsorption and reactions of water on Ru(0001) has been studied using low temperature scanning tunneling microscopy and DFT calculations. Experiments were carried out for O coverages close to 0.25 ML. It was found that no dissociation of water takes place up to the desorption temperature of {approx}180-230 K. DFT calculations show that intact water on O(2x2)/Ru(0001) is {approx} 0.49 eV more stable than the dissociation products, H and OH, at their preferred fcc and top adsorption sites.

  6. A big data approach to the ultra-fast prediction of DFT-calculated bond energies

    PubMed Central

    2013-01-01

    Background The rapid access to intrinsic physicochemical properties of molecules is highly desired for large scale chemical data mining explorations such as mass spectrum prediction in metabolomics, toxicity risk assessment and drug discovery. Large volumes of data are being produced by quantum chemistry calculations, which provide increasing accurate estimations of several properties, e.g. by Density Functional Theory (DFT), but are still too computationally expensive for those large scale uses. This work explores the possibility of using large amounts of data generated by DFT methods for thousands of molecular structures, extracting relevant molecular properties and applying machine learning (ML) algorithms to learn from the data. Once trained, these ML models can be applied to new structures to produce ultra-fast predictions. An approach is presented for homolytic bond dissociation energy (BDE). Results Machine learning models were trained with a data set of >12,000 BDEs calculated by B3LYP/6-311++G(d,p)//DFTB. Descriptors were designed to encode atom types and connectivity in the 2D topological environment of the bonds. The best model, an Associative Neural Network (ASNN) based on 85 bond descriptors, was able to predict the BDE of 887 bonds in an independent test set (covering a range of 17.67–202.30 kcal/mol) with RMSD of 5.29 kcal/mol, mean absolute deviation of 3.35 kcal/mol, and R2 = 0.953. The predictions were compared with semi-empirical PM6 calculations, and were found to be superior for all types of bonds in the data set, except for O-H, N-H, and N-N bonds. The B3LYP/6-311++G(d,p)//DFTB calculations can approach the higher-level calculations B3LYP/6-311++G(3df,2p)//B3LYP/6-31G(d,p) with an RMSD of 3.04 kcal/mol, which is less than the RMSD of ASNN (against both DFT methods). An experimental web service for on-line prediction of BDEs is available at http://joao.airesdesousa.com/bde. Conclusion Knowledge could be automatically extracted by

  7. Structures, bonding and energies of N 6 isomers

    NASA Astrophysics Data System (ADS)

    Glukhovtsev, Mikhail N.; von Ragué Schleyer, Paul

    1992-10-01

    The most stable N 6 isomer, a twisted open-chain C 2 structure, is 188.3 kcal/mol (MP4SDTQ/6-31G(d)//MP2(full)/6-31 G(d) + ZPE(MP2/6-31 G(d))) higher in energy than three N 2 molecules. In contrast to benzene, hexazine, N 6, prefers a non-planar twist-boat D 2 structure, but this is 26.0 kcal/mol less stable than the C 2 form. The D 6h altenative is a second-order saddle point at MP2 (full)/6-31G(d) 2.1 kcal/mol higher in energy at MP4SDTQ/6-311 (+s)G(d)//MP2(full)/6-311 (+s)G(2d) + ZPE (MP2/6-31G(d)). The homodesmotic and hyperhomodesmotic reaction energies indicate that the D 6h structure is destabilized (-17.6 and -10.4 kcal/mol, respectively), in contrast to the stabilization of benzene (23.9 and 20.3 kcal/mol, respectively, MP4SDTQ/6-31 G(d, p)//MP2(full)/6-31 G(d, p)). NBO analysis shows that none of the N atoms in the N 6 open-chain structures forms more than four covalent bonds. The other N 6 valence isomers, hexaaza-Dewar-benzene, hexaazabicyclopropenyl, and hexaazaprismane are higher in energy than hexazine (33.9, 29.6 and 115.8 kcal/mol, respectively) at MP4SDTQ(fc)/6-31 G(d)/MP2(full)/6-31 G(d) + ZPE(HF/6-31 G(d)).

  8. Ab initio calculations of accurate dissociation energy and analytic potential energy function for the second excited state B1Π of 7LiH

    NASA Astrophysics Data System (ADS)

    Shi, De-Heng; Liu, Yu-Fang; Sun, Jin-Feng; Zhu, Zun-Lue; Yang, Xiang-Dong

    2006-12-01

    The reasonable dissociation limit of the second excited singlet state B1Π of 7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B1Π state are calculated using a symmetry-adapted-cluster configuration-interaction method in full active space. The whole potential energy curve for the B1Π state is obtained over the internuclear distance ranging from about 0.10 nm to 0.54 nm, and has a least-square fit to the analytic Murrell-Sorbie function form. The vertical excitation energy is calculated from the ground state to the B1Π state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B1Π state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.

  9. Interstellar Isomers: The Importance of Bonding Energy Differences

    NASA Technical Reports Server (NTRS)

    Remijan, Anthony J.; Hollis, J. M.; Lovas, F. J.; Plusquellic, D. F.; Jewell, P. R.

    2005-01-01

    We present strong detections of methyl cyanide (CH3CN), vinyl cyanide (CH2CHCN), ethyl cyanide (CH3CH2CN) and cyanodiacetylene (HC4CN) molecules with the Green Bank Telescope (GBT) toward the Sgr B2(N) molecular cloud. Attempts to detect the corresponding isocyanide isomers were only successful in the case of methyl isocyanide (CH3NC) for its J(sub K) = 1(sub 0) - 0(sub 0) transition, which is the first interstellar report of this line. To determine the spatial distribution of CH3NC, we used archival Berkeley-Illinois-Maryland Association (BIMA) array data for the J(sub K) = 1(sub 0) - 0(sub 0) transitions but no emission was detected. From ab initio calculations, the bonding energy difference between the cyanide and isocyanide molecules is greater than 8500 per centimeter (greater than 12,000 K). Thus, cyanides are the more stable isomers and would likely be formed more preferentially over their isocyanide counterparts. That we detect CH3NC emission with a single antenna (Gaussian beamsize(omega(sub B))=1723 arcsec(sup 2)) but not with an interferometer (omega(sub b)=192 arcsec(sup 2)), strongly suggests that CH3NC has a widespread spatial distribution toward the Sgr B2(N) region. Other investigators have shown that CH3CN is present both in the LMH hot core of Sgr B2(N) and in the surrounding medium, while we have shown that CH3NC appears to be deficient in the LMH hot core. Thus, largescale, non-thermal processes in the surrounding medium may account for the conversion of CH3CN to CH3NC while the LMH hot core, which is dominated by thermal processes, does not produce a significant amount of CH3NC. Ice analog experiments by other investigators have shown that radiation bombardment of CH3CN can produce CH3NC, thus supporting our observations. We conclude that isomers separated by such large bonding energy differences are distributed in different interstellar environments, making the evaluation of column density ratios between such isomers irrelevant unless it can

  10. Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Dong; Xuan, Chuan-Jin; Feng, Wen-Ling; Tian, Shan Xi

    2015-02-01

    Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion velocity map imaging technique and ab initio molecular dynamics simulations. The momentum images of the dominant fragments O-/OH- and CH3- are recorded, indicating the low kinetic energies of O-/OH- for ethanol while the low and high kinetic energy distributions of O- ions for acetaldehyde. The CH3- image for acetaldehyde also shows the low kinetic energy. With help of the dynamics simulations, the fragmentation processes are qualitatively clarified. A new cascade dissociation pathway to produce the slow O- ion via the dehydrogenated intermediate, CH3CHO- (acetaldehyde anion), is proposed for the dissociative electron attachment to ethanol. After the electron attachment to acetaldehyde molecule, the slow CH3- is produced quickly in the two-body dissociation with the internal energy redistributions in different aspects before bond cleavages.

  11. Ab initio calculation of accurate dissociation energy, potential energy curve and dipole moment function for the A1Σ+ state 7LiH molecule

    NASA Astrophysics Data System (ADS)

    Shi, De-Heng; Liu, Yu-Fang; Sun, Jin-Feng; Yang, Xiang-Dong; Zhu, Zun-Lue

    2006-05-01

    The reasonable dissociation limit of the A1Σ+ state 7LiH molecule is obtained. The accurate dissociation energy and the equilibrium geometry of this state are calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space for the first time. The whole potential energy curve and the dipole moment function for the A1Σ+ state are calculated over a wide internuclear separation range from about 0.1 to 1.4 nm. The calculated equilibrium geometry and dissociation energy of this potential energy curve are of Re=0.2487 nm and De=1.064 eV, respectively. The unusual negative values of the anharmonicity constant and the vibration-rotational coupling constant are of ωeχe=-4.7158cm-1 and αe=-0.08649cm-1, respectively. The vertical excitation energy from the ground to the A1Σ+ state is calculated and the value is of 3.613 eV at 0.15875 nm (the equilibrium position of the ground state). The highly anomalous shape of this potential energy curve, which is exceptionally flat over a wide radial range around the equilibrium position, is discussed in detail. The harmonic frequency value of 502.47cm-1 about this state is approximately estimated. Careful comparison of the theoretical determinations with those obtained by previous theories about the A1Σ+ state dissociation energy clearly shows that the present calculations are much closer to the experiments than previous theories, thus represents an improvement.

  12. Theoretical Electric Dipole Moments and Dissociation Energies for the Ground States of GaH-BrH

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Langhoff, Stephen R.

    1986-01-01

    Reliable experimental diople moments are available for the ground states of SeH and BrH whereas no values have been reported for GaH and AsH a recently reported experimental dipole moment for GeH of 1.24 + or -0.01 D has been seriously questioned, and a much lower value of, 0.1 + or - 0.05 D, suggested. In this work, we report accurate theoretical dipole moments, dipole derivatives, dissociation energies, and spectroscopic constants (tau(sub e), omega(sub e)) for the ground states of GaH through BrH.

  13. "Vibrational bonding": a new type of chemical bond is discovered.

    PubMed

    Rhodes, Christopher J; Macrae, Roderick M

    2015-01-01

    A long-sought but elusive new type of chemical bond, occurring on a minimum-free, purely repulsive potential energy surface, has recently been convincingly shown to be possible on the basis of high-level quantum-chemical calculations. This type of bond, termed a vibrational bond, forms because the total energy, including the dynamical energy of the nuclei, is lower than the total energy of the dissociated products, including their vibrational zero-point energy. For this to be the case, the ZPE of the product molecule must be very high, which is ensured by replacing a conventional hydrogen atom with its light isotope muonium (Mu, mass = 1/9 u) in the system Br-H-Br, a natural transition state in the reaction between Br and HBr. A paramagnetic species observed in the reaction Mu +Br2 has been proposed as a first experimental sighting of this species, but definitive identification remains challenging. PMID:25942773

  14. Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2014-01-01

    The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse size-selected metal clusters with highly tunable chemical and physical properties. For the first time, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with surface induced dissociation (SID) has been employed to investigate the time and collision energy resolved fragmentation behavior of cationic doubly charged gold clusters containing 7-9 gold atoms and 6-7 triphenylphosphine (TPP) ligands prepared by reduction synthesis in solution. The TPP ligated gold clusters are demonstrated to fragment through three primary dissociation pathways: (1) Loss of a neutral TPP ligand from the precursor gold cluster, (2) asymmetric fission and (3) symmetric fission and charge separation of the gold core resulting in formation of complementary pairs of singly charged fragment ions. Threshold energies and activation entropies of these fragmentation pathways have been determined employing Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental SID data. It is demonstrated that the doubly charged cluster ion containing eight gold atoms and six TPP ligands, (8,6)2+, exhibits exceptional stability compared to the other cationic gold clusters examined in this study due to its large ligand binding energy of 1.76 eV. Our findings demonstrate the dramatic effect of the size and extent of ligation on the gas-phase stability and preferred fragmentation pathways of small TPP-ligated gold clusters.

  15. Discovery and Mechanistic Studies of Facile N-Terminal Cα–C Bond Cleavages in the Dissociation of Tyrosine-Containing Peptide Radical Cations

    SciTech Connect

    Mu, Xiaoyan; Song, Tao; Xu, Minjie; Lai, Cheuk-Kuen; Siu, Chi-Kit; Laskin, Julia; Chu, Ivan K.

    2014-03-28

    Gas phase fragmentations of protein and peptide (M) ions in a mass spectrometer—induced by, for example, electron-capture dissociation1-2 and electron-transfer dissociation3-422 —form the foundation for top-down amino acid sequencing approaches for the rapid identification of protein components in complex biological samples. During these processes, protonated protein and peptide radicals ([M + nH]•(n – 1)+)5–8 are generated; their fragmentations are governed largely by the properties of the unpaired electron. Because of their importance in modern bioanalytical chemistry, considerable attention has been drawn recently toward understanding the radical cation chemistry behind the fragmentations of these odd-electron biomolecular ions in the gas phase.

  16. Seniority number description of potential energy surfaces: Symmetric dissociation of water, N2, C2, and Be2

    NASA Astrophysics Data System (ADS)

    Bytautas, Laimutis; Scuseria, Gustavo E.; Ruedenberg, Klaus

    2015-09-01

    The present study further explores the concept of the seniority number (Ω) by examining different configuration interaction (CI) truncation strategies in generating compact wave functions in a systematic way. While the role of Ω in addressing static (strong) correlation problem has been addressed in numerous previous studies, the usefulness of seniority number in describing weak (dynamic) correlation has not been investigated in a systematic way. Thus, the overall objective in the present work is to investigate the role of Ω in addressing also dynamic electron correlation in addition to the static correlation. Two systematic CI truncation strategies are compared beyond minimal basis sets and full valence active spaces. One approach is based on the seniority number (defined as the total number of singly occupied orbitals in a determinant) and another is based on an excitation-level limitation. In addition, molecular orbitals are energy-optimized using multiconfigurational-self-consistent-field procedure for all these wave functions. The test cases include the symmetric dissociation of water (6-31G), N2 (6-31G), C2 (6-31G), and Be2 (cc-pVTZ). We find that the potential energy profile for H2O dissociation can be reasonably well described using only the Ω = 0 sector of the CI wave function. For the Be2 case, we show that the full CI potential energy curve (cc-pVTZ) is almost exactly reproduced using either Ω-based (including configurations having up to Ω = 2 in the virtual-orbital-space) or excitation-based (up to single-plus-double-substitutions) selection methods, both out of a full-valence-reference function. Finally, in dissociation cases of N2 and C2, we shall also consider novel hybrid wave functions obtained by a union of a set of CI configurations representing the full valence space and a set of CI configurations where seniority-number restriction is imposed for a complete set (full-valence-space and virtual) of correlated molecular orbitals

  17. Seniority number description of potential energy surfaces: Symmetric dissociation of water, N2, C2, and Be2.

    PubMed

    Bytautas, Laimutis; Scuseria, Gustavo E; Ruedenberg, Klaus

    2015-09-01

    The present study further explores the concept of the seniority number (Ω) by examining different configuration interaction (CI) truncation strategies in generating compact wave functions in a systematic way. While the role of Ω in addressing static (strong) correlation problem has been addressed in numerous previous studies, the usefulness of seniority number in describing weak (dynamic) correlation has not been investigated in a systematic way. Thus, the overall objective in the present work is to investigate the role of Ω in addressing also dynamic electron correlation in addition to the static correlation. Two systematic CI truncation strategies are compared beyond minimal basis sets and full valence active spaces. One approach is based on the seniority number (defined as the total number of singly occupied orbitals in a determinant) and another is based on an excitation-level limitation. In addition, molecular orbitals are energy-optimized using multiconfigurational-self-consistent-field procedure for all these wave functions. The test cases include the symmetric dissociation of water (6-31G), N2 (6-31G), C2 (6-31G), and Be2 (cc-pVTZ). We find that the potential energy profile for H2O dissociation can be reasonably well described using only the Ω = 0 sector of the CI wave function. For the Be2 case, we show that the full CI potential energy curve (cc-pVTZ) is almost exactly reproduced using either Ω-based (including configurations having up to Ω = 2 in the virtual-orbital-space) or excitation-based (up to single-plus-double-substitutions) selection methods, both out of a full-valence-reference function. Finally, in dissociation cases of N2 and C2, we shall also consider novel hybrid wave functions obtained by a union of a set of CI configurations representing the full valence space and a set of CI configurations where seniority-number restriction is imposed for a complete set (full-valence-space and virtual) of correlated molecular orbitals

  18. Block-Localized Density Functional Theory (BLDFT), Diabatic Coupling, and Their Use in Valence Bond Theory for Representing Reactive Potential Energy Surfaces

    PubMed Central

    Cembran, Alessandro; Song, Lingchun; Mo, Yirong; Gao, Jiali

    2010-01-01

    A multistate density functional theory in the framework of the valence bond model is described. The method is based on a block-localized density functional theory (BLDFT) for the construction of valence-bond-like diabatic electronic states and is suitable for the study of electron transfer reactions and for the representation of reactive potential energy surfaces. The method is equivalent to a valence bond theory with the treatment of the localized configurations by using density functional theory (VBDFT). In VBDFT, the electron densities and energies of the valence bond states are determined by BLDFT. A functional estimate of the off-diagonal matrix elements of the VB Hamiltonian is proposed, making use of the overlap integral between Kohn–Sham determinants and the exchange-correlation functional for the ground state substituted with the transition (exchange) density. In addition, we describe an approximate approach, in which the off-diagonal matrix element is computed by wave function theory using block-localized Kohn–Sham orbitals. The key feature is that the electron density of the adiabatic ground state is not directly computed nor used to obtain the ground-state energy; the energy is determined by diagonalization of the multistate valence bond Hamiltonian. This represents a departure from the standard single-determinant Kohn–Sham density functional theory. The multistate VBDFT method is illustrated by the bond dissociation of H2+ and a set of three nucleophilic substitution reactions in the DBH24 database. In the dissociation of H2+, the VBDFT method yields the correct asymptotic behavior as the two protons stretch to infinity, whereas approximate functionals fail badly. For the SN2 nucleophilic substitution reactions, the hybrid functional B3LYP severely underestimates the barrier heights, while the approximate two-state VBDFT method overcomes the self-interaction error, and overestimates the barrier heights. Inclusion of the ionic state in a three

  19. Structural determination of cerebrosides isolated from Asterias amurensis starfish eggs using high-energy collision-induced dissociation of sodium-adducted molecules.

    PubMed

    Park, Taeseong; Park, Young Seung; Rho, Jung-Rae; Kim, Young Hwan

    2011-03-15

    Six cerebrosides were isolated from the eggs of the starfish Asterias amurensis using solvent extraction, silica gel column chromatography, and reversed-phase high-performance liquid chromatography. This study demonstrated that the structures of cerebrosides could be completely characterized, based on their sodium-adducted molecules, using fast atom bombardment (FAB) tandem mass spectrometry. The high-energy collision-induced dissociation of the sodium-adducted molecule, [M + Na](+), of each cerebroside molecular species generated abundant ions, providing information on the compositions of the 2-hydroxy fatty acids and long-chain sphingoid bases, as well as the sugar moiety polar head group. Each homologous ion series along the fatty acid and aliphatic chain of the sphingoid base was useful for locating the double-bond positions of both chains and the methyl branching position of the long-chain base. The N-fatty acyl portions were primarily long-chain saturated or monoenoic acids (C16 to C24) with an α-hydroxy group. The sphingoid long-chain base portions were aliphatic chains (C18 or C22) with two or three degrees of unsaturation and with or without methyl branching. PMID:21290443

  20. Studies on high-energy collision-induced dissociation of endogenous cannabinoids: 2-arachidonoylglycerol and n-arachidonoylethanolamide in FAB-mass spectrometry.

    PubMed

    Kasai, Hiroko F; Tsubuki, Masayoshi; Honda, Toshio

    2006-07-01

    Analysis of 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (anandamide) via alkali or alkaline earth metal-adduct high-energy collision-induced dissociation (CID) in fast-atom bombardment (FAB) ionization-mass spectrometry (MS) is described. The CID-MS/MS of the [2-AG+Li](+) or [2-AG+Na](+) ion undergoes charge-remote fragmentation (CRF), which is useful for the determination of the double-bond positions in the hydrocarbon chain, while the CID-MS/MS of the [2-AG-H+Cat](+) (Cat = Mg(2+), Ca(2+), Ba(2+)) ion provides an abundant fragment ion of the cationized arachidonic acid species, which is derived from cleaving the ester bond via a McLafferty-type rearrangement in addition to structurally informative CRF ions in small amounts. On the other hand, the CID-MS/MS spectra of anandamide cationized with both alkali metal (Li(+) or Na(+)) and alkaline earth metal (Mg(2+), Ca(2+), or Ba(2+)) show CRF patterns: the spectra obtained in lithium or sodium adduct are more clearly visible than those in magnesium, calcium, or barium adduct. The McLafferty rearrangement is not observed with metal-adduct anandamide. The characteristics in each mass spectrum are useful for the detection of these endogenous ligands. m-Nitrobenzyl alcohol (m-NBA) is the most suitable matrix. A lithium-adduct [2-AG+Li](+) or [anandamide+Li](+) ion is observed to be the most abundant in each mass spectrum, since the affinity of lithium for m-NBA is lower than that for other matrices examined. PMID:16837740

  1. The trouble with chemical energy: why understanding bond energies requires an interdisciplinary systems approach.

    PubMed

    Cooper, Melanie M; Klymkowsky, Michael W

    2013-06-01

    Helping students understand "chemical energy" is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk about chemical energy (which is also the way we talk about energy in everyday life); 2) the macroscopic approach to energy concepts that is common in physics and physical sciences; and 3) the failure of chemistry courses to explicitly link molecular with macroscopic energy ideas. From a constructivist perspective, it is unlikely that students can, without a coherent understanding of such a central concept, attain a robust and accurate understanding of new concepts. However, changes are on the horizon, guided by the increasing understanding that difficult concepts require coherent, well-designed learning progressions and the new National Research Council Framework for K-12 Science Education. We provide supporting evidence for our assertions and suggestions for an interdisciplinary learning progression designed to better approach the concept of bond energies, a first step in an understanding chemical energy and behavior of reaction systems that is central to biological systems. PMID:23737636

  2. A revised set of values of single-bond radii derived from the observed interatomic distances in metals by correction for bond number and resonance energy

    PubMed Central

    Pauling, Linus; Kamb, Barclay

    1986-01-01

    An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698

  3. First-principles study of molecular NO dissociation on Ir(100) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.

    2014-02-01

    The dissociation of NO on Ir(100) surface is investigated using density functional theory (DFT). The pathway and transition state (TS) of the dissociation of NO molecule are determined using climbing image nudge elastic band (CI-NEB). The prerequisite state of NO dissociation is determining the most stable sites of the reactant and products. We found that the most energetically stable sites are the hollow for N atom and the bridge for NO molecule as well as O atom. We found that the bending of NO is the first step of the dissociation reaction due to the increase of the back-donation from the d-band of Ir to 2 π ∗ orbital of NO, which causes the weakening of NO bond. The dissociation energy barrier of NO molecule on Ir(100) surface is 0.49 eV.

  4. The Trouble with Chemical Energy: Why Understanding Bond Energies Requires an Interdisciplinary Systems Approach

    PubMed Central

    Cooper, Melanie M.; Klymkowsky, Michael W.

    2013-01-01

    Helping students understand “chemical energy” is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk about chemical energy (which is also the way we talk about energy in everyday life); 2) the macroscopic approach to energy concepts that is common in physics and physical sciences; and 3) the failure of chemistry courses to explicitly link molecular with macroscopic energy ideas. From a constructivist perspective, it is unlikely that students can, without a coherent understanding of such a central concept, attain a robust and accurate understanding of new concepts. However, changes are on the horizon, guided by the increasing understanding that difficult concepts require coherent, well-designed learning progressions and the new National Research Council Framework for K–12 Science Education. We provide supporting evidence for our assertions and suggestions for an interdisciplinary learning progression designed to better approach the concept of bond energies, a first step in an understanding chemical energy and behavior of reaction systems that is central to biological systems. PMID:23737636

  5. Kinetic-energy release in the dissociative capture-ionization of CO molecules by 97-MeV Ar14+ ions

    NASA Astrophysics Data System (ADS)

    Watson, R. L.; Sampoll, G.; Horvat, V.; Heber, O.

    1996-02-01

    The dissociation of COQ+ molecular ions (Q=4 to 9) produced in multiply ionizing collisions accompanied by the transfer of an electron to the projectile has been studied using time-of-flight techniques. Analysis of the coincident-ion-pair flight-time-difference distributions yielded average values of the kinetic-energy releases for the various dissociation reactions. These values were found to be as much as a factor of 2 greater than the kinetic-energy releases expected for dissociation along Coulombic potential curves. The average kinetic-energy release observed for a given ion pair with charges q1 and q2 are nearly equal to the point-charge Coulomb potential energies for an ion pair with charges q1+1 and q2+1, suggesting that the parent molecular ion is formed with two electrons, on average, in highly excited states that do not contribute to the screening of the nuclei.

  6. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    SciTech Connect

    Blank, D.A.; North, S.W.; Stranges, D.

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  7. Dissociation of gaseous zwitterion glycine-betaine by slow electrons.

