Science.gov

Sample records for bond overlap plasmon

  1. Wafer-bonded surface plasmon waveguides

    NASA Astrophysics Data System (ADS)

    Berini, Pierre; Mattiussi, Greg; Lahoud, Nancy; Charbonneau, Robert

    2007-02-01

    Direct wafer bonding and thinning were explored as an approach for constructing long-range surface plasmon waveguides. The structures consist of a thin metal stripe deposited into a shallow trench etched into one of the claddings, to which another cladding of the same material is directly bonded. The approach was developed first using Pyrex wafers in order to assess feasibility and then using lithium niobate wafers. Optical and electro-optical measurements validate the approach.

  2. Overlap populations, bond orders and valences for 'fuzzy' atoms

    NASA Astrophysics Data System (ADS)

    Mayer, I.; Salvador, P.

    2004-01-01

    Proper definitions are proposed to calculate interatomic overlap populations, bond order (multiplicity) indices and actual atomic valences from the results of ab initio quantum chemical calculations, in terms of 'fuzzy' atoms, i.e., such divisions of the three-dimensional physical space into atomic regions in which the regions assigned to the individual atoms have no sharp boundaries but exhibit a continuous transition from one to another. The results of test calculations are in agreement with the classical chemical notions, exhibit unexpectedly small basis sensitivity and do not depend too much on the selection of the weight function defining the actual division of the space into 'fuzzy' atomic regions. The scheme is applicable on both SCF and correlated levels of theory. A free program is available.

  3. Tunable plasmon resonances and two-dimensional anisotropy of angular optical response of overlapped nanoshells.

    PubMed

    Wu, Tengfei; Yang, Shaobo; Li, Xingfei

    2013-03-25

    Symmetry breaking of metallic nanoparticles results in many unique optical properties. We use the discrete dipole approximation method to study the optical properties of overlapped nanoshells which further break the rotational symmetry compared with the semishells. The optical properties of the nanoparticles can be tuned from the visible to near infrared regime by varying the geometry parameters and the hybrid components of nanoparticles. The calculated extinction spectra show the two-dimensional anisotropy of the angular optical response of the nanoparticles. The plasmon hybridization model provides a way to interpret the resonance modes of the nanoparticles. The tunable plasmon resonances, the enhanced local fields and the anisotropic optical properties suggest that the overlapped nanoshells have potential applications in surface-enhanced spectroscopy and "smart" coating in windows or display devices. PMID:23546162

  4. An experimental correlation study between field-target overlap and sensitivity of surface plasmon resonance biosensors based on sandwiched immunoassays

    NASA Astrophysics Data System (ADS)

    Ryu, Yeonsoo; Moon, Seyoung; Oh, Youngjin; Kim, Yonghwi; Kim, Donghyun

    2012-10-01

    In this report, we have studied the effectiveness of field-target overlap to evaluate detection sensitivity of surface plasmon resonance (SPR) biosensors. The investigation used theoretical analysis based on the transfer matrix method, which was experimentally confirmed by thin film-based detection in sandwich and reverse sandwich immunoglobulin G (IgG) assays. Both theoretical and experimental results show that strong correlation exists between the overlap and the sensitivity with the coefficient of correlation higher than 95% in all the cases that we have considered. We have also confirmed the correlation in diffraction grating-based SPR measurement of IgG/anti-IgG interactions. The correlation elucidates the mechanism behind the far-field detection sensitivity of SPR biosensors and can lead to the enhancement of SPR biosensing with molecular scale sensitivity.

  5. Adsorbate-metal bond effect on empirical determination of surface plasmon penetration depth.

    PubMed

    Kegel, Laurel L; Menegazzo, Nicola; Booksh, Karl S

    2013-05-21

    The penetration depth of surface plasmons is commonly determined empirically from the observed response for adsorbate loading on gold surface plasmon resonance (SPR) substrates. However, changes in the SPR spectrum may originate from both changes in the effective refractive index near the metal surface and changes in the metal permittivity following covalent binding of the adsorbate layer. Herein, the significance of incorporating an additional adsorbate-metal bonding effect in the calculation is demonstrated in theory and in practice. The bonding effect is determined from the nonzero intercept of a SPR shift versus adsorbate thickness calibration and incorporated into the calculation of penetration depth at various excitation wavelengths. Determinations of plasmon penetration depth with and without the bonding response for alkanethiolate-gold are compared and are shown to be significantly different for a thiol monolayer adsorbate system. Additionally, plasmon penetration depth evaluated with bonding effect compensation shows greater consistency over different adsorbate thicknesses and better agreement with theory derived from Maxwell's equation, particularly for adsorbate thicknesses that are much smaller (<5%) than the plasmon penetration depth. The method is also extended to a more practically applicable polyelectrolyte multilayer adsorbate system. PMID:23566015

  6. Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers

    NASA Astrophysics Data System (ADS)

    Li, Quanshui; Zhang, Zhili

    2016-01-01

    Bonding and anti-bonding modes of plasmon coupling effects are numerically investigated in TiO2-Ag core-shell nano dimers. First, splitting phenomena of the coupled anti-bonding modes are observed under the longitudinal polarization when the distance between the monomers decreases to a certain level. Second, one of the split resonance modes is identified to be formed by the dipole anti-bonding mode of the monomers from charge density distribution patterns. Those split modes have similar redshift behaviors as the coupled dipole bonding modes in the same situations. Furthermore, the intensities of those anti-bonding modes weaken with decreasing distance between the monomers, because of the interaction of the induced dipole moment in the monomers and the charge distribution variation on the facing surfaces of the gap by the coulomb attraction. Other split bands are the higher-order mode (octupole-like or triakontadipole-like), which do not have obvious peak-shift behavior, and the intensities have very little attenuation with decreasing distance. Finally, the coupling of the bonding and anti-bonding modes under the longitudinal polarization is symmetric (bonding).

  7. Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers

    PubMed Central

    Li, Quanshui; Zhang, Zhili

    2016-01-01

    Bonding and anti-bonding modes of plasmon coupling effects are numerically investigated in TiO2-Ag core-shell nano dimers. First, splitting phenomena of the coupled anti-bonding modes are observed under the longitudinal polarization when the distance between the monomers decreases to a certain level. Second, one of the split resonance modes is identified to be formed by the dipole anti-bonding mode of the monomers from charge density distribution patterns. Those split modes have similar redshift behaviors as the coupled dipole bonding modes in the same situations. Furthermore, the intensities of those anti-bonding modes weaken with decreasing distance between the monomers, because of the interaction of the induced dipole moment in the monomers and the charge distribution variation on the facing surfaces of the gap by the coulomb attraction. Other split bands are the higher-order mode (octupole-like or triakontadipole-like), which do not have obvious peak-shift behavior, and the intensities have very little attenuation with decreasing distance. Finally, the coupling of the bonding and anti-bonding modes under the longitudinal polarization is symmetric (bonding). PMID:26763719

  8. Plasmon-driven dimerization via S-S chemical bond in an aqueous environment

    PubMed Central

    Cui, Lin; Wang, Peijie; Chen, Xiaowei; Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2014-01-01

    The surface-enhanced Raman scattering (SERS) spectra of thioanisole are experimentally investigated in an electrochemical environment in this study. Two Raman peaks, which depend strongly not only on electric potential but also on the local surface plasmon resonances (LSPR), have been observed. Theoretical calculations reveal that thioanisole is first dissociated from thiophenol via the S-CH3 bond; plasmons then drive the dimerisation of thiophenol via the S-S bond, which is strongly potential dependent. One Raman peak corresponds to the S-S vibrational mode of the thiophenol dimer, and the other corresponds to the asymmetric C-C stretching modes of the benzenyl of the thiophenol dimer. The potential-dependent two Raman modes is the potential-dependent dimerisation dynamics of thiophenol via the S-S bond. Our experimental findings provide insight into the structural elucidation of adsorbed molecules and molecular surface reaction dynamics. PMID:25427897

  9. Simultaneous measurement of protein one-bond residual dipolar couplings without increased resonance overlap.

    PubMed

    Vijayan, Vinesh; Zweckstetter, Markus

    2005-06-01

    A NMR strategy designed to measure simultaneously and without increased resonance overlap scalar and dipolar couplings (RDCs) in (13)C-, (15)N-labeled proteins is presented. Contrary to common schemes for simultaneous measurement of RDCs, a single reference experiment is used for the extraction of more than one type of coupling, thereby reducing the required measurement time. This is accomplished by a common reference spectrum followed by a series of interleaved experiments, in which a particular coupling dependent parameter is varied according to the quantitative J-correlation method or using accordion spectroscopy. To illustrate this idea, we have modified the 3D TROSY-HNCO and the 3D CBCA(CO)NH experiment allowing efficient measurement of one-bond (1)D(NH), (1)D(C'N), (1)D(CalphaHalpha), (1)D(CbetaHbeta), and (1)D(CalphaC') couplings in small to medium sized proteins. In addition, the experiments are expected to be useful for largely unfolded proteins, which show strong resonance overlap but have very favorable relaxation properties. Measurement of RDCs is demonstrated on uniformly (15)N-(13)C-labeled ubiquitin and on the sensory domain of the membraneous two-component fumarate sensor DcuS of Escherichia coli (17 kDa). DcuS was found to be unstable and to precipitate in one to two weeks. RDCs obtained from these experiments are in good agreement with the 1.8A X-ray structure of ubiquitin. PMID:15862241

  10. Visual Identification of Light-Driven Breakage of the Silver-Dithiocarbamate Bond by Single Plasmonic Nanoprobes

    NASA Astrophysics Data System (ADS)

    Gao, Peng Fei; Yuan, Bin Fang; Gao, Ming Xuan; Li, Rong Sheng; Ma, Jun; Zou, Hong Yan; Li, Yuan Fang; Li, Ming; Huang, Cheng Zhi

    2015-10-01

    Insight into the nature of metal-sulfur bond, a meaningful one in life science, interface chemistry and organometallic chemistry, is interesting but challenging. By utilizing the localized surface plasmon resonance properties of silver nanoparticles, herein we visually identified the photosensitivity of silver-dithiocarbamate (Ag-DTC) bond by using dark field microscopic imaging (iDFM) technique at single nanoparticle level. It was found that the breakage of Ag-DTC bond could be accelerated effectively by light irradiation, followed by a pH-dependent horizontal or vertical degradation of the DTC molecules, in which an indispensable preoxidation process of the silver was at first disclosed. These findings suggest a visualization strategy at single plasmonic nanoparticle level which can be excellently applied to explore new stimulus-triggered reactions, and might also open a new way to understand traditional organic reaction mechanisms.

  11. Visual Identification of Light-Driven Breakage of the Silver-Dithiocarbamate Bond by Single Plasmonic Nanoprobes

    PubMed Central

    Gao, Peng Fei; Yuan, Bin Fang; Gao, Ming Xuan; Li, Rong Sheng; Ma, Jun; Zou, Hong Yan; Li, Yuan Fang; Li, Ming; Huang, Cheng Zhi

    2015-01-01

    Insight into the nature of metal-sulfur bond, a meaningful one in life science, interface chemistry and organometallic chemistry, is interesting but challenging. By utilizing the localized surface plasmon resonance properties of silver nanoparticles, herein we visually identified the photosensitivity of silver-dithiocarbamate (Ag-DTC) bond by using dark field microscopic imaging (iDFM) technique at single nanoparticle level. It was found that the breakage of Ag-DTC bond could be accelerated effectively by light irradiation, followed by a pH-dependent horizontal or vertical degradation of the DTC molecules, in which an indispensable preoxidation process of the silver was at first disclosed. These findings suggest a visualization strategy at single plasmonic nanoparticle level which can be excellently applied to explore new stimulus-triggered reactions, and might also open a new way to understand traditional organic reaction mechanisms. PMID:26493773

  12. Visual Identification of Light-Driven Breakage of the Silver-Dithiocarbamate Bond by Single Plasmonic Nanoprobes.

    PubMed

    Gao, Peng Fei; Yuan, Bin Fang; Gao, Ming Xuan; Li, Rong Sheng; Ma, Jun; Zou, Hong Yan; Li, Yuan Fang; Li, Ming; Huang, Cheng Zhi

    2015-01-01

    Insight into the nature of metal-sulfur bond, a meaningful one in life science, interface chemistry and organometallic chemistry, is interesting but challenging. By utilizing the localized surface plasmon resonance properties of silver nanoparticles, herein we visually identified the photosensitivity of silver-dithiocarbamate (Ag-DTC) bond by using dark field microscopic imaging (iDFM) technique at single nanoparticle level. It was found that the breakage of Ag-DTC bond could be accelerated effectively by light irradiation, followed by a pH-dependent horizontal or vertical degradation of the DTC molecules, in which an indispensable preoxidation process of the silver was at first disclosed. These findings suggest a visualization strategy at single plasmonic nanoparticle level which can be excellently applied to explore new stimulus-triggered reactions, and might also open a new way to understand traditional organic reaction mechanisms. PMID:26493773

  13. A Wafer-Level Sn-Rich Au—Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors

    NASA Astrophysics Data System (ADS)

    Mao, Xu; Lv, Xing-Dong; Wei, Wei-Wei; Zhang, Zhe; Yang, Jin-Ling; Qi, Zhi-Mei; Yang, Fu-Hua

    2014-05-01

    Sn-rich Au—Sn solder bonding is systematically investigated. High shear strength (64MPa) and good hermeticity (a leak rate lower than 1 × 10-7 torr·l/s) are obtained for Au—Sn solder with 54 wt% Sn bonded at 310°C. The AuSn2 phase with the highest Vickers-hardness among the four stable intermetallic compounds of the Au—Sn system makes a major contribution to the high bonding strength. This bonding technique has been successfully used to package the Surface Plasmon Resonance (SPR) sensors. The Sn-rich Au—Sn solder bonding provides a reliable, low-cost, low-temperature and wafer-level hermetic packaging solution for the micro-electromechanical system devices and has potential applications in high-end biomedical sensors.

  14. Is There a Need to Discuss Atomic Orbital Overlap When Teaching Hydrogen-Halide Bond Strength and Acidity Trends in Organic Chemistry?

    ERIC Educational Resources Information Center

    Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.

    2015-01-01

    Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the…

  15. Matching plasmon resonances to the C=C and C-H bonds in estradiol

    NASA Astrophysics Data System (ADS)

    Mbomson, Ifeoma G.; McMeekin, Scott; De La Rue, Richard; Johnson, Nigel P.

    2015-03-01

    We tune nanoantennas to resonate within mid-infrared wavelengths to match the vibrational resonances of C=C and C-H of the hormone estradiol. Modelling and fabrication of the nanoantennas produce plasmon resonances between 2 μm to 7 μm. The hormone estradiol was dissolved in ethanol and evaporated, leaving thickness of a few hundreds of nanometres on top of gold asymmetric split H-like shaped on a fused silica substrate. The reflectance was measured and a red-shift is recorded from the resonators plasmonic peaks. Fourier transform infrared spectroscopy is use to observe enhanced spectra of the stretching modes for the analyte which belongs to alkenyl biochemical group.

  16. The Pairwise Correlated Generalized Valence Bond Model of Electronic Structure I; The Estimation of Pair Energies from Orbital Overlaps

    PubMed Central

    Petersson, G. A.

    1974-01-01

    A new method for the accurate a priori calculation of atomic and molecular energies is proposed. The new method agrees with experiment to within less than 1 kcal/mole in all cases examined thus far, and is applicable to excited states and to transition states for chemical reactions. Since the new method corrects the results of generalized valence bond calculations for the effects of electron pair correlations, we call the new method the pairwise correlated generalized valence bond method. PMID:16592172

  17. Low-Cost High-Efficiency Solar Cells with Wafer Bonding and Plasmonic Technologies

    NASA Astrophysics Data System (ADS)

    Tanake, Katsuaki

    We fabricated a direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs dual-junction cell, to demonstrate a proof-of-principle for the viability of direct wafer bonding for solar cell applications. The bonded interface is a metal-free n+GaAs/n +InP tunnel junction with highly conductive Ohmic contact suitable for solar cell applications overcoming the 4% lattice mismatch. The quantum efficiency spectrum for the bonded cell was quite similar to that for each of unbonded GaAs and InGaAs subcells. The bonded dual-junction cell open-circuit voltage was equal to the sum of the unbonded subcell open-circuit voltages, which indicates that the bonding process does not degrade the cell material quality since any generated crystal defects that act as recombination centers would reduce the open-circuit voltage. Also, the bonded interface has no significant carrier recombination rate to reduce the open circuit voltage. Engineered substrates consisting of thin films of InP on Si handle substrates (InP/Si substrates or epitaxial templates) have the potential to significantly reduce the cost and weight of compound semiconductor solar cells relative to those fabricated on bulk InP substrates. InGaAs solar cells on InP have superior performance to Ge cells at photon energies greater than 0.7 eV and the current record efficiency cell for 1 sun illumination was achieved using an InGaP/GaAs/InGaAs triple junction cell design with an InGaAs bottom cell. Thermophotovoltaic (TPV) cells from the InGaAsP-family of III-V materials grown epitaxially on InP substrates would also benefit from such an InP/Si substrate. Additionally, a proposed four-junction solar cell fabricated by joining subcells of InGaAs and InGaAsP grown on InP with subcells of GaAs and AlInGaP grown on GaAs through a wafer-bonded interconnect would enable the independent selection of the subcell band gaps from well developed materials grown on lattice matched substrates. Substitution of

  18. Plasmon-Enhanced Upconversion.

    PubMed

    Wu, Di M; García-Etxarri, Aitzol; Salleo, Alberto; Dionne, Jennifer A

    2014-11-20

    Upconversion, the conversion of photons from lower to higher energies, is a process that promises applications ranging from high-efficiency photovoltaic and photocatalytic cells to background-free bioimaging and therapeutic probes. Existing upconverting materials, however, remain too inefficient for viable implementation. In this Perspective, we describe the significant improvements in upconversion efficiency that can be achieved using plasmon resonances. As collective oscillations of free electrons, plasmon resonances can be used to enhance both the incident electromagnetic field intensity and the radiative emission rates. To date, this approach has shown upconversion enhancements up to 450×. We discuss both theoretical underpinnings and experimental demonstrations of plasmon-enhanced upconversion, examining the roles of upconverter quantum yield, plasmonic geometry, and plasmon spectral overlap. We also discuss nonoptical consequences of including metal nanostructures near upconverting emitters. The rapidly expanding field of plasmon-enhanced upconversion provides novel fundamental insight into nanoscale light-matter interactions while improving prospects for technological relevance. PMID:26276488

  19. Aluminum plasmonic photocatalysis

    PubMed Central

    Hao, Qi; Wang, Chenxi; Huang, Hao; Li, Wan; Du, Deyang; Han, Di; Qiu, Teng; Chu, Paul K.

    2015-01-01

    The effectiveness of photocatalytic processes is dictated largely by plasmonic materials with the capability to enhance light absorption as well as the energy conversion efficiency. Herein, we demonstrate how to improve the plasmonic photocatalytic properties of TiO2/Al nano-void arrays by overlapping the localized surface plasmon resonance (LSPR) modes with the TiO2 band gap. The plasmonic TiO2/Al arrays exhibit superior photocatalytic activity boasting an enhancement of 7.2 folds. The underlying mechanisms concerning the radiative energy transfer and interface energy transfer processes are discussed. Both processes occur at the TiO2/Al interface and their contributions to photocatalysis are evaluated. The results are important to the optimization of aluminum plasmonic materials in photocatalytic applications. PMID:26497411

  20. Molecular Plasmonics.

    PubMed

    Wilson, Andrew J; Willets, Katherine A

    2016-06-12

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics. PMID:27049633

  1. Graphene Plasmonics

    NASA Astrophysics Data System (ADS)

    Mou, Shin; Abeysinghe, Don; Nader, Nima; Hendrickson, Joshua; Cleary, Justin; Elhamri, Said

    Plasmon, the collective free charge carrier oscillation, has been a popular research theme recently mostly associated with surface plasmon in metal nanoparticles. After the discovery of graphene, researchers soon began to study plasmonic effects with or within graphene, for instance, decorating graphene with metal nanoparticles to enhance optical processes via plasmonic field enhancement. Following that, people also gained interests in studying the intrinsic plasmon of graphene. Graphene, a tunable semimetal under field effect, demonstrates tunable plasmon resonances at room temperature, which enables new capabilities beyond those of metal-nanoparticle surface plasmons. In this project, we would like to show intrinsic graphene plasmon resonances in that we experimentally demonstrated polarization dependent and gate-bias tunable plasmon-resonance absorption in the mid-infrared regime of 5-14 um by utilizing an array of graphene nanoribbon resonators. By scaling nanoribbon width and charge densities, we probed graphene plasmons with plasmon resonance energy as high as 0.26 meV (2100 cm-1) for 40 nm wide nanoresonators. The result reveals the intriguing nature of graphene plasmon in graphene nanoribbons where the nanoribbon edge plays critical roles by introducing extra doping and damping the graphene plasmon resonance.

  2. Shake for Sigma, Pray for Pi: Classroom Orbital Overlap Analogies

    ERIC Educational Resources Information Center

    Dicks, Andrew P.

    2011-01-01

    An introductory organic classroom demonstration is discussed where analogies are made between common societal hand contact and covalent bond formation. A handshake signifies creation of a [sigma] bond ("head-on" orbital overlap), whereas the action of praying illustrates "sideways" overlap and generation of a [pi] bond. The nature of orbital and…

  3. A Kirchhoff solution to plasmon hybridization

    NASA Astrophysics Data System (ADS)

    Willingham, Britain; Link, Stephan

    2013-12-01

    Using Ohm's law, a solution to plasmon hybridization via Kirchoff's equations results in a simple and intuitive picture of a metal nanoparticle dimer as a capacitively coupled circuit. Calculated absorption spectra and surface charge densities show that dimers of different metallic composition support different super- and sub-radiant plasmons compared to homodimers. Strong screening of Coulomb interactions between nanoparticles of different metallic background prohibits the excitation of anti-bonding plasmons, while changes to the free electron conductivity upon a collective response result in coupled plasmon lifetimes which shift as a function of interparticle distance. Smaller separations then result in the longest lived plasmons.