    PubMed

    Kopyra, J; Abdoul-Carime, H

    2010-05-28

    In this work, we investigate dissociation processes induced by low-energy electrons to gas phase N,N,N-trimethylglycine [glycine-betaine, (CH(3))(3)N(+)CH(2)COO(-)] molecules. Glycine-betaine represents a model system for zwitterions. All negative fragments are observed to be produced only at subelectronic excitation energies (<4 eV). With the exception of the loss of a neutral H atom that could arise from any C[Single Bond]H bond breaking, we tentatively suggest that the zwitterion dissociates exclusively from the fragmentation of the cation site of the molecule, subsequent to the attachment of the excess electron. Within the context of radiation induced damage to biological systems, the present findings contribute to a more complete description of the fragmentation mechanism occurring to amino acids, peptides, and proteins since they adopt usually a zwitterion structure. PMID:20515090

  8. Theoretical aspects of the biological catch bond.

    PubMed

    Prezhdo, Oleg V; Pereverzev, Yuriy V

    2009-06-16

    The biological catch bond is fascinating and counterintuitive. When an external force is applied to a catch bond, either in vivo or in vitro, the bond resists breaking and becomes stronger instead. In contrast, ordinary slip bonds, which represent the vast majority of biological and chemical bonds, dissociate faster when subjected to a force. Catch-bond behavior was first predicted theoretically 20 years ago and has recently been experimentally observed in a number of protein receptor-ligand complexes. In this Account, we review the simplest physical-chemical models that lead to analytic expressions for bond lifetime, the concise universal representations of experimental data, and the explicit requirements for catch binding. The phenomenon has many manifestations: increased lifetime with growing constant force is its defining characteristic. If force increases with time, as in jump-ramp experiments, catch binding creates an additional maximum in the probability density of bond rupture force. The new maximum occurs at smaller forces than the slip-binding maximum, merging with the latter at a certain ramp rate in a process resembling a phase transition. If force is applied periodically, as in blood flows, catch-bond properties strongly depend on force frequency. Catch binding results from a complex landscape of receptor-ligand interactions. Bond lifetime can increase if force (i) prevents dissociation through the native pathway and drives the system over a higher energy barrier or (ii) alters protein conformations in a way that strengthens receptor-ligand binding. The bond deformations can be associated with allostery; force-induced conformational changes at one end of the protein propagate to the binding site at the other end. Surrounding water creates further exciting effects. Protein-water tension provides an additional barrier that can be responsible for significant drops in bond lifetimes observed at low forces relative to zero force. This strong dependence of

  9. Dissociative Ionization Mechanism and Appearance Energies in Adipic Acid Revealed by Imaging Photoelectron Photoion Coincidence, Selective Deuteration, and Calculations.

    PubMed

    Heringa, Maarten F; Slowik, Jay G; Prévôt, André S H; Baltensperger, Urs; Hemberger, Patrick; Bodi, Andras

    2016-05-26

    Adipic acid, a model compound for oxygenated organic aerosol, has been studied at the VUV beamline of the Swiss Light Source. Internal energy selected cations were prepared by threshold photoionization using vacuum ultraviolet synchrotron radiation and imaging photoelectron photoion coincidence spectroscopy (iPEPICO). The threshold photoelectron spectrum yields a vertical ionization energy (IE) of 10.5 eV, significantly above the calculated adiabatic IE of 8.6 eV. The cationic minimum is accessible after vertical ionization by H-transfer from one of the γ-carbons to a carbonyl oxygen and is sufficiently energetic to decay by water loss at the ionization onset. The slope of the breakdown curves, quantum chemical calculations, and selective deuteration of the carboxylic hydrogens establish the dissociative photoionization mechanism. After ionization, one γ-methylene hydrogen and the two carboxylic hydrogens are randomized prior to H2O loss. On the basis of the deuteration degree in the H2O + CO-loss product at higher energies, a direct water-loss channel without complete randomization also exists. The breakdown diagram and center of gravity of the H2O + CO-loss peak were modeled to obtain 0 K appearance energies of 10.77, 10.32, and 11.53 eV for H2O + CO loss, CH2COOH loss, and H2O + CH2COOH loss from adipic acid. These agree well with the CBS-QB3 calculated values of 10.68, 10.45, and 11.57 eV, respectively, which shows that threshold photoionization can yield energetics data as long as the dissociation is statistical, even when the parent ion cannot be observed. The results can be used as a starting point for a deeper understanding of the ionization and low-energy fragmentation of organic aerosol components. PMID:27100102

  10. Influence of Electron Molecule Resonant Vibrational Collisions over the Symmetric Mode and Direct Excitation-Dissociation Cross Sections of CO2 on the Electron Energy Distribution Function and Dissociation Mechanisms in Cold Pure CO2 Plasmas.

    PubMed

    Pietanza, L D; Colonna, G; Laporta, V; Celiberto, R; D'Ammando, G; Laricchiuta, A; Capitelli, M

    2016-05-01

    A new set of electron-vibrational (e-V) processes linking the first 10 vibrational levels of the symmetric mode of CO2 is derived by using a decoupled vibrational model and inserted in the Boltzmann equation for the electron energy distribution function (eedf). The new eedf and dissociation rates are in satisfactory agreement with the corresponding ones obtained by using the e-V cross sections reported in the database of Hake and Phelps (H-P). Large differences are, on the contrary, found when the experimental dissociation cross sections of Cosby and Helm are inserted in the Boltzman equation. Comparison of the corresponding rates with those obtained by using the low-energy threshold energy, reported in the H-P database, shows differences up to orders of magnitude, which decrease with the increasing of the reduced electric field. In all cases, we show the importance of superelastic vibrational collisions in affecting eedf and dissociation rates either in the direct electron impact mechanism or in the pure vibrational mechanism. PMID:27064438

  11. Spondylopelvic dissociation.

    PubMed

    Sullivan, Matthew P; Smith, Harvey E; Schuster, James M; Donegan, Derek; Mehta, Samir; Ahn, Jaimo

    2014-01-01

    Spondylopelvic dissociation is a complex injury pattern resulting in multiplanar instability of the lumbopelvis. These injuries have traditionally been known as "suicide jumper's fractures" and have recently increased in prevalence as a result of under-vehicle explosions seen in the past decade of military conflicts in the Middle East. The hallmarks of spondylopelvic dissociation are bilateral vertical sacral fractures with a horizontal component, resulting in lumbosacral instability in the sagittal and axial planes. Surgical treatment has evolved greatly and both percutaneous and open options are available, with triangular osteosynthesis being the most relied on method of fixation. PMID:24267208

  12. Direct computation of general chemical energy differences: Application to ionization potentials, excitation, and bond energies

    SciTech Connect

    Beste, Ariana; Harrison, Robert J; Yanai, Takeshi

    2006-01-01

    Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (c.f., thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory (DFT) and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a non-geometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as constraining the orbitals to be orthogonal.

  13. Direct computation of general chemical energy differences: Application to ionization potentials, excitation, and bond energies

    NASA Astrophysics Data System (ADS)

    Beste, A.; Harrison, R. J.; Yanai, T.

    2006-08-01

    Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.

  14. The Quadruple Bonding in C2 Reproduces the Properties of the Molecule.

    PubMed

    Shaik, Sason; Danovich, David; Braida, Benoit; Hiberty, Philippe C

    2016-03-14

    Ever since Lewis depicted the triple bond for acetylene, triple bonding has been considered as the highest limit of multiple bonding for main elements. Here we show that C2 is bonded by a quadruple bond that can be distinctly characterized by valence-bond (VB) calculations. We demonstrate that the quadruply-bonded structure determines the key observables of the molecule, and accounts by itself for about 90% of the molecule's bond dissociation energy, and for its bond lengths and its force constant. The quadruply-bonded structure is made of two strong π bonds, one strong σ bond and a weaker fourth σ-type bond, the bond strength of which is estimated as 17-21 kcal mol(-1). Alternative VB structures with double bonds; either two π bonds or one π bond and one σ bond lie at 129.5 and 106.1 kcal mol(-1), respectively, above the quadruply-bonded structure, and they collapse to the latter structure given freedom to improve their double bonding by dative σ bonding. The usefulness of the quadruply-bonded model is underscored by "predicting" the properties of the (3)Σ+u state. C2's very high reactivity is rooted in its fourth weak bond. Thus, carbon and first-row main elements are open to quadruple bonding! PMID:26880488

  15. Electron-induced ionization and dissociative ionization of iron pentacarbonyl molecules

    NASA Astrophysics Data System (ADS)

    Lacko, Michal; Papp, Peter; Wnorowski, Karol; Matejčík, Štefan

    2015-03-01

    Electron ionization (EI) and dissociative ionization (DI) of Iron pentacarbonyl molecule (Fe(CO)5) was studied using a crossed molecular and electron beam mass spectrometry technique. Positive ions FeO(CO)+, FeC(CO)2+ and CO+ of Fe(CO)5 were detected for the first time. We have determined the experimental appearance energies of positive ions, the thresholds for dissociative reactions, the experimental bond dissociation energies for (CO)nFe+-CO bond breaks (for n = 4,..., 0) and their average value for Fe-C bond energy 1.25 eV in Fe(CO)5+. We have performed extensive density functional theory (DFT) studies of the ground states of neutral molecule and fragments 1 A1' Fe(CO)5, 3B1 Fe(CO)4, 3A1Fe(CO)3, 3∑g Fe(CO)2, 3 ∑FeCO as well as positive ions 2A1 Fe(CO)5+, 4A1 Fe(CO)4+, 4A1 Fe(CO)3+, 4∑g Fe(CO)2+ and 4 ∑ FeCO+. The structures and energies of the states have beendetermined and the calculated bond dissociation energies (BDEs) were compared with present experiments as well as with previous works. Contribution to the Topical Issue "Elementary Processes with Atoms and Molecules in Isolated and Aggregated States", edited by Friedrich Aumayr, Bratislav Marinkovic, Stefan Matejick, John Tanis and Kurt H. Becker.

  16. Axial spatial distribution focusing: improving MALDI-TOF/RTOF mass spectrometric performance for high-energy collision-induced dissociation of biomolecules

    PubMed Central

    Belgacem, O; Pittenauer, E; Openshaw, M E; Hart, P J; Bowdler, A; Allmaier, G

    2016-01-01

    Rationale For the last two decades, curved field reflectron technology has been used in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometers, assisting in the generation of post-source-decay (PSD) or collision-induced dissociation (CID) without decelerating precursor ions, producing true high-energy CID spectra. The result was the generation of product ion mass spectra with product ions typical of high-energy (10 keV and beyond) collision processes. The disadvantage of this approach was the lack of resolution in CID spectra resulting from the excess laser energy deposition used to generate those MS/MS spectra. The work presented in this study overcomes this limitation and includes comprehensive examples of high-energy and high-resolution CID MALDI-MS/MS spectra of biomolecules. Methods The devices used in this study are TOF/RTOF instruments equipped with a high-vacuum MALDI ion source. High-resolution and high-energy CID spectra result from the use of axial spatial distribution focusing (ASDF) in combination with curved field reflectron technology. Results A CID spectrum of the P14R1 peptide exhibits product ion resolution in excess of 10,000 (FWHM) but at the same time yields typical high-energy product ions such as w- and [y–2]-type ion series. High-energy CID spectra of lipids, exemplified by a glycerophospholipid and triglyceride, demonstrate C–C backbone fragmentation elucidating the presence of a hydroxyl group in addition to double-bond positioning. A complex high mannose carbohydrate (Man)8(GlcNAc)2 was also studied at 20 keV collision energy and revealed further high-energy product ions with very high resolution, allowing unambiguous detection and characterization of cross-ring cleavage-related ions. Conclusions This is the first comprehensive study using a MALDI-TOF/RTOF instrument equipped with a curved field reflectron and an ASDF device prior to the reflectron. © 2015 The Authors. Rapid Communications in

  17. Low-energy electron-induced dissociation in condensed-phase L-cysteine I: Desorption of anions from chemisorbed films

    NASA Astrophysics Data System (ADS)

    Alizadeh, E.; Massey, S.; Rowntree, P. A.; Sanche, L.

    2015-09-01

    Among amino acids, cysteine has been widely studied, becoming a standard for molecular self-assembly experiments, because its mercapto group (-SH) allows the formation of self-assembled monolayers (SAMs) on metal surfaces. Dissociative electron attachment (DEA) on L-cysteine SAMs is investigated utilizing a time-of-flight mass spectrometer coupled with a low-energy electron gun. The results show that electrons with kinetic energies of 3 to 15 eV attach to L-cysteine producing anionic fragments of different masses (e.g., H-, O-, OH-, S-, SH-) via dissociation of intermediate transient anions. The anion yield functions exhibited purely resonant behaviour with electron energies below 15 eV, indicating that the formation of transient anions is the predominant mechanism of production of anionic fragments from L-cysteine dissociation.

  18. Low-Energy Collision-Induced Dissociation Fragmentation Analysis of Cysteinyl-Modified Peptides

    SciTech Connect

    Borisov, Oleg V.; Goshe, Michael B. ); Conrads, Thomas P. ); Rakov, Vsevolod S. ); Veenstra, Timothy D. ); Smith, Richard D. )

    2002-05-15

    The development of methods to chemically modify and isolate cysteinyl-residue containing peptides (Cys-peptides) for LC-MS/MS analysis has generated considerable interest in the field of proteomics. Methods using isotope-coded affinity tags (ICAT) and (+)-biotinyl-iodoacetamidyl-3,6-dioxaoctanediamine (iodoacetyl-PEO-biotin) employ similar Cys-modifying reagents that contain a thiolate-specific biotin group to modify and isolate Cys-containing peptides in conjunction with immobilized avidin. For these strategies to be effective on a proteome-wide level, the presence of the ICAT or acetyl-PEO-biotin tag should not interfere with the efficiency of induced dissociation in MS/MS experiments or with the identification of the modified Cys-peptides by automated database searching algorithms. We have compared the collision-induced dissociation (CID) fragmentation patterns of peptides labeled with iodoacetyl-PEO-biotin and the ICAT reagent to those of the unmodified peptides. CID of Cys-peptides modified with either reagent resulted in the formation of ions attributed to the modified Cys-peptides as well as those unique to the labeling reagent. As demonstrated by analyzing acetyl-PEO-biotin labeled peptides from ribonuclease A and the ICAT-labeled proteome of D. radiodurans, the presence of these labeled-specific product ions provides a useful identifier to discern whether a peptide has been modified with the Cys-specific reagent, especially when a number of peptides analyzed using these methods do not contain a modified Cys-residue, and to differentiate identical Cys-peptides labeled with either ICAT-D0 or ICAT-D8.

  19. A simple model of the HNCO ({sup 1}{ital A}{prime}) excited state potential energy surface and a classical trajectory analysis of the vibrationally directed bond-selected photodissociation

    SciTech Connect

    Brown, S.S.; Cheatum, C.M.; Fitzwater, D.A.; Crim, F.F.

    1996-12-01

    Recent state-selected photodissociation experiments on isocyanic acid, HNCO, have provided a wealth of data on its photochemistry and dissociation dynamics. The excited state potential energy surface on which the dissociation occurs is central to these observations but is relatively uncharacterized. We construct a two-dimensional analytical model for the excited state potential that is consistent with experimental observations, including the ultraviolet absorption spectrum and the dynamics of the C{endash}N and N{endash}H bond dissociations. We then test this surface by running classical trajectories on it, using Morse oscillator vibrational wave functions from the ground electronic state to determine the probability distributions of initial conditions. The trajectory calculation reproduces the experimentally observed variation in the photochemical branching with photolysis wavelength. It also reproduces the bond selectivity in the photodissociation of HNCO molecules containing three quanta of N{endash}H stretching excitation (3{nu}{sub 1}) that we observed experimentally. Although the model for the surface is very simple and includes only two degrees of freedom, it captures the essential features that determine the photochemical branching in a direct dissociation. {copyright} {ital 1996 American Institute of Physics.}

  20. The Bond Energy of CH3-H: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Dorain, Paul B.

    1979-01-01

    Describes an experiment, designed for use in the undergraduate laboratory, that measures the bond energies of molecules using a small commercial mass spectrometer and low-cost digital voltmeters. (BT)

  1. Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene

    PubMed Central

    Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, S. B.

    2013-01-01

    Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD that predict H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations. PMID:23277576

  2. Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene

    SciTech Connect

    Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, Shengbai

    2013-01-15

    Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab-initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD which predicts H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations.

  3. Free Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of Glycosidic Bonds in Cellulose*

    PubMed Central

    Sørensen, Trine Holst; Cruys-Bagger, Nicolaj; Borch, Kim; Westh, Peter

    2015-01-01

    Kinetic and thermodynamic data have been analyzed according to transition state theory and a simplified reaction scheme for the enzymatic hydrolysis of insoluble cellulose. For the cellobiohydrolase Cel7A from Hypocrea jecorina (Trichoderma reesei), we were able to measure or collect relevant values for all stable and activated complexes defined by the reaction scheme and hence propose a free energy diagram for the full heterogeneous process. For other Cel7A enzymes, including variants with and without carbohydrate binding module (CBM), we obtained activation parameters for the association and dissociation of the enzyme-substrate complex. The results showed that the kinetics of enzyme-substrate association (i.e. formation of the Michaelis complex) was almost entirely entropy-controlled and that the activation entropy corresponded approximately to the loss of translational and rotational degrees of freedom of the dissolved enzyme. This implied that the transition state occurred early in the path where the enzyme has lost these degrees of freedom but not yet established extensive contact interactions in the binding tunnel. For dissociation, a similar analysis suggested that the transition state was late in the path where most enzyme-substrate contacts were broken. Activation enthalpies revealed that the rate of dissociation was far more temperature-sensitive than the rates of both association and the inner catalytic cycle. Comparisons of one- and two-domain variants showed that the CBM had no influence on the transition state for association but increased the free energy barrier for dissociation. Hence, the CBM appeared to promote the stability of the complex by delaying dissociation rather than accelerating association. PMID:26183776

  4. Dissociation of diatomic gases

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.

    1991-01-01

    The Landau-Zener theory of reactive cross sections has been applied to diatomic molecules dissociating from a ladder of rotational and vibrational states. Although the preexponential factor of the Arrhenius rate expression is shown to be a complex function of the dimensionless activation energy, the average over all states in the ladder is well represented by a single factor that varies about as T exp (-n), where the coefficient n is the order of unity. This relation agrees very well with experimental data for dissociation of O2 and N2, for example. The results validate previous empirical assignment of a single preexponential factor in the Arrhenius expression and justify the extrapolation of the expression well beyond the range of data. The theory is then used to calculate the effect of vibrational nonequilibrium on dissociation rate. For Morse oscillators the results are about the same as for harmonic oscillators, and the dissociation from a ladder of equilibrium rotational and nonequilibrium vibrational states is close to an analytic approximation provided by Hammerling, Kivel, and Teare for harmonic oscillators all dissociating from the ground rotational state.

  5. Protein unfolding from free-energy calculations: Integration of the Gaussian network model with bond binding energies

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit; Granek, Rony

    2015-02-01

    Motivated by single molecule experiments, we study thermal unfolding pathways of four proteins, chymotrypsin inhibitor, barnase, ubiquitin, and adenylate kinase, using bond network models that combine bond energies and elasticity. The protein elasticity is described by the Gaussian network model (GNM), to which we add prescribed bond binding energies that are assigned to all (nonbackbone) connecting bonds in the GNM of native state and assumed identical for simplicity. Using exact calculation of the Helmholtz free energy for this model, we consider bond rupture single events. The bond designated for rupture is chosen by minimizing the free-energy difference for the process, over all (nonbackbone) bonds in the network. Plotting the free-energy profile along this pathway at different temperatures, we observe a few major partial unfolding, metastable or stable, states, that are separated by free-energy barriers and change role as the temperature is raised. In particular, for adenylate kinase we find three major partial unfolding states, which is consistent with single molecule FRET experiments [Pirchi et al., Nat. Commun. 2, 493 (2011), 10.1038/ncomms1504] for which hidden Markov analysis reveals between three and five such states. Such states can play a major role in enzymatic activity.

  6. On the photostability of peptides after selective photoexcitation of the backbone: prompt versus slow dissociation.

    PubMed

    Byskov, Camilla Skinnerup; Jensen, Frank; Jørgensen, Thomas J D; Nielsen, Steen Brøndsted

    2014-08-14

    Vulnerability of biomolecules to ultraviolet radiation is intimately linked to deexcitation pathways: photostability requires fast internal conversion to the electronic ground state, but also intramolecular vibrational redistribution and cooling on a time scale faster than dissociation. Here we present a protocol to disentangle slow and non-hazardous statistical dissociation from prompt cleavage of peptide bonds by 210 nm light based on experiments on protonated peptides isolated in vacuo and tagged by 18-crown-6 ether (CE). The weakest link in the system is between the charged site and CE, which is remote from the initial site of excitation. Hence loss of CE serves as direct proof that energy has reached the charge-site end, leaving the backbone intact. Our work demonstrates that excitation of tertiary amide moieties (proline linkages) results in both prompt dissociation and statistical dissociation after energy randomisation over all vibrational degrees of freedom. PMID:24945849

  7. Components of the Bond Energy in Polar Diatomic Molecules, Radicals, and Ions Formed by Group-1 and Group-2 Metal Atoms.

    PubMed

    Yu, Haoyu; Truhlar, Donald G

    2015-07-14

    Although many transition metal complexes are known to have high multireference character, the multireference character of main-group closed-shell singlet diatomic molecules like BeF, CaO, and MgO has been less studied. However, many group-1 and group-2 diatomic molecules do have multireference character, and they provide informative systems for studying multireference character because they are simpler than transition metal compounds. The goal of the present work is to understand these multireference systems better so that, ultimately, we can apply what we learn to more complicated multireference systems and to the design of new exchange-correlation functionals for treating multireference systems more adequately. Fourteen main-group diatomic molecules and one triatomic molecule (including radicals, cations, and anions, as well as neutral closed-shell species) have been studied for this article. Eight of these molecules contain a group-1 element, and six contain a group-2 element. Seven of these molecules are multireference systems, and eight of them are single-reference systems. Fifty-three exchange-correlation functionals of 11 types [local spin-density approximation (LSDA), generalized gradient approximation (GGA), nonseparable gradient approximation (NGA), global-hybrid GGA, meta-GGA, meta-NGA, global-hybrid meta GGA, range-separated hybrid GGA, range-separated hybrid meta-GGA, range-separated hybrid meta-NGA, and DFT augmented with molecular mechanics damped dispersion (DFT-D)] and the Hartree-Fock method have been applied to calculate the bond distance, bond dissociation energy (BDE), and dipole moment of these molecules. All of the calculations are converged to a stable solution by allowing the symmetry of the Slater determinant to be broken. A reliable functional should not only predict an accurate BDE but also predict accurate components of the BDE, so each bond dissociation energy has been decomposed into ionization potential (IP) of the electropositive

  8. Hypovalency--a kinetic-energy density description of a 4c-2e bond.

    PubMed

    Jacobsen, Heiko

    2009-06-01

    A bond descriptor based on the kinetic energy density, the localized-orbital locator (LOL), is used to characterize the nature of the chemical bond in electron deficient multi-center bonds. The boranes B(2)H(6), B(4)H(4), B(4)H(10), [B(6)H(6)](2-), and [B(6)H(7)](-) serve as prototypical examples of hypovalent 3c-2e and 4c-2e bonding. The kinetic energy density is derived from a set of Kohn-Sham orbitals obtained from pure density functional calculations (PBE/TZVP), and the topology of LOL is analyzed in terms of (3,-3) attractors (Gamma). The B-B-B and B-H-B 3c-2e, and the B-B-H-B 4c-2e bonding situations are defined by their own characteristic LOL profiles. The presence of one attractor in relation to the three or four atoms that are engaged in electron deficient bonding provides sufficient indication of the type of 3c-2e or 4c-2e bond present. For the 4c-2e bond in [B(6)H(7)](-) the LOL analysis is compared to results from an experimental QTAIM study. PMID:19452076

  9. Calculation of the Gibbs Free Energy of Solvation and Dissociation of HCl in Water via Monte Carlo Simulations and Continuum Solvation Models

    SciTech Connect

    McGrath, Matthew; Kuo, I-F W.; Ngouana, Brice F.; Ghogomu, Julius N.; Mundy, Christopher J.; Marenich, Aleksandr; Cramer, Christopher J.; Truhlar, Donald G.; Siepmann, Joern I.

    2013-08-28

    The free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation quantum chemical approach at four temperatures between T = 300 and 450 K. The free energy is first decomposed into the sum of two components: the Gibbs free energy of transfer of molecular HCl from the vapor to the aqueous liquid phase and the standard-state free energy of acid dissociation of HCl in aqueous solution. The former quantity is calculated using Gibbs ensemble Monte Carlo simulations using either Kohn-Sham density functional theory or a molecular mechanics force field to determine the system’s potential energy. The latter free energy contribution is computed using a continuum solvation model utilizing either experimental reference data or micro-solvated clusters. The predicted combined solvation and dissociation free energies agree very well with available experimental data. CJM was supported by the US Department of Energy,Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  10. The dissociation of low energy 1,2-propanediol ions: an intriguing mechanism revisited

    NASA Astrophysics Data System (ADS)

    Burgers, Peter C.; Fell, Lorne M.; Milliet, Arielle; Rempp, Muriel; Ruttink, Paul J. A.; Terlouw, Johan K.

    1997-11-01

    The fascinating unimolecular chemistry of ionized 1,2-propanediol, CH3C(H)OHCH2OH[middle dot]+, 1, has been re-examined using computational chemistry (ab initio MO and density functional theories) in conjunction with modern tandem mass spectrometric and 13C labelling experiments. The calculations allow a considerable simplification of a previously proposed complex mechanism (Org. Mass Spectrom., 23 (1988) 355). Again, the central intermediates are proposed to be stable hydrogen bridged ion--dipole complexes, but our present calculations indicate that the key transformation now is the rearrangement CH3C(H)OH+[middle dot][middle dot][middle dot]O(H)-CH2. --> CH3C(H)OH+[middle dot][middle dot][middle dot].OCH3, which can best be viewed as the cation-catalyzed 1,2-hydrogen shift .CH2OH --> CH3O., a rearrangement which does not occur so easily in the unassisted system. Another important process is the electron transfer CH3C(H)=O[middle dot][middle dot][middle dot]CH3OH[middle dot]+ --> O=CH(CH3)[middle dot]+[middle dot][middle dot][middle dot]O(H)CH3 which allows proton transfer to generate CH3OH2+ + CH3C=O.. Other dissociation processes (loss of CH3., H2O, H2O + CH3., H2O + CH4) are interpreted in terms of Bohme's `methyl cation shuttle' (J. Am. Chem. Soc., 118 (1996) 4500) taking place in ion-dipole complexes. The most stable intermediate is the hydrogen bridged ion-dipole complex CH2=CHOH.+[middle dot][middle dot][middle dot]O(H)CH3, which is the reacting configuration for loss of methanol.

  11. Theoretical study of adsorption and dissociation of NH3 on pentanuclear Fe(111) surface

    NASA Astrophysics Data System (ADS)

    Purwiandono, G.; Triyono; Wijaya, K.