  4. Correlated optical measurements and plasmon mapping of silver nanorods

    SciTech Connect

    Guiton, Beth S; Iberi, Vighter; Li, Shuzhou; Leonard, Donovan N; Parish, Chad M; Kotula, Paul G; Varela del Arco, Maria; Schatz, George C.; Pennycook, Stephen J; Camden, Jon P

    2011-01-01

    Plasmonics is a rapidly growing field, yet imaging of the plasmonic modes in complex nanoscale architectures is extremely challenging. Here we obtain spatial maps of the localized surface plasmon modes of high-aspect-ratio silver nanorods using electron energy loss spectroscopy (EELS) and correlate to optical data and classical electrodynamics calculations from the exact same particles. EELS mapping is thus demonstrated to be an invaluable technique for elucidating complex and overlapping plasmon modes.

  5. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer Gap-Antennas

    PubMed Central

    Zhang, Qiang; Xiao, Jun-Jun; Li, Meili; Han, Dezhuan; Gao, Lei

    2015-01-01

    Plasmonic nanoantenna is of promising applications in optical sensing and detection, enhancement of optical nonlinear effect, surface optical spectroscopy, photoemission, etc. Here we show that in a carefully-designed dimer gap-antenna made by two metallic nanorods, the longitudinal plasmon antenna mode (AM) of bonding dipoles can compete with the transverse plasmonic cavity modes (CMs), yielding dramatically enhanced or suppressed scattering efficiency, depending on the CMs symmetry characteristics. More specifically, it is demonstrated that an appropriately loaded gap layer enables substantial excitation of toroidal moment and its strong interaction with the AM dipole moment, resulting in Fano- or electromagnetically induced transparency (EIT)-like profile in the scattering spectrum. However, for CMs with nonzero azimuthal number, the spectrum features a cumulative signature of the respective AM and CM resonances. We supply both detailed near-field and far-field analysis, showing that the modal overlap and phase relationship between the fundamental moments of different order play a crucial role. Finally, we show that the resonance bands of the AM and CMs can be tuned by adjusting the geometry parameters and the permittivity of the load. Our results may be useful in plasmonic cloaking, spin-polarized directional light emission, ultra-sensitive optical sensing, and plasmon-mediated photoluminescence. PMID:26611726

  6. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer Gap-Antennas

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Xiao, Jun-Jun; Li, Meili; Han, Dezhuan; Gao, Lei

    2015-11-01

    Plasmonic nanoantenna is of promising applications in optical sensing and detection, enhancement of optical nonlinear effect, surface optical spectroscopy, photoemission, etc. Here we show that in a carefully-designed dimer gap-antenna made by two metallic nanorods, the longitudinal plasmon antenna mode (AM) of bonding dipoles can compete with the transverse plasmonic cavity modes (CMs), yielding dramatically enhanced or suppressed scattering efficiency, depending on the CMs symmetry characteristics. More specifically, it is demonstrated that an appropriately loaded gap layer enables substantial excitation of toroidal moment and its strong interaction with the AM dipole moment, resulting in Fano- or electromagnetically induced transparency (EIT)-like profile in the scattering spectrum. However, for CMs with nonzero azimuthal number, the spectrum features a cumulative signature of the respective AM and CM resonances. We supply both detailed near-field and far-field analysis, showing that the modal overlap and phase relationship between the fundamental moments of different order play a crucial role. Finally, we show that the resonance bands of the AM and CMs can be tuned by adjusting the geometry parameters and the permittivity of the load. Our results may be useful in plasmonic cloaking, spin-polarized directional light emission, ultra-sensitive optical sensing, and plasmon-mediated photoluminescence.

  7. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer Gap-Antennas.

    PubMed

    Zhang, Qiang; Xiao, Jun-Jun; Li, Meili; Han, Dezhuan; Gao, Lei

    2015-01-01

    Plasmonic nanoantenna is of promising applications in optical sensing and detection, enhancement of optical nonlinear effect, surface optical spectroscopy, photoemission, etc. Here we show that in a carefully-designed dimer gap-antenna made by two metallic nanorods, the longitudinal plasmon antenna mode (AM) of bonding dipoles can compete with the transverse plasmonic cavity modes (CMs), yielding dramatically enhanced or suppressed scattering efficiency, depending on the CMs symmetry characteristics. More specifically, it is demonstrated that an appropriately loaded gap layer enables substantial excitation of toroidal moment and its strong interaction with the AM dipole moment, resulting in Fano- or electromagnetically induced transparency (EIT)-like profile in the scattering spectrum. However, for CMs with nonzero azimuthal number, the spectrum features a cumulative signature of the respective AM and CM resonances. We supply both detailed near-field and far-field analysis, showing that the modal overlap and phase relationship between the fundamental moments of different order play a crucial role. Finally, we show that the resonance bands of the AM and CMs can be tuned by adjusting the geometry parameters and the permittivity of the load. Our results may be useful in plasmonic cloaking, spin-polarized directional light emission, ultra-sensitive optical sensing, and plasmon-mediated photoluminescence. PMID:26611726

  8. Overlap in Bibliographic Databases.

    ERIC Educational Resources Information Center

    Hood, William W.; Wilson, Concepcion S.

    2003-01-01

    Examines the topic of Fuzzy Set Theory to determine the overlap of coverage in bibliographic databases. Highlights include examples of comparisons of database coverage; frequency distribution of the degree of overlap; records with maximum overlap; records unique to one database; intra-database duplicates; and overlap in the top ten databases.…

  9. Aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  10. Gap plasmonics of silver nanocube dimers

    NASA Astrophysics Data System (ADS)

    Knebl, Dario; Hörl, Anton; Trügler, Andreas; Kern, Johannes; Krenn, Joachim R.; Puschnig, Peter; Hohenester, Ulrich

    2016-02-01

    We theoretically investigate gap plasmons for two silver nanocubes coupled through a molecular tunnel junction. In the absence of tunneling, the redshift of the bonding mode saturates with decreasing gap distance. Tunneling at small gap distances leads to a damping and slight blueshift of the bonding mode, but no low-energy charge transfer plasmon mode appears in the spectra. This finding is in stark contrast to recent work of Tan et al. [Science 343, 1496 (2014), 10.1126/science.1248797].

  11. Absorption-induced scattering and surface plasmon out-coupling from absorber-coated plasmonic metasurfaces

    PubMed Central

    Petoukhoff, Christopher E.; O'Carroll, Deirdre M.

    2015-01-01

    Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900

  12. Substrate-Phonon-Mediated Plasmon Hybridization in Coplanar Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Dai, Qing; Yang, Xiaoxia; Kong, Xiang-Tian; Bai, Bing; Li, Zhenjun; Hu, Hai; Qiu, Xiaohui

    2015-03-01

    Mode hybridization between adjacent graphene nanoribbons determines the integration density of graphene-based plasmonic devices. Here we demonstrate this plasmon hybridization by characterizing the coupling strength of plasmons in graphene nanoribbon arrays in terms of graphene Fermi level and inter-ribbon spacing. Both experimental and computational results showed that the plasmon coupling is strongly mediated by the substrate phonons. For polar substrate, the plasmon coupling strength was limited by the plasmon-phonon interaction. In contrast, nonpolar substrate affects neither the energy distribution of original plasmon modes in graphene nanostructures nor their plasmon interactions, which increase exponentially as the inter-ribbon spacing decreases. To further explore the potential of graphene broadband plasmonics on nonpolar substrate, we propose a scheme that uses a metal-dielectric heterostructure to prevent the overlap of plasmons between neighboring graphene nanoribbons. The device structures retain the plasmon resonance frequency of the graphene ribbons and maximally isolate the plasmonic components from the surrounding electromagnetic environment, allowing modular design in integrated plasmonic circuits. Supported by National Natural Science Foundation of China (No. 51372045).

  13. Plasmonic Nanostructures for Biosensor Applications

    NASA Astrophysics Data System (ADS)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  14. Plasmonic photocatalysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Lim Chen, Yu; Liu, Ru-Shi; Tsai, Din Ping

    2013-04-01

    Plasmonic photocatalysis has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible light irradiation, increasing the prospect of using sunlight for environmental and energy applications such as wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic photocatalysis makes use of noble metal nanoparticles dispersed into semiconductor photocatalysts and possesses two prominent features—a Schottky junction and localized surface plasmonic resonance (LSPR). The former is of benefit to charge separation and transfer whereas the latter contributes to the strong absorption of visible light and the excitation of active charge carriers. This article aims to provide a systematic study of the fundamental physical mechanisms of plasmonic photocatalysis and to rationalize many experimental observations. In particular, we show that LSPR could boost the generation of electrons and holes in semiconductor photocatalysts through two different effects—the LSPR sensitization effect and the LSPR-powered bandgap breaking effect. By classifying the plasmonic photocatalytic systems in terms of their contact form and irradiation state, we show that the enhancement effects on different properties of photocatalysis can be well-explained and systematized. Moreover, we identify popular material systems of plasmonic photocatalysis that have shown excellent performance and elucidate their key features in the context of our proposed mechanisms and classifications.

  15. Plasmonically amplified fluorescence bioassay with microarray format

    NASA Astrophysics Data System (ADS)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  16. Illusion induced overlapped optics.

    PubMed

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on. PMID:24515019

  17. Overlap among Environmental Databases.

    ERIC Educational Resources Information Center

    Miller, Betty

    1981-01-01

    Describes the methodology and results of a study comparing the overlap of Enviroline, Pollution, and the Environmental Periodicals Bibliography files through searches on acid rain, asbestos and water, diesel, glass recycling, Lake Erie, Concorde, reverse osmosis wastewater treatment cost, and Calspan. Nine tables are provided. (RBF)

  18. Plasmonics: An ultrafast plasmonic tuning knob

    NASA Astrophysics Data System (ADS)

    Wagner, Martin; Liu, Mengkun

    2016-04-01

    Near- and mid-infrared plasmonics are exciting research areas with applications in nanoscale energy concentration, sensing or ultrafast switching for telecommunication. Now, a new efficient way to manipulate plasmon resonances in semiconductor nanoarrays at ultrafast timescales has been found.

  19. Color plasmons and trains of plasmons.

    PubMed

    Dyankov, Georgi; Sekkat, Zouhair; Bousmina, Mosto

    2010-08-01

    We show that a broadband surface plasmon can be excited in a thin metal film. A train of two plasmons can be excited at conditions near the condition of broadband surface plasmon excitation. Also, a method for independent multichannel checks of biochips by wavelength addressing is proposed. PMID:20676187

  20. Towards Plasmonic Solar to Fuel Conversion

    NASA Astrophysics Data System (ADS)

    Horvath, Dayton Thomas

    The need to renewably store and utilize energy from chemical bonds has grown with recent economic and environmental concerns. Plasmonically-enabled devices have shown promise in various photosynthetic processes due to their scalable, cost-effective, and robust performance. Utilizing charge carriers derived from localized surface plasmons, these devices can drive various photoelectrochemical (PEC) reactions, however at limited efficiencies due to incomplete solar absorption. To improve broadband solar absorption in wide bandgap semiconductors, the plasmon resonance of different metal nanostructures in the visible are synthesized using anodic and sol-gel templating methods. Preliminary results suggest that gold nanoparticles and helical metal nanowires are well suited for photosensitization of titania for visible light absorption. Characterization by UV-Visible spectrophotometry, scanning electron microscopy, and photoelectrochemical measurements indicate that these templated methods can be utilized as the basis for synthesizing a variety of photoelectrochemical devices as well as unique plasmonic materials for applications including energy storage, sensing, and catalysis.

  1. HUNTing the Overlap

    SciTech Connect

    Iancu, Costin; Parry, Husbands; Hargrove, Paul

    2005-07-08

    Hiding communication latency is an important optimization for parallel programs. Programmers or compilers achieve this by using non-blocking communication primitives and overlapping communication with computation or other communication operations. Using non-blocking communication raises two issues: performance and programmability. In terms of performance, optimizers need to find a good communication schedule and are sometimes constrained by lack of full application knowledge. In terms of programmability, efficiently managing non-blocking communication can prove cumbersome for complex applications. In this paper we present the design principles of HUNT, a runtime system designed to search and exploit some of the available overlap present at execution time in UPC programs. Using virtual memory support, our runtime implements demand-driven synchronization for data involved in communication operations. It also employs message decomposition and scheduling heuristics to transparently improve the non-blocking behavior of applications. We provide a user level implementation of HUNT on a variety of modern high performance computing systems. Results indicate that our approach is successful in finding some of the overlap available at execution time. While system and application characteristics influence performance, perhaps the determining factor is the time taken by the CPU to execute a signal handler. Demand driven synchronization at execution time eliminates the need for the explicit management of non-blocking communication. Besides increasing programmer productivity, this feature also simplifies compiler analysis for communication optimizations.

  2. Enhancing Eu(3+) magnetic dipole emission by resonant plasmonic nanostructures.

    PubMed

    Hussain, Rabia; Kruk, Sergey S; Bonner, Carl E; Noginov, Mikhail A; Staude, Isabelle; Kivshar, Yuri S; Noginova, Natalia; Neshev, Dragomir N

    2015-04-15

    We demonstrate the enhancement of magnetic dipole spontaneous emission from Eu3+ ions by an engineered plasmonic nanostructure that controls the electromagnetic environment of the emitter. Using an optical microscope setup, an enhancement in the intensity of the Eu3+ magnetic dipole emission was observed for emitters located in close vicinity to a gold nanohole array designed to support plasmonic resonances overlapping with the emission spectrum of the ions. PMID:25872041

  3. Plasmonics of graphene laced stratified media

    NASA Astrophysics Data System (ADS)

    Aparajita, Upali; Roslyak, Oleksiy

    Strong overlap of fields of graphene physics and photonics drawn a lot of attention recently. Not only graphene possesses intrinsic highly tunable plasmons but a combination of grapheme with noble metal nano structures promises a variety of existing applications for conventional plasmonics , such as novel optical devices working in a broad range from THz to visible spectra. We report simulations of those devices using combination of discrete dipole approximation (DDA) and boundary element methods (BEM). While DDA is an essential tool for modeling large molecule polarizabilities and scattering the BEM provides necessary Green's function tensors when those molecules are in close proximity to the nano-structures. As an example of that technique we study electron energy loss and Raman spectra for complex molecules in presence of metal plasmon active nano particles embedded into a stratified graphene laced medium.

  4. Plasmon transmission through excitonic subwavelength gaps.

    PubMed

    Sukharev, Maxim; Nitzan, Abraham

    2016-04-14

    We study the transfer of electromagnetic energy across a subwavelength gap separating two co-axial metal nanorods. In the absence of spacer in the gap separating the rods, the system exhibits strong coupling behavior between longitudinal plasmons in the two rods. The nature and magnitude of this coupling are studied by varying various geometrical parameters. As a function of frequency, the transmission is dominated by a split longitudinal plasmon peak. The two hybrid modes are the dipole-like "bonding" mode characterized by a peak intensity in the gap and a quadrupole-like "antibonding" mode whose amplitude vanishes at the gap center. When the length of one rod is varied, this mode spectrum exhibits the familiar anti-crossing behavior that depends on the coupling strength determined by the gap width. When off-resonant 2-level emitters are placed in the gap, almost no effect on the frequency dependent transmission is observed. In contrast, when the molecular system is resonant with the plasmonic line shape, the transmission is strongly modified, showing characteristics of strong exciton-plasmon coupling. Most strongly modified is the transmission near the lower frequency "bonding" plasmon mode. The presence of resonant molecules in the gap affects not only the molecule-field interaction but also the spatial distribution of the field intensity and the electromagnetic energy flux across the junction. PMID:27083741

  5. Plasmon transmission through excitonic subwavelength gaps

    NASA Astrophysics Data System (ADS)

    Sukharev, Maxim; Nitzan, Abraham

    2016-04-01

    We study the transfer of electromagnetic energy across a subwavelength gap separating two co-axial metal nanorods. In the absence of spacer in the gap separating the rods, the system exhibits strong coupling behavior between longitudinal plasmons in the two rods. The nature and magnitude of this coupling are studied by varying various geometrical parameters. As a function of frequency, the transmission is dominated by a split longitudinal plasmon peak. The two hybrid modes are the dipole-like "bonding" mode characterized by a peak intensity in the gap and a quadrupole-like "antibonding" mode whose amplitude vanishes at the gap center. When the length of one rod is varied, this mode spectrum exhibits the familiar anti-crossing behavior that depends on the coupling strength determined by the gap width. When off-resonant 2-level emitters are placed in the gap, almost no effect on the frequency dependent transmission is observed. In contrast, when the molecular system is resonant with the plasmonic line shape, the transmission is strongly modified, showing characteristics of strong exciton-plasmon coupling. Most strongly modified is the transmission near the lower frequency "bonding" plasmon mode. The presence of resonant molecules in the gap affects not only the molecule-field interaction but also the spatial distribution of the field intensity and the electromagnetic energy flux across the junction.

  6. Overlap extension PCR cloning.

    PubMed

    Bryksin, Anton; Matsumura, Ichiro

    2013-01-01

    Rising demand for recombinant proteins has motivated the development of efficient and reliable cloning methods. Here we show how a beginner can clone virtually any DNA insert into a plasmid of choice without the use of restriction endonucleases or T4 DNA ligase. Chimeric primers encoding plasmid sequence at the 5' ends and insert sequence at the 3' ends are designed and synthesized. Phusion(®) DNA polymerase is utilized to amplify the desired insert by PCR. The double-stranded product is subsequently employed as a pair of mega-primers in a PCR-like reaction with circular plasmids. The original plasmids are then destroyed in restriction digests with Dpn I. The product of the overlap extension PCR is used to transform competent Escherichia coli cells. Phusion(®) DNA polymerase is used for both the amplification and fusion reactions, so both steps can be monitored and optimized in the same way. PMID:23996437

  7. Plasmon and compositional mapping of plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Ringe, Emilie; Collins, Sean M.; DeSantis, Christopher J.; Skrabalak, Sara E.; Midgley, Paul A.

    2014-11-01

    Recently, co-reduction of Au and Pd has allowed the synthesis of complex Au core/AuPd shell nanoparticles with elongated tips and cubic-like symmetry. Optical studies have shown strong plasmonic behavior and high refractive index sensitivities. In this paper, we describe the composition and the near-field plasmonic behavior of those complex structures. Monochromated STEM-EELS, Cathodoluminescence, and EDS mapping reveals the different resonant modes in these particles, and shows that Pd, a poor plasmonic metal, does not prevent strong resonances and could actually be extremely helpful for plasmon-enhanced catalysis.

  8. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    NASA Astrophysics Data System (ADS)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  9. Graphene-like conjugated π bond system in Pb1-xSnxSe

    NASA Astrophysics Data System (ADS)

    Shu, G. J.; Liou, S. C.; Karna, S.; Sankar, R.; Hayashi, M.; Chu, M.-W.; Chou, F. C.

    2015-03-01

    Following the identification of the π bond in graphene, in this work, a π bond constructed through side-to-side overlap of half-filled 6pz orbitals was observed in a non-carbon crystal of Pb1-xSnxSe (x ˜ 0.34) (PSS), a prototype topological crystalline insulator and thermoelectric material with a high figure-of-merit. PSS compounds with a rock-salt type cubic crystal structure were found to consist of σ bond connected covalent chains of Pb(Sn)-Se with an additional π bond that is shared as a conjugated system among the four nearest neighbor Pb pairs in square symmetry within all {001} monoatomic layers per cubic unit cell. The π bond formed with half-filled 6pz orbitals between Pb atoms is consistent with the calculated results from quantum chemistry. The presence of π bonds was identified and verified with electron energy-loss spectroscopy through plasmonic excitations and electron density mapping via an inverse Fourier transform of X-ray diffraction.

  10. Edge Mode Coupling within a Plasmonic Nanoparticle.

    PubMed

    Schmidt, Franz-Philipp; Ditlbacher, Harald; Hohenau, Andreas; Hohenester, Ulrich; Hofer, Ferdinand; Krenn, Joachim R

    2016-08-10

    The coupling of plasmonic nanoparticles can strongly modify their optical properties. Here, we show that the coupling of the edges within a single rectangular particle leads to mode splitting and the formation of bonding and antibonding edge modes. We are able to unambiguously designate the modes due to the high spatial resolution of electron microscopy-based electron energy loss spectroscopy and the comparison with numerical simulations. Our results provide simple guidelines for the interpretation and the design of plasmonic mode spectra. PMID:27427962

  11. Plasmonics and Electron Optics in Graphene

    NASA Astrophysics Data System (ADS)

    Jang, Min Seok

    The field of plasmonics has been attracting wide interest because it has provided routes to guide and localize light at nanoscales by utilizing metals as its major building block. Meanwhile, graphene, a two-dimensional lattice of carbon atoms, has been regarded as an ideal material for electronic applications owing to its remarkably high carrier mobility and superior thermal properties. Both research fields have been growing rapidly, but quite independently. However, a closer look reveals that there are actually numerous similarities between them, and it is possible to extract useful applications from these analogies. Even more interestingly, these research fields are recently overlapping to create a new field of research, namely graphene plasmonics. In this thesis, we present a few examples of these intertwined topics. First, we investigate "rainbow trapping" structures, broadband plasmonic slow light systems composed of single or double negative materials. We clarify the mode-conversion mechanism and the light-trapping performance by analyzing the dispersion relation. We then show that electrons in graphene exhibit photonlike dynamics including Goos- Hanchen effect and the rainbow trapping effect, but quantitatively differently. To study the dynamics of graphene electrons numerically, we develop a finite-difference time domain simulator. We also present a way to enhance electron backscattering in graphene by engineering the dispersion of electron eigenmodes in a Kronig-Penney potential. Finally, we discuss physics of graphene plasmon cavities. We report the resonant mid-infrared transmission across a plasmonic waveguide gap that is governed by the Fano interference between transmission through plasmon modes in graphene and nonresonant background transmission. An ultracompact graphene plasmon cavity, which resonates at near-infrared telecommunication frequencies, is also proposed.

  12. Arsia Mons Overlapping Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image shows overlapping flows with different suface textures. In the middle of the image there is a round, darker feature -- a small volcano. To the left of the volcano a graben cuts across the lava flows.

    Image information: VIS instrument. Latitude -18.5, Longitude 244.5 East (115.5 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Tunable plasmonic crystal

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  14. Single-plasmon interferences.

    PubMed

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-03-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521

  15. Single-plasmon interferences

    PubMed Central

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W.; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521

  16. Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance.

    PubMed

    Wang, Hui; Tam, Felicia; Grady, Nathaniel K; Halas, Naomi J

    2005-10-01

    The optical properties of metals arise both from optical excitation of interband transitions and their collective electronic, or plasmon, response. Here, we examine the optical properties of Cu, whose strong interband transitions dominate its optical response in the visible region of the spectrum, in a nanoshell geometry. This nanostructure permits the geometrical tuning of the nanoparticle plasmon energy relative to the onset of interband transitions in the metal. Spectral overlap of the interband transitions of Cu with the nanoshell plasmon resonance results in a striking double-peaked plasmon resonance, a unique phenomenon previously unobserved in other noble or coinage metal nanostructures. PMID:16853342

  17. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-03-01

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  18. Raman Scattering at Plasmonic Junctions Shorted by Conductive Molecular Bridges

    SciTech Connect

    El-Khoury, Patrick Z.; Hu, Dehong; Apkarian, V. Ara; Hess, Wayne P.

    2013-04-10

    Intensity spikes in Raman scattering, accompanied by switching between line spectra and band spectra, can be assigned to shorting the junction plasmon through molecular conductive bridges. This is demonstrated through Raman trajectories recorded at a plasmonic junction formed by a gold AFM tip in contact with a silver surface coated either with biphenyl-4,4’-dithiol or biphenyl-4-thiol. The fluctuations are absent in the monothiol. In effect, the making and breaking of chemical bonds is tracked.

  19. Optical coherence tomography with plasmon resonant nanorods of gold

    NASA Astrophysics Data System (ADS)

    Troutman, Timothy S.; Barton, Jennifer K.; Romanowski, Marek

    2007-06-01

    We explored plasmon resonant nanorods of gold as a contrast agent for optical coherence tomography (OCT). Nanorod suspensions were generated through wet chemical synthesis and characterized with spectrophotometry, transmission electron microscopy, and OCT. Polyacrylamide-based phantoms were generated with appropriate scattering and anisotropy coefficients (30 cm-1 and 0.89, respectively) to image distribution of the contrast agent in an environment similar to that of tissue. The observed signal was dependent on whether the plasmon resonance peak overlapped the source bandwidth of the OCT, confirming the resonant character of enhancement. Gold nanorods with plasmon resonance wavelengths overlapping the OCT source yielded a signal-to-background ratio of 4.5 dB, relative to the tissue phantom. Strategies for OCT imaging with nanorods are discussed.

  20. Optical coherence tomography with plasmon resonant nanorods of gold.

    PubMed

    Troutman, Timothy S; Barton, Jennifer K; Romanowski, Marek

    2007-06-01

    We explored plasmon resonant nanorods of gold as a contrast agent for optical coherence tomography (OCT). Nanorod suspensions were generated through wet chemical synthesis and characterized with spectrophotometry, transmission electron microscopy, and OCT. Polyacrylamide-based phantoms were generated with appropriate scattering and anisotropy coefficients (30 cm(-1) and 0.89, respectively) to image distribution of the contrast agent in an environment similar to that of tissue. The observed signal was dependent on whether the plasmon resonance peak overlapped the source bandwidth of the OCT, confirming the resonant character of enhancement. Gold nanorods with plasmon resonance wavelengths overlapping the OCT source yielded a signal-to-background ratio of 4.5 dB, relative to the tissue phantom. Strategies for OCT imaging with nanorods are discussed. PMID:17546147

  1. Overlapping clusters for distributed computation.

    SciTech Connect

    Mirrokni, Vahab; Andersen, Reid; Gleich, David F.

    2010-11-01

    Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initial partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.

  2. Surface plasmon enhanced photoluminescence from copper nanoparticles: Influence of temperature

    SciTech Connect

    Yeshchenko, Oleg A. Bondarchuk, Illya S.; Losytskyy, Mykhaylo Yu.

    2014-08-07

    Anomalous temperature dependence of surface plasmon enhanced photoluminescence from copper nanoparticles embedded in a silica host matrix has been observed. The quantum yield of photoluminescence increases as the temperature increases. The key role of such an effect is the interplay between the surface plasmon resonance and the interband transitions in the copper nanoparticles occurring at change of the temperature. Namely, the increase of temperature leads to the red shift of the resonance. The shift leads to increase of the spectral overlap of the resonance with photoluminescence band of copper as well as to the decrease of plasmon damping caused by interband transitions. Such mechanisms lead to the increase of surface plasmon enhancement factor and, consequently, to increase of the quantum yield of the photoluminescence.

  3. Evaluating plasmonic transport in current-carrying silver nanowires.

    PubMed

    Song, Mingxia; Stolz, Arnaud; Zhang, Douguo; Arocas, Juan; Markey, Laurent; Colas des Francs, Gérard; Dujardin, Erik; Bouhelier, Alexandre

    2013-01-01

    Plasmonics is an emerging technology capable of simultaneously transporting a plasmonic signal and an electronic signal on the same information support. In this context, metal nanowires are especially desirable for realizing dense routing networks. A prerequisite to operate such shared nanowire-based platform relies on our ability to electrically contact individual metal nanowires and efficiently excite surface plasmon polaritons in this information support. In this article, we describe a protocol to bring electrical terminals to chemically-synthesized silver nanowires randomly distributed on a glass substrate. The positions of the nanowire ends with respect to predefined landmarks are precisely located using standard optical transmission microscopy before encapsulation in an electron-sensitive resist. Trenches representing the electrode layout are subsequently designed by electron-beam lithography. Metal electrodes are then fabricated by thermally evaporating a Cr/Au layer followed by a chemical lift-off. The contacted silver nanowires are finally transferred to a leakage radiation microscope for surface plasmon excitation and characterization. Surface plasmons are launched in the nanowires by focusing a near infrared laser beam on a diffraction-limited spot overlapping one nanowire extremity. For sufficiently large nanowires, the surface plasmon mode leaks into the glass substrate. This leakage radiation is readily detected, imaged, and analyzed in the different conjugate planes in leakage radiation microscopy. The electrical terminals do not affect the plasmon propagation. However, a current-induced morphological deterioration of the nanowire drastically degrades the flow of surface plasmons. The combination of surface plasmon leakage radiation microscopy with a simultaneous analysis of the nanowire electrical transport characteristics reveals the intrinsic limitations of such plasmonic circuitry. PMID:24378340

  4. Ultraconfined Interlaced Plasmons

    NASA Astrophysics Data System (ADS)

    Morgado, Tiago A.; Marcos, João S.; Silveirinha, Mário G.; Maslovski, Stanislav I.

    2011-08-01

    We describe a mesoscopic excitation in strongly coupled grids of metallic nanorods, resulting from the hybridization of weakly bounded plasmons. It is shown both theoretically and experimentally that the characteristic spatial scale of the interlaced plasmons is determined by geometrical features, rather than from the electrical length of the nanorods, and that due to their wide band nature, weak sensitivity to metallic absorption, and subwavelength mode sizes, such plasmons may have exciting applications in waveguiding in the nanoscale.

  5. Graphene-like conjugated π bond system in Pb{sub 1−x}Sn{sub x}Se

    SciTech Connect

    Shu, G. J.; Karna, S.; Sankar, R.; Hayashi, M.; Chu, M.-W.; Liou, S. C.; Chou, F. C.

    2015-03-23

    Following the identification of the π bond in graphene, in this work, a π bond constructed through side-to-side overlap of half-filled 6p{sub z} orbitals was observed in a non-carbon crystal of Pb{sub 1–x}Sn{sub x}Se (x ∼ 0.34) (PSS), a prototype topological crystalline insulator and thermoelectric material with a high figure-of-merit. PSS compounds with a rock-salt type cubic crystal structure were found to consist of σ bond connected covalent chains of Pb(Sn)-Se with an additional π bond that is shared as a conjugated system among the four nearest neighbor Pb pairs in square symmetry within all (001) monoatomic layers per cubic unit cell. The π bond formed with half-filled 6p{sub z} orbitals between Pb atoms is consistent with the calculated results from quantum chemistry. The presence of π bonds was identified and verified with electron energy-loss spectroscopy through plasmonic excitations and electron density mapping via an inverse Fourier transform of X-ray diffraction.

  6. Plasmonic nanoantenna hydrophones

    PubMed Central

    Maksymov, Ivan S.; Greentree, Andrew D.

    2016-01-01

    Ultrasound is a valuable biomedical imaging modality and diagnostic tool. Here we theoretically demonstrate that a single dipole plasmonic nanoantenna can be used as an optical hydrophone for MHz-range ultrasound. The nanoantenna is tuned to operate on a high-order plasmon mode, which provides an increased sensitivity to ultrasound in contrast to the usual approach of using the fundamental dipolar plasmon resonance. Plasmonic nanoantenna hydrophones may be useful for ultrasonic imaging of biological cells, cancer tissues or small blood vessels, as well as for Brillouin spectroscopy at the nanoscale. PMID:27612092

  7. Plasmonic nanoantenna hydrophones.

    PubMed

    Maksymov, Ivan S; Greentree, Andrew D

    2016-01-01

    Ultrasound is a valuable biomedical imaging modality and diagnostic tool. Here we theoretically demonstrate that a single dipole plasmonic nanoantenna can be used as an optical hydrophone for MHz-range ultrasound. The nanoantenna is tuned to operate on a high-order plasmon mode, which provides an increased sensitivity to ultrasound in contrast to the usual approach of using the fundamental dipolar plasmon resonance. Plasmonic nanoantenna hydrophones may be useful for ultrasonic imaging of biological cells, cancer tissues or small blood vessels, as well as for Brillouin spectroscopy at the nanoscale. PMID:27612092

  8. Nanomembrane-based plasmonics

    NASA Astrophysics Data System (ADS)

    Jakšić, Zoran; Vuković, Slobodan M.; Buha, Jelena; Matovic, Jovan

    2011-01-01

    This paper reviews the main properties and applications of nanomembrane-based plasmonic structures, including some results presented here for the first time. Artificial nanomembranes are a novel building block in micro- and nanosystems technologies. They represent quasi-two-dimensional (2D) freestanding structures thinner than 100 nm and with giant aspect ratios that often exceed 1,000,000. They may be fabricated as various quasi-2D metal-dielectric nanocomposites with tailorable properties; they are fully symmetric in an electromagnetic sense and support long-range surface plasmon polaritons. This makes nanomembranes a convenient platform for different plasmonic structures such as subwavelength plasmonic crystals and metamaterials and applications such as plasmon waveguides and ultrasensitive bio/chemical sensors. Among other advantages of nanomembrane plasmonics is the feasibility to fabricate flexible, transferable plasmonic guides applicable to different substrates and dynamically tunable through stretching. There are various approaches to multifunctionalization of nanomembranes for plasmonics, including the use of transparent conductive oxide nanoparticles, but also the incorporation of switchable ion channels. Since the natural counterpart of the artificial nanomembranes are cell membranes, the multifunctionalization of synthetic nanomembranes ensures the introduction of bionic principles into plasmonics, at the same time extending the toolbox of the available nanostructures, materials and functions.

  9. A Model for the Chemical Bond

    ERIC Educational Resources Information Center

    Magnasco, Valerio

    2004-01-01

    Bond stereochemistry in polyatomic hydrides is explained in terms of the principle of bond energies maximization, which yields X-H straight bonds and suggests the formation of appropriate sp hybrids on the central atom. An introduction to the electron charge distribution in molecules is given, and atomic, overlap, gross and formal charges are…

  10. On the Neuberger overlap operator

    NASA Astrophysics Data System (ADS)

    Boriçi, Artan

    1999-04-01

    We compute Neuberger's overlap operator by the Lanczos algorithm applied to the Wilson-Dirac operator. Locality of the operator for quenched QCD data and its eigenvalue spectrum in an instanton background are studied.

  11. Directing fluorescence with plasmonic and photonic structures.

    PubMed

    Dutta Choudhury, Sharmistha; Badugu, Ramachandram; Lakowicz, Joseph R

    2015-08-18

    Fluorescence technology pervades all areas of chemical and biological sciences. In recent years, it is being realized that traditional fluorescence can be enriched in many ways by harnessing the power of plasmonic or photonic structures that have remarkable abilities to mold the flow of optical energy. Conventional fluorescence is omnidirectional in nature, which makes it difficult to capture the entire emission. Suitably designed emission directivity can improve collection efficiency and is desirable for many fluorescence-based applications like sensing, imaging, single molecule spectroscopy, and optical communication. By incorporating fluorophores in plasmonic or photonic substrates, it is possible to tailor the optical environment surrounding the fluorophores and to modify the spatial distribution of emission. This promising approach works on the principle of near-field interaction of fluorescence with spectrally overlapping optical modes present in the substrates. In this Account, we present our studies on directional emission with different kinds of planar metallic, dielectric, and hybrid structures. In metal-dielectric substrates, the coupling of fluorescence with surface plasmons leads to directional surface-plasmon-coupled emission with characteristic dispersion and polarization properties. In one-dimensional photonic crystals (1DPC), fluorophores can interact with Bloch surface waves, giving rise to sharply directional Bloch surface wave-coupled emission. The interaction of fluorescence with Fabry-Pérot-like modes in metal-dielectric-metal substrates and with Tamm states in plasmonic-photonic hybrid substrates provides beaming emission normal to the substrate surface. These interesting features are explained in the context of reflectivity dispersion diagrams, which provide a complete picture of the mode profiles and the corresponding coupled emission patterns. Other than planar substrates, specially fabricated plasmonic nanoantennas also have tremendous

  12. Disposable Plasmonics: Plastic Templated Plasmonic Metamaterials with Tunable Chirality.

    PubMed

    Karimullah, Affar S; Jack, Calum; Tullius, Ryan; Rotello, Vincent M; Cooke, Graeme; Gadegaard, Nikolaj; Barron, Laurence D; Kadodwala, Malcolm

    2015-10-01

    Development of low-cost disposable plasmonic substrates is vital for the applicability of plasmonic sensing. Such devices can be made using injection-molded templates to create plasmonic films. The elements of these plasmonic films are hybrid nanostructures composed of inverse and solid structures. Tuning the modal coupling between the two allows optimization of the optical properties for nanophotonic applications. PMID:26306427

  13. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  14. Ultraviolet surface plasmon-mediated low temperature hydrazine decomposition

    SciTech Connect

    Peng, Siying; Sheldon, Matthew T.; Atwater, Harry A.; Liu, Wei-Guang; Jaramillo-Botero, Andres; Goddard, William Andrew

    2015-01-12

    Conventional methods require elevated temperatures in order to dissociate high-energy nitrogen bonds in precursor molecules such as ammonia or hydrazine used for nitride film growth. We report enhanced photodissociation of surface-absorbed hydrazine (N{sub 2}H{sub 4}) molecules at low temperature by using ultraviolet surface plasmons to concentrate the exciting radiation. Plasmonic nanostructured aluminum substrates were designed to provide resonant near field concentration at λ = 248 nm (5 eV), corresponding to the maximum optical cross section for hydrogen abstraction from N{sub 2}H{sub 4}. We employed nanoimprint lithography to fabricate 1 mm × 1 mm arrays of the resonant plasmonic structures, and ultraviolet reflectance spectroscopy confirmed resonant extinction at 248 nm. Hydrazine was cryogenically adsorbed to the plasmonic substrate in a low-pressure ambient, and 5 eV surface plasmons were resonantly excited using a pulsed KrF laser. Mass spectrometry was used to characterize the photodissociation products and indicated a 6.2× overall enhancement in photodissociation yield for hydrazine adsorbed on plasmonic substrates compared with control substrates. The ultraviolet surface plasmon enhanced photodissociation demonstrated here may provide a valuable method to generate reactive precursors for deposition of nitride thin film materials at low temperatures.

  15. Seeding for pervasively overlapping communities

    NASA Astrophysics Data System (ADS)

    Lee, Conrad; Reid, Fergal; McDaid, Aaron; Hurley, Neil

    2011-06-01

    In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms specifically designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes more important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.

  16. Super-Period Gold Nanodisc Grating-Enabled Surface Plasmon Resonance Spectrometer Sensor.

    PubMed

    Tian, Xueli; Guo, Hong; Bhatt, Ketan H; Zhao, Song Q; Wang, Yi; Guo, Junpeng

    2015-10-01

    We experimentally demonstrate a surface plasmon resonance spectrometer sensor by using an e-beam-patterned super-period gold nanodisc grating on a glass substrate. The super-period gold nanodisc grating has a small subwavelength period and a large diffraction grating period. The small subwavelength period enhances localized surface plasmon resonance, and the large diffraction grating period diffracts surface plasmon resonance radiation into different directions corresponding to different wavelengths. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD) in addition to the traditional way of measurement using an external optical spectrometer in the zeroth order transmission. A surface plasmon resonance sensor for the bovine serum albumin protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD. PMID:26449812

  17. Active quantum plasmonics

    PubMed Central

    Marinica, Dana Codruta; Zapata, Mario; Nordlander, Peter; Kazansky, Andrey K.; M. Echenique, Pedro; Aizpurua, Javier; Borisov, Andrei G.

    2015-01-01

    The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics. PMID:26824066

  18. Active quantum plasmonics.

    PubMed

    Marinica, Dana Codruta; Zapata, Mario; Nordlander, Peter; Kazansky, Andrey K; M Echenique, Pedro; Aizpurua, Javier; Borisov, Andrei G

    2015-12-01

    The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics. PMID:26824066

  19. Plasmonics without negative dielectrics

    NASA Astrophysics Data System (ADS)

    Della Giovampaola, Cristian; Engheta, Nader

    2016-05-01

    Plasmonic phenomena are exhibited in light-matter interaction involving materials whose real parts of permittivity functions attain negative values at operating wavelengths. However, such materials usually suffer from dissipative losses, thus limiting the performance of plasmon-based optical devices. Here, we utilize an alternative methodology that mimics a variety of plasmonic phenomena by exploiting the well-known structural dispersion of electromagnetic modes in bounded guided-wave structures filled with only materials with positive permittivity. A key issue in the design of such structures is prevention of mode coupling, which can be achieved by implementing thin metallic wires at proper interfaces. This method, which is more suitable for lower frequencies, allows designers to employ conventional dielectrics and highly conductive metals for which the loss is low at these frequencies, while achieving plasmonic features. We demonstrate, numerically and analytically, that this platform can provide surface plasmon polaritons, local plasmonic resonance, plasmonic cloaking, and epsilon-near-zero-based tunneling using conventional positive-dielectric materials.

  20. Plasmonic nanostructures: artificial molecules.

    PubMed

    Wang, Hui; Brandl, Daniel W; Nordlander, Peter; Halas, Naomi J

    2007-01-01

    This Account describes a new paradigm for the relationship between the geometry of metallic nanostructures and their optical properties. While the interaction of light with metallic nanoparticles is determined by their collective electronic or plasmon response, a compelling analogy exists between plasmon resonances of metallic nanoparticles and wave functions of simple atoms and molecules. Based on this insight, an entire family of plasmonic nanostructures, artificial molecules, has been developed whose optical properties can be understood within this picture: nanoparticles (nanoshells, nanoeggs, nanomatryushkas, nanorice), multi-nanoparticle assemblies (dimers, trimers, quadrumers), and a nanoparticle-over-metallic film, an electromagnetic analog of the spinless Anderson model. PMID:17226945

  1. Continuing Relationships with the Deceased: Disentangling Bonds and Grief

    ERIC Educational Resources Information Center

    Schut, Henk A. W.; Stroebe, Margaret S.; Boelen, Paul A.; Zijerveld, Annemieke M.

    2006-01-01

    Some studies of the relationship between continuing bonds and grief intensity have claimed that continuing bonds lead to poor adaptation to bereavement. However, operationalizations of continuing bonds and grief intensity appear to overlap conceptually. Thus, it is still unclear what character the connection between continuing bonds and grief…

  2. EDITORIAL: Focus on terahertz plasmonics

    NASA Astrophysics Data System (ADS)

    Rahm, Marco; Nahata, Ajay; Akalin, Tahsin; Beruete, Miguel; Sorolla, Mario

    2015-10-01

    Plasmonics is one of the growing fields in modern photonics that has garnered increasing interest over the last few years. In this focus issue, the specific challenges concerning terahertz plasmonics have been addressed and most recent advances in this specific field have been highlighted. The articles demonstrate the diversity and the opportunities of this rich field by covering a variety of topics ranging from the propagation of surface plasmon polaritons (SPPs) on artificially structures surfaces, 2D manipulation of surface plasmons and SPPs, plasmonic focusing, plasmonic high-Q resonators for sensing applications, plasmonically enhanced terahertz antennas to terahertz field manipulation by use of plasmonic structures. The articles substantiate the impact of plasmonics and its great innovative potential for terahertz technology. In memory of Professor Mario Sorolla Ayza.

  3. Surface Plasmon Based Spectrometer

    NASA Astrophysics Data System (ADS)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  4. Plasmonic nanosensors: Inverse sensitivity

    NASA Astrophysics Data System (ADS)

    Käll, Mikael

    2012-07-01

    Enzyme-modified plasmonic nanoparticles that generate a signal that is larger when the concentration of the target molecule is lower can detect ultralow levels of the cancer biomarker prostate-specific antigen in whole serum.