    2016-02-01

    Theoretical study regarding the adsorption and dissociation of NH3 molecule on Fe(111) surface has been carried out. The method used was DFT-B3LYP, and the basis sets used were ECP and 6-311G**. This research aimed at giving the theoretical understanding of adsorption and dissociation of NH3 molecule on Fe(111) surface. The adsorption and dissociation were studied based on the energetic parameter, bond length, electron population, vibration and orbital interaction. The result of theoretical calculation revealed that the on top position is the interaction position with the minimum energy for the adsorption of NH3 molecule on Fe(111) surface. The analysis of electron population of the two composing molecular orbitals indicated that the transfer of electron has an important role in the mechanism of adsorption. The visualization of molecular orbital showed that the transfer of electron occurred in the electron pairs of the interacting orbital. Relating to the adsorption mechanism and the overlapping of interaction orbitals, NH3 molecule provides the Highest Occupied Molecular Orbital (HOMO) as the interaction pair for the Lowest Unoccupied Molecular Orbital (LUMO) on Fe surface. The insignificant difference between the oxidation state of N and H atoms as well as the higher hemolytic N-H bond dissociation energy (compared to heterolytic dissociation) cause the adsorption mechanism of NH3 on Fe(111) model to occur through homolytic-dissociative chemisorption.

  12. II. Dissociation free energies in drug-receptor systems via nonequilibrium alchemical simulations: application to the FK506-related immunophilin ligands.

    PubMed

    Nerattini, Francesca; Chelli, Riccardo; Procacci, Piero

    2016-06-01

    The recently proposed fast switching double annihilation (FS-DAM) [Cardelli et al., J. Chem. Theory Comput., 2015, 11, 423] is aimed at computing the absolute standard dissociation free energies for the chemical equilibrium RL ⇌ R + L occurring in solution through molecular dynamics (MD) simulations at the atomistic level. The technique is based on the production of fast nonequilibrium annihilation trajectories of one of the species (the ligand) in the solvated RL complex and in the bulk solvent. As detailed in the companion theoretical paper, the free energies of these two nonequilibrium annihilation processes are recovered by using an unbiased unidirectional estimate derived from the Crooks theorem exploiting the inherent Gaussian nature of the annihilation work. The FS-DAM technique was successfully applied to the evaluation of the dissociation free energy of the complexes of Zn(ii) cations with an inhibitor of the Tumor Necrosis Factor α converting enzyme. Here we apply the technique to a real drug-receptor system, by satisfactorily reproducing the experimental dissociation free energies of FK506-related bulky ligands towards the native FKBP12 enzyme and by predicting the dissociation constants for the same ligands towards the mutant I56D. The effect of such mutations on the binding affinity of FK506-related ligands is relevant for assessing the thermodynamic forces regulating molecular recognition in FKBP12 inhibition. PMID:27193181

  13. Statistical Characterization of the Charge State and Residue Dependence of Low-Energy CID Peptide Dissociation Patterns

    SciTech Connect

    Huang, Yingying; Triscari, Joseph M.; Tseng, George C.; Pasa-Tolic, Ljiljana; Lipton, Mary S.; Smith, Richard D.; Wysocki, Vicki H.

    2005-09-01

    Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg- and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides, a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s). Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages N-terminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and should be useful in algorithm development that employs improved models to predict fragment ion

  14. Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns.

    PubMed

    Huang, Yingying; Triscari, Joseph M; Tseng, George C; Pasa-Tolic, Ljiljana; Lipton, Mary S; Smith, Richard D; Wysocki, Vicki H

    2005-09-15

    Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg- and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides, a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from singly charged peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s) in multiply protonated peptides. Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages N-terminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and may be useful in algorithm development that employs

  15. Bond Graph Modeling and Validation of an Energy Regenerative System for Emulsion Pump Tests

    PubMed Central

    Li, Yilei; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    The test system for emulsion pump is facing serious challenges due to its huge energy consumption and waste nowadays. To settle this energy issue, a novel energy regenerative system (ERS) for emulsion pump tests is briefly introduced at first. Modeling such an ERS of multienergy domains needs a unified and systematic approach. Bond graph modeling is well suited for this task. The bond graph model of this ERS is developed by first considering the separate components before assembling them together and so is the state-space equation. Both numerical simulation and experiments are carried out to validate the bond graph model of this ERS. Moreover the simulation and experiments results show that this ERS not only satisfies the test requirements, but also could save at least 25% of energy consumption as compared to the original test system, demonstrating that it is a promising method of energy regeneration for emulsion pump tests. PMID:24967428

  16. Bond graph modeling and validation of an energy regenerative system for emulsion pump tests.

    PubMed

    Li, Yilei; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    The test system for emulsion pump is facing serious challenges due to its huge energy consumption and waste nowadays. To settle this energy issue, a novel energy regenerative system (ERS) for emulsion pump tests is briefly introduced at first. Modeling such an ERS of multienergy domains needs a unified and systematic approach. Bond graph modeling is well suited for this task. The bond graph model of this ERS is developed by first considering the separate components before assembling them together and so is the state-space equation. Both numerical simulation and experiments are carried out to validate the bond graph model of this ERS. Moreover the simulation and experiments results show that this ERS not only satisfies the test requirements, but also could save at least 25% of energy consumption as compared to the original test system, demonstrating that it is a promising method of energy regeneration for emulsion pump tests. PMID:24967428

  17. Dissociative electron attachment studies on acetone

    SciTech Connect

    Prabhudesai, Vaibhav S. Tadsare, Vishvesh; Ghosh, Sanat; Gope, Krishnendu; Davis, Daly; Krishnakumar, E.

    2014-10-28

    Dissociative electron attachment (DEA) to acetone is studied in terms of the absolute cross section for various fragment channels in the electron energy range of 0–20 eV. H{sup −} is found to be the most dominant fragment followed by O{sup −} and OH{sup −} with only one resonance peak between 8 and 9 eV. The DEA dynamics is studied by measuring the angular distribution and kinetic energy distribution of fragment anions using Velocity Slice Imaging technique. The kinetic energy and angular distribution of H{sup −} and O{sup −} fragments suggest a many body break-up for the lone resonance observed. The ab initio calculations show that electron is captured in the multi-centered anti-bonding molecular orbital which would lead to a many body break-up of the resonance.

  18. Photofragment translational spectroscopy of three body dissociations and free radicals

    SciTech Connect

    North, S.W.

    1995-04-01

    This dissertation describes several three-body dissociations and the photodissociation of methyl radicals studied using photofragment translational spectroscopy. The first chapter provides an introduction to three body dissociation, examines current experimental methodology, and includes a discussion on the treatment of photofragment translational spectroscopy data arising from three-body fragmentation. The ultraviolet photodissociation of azomethane into two methyl radicals and nitrogen is discussed in chapter 2. Chapter 3 describes the photodissociation of acetone at 248 nm and 193 nm. At 248 nm the translational energy release from the initial C-C bond cleavage matches the exit barrier height and a comparison with results at 266 nm suggests that is invariant to the available energy. A fraction of the nascent CH{sub 3}CO radicals spontaneously dissociate following rotational averaging. The for the second C-C bond cleavage also matches the exit barrier height. At 193 nm the experimental data can be successfully fit assuming that the dynamics are analogous to those at 248 nm. A simplified model of energy partitioning which adequately describes the experimental results is discussed. Experiments on acetyl halides provide additional evidence to support the proposed acetone dissociation mechanism. A value of 17.0{+-}1.0 kcal/mole for the barrier height, CH{sub 3}CO decomposition has been determined. The photodissociation of methyl radical at 193 nm and 212.8 nm is discussed in the chapter 5. The formation of CH{sub 2} ({sup 1}A{sub l}) and H ({sup 2}S) was the only single photon dissociation pathway observed at both wavelengths.

  19. Hadron cross sections at ultra high energies and unitarity bounds on diffraction dissociation

    NASA Technical Reports Server (NTRS)

    Yodh, G. B.; Gaisser, T. K.

    1985-01-01

    It was shown that if unitarity bounds on diffractive cross sections are valid at ultra high energies then diffractive dominance models which ascribe the increase in total hadron-hadron cross sections to diffractive processes only are ruled out. Calculations also show that cosmic ray cross sections derived from air shower experiments at ultra high energies clearly rule out models for hadron-hadron cross sections with nat.log ns energy dependence and favor those with nat.log n(2)s variation.

  20. Ab initio theoretical studies of potential energy surfaces in the photodissociation of the vinyl radical. I. Ã state dissociation

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Irle, Stephan; Morokuma, Keiji; Tschumper, Gregory S.

    2003-10-01

    The mechanism of photodissociation of the vinyl radical, C2H3, starting from the first doublet excited (D1,Ã) state was studied with high-level ab initio methods as well as with ab initio direct dynamics. Geometry optimizations of stationary points and surface crossing seams were performed with complete active space self-consistent field (CASSCF) method, and the energies were re-evaluated with single-point multireference single and double excitation configuration interaction (MRCISD) calculations. Both internal conversion and intersystem crossing channels, which could bring the excited vinyl radical down to the ground state potential energy surface leading to dissociation on the ground state, have been identified within planar Cs, twisted Cs and C2v symmetry. Direct dynamics calculation indicates that the most feasible reaction channel is the direct internal conversion from D1 to the ground state (D0) within planar Cs symmetry, through a minimum of seam of crossing (conical intersection) at an energy of about 80 kcal/mol (with respect to the ground-state equilibrium geometry). The other internal conversions from D1 to D0 through conical intersections within twisted Cs symmetry require energies of about 80 and 75 kcal/mol at the two minima of seam of crossing, respectively, and they are not favored dynamically without initial out-of-plane vibrational excitation. The intersystem crossing channels between D1 and the lowest quartet state (Q1) and D0 and Q1 within twisted Cs and C2v symmetry are not efficient due to the high energy of the minima of seam of crossing as well as the small spin-orbit coupling.

  1. High-Energy Collision-Induced Dissociation by MALDI TOF/TOF Causes Charge-Remote Fragmentation of Steroid Sulfates

    NASA Astrophysics Data System (ADS)

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B.; Holy, Timothy E.; Gross, Michael L.

    2014-08-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.

  2. Low-mass ions produced from peptides by high-energy collision-induced dissociation in tandem mass spectrometry.

    PubMed

    Falick, A M; Hines, W M; Medzihradszky, K F; Baldwin, M A; Gibson, B W

    1993-11-01

    High-energy collision-induced dissociation (CID) mass spectrometry provides a rapid and sensitive means for determining the primary sequence of peptides. The low-mass region (below mass 300) of a large number of tandem CID spectra of peptides has been analyzed. This mass region contains several types of informative fragment ions, including dipeptide ions, immonium ions, and other related ions. Useful low-mass ions are also present in negative-ion CID spectra. Immonium ions (general structure [H2N=CH-R](+), where R is the amino acid side chain) and related ions characteristic of specific amino acid residues give information as to the presence or absence of these residues in the peptide being analyzed. Tables of observed immonium and reiated ions for the 20 standard amino acids and for a number of modified amino acids are presented. A database consisting of 228 high-energy CID spectra of peptides has been established, and the frequency of occurrence of various ions indicative of specific ammo acid residues has been determined. Two model computer-aided schemes for analysis of the ammo-acid content of unknown peptides have been developed and tested against the database. PMID:24227532

  3. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  4. Dissociative ionization of the 1-propanol dimer in a supersonic expansion under tunable synchrotron VUV radiation.

    PubMed

    Tao, Yanmin; Hu, Yongjun; Xiao, Weizhan; Guan, Jiwen; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2016-05-11

    Photoionization and dissociation of the 1-propanol dimer and subsequent fragmentations have been investigated by synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry and theoretical calculations. Besides the protonated monomer cation (C3H7OH)·H(+) (m/z = 61) and Cα-Cβ bond cleavage fragment CH2O·(C3H7OH)H(+) (m/z = 91), the measured mass spectrum at an incident photon energy of 13 eV suggests a new dissociation channel resulting in the formation of the (C3H7OH)·H(+)·(C2H5OH) (m/z = 107) fragment. The appearance energies of the fragments (C3H7OH)·H(+), CH2O·(C3H7OH)H(+) and (C3H7OH)·H(+)·(C2H5OH) are measured at 10.05 ± 0.05 eV, 9.48 ± 0.05 eV, and 12.8 ± 0.1 eV, respectively, by scanning photoionization efficiency (PIE) spectra. The 1-propanol ion fragments as a function of VUV photon energy were interpreted with the aid of theoretical calculations. In addition to O-H and Cα-Cβ bond cleavage, a new dissociation channel related to Cβ-Cγ bond cleavage opens. In this channel, molecular rearrangement (proton transfer and hydrogen transfer after surmounting an energy barrier) gives rise to the generated complex, which then dissociates to produce the mixed propanol/ethanol proton bound cation (C3H7OH)·H(+)·(C2H5OH). This new dissociation channel has not been reported in previous studies of ethanol and acetic acid dimers. The photoionization and dissociation processes of the 1-propanol dimer are described in the photon energy range of 9-15 eV. PMID:27141555

  5. Energy-resolved collision-induced dissociation of non-covalent ions: charge- and guest-dependence of decomplexation reaction efficiencies.

    PubMed

    Carroy, Glenn; Lemaur, Vincent; De Winter, Julien; Isaacs, Lyle; De Pauw, Edwin; Cornil, Jérôme; Gerbaux, Pascal

    2016-05-14

    Supramolecular chemistry, and especially host-guest chemistry, has been the subject of great interest in the past few decades leading to the synthesis of host cage molecules such as calixarenes, cyclodextrins and more recently cucurbiturils. Mass spectrometry methods are increasingly used to decipher at the molecular level the non-covalent interactions between the different associated molecules. The present article illustrates that the association between mass spectrometry and computational chemistry techniques proves very complementary to depict the gas-phase dissociation processes of ionic non-covalent complexes when subjected to collisional activation. The selected system associates a nor-seco-cucurbit[10]uril bitopic receptor with different amino compounds (adamantylamine, para-xylylenediamine, and para-phenylenediamine). When subjected to CID experiments, the ternary complexes undergo fragmentation via dissociation of non-covalently bound partners. Interestingly, depending on their charge state, the collisionally excited complexes can selectively expel either a neutral guest molecule or a protonated guest molecule. Moreover, based on energy-resolved CID experiments, it is possible to evaluate the guest molecule dependence on the gas phase dissociation efficiency. We observed that the relative order of gas phase dissociation is charge state dependent, with the adamantylamine-containing complexes being the weakest when triply charged and the strongest when doubly charged. The energetics of the gas-phase dissociation reactions have been estimated by density functional theory (DFT) calculations. We succeeded in theoretically rationalizing the experimental collision-induced dissociation results with a special emphasis on: (i) the charge state of the expelled guest molecule and (ii) the nature of the guest molecule. PMID:27086657

  6. Spectroscopic constants of diatomic molecules computed correcting Hartree-Fock or general-valence-bond potential-energy curves with correlation-energy functionals

    NASA Astrophysics Data System (ADS)

    Pérez-Jordá, José M.; San-Fabián, Emilio; Moscardó, Federico

    1992-04-01

    The Kohn-Sham energy with exact exchange [using the exact Hartree-Fock (HF) exchange but an approximate correlation-energy functional] may be computed very accurately by adding the correlation obtained from the HF density to the total HF energy. Three density functionals are used: local spin density (LSD), LSD with self-interaction correction, and LSD with generalized gradient correction. This scheme has been extended (Lie-Clementi, Colle-Salvetti, and Moscardo-San-Fabian) to be used with general-valence-bond (GVB) energies and wave functions, so that the extra correlation included in the GVB energy is not counted again. The effect of all these approximate correlations on HF or GVB spectroscopic constants (Re,ωe, and De) is studied. Approximate relations showing how correlation affects them are derived, and may be summarized as follows: (1) the effect on Re and ωe depends only on the correlation derivative at Re, and (2) the effect on De depends mainly on the correlation difference between quasidissociated and equilibrium geometries. A consequence is that all the correlation corrections tested here give larger ωe and De and shorter Re than the uncorrected HF or GVB values. This trend is correct for De for both HF and GVB. For Re and ωe, it is correct in most cases for GVB, but it often fails for the HF cases. A comparison is made with Kohn-Sham calculations with both exchange and correlation approximated. As a final conclusion, it is found that, within the present scheme, a qualitatively correct HF or GVB potential-energy curve, together with a correlation-energy approximation with correct dissociation behavior, is crucial for obtaining good estimates of spectroscopic constants.

  7. Dissociation dynamics of ethylene molecules on a Ni cluster using ab initio molecular dynamics simulations.

    PubMed

    Shimamura, K; Shibuta, Y; Ohmura, S; Arifin, R; Shimojo, F

    2016-04-13

    The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed. PMID:26953616

  8. Dissociation dynamics of ethylene molecules on a Ni cluster using ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shimamura, K.; Shibuta, Y.; Ohmura, S.; Arifin, R.; Shimojo, F.

    2016-04-01

    The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed.

  9. Rovibrational internal energy transfer and dissociation of N2(1Σg+)-N(4S(u)) system in hypersonic flows.

    PubMed

    Panesi, Marco; Jaffe, Richard L; Schwenke, David W; Magin, Thierry E

    2013-01-28

    A rovibrational collisional model is developed to study energy transfer and dissociation of N(2)((1)Σ(g)(+)) molecules interacting with N((4)S(u)) atoms in an ideal isochoric and isothermal chemical reactor. The system examined is a mixture of molecular nitrogen and a small amount of atomic nitrogen. This mixture, initially at room temperature, is heated by several thousands of degrees Kelvin, driving the system toward a strong non-equilibrium condition. The evolution of the population densities of each individual rovibrational level is explicitly determined via the numerical solution of the master equation for temperatures ranging from 5000 to 50,000 K. The reaction rate coefficients are taken from an ab initio database developed at NASA Ames Research Center. The macroscopic relaxation times, energy transfer rates, and dissociation rate coefficients are extracted from the solution of the master equation. The computed rotational-translational (RT) and vibrational-translational (VT) relaxation times are different at low heat bath temperatures (e.g., RT is about two orders of magnitude faster than VT at T = 5000 K), but they converge to a common limiting value at high temperature. This is contrary to the conventional interpretation of thermal relaxation in which translational and rotational relaxation timescales are assumed comparable with vibrational relaxation being considerable slower. Thus, this assumption is questionable under high temperature non-equilibrium conditions. The exchange reaction plays a very significant role in determining the dynamics of the population densities. The macroscopic energy transfer and dissociation rates are found to be slower when exchange processes are neglected. A macroscopic dissociation rate coefficient based on the quasi-stationary distribution, exhibits excellent agreement with experimental data of Appleton et al. [J. Chem. Phys. 48, 599-608 (1968)]. However, at higher temperatures, only about 50% of dissociation is found to

  10. Dissociative Recombination Dynamics of the Ozone Cation

    SciTech Connect

    Zhaunerchyk, Vitali; Geppert, W.; sterdahl, F.; Larsson, Mats; Thomas, R. D.; Bahati Musafiri, Eric; Bannister, Mark E; Fogle, Mark R.; Vane, C Randy

    2008-02-01

    The dissociative recombination of the ozone cation has been studied at the heavy-ion storage ring CRYRING. The total cross section and branching fractions have been measured. The cross section from {approx}0eV to 0.2 eV follows a nearly E{sup -1} dependence, which was theoretically predicted to be a characteristic of the direct dissociative recombination mechanism. The thermal rate coefficient has been deduced from the cross section to be 7.37x10{sup -7}(T/300){sup -0.55}cm{sup 3}s{sup -1}. The branching fraction analysis carried out at {approx}0eV interaction energy has shown a strong propensity (94%) to dissociate through the three-body channel. Due to the overwhelming dominance of this channel it has been investigated in more detail. Of the six energetically available three-body pathways only three are significantly populated, such that the production of O(S1) is highly unfavored and all atomic oxygen fragments are predominantly formed in P3 and D1 states. Analysis of the breakup geometries has been performed by means of the Dalitz plot. It is observed that the molecules dissociating through the O(P3)+O(P3)+O(P3) and O(P3)+O(P3)+O(D1) channels have an open linear geometry where the cleavage of two valence bonds occurs preferentially in unison, while the O(P3)+O(D1)+O(D1) breakup might proceed partly through a sequential mechanism.

  11. Guided ion beam studies of the reactions of Co{sub n}{sup +} (n=1-18) with N{sub 2}: Cobalt cluster mononitride and dinitride bond energies

    SciTech Connect

    Liu Fuyi; Li Ming; Tan Lin; Armentrout, P. B.

    2008-05-21

    The reactions of Co{sub n}{sup +} (n=1-18) with N{sub 2} are measured as a function of kinetic energy over a range of 0-15 eV in a guided ion beam tandem mass spectrometer. A variety of Co{sub m}{sup +}, Co{sub m}N{sup +}, and Co{sub m}N{sub 2}{sup +} (m{<=}n) product ions are observed, all in endothermic processes, with collision-induced dissociation dominating the products for all clusters. Bond dissociation energies for both cobalt cluster nitrides and dinitrides are derived from threshold analysis of the energy dependence of the endothermic reactions using several different approaches. These values show only a mild dependence on cluster size over the range studied, although the Co{sub 13}{sup +}-N bond energy is relatively weak. The bond energies of Co{sub n}{sup +}-N for larger clusters suggest that a reasonable value for the desorption energy of atomic nitrogen from bulk phase cobalt is 6.3{+-}0.2 eV, which is somewhat lower than the only available value in the literature, an estimate based on the enthalpy of formation of bulk cobalt nitride. The trends in the cobalt nitride thermochemistry are also compared to previously determined metal-metal bond energies, D{sub 0}(Co{sub n}{sup +}-Co), and to D{sub 0}(Fe{sub n}{sup +}-N). Implications for catalytic ammonia production using cobalt versus iron are discussed.

  12. Dissociation of multicharged CO molecular ions produced in collisions with 97-MeV Ar14+: Total-kinetic-energy distributions

    NASA Astrophysics Data System (ADS)

    Sampoll, G.; Watson, R. L.; Heber, O.; Horvat, V.; Wohrer, K.; Chabot, M.

    1992-03-01

    Transient molecular ions of COq+ (where q=2-7) were produced in single collisions of 97-MeV Ar14+ projectiles with neutral CO molecules. The resulting dissociation products were identified by coincidence time-of-flight spectroscopy in which the time of flight of the first ion to reach the detector and the time difference between the first ion and its partner were recorded event by event. An iterative matrix-transformation procedure was employed to convert the time-difference spectra for the prominent dissociation channels into total-kinetic-energy distributions. Analysis of the total-kinetic-energy distributions and comparisons with the available data for CO2+ and CO3+ from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization.

  13. Diffusion Monte Carlo for Accurate Dissociation Energies of 3d Transition Metal Containing Molecules.

    PubMed

    Doblhoff-Dier, Katharina; Meyer, Jörg; Hoggan, Philip E; Kroes, Geert-Jan; Wagner, Lucas K

    2016-06-14

    Transition metals and transition metal compounds are important to catalysis, photochemistry, and many superconducting systems. We study the performance of diffusion Monte Carlo (DMC) applied to transition metal containing dimers (TMCDs) using single-determinant Slater-Jastrow trial wavefunctions and investigate the possible influence of the locality and pseudopotential errors. We find that the locality approximation can introduce nonsystematic errors of up to several tens of kilocalories per mole in the absolute energy of Cu and CuH if Ar or Mg core pseudopotentials (PPs) are used for the 3d transition metal atoms. Even for energy differences such as binding energies, errors due to the locality approximation can be problematic if chemical accuracy is sought. The use of the Ne core PPs developed by Burkatzki et al. (J. Chem. Phys. 2008, 129, 164115), the use of linear energy minimization rather than unreweighted variance minimization for the optimization of the Jastrow function, and the use of large Jastrow parametrizations reduce the locality errors. In the second section of this article, we study the general performance of DMC for 3d TMCDs using a database of binding energies of 20 TMCDs, for which comparatively accurate experimental data is available. Comparing our DMC results to these data for our results that compare best with experiment, we find a mean unsigned error (MUE) of 4.5 kcal/mol. This compares well with the achievable accuracy in CCSDT(2)Q (MUE = 4.6 kcal/mol) and the best all-electron DFT results (MUE = 4.5 kcal/mol) for the same set of systems (Truhlar et al. J. Chem. Theory Comput. 2015, 11, 2036-2052). The mean errors in DMC depend less on the exchange-correlation functionals used to generate the trial wavefunction than the corresponding mean errors in the underlying DFT calculations. Furthermore, the QMC results obtained for each molecule individually vary less with the functionals used. These observations are relevant for systems such as

  14. A comparison of ab initio quantum-mechanical and experimental D0 binding energies of eleven H-bonded and eleven dispersion-bound complexes.

    PubMed

    Haldar, Susanta; Gnanasekaran, Ramachandran; Hobza, Pavel

    2015-10-28

    Dissociation energies (D0) of 11 H-bonded and 11 dispersion-bound complexes were calculated as the sum of interaction energies and the change of zero-point vibrational energies (ΔZPVE). The structures of H-bonded complexes were optimized at the RI-MP2/cc-pVTZ level, at which deformation and harmonic ΔZPVE energies were also calculated. The structures of dispersion-bound complexes were optimized at the DFT-D3 level, and harmonic ΔZPVE energies were determined at the same level as well. For comparison, CCSD(T)/CBS D0 energies were also evaluated for both types of complexes. The CCSD(T)/CBS interaction energy was constructed as the sum of MP2/CBS interaction energy, extrapolated from aug-cc-pVTZ and aug-cc-pVQZ basis sets, and ΔCCSD(T) correction, determined with the aug-cc-pVDZ basis set. The ΔZPVE energies were determined for all complexes at the harmonic level and for selected complexes, these energies were also calculated using second-order vibration perturbation (VPT2) theory. For H-bonded complexes, the harmonic CCSD(T)/CBS D0 energies were in better agreement with the experimental values (with a mean relative error (MRE) of 6.2%) than the RI-MP2/cc-pVTZ D0 (a MRE of 12.3%). The same trend was found for dispersion-bound complexes (6.2% (MRE) at CCSD(T)/CBS and 7.7% (MRE) at the DFT-D3 level). When the anharmonic ΔZPVE term was included instead of harmonic one, the agreement between theoretical and experimental D0 deteriorated for H-bonded as well as dispersion-bound complexes. Finally, the applicability of "diagonal approximation" for determining the anharmonic ΔZPVE was shown. For the phenolH2O complex, the ΔZPVE energy calculated at the VPT2 level and on the basis of "diagonal approximation" differed by less than 0.1 kcal mol(-1). PMID:26392236

  15. An experimental study of SO3 dissociation as a mechanism for converting and transporting solar energy

    NASA Technical Reports Server (NTRS)

    Mccrary, J. H.; Mccrary, G. E.; Chubb, T. A.; Won, Y. S.