  5. Nonlinear Plasmonic Sensing.

    PubMed

    Mesch, Martin; Metzger, Bernd; Hentschel, Mario; Giessen, Harald

    2016-05-11

    We introduce the concept of nonlinear plasmonic sensing, relying on third harmonic generation from simple plasmonic nanoantennas. Because of the nonlinear conversion process we observe a larger sensitivity to a local change in the refractive index as compared to the commonly used linear localized surface plasmon resonance sensing. Refractive index changes as small as 10(-3) can be detected. In order to determine the spectral position of highest sensitivity, we perform linear and third harmonic spectroscopy on plasmonic nanoantenna arrays, which are the fundamental building blocks of our sensor. Furthermore, simultaneous detection of linear and nonlinear signals allows quantitative comparison of both methods, providing further insight into the working principle of our sensor. While the signal-to-noise ratio is comparable, nonlinear sensing gives about seven times higher relative signal changes. PMID:27050296

  6. Aluminum for plasmonics.

    PubMed

    Knight, Mark W; King, Nicholas S; Liu, Lifei; Everitt, Henry O; Nordlander, Peter; Halas, Naomi J

    2014-01-28

    Unlike silver and gold, aluminum has material properties that enable strong plasmon resonances spanning much of the visible region of the spectrum and into the ultraviolet. This extended response, combined with its natural abundance, low cost, and amenability to manufacturing processes, makes aluminum a highly promising material for commercial applications. Fabricating Al-based nanostructures whose optical properties correspond with theoretical predictions, however, can be a challenge. In this work, the Al plasmon resonance is observed to be remarkably sensitive to the presence of oxide within the metal. For Al nanodisks, we observe that the energy of the plasmon resonance is determined by, and serves as an optical reporter of, the percentage of oxide present within the Al. This understanding paves the way toward the use of aluminum as a low-cost plasmonic material with properties and potential applications similar to those of the coinage metals. PMID:24274662

  7. Plasmons and surfaces

    NASA Astrophysics Data System (ADS)

    Ferrell, T. L.; Callcott, T. A.; Warmack, R. J.

    1985-08-01

    Plasmons, energy quanta related to electrical charge oscillations in condensed matter (such as metals), were first observed in 1955 by passing an electron beam through Al foil and measuring the resulting energy peaks of electrons which made it through. The energy, as predicted by quantum mechanics, is proportional to the associated frequency of the longitudinal waves set up as the oscillations propagate from electron to electron, and is a function of the free electron density. Plasmon data aid in characterizing the electronic state of matter under study. Performing spectroscopy of electrons bouncing off the surface permits characterizations of the electronic states of the surfaces. Plasmons can lose energy by emitting light. The wavelength of the light can be controlled by specifying the composition of a specimen. Techniques for coupling beam photons with surface plasmons to achieve excited states are discussed, along with emerging applications such as diffraction gratings for spectroscopy, holographic cameras and Raman scattering applied to biochemical studies.

  8. Transformational plasmon optics.

    PubMed

    Liu, Yongmin; Zentgraf, Thomas; Bartal, Guy; Zhang, Xiang

    2010-06-01

    We propose and demonstrate efficiently molding surface plasmon polaritons (SPPs) based on transformation optics. SPPs are surface modes of electromagnetic waves tightly bound at metal-dielectric interfaces, which allow us to scale optics beyond the diffraction limit. Taking advantage of transformation optics, here we show that the propagation of SPPs can be manipulated in a prescribed manner by careful control of the dielectric material properties adjacent to a metal. Since the metal properties are completely unaltered, this methodology provides a practical way for routing light at very small scales. For instance, our approach enables SPPs to travel at uneven and curved surfaces over a broad wavelength range, where SPPs would normally suffer significant scattering losses. In addition, a plasmonic 180 degrees waveguide bend and a plasmonic Luneburg lens with simple designs are presented. The unique design flexibility of the transformational plasmon optics introduced here may open a new door to nano optics and downscaling of photonic circuits. PMID:20465268

  9. Clique graphs and overlapping communities

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2010-12-01

    It is shown how to construct a clique graph in which properties of cliques of a fixed order in a given graph are represented by vertices in a weighted graph. Various definitions and motivations for these weights are given. The detection of communities or clusters is used to illustrate how a clique graph may be exploited. In particular a benchmark network is shown where clique graphs find the overlapping communities accurately while vertex partition methods fail.

  10. Surface plasmon modes management by Thompson plasmonics

    NASA Astrophysics Data System (ADS)

    Deng, Nai Jing; Chau, Cheung Wai; Kit Yung, Sai; Yu, Kin Wah

    2012-02-01

    We have studied the dispersion and propagation of the surface plasmons in a structure consisting of a metal slab and a dielectric slab, the latter of which contains randomly distributed small metal particles. In our model, the metal material is characterized by the Drude model and the pudding structure is studied with Maxwell-Garnett effective medium theory. This construction of material can bring a new hybridized band in the dispersion relation where light has a relatively small group velocity. The geometric profile of volume fraction of metal balls in pudding structure can effectively change the behaviour of the plasmon propagation. For example, by adding a parabolic confinement, it is shown by the Hamiltonian optics that the light propagation is trapped, i.e., the light experiences an oscillation in a small space. Experimentally, the confinement condition can be achieved with various means, thus it may be useful in development of new mechanism of solar cell.

  11. Plasmon-enhanced sub-wavelength laser ablation: plasmonic nanojets.

    PubMed

    Valev, Ventsislav K; Denkova, Denitza; Zheng, Xuezhi; Kuznetsov, Arseniy I; Reinhardt, Carsten; Chichkov, Boris N; Tsutsumanova, Gichka; Osley, Edward J; Petkov, Veselin; De Clercq, Ben; Silhanek, Alejandro V; Jeyaram, Yogesh; Volskiy, Vladimir; Warburton, Paul A; Vandenbosch, Guy A E; Russev, Stoyan; Aktsipetrov, Oleg A; Ameloot, Marcel; Moshchalkov, Victor V; Verbiest, Thierry

    2012-03-01

    In response to the incident light's electric field, the electron density oscillates in the plasmonic hotspots producing an electric current. Associated Ohmic losses raise the temperature of the material within the plasmonic hotspot above the melting point. A nanojet and nanosphere ejection can then be observed precisely from the plasmonic hotspots. PMID:22228434

  12. Plasmon device design: conversion from surface to junction plasmons with grating-couplers

    SciTech Connect

    Anderson, L.M.

    1984-01-01

    Scaling calculations and numerical studies are used to show that grating couplers provide effective energy transfer between surface plasmons and slower modes localized in the tunnel diodes. Within first order perturbation theory in grating amplitude, 90% efficiency energy transfer occurs within micrometers for realistic structures and materials parameters. Scaling laws are derived. Seventy to 90% of the electromagnetic field energy is concentrated in the oxide layer of an MOM diode after the energy is distributed by longer range modes that have less than 0.1% overlap with the tunneling region. The mode conversion allows the requirements separation for energy transport and power production by inelastic tunneling.

  13. Plasmon device design: Conversion from surface to junction plasmons with grating-couplers

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1984-01-01

    Scaling calculations and numerical studies are used to show that grating couplers provide effective energy transfer between surface plasmons and slower modes localized in the tunnel diodes. Within first order perturbation theory in grating amplitude, 90% efficiency energy transfer occurs within micrometers for realistic structures and materials parameters. Scaling laws are derived. Seventy to 90% of the electromagnetic field energy is concentrated in the oxide layer of an MOM diode after the energy is distributed by longer range modes that have less than 0.1% overlap with the tunneling region. The mode conversion allows the requirements separation for energy transport and power production by inelastic tunneling.

  14. Plasmonic polymers with strong chiroptical response for sensing molecular chirality

    NASA Astrophysics Data System (ADS)

    Zhai, Dawei; Wang, Peng; Wang, Rong-Yao; Tian, Xiaorui; Ji, Yinglu; Zhao, Wenjing; Wang, Luming; Wei, Hong; Wu, Xiaochun; Zhang, Xiangdong

    2015-06-01

    We report on the chiroptical transfer and amplification effect observed in plasmonic polymers consisting of achiral gold nanorod monomers linked by cysteine chiral molecules in an end-to-end fashion. A new strategy for controlling the hot spots based circular dichroism (CD)-active sites in plasmonic polymers was developed to realize tailored and reproducible chiroptical activity in a controlled way. We showed that by regulating the bond angles between adjacent nanorods and the degree of polymerization in the linear plasmonic polymer, weak molecular chirality in the ultraviolet spectral region can be amplified by more than two orders of magnitude via the induced CD response in the visible/near infrared region. We demonstrate that this plasmonic polymer can be used to provide not only the Raman ``fingerprint'' information for identifying the molecular identity but also the CD signatures for (i) resolving the enantiomeric pairs of cysteine molecules at a small quantity level, and (ii) quantifying the enantiomeric purity of the chiral analytes. Chiral analyses by chiroptically responsive plasmonic polymers may find important applications in bioscience and biomedicine.We report on the chiroptical transfer and amplification effect observed in plasmonic polymers consisting of achiral gold nanorod monomers linked by cysteine chiral molecules in an end-to-end fashion. A new strategy for controlling the hot spots based circular dichroism (CD)-active sites in plasmonic polymers was developed to realize tailored and reproducible chiroptical activity in a controlled way. We showed that by regulating the bond angles between adjacent nanorods and the degree of polymerization in the linear plasmonic polymer, weak molecular chirality in the ultraviolet spectral region can be amplified by more than two orders of magnitude via the induced CD response in the visible/near infrared region. We demonstrate that this plasmonic polymer can be used to provide not only the Raman ``fingerprint

  15. Plasmons: Why Should We Care?

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Xia, Younan

    2007-01-01

    The physical phenomenon of plasmons and the techniques that build upon them are discussed. Plasmon-enhanced applications are well-suited for introduction in physical chemistry and instrumental analysis classes and some methods of fabrication and analysis of plasmon-producing structures are simple for use in labs in general, physical and inorganic…

  16. Hospital mergers and market overlap.

    PubMed Central

    Brooks, G R; Jones, V G

    1997-01-01

    OBJECTIVE: To address two questions: What are the characteristics of hospitals that affect the likelihood of their being involved in a merger? What characteristics of particular pairs of hospitals affect the likelihood of the pair engaging in a merger? DATA SOURCES/STUDY SETTING: Hospitals in the 12 county region surrounding the San Francisco Bay during the period 1983 to 1992 were the focus of the study. Data were drawn from secondary sources, including the Lexis/Nexis database, the American Hospital Association, and the Office of Statewide Health Planning and Development of the State of California. STUDY DESIGN: Seventeen hospital mergers during the study period were identified. A random sample of pairs of hospitals that did not merge was drawn to establish a statistically efficient control set. Models constructed from hypotheses regarding hospital and market characteristics believed to be related to merger likelihood were tested using logistic regression analysis. DATA COLLECTION: See Data Sources/Study Setting. PRINCIPAL FINDINGS: The analysis shows that the likelihood of a merger between a particular pair of hospitals is positively related to the degree of market overlap that exists between them. Furthermore, market overlap and performance difference interact in their effect on merger likelihood. In an analysis of individual hospitals, conditions of rivalry, hospital market share, and hospital size were not found to influence the likelihood that a hospital will engage in a merger. CONCLUSIONS: Mergers between hospitals are not driven directly by considerations of market power or efficiency as much as by the existence of specific merger opportunities in the hospitals' local markets. Market overlap is a condition that enables a merger to occur, but other factors, such as the relative performance levels of the hospitals in question and their ownership and teaching status, also play a role in influencing the likelihood that a merger will in fact take place. PMID

  17. Refractory plasmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guler, Urcan; Boltasseva, Alexandra; Shalaev, Vladimir M.

    2016-04-01

    The use of plasmonic effects over a broad range of electromagnetic spectrum has been a challenge over the first few decades of research due to limited number of available materials. Recently, the efforts in the area has been concentrated on identifying and examining new material classes as the building blocks for optical technologies over a broader electromagnetic spectrum. Transition metal nitrides attract attention as plasmonic materials in the visible and infrared spectral regions with optical properties resembling gold. As refractory materials, nitrides can withstand heat induced physical phenomena as well as aggressive chemical environment. Adjustable dielectric permittivity of plasmonic nitrides allow fine tuning of optical properties for selected applications. In addition to favorable optical, physical and chemical properties; transition metal nitrides provide CMOS- and bio-compatibility. In this talk, novel designs and concepts based on refractory plasmonic materials for infrared applications will be presented. Additionally, light confinement at the nanoscale with refractory plasmonic antennas, spectral engineering of absorption and emission with metamaterials, and the use of colloidal solutions for a variety of applications will be discussed.

  18. Toward Quantum Plasmonics with Plasmon Drag Effect. Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Durach, Maxim; Lepain, Matthew; Mapes, Zoe; Rono, Vincent; Noginova, Natalia

    Giant plasmon drag effect observed in plasmonic metal films and nanostructures brings new fundamental insights into ways in which light-matter interaction occurs. We demonstrate analytically, numerically and experimentally that rectified drag forces acting upon electrons in plasmonic metals are intimately related to the absorption of plasmonic excitations. The plasmon energy quanta absorbed by the metal plasma are associated with momentum quanta, which are also transferred to electrons upon energy absorption. We show that this picture directly applies to plasmon drag effect in a variety of systems, and, to our knowledge for the first time, is capable to explain and predict the magnitude of the effect not only qualitatively, but with close quantitative agreement. The plasmon drag effect opens new avenues for plasmonic-based electronics providing opportunities for incorporation of plasmonic circuits into electronic devices, and for optical sensing offering a new operational principle and an opportunity to substitute the bulky optical set-ups with diffraction limited sensing by electronics. Our work not only adds more clarity into the mechanism behind the plasmon drag effect but also contributes to the emerging field of quantum plasmonics.

  19. Gap plasmon excitation in plasmonic waveguide using Si waveguide

    NASA Astrophysics Data System (ADS)

    Okuda, Koji; Kamada, Shun; Okamoto, Toshihiro; Haraguchi, Masanobu

    2016-08-01

    Plasmonic waveguides have attracted considerable attention for application in highly integrated optical circuits since they can confine light to areas smaller than the diffraction limit. In this context, in order to realize a highly integrated optical circuit, we fabricate and evaluate the optical characteristics of a poly(methyl methacrylate) junction positioned between Si and plasmonic waveguides. For the plasmonic waveguide, we employ a gap plasmonic waveguide in which the energy of the plasmonic wave can be confined in order to reduce the scattering loss at the junction. By experimental measurement, we determine the coupling efficiency between the Si and gap plasmonic waveguides and the propagation length at the gap plasmonic waveguide to be 52.4% and 11.1 µm, respectively. These values agree with those obtained by the three-dimensional finite-difference time-domain simulation. We believe that our findings can significantly contribute to the development of highly integrated optical circuits.

  20. [Asthma-COPD overlap syndrome].

    PubMed

    Odler, Balázs; Müller, Veronika

    2016-08-01

    Obstructive lung diseases represent a major health problem worldwide due to their high prevalence associated with elevated socioeconomic costs. Bronchial asthma and chronic obstructive pulmonary disease are chronic obstructive ventilatory disorders with airway inflammation, however they are separate nosological entities based on thedifferent development, diagnostic and therapeutic approaches, and prognostic features. However, these diseases may coexist and can be defined as the coexistence of increased variability of airflow in a patient with incompletely reversible airway obstruction. This phenotype is called asthma - chronic obstructive pulmonary disease overlap syndrome. The syndrome is a clinical and scientific challenge as the majority of these patients have been excluded from the clinical and pharmacological trials, thus well-defined clinical characteristics and therapeutic approaches are lacking. The aim of this review is to summarize the currently available literature focusing on pathophysiological and clinical features, and discuss possible therapeutic approaches of patients with asthma - chronic obstructive pulmonary disease overlap syndrome. Orv. Hetil., 2016, 157(33), 1304-1313. PMID:27523313

  1. Active Nanorheology with Plasmonics.

    PubMed

    Jeong, Hyeon-Ho; Mark, Andrew G; Lee, Tung-Chun; Alarcón-Correa, Mariana; Eslami, Sahand; Qiu, Tian; Gibbs, John G; Fischer, Peer

    2016-08-10

    Nanoplasmonic systems are valued for their strong optical response and their small size. Most plasmonic sensors and systems to date have been rigid and passive. However, rendering these structures dynamic opens new possibilities for applications. Here we demonstrate that dynamic plasmonic nanoparticles can be used as mechanical sensors to selectively probe the rheological properties of a fluid in situ at the nanoscale and in microscopic volumes. We fabricate chiral magneto-plasmonic nanocolloids that can be actuated by an external magnetic field, which in turn allows for the direct and fast modulation of their distinct optical response. The method is robust and allows nanorheological measurements with a mechanical sensitivity of ∼0.1 cP, even in strongly absorbing fluids with an optical density of up to OD ∼ 3 (∼0.1% light transmittance) and in the presence of scatterers (e.g., 50% v/v red blood cells). PMID:27367304

  2. Single nanoparticle plasmonic sensors.

    PubMed

    Sriram, Manish; Zong, Kelly; Vivekchand, S R C; Gooding, J Justin

    2015-01-01

    The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed. PMID:26473866

  3. Single Nanoparticle Plasmonic Sensors

    PubMed Central

    Sriram, Manish; Zong, Kelly; Vivekchand, S. R. C.; Gooding, J. Justin

    2015-01-01

    The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed. PMID:26473866

  4. Item Overlap Correlations: Definitions, Interpretations, and Implications.

    ERIC Educational Resources Information Center

    Hsu, Louis M.

    1994-01-01

    Item overlap coefficient (IOC) formulas are discussed, providing six warnings about their calculation and interpretation and some explanations of why item overlap influences the Minnesota Multiphasic Personality Inventory and the Millon Clinical Multiaxial Inventory factor structures. (SLD)

  5. Nanoporous plasmonic metamaterials

    SciTech Connect

    Biener, J; Nyce, G W; Hodge, A M; Biener, M M; Hamza, A V; Maier, S A

    2007-05-24

    We review different routes for the generation of nanoporous metallic foams and films exhibiting well-defined pore size and short-range order. Dealloying and templating allows the generation of both two- and three-dimensional structures which promise a well defined plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in-depth investigations of the plasmonic and photonic properties of this material system for photonic applications.

  6. Terahertz plasmonic Bessel beamformer

    SciTech Connect

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David; Koch, Martin; Withayachumnankul, Withawat

    2015-01-12

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integrated with solid-state terahertz sources.

  7. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... overlap does not already exists, if: (1) The total area of overlap with that station would not be... modified NCE-FM station other than a Class D (secondary) station will not be accepted if the proposed operation would involve overlap of signal strength contours with any other station licensed by...

  8. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... overlap does not already exists, if: (1) The total area of overlap with that station would not be... modified NCE-FM station other than a Class D (secondary) station will not be accepted if the proposed operation would involve overlap of signal strength contours with any other station licensed by...

  9. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... overlap does not already exists, if: (1) The total area of overlap with that station would not be... modified NCE-FM station other than a Class D (secondary) station will not be accepted if the proposed operation would involve overlap of signal strength contours with any other station licensed by...

  10. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... overlap does not already exists, if: (1) The total area of overlap with that station would not be... modified NCE-FM station other than a Class D (secondary) station will not be accepted if the proposed operation would involve overlap of signal strength contours with any other station licensed by...

  11. Bond Issues.

    ERIC Educational Resources Information Center

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  12. “Deterministic” quantum plasmonics.

    PubMed

    Cuche, Aurélien; Mollet, Oriane; Drezet, Aurélien; Huant, Serge

    2010-11-10

    We demonstrate “deterministic” launching of propagative quantum surface-plasmon polaritons at freely chosen positions on gold plasmonic receptacles. This is achieved by using as a plasmon launcher a near-field scanning optical source made of a diamond nanocrystal with two nitrogen-vacancy color-center occupancy. Our demonstration relies on leakage-radiation microscopy of a thin homogeneous gold film and on near-field optical microscopy of a nanostructured thick gold film. Our work paves the way to future fundamental studies and applications in quantum plasmonics that require an accurate positioning of single-plasmon sources and may open a new branch in plasmonics and nanophotonics, namely scanning quantum plasmonics. PMID:20964345

  13. A thermal plasmonic sensor platform: resistive heating of nanohole arrays.

    PubMed

    Virk, Mudassar; Xiong, Kunli; Svedendahl, Mikael; Käll, Mikael; Dahlin, Andreas B

    2014-06-11

    We have created a simple and efficient thermal plasmonic sensor platform by letting a DC current heat plasmonic nanohole arrays. The sensor can be used to determine thermodynamic parameters in addition to monitoring molecular reactions in real-time. As an application example, we use the thermal sensor to determine the kinetics and activation energy for desorption of thiol monolayers on gold. Further, the temperature of the metal can be measured optically by the spectral shift of the bonding surface plasmon mode (0.015 nm/K). We show that this resonance shift is caused by thermal lattice expansion, which reduces the plasma frequency of the metal. The sensor is also used to determine the thin film thermal expansion coefficient through a theoretical model for the expected resonance shift. PMID:24807397

  14. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors

    NASA Astrophysics Data System (ADS)

    Ooi, K. J. A.; Bai, P.; Gu, M. X.; Ang, L. K.

    2012-07-01

    A plasmonic coupled-cavity system, which consists of a quarter-wave coupler cavity, a resonant Fabry-Pérot detector nanocavity, and an off-resonant reflector cavity, is used to enhance the localization of surface plasmons in a plasmonic detector. The coupler cavity is designed based on transmission line theory and wavelength scaling rules in the optical regime, while the reflector cavity is derived from off-resonant resonator structures to attenuate transmission of plasmonic waves. We observed strong coupling of the cavities in simulation results, with an 86% improvement of surface plasmon localization achieved. The plasmonic coupled-cavity system may find useful applications in areas of nanoscale photodetectors, sensors, and an assortment of plasmonic-circuit devices.

  15. Plasmonics for the industry

    NASA Astrophysics Data System (ADS)

    Lütolf, Fabian; Basset, Guillaume; Casari, Daniele; Luu-Dinh, Angélique; Gallinet, Benjamin

    2015-08-01

    Metallic nanostructures interact strongly with light through surface plasmon modes and many application fields have been proposed during the past decade, including light harvesting, sensing and structural colors. However, their implementation for the industry requires the development of up scalable and cost effective manufacturing processes. The fabrication at wafer scale of plasmonic nanostructures and metamaterials using nano imprint lithography is reported. After structuring, the evaporation of various plasmonic materials are performed with a tilt angle with respect to the substrate, which increases the light interactions with the different metallic layers as well as enlarges the design possibilities. A step and repeat process is used to increase further the area of nanostructured surface. The measured optical properties of the fabricated structures show a very good agreement compared to numerical calculations using the rigorous coupled wave analysis. These numerical calculations together which structural characterization, increase the process control and enable the design of the nanostructures for specific applications. In particular, nanostructures with a shape similar to split ring resonators and which support high order plasmonic modes showing Fano resonances are shown to be promising for sensing applications. The structures were designed in such a way to have a strong spectral response in the blue/green region of the visible spectrum. Examples of refractive index sensors and stretch sensors were finally discussed.

  16. Photocatalysis: Plasmonic solar desalination

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Li, Yat

    2016-06-01

    The sustainability of many existing desalination technologies is questionable. Plasmon-mediated solar desalination has now been demonstrated for the first time, using an aluminium structure that absorbs photons spanning the 200 nm to 2,500 nm wavelength range, and is both cheap and 'clean'.

  17. Plasmonic colour laser printing

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil; Mortensen, N. Asger; Kristensen, Anders

    2016-04-01

    Colour generation by plasmonic nanostructures and metasurfaces has several advantages over dye technology: reduced pixel area, sub-wavelength resolution and the production of bright and non-fading colours. However, plasmonic colour patterns need to be pre-designed and printed either by e-beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours with a speed of 1 ns per pixel, resolution up to 127,000 dots per inch (DPI) and power consumption down to 0.3 nJ per pixel.

  18. Electrochemically Programmable Plasmonic Antennas.

    PubMed

    Dong, Shi; Zhang, Kai; Yu, Zhiping; Fan, Jonathan A

    2016-07-26

    Plasmonic antennas are building blocks in advanced nano-optical systems due to their ability to tailor optical response based on their geometry. We propose an electrochemical approach to program the optical properties of dipole antennas in a scalable, fast, and energy-efficient manner. These antennas comprise two arms, one serving as an anode and the other a cathode, separated by a solid electrolyte. As a voltage is applied between the antenna arms, a conductive filament either grows or dissolves within the electrolyte, modifying the antenna load. We probe the dynamics of stochastic filament formation and their effects on plasmonic mode programming using a combination of three-dimensional optical and electronic simulations. In particular, we identify device operation regimes in which the charge-transfer plasmon mode can be programmed to be "on" or "off." We also identify, unexpectedly, a strong correlation between DC filament resistance and charge-transfer plasmon mode frequency that is insensitive to the detailed filament morphology. We envision that the scalability of our electrochemical platform can generalize to large-area reconfigurable metamaterials and metasurfaces for on-chip and free-space applications. PMID:27328022

  19. Hemodynamics in coronary arteries with overlapping stents.

    PubMed

    Rikhtegar, Farhad; Wyss, Christophe; Stok, Kathryn S; Poulikakos, Dimos; Müller, Ralph; Kurtcuoglu, Vartan

    2014-01-22

    Coronary artery stenosis is commonly treated by stent placement via percutaneous intervention, at times requiring multiple stents that may overlap. Stent overlap is associated with increased risk of adverse clinical outcome. While changes in local blood flow are suspected to play a role therein, hemodynamics in arteries with overlapping stents remain poorly understood. In this study we analyzed six cases of partially overlapping stents, placed ex vivo in porcine left coronary arteries and compared them to five cases with two non-overlapping stents. The stented vessel geometries were obtained by micro-computed tomography of corrosion casts. Flow and shear stress distribution were calculated using computational fluid dynamics. We observed a significant increase in the relative area exposed to low wall shear stress (WSS<0.5 Pa) in the overlapping stent segments compared both to areas without overlap in the same samples, as well as to non-overlapping stents. We further observed that the configuration of the overlapping stent struts relative to each other influenced the size of the low WSS area: positioning of the struts in the same axial location led to larger areas of low WSS compared to alternating struts. Our results indicate that the overlap geometry is by itself sufficient to cause unfavorable flow conditions that may worsen clinical outcome. While stent overlap cannot always be avoided, improved deployment strategies or stent designs could reduce the low WSS burden. PMID:24275438

  20. Overlapping Structures in Sensory-Motor Mappings

    PubMed Central

    Earland, Kevin; Lee, Mark; Shaw, Patricia; Law, James

    2014-01-01

    This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots. PMID:24392118

  1. Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles.

    PubMed

    Yan, Lei; Wang, Fangwei; Meng, Sheng

    2016-05-24

    Plasmon induced water splitting is a promising research area with the potential for efficient conversion of solar to chemical energy, yet its atomic mechanism is not well understood. Here, ultrafast electron-nuclear dynamics of water splitting on gold nanoparticles upon exposure to femtosecond laser pulses was directly simulated using real time time-dependent density functional theory (TDDFT). Strong correlation between laser intensity, hot electron transfer, and reaction rates has been identified. The rate of water splitting is dependent not only on respective optical absorption strength, but also on the quantum oscillation mode of plasmonic excitation. Odd modes are more efficient than even modes, owing to faster decaying into hot electrons whose energy matches well the antibonding orbital of water. This finding suggests photocatalytic activity can be manipulated by adjusting the energy level of plasmon-induced hot carriers, through altering the cluster size and laser parameter, to better overlap adsorbate unoccupied level in plasmon-assisted photochemistry. PMID:27127849

  2. Photoluminescence properties of silicon nanocrystals interacting with gold nanoparticles via exciton-plasmon coupling

    NASA Astrophysics Data System (ADS)

    Potrick, Karsten; Huisken, Friedrich

    2015-03-01

    The photoluminescence (PL) properties of silicon nanocrystals (Si NCs) deposited on gold nanostructures have been studied regarding PL intensity and lifetime. In contrast to most investigations, which attempt to optimize the overlap between the plasmon resonance and the Si NCs' PL band, we chose much smaller gold nanoparticles to achieve an improved exciton-plasmon coupling. PL enhancements of up to 20 were observed near the plasmon resonance. In the maximum of the PL band at 710 nm, we determined a PL enhancement of ˜4 while the average PL lifetime was found to increase from 45 to 66 μ s . The experimental observations were successfully explained with a model invoking bidirectional energy transfer between excitonic and plasmonic states, being operative in addition to the normal exciton recombination rate enhancement.

  3. Plasmonic polymers with strong chiroptical response for sensing molecular chirality.

    PubMed

    Zhai, Dawei; Wang, Peng; Wang, Rong-Yao; Tian, Xiaorui; Ji, Yinglu; Zhao, Wenjing; Wang, Luming; Wei, Hong; Wu, Xiaochun; Zhang, Xiangdong

    2015-06-28

    We report on the chiroptical transfer and amplification effect observed in plasmonic polymers consisting of achiral gold nanorod monomers linked by cysteine chiral molecules in an end-to-end fashion. A new strategy for controlling the hot spots based circular dichroism (CD)-active sites in plasmonic polymers was developed to realize tailored and reproducible chiroptical activity in a controlled way. We showed that by regulating the bond angles between adjacent nanorods and the degree of polymerization in the linear plasmonic polymer, weak molecular chirality in the ultraviolet spectral region can be amplified by more than two orders of magnitude via the induced CD response in the visible/near infrared region. We demonstrate that this plasmonic polymer can be used to provide not only the Raman "fingerprint" information for identifying the molecular identity but also the CD signatures for (i) resolving the enantiomeric pairs of cysteine molecules at a small quantity level, and (ii) quantifying the enantiomeric purity of the chiral analytes. Chiral analyses by chiroptically responsive plasmonic polymers may find important applications in bioscience and biomedicine. PMID:26030276

  4. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis

    NASA Astrophysics Data System (ADS)

    Naldoni, Alberto; Riboni, Francesca; Guler, Urcan; Boltasseva, Alexandra; Shalaev, Vladimir M.; Kildishev, Alexander V.

    2016-06-01

    Photocatalysis uses semiconductors to convert sunlight into chemical energy. Recent reports have shown that plasmonic nanostructures can be used to extend semiconductor light absorption or to drive direct photocatalysis with visible light at their surface. In this review, we discuss the fundamental decay pathway of localized surface plasmons in the context of driving solar-powered chemical reactions. We also review different nanophotonic approaches demonstrated for increasing solar-to-hydrogen conversion in photoelectrochemical water splitting, including experimental observations of enhanced reaction selectivity for reactions occurring at the metalsemiconductor interface. The enhanced reaction selectivity is highly dependent on the morphology, electronic properties, and spatial arrangement of composite nanostructures and their elements. In addition, we report on the particular features of photocatalytic reactions evolving at plasmonic metal surfaces and discuss the possibility of manipulating the reaction selectivity through the activation of targeted molecular bonds. Finally, using solar-to-hydrogen conversion techniques as an example, we quantify the efficacy metrics achievable in plasmon-driven photoelectrochemical systems and highlight some of the new directions that could lead to the practical implementation of solar-powered plasmon-based catalytic devices.

  5. Resonance coupling in plasmonic nanomatryoshka homo- and heterodimers

    NASA Astrophysics Data System (ADS)

    Ahmadivand, Arash; Sinha, Raju; Pala, Nezih

    2016-06-01

    Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as "nanomatryoshka" (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.

  6. Polynomials for evaluation of two-center overlap integrals

    NASA Astrophysics Data System (ADS)

    Petrov, Dimitar

    2016-05-01

    Expressions of products AkBk, where Ak and Bk are incomplete gamma functions, are given for evaluation of two-center overlap integrals (TCOIs) over unnormalized Slater-type orbitals (STOs). The polynomials of AkBk have been derived after the method proposed by Lofthus and pertain to two-center bonds of σ, π, δ, and φ axial symmetries. The functions of AkBk have been arranged in pairs of s, p, d, and f STOs with principal quantum numbers between 1 and 5. The contributions of these functions to various TCOIs have been evaluated and discussed. The formulae are applicable as input matrices for computations of TCOIs.

  7. Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy.

    PubMed

    Li, Yiye; Wen, Tao; Zhao, Ruifang; Liu, Xixi; Ji, Tianjiao; Wang, Hai; Shi, Xiaowei; Shi, Jian; Wei, Jingyan; Zhao, Yuliang; Wu, Xiaochun; Nie, Guangjun

    2014-11-25

    Near-infrared plasmonic nanoparticles demonstrate great potential in disease theranostic applications. Herein a nanoplatform, composed of mesoporous silica-coated gold nanorods (AuNRs), is tailor-designed to optimize the photodynamic therapy (PDT) for tumor based on the plasmonic effect. The surface plasmon resonance of AuNRs was fine-tuned to overlap with the exciton absorption of indocyanine green (ICG), a near-infrared photodynamic dye with poor photostability and low quantum yield. Such overlap greatly increases the singlet oxygen yield of incorporated ICG by maximizing the local field enhancement, and protecting the ICG molecules against photodegradation by virtue of the high absorption cross section of the AuNRs. The silica shell strongly increased ICG payload with the additional benefit of enhancing ICG photostability by facilitating the formation of ICG aggregates. As-fabricated AuNR@SiO2-ICG nanoplatform enables trimodal imaging, near-infrared fluorescence from ICG, and two-photon luminescence/photoacoustic tomography from the AuNRs. The integrated strategy significantly improved photodynamic destruction of breast tumor cells and inhibited the growth of orthotopic breast tumors in mice, with mild laser irradiation, through a synergistic effect of PDT and photothermal therapy. Our study highlights the effect of local field enhancement in PDT and demonstrates the importance of systematic design of nanoplatform to greatly enhancing the antitumor efficacy. PMID:25375193

  8. Spectral dependence of fluorescence near plasmon resonant metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yeechi

    The optical properties of fluorophores are significantly modified when placed within the near field (0--100 nm) of plasmon resonant metal nanostructures, due to the competition between increased decay rates and "hotspots" of concentrated electric fields. The decay rates and effective electric field intensities are highly dependent on the relative position of dye and metal and the overlap between plasmon resonance and dye absorption and emission. Understanding these dependencies can greatly improve the performance of biosensing and nanophotonic devices. In this dissertation, the fluorescence intensity of organic dyes and CdSe quantum dots near single metal nanoparticles is studied as a function of the local surface plasmon resonance (LSPR) of the nanoparticle. Single metal nanoparticles have narrow, well-defined, intense local surface plasmon resonances that are tunable across the visible spectrum by changes in size and shape. First, we show that organic dyes can be self-assembled on single silver nanoprisms into known configurations by the hybridization of thiolated DNA oligomers. We correlate the fluorescence intensity of the dyes to the LSPR of the individual nanoprism to which they are attached. For each of three different organic dyes, we observe a strong correlation between the fluorescence intensity of the dye and the degree of spectral overlap with the plasmon resonance of the nanoparticle. On average, we observe the brightest fluorescence from dyes attached to metal nanoparticles that have a LSPR scattering peak 40--120 meV higher in energy than the emission peak of the fluorophore. Second, the plasmon-enhanced fluorescence from CdSe/CdS/CdZnS/ZnS core/shell quantum dots is studied near a variety of silver and gold nanoparticles. With single-particle scattering spectroscopy, the localized surface plasmon resonance spectra of single metal nanoparticles is correlated with the photoluminescence excitation (PLE) spectra of the nearby quantum dots. The PLE

  9. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    NASA Astrophysics Data System (ADS)

    Jiang, Nina

    a macroscale array of PANI-coated gold nanorods immobilized on glass slides, whose performance is as good as that of the individual PANI-coated gold nanorods. With much smaller amounts of materials, my core/shell nanorod arrays show peak extinction values and maximal modulation depths that are comparable to those of PANI films with micrometer-scale thicknesses. Switching coupled surface plasmon relative to uncoupled one affords the possibility to achieve the modulation over a wide spectral band and with wealthy plasmonic responses. Thus, I have studied the active control of plasmon coupling in homodimers and homotrimers of PANI-coated gold nanospheres (PGNSs). The dimers and trimers are obtained by reducing the surfactant concentration in the polymerization process of PANI. The reversible proton-doping of PANI enables the control of plasmon coupling to succeed. When the plasmon coupling of the dimers is switched, the wavelength shift of the strongest scattering peak shows an exponential increase with the decrease of the interparticle gap distance. A giant wavelength shift of 231 nm is observed for the dimer with a shell thickness of 10 nm and a gap distance of 0.5 nm. Electrodynamic calculations ascertain that the wavelength shift of the strongest scattering peak originates from the tuning of the dipolar bonding plasmon resonance mode in the dimers. The quadrupolar bonding plasmon resonance mode is turned on and off by switching the doped and undoped state of the dimers with gap distances of less than 3 nm. The active tuning of plasmon coupling is further demonstrated with the trimers of PGNSs, which is sensitive to their configurations. In the triangular configuration, larger vertex angles lead to larger wavelength shifts for the plasmonic tuning. Another strategy for controlling the dielectric properties of PANI shell around gold nanostructures is to change its oxidation level. The variation of the oxidation state of PANI leads to the plasmonic peak wavelength

  10. Tunneling Plasmonics in Bilayer Graphene.

    PubMed

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers. PMID:26222509

  11. The dark side of plasmonics.

    PubMed

    Gómez, D E; Teo, Z Q; Altissimo, M; Davis, T J; Earl, S; Roberts, A

    2013-08-14

    Plasmonic dark modes are pure near-field modes that can arise from the plasmon hybridization in a set of interacting nanoparticles. When compared to bright modes, dark modes have longer lifetimes due to their lack of a net dipole moment, making them attractive for a number of applications. We demonstrate the excitation and optical detection of a collective dark plasmonic mode from individual plasmonic trimers. The trimers consist of triangular arrangements of gold nanorods, and due to this symmetry, the lowest-energy dark plasmonic mode can interact with radially polarized light. The experimental data presented confirm the excitation of this mode, and its assignment is supported with an electrostatic approximation wherein these dark modes are described in terms of plasmon hybridization. The strong confinement of energy in these modes and their associated near fields hold great promise for achieving strong coupling to single photon emitters. PMID:23802620

  12. Plasmonic enhancement of Rhodamine dye random lasers

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Zakiah Wan; Vo, Thanh Phong; Goldys, Ewa M.; Dawes, Judith M.

    2015-08-01

    We demonstrate improved characteristics in Rhodamine dye random lasers with the addition of gold nanoparticles. As a result of the strong plasmonic enhancement induced by gold nanoparticles, Rhodamine 640/gold random lasers have less than half the lasing threshold compared with Rhodamine 640/alumina random lasers in the weakly scattering regime for 10-3 M dye concentration. The optimum concentration of gold nanoparticles occurs at ~8  ×  1010 cm-3, close to the transition between the weakly scattering and diffusive regimes. Rhodamine 640 has a better performance compared with Rhodamine 6G which is attributed to the greater spectral overlap of the Rhodamine 6G fluorescence spectrum with the plasmon resonance of gold, leading to an increased energy transfer and fluorescence quenching for Rhodamine 6G by gold. We also observe the contrasting trends of lasing threshold between random dye lasers incorporating dielectric and metal nanoparticles in the diffusive scattering regime. The effects of gold nanoparticles in random dye lasers are discussed in the context of the tradeoff between local field enhancement and fluorescence quenching.

  13. Plasmonic fiber-optic vector magnetometer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaochuan; Guo, Tuan; Zhang, Xuejun; Xu, Jian; Xie, Wenping; Nie, Ming; Wu, Qiang; Guan, Bai-Ou; Albert, Jacques

    2016-03-01

    A compact fiber-optic vector magnetometer based on directional scattering between polarized plasmon waves and ferro-magnetic nanoparticles is demonstrated. The sensor configuration reported in this work uses a short section of tilted fiber Bragg grating (TFBG) coated with a nanometer scale gold film and packaged with a magnetic fluid (Fe3O4) inside a capillary. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with a broader absorption of the surface plasmon resonance (SPR). The wavelength of the SPR attenuation in transmission shows high sensitivity to slight perturbations by magnetic fields, due to the strong directional scattering between the SPR attenuated cladding modes and the magnetic fluid near the fiber surface. Both the orientation (2 nm/deg) and the intensity (1.8 nm/mT) of magnetic fields can be determined unambiguously from the TFBG spectrum. Temperature cross sensitivity can be referenced out by monitoring the wavelength of the core mode resonance simultaneously.

  14. Hybrid photonic-plasmonic molecule based on metal/Si disks.

    PubMed

    Wang, Qing; Zhao, Hang; Du, Xu; Zhang, Weichun; Qiu, Min; Li, Qiang

    2013-05-01

    Optical properties of two identical coupled disks forming a "hybrid photonic-plasmonic molecule" are investigated. Each disk is a metal-dielectric structure supporting hybrid plasmonic-photonic whispering-gallery (WG) modes. The WG modes of a molecule split into two groups of nearly-degenerate modes, i.e., bonding and anti-bonding modes. The oscillation of quality factor (Q) with the inter-disk gap d and significant enhancement at certain inter-disk gaps can be observed. An enhanced Q factor of 1821 for a hybrid photonic-plasmonic molecule composed of two 1.2 μm-diameter disks, compared with that for a single disk, is achieved. The corresponding Purcell factor is 191, making the hybrid photonic-plasmonic molecule an optimal choice for subwavelength-scale device miniaturization and light-matter interactions. Moreover, the far-field emission pattern of the hybrid photonic-plasmonic molecule exhibits an enhanced directional light output by tuning the azimuthal mode number for both bonding and anti-bonding modes. PMID:23669960

  15. Solving Partial Differential Equations on Overlapping Grids

    SciTech Connect

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.

  16. EDITORIAL: Plasmas and plasmons: links in nanosilver Plasmas and plasmons: links in nanosilver

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-03-01

    appearing in the 620-800 nm regions of the absorption spectra. A number of research groups have investigated the possibility of exploiting the plasmonic properties of silver and gold nanostructures for optoelectronic devices [7-9]. The advantages can be quite substantial. Researchers in Korea successfully used silver nanoparticles to obtain a 38% increase in performance of blue LEDs by using silver nanoparticles embedded in p-GaN [10]. The researchers attribute the improvement to an increase in the spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and localized surface plasmons in the silver nanoparticles. In their work reported in this issue Kostya Ostrikov and his co-authors bridge the link between microplasma-assisted electrochemical process parameters and the plasmonic response. As they point out, 'This is an important experimental step towards bringing together plasma chemistry and plasmonics' [1]. All-gas-phase plasma approaches have already been demonstrated for the synthesis of nanoparticles of other metals. X D Pi and colleagues from the University of Minnesota demonstrated how one simple gas-phase process could produce stable silicon nanocrystal emitters with tailored size and surface functionalization [11]. Previously silicon nanocrystals had been prone to emission instabilities in air. Now Ostrikov and colleagues at the University of Sydney, CSIRO Materials Science and Engineering in Australia and the Key Laboratory for Laser Plasmas in China have studied microplasma-assisted electrochemical synthesis of Ag nanoparticles for plasmonic applications [1]. The synthesis uses moderate temperatures and atmospheric pressures and does not involve any toxic reducing agents. In addition they demonstrate how it allows control over nanoparticle size and interparticle spacing to optimize performance in device applications. Despite the overlap in plasma physics and the origins of plasmonic phenomena, studies of the

  17. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics.