    1981-01-01

    The high temperature catalytic dissocation of SO3 is an important chemical process being considered in the development and application of solar-thermal energy conversion, transport, and storage systems. A facility for evaluating chemical converter-heat exchangers at temperatures to 1000 C with high flow rates of gaseous SO3 feedstock has been assembled and operated on the NMSU campus. Several quartz and metal reactors containing different catalyst configurations have been tested. Descriptions of the test facility and of the reactors are given along with a presentation and discussion of experimental results.

  16. The Scalar Relativistic Contribution to Ga-Halide Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The one-electron Douglas Kroll (DK) and perturbation theory (+R) approaches are used to compute the scalar relativistic contribution to the atomization energies of GaFn. These results are compared with the previous GaCln results. While the +R and DK results agree well for the GaCln atom nation energies, they differ for GaFn. The present work suggests that the DK approach is more accurate than the +R approach. In addition, the DK approach is less sensitive to the choice of basis set. The computed atomization energies of GaF2 and GaF3 are smaller than the somewhat uncertain experiments. It is suggested that additional calibration calculations for the scalar relativistic effects in GaF2 and GaF3 would be valuable.

  17. I. Dissociation free energies of drug-receptor systems via non-equilibrium alchemical simulations: a theoretical framework.

    PubMed

    Procacci, Piero

    2016-06-01

    In this contribution I critically revise the alchemical reversible approach in the context of the statistical mechanics theory of non-covalent bonding in drug-receptor systems. I show that most of the pitfalls and entanglements for the binding free energy evaluation in computer simulations are rooted in the equilibrium assumption that is implicit in the reversible method. These critical issues can be resolved by using a non-equilibrium variant of the alchemical method in molecular dynamics simulations, relying on the production of many independent trajectories with a continuous dynamical evolution of an externally driven alchemical coordinate, completing the decoupling of the ligand in a matter of a few tens of picoseconds rather than nanoseconds. The absolute binding free energy can be recovered from the annihilation work distributions by applying an unbiased unidirectional free energy estimate, on the assumption that any observed work distribution is given by a mixture of normal distributions, whose components are identical in either direction of the non-equilibrium process, with weights regulated by the Crooks theorem. I finally show that the inherent reliability and accuracy of the unidirectional estimate of the decoupling free energies, based on the production of a few hundreds of non-equilibrium independent sub-nanosecond unrestrained alchemical annihilation processes, is a direct consequence of the funnel-like shape of the free energy surface in molecular recognition. An application of the technique to a real drug-receptor system is presented in the companion paper. PMID:27193067

  18. Vibrational analysis of HOCl up to 98{percent} of the dissociation energy with a Fermi resonance Hamiltonian

    SciTech Connect

    Jost, R.; Joyeux, M.; Skokov, S.; Bowman, J.

    1999-10-01

    We have analyzed the vibrational energies and wave functions of HOCl obtained from previous {ital ab initio} calculations [J. Chem. Phys. {bold 109}, 2662 (1998); {bold 109}, 10273 (1998)]. Up to approximately 13&hthinsp;000 cm{sup {minus}1}, the normal modes are nearly decoupled, so that the analysis is straightforward with a Dunham model. In contrast, above 13&hthinsp;000 cm{sup {minus}1} the Dunham model is no longer valid for the levels with no quanta in the OH stretch (v{sub 1}=0). In addition to v{sub 1}, these levels can only be assigned a so-called polyad quantum number P=2v{sub 2}+v{sub 3}, where 2 and 3 denote, respectively, the bending and OCl stretching normal modes. In contrast, the levels with v{sub 1}{ge}2 remain assignable with three v{sub i} quantum numbers up to the dissociation (D{sub 0}=19&hthinsp;290&hthinsp;cm{sup {minus}1}). The interaction between the bending and the OCl stretch ({omega}{sub 2}{congruent}2{omega}{sub 3}) is well described with a simple, fitted Fermi resonance Hamiltonian. The energies and wave functions of this model Hamiltonian are compared with those obtained from {ital ab initio} calculations, which in turn enables the assignment of many additional {ital ab initio} vibrational levels. Globally, among the 809 bound levels calculated below dissociation, 790 have been assigned, the lowest unassigned level, No. 736, being located at 18&hthinsp;885 cm{sup {minus}1} above the (0,0,0) ground level, that is, at about 98{percent} of D{sub 0}. In addition, 84 {open_quotes}resonances{close_quotes} located above D{sub 0} have also been assigned. Our best Fermi resonance Hamiltonian has 29 parameters fitted with 725 {ital ab initio} levels, the rms deviation being of 5.3 cm{sup {minus}1}. This set of 725 fitted levels includes the full set of levels up to No. 702 at 18&hthinsp;650 cm{sup {minus}1}. The {ital ab initio} levels, which are assigned but not included in the fit, are reasonably predicted by the model Hamiltonian, but with a

  19. Towards simple orbital-dependent density functionals for molecular dissociation

    NASA Astrophysics Data System (ADS)

    Zhang, Igor Ying; Richter, Patrick; Scheffler, Matthias

    2015-03-01

    Density functional theory (DFT) is one of the leading first-principles electronic-structure theories. However, molecular dissociation remains a challenge, because it requires a well-balanced description of the drastically different electronic structure at different bond lengths. One typical and well-documented case is the dissociation of both H2+ and H2, for which all popular DFT functionals fail. We start from the Bethe-Goldstone equation to propose a simple orbital-dependent correlation functional which generalizes the linear adiabatic connection approach. The resulting scheme is based on second-order perturbation theory (PT2), but includes the self-consistent coupling of electron-hole pairs, which ensures the correct H2 dissociation limit and gives a finite correlation energy for systems with a (near)-degenerate energy gap. This coupling PT2-like (CPT2) approximation delivers a significant improvement over all existing functionals for both H2 and H2+ dissociation. We will demonstrate the reason for this improvement analytically for H2 in a minimal basis.

  20. Detection and Characterization of Low Abundance Glycopeptides Via Higher-Energy C-Trap Dissociation and Orbitrap Mass Analysis

    NASA Astrophysics Data System (ADS)

    Hart-Smith, Gene; Raftery, Mark J.

    2012-01-01

    Broad-scale mass spectrometric analyses of glycopeptides are constrained by the considerable complexity inherent to glycoproteomics, and techniques are still being actively developed to address the associated analytical difficulties. Here we apply Orbitrap mass analysis and higher-energy C-trap dissociation (HCD) to facilitate detailed insights into the compositions and heterogeneity of complex mixtures of low abundance glycopeptides. By generating diagnostic oxonium product ions at mass measurement errors of <5 ppm, highly selective glycopeptide precursor ion detections are made at sub-fmol limits of detection: analyses of proteolytic digests of a hen egg glycoprotein mixture detect 88 previously uncharacterized glycopeptides from 666 precursor ions selected for MS/MS, with only one false positive due to co-fragmentation of a non-glycosylated peptide with a glycopeptide. We also demonstrate that by (1) identifying multiple series of glycoforms using high mass accuracy single stage MS spectra, and (2) performing product ion scans at optimized HCD collision energies, the identification of peptide + N-acetylhexosamine (HexNAc) ions (Y1 ions) can be readily achieved at <5 ppm mass measurement errors. These data allow base peptide sequences and glycan compositional information to be attained with high confidence, even for glycopeptides that produce weak precursor ion signals and/or low quality MS/MS spectra. The glycopeptides characterized from low fmol abundances using these methods allow two previously unreported glycosylation sites on the Gallus gallus protein ovoglycoprotein (amino acids 82 and 90) to be confirmed; considerable glycan heterogeneities at amino acid 90 of ovoglycoprotein, and amino acids 34 and 77 of Gallus gallus ovomucoid are also revealed.

  1. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Levy, Mel; Painter, G. S.; Wei, Siqing; Lagowski, Jolanta B.

    1988-01-01

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al.and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N2 and F2, which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules.

  2. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    SciTech Connect

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-15

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N/sub 2/ and F/sub 2/, which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules.

  3. Electronic structure, molecular bonding and potential energy surfaces

    SciTech Connect

    Ruedenberg, K.

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  4. A nearly exact MCSCF+CI calculation of the dissociation energy of OH. [Multiconfiguration, Self-Consistent Field plus Configuration Interaction

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Whiting, E. E.; Sharbaugh, L. F.

    1976-01-01

    The dissociation energy and dipole moment of the ground state of OH have been obtained with a newly developed multiconfiguration, self-consistent field plus configuration interaction CDC 7600 computer program. The computed value of the dissociation energy is 4.62 eV, which is within the uncertainty limits for the experimental value of 4.63 plus or minus 0.01 eV. The computed value of the dipole moment is 1.645 D, which is very close to the experimental result of 1.66 plus or minus 0.01 D. The present results are also compared to the data obtained from similar calculations with the BISON-MC computer program developed by Das and Wahl.

  5. Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells.

    PubMed Central

    Hwang, W C; Waugh, R E

    1997-01-01

    The association between the lipid bilayer and the membrane skeleton is important to cell function. In red blood cells, defects in this association can lead to various forms of hemolytic anemia. Although proteins involved in this association have been well characterized biochemically, the physical strength of this association is only beginning to be studied. Formation of a small cylindrical strand of membrane material (tether) from the membrane involves separation of the lipid bilayer from the membrane skeleton. By measuring the force required to form a tether, and knowing the contribution to the force due to the deformation of a lipid bilayer, it is possible to calculate the additional contribution to the work of tether formation due to the separation of membrane skeleton from the lipid bilayer. In the present study, we measured the tethering force during tether formation using a microcantilever (a thin, flexible glass fiber) as a force transducer. Numerical calculations of the red cell contour were performed to examine how the shape of the contour affects the calculation of tether radius, and subsequently separation work per unit area W(sk) and bending stiffness k(c). At high aspiration pressure and small external force, the red cell contour can be accurately modeled as a sphere, but at low aspiration pressure and large external force, the contour deviates from a sphere and may affect the calculation. Based on an energy balance and numerical calculations of the cell contour, values of the membrane bending stiffness k(c) = 2.0 x 10(-19) Nm and the separation work per unit area W(sk) = 0.06 mJ/m2 were obtained. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 8 PMID:9168042

  6. A periodic energy decomposition analysis method for the investigation of chemical bonding in extended systems

    SciTech Connect

    Raupach, Marc; Tonner, Ralf

    2015-05-21

    The development and first applications of a new periodic energy decomposition analysis (pEDA) scheme for extended systems based on the Kohn-Sham approach to density functional theory are described. The pEDA decomposes the bonding energy between two fragments (e.g., the adsorption energy of a molecule on a surface) into several well-defined terms: preparation, electrostatic, Pauli repulsion, and orbital relaxation energies. This is complemented by consideration of dispersion interactions via a pairwise scheme. One major extension toward a previous implementation [Philipsen and Baerends, J. Phys. Chem. B 110, 12470 (2006)] lies in the separate discussion of electrostatic and Pauli and the addition of a dispersion term. The pEDA presented here for an implementation based on atomic orbitals can handle restricted and unrestricted fragments for 0D to 3D systems considering periodic boundary conditions with and without the determination of fragment occupations. For the latter case, reciprocal space sampling is enabled. The new method gives comparable results to established schemes for molecular systems and shows good convergence with respect to the basis set (TZ2P), the integration accuracy, and k-space sampling. Four typical bonding scenarios for surface-adsorbate complexes were chosen to highlight the performance of the method representing insulating (CO on MgO(001)), metallic (H{sub 2} on M(001), M = Pd, Cu), and semiconducting (CO and C{sub 2}H{sub 2} on Si(001)) substrates. These examples cover diverse substrates as well as bonding scenarios ranging from weakly interacting to covalent (shared electron and donor acceptor) bonding. The results presented lend confidence that the pEDA will be a powerful tool for the analysis of surface-adsorbate bonding in the future, enabling the transfer of concepts like ionic and covalent bonding, donor-acceptor interaction, steric repulsion, and others to extended systems.

  7. A potential-energy surface study of the 2A1 and low-lying dissociative states of the methoxy radical

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Accurate, ab initio quantum chemical techniques are applied in the present study of low lying bound and dissociative states of the methoxy radical at C3nu conformations, using a double zeta quality basis set that is augmented with polarization and diffuse functions. Excitation energy estimates are obtained for vertical excitation, vertical deexcitation, and system origin. The rate of methoxy photolysis is estimated to be too small to warrant its inclusion in atmospheric models.

  8. Bond Functions and Core Correlation Energy Contributions To HeBe Potential

    NASA Astrophysics Data System (ADS)

    Shalabi, A. S.; Nour, E. M.; Abdel Halim, W. S.

    An empirical scheme for implementation of bond functions in heteronuclear diatomics is suggested and applied to HeBe using universal even-tempered functions. The effects of bond functions and core-correlation energy on the interaction potential of HeBe calculated at the uncorrelated (SCF) and correlated (MBPT and CC) levels are examined. The results confirm that an accuracy of sub μ Hartree level can be obtained using even-tempered functions with s-, p-, and d- symmetry and that bond functions of size {4s2p} for He and {6s3p} for Be recovers 100% of energy lowering obtained from the addition of 10d atom-centered functions to He and 13d atom centred functions to Be. The various treatments of the electron correlation, conclude that the system is interacting weakly with a well depth from 14.5-24.7 μEh at a separation near 9.1a0 compared with 20.7-25.5 μEh previously reported with a rather limited basis set. The most reliable well depth corrected for BSSE (19.0 μEh) was obtained at the CC-SD(T)level at separation of 8.71a0 taking into account the effects of bond functions and core correlation energy. Potential energy curves at the CC-SD(T) valence and CC-SD(T) valence + core correlation levels are analyzed in analytical forms in terms of exchange repulsion, induction and dispersion components.

  9. Ionic bond effects on the mean excitation energy for stopping power

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Chang, C. K.; Kamaratos, E.; Xu, Y. J.

    1982-01-01

    Molecular mean excitation energies for ionic bonded molecules calculated according to the local plasma approximation are compared to the Bragg rule. Adjustments of 15% are calculated for LiF in agreement with experiments while 6% adjustments are predicted for HF and 3% for LiH.

  10. Contributions of mass and bond energy difference and interface defects on thermal boundary conductance

    NASA Astrophysics Data System (ADS)

    Choi, ChangJin; Roberts, Nicholas

    2015-09-01

    The impact of mass and bond energy difference and interface defects on thermal boundary conductance (TBC) is investigated using non-equilibrium molecular dynamics (NEMD) with the Lennard-Jones (L-J) interatomic potential. Results show that the maximum TBC is achieved when the mass and bond energy of two dissimilar materials are matched, although the effective thermal conductivity is not necessarily a maximum due to the contributions of the thermal conductivity of the constituent materials. Mass and bond energy differences result in a mismatch between phonon dispersions, limiting high frequency phonon transport at the interface. This frequency mismatch is defined by a frequency ratio, which is a ratio of the characteristic frequencies of the two materials, presented in the discussion section, and is a reference of the level of phonon dispersion mismatch. Inelastic scattering may result at higher temperatures, especially when there exists a bond energy difference, resulting in strain in the lattice, which would allow phonons outside the allowable frequency range to contribute to transport. TBC decreases abruptly with small mass differences, but at which point larger differences in mass have no impact. In addition, interdiffusion across the interface further reduces the TBC between the frequency ratios of 0.79 and 1.26 while vacancies have negligible impact.

  11. Covalent bonding effect on the mean excitation energy of H2 with the local plasma model

    NASA Technical Reports Server (NTRS)

    Kamaratos, E.

    1984-01-01

    Chemical bonding is taken into account explicitly in the determination of the mean excitation energy (I) for stopping power of H2 with the local plasma approximation by employing molecular electronic wave functions for H2 for the first time. This procedure leads to a new value for IH2 that is higher than all accepted experimental and theoretical values.

  12. Looking for high energy density compounds among polynitraminepurines.

    PubMed

    Yan, Ting; Sun, Guangdong; Chi, Weijie; Li, Butong; Wu, Haishun

    2013-09-01

    A series of purine derivatives with nitramine groups are calculated by using density functional theory (DFT). The molecular theory density, heats of formation, bond dissociation energies and detonation performance are investigated at DFT-B3LYP/6-311G** level. The isodesmic reaction method is employed to calculate the HOFs of the energies obtained from electronic structure calculations. Results show that the position of nitramine groups can influence the values of HOFs. The bond dissociation energies and the impact sensitivity are analyzed to investigate the thermal stability of the purine derivatives. The calculated bond dissociation energies of ring-NHNO2 and NH-NO2 bond show that the NH-NO2 bond should be the trigger bond in pyrolysis processes. The H50 of most compounds are larger than that of CL-20 and RDX. PMID:23708652

  13. Average bond energies between boron and elements of the fourth, fifth, sixth, and seventh groups of the periodic table

    NASA Technical Reports Server (NTRS)

    Altshuller, Aubrey P

    1955-01-01

    The average bond energies D(gm)(B-Z) for boron-containing molecules have been calculated by the Pauling geometric-mean equation. These calculated bond energies are compared with the average bond energies D(exp)(B-Z) obtained from experimental data. The higher values of D(exp)(B-Z) in comparison with D(gm)(B-Z) when Z is an element in the fifth, sixth, or seventh periodic group may be attributed to resonance stabilization or double-bond character.

  14. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    SciTech Connect

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  15. The H2 dissociation on the BN, AlN, BP and AlP nanotubes: a comparative study.

    PubMed

    Beheshtian, Javad; Soleymanabadi, Hamed; Kamfiroozi, Mohammad; Ahmadi, Ali

    2012-06-01

    The thermodynamic and kinetic feasibility of H(2) dissociation on the BN, AlN, BP and AlP zigzag nanotubes has been investigated theoretically by calculating the dissociation and activation energies. We determined the BN and AlP tubes to be inert toward H(2) dissociation, both thermodynamically and kinetically. The reactions are endothermic by 5.8 and 3 kcal mol(-1), exhibiting high activation energies of 38.8 and 30.6 kcal mol(-1), respectively. Our results indicated that H(2) dissociation is thermodynamically favorable on both PB and AlN nanotubes. However, in spite of the thermodynamic feasibility of H(2) dissociation on PB types, this process is kinetically unfavorable due to partly high activation energy. Generally, we concluded that among the four studied tubes, the AlN nanotube may be an appropriate model for H(2) dissociation process, from a thermodynamic and kinetic stand point. We also indicated that H(2) dissociation is not homolytic, rather it takes place via a heterolytic bond cleavage. In addition, a comparative study has been performed on the electrical and geometrical properties of the tubes. Our analysis showed that the electrical conductivity of tubes is as follows: BP>AlP>BN>AlN depending on how to combine the electron rich and electron poor atoms. PMID:21979405

  16. Full Empirical Potential Curves and Improved Dissociation Energies for the X ^1Σ^+ and a ^1Π States of CH^+

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Le Roy, Robert

    2014-06-01

    CH^+ has been a species of interest since the dawn of molecular astrophysics,and it is an important intermediate in combustion processes. In the domain of `conventional' spectroscopy there have been a number of studies of low v' and v" portions of the A ^1Π-X ^1Σ^+ band system of various isotopologues, and Amano recently reported microwave measurements of the ground-state R(0) lines of 12CH^+, 13CH^+ and 12CD^+. used photodissociation spectroscopy to observe transitions to very high-J' tunneling-predissociation levels (shape resonances) involving v(A)=0-10, for many of which they also measured the photo-fragment kinetic energy release. More recently Hechtfischer et al. used photodissociation spectroscopy of `Feschbach resonance' levels at very high v'(A) and low J' to obtain the first direct measurement of the 12CH^+ dissociation energy with near-spectroscopic accuracy (± 1.1 cm-1). However, to date, all analyses of the data for this system had been performed using traditional band-constant or Dunham-expansion fits to data for the lowest vibrational levels, and there have been no attempts to combine the `conventional' low-v data with the high-J' and high-v' photodissociation data in a single treatment. The present work has addressed this problem by performing a Direct-Potential-Fit (DPF) analysis that obtains full analytic potential energy functions for the X ^1Σ^+ and A ^1Π states of CH^+ that are able to account for all of the available data (on average) within their uncertainties. A.E. Douglas and G. Herzberg, Astrophys. J. 94, 381 (1941). T. Amano, Astrophys. J. Lett. {716}, L1 (2010) H. Helm, P.C. Crosby, M.M. Graff and J.T. Mosley, Phys. Rev. A 25, 304 (1982) U. Hechtfischer and C. J. Williams, M. Lange, J. Linkemann, D. Schwalm, R. Wester, A. Wolf and D. Zajfman, J.Chem.Phys. 117, 8754 (2002). H.S.P. Müller, Astron. Astrophys. 514, L7 (2010)

  17. Trans-reflection thermal driven deformable mirror with flexible bonding in high energy laser system

    NASA Astrophysics Data System (ADS)

    Ma, Xingkun; Huang, Lei; Gong, Mali; Xue, Qiao

    2014-09-01

    Deformable mirrors used in high energy laser system suffer from problems like the stress from adhesive solidification or the relatively expensive unit price of piezoceramic actuator. The thermal driven deformable mirror (TDDM) investigated here provided a promising prospect to solve these problems. Four scenarios of TDDM were studied and compared. Results showed that the trans-reflection TDDM with flexible bonding best met the requirement in practical use. The flexible bonding excluded the stress problem in the solidification of adhesives, trans-reflection brought about enough correction range, and the choice of thermo-electric cooler as actuator could greatly bring down the cost of adaptive optics apparatus as well.

  18. Fabrication and Characterization of a Lead Zirconate Titanate Micro Energy Harvester Based on Eutectic Bonding

    NASA Astrophysics Data System (ADS)

    Li, Yi-Gui; Sun, Jian; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu; Tanaka, Katsuhiko

    2011-06-01

    A lead zirconate titanate(PZT)-Si energy harvester cantilever with PZT bulk ceramics is fabricated by eutectic bonding, polishing and dicing processes. The feasibility of this process is studied using a successful operation of the cantilever in both actuation and harvesting modes. The first prototype made from a PZT-Au-Si cantiliever is tested. The testing results show the voltage output of 632 mV at the frequency of 815 Hz when the excitation acceleration is 0.5 g. The PZT and silicon layers are bonded together to form a sandwiched structure using a gold layer as an intermediate layer.

  19. Using Qualified Energy Conservation Bonds for Public Building Upgrades. Reducing Energy Bills in the City of Philadelphia

    SciTech Connect

    Zimring, Mark

    2012-07-18

    Qualified Energy Conservation Bonds (QECBs) are federally-subsidized bonds that enable state, tribal, and local government issuers to borrow money to fund a range of energy conservation projects, including public building upgrades that reduce energy use by at least 20 percent, at very attractive borrowing rates and long terms. As part of the American Recovery and Reinvestment Act (ARRA), the City of Philadelphia received a $15 million QECB award from the U.S. Department of the Treasury (Treasury). The city leveraged $6.25 million of its QECB allocation to finance half of a $12.6 million initiative to upgrade the energy efficiency of City buildings. The upgrades to four city facilities are expected to deliver over $10 million of net savings, and are a major step towards achieving the city’s goal of reducing government energy consumption by 30 percent by 2015.

  20. Autocatalytic water dissociation on Cu(110) at near ambient conditions

    SciTech Connect

    Mulleregan, Alice; Andersson, Klas; Ketteler, Guido; Bluhm, Hendrik; Yamamoto, Susumu; Ogasawara, Hirohito; Pettersson, Lars G.M.; Salmeron, Miquel; Nilsson, Anders

    2007-05-16

    Autocatalytic dissociation of water on the Cu(110) metal surface is demonstrated based on X-ray photoelectron spectroscopy studies carried out in-situ under near ambient conditions of water vapor pressure (1 Torr) and temperature (275-520 K). The autocatalytic reaction is explained as the result of the strong hydrogen-bond in the H{sub 2}O-OH complex of the dissociated final state, which lowers the water dissociation barrier according to the Broensted-Evans-Polanyi relations. A simple chemical bonding picture is presented which predicts autocatalytic water dissociation to be a general phenomenon on metal surfaces.

  1. Interlayer bonding energy of layered minerals: Implication for the relationship with friction coefficient

    NASA Astrophysics Data System (ADS)

    Sakuma, Hiroshi; Suehara, Shigeru

    2015-04-01

    The frictional strength of layered minerals is an important component of fault slip physics. A low-friction coefficient of these minerals has been attributed to the interlayer bonding energy (ILBE) of their weak interlayer bonding. The ILBE used for discussing the friction coefficient is based on a simple electrostatic calculation; however, the values should be revisited by precise calculations based on quantum mechanics. In this study, the ILBEs of layered minerals were calculated by using the density functional theory (DFT) method with van der Waals correction. The ILBEs calculated by the simple electrostatic method for hydrogen-bonding minerals such as kaolinite, lizardite, gibbsite, and brucite strongly overestimated the reliable energies calculated by the DFT method. This result should be ascribed to the inaccurate approximation of the point charges at the basal plane. A linear relationship between the experimentally measured friction coefficients of layered minerals and the ILBEs determined by the simple method was not confirmed by using the reliable ILBEs calculated by our DFT method. The results, however, do not remove the possibility of a relationship between interlayer bonding energy and the friction coefficient because the latter, used for comparing the former, was obtained through experiments conducted under various conditions.

  2. Low-energy electron-induced dissociation in condensed-phase L-cysteine II: a comparative study on anion desorption from chemisorbed and physisorbed films

    NASA Astrophysics Data System (ADS)

    Alizadeh, Elahe; Massey, Sylvain; Sanche, Léon; Rowntree, Paul A.

    2016-04-01

    Due to its multifunctional structure, cysteine is becoming an ideal model molecule for investigating the complex interactions of proteins with metallic surfaces such as gold nanoparticles. We report herein the results of low-energy electron induced degradation of L-cysteine films, chemisorbed on a gold substrate via the thiol group or physisorbed into a clean gold surface. The data were recorded under ultra-high vacuum conditions at room temperature. Anion yields desorbed from these films by the impact of 0.5 to 19 eV electrons provide clear evidence of the efficient decomposition of this amino acid via dissociative electron attachment (i.e., from dissociation of intermediate transient anions located between 5 and 14 eV). The peaks in the desorbed-anion yield functions, associated with DEA, are superimposed on a continuously rising signal attributed to dipolar dissociation. Similar to the results previously observed from physisorbed films, light anionic species, with masses lower than 35 amu, have been detected. In addition, we measured for first time fragments at 14 amu (CH2-) and 15 amu (CH3-) desorbing from physisorbed films, as well as heavier fragments of mass 45 and 46 amu desorbing from chemisorbed films. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  3. Six-dimensional quantum dynamics of dissociative chemisorption of H2 on Co(0001) on an accurate global potential energy surface.

    PubMed

    Jiang, Bin; Hu, Xixi; Lin, Sen; Xie, Daiqian; Guo, Hua

    2015-09-28

    Cobalt is a widely used catalyst for many heterogeneous reactions, including the Fischer-Tropsch (FT) process, which converts syngas (H2 and CO) to higher hydrocarbons. As a result, a better understanding of the key chemical steps on the Co surface, such as the dissociative chemisorption of H2 as an initial step of the FT process, is of fundamental importance. Here, we report an accurate full-dimensional global potential energy surface for the dissociative chemisorption of H2 on the rigid Co(0001) surface constructed from more than 3000 density functional theory points. The high-fidelity potential energy surface was obtained using the permutation invariant polynomial-neural network method, which preserves both the permutation symmetry of H2 and translational symmetry of the Co(0001) surface. The reaction path features a very low barrier on the top site. Full-dimensional quantum dynamical calculations provide insights into the dissociation dynamics and influence of the initial vibrational, rotational, and orientational degrees of freedom. PMID:26286861

  4. Generation of peptide radical dications via low-energy collision-induced dissociation of [CuII(terpy)(M + H)].3+ .

    PubMed

    Chu, Ivan K; Lam, Corey N W

    2005-11-01

    The first example of the formation of hydrogen-deficient radical cations of the type [M + H](.2+) is demonstrated to occur through a one-electron-transfer mechanism upon low-energy collision-induced dissociation (CID) of gas-phase triply charged [Cu(II)(terpy)(M + H)](.3+) complex ions (where M is an angiotensin III or enkephalin derivative; terpy = 2,2':6',2''-terpyridine). The collision-induced dissociation of doubly charged [M + H](.2+) radical cations generates similar product ions to those prepared through hot electron capture dissociation (HECD). Isomeric isoleucine and leucine residues were distinguished by observing the mass differences between [z(n) + H](.+) and w(n)(+) ions (having the same residue number, n) of the Xle residues. The product ion spectrum of [z(n) + H](.+) reveals that the w(n)(+) ions are formed possibly from consecutive fragmentations of [z(n) + H](.+) ions. Although only the first few [M + H](.2+) species have been observed using this approach, these hydrogen-deficient radical cations produce fragment ions that have more structure-informative patterns and are very different from those formed during the low-energy tandem mass spectrometry of protonated peptides. PMID:16198598

  5. Appropriate choice of collision-induced dissociation energy for qualitative analysis of notoginsenosides based on liquid chromatography hybrid ion trap time-of-flight mass spectrometry.

    PubMed

    Wang, Guang-Ji; Fu, Han-Xu; Xiao, Jing-Cheng; Ye, Wei; Rao, Tai; Shao, Yu-Hao; Kang, Dian; Xie, Lin; Liang, Yan

    2016-04-01

    Liquid chromatography hybrid ion trap/time-of-flight mass spectrometry possessesd both the MS(n) ability of ion trap and the excellent resolution of a time-of-flight, and has been widely used to identify drug metabolites and determine trace multi-components for in natural products. Collision energy, one of the most important factors in acquiring MS(n) information, could be set freely in the range of 10%-400%. Herein, notoginsenosides were chosen as model compounds to build a novel methodology for the collision energy optimization. Firstly, the fragmental patterns of the representatives for the authentic standards of protopanaxadiol-type and protopanaxatriol-type notoginsenosides authentic standards were obtained based on accurate MS(2) and MS(3) measurements via liquid chromatography hybrid ion trap/time-of-flight mass spectrometry. Then the extracted ion chromatograms of characteristic product ions of notoginsenosides in Panax Notoginseng Extract, which were produced under a series of collision energies and, were compared to screen out the optimum collision energies values for MS(2) and MS(3). The results demonstrated that the qualitative capability of liquid chromatography hybrid ion trap/time-of-flight mass spectrometry was greatly influenced by collision energies, and 50% of MS(2) collision energy was found to produce the highest collision-induced dissociation efficiency for notoginsenosides. BesidesAddtionally, the highest collision-induced dissociation efficiency appeared when the collision energy was set at 75% in the MS(3) stage. PMID:27114315

  6. Hydrogen Bonding between Metal-Ion Complexes and Noncoordinated Water: Electrostatic Potentials and Interaction Energies.

    PubMed

    Andrić, Jelena M; Misini-Ignjatović, Majda Z; Murray, Jane S; Politzer, Peter; Zarić, Snežana D

    2016-07-01

    The hydrogen bonding of noncoordinated water molecules to each other and to water molecules that are coordinated to metal-ion complexes has been investigated by means of a search of the Cambridge Structural Database (CSD) and through quantum chemical calculations. Tetrahedral and octahedral complexes that were both charged and neutral were studied. A general conclusion is that hydrogen bonds between noncoordinated water and coordinated water are much stronger than those between noncoordinated waters, whereas hydrogen bonds of water molecule in tetrahedral complexes are stronger than in octahedral complexes. We examined the possibility of correlating the computed interaction energies with the most positive electrostatic potentials on the interacting hydrogen atoms prior to interaction and obtained very good correlation. This study illustrates the fact that electrostatic potentials computed for ground-state molecules, prior to interaction, can provide considerable insight into the interactions. PMID:26989883

  7. Dissociation of {sup 10}C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon

    SciTech Connect

    Mamatkulov, K. Z.; Kattabekov, R. R.; Alikulov, S. S.; Artemenkov, D. A.; Bekmirzaev, R. N.; Bradnova, V.; Zarubin, P. I. Zarubina, I. G.; Kondratieva, N. V.; Kornegrutsa, N. K.; Krivenkov, D. O.; Malakhov, A. I.; Olimov, K.; Peresadko, N. G.; Polukhina, N. G.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Kharlamov, S. P.

    2013-10-15

    The charge topology in the fragmentation of {sup 10}C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon is studied. In the coherent dissociation of {sup 10}C nuclei, about 82% of events are associated with the channel {sup 10}C {yields} 2{alpha}+ 2p. The angular distributions and correlations of product fragments are presented for this channel. It is found that among {sup 10}C {yields} 2{alpha}+ 2p events, about 30% are associated with the process in which dissociation through the ground state of the unstable {sup 9}Be{sub g.s.} nucleus is followed by {sup 8}Be{sub g.s.} + p decays.

  8. Calculation of rate constants for dissociative attachment of low-energy electrons to hydrogen halides HCl, HBr, and HI and their deuterated analogs

    SciTech Connect

    Houfek, Karel; Cizek, Martin; Horacek, Jiri

    2002-12-01

    Calculations of rate constants for the process of dissociative attachment of low-energy electrons to hydrogen halides HCl, HBr, and HI and for the reverse process of associative detachment based on the nonlocal resonance model are reported. The calculated data are of importance for the modeling of plasma processes, environmental chemistry, etc. The calculated dissociative attachment rate constants are found to be in good agreement with existing experimental data. It is shown that at low temperatures the rate constants are very sensitive to small changes of the parameters of the nonlocal resonance model used for the calculation of the rate constants and represent a severe test of the theory. The isotopic effect and its dependence on the temperature is also discussed. The calculations of rate constants for the reverse process of associative detachment are also reported and discussed.

  9. Threshold collision induced dissociation experiment for azobenzene and its derivatives

    NASA Astrophysics Data System (ADS)

    Rezaee, Mohammadreza; Compton, Robert

    In this study we investigated protonated azobenzene cation and properties of trans 2,2',6,6'-tetrafluoroazobenzene anion using the collision induced dissociation method and the results are compared with the results from ab initio electronic structure calculations. We measured the bond dissociation energies experimentally and found which theoretical quantum chemistry methods yield best results. Several high accuracy multi-level calculations such as CBS-QB3, G3 and G4 had been carried out to obtain reliable thermochemical information for azobenzene and several of its derivatives and their anion or cation. We also performed other experiments such as Raman spectroscopy to study these light sensitive molecules with promising applications such as photo-switching.

  10. An efficient algorithm for energy gradients and orbital optimization in valence bond theory.

    PubMed

    Song, Lingchun; Song, Jinshuai; Mo, Yirong; Wu, Wei

    2009-02-01

    An efficient algorithm for energy gradients in valence bond theory with nonorthogonal orbitals is presented. A general Hartree-Fock-like expression for the Hamiltonian matrix element between valence bond (VB) determinants is derived by introducing a transition density matrix. Analytical expressions for the energy gradients with respect to the orbital coefficients are obtained explicitly, whose scaling for computational cost is m(4), where m is the number of basis functions, and is thus approximately the same as in HF method. Compared with other existing approaches, the present algorithm has lower scaling, and thus is much more efficient. Furthermore, the expression for the energy gradient with respect to the nuclear coordinates is also presented, and it provides an effective algorithm for the geometry optimization and the evaluation of various molecular properties in VB theory. Test applications show that our new algorithm runs faster than other methods. PMID:18629879

  11. Dissociative Recombination without a Curve Crossing

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1994-01-01

    Ab initio calculations show that a curve crossing is not always needed for a high dissociative- recombination cross section. For HeH(+), in which no neutral states cross the ion potential curve, dissociative recombination is driven by the nuclear kinetic-energy operator on adiabatic potential curves. The kinetic-energy derivative operator allows for capture into repulsive curves that are outside of the classical turning points for the nuclear motion. The dominant dissociative route is the C (2)Sigma(+) state leading to H(n = 2) atoms. An analogous mechanism is proposed for the dissociative recombination of H3(+).

  12. Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) ceramics.

    PubMed

    Zhang, Ping; Zhao, Yonggui; Haitao, Wu

    2015-10-14

    The dependence of microwave dielectric properties on the structural characteristics of ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) (0 ≤x≤ 0.10) ceramics is investigated. All the compounds were prepared by a conventional solid-state reaction method and analyzed via multiphase structure refinement. The diffraction patterns of ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) show the monoclinic wolframite structure of ZrZrNb2O8 which consists of an oxygen octahedron, with the Nb ion in the center of the oxygen octahedron. For the ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) ceramics, the dielectric constant (εr) decreased with the decrease in Nb-site bond ionicity. The quality factor (Q×f) of ZnZr(Nb1-xSbx)2O8 ceramics was found to be the highest (89 400 GHz), which is explained in terms of the average of the Nb-site lattice energy. With the decrease in the bond energy of the Nb-site, the temperature coefficient of resonant frequency (|τf|) value increased. The substitution of A(5+) (A = Ta, Sb) for Nb(5+) effectively influences the microstructure and microwave dielectric properties of ZrZrNb2O8 ceramics. PMID:26348992

  13. The mechanism of excited state proton dissociation in microhydrated hydroxylamine clusters.

    PubMed

    Thisuwan, Jittima; Suwannakham, Parichart; Lao-ngam, Charoensak; Sagarik, Kritsana

    2016-02-21

    The dynamics and mechanism of excited-state proton dissociation and transfer in microhydrated hydroxylamine clusters are studied using NH2OH(H2O)n (n = 1-4) as model systems and the DFT/B3LYP/aug-cc-pVDZ and TD-DFT/B3LYP/aug-cc-pVDZ methods as model calculations. This investigation is based on the Förster acidity scheme and emphasizes the photoacid dissociation in the ground (S0) and lowest singlet-excited states (S1) and the interplay between the photo and thermal excitations. The quantum chemical results suggest that the intermediate complexes are formed only in the S1 state in a low local-dielectric environment (e.g., ε = 1) and that upon the S0→ S1 transition, the photon energy excites mostly NH2OH, which leads to a homolytic cleavage of the O-H bond and to dynamically stable charge-separated Rydberg-like H-bond complexes (e.g., NH2O˙-H3O(+)˙). The potential energy surfaces for proton displacement in the smallest Rydberg-like H-bond complex support the intersection of the S0 and S1 states in low local-dielectric environments, whereas in a high local-dielectric environment (e.g., ε = 78), these two states are completely separated. Based on the static results, a photoacid-dissociation mechanism that involves Rydberg-like H-bond complex formation, an H-bond chain extension and fluctuations in the local-dielectric environment is proposed. NVT-BOMD simulations confirm the static results and show that the dynamic behavior of the dissociating proton in the S1 state is not different from that of the protonated H-bond systems in the ground state, which consists of the oscillatory shuttling and structural diffusion motions. These findings allow our theoretical methods, which have been used successfully in protonated H-bond systems in the ground state, to be applied in the study of the photoacid-dissociation processes. The current theoretical study suggests effective steps as well as guidelines for the investigation of the dynamics of the photoacid-dissociation and

  14. Dissociation of H{sub 2}{sup +} and D{sub 2}{sup +} in an intense laser field

    SciTech Connect

    Ludwig, J.; Rottke, H.; Sandner, W.

    1997-09-01

    We report experimental investigations on dissociation of H{sub 2} and D{sub 2} in intense subpicosecond laser pulses at 1053 and 526.5 nm. Intensities in the range from {approx}5{times}10{sup 13} up to {approx}5{times}10{sup 14} W/cm{sup 2} were applied. The kinetic-energy distributions of the photoions H{sup +} and D{sup +}, which change dramatically with the light pulse peak intensity, give a detailed insight into the dissociation mechanisms. At 526.5 nm and low light intensity, ions from bond-softening dissociation and probably seven-photon resonant dissociative multiphoton ionization dominate the spectra. The resonant intermediate states are Rydberg states of the neutral molecules. At 1053 nm, above-threshold dissociation makes the main contribution to the spectra. Independent of the excitation wavelength, Coulomb explosion dissociation is found in the high-intensity limit. H{sub 2}{sup +} and D{sub 2}{sup +} photoionization, triggering this process, proceeds in the quasistatic limit by preferred tunnel or above-barrier ionization in a limited range of internuclear separations around 7.5 a.u. The ion kinetic-energy distributions seem to indicate that at 526.5 nm ionization starts from molecular ions light stabilized in a certain range of internuclear distances. In contrast, at 1053 nm, ionization seems to start from dissociating molecular ions. {copyright} {ital 1997} {ital The American Physical Society}

  15. High-energy collision-activated and electron-transfer dissociation of gas-phase complexes of tryptophan with Na+, K+, and Ca2+

    NASA Astrophysics Data System (ADS)

    Fujihara, Akimasa; Sha, Yuki; Matsuo, Sou; Toyoda, Michisato; Hayakawa, Shigeo

    2014-10-01

    The structure and reactivity of gas-phase complexes of tryptophan (Trp) with Na+, K+, and Ca2+ were examined by high-energy collision-activated dissociation (CAD) and electron transfer dissociation (ETD) using alkali metal targets. In the CAD spectra of M+Trp (M = Na and K), neutral Trp loss was the primary dissociation pathway, and the product ion of collision-induced intracomplex electron transfer from the indole π ring of Trp to the alkali metal ion was observed, indicating a charge-solvated structure in which Trp is non-zwitterionic. The NH3 loss observed in the CAD spectrum of Ca2+Trp2 is ascribed to a CZ (mixed charge-solvated/zwitterionic)-type structure, in which one Trp is non-zwitterionic and the other Trp adopts a zwitterionic structure with an NH3+ moiety. The H atom and NH3 losses observed in the ETD spectrum of Ca2+Trp2 indicate the formation of a hypervalent radical in the complex, R-NH3, via electron transfer from the alkali metal target to the NH3+ group of the CZ-type structure. Ca2+ attachment to Trp cluster induces the zwitterionic structure of Trp in the gas phase, and an electron transfer to the zwitterionic Trp forms the hypervalent radical as a reaction intermediate.

  16. Dissociation of PH3 and AsH3 on Ge(100)(2x1) Surface

    NASA Astrophysics Data System (ADS)

    Katircioğlu, Şenay

    The most stable structures for the dissociation of phosphine and arsine on Ge(100)(2x1) surface have been investigated by relative total energy calculations based on Density Functional Theory. It has been found that the thermodynamically preferred structures in the dissociation path of phosphine and arsine are the same; PH2 and AsH2 products prefer to be on a single Ge dimer bond, but PH and AsH prefer to be between the adjacent Ge dimers. According to the optimization calculations, the dissociation path started with the adsorption of PH3(AsH3) on the electron deficient side of the Ge dimer bond is ended with the formation of P-P (As-As) dimers parallel to the dimers of Ge.

  17. Quantum enhancement of vibrational predissociation near the dissociation threshold

    SciTech Connect

    Cote, R.; Dashevskaya, E.I.; Nikitin, E.E.; Troe, J.

    2004-01-01

    We discuss quantum enhancement of the quasiclassical vibrational predissociation (VP) rate of an atom (A)-diatom (BC) van der Waals (vdW) complex A-BC from a state lying close to the dissociation threshold. The enhancement is due to the accumulation of a noticeable fraction of the state population near the outer turning point of the A-BC bond. For potentials behaving as power-laws at large separations, the enhancement manifests itself in the variation of the energy dependence of the VP frequency factor from the classical frequency to its quantum counterpart. We show that it is related to the complex scattering length associated with the vibrational relaxation of BC in collisions with A. We also discuss the corrected quasiclassical quantization condition for energy levels of a diatom lying very close to the dissociation threshold. Our results generalize those of J. Trost, C. Eltshka, and H. Friedrich [J. Phys. B 31, 361 (1998)] and C. Boisseau et al. [Eur. Phys. J. D 12, 199 (2000)] for the calculation of complex energy levels of an anharmonic oscillator that dissociates from highly excited states under the action of a weak high-frequency perturbation.

  18. On collisional energy transfer in recombination and dissociation reactions: A Wiener-Hopf problem and the effect of a near elastic peak.

    PubMed

    Zhu, Zhaoyan; Marcus, R A

    2008-12-01

    The effect of the large impact parameter near-elastic peak of collisional energy transfer for unimolecular dissociation/bimolecular recombination reactions is studied. To this end, the conventional single exponential model, a biexponential model that fits the literature classical trajectory data better, a model with a singularity at zero energy transfer, and the most realistic model, a model with a near-singularity, are fitted to the trajectory data in the literature. The typical effect of the energy transfer on the recombination rate constant is maximal at low pressures and this region is the one studied here. The distribution function for the limiting dissociation rate constant k(0) at low pressures is shown to obey a Wiener-Hopf integral equation and is solved analytically for the first two models and perturbatively for the other two. For the single exponential model, this method yields the trial solution of Troe. The results are applied to the dissociation of O(3) in the presence of argon, for which classical mechanical trajectory data are available. The k(0)'s for various models are calculated and compared, the value for the near-singularity model being about ten times larger than that for the first two models. This trend reflects the contribution to the cross section from collisions with larger impact parameter. In the present study of the near-singularity model, it is found that k(0) is not sensitive to reasonable values for the lower bound. Energy transfer values DeltaE's are also calculated and compared and can be similarly understood. However, unlike the k(0) values, they are sensitive to the lower bound, and so any comparison of a classical trajectory analysis for DeltaE's with the kinetic experimental data needs particular care. PMID:19063543

  19. Electron attachment to the N-substituted amino acids N-methylglycine and N-methylalanine: Effective cleavage of the N-Cα bond at sub-excitation energies

    NASA Astrophysics Data System (ADS)

    Kopyra, Janina

    2012-04-01

    Dissociative electron attachment to gas phase N-methylglycine and N-methylalanine is studied by means of a crossed beams apparatus. Effective cleavage of the N-Cα bond is observed within a low energy resonance peaking at 1.8 eV in both compounds and observable via the appearance of the fragment CH2COOH- from N-methylglycine and CH(CH3)COOH- from N-methylalanine. In glycine and alanine cleavage of the N-Cα bond was only observed as a weak reaction in combination with hydrogen transfer. As for previously studied amino acids, the most dominant anionic fragment is due to the loss of hydrogen atom from the respective target molecule resulting in the formation of the closed shell dehydrogenated parent anion (M-H)-.

  20. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV)

    NASA Astrophysics Data System (ADS)

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-01

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1- and π2- states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  1. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV)

    SciTech Connect

    Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel

    2015-12-07

    Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N–H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N–H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π{sub 1}{sup −} and π{sub 2}{sup −} states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.

  2. Electronic structure, stacking energy, partial charge, and hydrogen bonding in four periodic B-DNA models

    NASA Astrophysics Data System (ADS)

    Poudel, Lokendra; Rulis, Paul; Liang, Lei; Ching, W. Y.

    2014-08-01

    We present a theoretical study of the electronic structure of four periodic B-DNA models labeled (AT)10,(GC)10, (AT)5(GC)5, and (AT-GC)5 where A denotes adenine, T denotes thymine, G denotes guanine, and C denotes cytosine. Each model has ten base pairs with Na counterions to neutralize the negative phosphate group in the backbone. The (AT)5(GC)5 and (AT-GC)5 models contain two and five AT-GC bilayers, respectively. When compared against the average of the two pure models, we estimate the AT-GC bilayer interaction energy to be 19.015 Kcal/mol, which is comparable to the hydrogen bonding energy between base pairs obtained from the literature. Our investigation shows that the stacking of base pairs plays a vital role in the electronic structure, relative stability, bonding, and distribution of partial charges in the DNA models. All four models show a highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) gap ranging from 2.14 to 3.12 eV with HOMO states residing on the PO4 + Na functional group and LUMO states originating from the bases. Our calculation implies that the electrical conductance of a DNA molecule should increase with increased base-pair mixing. Interatomic bonding effects in these models are investigated in detail by analyzing the distributions of the calculated bond order values for every pair of atoms in the four models including hydrogen bonding. The counterions significantly affect the gap width, the conductivity, and the distribution of partial charge on the DNA backbone. We also evaluate quantitatively the surface partial charge density on each functional group of the DNA models.

  3. Free Energy Landscapes for S-H Bonds in (Cp2Mo2S4)-Mo-star Complexes

    SciTech Connect

    Appel, Aaron M.; Lee, Suh-Jane; Franz, James A.; DuBois, Daniel L.; Rakowski DuBois, Mary

    2009-03-23

    Extensive thermochemical data have been determined for a series of complexes derived from Cp*Mo(μ S)2(μ SMe)(μ SH)MoCp* and Cp*Mo(μ S)2(μ SH)2MoCp*. These data include electrochemical potentials, pKa values, homolytic solution bond dissociation free energies (SBDFEs), and hydride donor abilities in acetonitrile. Thermochemical data ranged from +0.6 to -2.0 V vs FeCp2+/o for electrochemical potentials, 5 to 31 for pKa values, 43 to 68 kcal/mol for homolytic SBDFEs, and 44 to 84 kcal/mol for hydride donor abilities. The observed values for these thermodynamic parameters are comparable to those of many transition metal hydrides, which is consistent with the many parallels in the chemistry of these two classes of compounds. The wealth of thermochemical data are presented in free energy landscapes as a useful approach to visualizing and understanding the relative stabilities of all of the species under specified conditions. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  4. Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenglong; Sheng, Shaoxiang; Zheng, Hairong; Xu, Hongxing; Sun, Mengtao

    2014-04-01

    The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis, photosynthesis and the degradation of plastic, it is hard to break individual molecular bonds for those molecules adsorbed on the surface because of the weak light-absorption in molecules and the redistribution of the resulting vibrational energy both inside the molecule and to its surrounding environment. Here we show how to overcome these obstacles with a plasmonic hot-electron mediated process and demonstrate a new method that allows the sensitive control of resonant dissociation of surface-adsorbed molecules by `plasmonic' scissors. To that end, we used a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup to dissociate resonantly excited NC2H6 fragments from Malachite green. The surface plasmons (SPs) excited at the sharp metal tip not only enhance the local electric field to harvest the light incident from the laser, but crucially supply `hot electrons' whose energy can be transferred to individual bonds. These processes are resonant Raman, which result in some active chemical bonds and then weaken these bonds, followed by dumping in lots of indiscriminant energy and breaking the weakest bond. The method allows for sensitive control of both the rate and probability of dissociation through their dependence on the density of hot electrons, which can be manipulated by tuning the laser intensity or tunneling current/bias voltage in the HV-TERS setup, respectively. The concepts of plasmonic scissors open up new versatile avenues for the deep understanding of in situ surface-catalyzed chemistry.The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis

  5. Students' reasoning about "high-energy bonds" and ATP: A vision of interdisciplinary education

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Sawtelle, Vashti; Turpen, Chandra; Gouvea, Julia; Redish, Edward F.

    2014-06-01

    As interdisciplinary courses are developed, instructors and researchers have to grapple with questions of how students should make connections across disciplines. We explore the issue of interdisciplinary reconciliation (IDR): how students reconcile seemingly contradictory ideas from different disciplines. While IDR has elements in common with other frameworks for the reconciliation of ideas across contexts, it differs in that each disciplinary idea is considered canonically correct within its own discipline. The setting for the research is an introductory physics course for biology majors that seeks to build greater interdisciplinary coherence and therefore includes biologically relevant topics such as adenosine triphosphate (ATP) and chemical bond energy. In our case-study data, students grapple with the apparent contradiction between the energy released when the phosphate bond in ATP is broken and the idea that an energy input is required to break a bond. We see students justifying context-dependent modeling choices, showing nuance in articulating how system choices may be related to disciplinary problems of interest. This represents a desired end point of IDR, in which students can build coherent connections between concepts from different disciplines while understanding each concept in its own disciplinary context. Our case study also illustrates elements of the instructional environment that play roles in the process of IDR.

  6. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O

    NASA Astrophysics Data System (ADS)

    Cowan, M. L.; Bruner, B. D.; Huse, N.; Dwyer, J. R.; Chugh, B.; Nibbering, E. T. J.; Elsaesser, T.; Miller, R. J. D.

    2005-03-01

    Many of the unusual properties of liquid water are attributed to its unique structure, comprised of a random and fluctuating three-dimensional network of hydrogen bonds that link the highly polar water molecules. One of the most direct probes of the dynamics of this network is the infrared spectrum of the OH stretching vibration, which reflects the distribution of hydrogen-bonded structures and the intermolecular forces controlling the structural dynamics of the liquid. Indeed, water dynamics has been studied in detail, most recently using multi-dimensional nonlinear infrared spectroscopy for acquiring structural and dynamical information on femtosecond timescales. But owing to technical difficulties, only OH stretching vibrations in D2O or OD vibrations in H2O could be monitored. Here we show that using a specially designed, ultrathin sample cell allows us to observe OH stretching vibrations in H2O. Under these fully resonant conditions, we observe hydrogen bond network dynamics more than one order of magnitude faster than seen in earlier studies that include an extremely fast sweep in the OH frequencies on a 50-fs timescale and an equally fast disappearance of the initial inhomogeneous distribution of sites. Our results highlight the efficiency of energy redistribution within the hydrogen-bonded network, and that liquid water essentially loses the memory of persistent correlations in its structure within 50fs.