    PubMed

    Yang, Yi; Zhen, Bo; Hsu, Chia Wei; Miller, Owen D; Joannopoulos, John D; Soljačić, Marin

    2016-07-13

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement >10(4)), high-quantum-yield (>50%) spontaneous emission, even as the gap size vanishes (3-5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures. PMID:27244596

  18. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis

    2015-12-01

    Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon

  19. Quantum plasmonic sensing

    DOE PAGESBeta

    Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.

    2015-11-04

    Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that withmore » a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.« less

  20. Quantum plasmonic sensing

    SciTech Connect

    Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.

    2015-11-04

    Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that with a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.

  1. Plasmonic enhanced ultrafast switch.

    SciTech Connect

    Subramania,Ganapathi Subramanian; Reno, John Louis; Passmore, Brandon Scott; Harris, Tom.; Shaner, Eric Arthur; Barrick, Todd A.

    2009-09-01

    Ultrafast electronic switches fabricated from defective material have been used for several decades in order to produce picosecond electrical transients and TeraHertz radiation. Due to the ultrashort recombination time in the photoconductor materials used, these switches are inefficient and are ultimately limited by the amount of optical power that can be applied to the switch before self-destruction. The goal of this work is to create ultrafast (sub-picosecond response) photoconductive switches on GaAs that are enhanced through plasmonic coupling structures. Here, the plasmonic coupler primarily plays the role of being a radiation condenser which will cause carriers to be generated adjacent to metallic electrodes where they can more efficiently be collected.

  2. Overlap in Facebook Profiles Reflects Relationship Closeness.

    PubMed

    Castañeda, Araceli M; Wendel, Markie L; Crockett, Erin E

    2015-01-01

    We assessed the association between self-reported Inclusion of Other in the Self (IOS) and Facebook overlap. Ninety-two participants completed online measures of IOS and investment model constructs. Researchers then recorded Facebook data from participants' profile pages. Results from multilevel models revealed that IOS predicted Facebook overlap. Furthermore, Facebook overlap was associated with commitment and investment in ways comparable to self-reported IOS. These findings suggest that overlap in Facebook profiles can be used to measure relationship closeness. PMID:25635533

  3. On the plasmonic photovoltaic.

    PubMed

    Mubeen, Syed; Lee, Joun; Lee, Woo-Ram; Singh, Nirala; Stucky, Galen D; Moskovits, Martin

    2014-06-24

    The conversion of sunlight into electricity by photovoltaics is currently a mature science and the foundation of a lucrative industry. In conventional excitonic solar cells, electron-hole pairs are generated by light absorption in a semiconductor and separated by the "built in" potential resulting from charge transfer accompanying Fermi-level equalization either at a p-n or a Schottky junction, followed by carrier collection at appropriate electrodes. Here we report a stable, wholly plasmonic photovoltaic device in which photon absorption and carrier generation take place exclusively in the plasmonic metal. The field established at a metal-semiconductor Schottky junction separates charges. The negative carriers are high-energy (hot) electrons produced immediately following the plasmon's dephasing. Some of the carriers are energetic enough to clear the Schottky barrier or quantum mechanically tunnel through it, thereby producing the output photocurrent. Short circuit photocurrent densities in the range 70-120 μA cm(-2) were obtained for simulated one-sun AM1.5 illumination with devices based on arrays of parallel gold nanorods, conformally coated with 10 nm TiO2 films and fashioned with a Ti metal collector. For the device with short circuit currents of 120 μA cm(-2), the internal quantum efficiency is ∼2.75%, and its wavelength response tracks the absorption spectrum of the transverse plasmon of the gold nanorods indicating that the absorbed photon-to-electron conversion process resulted exclusively in the Au, with the TiO2 playing a negligible role in charge carrier production. Devices fabricated with 50 nm TiO2 layers had open-circuit voltages as high as 210 mV, short circuit current densities of 26 μA cm(-2), and a fill factor of 0.3. For these devices, the TiO2 contributed a very small but measurable fraction of the charge carriers. PMID:24861280

  4. Multipole plasmonic lattice solitons

    SciTech Connect

    Kou Yao; Ye Fangwei; Chen Xianfeng

    2011-09-15

    We theoretically demonstrate a variety of multipole plasmonic lattice solitons, including dipoles, quadrupoles, and necklaces, in two-dimensional metallic nanowire arrays with Kerr-type nonlinearities. Such solitons feature complex internal structures with an ultracompact mode size approaching or smaller than one wavelength. Their mode sizes and the stability characteristics are studied in detail within the framework of coupled mode theory. The conditions to form and stabilize these highly confined solitons are within the experimentally achievable range.

  5. Institutional Bonding.

    ERIC Educational Resources Information Center

    Allard, M. June

    Institutional bonding was examined at a public, urban commuter college with exceptionally high attrition and visibly low morale. Changes in bonding and attrition were measured 6 years after a 2-year effort to develop school identity and student feelings of membership. It was found that a simple index of campus morale is provided by level of…

  6. Terahertz plasmonic composites

    NASA Astrophysics Data System (ADS)

    Nemat-Nasser, Syrus C.; Amirkhizi, Alireza V.; Padilla, Willie J.; Basov, Dimitri N.; Nemat-Nasser, Sia; Bruzewicz, Derek; Whitesides, George

    2007-03-01

    The dielectric response of a polymer matrix composite can be substantially modified and tuned within a broad frequency band by integrating within the material an artificial plasmon medium composed of periodically distributed, very thin, electrically conducting wires. In the microwave regime, such plasmon/polymer composites have been studied analytically, computationally, and experimentally. This work reports the design, fabrication, and characterization of similar composites for operation at terahertz frequencies. Such composites require significant reduction in the thickness and spacing of the wires. We used numerical modeling to design artificial effective plasmonic media with turn-on frequencies in the terahertz range. Prototype samples were produced by lithographically embedding very thin gold strips into a PDMS [poly(dimethylsiloxane)] matrix. These samples were characterized with a Fourier-transform infrared interferometer using the frequency-dependent transmission and Kramers-Kronig relations to determine the electromagnetic properties. We report the characterization results for a sample, demonstrating excellent agreement between theory, computer design, and experiment. To our knowledge this is the first demonstration of the possibility of creating composites with tuned dielectric response at terahertz frequencies.

  7. Terahertz plasmonic composites.

    PubMed

    Nemat-Nasser, Syrus C; Amirkhizi, Alireza V; Padilla, Willie J; Basov, Dimitri N; Nemat-Nasser, Sia; Bruzewicz, Derek; Whitesides, George

    2007-03-01

    The dielectric response of a polymer matrix composite can be substantially modified and tuned within a broad frequency band by integrating within the material an artificial plasmon medium composed of periodically distributed, very thin, electrically conducting wires. In the microwave regime, such plasmon/polymer composites have been studied analytically, computationally, and experimentally. This work reports the design, fabrication, and characterization of similar composites for operation at terahertz frequencies. Such composites require significant reduction in the thickness and spacing of the wires. We used numerical modeling to design artificial effective plasmonic media with turn-on frequencies in the terahertz range. Prototype samples were produced by lithographically embedding very thin gold strips into a PDMS [poly(dimethylsiloxane)] matrix. These samples were characterized with a Fourier-transform infrared interferometer using the frequency-dependent transmission and Kramers-Kronig relations to determine the electromagnetic properties. We report the characterization results for a sample, demonstrating excellent agreement between theory, computer design, and experiment. To our knowledge this is the first demonstration of the possibility of creating composites with tuned dielectric response at terahertz frequencies. PMID:17500816

  8. Atomic Scale Plasmonic Switch.

    PubMed

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level. PMID:26670551

  9. Plasmons in strong superconductors

    SciTech Connect

    Baldo, M.; Ducoin, C.

    2011-10-15

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T{sub c} superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  10. Nonlinear plasmonic nanorulers.

    PubMed

    Butet, Jérémy; Martin, Olivier J F

    2014-05-27

    The evaluation of distances as small as few nanometers using optical waves is a very challenging task that can pave the way for the development of new applications in biotechnology and nanotechnology. In this article, we propose a new measurement method based on the control of the nonlinear optical response of plasmonic nanostructures by means of Fano resonances. It is shown that Fano resonances resulting from the coupling between a bright mode and a dark mode at the fundamental wavelength enable unprecedented and direct manipulation of the nonlinear electromagnetic sources at the nanoscale. In the case of second harmonic generation from gold nanodolmens, the different nonlinear sources distributions induced by the different coupling regimes are clearly revealed in the far-field distribution. Hence, the configuration of the nanostructure can be accurately determined in 3-dimensions by recording the wave scattered at the second harmonic wavelength. Indeed, the conformation of the different elements building the system is encoded in the nonlinear far-field distribution, making second harmonic generation a promising tool for reading 3-dimension plasmonic nanorulers. Furthemore, it is shown that 3-dimension plasmonic nanorulers can be implemented with simpler geometries than in the linear regime while providing complete information on the structure conformation, including the top nanobar position and orientation. PMID:24697565

  11. APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.

    PubMed

    Rodrigo, Daniel; Limaj, Odeta; Janner, Davide; Etezadi, Dordaneh; García de Abajo, F Javier; Pruneri, Valerio; Altug, Hatice

    2015-07-10

    Infrared spectroscopy is the technique of choice for chemical identification of biomolecules through their vibrational fingerprints. However, infrared light interacts poorly with nanometric-size molecules. We exploit the unique electro-optical properties of graphene to demonstrate a high-sensitivity tunable plasmonic biosensor for chemically specific label-free detection of protein monolayers. The plasmon resonance of nanostructured graphene is dynamically tuned to selectively probe the protein at different frequencies and extract its complex refractive index. Additionally, the extreme spatial light confinement in graphene—up to two orders of magnitude higher than in metals—produces an unprecedentedly high overlap with nanometric biomolecules, enabling superior sensitivity in the detection of their refractive index and vibrational fingerprints. The combination of tunable spectral selectivity and enhanced sensitivity of graphene opens exciting prospects for biosensing. PMID:26160941

  12. Surface-Plasmon Holography with White-Light Illumination

    NASA Astrophysics Data System (ADS)

    Ozaki, Miyu; Kato, Jun-ichi; Kawata, Satoshi

    2011-04-01

    The recently emerging three-dimensional (3D) displays in the electronic shops imitate depth illusion by overlapping two parallax 2D images through either polarized glasses that viewers are required to wear or lenticular lenses fixed directly on the display. Holography, on the other hand, provides real 3D imaging, although usually limiting colors to monochrome. The so-called rainbow holograms—mounted, for example, on credit cards—are also produced from parallax images that change color with viewing angle. We report on a holographic technique based on surface plasmons that can reconstruct true 3D color images, where the colors are reconstructed by satisfying resonance conditions of surface plasmon polaritons for individual wavelengths. Such real 3D color images can be viewed from any angle, just like the original object.

  13. Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions.

    PubMed

    Vivekchand, S R C; Engel, Clifford J; Lubin, Steven M; Blaber, Martin G; Zhou, Wei; Suh, Jae Yong; Schatz, George C; Odom, Teri W

    2012-08-01

    This paper reports the manipulation of surface plasmon polaritons (SPPs) in a liquid plasmonic metal by changing its physical phase. Dynamic properties were controlled by solid-to-liquid phase transitions in 1D Ga gratings that were fabricated using a simple molding process. Solid and liquid phases were found to exhibit different plasmonic properties, where light coupled to SPPs more efficiently in the liquid phase. We exploited the supercooling characteristics of Ga to access plasmonic properties associated with the liquid phase over a wider temperature range (up to 30 °C below the melting point of bulk Ga). Ab initio density functional theory-molecular dynamic calculations showed that the broadening of the solid-state electronic band structure was responsible for the superior plasmonic properties of the liquid metal. PMID:22823536

  14. Cluster-enhanced sparse approximation of overlapping ultrasonic echoes.

    PubMed

    Mor, Etai; Aladjem, Mayer; Azoulay, Amnon

    2015-02-01

    Ultrasonic pulse-echo methods have been used extensively in non-destructive testing of layered structures. In acoustic measurements on thin layers, the resulting echoes from two successive interfaces overlap in time, making it difficult to assess the individual echo parameters. Over the last decade sparse approximation methods have been extensively used to address this issue. These methods employ a large dictionary of elementary functions (atoms) and attempt to select the smallest subset of atoms (sparsest approximation) that represent the ultrasonic signal accurately. In this paper we propose the cluster-enhanced sparse approximation (CESA) method for estimating overlapping ultrasonic echoes. CESA is specifically adapted to deal with a large number of signals acquired during an ultrasonic scan. It incorporates two principal algorithms. The first is a clustering algorithm, which divides a set of signals comprising an ultrasonic scan into groups of signals that can be approximated by the same set of atoms. The second is a two-stage iterative algorithm, which alternates between update of the atoms associated with each cluster, and re-clustering of the signals according to the updated atoms. Because CESA operates on clusters of signals, it achieves improved results in terms of approximation error and computation time compared with conventional sparse methods, which operate on each signal separately. The superior ability of CESA to approximate highly overlapping ultrasonic echoes is demonstrated through simulation and experiments on adhesively bonded structures. PMID:25643086

  15. The variational subspace valence bond method

    SciTech Connect

    Fletcher, Graham D.

    2015-04-07

    The variational subspace valence bond (VSVB) method based on overlapping orbitals is introduced. VSVB provides variational support against collapse for the optimization of overlapping linear combinations of atomic orbitals (OLCAOs) using modified orbital expansions, without recourse to orthogonalization. OLCAO have the advantage of being naturally localized, chemically intuitive (to individually model bonds and lone pairs, for example), and transferrable between different molecular systems. Such features are exploited to avoid key computational bottlenecks. Since the OLCAO can be doubly occupied, VSVB can access very large problems, and calculations on systems with several hundred atoms are presented.

  16. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Prohibited overlap. 73.509 Section 73.509 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.509 Prohibited overlap. (a) An application for a new or modified NCE-FM station...

  17. Restoration and reconstruction from overlapping images

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Kaiser, Daniel J.; Hanson, Andrew L.; Li, Jing

    1997-01-01

    This paper describes a technique for restoring and reconstructing a scene from overlapping images. In situations where there are multiple, overlapping images of the same scene, it may be desirable to create a single image that most closely approximates the scene, based on all of the data in the available images. For example, successive swaths acquired by NASA's planned Moderate Imaging Spectrometer (MODIS) will overlap, particularly at wide scan angles, creating a severe visual artifact in the output image. Resampling the overlapping swaths to produce a more accurate image on a uniform grid requires restoration and reconstruction. The one-pass restoration and reconstruction technique developed in this paper yields mean-square-optimal resampling, based on a comprehensive end-to-end system model that accounts for image overlap, and subject to user-defined and data-availability constraints on the spatial support of the filter.

  18. Neural overlap in processing music and speech.

    PubMed

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L

    2015-03-19

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513

  19. Neural overlap in processing music and speech

    PubMed Central

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L.

    2015-01-01

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513

  20. Crystal Field Theory and the Angular Overlap Model Applied to Hydrides of Main Group Elements.

    ERIC Educational Resources Information Center

    Moore, E. A.

    1990-01-01

    Described is how crystal field theory and the angular overlap model can be applied to very simple molecules which can then be used to introduce such concepts as bonding orbitals, MO diagrams, and Walsh diagrams. The main-group compounds are used as examples and a switch to the transition metal complexes. (KR)

  1. Quantum interference in plasmonic circuits.

    PubMed

    Heeres, Reinier W; Kouwenhoven, Leo P; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks. PMID:23934097

  2. Quantum interference in plasmonic circuits

    NASA Astrophysics Data System (ADS)

    Heeres, Reinier W.; Kouwenhoven, Leo P.; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

  3. Motor Protein Accumulation on Antiparallel Microtubule Overlaps.

    PubMed

    Kuan, Hui-Shun; Betterton, Meredith D

    2016-05-10

    Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. Overlap motor density profiles and motor trajectories resemble experimental measurements. The phase diagram of the model is similar to the single-filament case for low switching rate, while for high switching rate we find a new (to our knowledge) low density-high density-low density-high density phase. The overlap center region, far from the overlap ends, has a constant motor density as one would naïvely expect. However, rather than following a simple binding equilibrium, the center motor density depends on total overlap length, motor speed, and motor switching rate. The size of the crowded boundary layer near the overlap ends is also dependent on the overlap length and switching rate in addition to the motor speed and bulk concentration. The antiparallel microtubule overlap geometry may offer a previously unrecognized mechanism for biological regulation of protein concentration and consequent activity. PMID:27166811

  4. Motor Protein Accumulation on Antiparallel Microtubule Overlaps

    NASA Astrophysics Data System (ADS)

    Kuan, Hui-Shun; Betterton, Meredith D.

    2016-05-01

    Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process (TASEP) for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. Overlap motor density profiles and motor trajectories resemble experimental measurements. The phase diagram of the model is similar to the single-filament case for low switching rate, while for high switching rate we find a new low density-high density-low density-high density phase. The overlap center region, far from the overlap ends, has a constant motor density as one would naively expect. However, rather than following a simple binding equilibrium, the center motor density depends on total overlap length, motor speed, and motor switching rate. The size of the crowded boundary layer near the overlap ends is also dependent on the overlap length and switching rate in addition to the motor speed and bulk concentration. The antiparallel microtubule overlap geometry may offer a previously unrecognized mechanism for biological regulation of protein concentration and consequent activity.

  5. Electron diffraction by plasmon waves

    NASA Astrophysics Data System (ADS)

    García de Abajo, F. J.; Barwick, B.; Carbone, F.

    2016-07-01

    An electron beam traversing a structured plasmonic field is shown to undergo diffraction with characteristic angular patterns of both elastic and inelastic outgoing electron components. In particular, a plasmonic grating (e.g., a standing wave formed by two counterpropagating plasmons in a thin film) produces diffraction orders of the same parity as the net number of exchanged plasmons. Large diffracted beam fractions are predicted to occur for realistic plasmon intensities in attainable geometries due to a combination of phase and amplitude changes locally imprinted on the passing electron wave. Our study opens vistas in the study of multiphoton exchanges between electron beams and evanescent optical fields with unexplored effects related to the transversal component of the electron wave function.

  6. Active Metal-Insulator-Metal Plasmonic Devices

    NASA Astrophysics Data System (ADS)

    Diest, Kenneth Alexander

    As the field of photonics constantly strives for ever smaller devices, the diffraction limit of light emerges as a fundamental limitation in this pursuit. A growing number of applications for optical "systems on a chip" have inspired new ways of circumventing this issue. One such solution to this problem is active plasmonics. Active plasmonics is an emerging field that enables light compression into nano-structures based on plasmon resonances at a metal-dielectric interface and active modulation of these plasmons with an applied external field. One area of active plasmonics has focused on replacing the dielectric layer in these waveguides with an electro-optic material and designing the resulting structures in such a way that the transmitted light can be modulated. These structures can be utilized to design a wide range of devices including optical logic gates, modulators, and filters. This thesis focuses on replacing the dielectric layer within a metal-insulator-metal plasmonic waveguide with a range of electrically active materials. By applying an electric field between the metal layers, we take advantage of the electro-optic effect in lithium niobate, and modulating the carrier density distribution across the structure in n-type silicon and indium tin oxide. The first part of this thesis looks at fabricating metal-insulator-metal waveguides with ion-implantation induced layer transferred lithium niobate. The process is analyzed from a thermodynamic standpoint and the ion-implantation conditions required for layer transfer are determined. The possible failure mechanisms that can occur during this process are analyzed from a thin-film mechanics standpoint, and a metal-bonding method to improve successful layer transfer is proposed and analyzed. Finally, these devices are shown to naturally filter white light into individual colors based on the interference of the different optical modes within the dielectric layer. Full-field electromagnetic simulations show that

  7. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy.

    PubMed

    Huang, Peng; Lin, Jing; Li, Wanwan; Rong, Pengfei; Wang, Zhe; Wang, Shouju; Wang, Xiaoping; Sun, Xiaolian; Aronova, Maria; Niu, Gang; Leapman, Richard D; Nie, Zhihong; Chen, Xiaoyuan

    2013-12-23

    The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near-infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG-b-PCL block-copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37%) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications. PMID:24318645

  8. Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Kochergin, Vladimir; Neely, Lauren; Jao, Chih-Yu; Robinson, Hans D.

    2011-03-01

    We model the absorption enhancement in organic photovoltaic devices induced by incorporating Al, Ag, and Au nanoparticles in the active layer. We find that Al nanoparticles should yield significantly greater enhancement than Ag or Au. This is because the much higher plasma frequency of Al ensures a better overlap between plasmon resonance and absorption band of organic semiconductors. Our predictions are verified experimentally by demonstrating enhanced absorbance in a poly(3-hexylthiophene-2,5-diyl): [6,6]-phenyl C61 butyric acid methyl ester layer with embedded functionalized Al nanoparticles.

  9. Plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites

    NASA Astrophysics Data System (ADS)

    Bityurin, N.; Ermolaev, N.; Smirnov, A. A.; Afanasiev, A.; Agareva, N.; Koryukina, T.; Bredikhin, V.; Kamensky, V.; Pikulin, A.; Sapogova, N.

    2016-03-01

    UV irradiation of materials consisting of a polymer matrix that possesses precursors of different kinds can result in creation of nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonic applications due to the strong alteration of their optical properties compared to initial non-irradiated materials. We report our results on the synthesis and investigation of plasmonic, excitonic and exciton-plasmonic photoinduced nanocomposites. Plasmonic nanocomposites contain metal nanoparticles of noble metals with a pronounced plasmon resonance. Excitonic nanocomposites possess semiconductor nanoclusters (quantum dots). We consider the CdS-Au pair because the luminescent band of CdS nanoparticles enters the plasmon resonance band of gold nanoparticles. The obtaining of such particles within the same composite materials is promising for the creation of media with exciton-plasmon resonance. We demonstrate that it is possible to choose appropriate precursor species to obtain the initially transparent poly(methyl methacrylate) (PMMA) films containing both types of these molecules either separately or together. Proper irradiation of these materials by a light-emitting diode operating at the wavelength of 365 nm provides material alteration demonstrating light-induced optical absorption and photoluminescent properties typical for the corresponding nanoparticles. Thus, an exciton-plasmonic photoinduced nanocomposite is obtained. It is important that here we use the precursors that are different from those usually employed.