  7. Absolute cross sections for the dissociation of hydrogen cluster ions in high-energy collisions with helium atoms

    SciTech Connect

    Eden, S.; Tabet, J.; Samraoui, K.; Louc, S.; Farizon, B.; Farizon, M.; Ouaskit, S.; Maerk, T. D.

    2006-02-15

    Absolute dissociation cross sections are reported for H{sub n}{sup +} clusters of varied mass (n=3,5,...,35) following collisions with He atoms at 60 keV/amu. Initial results have been published previously for a smaller range of cluster sizes [Ouaskit et al., Phys. Rev. A 49, 1484 (1994)]. The present extended study includes further experimental results, reducing the statistical errors associated with the absolute cross sections. The previously suggested quasilinear dependence of the H{sub n}{sup +} dissociation cross sections upon n is developed with reference to expected series of geometrical shells of H{sub 2} molecules surrounding a H{sub 3}{sup +} core. Recent calculations identify n=9 as corresponding to the first closed H{sub 2} shell [e.g., Stich et al., J. Chem. Phys. 107, 9482 (1997)]. Recurrence of the distinct characteristics observed in the dissociation-cross-section dependence upon cluster size around n=9 provides the basis for the presently proposed subsequent closed shells at n=15, 21, 27, and 33, in agreement with the calculations of Nagashima et al. [J. Phys. Chem. 96, 4294 (1992)].

  8. Dissociative Electron Attachment

    NASA Astrophysics Data System (ADS)

    Arreola, Esmeralda; Esmeralda Arreola Collaboration; Leigh Hargreaves Collaboration

    Since the pioneering work of Boudiaffa et al., it has been understood that electrons, even with energies near or below the ionization threshold, are capable of initiating strand-breaks in human DNA. This discovery raised important questions for cancer treatments, since sub-ionizing electrons are known to be the most copiously produced secondary product of radiation therapy. But even to date these factors are largely excluded from dosimetry calculations. This lack of inclusion is, at least in part, certainly due to the dearth of fundamental data describing low-energy electron interactions with nucleotide molecules that form the basis of DNA. Understanding of how such slow electrons are able to damage DNA remains incomplete, but the strongly peaked nature of Boudiaffa et al.'s data gives strong hints at resonantly driven collision processes. DNA damage is therefore most likely driven by ``dissociative electron attachment'' (DEA). DEA is a rather complicated process to model due to the coupling of electronic and nuclear degrees of freedom in the molecule. At the California State University Fullerton, we are currently commissioning a new spectrometer to study dissociation channels, reaction rates and orientation effects in DEA collisions between slow electrons and nucleotide molecules. At the meeting we will present design parameters and commissioning data for this new apparatus.

  9. Dissociated Vertical Deviation

    MedlinePlus

    ... Eye Terms Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Dissociated Vertical Deviation En Español Read in Chinese What is Dissociated Vertical Deviation (DVD)? DVD is ...

  10. A shock-tube determination of the CN ground state dissociation energy and electronic transition moments for the CN violet and red band systems

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Nicholls, R. W.

    1973-01-01

    The CN ground state dissociation energy and the sum of squares of the electronic transition moments of the CN violet bands have been simultaneously determined from spectral emission measurements behind incident shock waves. The unshocked test gases were composed of various CO2-CO-N2-Ar mixtures, and the temperatures behind the incident shocks ranged from 3500 to 8000 K. The variation of the electronic transition moment with internuclear separation was found to be small for both the CN violet and red band systems.

  11. Measurement of Histone Methylation Dynamics by One-Carbon Metabolic Isotope Labeling and High-energy Collisional Dissociation Methylation Signature Ion Detection

    PubMed Central

    Tang, Hui; Tian, Bing; Brasier, Allan R.; Sowers, Lawrence C.; Zhang, Kangling

    2016-01-01

    Accumulating evidence suggests that cellular metabolites and nutrition levels control epigenetic modifications, including histone methylation. However, it is not currently possible to measure the metabolic control of histone methylation. Here we report a novel detection method to monitor methyl transfer from serine to histones through the one-carbon metabolic pathway, using stable-isotope labeling and detection of lysine methylation signature ions generated in high-energy-dissociation (HCD) tandem mass spectrometry. This method is a long-needed tool to study the metabolic control of histone methylation. PMID:27530234

  12. Impact of mass and bond energy difference and interface defects on thermal boundary conductance

    NASA Astrophysics Data System (ADS)

    Choi, ChangJin

    The objective of this study is to use molecular dynamics simulation techniques in order to improve the understanding of phonon transport at the interface of dissimilar materials and the impact of different material properties on thermal boundary conductance (TBC). In order to achieve this goal, we investigated the contributions of mass and bond energy difference and interface defects on TBC at the interface of nanostructured materials using non-equilibrium molecular dynamics (NEMD) simulation and phonon wave-packet (PWP) simulation techniques. NEMD is used to distinguish relative and combined contributions of mass and bond energy difference on TBC. As a result, it is found that the mass has a stronger contribution than the bond energy on lowering the TBC and that the TBC is dependent on the length of interdiffusion region as well as temperature. In addition, evidence of inelastic scattering is observed with interdiffusion regions especially when two materials differ in the bond energy. A detailed description of phonon interactions at the interface is obtained performing PWP simulations. A frequency dependence of the TBC based on phonon dispersion relation is observed. As it is expected, minimum scattering occurs when there exists only vibrational mismatch at the interface and inelastic scattering is to take place at high frequency region when the bond energy of the two materials is different resulting in the strain at the interface. It is also shown that the level of inelastic scattering is dependent on the length of the interdiffusion region. In addition, the TBC calculated with the results of PWP simulations is compared with that of NEMD simulations as well as theoretical predictions from the acoustic mismatch model and the diffuse mismatch model. A simple analytical model, which utilizes knowledge of thermal interface resistance and the interface geometry for the prediction of effective thermal conductivity, is developed. This model is generated based on Si

  13. An experimental and theoretical study of the bond selected photodissociation of HOD

    SciTech Connect

    Vander Wal, R.L.; Scott, J.L.; Crim, F.F. ); Weide, K.; Schinke, R. )

    1991-03-01

    Experimental and theoretical studies of the photodissociation of single vibrational states in HOD provide a qualitative and quantitative understanding of the dissociation dynamics and bond selectivity of this process. Vibrationally mediated photodissociation, in which one photon prepares a vibrational state that a second photon dissociates, can selectively cleave the O--H bond in HOD molecules containing four quanta of O--H stretching excitation. Dissociation of HOD(4{nu}{sub OH}) with 266 or 239.5-nm photons produces OD fragments in at least a 15 fold excess over OH, but photolysis of the same state with 218.5-nm photons produces comparable amounts of OH and OD. Wave packet propagation calculations on an {ital ab} {ital initio} potential energy surface reproduce these observations quantitatively. They show that the origin of the selectivity and its energy dependence is the communication of the initial vibrational state with different portions of the outgoing continuum wave function for different photolysis energies.

  14. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  15. Electron-hole pair effects in methane dissociative chemisorption on Ni(111)

    NASA Astrophysics Data System (ADS)

    Luo, Xuan; Jiang, Bin; Juaristi, J. Iñaki; Alducin, Maite; Guo, Hua

    2016-07-01

    The dissociative chemisorption of methane on metal surfaces has attracted much attention in recent years as a prototype of gas-surface reactions in understanding the mode specific and bond selective chemistry. In this work, we systematically investigate the influence of electron-hole pair excitations on the dissociative chemisorption of CH4/CH3D/CHD3 on Ni(111). The energy dissipation induced by surface electron-hole pair excitations is modeled as a friction force introduced in the generalized Langevin equation, in which the independent atomic friction coefficients are determined within the local-density friction approximation. Quasi-classical trajectory calculations for CH4/CH3D/CHD3 have been carried out on a recently developed twelve-dimensional potential energy surface. Comparing the dissociation probabilities obtained with and without friction, our results clearly indicate that the electron-hole pair effects are generally small, both on absolute reactivity of each vibrational state and on the mode specificity and bond selectivity. Given similar observations in both water and methane dissociation processes, we conclude that electron-hole pair excitations would not play an important role as long as the reaction is direct and the interaction time between the molecule and metal electrons is relatively short.

  16. Electron-hole pair effects in methane dissociative chemisorption on Ni(111).

    PubMed

    Luo, Xuan; Jiang, Bin; Juaristi, J Iñaki; Alducin, Maite; Guo, Hua

    2016-07-28

    The dissociative chemisorption of methane on metal surfaces has attracted much attention in recent years as a prototype of gas-surface reactions in understanding the mode specific and bond selective chemistry. In this work, we systematically investigate the influence of electron-hole pair excitations on the dissociative chemisorption of CH4/CH3D/CHD3 on Ni(111). The energy dissipation induced by surface electron-hole pair excitations is modeled as a friction force introduced in the generalized Langevin equation, in which the independent atomic friction coefficients are determined within the local-density friction approximation. Quasi-classical trajectory calculations for CH4/CH3D/CHD3 have been carried out on a recently developed twelve-dimensional potential energy surface. Comparing the dissociation probabilities obtained with and without friction, our results clearly indicate that the electron-hole pair effects are generally small, both on absolute reactivity of each vibrational state and on the mode specificity and bond selectivity. Given similar observations in both water and methane dissociation processes, we conclude that electron-hole pair excitations would not play an important role as long as the reaction is direct and the interaction time between the molecule and metal electrons is relatively short. PMID:27475383

  17. Photoinduced nonadiabatic decay and dissociation dynamics of dimethylnitramine.

    PubMed

    Zhuang, Xuhui; Wang, Jun; Lan, Zhenggang

    2013-06-13

    Dimethylnitramine (DMNA) is a prototype system used in the investigation of the unimolecular decomposition mechanism of the nitramine-compound family. The photoinduced excited-state nonadiabatic processes and successive unimolecular dissociation of DMNA were investigated by trajectory surface-hopping dynamics at the semiempirical OM2/MRCI level. Two S1/S0 conical intersections (CI01α and CI01β) were found to play essential roles in the nonadiabatic decay dynamics of DMNA. After the S1 → S0 decay, the excess kinetic energy finally results in the cleavage of the N-N bond in the ground electronic state. The two reaction channels through CI01α and CI01β show differences in molecular motions and decay features. The trajectories passing CI01α can hop one or several times, and the intramolecular vibrational energy transfer in the ground state takes place before dissociation, whereas trajectories following the CI01β channel mainly dissociate directly after only one S1 → S0 hop. PMID:23672370

  18. Seniority number description of potential energy surfaces: Symmetric dissociation of water, N{sub 2}, C{sub 2}, and Be{sub 2}

    SciTech Connect

    Bytautas, Laimutis; Scuseria, Gustavo E.; Ruedenberg, Klaus

    2015-09-07

    The present study further explores the concept of the seniority number (Ω) by examining different configuration interaction (CI) truncation strategies in generating compact wave functions in a systematic way. While the role of Ω in addressing static (strong) correlation problem has been addressed in numerous previous studies, the usefulness of seniority number in describing weak (dynamic) correlation has not been investigated in a systematic way. Thus, the overall objective in the present work is to investigate the role of Ω in addressing also dynamic electron correlation in addition to the static correlation. Two systematic CI truncation strategies are compared beyond minimal basis sets and full valence active spaces. One approach is based on the seniority number (defined as the total number of singly occupied orbitals in a determinant) and another is based on an excitation-level limitation. In addition, molecular orbitals are energy-optimized using multiconfigurational-self-consistent-field procedure for all these wave functions. The test cases include the symmetric dissociation of water (6-31G), N{sub 2} (6-31G), C{sub 2} (6-31G), and Be{sub 2} (cc-pVTZ). We find that the potential energy profile for H{sub 2}O dissociation can be reasonably well described using only the Ω = 0 sector of the CI wave function. For the Be{sub 2} case, we show that the full CI potential energy curve (cc-pVTZ) is almost exactly reproduced using either Ω-based (including configurations having up to Ω = 2 in the virtual-orbital-space) or excitation-based (up to single-plus-double-substitutions) selection methods, both out of a full-valence-reference function. Finally, in dissociation cases of N{sub 2} and C{sub 2}, we shall also consider novel hybrid wave functions obtained by a union of a set of CI configurations representing the full valence space and a set of CI configurations where seniority-number restriction is imposed for a complete set (full-valence-space and virtual) of

  19. EVIDENCE FOR CO DISSOCIATION ON RHODIUM SURFACES

    SciTech Connect

    Castner, D.G.; Dubois, L.H.; Sexton, B.A.; Somorjai, G.A.

    1980-06-01

    Carbon monoxide adsorbs molecularly on rhodium surfaces at 300K, but if the rhodium samples are heated in the presence of carbon monoxide, there is evidence for carbon-oxygen bond breaking at step and/or defect sites. The effects of step and defect site density, subsurface oxygen concentration, and oxygen dissolution into the rhodium lattice on CO dissociation are discussed.

  20. Distribution of Exchange Energy in a Bond-alternating S=1 Quantum Spin Chain

    SciTech Connect

    Zheludev, Andrey I; Masuda, Takatsugu; Sales, Brian C; Mandrus, David; Papenbrock, Thomas F; Barnes, Ted {F E }; Park, S.

    2004-01-01

    The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet [Ni(N,N'-bis(3aminopropyl)propane-1,3-diamine({mu}-NO{sub 2})]ClO{sub 4} (NTENP) is studied by single-crystal inelastic neutron scattering. Parameters of the measured dispersion relation for magnetic excitations are compared to existing numerical results and used to determine the magnitude of bond-strength alternation. The measured neutron-scattering intensities are also analyzed, using the first-moment sum rules for the magnetic dynamic structure factor, to directly determine the modulation of ground-state exchange energies. These independently determined modulation parameters characterize the level of spin dimerization in NTENP. First-principles density-matrix renormalization-group calculations are used to study the relation between these two quantities.

  1. Prediction of Reliable Metal-PH₃ Bond Energies for Ni, Pd, and Pt in the 0 and +2 Oxidation States

    SciTech Connect

    Craciun, Raluca; Vincent, Andrew J.; Shaughnessy, Kevin H.; Dixon, David A.

    2010-06-21

    Phosphine-based catalysts play an important role in many metal-catalyzed carbon-carbon bond formation reactions yet reliable values of their bond energies are not available. We have been studying homogeneous catalysts consisting of a phosphine bonded to a Pt, Pd, or Ni. High level electronic structure calculations at the CCSD(T)/complete basis set level were used to predict the M-PH₃ bond energy (BE) for the 0 and +2 oxidation states for M=Ni, Pd, and Pt. The calculated bond energies can then be used, for example, in the design of new catalyst systems. A wide range of exchange-correlation functionals were also evaluated to assess the performance of density functional theory (DFT) for these important bond energies. None of the DFT functionals were able to predict all of the M-PH3 bond energies to within 5 kcal/mol, and the best functionals were generalized gradient approximation functionals in contrast to the usual hybrid functionals often employed for main group thermochemistry.

  2. Diffraction dissociation at the LHC

    NASA Astrophysics Data System (ADS)

    Jenkovszky, László; Orava, Risto; Salii, Andrii

    2013-04-01

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  3. Diffraction dissociation at the LHC

    SciTech Connect

    Jenkovszky, Laszlo; Orava, Risto; Salii, Andrii

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  4. Mode specificity for the dissociative chemisorption of H2O on Cu(111): a quantum dynamics study on an accurately fitted potential energy surface.

    PubMed

    Liu, Tianhui; Zhang, Zhaojun; Fu, Bina; Yang, Xueming; Zhang, Dong H

    2016-03-16

    The mode-specific dynamics for the dissociative chemisorption of H2O on Cu(111) is first investigated by seven-dimensional quantum dynamics calculations, based on an accurately fitted potential energy surface (PES) recently developed by neural network fitting to DFT energy points. It is indicated that excitations in all three vibrational modes have a significant impact on reactivity, which are more efficacious than increasing the translational energy in promoting the reaction, with the largest enhancement for the excitation in the asymmetric stretching mode. There is large discrepancy between the six-dimensional reactivities with fixed azimuthal angles and seven-dimensional results, revealing that the 6D "flat surface" model cannot accurately characterize the reaction dynamics. The azimuthal angle-averaging approach is validated for vibrational excited states of the reactant, where the 7D mode-specific probability can be well reproduced by averaging the 6D azimuthal angle-fixed probabilities over 18 angles. PMID:26941197

  5. C2 in a Box: Determining Its Intrinsic Bond Strength for the X(1) Σg (+) Ground State.

    PubMed

    Zou, Wenli; Cremer, Dieter

    2016-03-14

    The intrinsic bond strength of C2 in its (1) Σg (+) ground state is determined from its stretching force constant utilizing MR-CISD+Q(8,8), MR-AQCC(8,8), and single-determinant coupled cluster calculations with triple and quadruple excitations. By referencing the CC stretching force constant to its local counterparts of ethane, ethylene, and acetylene, an intrinsic bond strength half way between that of a double bond and a triple bond is obtained. Diabatic MR-CISD+Q results do not change this. Confinement of C2 and suitable reference molecules in a noble gas cage leads to compression, polarization, and charge transfer effects, which are quantified by the local CC stretching force constants and differences of correlated electron densities. These results are in line with two π bonds and a partial σ bond. Bond orders and bond dissociation energies of small hydrocarbons do not support quadruple bonding in C2 . PMID:26742466

  6. The Role of Interfacial Molecular Structure and Hydrogen-Bonding in Gas-Surface Energy Exchange

    NASA Astrophysics Data System (ADS)

    Day, Scott; Fergusion, Melinda; Morris, John

    2004-03-01

    Atomic-beam scattering experiments using n-alkanethiol and w-functionalized alkanethiol self-assembled monolayers (SAMs) on gold are employed to explore the dynamics of gas-surface energy exchange in collisions with model organic surfaces. The studies are performed by directing a nearly monoenergetic beam of 80 kJ/mol Ar atoms onto a particular SAM at an incident angle of 30° with respect to the surface normal and recording the time-of-flight distributions for the atoms as they scatter from the surface at a final angle of 30°. Among the monolayers studied, long-chain methyl-terminated SAMs are found to be the most effective at dissipating the translational energy of impinging atoms. For alkanethiols with greater than seven total carbon atoms, we find that, for specular scattering conditions, over 80the incident energy is transferred to the surface and that over 60with the surface before scattering back into the gas phase. In contrast to methyl-terminated monolayers, SAMs constructed from hydrogen-bonding alkanethiols exhibit characteristics of more rigid collision partners. The Ar atoms transfer about 77with only 43equilibrium before recoiling. Further comparisons of mixed hydroxyl- and methyl-terminated SAMs and alkene-terminated SAMs suggest that intramonolayer hydrogen bonding of terminal functional groups may play an important role in determining the extent of energy transfer and thermalization.

  7. Measurements of the Coulomb dissociation cross section of 156 MeV sup 6 Li projectiles at extremely low relative fragment energies of astrophysical interest

    SciTech Connect

    Kiener, J.; Gils, H.J.; Rebel, H.; Zagromski, S.; Gsottschneider, G.; Heide, N.; Jelitto, H.; Wentz, J. ); Baur, G. )

    1991-11-01

    Coulomb dissociation of light nuclear projectiles in the electric field of heavy target nuclei has been experimentally investigated as an alternative access to radiative capture cross sections at low relative energies of the fragments, which are of astrophysical interest. As a pilot experiment the breakup of 156 MeV {sup 6}Li projectiles at {sup 208}Pb with small emission angles of the {alpha} particle and deuteron fragments has been studied. Both fragments were coincidentally detected in the focal plane of a magnetic spectrograph at several reaction angles well below the grazing angle and with relative angles between the fragments of 0{degree}--2{degree}. The experimental cross sections have been analyzed on the basis of the Coulomb breakup theory. The results for the resonant breakup give evidence for the strong dominance of the Coulomb dissociation mechanism and the absence of nuclear distortions, while the cross section for the nonresonant breakup follows theoretical predictions of the astrophysical {ital S} factor and extrapolations of corresponding radiative capture reaction cross section to very low c.m. energies of the {alpha} particle and deuteron. Various implications of the approach are discussed.

  8. Reaction of Cu+ with dimethoxyethane: Competition between association and multiple dissociation channels

    NASA Astrophysics Data System (ADS)

    Koizumi, Hideya; Muntean, Felician; Armentrout, P. B.

    2004-01-01

    The reaction of Cu+ with dimethoxyethane (DXE) is studied using kinetic-energy dependent guided ion beam mass spectrometry. The bimolecular reaction forms an associative Cu+(DXE) complex that is long-lived and dissociates into several competitive channels: C4H9O2++CuH, Cu+(C3H6O)+CH3OH, back to reactants, and other minor channels. The kinetic-energy dependences of the cross sections for the three largest product channels are interpreted with several different models (including rigorous phase space theory) to yield 0 K bond energies after accounting for the effects of multiple ion-molecule collisions, internal energy of the reactant ions, Doppler broadening, and dissociation lifetimes. These values are compared with bond energies obtained from collision-induced dissociation (CID) studies of the Cu+(DXE) complex and found to be self-consistent. Although all models provide reasonable thermochemistry, phase space theory reproduces the details of the cross sections most accurately. We also examine the dynamics of this reaction using time-of-flight methods and a retarding potential analysis. This provides additional insight into the unimolecular decay of the long-lived Cu+(DXE) association complex. Comparison of results from this study with those from the complementary CID study, thus forming the same energized Cu+(DXE) complex in two distinct ways, allows an assessment of the models used to interpret CID thresholds.

  9. Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study

    SciTech Connect

    Wang, Xu-Dong; Xuan, Chuan-Jin; Feng, Wen-Ling; Tian, Shan Xi

    2015-02-14

    Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion velocity map imaging technique and ab initio molecular dynamics simulations. The momentum images of the dominant fragments O{sup −}/OH{sup −} and CH{sub 3}{sup −} are recorded, indicating the low kinetic energies of O{sup −}/OH{sup −} for ethanol while the low and high kinetic energy distributions of O{sup −} ions for acetaldehyde. The CH{sub 3}{sup −} image for acetaldehyde also shows the low kinetic energy. With help of the dynamics simulations, the fragmentation processes are qualitatively clarified. A new cascade dissociation pathway to produce the slow O{sup −} ion via the dehydrogenated intermediate, CH{sub 3}CHO{sup −} (acetaldehyde anion), is proposed for the dissociative electron attachment to ethanol. After the electron attachment to acetaldehyde molecule, the slow CH{sub 3}{sup −} is produced quickly in the two-body dissociation with the internal energy redistributions in different aspects before bond cleavages.

  10. A program to calculate non-bonded interaction energy in biomolecular aggregates.

    PubMed

    Sundaram, K; Prasad, C V

    1982-02-01

    This paper describes a program to calculate intermolecular as well as intramolecular electronic potential energy resulting from non-bonded interactions. The underlying theory is obtained by the application of Rayleigh-Schroedinger perturbation theory to non-overlap regions of a molecular system. The rigorous theoretical expressions for the energy terms are simplified by approximations consistent with those commonly employed in semi-empirical molecular orbital theories. The program is particularly suited for the study of biomolecular assemblies, and in situations where insight into contributions to total energy from various component interaction types is desired. The inclusion of the non-additive dispersion effects in this approach makes it especially interesting for the study of cooperative phenomena in the light of a recent finding [1]. PMID:7067416

  11. Electron shuttling in electron transfer dissociation

    NASA Astrophysics Data System (ADS)

    Neff, Diane; Smuczynska, Sylwia; Simons, Jack

    2009-06-01

    Ab initio electronic structure calculations have been performed on two model systems containing a disulfide linkage and one or two positively charged sites, aimed at gaining further insight into how and where electrons attach to positively charged peptides under electron capture (ECD) and electron transfer dissociation (ETD) mass spectroscopy conditions. Couplings among electronic states involving (i) an entrance-channel with the excess electron residing on a donor anion interacting with the positively charged peptide, (ii) a state in which the electron has been transferred to the SS [sigma]* orbital to cause bond cleavage, and (iii) a manifold of states in which the electron has been transferred to a ground- or excited-Rydberg orbital on a positive site. The results of this study suggest that specific excited Rydberg states play a key role in effecting electron shuttling to the SS [sigma]* orbital. The excited-Rydberg orbitals close in energy to the SS [sigma]* orbital and with sufficient radial extent to span the distance between the positive site and the SS [sigma]* orbital play the key role. Then, when the anion donor, excited-Rydberg, and SS [sigma]* orbitals achieve spatial proximity and similarity in energies, one can have what is termed here a shuttle of an electron from the donor to the SS [sigma]* orbital, which results in SS bond cleavage. For the singly and doubly charged systems studied here, it was the 3p and 3d Rydberg orbitals, respectively, that met these criteria of spatial and energetic proximity. For other peptides having different charge states, it will be other Rydberg orbitals that meet these criteria because the relative energies of the SS [sigma]* and Rydberg orbitals are governed by the (different) Coulomb stabilizations these orbitals experience. However, the evidence suggests that it is not very high-energy Rydberg states but states with 3 < n < 10 that are involved in the rate limiting steps in ECD, ETD, and ECID experiments.

  12. TiCl, TiH and TiH+ Bond Energies, a Test of a Correlation Consistent Ti Basis Set

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1999-01-01

    Correlation consistent basis sets are developed for Ti atom. The polarization functions are optimized for the average of the 3F and 5F states. One series of correlation consistent basis sets is for 3d and 4s correlation, while the second series includes 3s and 3p correlation as well as 3d and 4s correlation. These basis sets are tested using the Ti 3F-5F separation and the dissociation energies of TiCl X4Phi, TiH X4Phi, and TiH(+) X3Phi. The CCSD(T) complete basis set limit values are determined by extrapolation. The Douglas Kroll approach is used to compute the scalar relativistic effect. Spin-orbit effects are taken from experiment and/or computed at the CASSCF level. The Ti 3F-5F separation is in excellent agreement with experiment, while the TiCl, TiH, and TiH(+) bond energies are in good agreement with experiment. Extrapolation with the valence basis set is consistent with other atoms, while including 3s and 3p correlation appears to make extrapolation.