  10. Ellipsometric surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Liang; Lee, Shu-Sheng; Lee, Chih-Kung

    2009-03-01

    We develop a new multifunctional optical biochip system that integrates an ellipsometer with a surface plasmon resonance (SPR) feature. This newly developed biochip biosensor, which we call ESPR for an ellipsometric SPR, provides us with a system to retrieve detailed information such as the optical properties of immobilized biomolecular monolayers, surface concentration variations of biomedical reactions, and kinetic affinity between biomolecules required for further biotech analysis. Our ESPR can also serve as both a research and development tool and a manufacturing tool for various biomedical applications.

  11. Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting

    PubMed Central

    Zhang, Liwu; Herrmann, Lars O.; Baumberg, Jeremy J.

    2015-01-01

    Plasmonic nanostructures show great promise in enhancing the solar water splitting efficiency due to their ability to confine light to extremely small volumes inside semiconductors. While size plays a critical role in the plasmonic performance of Au nanoparticles (AuNPs), its influence on plasmon-assisted water splitting is still not fully understood. This holds especially true for low band gap semiconductors, for which interband excitations occur in wavelength regions that overlap with plasmonic resonances. Here, BiVO4 films are modified with AuNPs of diameters varying from 10 to 80 nm to study the size dependence of the plasmonic effect. Plasmon resonance energy transfer (PRET) is found to be the dominant effect in enhancing the water splitting efficiency of BiVO4. “Hot electron” injection effect is weak in the case of BiVO4/AuNP. This is attributed to the interband excitation of BiVO4, which is unfavourable for the hot electrons accumulation in BiVO4 conduction band. The resonant scattering effect also contributes to the enhanced water splitting efficiency for the larger diameter AuNPs. It is also for the first time found that higher PRET effect can be achieved at larger off-normal irradiation angle. PMID:26581942

  12. Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting

    NASA Astrophysics Data System (ADS)

    Zhang, Liwu; Herrmann, Lars O.; Baumberg, Jeremy J.

    2015-11-01

    Plasmonic nanostructures show great promise in enhancing the solar water splitting efficiency due to their ability to confine light to extremely small volumes inside semiconductors. While size plays a critical role in the plasmonic performance of Au nanoparticles (AuNPs), its influence on plasmon-assisted water splitting is still not fully understood. This holds especially true for low band gap semiconductors, for which interband excitations occur in wavelength regions that overlap with plasmonic resonances. Here, BiVO4 films are modified with AuNPs of diameters varying from 10 to 80 nm to study the size dependence of the plasmonic effect. Plasmon resonance energy transfer (PRET) is found to be the dominant effect in enhancing the water splitting efficiency of BiVO4. “Hot electron” injection effect is weak in the case of BiVO4/AuNP. This is attributed to the interband excitation of BiVO4, which is unfavourable for the hot electrons accumulation in BiVO4 conduction band. The resonant scattering effect also contributes to the enhanced water splitting efficiency for the larger diameter AuNPs. It is also for the first time found that higher PRET effect can be achieved at larger off-normal irradiation angle.

  13. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes

    PubMed Central

    Gong, Su-Hyun; Kim, Je-Hyung; Ko, Young-Ho; Rodriguez, Christophe; Shin, Jonghwa; Lee, Yong-Hee; Dang, Le Si; Zhang, Xiang; Cho, Yong-Hoon

    2015-01-01

    The quantum plasmonics field has emerged and been growing increasingly, including study of single emitter–light coupling using plasmonic system and scalable quantum plasmonic circuit. This offers opportunity for the quantum control of light with compact device footprint. However, coupling of a single emitter to highly localized plasmonic mode with nanoscale precision remains an important challenge. Today, the spatial overlap between metallic structure and single emitter mostly relies either on chance or on advanced nanopositioning control. Here, we demonstrate deterministic coupling between three-dimensionally nanofocused plasmonic modes and single quantum dots (QDs) without any positioning for single QDs. By depositing a thin silver layer on a site-controlled pyramid QD wafer, three-dimensional plasmonic nanofocusing on each QD at the pyramid apex is geometrically achieved through the silver-coated pyramid facets. Enhancement of the QD spontaneous emission rate as high as 22 ± 16 is measured for all processed QDs emitting over ∼150-meV spectral range. This approach could apply to high fabrication yield on-chip devices for wide application fields, e.g., high-efficiency light-emitting devices and quantum information processing. PMID:25870303

  14. Designing Plasmonic Gratings with Transformation Optics

    NASA Astrophysics Data System (ADS)

    Kraft, Matthias; Luo, Yu; Maier, S. A.; Pendry, J. B.

    2015-07-01

    Plasmonic gratings that support both localized and propagating plasmons have wide applications in solar cells and optical biosensing. In this paper, we report on a most unusual grating designed to capture light efficiently into surface plasmons and concentrate their energy at hot spots where the field is resonantly enhanced. The dispersion of the surface plasmons shows degeneracy points at k =0 , where, despite a strongly modulated grating, hidden symmetries forbid hybridization of plasmons traveling in opposite directions.

  15. Plasmon-enhanced second-harmonic generation from hybrid ZnO-covered silver-bowl array.

    PubMed

    Yang, Mingming; Shen, Shaoxin; Wang, Xiangjie; Yu, Binbin; Huang, Shengli; Xu, Die; Hu, Jiawen; Yang, Zhilin

    2016-06-01

    High-efficient, plasmon-enhanced nonlinear phenomena based on hybrid nanostructures, which combine nonlinear dielectrics with plasmonic metals, are of fundamental importance for various applications ranging from all-optical switching to imaging or bio-sensing. However, the high loss of the excitation energy in nanostructures and the poor spatial overlap between the plasmon enhancement and the bulk of nonlinear materials largely limit the operation of plasmon-enhanced nonlinear effects, resulting in low nonlinear conversion efficiency. Here, we design and fabricate a ZnO-covered, 2D silver-bowl array, which can serve as an efficient platform for plasmon-enhanced second-harmonic generation (PESHG). Validated by experiments and simulations, we demonstrate that the high spatial overlap between the near-field enhancement and the ZnO film plays the key role for this nanostructure-based PESHG process. The enhancement mainly originates from the fundamental wavelength-derived plasmon resonance, providing an enhancement factor of approximately 33 times. These results achieved pave the way for future applications, which require localized light sources at nanoscale. PMID:27145724

  16. Plasmon-enhanced second-harmonic generation from hybrid ZnO-covered silver-bowl array

    NASA Astrophysics Data System (ADS)

    Yang, Mingming; Shen, Shaoxin; Wang, Xiangjie; Yu, Binbin; Huang, Shengli; Xu, Die; Hu, Jiawen; Yang, Zhilin

    2016-06-01

    High-efficient, plasmon-enhanced nonlinear phenomena based on hybrid nanostructures, which combine nonlinear dielectrics with plasmonic metals, are of fundamental importance for various applications ranging from all-optical switching to imaging or bio-sensing. However, the high loss of the excitation energy in nanostructures and the poor spatial overlap between the plasmon enhancement and the bulk of nonlinear materials largely limit the operation of plasmon-enhanced nonlinear effects, resulting in low nonlinear conversion efficiency. Here, we design and fabricate a ZnO-covered, 2D silver-bowl array, which can serve as an efficient platform for plasmon-enhanced second-harmonic generation (PESHG). Validated by experiments and simulations, we demonstrate that the high spatial overlap between the near-field enhancement and the ZnO film plays the key role for this nanostructure-based PESHG process. The enhancement mainly originates from the fundamental wavelength-derived plasmon resonance, providing an enhancement factor of approximately 33 times. These results achieved pave the way for future applications, which require localized light sources at nanoscale.

  17. Plasmon waveguide resonance for sensing glycan-lectin interactions.

    PubMed

    Alves, Isabel; Kurylo, Ievgen; Coffinier, Yannick; Siriwardena, Aloysius; Zaitsev, Vladimir; Harté, Etienne; Boukherroub, Rabah; Szunerits, Sabine

    2015-05-11

    Carbohydrate-modified interfaces have been shown to be valuable tools for the study of protein-glycan recognition events. Label-free approache such as plasmonic based techniques are particularly attractive. This paper describes a new analytical platform for the sensitive and selective screening of carbohydrate-lectin interactions using plasmon waveguide resonance. Planar optical waveguides (POW), consisting of glass prisms coated with silver (50 nm) and silica (460 nm) layers were derivatized with mannose or lactose moieties. The specific association of the resulting interface with selected lectins was assessed by following the changes in its plasmonic response. The immobilization strategy investigated in this work is based on the formation of a covalent bond between propargyl-functionalized glycans and surface-linked azide groups via a Cu(I) "click" chemistry. Optimization of the surface architecture through the introduction of an oligo(ethylene glycol) spacer between the plasmonic surface and the glycan ligands provided an interface which allowed screening of glycan-lectin interactions in a highly selective manner. The limit of detection (LOD) of this method for this particular application was found to be in the subnanomolar range (0.5 nM), showing it to constitute a promising analytical platform for future development and use in a pharmaceutical or biomedical setting. PMID:25911432

  18. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer.

    PubMed

    Sotiriou, Georgios A; Blattmann, Christoph O; Deligiannakis, Yiannis

    2016-01-14

    Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol(-1) and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. PMID:26505730

  19. Giant optical response from graphene--plasmonic system.

    PubMed

    Wang, Pu; Zhang, Wei; Liang, Owen; Pantoja, Marcos; Katzer, Jens; Schroeder, Thomas; Xie, Ya-Hong

    2012-07-24

    The unique properties of graphene when coupled to plasmonic surfaces render a very interesting physical system with intriguing responses to stimuli such as photons. It promises exciting application potentials such as photodetectors as well as biosensing. With its semimetallic band structure, graphene in the vicinity of metallic nanostructures is expected to lead to non-negligible perturbation of the local distribution of electromagnetic field intensity, an interesting plasmonic resonance process that has not been studied to a sufficient extent. Efforts to enhance optoelectronic responses of graphene using plasmonic structures have been demonstrated with rather modest Raman enhancement factors of less than 100. Here, we examine a novel cooperative graphene-Au nanopyramid system with a remarkable graphene Raman enhancement factor of up to 10(7). Experimental evidence including polarization-dependent Raman spectroscopy and scanning electron microscopy points to a new origin of a drastically enhanced D-band from sharp folds of graphene near the extremities of the nanostructure that is free of broken carbon bonds. These observations indicate a new approach for obtaining detailed structural and vibrational information on graphene from an extremely localized region. The new physical origin of the D-band offers a realistic possibility of defining active devices in the form of, for example, graphene nanoribbons by engineered graphene folds (also known as wrinkles) to realize edge-disorder-free transport. Furthermore, the addition of graphene made it possible to tailor the biochemical properties of plasmonic surfaces from conventional metallic ones to biocompatible carbon surfaces. PMID:22712497

  20. Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.

    PubMed

    Yang, Longkun; Wang, Hancong; Fang, Yan; Li, Zhipeng

    2016-01-26

    Plasmonic antennas are able to concentrate and re-emit light in a controllable manner through strong coupling between metallic nanostructures. Only recently has it found that quantum mechanical effects can drastically change the coupling strength as the feature size approaches atomic scales. Here, we present a comprehensive experimental and theoretical study of the evolution of the resonance peak and its polarization state as the dimer-antenna gap narrows to subnanometer scale. We clearly can identify the classical plasmonic regime, a crossover regime where nonlocal screening plays an important role, and the quantum regime where a charge transfer plasmon appears due to interparticle electron tunneling. Moreover, as the gap decreases from tens of to a few nanometers, the bonding dipole mode tends to emit photons with increasing polarizability. When the gap narrows to quantum regime, a significant depolarization of the mode emission is observed due to the reduction of the charge density of coupled quantum plasmons. These results would be beneficial for the understanding of quantum effects on emitting-polarization of nanoantennas and the development of quantum-based photonic nanodevices. PMID:26700823

  1. Rhodium Nanoparticles for Ultraviolet Plasmonics

    NASA Astrophysics Data System (ADS)

    Watson, Anne; Zhang, Xiao; Alcaraz de La Osa, Rodrigo; Sanz, Juan; Fernandez, Francisco; Moreno, Fernando; Finkelstein, Gleb; Liu, Jie; Everitt, Henry

    We introduce the non-oxidizing catalytic noble metal rhodium for ultraviolet (UV) plasmonics. 8 nm tripod-shaped planar Rh nanoparticles (NPs) were synthesized by a modified polyol reduction chemistry. They have a calculated local surface plasmon resonance (LSPR) near 330 nm. To illustrate the UV plasmonic performance of Rh, p-aminothiophenol (PATP) was attached to the Rh NPs and enhanced Raman and fluorescence were observed upon UV illumination. The PATP Raman spectra produced by UV and visible excitation were respectively in and out of resonance with the Rh NP LSPR. This clearly revealed resonant spectral enhancement in the UV and accelerated photo-damage produced by intense local fields concentrated near the plasmonic Rh NPs. Simultaneously, surface enhanced fluorescence increased during 13 minutes of resonant UV illumination, providing direct evidence of charge transfer from the Rh NPs. The combined local field enhancement and charge transfer demonstrate essential steps toward plasmonically-enhanced ultraviolet photocatalysis. Due to its high chemical stability and strong plasmonic effect, Rh nanoparticles could find wide applications in UV plasmonics.

  2. Direct Plasmon-Driven Photoelectrocatalysis.

    PubMed

    Robatjazi, Hossein; Bahauddin, Shah Mohammad; Doiron, Chloe; Thomann, Isabell

    2015-09-01

    Harnessing the energy from hot charge carriers is an emerging research area with the potential to improve energy conversion technologies.1-3 Here we present a novel plasmonic photoelectrode architecture carefully designed to drive photocatalytic reactions by efficient, nonradiative plasmon decay into hot carriers. In contrast to past work, our architecture does not utilize a Schottky junction, the commonly used building block to collect hot carriers. Instead, we observed large photocurrents from a Schottky-free junction due to direct hot electron injection from plasmonic gold nanoparticles into the reactant species upon plasmon decay. The key ingredients of our approach are (i) an architecture for increased light absorption inspired by optical impedance matching concepts,4 (ii) carrier separation by a selective transport layer, and (iii) efficient hot-carrier generation and injection from small plasmonic Au nanoparticles to adsorbed water molecules. We also investigated the quantum efficiency of hot electron injection for different particle diameters to elucidate potential quantum effects while keeping the plasmon resonance frequency unchanged. Interestingly, our studies did not reveal differences in the hot-electron generation and injection efficiencies for the investigated particle dimensions and plasmon resonances. PMID:26243130

  3. Plasmonic gas and chemical sensing

    NASA Astrophysics Data System (ADS)

    Tittl, Andreas; Giessen, Harald; Liu, Na

    2014-06-01

    Sensitive and robust detection of gases and chemical reactions constitutes a cornerstone of scientific research and key industrial applications. In an effort to reach progressively smaller reagent concentrations and sensing volumes, optical sensor technology has experienced a paradigm shift from extended thin-film systems towards engineered nanoscale devices. In this size regime, plasmonic particles and nanostructures provide an ideal toolkit for the realization of novel sensing concepts. This is due to their unique ability to simultaneously focus light into subwavelength hotspots of the electromagnetic field and to transmit minute changes of the local environment back into the farfield as a modulation of their optical response. Since the basic building blocks of a plasmonic system are commonly noble metal nanoparticles or nanostructures, plasmonics can easily be integrated with a plethora of chemically or catalytically active materials and compounds to investigate processes ranging from hydrogen absorption in palladium to the detection of trinitrotoluene (TNT). In this review, we will discuss a multitude of plasmonic sensing strategies, spanning the technological scale from simple plasmonic particles embedded in extended thin films to highly engineered complex plasmonic nanostructures. Due to their flexibility and excellent sensing performance, plasmonic structures may open an exciting pathway towards the detection of chemical and catalytic events down to the single molecule level.

  4. Imaging through plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J.; Cui, Yao; Hogan, Nathaniel J.; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J.

    2016-05-01

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems.

  5. Imaging through plasmonic nanoparticles

    PubMed Central

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J.; Cui, Yao; Hogan, Nathaniel J.; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J.

    2016-01-01

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems. PMID:27140618

  6. Imaging through plasmonic nanoparticles.

    PubMed

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J; Cui, Yao; Hogan, Nathaniel J; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J

    2016-05-17

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems. PMID:27140618

  7. Plasmonic nanomaterials for biodiagnostics.

    PubMed

    Howes, Philip D; Rana, Subinoy; Stevens, Molly M

    2014-06-01

    The application of nanomaterials to detect disease biomarkers is giving rise to ultrasensitive assays, with scientists exploiting the many advantageous physical and chemical properties of nanomaterials. The fundamental basis of such work is to link unique phenomena that arise at the nanoscale to the presence of a specific analyte biomolecule, and to modulate the intensity of such phenomena in a ratiometric fashion, in direct proportion with analyte concentration. Precise engineering of nanomaterial surfaces is of utmost importance here, as the interface between the material and the biological environment is where the key interactions occur. In this tutorial review, we discuss the use of plasmonic nanomaterials in the development of biodiagnostic tools for the detection of a large variety of biomolecular analytes, and how their plasmonic properties give rise to tunable optical characteristics and surface enhanced Raman signals. We put particular focus on studies that have explored the efficacy of the systems using physiological samples in an effort to highlight the clinical potential of such assays. PMID:24323079

  8. Genetically engineered plasmonic nanoarrays.

    PubMed

    Forestiere, Carlo; Pasquale, Alyssa J; Capretti, Antonio; Miano, Giovanni; Tamburrino, Antonello; Lee, Sylvanus Y; Reinhard, Björn M; Dal Negro, Luca

    2012-04-11

    In the present Letter, we demonstrate how the design of metallic nanoparticle arrays with large electric field enhancement can be performed using the basic paradigm of engineering, namely the optimization of a well-defined objective function. Such optimization is carried out by coupling a genetic algorithm with the analytical multiparticle Mie theory. General design criteria for best enhancement of electric fields are obtained, unveiling the fundamental interplay between the near-field plasmonic and radiative photonic coupling. Our optimization approach is experimentally validated by surface-enhanced Raman scattering measurements, which demonstrate how genetically optimized arrays, fabricated using electron beam lithography, lead to order of ten improvement of Raman enhancement over nanoparticle dimer antennas, and order of one hundred improvement over optimal nanoparticle gratings. A rigorous design of nanoparticle arrays with optimal field enhancement is essential to the engineering of numerous nanoscale optical devices such as plasmon-enhanced biosensors, photodetectors, light sources and more efficient nonlinear optical elements for on chip integration. PMID:22381056

  9. Distinguishing Bonds.

    PubMed

    Rahm, Martin; Hoffmann, Roald

    2016-03-23

    The energy change per electron in a chemical or physical transformation, ΔE/n, may be expressed as Δχ̅ + Δ(VNN + ω)/n, where Δχ̅ is the average electron binding energy, a generalized electronegativity, ΔVNN is the change in nuclear repulsions, and Δω is the change in multielectron interactions in the process considered. The last term can be obtained by the difference from experimental or theoretical estimates of the first terms. Previously obtained consequences of this energy partitioning are extended here to a different analysis of bonding in a great variety of diatomics, including more or less polar ones. Arguments are presented for associating the average change in electron binding energy with covalence, and the change in multielectron interactions with electron transfer, either to, out, or within a molecule. A new descriptor Q, essentially the scaled difference between the Δχ̅ and Δ(VNN + ω)/n terms, when plotted versus the bond energy, separates nicely a wide variety of bonding types, covalent, covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond. PMID:26910496

  10. Plasmonic Manipulation of Light for Sensing and Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Sobhani Khakestar, Heidar

    Plasmonics is a successful new field of science and technology that exploits the exclusive optical properties of metallic nanostructures to manipulate and concentrate light at nano-meter length scales. When light hits the surface of gold or silver nanoparticles it can excite collective oscillations of the conduction electrons called surface plasmons. This surface plasmon undergoes two damping processes; it can decay into photon and reemit the plasmon energy as scattered energy or decay into electron-hole pair with the excitation energy equal to the energy of the plasmon resonance, known as absorption. This high energy electron subsequently undergoes into the carrier multiplication and eventually scatters into the electrons with lower energy. We used Finite-Difference Time-Domain (FDTD) and Finite-Element Method (Comsol) to design nanoscale structures to act as nanoantenna for light harvesting and consequently manipulating radiative and absorption properties of them for Sensing and Photovoltaic applications. To manipulate near and far field we designed our structures in a way that the bright and dark plasmon modes overlap and couple to each other. This process is called Fano resonance and introduces a transparency window in the far-field spectra. At the same time it increases the near-field enhancement. We applied the changes in near-field and far-field to SERS (Surface Enhanced Raman Spectroscopy) and LSPR (Localized Surface plasmon Resonance) shift for sensing purposes. We modeled Fano resonances with classical harmonic oscillator and reproduced the same feature with a simple equation of motion. We used this model to replicate scattering spectra from different geometries and explain the cathodoluminescence results obtained from nanoscale gold clusters structure. All of these nanoantenna optical properties and applications are due to the reemission ability of the plasmon energy to the vacuum and confining optical field, but the plasmon energy can decay into a high

  11. Optical activity and circular dichroism of plasmonic nanorod assemblies

    NASA Astrophysics Data System (ADS)

    Khosravi Khorashad, Larousse; Liu, Na; Govorov, Alexander O.