  13. Comparison of DFT with Traditional Methods for the Calculation of Vibrational Frequencies and Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The vibrational frequencies of MO2 are computed at many levels of theory, including HF, B3LYP, BP86, CASSCF, MP2, and CCSD(T). The computed results are compared with the available experimental results. Most of the methods fail for at least one state of the systems considered. The accuracy of the results and the origin of the observed failures are discussed. The B3LYP bond energies are compared with traditional methods for a variety of systems, ranging from FeCOn+ to SiCln and its positive ions. The cases where B3LYP differs from the traditional methods are discussed.

  14. Accurate thermochemistry for larger molecules : gaussian-2 theory with bond separation energies.

    SciTech Connect

    Raghavachari, K.; Stefanov, B. B.; Curtiss, L. A.; Lucent Tech.

    1997-04-22

    Gaussian-2 (G2) theory is combined with isodesmic bond separation reaction energies to yield accurate thermochemistry for larger molecules. For a test set of 40 molecules composed of H, C, O, and N, our method yields enthalpies of formation, {Delta}H{sub f}{sup 0}(298 K), with a mean absolute deviation from experiment of only 0.5 kcal/mol. This is an improvement of a factor of three over the deviation of 1.5 kcal/mol seen in standard G2 theory.

  15. Correcting for the free energy costs of bond or angle constraints in molecular dynamics simulations

    PubMed Central

    König, Gerhard; Brooks, Bernard R.

    2014-01-01

    Background Free energy simulations are an important tool in the arsenal of computational biophysics, allowing the calculation of thermodynamic properties of binding or enzymatic reactions. This paper introduces methods to increase the accuracy and precision of free energy calculations by calculating the free energy costs of constraints during post-processing. The primary purpose of employing constraints for these free energy methods is to increase the phase space overlap between ensembles, which is required for accuracy and convergence. Methods The free energy costs of applying or removing constraints are calculated as additional explicit steps in the free energy cycle. The new techniques focus on hard degrees of freedom and use both gradients and Hessian estimation. Enthalpy, vibrational entropy, and Jacobian free energy terms are considered. Results We demonstrate the utility of this method with simple classical systems involving harmonic and anharmonic oscillators, four-atomic benchmark systems, an alchemical mutation of ethane to methanol, and free energy simulations between alanine and serine. The errors for the analytical test cases are all below 0.0007 kcal/mol, and the accuracy of the free energy results of ethane to methanol is improved from 0.15 to 0.04 kcal/mol. For the alanine to serine case, the phase space overlaps of the unconstrained simulations range between 0.15 and 0.9%. The introduction of constraints increases the overlap up to 2.05%. On average, the overlap increases by 94% relative to the unconstrained value and precision is doubled. Conclusions The approach reduces errors arising from constraints by about an order of magnitude. Free energy simulations benefit from the use of constraints through enhanced convergence and higher precision. General Significance The primary utility of this approach is to calculate free energies for systems with disparate energy surfaces and bonded terms, especially in multi-scale molecular mechanics

  16. Strain effect on the adsorption, diffusion, and molecular dissociation of hydrogen on Mg (0001) surface.

    PubMed

    Lei, Huaping; Wang, Caizhuang; Yao, Yongxin; Wang, Yangang; Hupalo, Myron; McDougall, Dan; Tringides, Michael; Ho, Kaiming

    2013-12-14

    The adsorption, diffusion, and molecular dissociation of hydrogen on the biaxially strained Mg (0001) surface have been systematically investigated by the first principle calculations based on density functional theory. When the strain changes from the compressive to tensile state, the adsorption energy of H atom linearly increases while its diffusion barrier linearly decreases oppositely. The dissociation barrier of H2 molecule linearly reduces in the tensile strain region. Through the chemical bonding analysis including the charge density difference, the projected density of states and the Mulliken population, the mechanism of the strain effect on the adsorption of H atom and the dissociation of H2 molecule has been elucidated by an s-p charge transfer model. With the reduction of the orbital overlap between the surface Mg atoms upon the lattice expansion, the charge transfers from p to s states of Mg atoms, which enhances the hybridization of H s and Mg s orbitals. Therefore, the bonding interaction of H with Mg surface is strengthened and then the atomic diffusion and molecular dissociation barriers of hydrogen decrease accordingly. Our works will be helpful to understand and to estimate the influence of the lattice deformation on the performance of Mg-containing hydrogen storage materials. PMID:24329077

  17. Precursor anion states in dissociative electron attachment to chlorophenol isomers

    NASA Astrophysics Data System (ADS)

    Kossoski, F.; Varella, M. T. do N.

    2016-07-01

    We report a theoretical study on low-energy (<10 eV) elastic electron scattering from chlorophenol isomers, namely, para-chlorophenol (pCP), meta-chlorophenol (mCP), and ortho-chlorophenol (oCP). The calculations were performed with the Schwinger multichannel method with pseudopotentials, and analysis of the computed integral cross sections and virtual orbitals revealed one σCCl ∗ , one σOH ∗ , and three π∗ shape resonances. We show that electron capture into the two lower lying π∗ orbitals initiates dissociative processes that lead to the elimination of the chloride ion, accounting for the two overlapping peaks where this fragment was observed. Despite the relatively small differences on the energetics of the π∗ resonances, a major isomeric effect was found on their corresponding autodetachment lifetimes, which accounts for the observed increasing cross sections in the progression pCP < mCP < oCP. In particular, dissociation from the π1 ∗ anion of pCP is largely suppressed because of the unfavorable mixing with the σCCl ∗ state. We found the intramolecular hydrogen bond present in oCP to have the opposite effects of stabilizing the σCCl ∗ resonance and destabilizing the σOH ∗ resonance. We also suggest that the hydrogen abstraction observed in chlorophenols and phenol actually takes place by a mechanism in which the incoming electron is directly attached to the dissociative σOH ∗ orbital.

  18. A quantum mechanics-molecular mechanics study of dissociative electron transfer: The methylchloride radical anion in aqueous solution

    NASA Astrophysics Data System (ADS)

    Soriano, Alejandro; Silla, Estanislao; Tuñón, Iñaki

    2002-04-01

    The dissociative electron transfer reaction CH3Cl+e-→CH3•+Cl- in aqueous solution is studied by using a QM/MM method. In this work the quantum subsystem (a methylchloride molecule plus an electron) is described using density functional theory while the solvent (300 water molecules) is described using the TIP3P classical potential. By means of molecular dynamics simulations and the thermodynamic integration technique we obtained the potential of mean force (PMF) for the carbon-chlorine bond dissociation of the neutral and radical anion species. Combining these two free energy curves we found a quadratic dependence of the activation free energy on the reaction free energy in agreement with Marcus' relationship, originally developed for electron transfer processes not involving bond breaking. We also investigated dynamical aspects by means of 60 dissociative trajectories started with the addition of an extra electron to different configurations of a methylchloride molecule in solution. The PMF shows the existence of a very flat region, in which the system is trapped during some finite time if the quantum subsystem quickly losses its excess kinetic energy transferring it to the solvent molecules. One of the most important factors determining the effectiveness of this energy transfer seems to be the existence of close contacts (hydrogen bonds) between the solute and the solvent.

  19. Wavepacket theory of collisional dissociation in molecules

    SciTech Connect

    Kulander, K.

    1980-01-01

    An explicit integration scheme is used to solve the time dependent Schroedinger equation for wavepackets which model collisions in the collinear H + H/sub 2/ system. A realistic LEPS-type potential energy surface is used. Collision energies considered are above the dissociation threshold and probabilities for collision induced dissociation are reported. Also quantum mechanical state-to-state transition probabilities are generated. These results are compared to extensive classical trajectory calculations performed on this same system. The time evolution of the wavepacket densities is studied to understand the dynamics of the collinear collisional dissociation process.

  20. DFT study of NH 3 dissociation on Si(1 1 1)-7 × 7. The role of intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Ferullo, Ricardo M.; Fuente, Silvia A.; Belelli, Patricia G.; Castellani, Norberto J.

    2007-04-01

    The adsorption of NH 3 molecule on the Si(1 1 1)-7 × 7 surface modelled with a cluster has been studied using density functional theory (DFT). The results indicate the existence of a precursor state for the non-dissociative chemisorption. The active site for the molecular chemisorption is the adatom; while the NH 3 molecule adsorbs on the Si restatom via this preadsorbed state, the adsorption on the Si adatom is produced practically without an energy barrier. The ammonia adsorption on the adatom induces an electron transfer from the dangling bond of this atom to the dangling bond of the adjacent Si restatom, hindering this site for the adsorption of a second NH 3 incoming molecule. However, this second molecule links strongly by means of two H-bonds. The dissociative chemisorption process was studied considering one and two ammonia molecules. For the dissociation of a lonely NH 3 molecule an energy barrier of ˜0.3 eV was calculated, yielding NH 2 on the adatom and H on the restatom. When two molecules are adsorbed, the NH 3-NH 3 interaction yields the weakening of a N-H bond of the ammonia molecule adsorbed closer the Si surface. As a consequence, the dissociation barrier practically disappears. Thus, the presence of a second NH 3 molecule at the adatom-restatom pair of the Si(1 1 1)-7 × 7 surface makes the dissociative reaction self-assisted, the total adsorption process elapsing with a negligible activation barrier (less than 0.01 eV).

  1. O2 Protonation Controls Threshold Behavior for N-Glycosidic Bond Cleavage of Protonated Cytosine Nucleosides.

    PubMed

    Wu, R R; Rodgers, M T

    2016-06-01

    IRMPD action spectroscopy studies of protonated 2'-deoxycytidine and cytidine, [dCyd+H](+) and [Cyd+H](+), have established that both N3 and O2 protonated conformers coexist in the gas phase. Threshold collision-induced dissociation (CID) of [dCyd+H](+) and [Cyd+H](+) is investigated here using guided ion beam tandem mass spectrometry techniques to elucidate the mechanisms and energetics for N-glycosidic bond cleavage. N-Glycosidic bond cleavage is observed as the major dissociation pathways resulting in competitive elimination of either protonated or neutral cytosine for both protonated cytosine nucleosides. Electronic structure calculations are performed to map the potential energy surfaces (PESs) for both N-glycosidic bond cleavage pathways observed. The molecular parameters derived from theoretical calculations are employed for thermochemical analysis of the energy-dependent CID data to determine the minimum energies required to cleave the N-glycosidic bond along each pathway. B3LYP and MP2(full) computed activation energies for N-glycosidic bond cleavage associated with elimination of protonated and neutral cytosine, respectively, are compared to measured values to evaluate the efficacy of these theoretical methods in describing the dissociation mechanisms and PESs for N-glycosidic bond cleavage. The 2'-hydroxyl of [Cyd+H](+) is found to enhance the stability of the N-glycosidic bond vs that of [dCyd+H](+). O2 protonation is found to control the threshold energies for N-glycosidic bond cleavage as loss of neutral cytosine from the O2 protonated conformers is found to require ∼25 kJ/mol less energy than the N3 protonated analogues, and the activation energies and reaction enthalpies computed using B3LYP exhibit excellent agreement with the measured thresholds for the O2 protonated conformers. PMID:27159774

  2. Accurate hydrogen bond energies within the density functional tight binding method.

    PubMed

    Domínguez, A; Niehaus, T A; Frauenheim, T

    2015-04-01

    The density-functional-based tight-binding (DFTB) approach has been recently extended by incorporating one-center exchange-like terms in the expansion of the multicenter integrals. This goes beyond the Mulliken approximation and leads to a scheme which treats in a self-consistent way the fluctuations of the whole dual density matrix and not only its diagonal elements (Mulliken charges). To date, only the performance of this new formalism to reproduce excited-state properties has been assessed (Domínguez et al. J. Chem. Theory Comput., 2013, 9, 4901-4914). Here we study the effect of our corrections on the computation of hydrogen bond energies for water clusters and water-containing systems. The limitations of traditional DFTB to reproduce hydrogen bonds has been acknowledged often. We compare our results for a set of 22 small water clusters and water-containing systems as well as for five water hexadecamers to those obtained with the DFTB3 method. Additionally, we combine our extension with a third-order energy expansion in the charge fluctuations. Our results show that the new formalisms significantly improve upon original DFTB. PMID:25763597

  3. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    PubMed

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. PMID:21806098

  4. Evaluating interaction energies of weakly bonded systems using the Buckingham-Hirshfeld method

    SciTech Connect

    Krishtal, A.; Van Alsenoy, C.; Geerlings, P.

    2014-05-14

    We present the finalized Buckingham-Hirshfeld method (BHD-DFT) for the evaluation of interaction energies of non-bonded dimers with Density Functional Theory (DFT). In the method, dispersion energies are evaluated from static multipole polarizabilities, obtained on-the-fly from Coupled Perturbed Kohn-Sham calculations and partitioned into diatomic contributions using the iterative Hirshfeld partitioning method. The dispersion energy expression is distributed over four atoms and has therefore a higher delocalized character compared to the standard pairwise expressions. Additionally, full multipolar polarizability tensors are used as opposed to effective polarizabilities, allowing to retain the anisotropic character at no additional computational cost. A density dependent damping function for the BLYP, PBE, BP86, B3LYP, and PBE0 functionals has been implemented, containing two global parameters which were fitted to interaction energies and geometries of a selected number of dimers using a bi-variate RMS fit. The method is benchmarked against the S22 and S66 data sets for equilibrium geometries and the S22x5 and S66x8 data sets for interaction energies around the equilibrium geometry. Best results are achieved using the B3LYP functional with mean average deviation values of 0.30 and 0.24 kcal/mol for the S22 and S66 data sets, respectively. This situates the BHD-DFT method among the best performing dispersion inclusive DFT methods. Effect of counterpoise correction on DFT energies is discussed.

  5. Distinguishing Bonds.

    PubMed

    Rahm, Martin; Hoffmann, Roald

    2016-03-23

    The energy change per electron in a chemical or physical transformation, ΔE/n, may be expressed as Δχ̅ + Δ(VNN + ω)/n, where Δχ̅ is the average electron binding energy, a generalized electronegativity, ΔVNN is the change in nuclear repulsions, and Δω is the change in multielectron interactions in the process considered. The last term can be obtained by the difference from experimental or theoretical estimates of the first terms. Previously obtained consequences of this energy partitioning are extended here to a different analysis of bonding in a great variety of diatomics, including more or less polar ones. Arguments are presented for associating the average change in electron binding energy with covalence, and the change in multielectron interactions with electron transfer, either to, out, or within a molecule. A new descriptor Q, essentially the scaled difference between the Δχ̅ and Δ(VNN + ω)/n terms, when plotted versus the bond energy, separates nicely a wide variety of bonding types, covalent, covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond. PMID:26910496

  6. Vibrational analysis on the revised potential energy curve of the low-barrier hydrogen bond in photoactive yellow protein.

    PubMed

    Kanematsu, Yusuke; Kamikubo, Hironari; Kataoka, Mikio; Tachikawa, Masanori

    2016-01-01

    Photoactive yellow protein (PYP) has a characteristic hydrogen bond (H bond) between p-coumaric acid chromophore and Glu46, whose OH bond length has been observed to be 1.21 Å by the neutron diffraction technique [Proc. Natl. Acad. Sci. 106, 440-4]. Although it has been expected that such a drastic elongation of the OH bond could be caused by the quantum effect of the hydrogen nucleus, previous theoretical computations including the nuclear quantum effect have so far underestimated the bond length by more than 0.07 Å. To elucidate the origin of the difference, we performed a vibrational analysis of the H bond on potential energy curve with O…O distance of 2.47 Å on the equilibrium structure, and that with O…O distance of 2.56 Å on the experimental crystal structure. While the vibrationally averaged OH bond length for equilibrium structure was underestimated, the corresponding value for crystal structure was in reasonable agreement with the corresponding experimental values. The elongation of the O…O distance by the quantum mechanical or thermal fluctuation would be indispensable for the formation of a low-barrier hydrogen bond in PYP. PMID:27274362

  7. Vibrational analysis on the revised potential energy curve of the low-barrier hydrogen bond in photoactive yellow protein

    PubMed Central

    Kanematsu, Yusuke; Kamikubo, Hironari; Kataoka, Mikio; Tachikawa, Masanori

    2015-01-01

    Photoactive yellow protein (PYP) has a characteristic hydrogen bond (H bond) between p-coumaric acid chromophore and Glu46, whose OH bond length has been observed to be 1.21 Å by the neutron diffraction technique [Proc. Natl. Acad. Sci. 106, 440–4]. Although it has been expected that such a drastic elongation of the OH bond could be caused by the quantum effect of the hydrogen nucleus, previous theoretical computations including the nuclear quantum effect have so far underestimated the bond length by more than 0.07 Å. To elucidate the origin of the difference, we performed a vibrational analysis of the H bond on potential energy curve with O…O distance of 2.47 Å on the equilibrium structure, and that with O…O distance of 2.56 Å on the experimental crystal structure. While the vibrationally averaged OH bond length for equilibrium structure was underestimated, the corresponding value for crystal structure was in reasonable agreement with the corresponding experimental values. The elongation of the O…O distance by the quantum mechanical or thermal fluctuation would be indispensable for the formation of a low-barrier hydrogen bond in PYP. PMID:27274362

  8. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy.

    PubMed

    Carbone, Fabrizio; Kwon, Oh-Hoon; Zewail, Ahmed H

    2009-07-10

    Chemical bonding dynamics are fundamental to the understanding of properties and behavior of materials and molecules. Here, we demonstrate the potential of time-resolved, femtosecond electron energy loss spectroscopy (EELS) for mapping electronic structural changes in the course of nuclear motions. For graphite, it is found that changes of milli-electron volts in the energy range of up to 50 electron volts reveal the compression and expansion of layers on the subpicometer scale (for surface and bulk atoms). These nonequilibrium structural features are correlated with the direction of change from sp2 [two-dimensional (2D) graphene] to sp3 (3D-diamond) electronic hybridization, and the results are compared with theoretical charge-density calculations. The reported femtosecond time resolution of four-dimensional (4D) electron microscopy represents an advance of 10 orders of magnitude over that of conventional EELS methods. PMID:19589997

  9. Guided ion-beam studies of the reactions of Co{sub n}{sup +} (n=2-20) with O{sub 2}: Cobalt cluster-oxide and -dioxide bond energies

    SciTech Connect

    Liu Fuyi; Li Fengxia; Armentrout, P.B.

    2005-08-08

    The kinetic-energy dependence for the reactions of Co{sub n}{sup +} (n=2-20) with O{sub 2} is measured as a function of kinetic energy over a range of 0 to 10 eV in a guided ion-beam tandem mass spectrometer. A variety of Co{sub m}{sup +}, Co{sub m}O{sup +}, and Co{sub m}O{sub 2}{sup +} (m{<=}n) product ions is observed, with the dioxide cluster ions dominating the products for all larger clusters. Reaction efficiencies of Co{sub n}{sup +} cations with O{sub 2} are near unity for all but the dimer. Bond dissociation energies for both cobalt cluster oxides and dioxides are derived from threshold analysis of the energy dependence of the endothermic reactions using several different methods. These values show little dependence on cluster size for clusters larger than three atoms. The trends in this thermochemistry and the stabilities of oxygenated cobalt clusters are discussed. The bond energies of Co{sub n}{sup +}-O for larger clusters are found to be very close to the value for desorption of atomic oxygen from bulk-phase cobalt. Rate constants for O{sub 2} chemisorption on the cationic clusters are compared with results from previous work on cationic, anionic, and neutral cobalt clusters.

  10. The Pairwise Correlated Generalized Valence Bond Model of Electronic Structure I; The Estimation of Pair Energies from Orbital Overlaps

    PubMed Central

    Petersson, G. A.

    1974-01-01

    A new method for the accurate a priori calculation of atomic and molecular energies is proposed. The new method agrees with experiment to within less than 1 kcal/mole in all cases examined thus far, and is applicable to excited states and to transition states for chemical reactions. Since the new method corrects the results of generalized valence bond calculations for the effects of electron pair correlations, we call the new method the pairwise correlated generalized valence bond method. PMID:16592172

  11. Analyzing angular distributions for two-step dissociation mechanisms in velocity map imaging.

    PubMed

    Straus, Daniel B; Butler, Lynne M; Alligood, Bridget W; Butler, Laurie J

    2013-08-15

    Increasingly, velocity map imaging is becoming the method of choice to study photoinduced molecular dissociation processes. This paper introduces an algorithm to analyze the measured net speed, P(vnet), and angular, β(vnet), distributions of the products from a two-step dissociation mechanism, where the first step but not the second is induced by absorption of linearly polarized laser light. Typically, this might be the photodissociation of a C-X bond (X = halogen or other atom) to produce an atom and a momentum-matched radical that has enough internal energy to subsequently dissociate (without the absorption of an additional photon). It is this second step, the dissociation of the unstable radicals, that one wishes to study, but the measured net velocity of the final products is the vector sum of the velocity imparted to the radical in the primary photodissociation (which is determined by taking data on the momentum-matched atomic cophotofragment) and the additional velocity vector imparted in the subsequent dissociation of the unstable radical. The algorithm allows one to determine, from the forward-convolution fitting of the net velocity distribution, the distribution of velocity vectors imparted in the second step of the mechanism. One can thus deduce the secondary velocity distribution, characterized by a speed distribution P(v1,2°) and an angular distribution I(θ2°), where θ2° is the angle between the dissociating radical's velocity vector and the additional velocity vector imparted to the product detected from the subsequent dissociation of the radical. PMID:23464815

  12. The vibrational dynamics of 3D HOCl above dissociation

    SciTech Connect

    Lin, Yi-Der; Reichl, L. E.; Jung, Christof

    2015-03-28

    We explore the classical vibrational dynamics of the HOCl molecule for energies above the dissociation energy of the molecule. Above dissociation, we find that the classical dynamics is dominated by an invariant manifold which appears to stabilize two periodic orbits at energies significantly above the dissociation energy. These stable periodic orbits can hold a large number of quantum states and likely can support a significant quasibound state of the molecule, well above the dissociation energy. The classical dynamics and the lifetime of quantum states on the invariant manifold are determined.

  13. The vibrational dynamics of 3D HOCl above dissociation

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Der; Reichl, L. E.; Jung, Christof

    2015-03-01

    We explore the classical vibrational dynamics of the HOCl molecule for energies above the dissociation energy of the molecule. Above dissociation, we find that the classical dynamics is dominated by an invariant manifold which appears to stabilize two periodic orbits at energies significantly above the dissociation energy. These stable periodic orbits can hold a large number of quantum states and likely can support a significant quasibound state of the molecule, well above the dissociation energy. The classical dynamics and the lifetime of quantum states on the invariant manifold are determined.

  14. Identification of c-Type Heme-Containing Peptides Using Non-Activated Immobilized Metal Affinity Cchromatography Resin Enrichment and Higher-Energy Collisional Dissociation

    SciTech Connect

    Zhang, Haizhen; Yang, Feng; Qian, Weijun; Brown, Roslyn N.; Wang, Yuexi; Merkley, Eric D.; Park, Jea H.; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Shi, Liang; Fredrickson, Jim K.; Pasa-Tolic, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2011-10-01

    c-type cytochromes play essential roles in many biological activities of both prokaryotic and eukaryotic cells, including electron transfer, enzyme catalysis and induction of apoptosis. We report a novel enrichment strategy for identifying c-type heme-containing peptides that uses non-activated IMAC resin. The strategy demonstrated at least seven-fold enrichment for heme-containing peptides digested from a cytochrome c protein standard, and quantitative linear performance was also assessed for heme-containing peptide enrichment. Heme-containing peptides extracted from the periplasmic fraction of Shewanella oneidensis MR-1 were further identified using higher-energy collisional dissociation tandem mass spectrometry. The results demonstrated the applicability of this enrichment strategy to identify c-type heme-containing peptides from a highly complex biological sample, and at the same time, confirmed the periplasmic localization of heme-containing proteins during suboxic respiration activities of S. oneidensis MR-1.

  15. Effect of excitation energy on dentine bond strength and composite properties.

    PubMed

    Lee, S Y; Greener, E H

    1994-06-01

    A number of available dentine adhesives and dental composites require light activation for polymerization. There are many variables which affect the light absorbing properties (e.g. bond strength) of these materials. The purpose of this study was to determine the influence of excitation energy (EE) on the dentine shear bond strength (SBS) of two lengths (2.1 mm and 3.25 mm) of light-cured (or dual-cured) dentine adhesives/dental composites. Diametral tensile (DTS) and compressive (CS) strengths of the same composites were also studied as a function of EE. Three resin composites with their respective adhesives (Marathon One/Tenure, Z100/Scotchbond Multi-Purpose and Herculite XRV/Optibond) were used. Five commercial curing lights were used to produce spectra of 100-650 mW cm-2. The data were analysed using ANOVA and the Tukey LSD test. No significant correlation was observed at the P > 0.05 level between EE and SBS in the shorter specimens. The SBS of Optibond is independent of EE and composite length. The SBS data were also analysed with Weibull statistics. The characteristic strengths calculated varied between 14 and 27 MPa. For the composites tested, mean values of DTS varied between 33 and 54 MPa and CS varied between 167 and 414 MPa. The DTS and CS of Z100 were significantly greater than those of the other materials. Intensities > or = 250 mW cm-2 produced equivalent mechanical properties within all composite materials and equivalent bond strengths in systems which included dentine, adhesive and composite resin. PMID:8027461

  16. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen-bond induced high energy density materials.

    PubMed

    Yin, Ping; Parrish, Damon A; Shreeve, Jean'ne M

    2015-04-15

    Diverse functionalization was introduced into the pyrazole framework giving rise to a new family of ternary hydrogen-bond induced high energy density materials. By incorporating extended cationic interactions, nitramine-based ionic derivatives exhibit good energetic performance and enhanced molecular stability. Performance parameters including heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO5 v6.01 programs, respectively. It is noteworthy to find that 5-nitramino-3,4-dinitropyrazole, 4, has a remarkable measured density of 1.97 g cm(-3) at 298 K, which is consistent with its crystal density (2.032 g cm(-3), 150 K), and ranks highest among azole-based CHNO compounds. Energetic evaluation indicates that, in addition to the molecular compound 4, some ionic derivatives, 9, 11, 12, 17, 19, and 22, also have high densities (1.83-1.97 g cm(-3)), excellent detonation pressures and velocities (P, 35.6-41.6 GPa; vD, 8880-9430 m s(-1)), as well as acceptable impact and friction sensitivities (IS, 4-30 J; FS, 40-240 N). These attractive features highlight the application potential of nitramino hydrogen-bonded interactions in the design of advanced energetic materials. PMID:25807076

  17. On the mean kinetic energy of the proton in strong hydrogen bonded systems

    NASA Astrophysics Data System (ADS)

    Finkelstein, Y.; Moreh, R.; Shang, S. L.; Shchur, Ya.; Wang, Y.; Liu, Z. K.

    2016-02-01

    The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH2PO4, X = K, Cs, Rb, Tl), the DKDP (XD2PO4, X = K, Cs, Rb) type, and the X3H(SO4)2 superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M3H(SO4)2 compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance ROO, being a measure of the HB strength.

  18. Protein collapse driven against solvation free energy without H-bonds.

    PubMed

    Karandur, Deepti; Harris, Robert C; Pettitt, B Montgomery

    2016-01-01

    Proteins collapse and fold because intramolecular interactions and solvent entropy, which favor collapse, outweigh solute-solvent interactions that favor expansion. Since the protein backbone actively participates in protein folding and some intrinsically disordered proteins are glycine rich, oligoglycines are good models to study the protein backbone as it collapses, both during conformational changes in disordered proteins and during folding. The solvation free energies of short glycine oligomers become increasingly favorable as chain length increases. In contrast, the solubility limits of glycine oligomers decrease with increasing chain length, indicating that peptide-peptide, and potentially solvent-solvent interactions, overcome peptide-solvent interactions to favor aggregation at finite concentrations of glycine oligomers. We have recently shown that hydrogen- (H-) bonds do not contribute significantly to the concentration-based aggregation of pentaglycines but that dipole-dipole (CO) interactions between the amide groups on the backbone do. Here we demonstrate for the collapse of oligoglycines ranging in length from 15 to 25 residues similarly that H-bonds do not contribute significantly to collapse but that CO dipole interactions do. These results illustrate that some intrapeptide interactions that determine the solubility limit of short glycine oligomers are similar to those that drive the collapse of longer glycine peptides. PMID:26174309

  19. Zero-kinetic-energy photoelectron spectroscopy of the hydrogen-bonded phenol-water complex

    NASA Astrophysics Data System (ADS)

    Dopfer, Otto; Reiser, Georg; Müller-Dethlefs, Klaus; Schlag, Edward W.; Colson, Steven D.

    1994-07-01

    Two-photon, two-color (1+1') zero-kinetic-energy (ZEKE) photoelectron spectra are presented for the 1:1 phenol-water complex, a prototype system for hydrogen bonding between an aromatic molecule and a simple solvent. ZEKE spectra via different (intermolecular) vibrational intermediate S1 levels of the fully protonated complex (C6H5OH-H2O, h3) as well as the ZEKE spectrum via the vibrationless S1 state of the threefold deuterated complex (C6H5OD-D2O, d3) have been recorded. The spectra are rich in structure, which is mainly attributable to intermolecular vibrations of the ionic complex. Progressions of the intermolecular stretch vibration (240 cm-1) in combination with different intermolecular and intramolecular vibrational levels are the dominant feature of all ZEKE spectra obtained and indicate a large change in the complex geometry along the hydrogen-bond coordinate on ionization. Comparison between the spectrum of the d3 complex and the spectra via different intermediate intermolecular levels of the h3 complex has allowed a more detailed analysis of the intermolecular features compared to previously reported results. Finally, the vibrational assignments obtained are compared with ab initio results for the phenol-water cation reported in the following paper in this issue.

  20. On the mean kinetic energy of the proton in strong hydrogen bonded systems.

    PubMed

    Finkelstein, Y; Moreh, R; Shang, S L; Shchur, Ya; Wang, Y; Liu, Z K

    2016-02-01

    The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH2PO4, X = K, Cs, Rb, Tl), the DKDP (XD2PO4, X = K, Cs, Rb) type, and the X3H(SO4)2 superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M3H(SO4)2 compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance ROO, being a measure of the HB strength. PMID:26851916

  1. Ab initio and semiempirical studies of the adsorption and dissociation of water on pure, defective, and doped MgO (001) surfaces

    NASA Astrophysics Data System (ADS)

    Almeida, A. L.; Martins, João B. L.; Taft, C. A.; Longo, E.; Lester, W. A.

    1998-09-01

    Ab initio and semiempirical calculations of large cluster models have been performed in order to study water adsorption and dissociation on pure, defective (vacancies) and doped (Li, Na, K, Ca, Fe) MgO (001) surfaces. The geometries of the adsorbed and dissociated molecules have been optimized preparatory to analysis of binding energies, stretching frequencies, charge transfers, preferential sites of interaction, and bond distances. We have used Mulliken, natural bond order, and electrostatic-derived atomic and overlap populations to analyze charge distributions in the clusters. We have also investigated transition structures, activation energies, energy gaps, HOMO, density of states, SCF orbital energies as well as the acid-base properties of our cluster model. Numerical results are compared, where possible, with experiment, interpreted in the framework of various analytical models, and correlated with site coordination numbers, corner and edge site preferential locations, and direction of charge transfer. A thorough charge analysis indicates substantial charge redistribution in the magnesium oxide crystal as a result of water adsorption and dissociation in pure, defective, and doped MgO crystals. The introduction of heavier impurities and vacancies could produce substantial changes in the physical and chemical properties of the catalyst and increase the binding and dissociation energies. Some of the largest changes originate from the introduction of vacancies. Two and three-dimensional potential energy surfaces are used to investigate activation energies of hydroxylation on the MgO surface. Stretching frequencies are correlated with magnesium and oxygen coordination numbers.

  2. Electron Transfer Dissociation of Oligonucleotide Cations.

    PubMed

    Smith, Suncerae I; Brodbelt, Jennifer S

    2009-06-01

    Electron transfer dissociation (ETD) of multi-protonated 6 - 20-mer oligonucleotides and 12- and 14-mer duplexes is compared to collision activated dissociation (CAD). ETD causes efficient charge reduction of the multi-protonated oligonucleotides in addition to limited backbone cleavages to yield sequence ions of low abundance. Subsequent CAD of the charge-reduced oligonucleotides formed upon electron transfer, in a net process termed electron transfer collision activated dissociation (ETcaD), results in rich fragmentation in terms of w, a, z, and d products, with a marked decrease in the abundance of base loss ions and internal fragments. Complete sequencing was possible for nearly all oligonucleotides studied. ETcaD of an oligonucleotide duplex resulted in specific backbone cleavages, with conservation of weaker non-covalent bonds. PMID:20161288

  3. Products of Dissociative Recombination in the Ionosphere

    NASA Technical Reports Server (NTRS)

    Cosby, Philip

    1996-01-01

    SRI International undertook a novel experimental measurement of the product states formed by dissociative ro-combination (DR) of C2(+), NO(+), and N2(+) as a function of both electron energy and reactant ion vibrational level. For these measurements we used a recently developed experimental technique for measuring dissociation product distributions that allows both the branching ratios to be accurately determined and the electronic and ro-vibrational state composition of the reactant ions to be specified. DR is the dominant electron loss mechanism in all regions of the ionosphere. In this process, electron attachment to the molecular ion produces an unstable neutral molecule that rapidly dissociates.

  4. Density functional study on positively charged six-coordinate FeO2 porphyrin complex for a trigger of O2 dissociation

    NASA Astrophysics Data System (ADS)

    Kitagawa, Naohiro; Obata, Masao; Oda, Tatsuki

    2016-01-01

    Properties on electronic structure in an Fe-porphyrin (FeP) complex with the proximal imidazole (Im) ligand, a model of active moiety of hemeprotein for analyzing bonding- and separating-processes of dioxygen molecule (O2), were studied by means of spin-polarized density functional theory. It was found that in the ionized model, the bonding stability of O2 was reduced by one order in energy compared with that of the neutral model, implying existence of the state having a large fluctuation between bonded and separated configurations. We proposed a microscopic scenario on O2 dissociation phenomenon in terms of spin-crossover and allosteric mechanism.

  5. The key role of dislocation dissociation in the plastic behaviour of single crystal nickel-based superalloy with low stacking fault energy: Three-dimensional discrete dislocation dynamics modelling

    NASA Astrophysics Data System (ADS)

    Huang, Minsheng; Li, Zhenhuan

    2013-12-01

    To model the deformation of single crystal nickel based superalloys (SCNBS) with low stacking fault energy (SFE), three-dimensional discrete dislocation dynamics (3D-DDD) is extended by incorporating dislocation dissociation mechanism. The present 3D-DDD simulations show that, consistent with the existing TEM observation, the leading partial can enter the matrix channel efficiently while the trailing partial can hardly glide into it when the dislocation dissociation is taken into account. To determine whether the dislocation dissociation can occur or not, a critical percolation stress (CPS) based criterion is suggested. According to this CPS criterion, for SCNBS there exists a critical matrix channel width. When the channel width is lower than this critical value, the dislocation tends to dissociate into an extended configuration and vice versa. To clarify the influence of dislocation dissociation on CPS, the classical Orowan formula is improved by incorporating the SFE. Moreover, the present 3D-DDD simulations also show that the yielding stress of SCNBSs with low SFE may be overestimated up to 30% if the dislocation dissociation is ignored. With dislocation dissociation being considered, the size effect due to the width of γ matrix channel and the length of γ‧ precipitates on the stress-strain responses of SCNBS can be enhanced remarkably. In addition, due to the strong constraint effect by the two-phase microstructure in SCNBS, the configuration of formed junctions is quite different from that in single phase crystals such as Cu. The present results not only provide clear understanding of the two-phase microstructure levelled microplastic mechanisms in SCNBSs with low SFE, but also help to develop new continuum-levelled constitutive laws for SCNBSs.

  6. Dissociative versus molecular adsorption of phenol on Si(100)2×1 : A first-principles calculation

    NASA Astrophysics Data System (ADS)

    Carbone, Marilena; Meloni, Simone; Caminiti, Ruggero

    2007-08-01

    We investigated the competitive adsorption of a bifunctional molecule, phenol, on Si(100)2×1 by ab initio calculations. We performed geometry optimizations of phenol adsorbed either molecularly or dissociatively, on five possible sites (top, bridge, valley bridge, cave, and pedestal), in the low coverage regime. We found that the dissociative adsorption of phenol on top of a silicon dimer is the most favorable adsorption configuration. In the group of dissociative adsorption the phenol initially placed on the bridge or the valley-bridge sites ends up as a toplike local minima. The pedestal and cave sites remain as low-adsorption energy “open” sites. In the group of molecular adsorption, a higher adsorption energy is associated to the adsorption through an addition reaction and loss of the aromatic character (bridge, valley-bridge, and pedestal sites). Standard butterfly or diagonal butterfly are the corresponding optimized geometries. Retention of aromatic character and lower adsorption energy are associated to the adsorption on the top and cave sites. The ordering of adsorption sites according to the adsorption energy shows a mixture of the dissociative and the molecular sites. In the case of adsorption on the top site, the adsorption energies after a rotation of the phenoxy fragment along the bonding axis and hydrogen migration on the surface are very similar. The bend of the phenoxy fragment on the surface, instead, is not favored (the adsorption energy is 1.004eV lower compared to the vertical position). Different electron density maps were calculated for different adsorption sites and modes. Finally, we investigated the possibility that molecularly adsorbed phenol behaves as a precursor for the dissociative one by nudged elastic band calculations. We found a barrier of the same order of magnitude of the thermodynamic energy at room temperature for the conversion of the valley-bridge molecular into the top dissociative site.

  7. Density function theory study of the adsorption and dissociation of carbon monoxide on tungsten nanoparticles.

    PubMed

    Weng, Meng-Hsiung; Ju, Shin-Pon; Chen, Hsin-Tsung; Chen, Hui-Lung; Lu, Jian-Ming; Lin, Ken-Huang; Lin, Jenn-Sen; Hsieh, Jin-Yuan; Yang, Hsi-Wen

    2013-02-01

    The adsorption and dissociation properties of carbon monoxide (CO) molecule on tungsten W(n) (n = 10-15) nanoparticles have been investigated by density-functional theory (DFT) calculations. The lowest-energy structures for W(n) (n = 10-15) nanoparticles are found by the basin-hopping method and big-bang method with the modified tight-binding many-body potential. We calculated the corresponding adsorption energies, C-O bond lengths and dissociation barriers for adsorption of CO on nanoparticles. The electronic properties of CO on nanoparticles are studied by the analysis of density of state and charge density. The characteristic of CO on W(n) nanoparticles are also compared with that of W bulk. PMID:23646573

  8. Nano-Bonding of Silicon Oxides-based surfaces at Low Temperature: Bonding Interphase Modeling via Molecular Dynamics and Characterization of Bonding Surfaces Topography, Hydro-affinity and Free Energy

    NASA Astrophysics Data System (ADS)

    Whaley, Shawn D.

    In this work, a new method, "Nanobonding(TM)" [1,2] is conceived and researched to bond Si-based surfaces, via nucleation and growth of a 2 D silicon oxide SiOxHx interphase connecting the surfaces at the nanoscale across macroscopic domains. Nanobonding cross-bridges two smooth surfaces put into mechanical contact in an O2/H 2O mixed ambient below T ≤200 °C via arrays of SiOxH x molecules connecting into a continuous macroscopic bonding interphase. Nano-scale surface planarization via wet chemical processing and new spin technology are compared via Tapping Mode Atomic Force Microscopy (TMAFM) , before and after nano-bonding. Nanobonding uses precursor phases, 2D nano-films of beta-cristobalite (beta-c) SiO2, nucleated on Si(100) via the Herbots-Atluri (H-A) method [1]. beta-c SiO2 on Si(100) is ordered and flat with atomic terraces over 20 nm wide, well above 2 nm found in native oxides. When contacted with SiO2 this ultra-smooth nanophase can nucleate and grow domains with cross-bridging molecular strands of hydroxylated SiOx, instead of point contacts. The high density of molecular bonds across extended terraces forms a strong bond between Si-based substrates, nano- bonding [2] the Si and silica. A new model of beta-cristobalite SiO2 with its <110> axis aligned along Si[100] direction is simulated via ab-initio methods in a nano-bonded stack with beta-c SiO2 in contact with amorphous SiO2 (a-SiO2), modelling cross-bridging molecular bonds between beta-c SiO2 on Si(100) and a-SiO2 as during nanobonding. Computed total energies are compared with those found for Si(100) and a-SiO2 and show that the presence of two lattice cells of !-c SiO2 on Si(100) and a-SiO2 lowers energy when compared to Si(100)/ a-SiO 2 Shadow cone calculations on three models of beta-c SiO2 on Si(100) are compared with Ion Beam Analysis of H-A processed Si(100). Total surface energy measurements via 3 liquid contact angle analysis of Si(100) after H-A method processing are also compared

  9. A mechanistic study of H2S adsorption and dissociation on Cu2O(1 1 1) surfaces: Thermochemistry, reaction barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Riguang; Liu, Hongyan; Li, Jingrui; Ling, Lixia; Wang, Baojun

    2012-10-01

    The interaction mechanism of H2S with different Cu2O(1 1 1) surfaces, including perfect, oxygen-vacancy and sulfur-containing surfaces, have been systematically studied using periodic density functional calculations. Different kinds of possible modes of H2S, as well as the resultant SH and S species adsorbed on these surfaces are identified. Two types of pathways via molecular and dissociative adsorption processes are mapped out. Our results show that sulfur species (H2S, SH and S) interact with surface Cu centers; H2S exists in the form of molecular adsorption on perfect and sulfur-containing surfaces; the dissociative adsorption of H2S occurs predominantly on oxygen-vacancy surface, suggesting that oxygen-vacancy exhibits a strong catalytic activity toward the dissociation of H2S. On the other hand, the dissociation processes of the molecular and dissociative adsorption H2S, leading to final product S species on these Cu2O(1 1 1) surfaces, show that the overall dissociation process is exothermic. Meanwhile, with respect to molecular adsorption H2S, the activation barrier and reaction energy of the overall dissociation process on perfect and oxygen-vacancy surfaces indicate that H2S can easily dissociate into S species. Importantly, in the case of dissociative adsorption of H2S, the dissociation of H2S into S species is a spontaneous process with respect to molecular adsorption H2S. However, on sulfur-containing surface, the presence of surface S atom goes against the Hsbnd S bond-breaking process both thermodynamically and kinetically. Finally, the vibrational frequencies for the adsorbed H2S, SH and S species on these surfaces have been obtained, which can be applied to guide surface vibrational spectroscopy in experiment.

  10. Dissociation of H{sub 2}{sup +} in intense femtosecond laser fields studied by coincidence three-dimensional momentum imaging

    SciTech Connect

    Wang, P. Q.; Sayler, A. M.; Carnes, K. D.; Xia, J. F.; Smith, M. A.; Esry, B. D.; Ben-Itzhak, I.

    2006-10-15

    The dissociation of H{sub 2}{sup +} in an intense laser field has been experimentally studied using femtosecond laser pulses at 790 nm in the intensity range of 10{sup 13}-10{sup 15} W/cm{sup 2}. Kinematically complete measurements of both the ionic H{sup +} and neutral H fragments dissociated from a vibrationally excited H{sub 2}{sup +} beam have been achieved by a coincidence three-dimensional momentum imaging system. Angular-resolved kinetic energy release spectra for a series of different intensity ranges have been obtained using the intensity-difference spectrum method, thus disentangling the problem caused by the intensity volume effect. Our results indicate that the dissociation dynamics are drastically different for 'long' (135 fs) and 'short' (45 fs) laser pulses at similar high laser intensities. Specifically, bond softening is found to be the main feature in long pulses, while above threshold dissociation is dominant in short pulses whose durations are comparable with the vibrational period of the molecule. Bond softening in short pulses appears at low kinetic energy release with a narrow angular distribution. The experimental results are well interpreted by solving the time-dependent Schroedinger equation in the Born-Oppenheimer representation without nuclear rotation.

  11. Ab Initio Investigation of O-H Dissociation from the Al-OH2 Complex Using Molecular Dynamics and Neural Network Fitting.

    PubMed

    Ho, Thi H; Pham-Tran, Nguyen-Nguyen; Kawazoe, Yoshiyuki; Le, Hung M

    2016-01-28

    The dissociation dynamics of the O-H bond in Al-OH2 is investigated on an approximated ab initio potential energy surface (PES). By adopting a dynamic sampling method, we obtain a database of 92 834 configurations. The potential energy for each point is calculated using MP2/6-311G (3df, 2p) calculations; then, a 60-neuron feed-forward neural network is utilized to fit the data to construct an analytic PES. The root-mean-square error (rmse) for the training set is reported as 0.0036 eV, while the rmse for the independent testing set is 0.0034 eV. Such excellent fitting accuracy indeed confirms the reliability of the constructed PES. Subsequently, quasi-classical molecular dynamics (MD) trajectories are performed on the constructed PES at various levels of vibrational excitation in the range of 1.03 to 2.23 eV to investigate the probability of O-H bond dissociation. The results indicate a linear relationship between reaction probability and internal energy, from which we can determine the minimum activation internal energy required for the dissociation as 0.62 eV. Moreover, the O-H bond rupture is shown to be highly correlated with the formation of Al-O bond. PMID:26741404

  12. Butanethiol adsorption and dissociation on Ag (111): A periodic DFT study

    NASA Astrophysics Data System (ADS)

    Li, Aixiao; Piquemal, Jean-Philip; Richardi, Johannes; Calatayud, Monica

    2016-04-01

    The molecular and dissociative adsorption of butanethiol (C4H9SH) on regular Ag (111) surfaces has been studied by means of periodic ab initio density functional techniques. In molecular form, butanethiol is bound to the surface only by weak polarization-induced forces with the C-S axis tilted by 38° relative to the normal surface. The S atom occupies a position between a hollow fcc and a bridge site. In the dissociative adsorption process, the S-H bond breaks leading to butanethiolate. The S atom of the thiolate also occupies a threefold position, slightly displaced to a hollow fcc site compared to the thiol adsorption case. The C-S axis of the thiolate is tilted by about 37°. The calculated adsorption energies show that the butanethiol and butanethiolate have similar adsorption ability. The computed reaction pathway for the S-H dissociation gives an activation energy of 0.98 eV indicating that the thiolate formation from thiol, although not spontaneous at room temperature, might be feasible on silver surfaces. The dissociation process induces both adsorbate and surface polarization with a significant charge transfer from the substrate to the adsorbate.

  13. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    PubMed

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom. PMID:26670708

  14. Full-dimensional diabatic potential energy surfaces including dissociation: The {sup 2}E{sup ″} state of NO{sub 3}

    SciTech Connect

    Eisfeld, Wolfgang; Vieuxmaire, Olivier; Viel, Alexandra

    2014-06-14

    A scheme to produce accurate full-dimensional coupled diabatic potential energy surfaces including dissociative regions and suitable for dynamical calculations is proposed. The scheme is successfully applied to model the two-sheeted surface of the {sup 2}E{sup ″} state of the NO{sub 3} radical. An accurate potential energy surface for the NO{sub 3}{sup −} anion ground state is developed as well. Both surfaces are based on high-level ab initio calculations. The model consists of a diabatic potential matrix, which is expanded to higher order in terms of symmetry polynomials of symmetry coordinates. The choice of coordinates is key for the accuracy of the obtained potential energy surfaces and is discussed in detail. A second central aspect is the generation of reference data to fit the expansion coefficients of the model for which a stochastic approach is proposed. A third ingredient is a new and simple scheme to handle problematic regions of the potential energy surfaces, resulting from the massive undersampling by the reference data unavoidable for high-dimensional problems. The final analytical diabatic surfaces are used to compute the lowest vibrational levels of NO{sub 3}{sup −} and the photo-electron detachment spectrum of NO{sub 3}{sup −} leading to the neutral radical in the {sup 2}E{sup ″} state by full dimensional multi-surface wave-packet propagation for NO{sub 3} performed using the Multi-Configuration Time Dependent Hartree method. The achieved agreement of the simulations with available experimental data demonstrates the power of the proposed scheme and the high quality of the obtained potential energy surfaces.

  15. Nanoscale metals and semiconductors for the storage of solar energy in chemical bonds

    NASA Astrophysics Data System (ADS)

    Manthiram, Karthish

    The transduction of electrical energy into chemical bonds represents one potential strategy for storing energy derived from intermittent sources such as solar and wind. Driving the electrochemical reduction of carbon dioxide using light requires (1) developing light absorbers which convert photons into electron-hole pairs and (2) catalysts which utilize these electrons and holes to reduce carbon dioxide and oxidize water, respectively. For both the light absorbers and catalysts, the use of nanoscale particles is advantageous, as charge transport length scales are minimized in the case of nanoscale light absorbers and catalytic surface-area-to-volume ratio is maximized for nanoscale catalysts. In many cases, although semiconductors and metals in the form of thin films and foils are increasingly well-characterized as photoabsorbers and electrocatalysts for carbon dioxide reduction, respectively, the properties of their nanoscale counterparts remain poorly understood. This dissertation explores the nature of the light absorption mode of non-stoichiometric semiconductors which are utilized as light absorbers and the development of catalysts with enhanced stability, activity, and selectivity for carbon dioxide reduction. Chapter 1 provides an overview of the state of development of methods of transducing the energy of photons into chemical bonds. Chapters 2 and 3 investigate the development of stable, active, and selective catalysts for the electrochemical reduction of carbon dioxide. Chapter 2 examines how copper nanoparticles have enhanced activities and selectivities for methanation compared to copper foils. Chapter 3 focuses on the development of strategies to stabilize high-surface-area catalysts to prevent surface area loss during electrochemical carbon dioxide reduction. Chapters 4 and 5 entail a fundamental understanding of the light absorption mode of nanoscale photoabsorbers used in both photoelectrochemical cells and in photovoltaics. Chapter 4 focuses on the

  16. HC[triple bond]P and H3C-C[triple bond]P as proton acceptors in protonated complexes containing two phosphorus bases: structures, binding energies, and spin-spin coupling constants.

    PubMed

    Alkorta, Ibon; Elguero, José; Bene, Janet E Del

    2007-10-01

    Ab initio calculations at the MP2/aug'-cc-pVTZ level have been carried out to investigate the structures and binding energies of cationic complexes involving protonated sp, sp2, and sp3 phosphorus bases as proton donor ions and the sp-hybridized phosphorus bases H-C[triple bond]P and H3C-C[triple bond]P as proton acceptors. These proton-bound complexes exhibit a variety of structural motifs, but all are stabilized by interactions that occur through the pi cloud of the acceptor base. The binding energies of these complexes range from 6 to 15 kcal/mol. Corresponding complexes with H3C-C[triple bond]P as the proton acceptor are more stable than those with H-C[triple bond]P as the acceptor, a reflection of the greater basicity of H3C-C[triple bond]P. In most complexes with sp2- or sp3-hybridized P-H donor ions, the P-H bond lengthens and the P-H stretching frequency is red-shifted relative to the corresponding monomers. Complex formation also leads to a lengthening of the C[triple bond]P bond and a red shift of the C[triple bond]P stretching vibration. The two-bond coupling constants 2pihJ(P-P) and 2pihJ(P-C) are significantly smaller than 2hJ(P-P) and 2hJ(P-C) for complexes in which hydrogen bonding occurs through lone pairs of electrons on P or C. This reflects the absence of significant s electron density in the hydrogen-bonding regions of these pi complexes. PMID:17760429

  17. Quantification of primary versus secondary C-H bond cleavage in alkane activation: Propane on Pt

    SciTech Connect

    Weinberg, W.H.; Sun, Yongkui )

    1991-08-02

    The trapping-mediated dissociative chemisorption of three isotopes of propane (C{sub 3}H{sub 8}, CH{sub 3}, CD{sub 2}CH{sub 3}, and C{sub 3}D{sub 8}) has been investigated on the Pt(110)-(1 {times} 2) surface, and both the apparent activation energies and the preexponential factors of the surface reaction rate coefficients have been measured. In addition, the probabilities of primary and secondary C-H bond cleavage for alkane activation on a surface were evaluated. The activation energy for primary C-H bond cleavage was 425 calories per mole greater than that of secondary C-H bond cleavage, and the two true activation energies that embody the single measured activation energy were determined for each of the three isotopes. Secondary C-H bond cleavage is also preferred on entropic grounds, and th