    Plasmonic circular dichroism (CD) has offered an efficient spectroscopy method for the electronic, chemical, and structural properties of different types of light active molecules in the subwavelength regime. Among the different chiral geometries of metal nanoparticles utilized by the plasmonic CD spectroscopy, gold nanorods (AuNRs) have shown strong CD signals in the visible frequency range. In this work, we theoretically study the CD signals of AuNR arrangements in order to mimic structures and chemical bonds of chiral biomolecules. In particular, our twisted three-AuNR geometries resemble a molecular structure of tartaric acid. This molecule played an important role in the discovery of chemical chirality. In our study, we show that the strength of CD signals changes dramatically by tuning the interparticle distances and angles. Since the CD signals are typically weak, we develop reliable computational approaches to calculate the plasmonic CD. Manipulating interparticle distances, size, and molecular bond angles result in full control over peak positions, handedness, and positive and negative bands which are observed in the CD spectra. This work has been supported under the grant from Volkswagen Foundation. We also acknowledge the financial support of Condensed Matter and Surface Science program of Ohio University.

  12. Asymptotics of surface-plasmon redshift saturation at subnanometric separations

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Giannini, Vincenzo; Craster, Richard V.; Maier, Stefan A.

    2016-01-01

    Many promising nanophotonics endeavors hinge upon the unique plasmonic properties of nanometallic structures with narrow nonmetallic gaps, which support superconcentrated bonding modes that singularly redshift with decreasing separations. In this Rapid Communication, we present a descriptive physical picture, complemented by elementary asymptotic formulas, of a nonlocal mechanism for plasmon redshift saturation at subnanometric gap widths. Thus, by considering the electron-charge and field distributions in the close vicinity of the metal-vacuum interface, we show that nonlocality is asymptotically manifested as an effective potential discontinuity. For bonding modes in the near-contact limit, the latter discontinuity is shown to be effectively equivalent to a widening of the gap. As a consequence, the resonance-frequency near-contact asymptotics are a renormalization of the corresponding local ones. Specifically, the renormalization furnishes an asymptotic plasmon-frequency lower bound that scales with the 1 /4 power of the Fermi wavelength. We demonstrate these remarkable features in the prototypical cases of nanowire and nanosphere dimers, showing agreement between our elementary expressions and previously reported numerical computations.

  13. Correlated edge overlaps in multiplex networks

    NASA Astrophysics Data System (ADS)

    Baxter, Gareth J.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2016-07-01

    We develop the theory of sparse multiplex networks with partially overlapping links based on their local treelikeness. This theory enables us to find the giant mutually connected component in a two-layer multiplex network with arbitrary correlations between connections of different types. We find that correlations between the overlapping and nonoverlapping links markedly change the phase diagram of the system, leading to multiple hybrid phase transitions. For assortative correlations we observe recurrent hybrid phase transitions.

  14. Correlated edge overlaps in multiplex networks.

    PubMed

    Baxter, Gareth J; Bianconi, Ginestra; da Costa, Rui A; Dorogovtsev, Sergey N; Mendes, José F F

    2016-07-01

    We develop the theory of sparse multiplex networks with partially overlapping links based on their local treelikeness. This theory enables us to find the giant mutually connected component in a two-layer multiplex network with arbitrary correlations between connections of different types. We find that correlations between the overlapping and nonoverlapping links markedly change the phase diagram of the system, leading to multiple hybrid phase transitions. For assortative correlations we observe recurrent hybrid phase transitions. PMID:27575144

  15. Dynamic coupling of plasmonic resonators

    PubMed Central

    Lee, Suyeon; Park, Q-Han

    2016-01-01

    We clarify the nature of dynamic coupling in plasmonic resonators and determine the dynamic coupling coefficient using a simple analytic model. We show that plasmonic resonators, such as subwavelength holes in a metal film which can be treated as bound charge oscillators, couple to each other through the retarded interaction of oscillating screened charges. Our dynamic coupling model offers, for the first time, a quantitative analytic description of the fundamental symmetric and anti-symmetric modes of coupled resonators which agrees with experimental results. Our model also reveals that plasmonic electromagnetically induced transparency arises in any coupled resonators of slightly unequal lengths, as confirmed by a rigorous numerical calculation and experiments. PMID:26911786

  16. Thin film based plasmon nanorulers

    NASA Astrophysics Data System (ADS)

    Taylor, Alexander D.; Lu, Chang; Geyer, Scott; Carroll, D. L.

    2016-07-01

    In this work, isolated metal nanoparticles are supported on a dielectric thin film that is placed on a conducting plane. The optical scattering characteristics of these metal nanoparticles are directly correlated with the localized surface plasmon states of the nanoparticle—image particle dimer, formed in the conducting plane below. Quantification of plasmon resonance shifts can be directly correlated with the application of the plasmon nanoruler equation. This simple geometry shows that direct optical techniques can be used to resolve thickness variations in dielectrics of only a few nanometers.

  17. Hybrid grapheme plasmonic waveguide modulators

    NASA Astrophysics Data System (ADS)

    Ansell, D.; Thackray, B. D.; Aznakayeva, D. E.; Thomas, P.; Auton, G. H.; Marshall, O. P.; Rodriguez, F. J.; Radko, I. P.; Han, Z.; Bozhevolnyi, S. I.; Grigorenko, A. N.

    2016-03-01

    The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with sub-wavelength field confinement of plasmonic/metallic structures is not fully realized. Here we report fabrication and study of hybrid graphene-plasmonic modulators. We consider several types of modulators and identify the most promising one for light modulation at telecom and near-infrared. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.

  18. Graphene, plasmons and transformation optics

    NASA Astrophysics Data System (ADS)

    Huidobro, P. A.; Kraft, M.; Kun, R.; Maier, S. A.; Pendry, J. B.

    2016-04-01

    Here we study subwavelength gratings for coupling into graphene plasmons by means of an analytical model based on transformation optics that is not limited to very shallow gratings. We consider gratings that consist of a periodic modulation of the charge density in the graphene sheet, and gratings formed by this conductivity modulation together with a dielectric grating placed in close vicinity of the graphene. Explicit expressions for the dispersion relation of the plasmon polaritons supported by the system, and reflectance and transmittance under plane wave illumination are given. We discuss the conditions for maximising the coupling between incident radiation and plasmons in the graphene, finding the optimal modulation strength for a conductivity grating.

  19. Probing plasmonic breathing modes optically

    SciTech Connect

    Krug, Markus K. Reisecker, Michael; Hohenau, Andreas; Ditlbacher, Harald; Trügler, Andreas; Hohenester, Ulrich; Krenn, Joachim R.

    2014-10-27

    The confinement of surface plasmon modes in flat nanoparticles gives rise to plasmonic breathing modes. With a vanishing net dipole moment, breathing modes do not radiate, i.e., they are optically dark. Having thus escaped optical detection, breathing modes were only recently revealed in silver nanodisks with electron energy loss spectroscopy in an electron microscope. We show that for disk diameters >200 nm, retardation induced by oblique optical illumination relaxes the optically dark character. This makes breathing modes and thus the full plasmonic mode spectrum accessible to optical spectroscopy. The experimental spectroscopy data are in excellent agreement with numerical simulations.

  20. Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing.

    PubMed

    Zeng, Xianxiang; Ma, Shishi; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui

    2013-12-17

    On the basis of the absorption and emission spectra overlap, an enhanced resonance energy transfer caused by excition-plasmon resonance between reduced graphene oxide (RGO)-Au nanoparticles (AuNPs) and CdTe quantum dots (QDs) was obtained. With the synergy of AuNPs and RGO as a planelike energy acceptor, it resulted in the enhancement of energy transfer between excited CdTe QDs and RGO-AuNPs nanocomposites. Upon the novel sandwichlike structure formed via DNA hybridization, the exciton produced in CdTe QDs was annihilated. A damped photocurrent was obtained, which was acted as the background signal for the development of a universal photoelectrochemical (PEC) platform. With the use of carcinoembryonic antigen (CEA) as a model which bonded to its specific aptamer and destroyed the sandwichlike structure, the energy transfer efficiency was lowered, leading to PEC response augment. Thus a signal-on PEC aptasensor was constructed. Under 470 nm irradiation at -0.05 V, the PEC aptasensor for CEA determination exhibited a linear range from 0.001 to 2.0 ng mL(-1) with a detection limit of 0.47 pg mL(-1) at a signal-to-noise ratio of 3 and was satisfactory for clinical sample detection. Since different aptamers can specifically bind to different target molecules, the designed strategy has an expansive application for the construction of versatile PEC platforms. PMID:24256069

  1. Surface plasmon polaritons mode conversion via a coupled plasmonic system

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Tian, Hao

    2016-05-01

    A coupled plasmonic system for effective mode conversion between single interface surface plasmon polaritons (SPP) in a metal-dielectric waveguide and gap SPP in a metal-dielectric-metal waveguide is proposed. With the modal analysis, it is shown that the interference of the two plasmonic modes in a metal-dielectric-metal-dielectric coupled structure plays the key role in the mode conversion. With typical parameters, the conversion efficiency is as high as 61% (equivalent to 87% of the output total energy flow) at 1μm wavelength, and 1 dB bandwidth is as broad as 300 nm. The proposed structure can be used to implement an SPP mode convertor, router and beam splitter, which enables the interconnection between two important waveguides in plasmonics. The method presented here is fully-analytical, and is tested against fully-vectorial numerical results.

  2. Plasmonic spectroscopy of metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Ni, Weihai

    The study of the plasmonic spectroscopy of metallic nanostructures is of great interest in nanoscale optics and photonics. Metallic nanostructures exhibit rich optical and electrical properties due to their localized surface plasmons (LSPs, collective charge density oscillations that are confined to metallic nanostructures). They can be widely used in a variety of application areas, such as surface-enhanced Raman scattering (SERS), plasmonic sensing, and metal enhanced fluorescence (MEF). In this thesis, a systematic study on the plasmonic spectroscopy of metallic nanostructures has been presented, both theoretically and experimentally. I will first describe my studies on the plasmonic properties of metallic nanostructures. Specific approaches of modifying the sizes and shapes of Au nanorods have been developed for tailoring their plasmonic properties, including surface plasmon wavelength, absorption, scattering, and extinction cross sections. Single-particle dark-field imaging and spectroscopy have proved that the scattering intensity of overgrown nanorods is larger than that of shortened nanorods from the same starting nanorods. Finite-difference time-domain (FDTD) calculations further show that the scattering-to-extinction ratio increases linearly as a function of the diameter of Au nanorods with a fixed aspect ratio. To obtain a deep understanding on the shape dependence of the localized surface plasmon resonance, I have emplyed FDTD on both Au nanorods and Au nanobipyramids. The results show that, when excited at their LSP wavelengths, Au nanobipyramids exhibit a maximal electric field intensity enhancement that is 3--6 times that of Au nanorods. Au nanorods have been further assembled into chains (end-to-end) and stacks (side-by-side). FDTD calculations have been performed on both Au nanorod chains and stacks with varying gap distances to obtain the dependence of the plasmon shift on the gap distance, which is then used as a plasmonic ruler to estimate the

  3. Graphene-protected copper and silver plasmonics

    PubMed Central

    Kravets, V. G.; Jalil, R.; Kim, Y.-J.; Ansell, D.; Aznakayeva, D. E.; Thackray, B.; Britnell, L.; Belle, B. D.; Withers, F.; Radko, I. P.; Han, Z.; Bozhevolnyi, S. I.; Novoselov, K. S.; Geim, A. K.; Grigorenko, A. N.

    2014-01-01

    Plasmonics has established itself as a branch of physics which promises to revolutionize data processing, improve photovoltaics, and increase sensitivity of bio-detection. A widespread use of plasmonic devices is notably hindered by high losses and the absence of stable and inexpensive metal films suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics. PMID:24980150

  4. Flexible transformation plasmonics using graphene.

    PubMed

    Lu, Wei Bing; Zhu, Wei; Xu, Hong Ju; Ni, Zhen Hua; Dong, Zheng Gao; Cui, Tie Jun

    2013-05-01

    The flexible control of surface plasmon polaritons (SPPs) is important and intriguing due to its wide application in novel plasmonic devices. Transformation optics (TO) offers the capability either to confine the SPP propagation on rigid curved/uneven surfaces, or to control the flow of SPPs on planar surfaces. However, TO has not permitted us to confine, manipulate, and control SPP waves on flexible curved surfaces. Here, we propose to confine and freely control flexible SPPs using TO and graphene. We show that SPP waves can be naturally confined and propagate on curved or uneven graphene surfaces with little bending and radiation losses, and the confined SPPs are further manipulated and controlled using TO. Flexible plasmonic devices are presented, including the bending waveguides, wave splitter, and Luneburg lens on curved surfaces. Together with the intrinsic flexibility, graphene can be served as a good platform for flexible transformation plasmonics. PMID:23669904

  5. Photoluminescence of a Plasmonic Molecule.

    PubMed

    Huang, Da; Byers, Chad P; Wang, Lin-Yung; Hoggard, Anneli; Hoener, Ben; Dominguez-Medina, Sergio; Chen, Sishan; Chang, Wei-Shun; Landes, Christy F; Link, Stephan

    2015-07-28

    Photoluminescent Au nanoparticles are appealing for biosensing and bioimaging applications because of their non-photobleaching and non-photoblinking emission. The mechanism of one-photon photoluminescence from plasmonic nanostructures is still heavily debated though. Here, we report on the one-photon photoluminescence of strongly coupled 50 nm Au nanosphere dimers, the simplest plasmonic molecule. We observe emission from coupled plasmonic modes as revealed by single-particle photoluminescence spectra in comparison to correlated dark-field scattering spectroscopy. The photoluminescence quantum yield of the dimers is found to be surprisingly similar to the constituent monomers, suggesting that the increased local electric field of the dimer plays a minor role, in contradiction to several proposed mechanisms. Aided by electromagnetic simulations of scattering and absorption spectra, we conclude that our data are instead consistent with a multistep mechanism that involves the emission due to radiative decay of surface plasmons generated from excited electron-hole pairs following interband absorption. PMID:26165983

  6. Group-IV midinfrared plasmonics

    NASA Astrophysics Data System (ADS)

    Biagioni, Paolo; Frigerio, Jacopo; Samarelli, Antonio; Gallacher, Kevin; Baldassarre, Leonetta; Sakat, Emilie; Calandrini, Eugenio; Millar, Ross W.; Giliberti, Valeria; Isella, Giovanni; Paul, Douglas J.; Ortolani, Michele

    2015-01-01

    The use of heavily doped semiconductors to achieve plasma frequencies in the mid-IR has been recently proposed as a promising way to obtain high-quality and tunable plasmonic materials. We introduce a plasmonic platform based on epitaxial n-type Ge grown on standard Si wafers by means of low-energy plasma-enhanced chemical vapor deposition. Due to the large carrier concentration achieved with P dopants and to the compatibility with the existing CMOS technology, SiGe plasmonics hold promises for mid-IR applications in optoelectronics, IR detection, sensing, and light harvesting. As a representative example, we show simulations of mid-IR plasmonic waveguides based on the experimentally retrieved dielectric constants of the grown materials.

  7. Yankee bonds

    SciTech Connect

    Delaney, P. )

    1993-10-01

    Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.

  8. Cooperative optical trapping in asymmetric plasmon nanocavity arrays.

    PubMed

    Guo, Ling; Sun, Zhijun

    2015-11-30

    We propose a scheme using cooperative interaction of antiphase resonance modes to enhance optical trapping in plasmonic nanostructures. This is implemented with a subwavelength array of asymmetric binary nanogrooves (e.g. different depths) in metal. When damping and inter-coupling of antiphase fields in the nanogrooves are mediated satisfying a critical condition, light can be cooperatively trapped in the nanogrooves, demonstrating perfect absorption at nearly the intrinsic resonance frequency of the deeper nanogrooves. A harmonic oscillator model is developed to interpret the cooperative interaction processes. The phenomenon has been also implemented in asymmetric ternary nanogroove arrays. In terms of compositions and intra-coupling mechanisms, the asymmetric binary/ternary plasmonic nanostructure arrays are crystalline molecular-metamaterials, analogous to electronic crystals composed of covalence-bond molecules. PMID:26698759

  9. Multiple higher-order Fano resonances in plasmonic hollow cylindrical nanodimer

    NASA Astrophysics Data System (ADS)

    Khan, Adnan Daud; Amin, Muhammad; Ali, Amjad; Khan, Sultan Daud; Khan, RehanUllah

    2015-08-01

    The optical properties of a nanodimer composed of hollow nanocylinders that are located in a close proximity to each other are investigated. The plasmon modes of the dimer resonator spectrally overlap and induce plasmonic Fano resonances due to destructive interference. For the generation of multiple Fano resonances with large modulation depths and sharp linewidths, several configurations of the dimer nanostructure are analyzed. Different kinds of unique Fano resonances are obtained by changing the polarization of incident light. Moreover, the spectral positions and modulation depths of the higher-order multiple Fano resonances can be flexibly tuned and controlled in the extinction spectrum by varying the geometrical parameters. The proposed resonator has the advantage to exhibit multiple Fano resonances with large modulation depths and offers high values of figure of merit and contrast ratio due to which it can be greatly appropriate for plasmon line shaping, slow light and broadband biosensing applications.

  10. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    DOE PAGESBeta

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinducedmore » near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.« less

  11. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    SciTech Connect

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.

  12. Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism

    NASA Astrophysics Data System (ADS)

    Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang

    Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.

  13. Characteristics of hydrogen bond revealed from water clusters

    NASA Astrophysics Data System (ADS)

    Song, Yan; Chen, Hongshan; Zhang, Cairong; Zhang, Yan; Yin, Yuehong

    2014-09-01

    The hydrogen bond network is responsible for the exceptional physical and chemical properties of water, however, the description of hydrogen bond remains a challenge for the studies of condensed water. The investigation of structural and binding properties of water clusters provides a key for understanding the H-bonds in bulk water. In this paper, a new set of geometric parameters are defined to describe the extent of the overlap between the bonding orbital of the donor OH and the nonbonding orbital of the lone-pair of the acceptor molecule. This orbital overlap plays a dominant role for the strength of H-bonds. The dependences of the binding energy of the water dimer on these parameters are studied. The results show that these parameters properly describe the H-bond strength. The ring, book, cage and prism isomers of water hexamer form 6, 7, 8 and 9 H-bonds, and the strength of the bonding in these isomers changes markedly. The internally-solvated and the all-surface structures of (H2O) n for n = 17, 19 and 21 are nearly isoenergetic. The internally-solvated isomers form fewer but stronger H-bonds. The hydrogen bonding in the above clusters are investigated in detail. The geometric parameters can well describe the characters of the H-bonds, and they correlate well with the H-bond strength. For the structures forming stronger H-bonds, the H-bond lengths are shorter, the angle parameters are closer to the optimum values, and their rms deviations are smaller. The H-bonds emanating from DDAA and DDA molecules as H-donor are relatively weak. The vibrational spectra of (H2O) n ( n = 17, 19 and 21) are studied as well. The stretching vibration of the intramolecular OH bond is sensitive to its bonding environment. The H-bond strength judged from the geometric parameters is in good agreement with the bonding strength judged from the stretching frequencies.

  14. Plasmons under extreme dimensional confinement

    NASA Astrophysics Data System (ADS)

    Weitering, Hanno

    2012-02-01

    In our studies, we explore how surface and bulk plasmons emerge under extreme dimensional confinement, i.e., dimensions that are orders of magnitude smaller than those employed in `nanoplasmonics'. Atomically-smooth ultrathin Mg films were epitaxially grown on Si(111), allowing for atomically-precise tuning of the plasmon response.ootnotetextM.M. "Ozer, E.J. Moon, A.G. Eguiluz, and H.H. Weitering, Phys. Rev. Lett. 106, 197601 (2011). While the single-particle states in these 3-12 monolayer (ML) thick films consist of a series of two-dimensional subbands, the bulk-plasmon response is like that of a thin slice carved from bulk Mg subject to quantum-mechanical boundary conditions. Remarkably, this bulk-like behavior persists all the way down to 3 ML. In the 3-12 ML thickness range, bulk loss spectra are dominated by the n=1 and n=2 normal modes, consistent with the excitation of plasmons involving quantized electronic subbands. The collective response of the thinnest films is furthermore characterized by a thickness-dependent spectral weight transfer from the high-energy collective modes to the low-energy single-particle excitations, until the bulk plasmon ceases to exist below 3 ML. Surface- and multipole plasmon modes even persist down to 2 ML. These results are striking manifestations of the role of quantum confinement on plasmon resonances in precisely controlled nanostructures. They furthermore suggest the intriguing possibility of tuning resonant plasmon frequencies via precise dimensional control.

  15. Particle plasmons: Why shape matters

    NASA Astrophysics Data System (ADS)

    Barnes, William L.

    2016-08-01

    Simple analytic expressions for the polarizability of metallic nanoparticles are in wide use in the field of plasmonics, but their origins are not obvious. In this article, expressions for the polarizability of a particle are derived in the quasistatic limit in a manner that allows the physical origin of the terms to be clearly seen. The discussion is tutorial in nature, with particular attention given to the role of particle shape since this is a controlling factor in particle plasmon resonances.

  16. Plasmon enhancement of luminescence upconversion.

    PubMed

    Park, Wounjhang; Lu, Dawei; Ahn, Sungmo

    2015-05-21

    Frequency conversion has always been an important topic in optics. Nonlinear optics has traditionally focused on frequency conversion based on nonlinear susceptibility but with the recent development of upconversion nanomaterials, luminescence upconversion has begun to receive renewed attention. While upconversion nanomaterials open doors to a wide range of new opportunities, they remain too inefficient for most applications. Incorporating plasmonic nanostructures provides a promising pathway to highly efficient upconversion. Naturally, a plethora of theoretical and experimental studies have been published in recent years, reporting enhancements up to several hundred. It is however difficult to make meaningful comparisons since the plasmonic fields are highly sensitive to the local geometry and excitation condition. Also, many luminescence upconversion processes involve multiple steps via different physical mechanisms and the overall output is often determined by a delicate interplay among them. This review is aimed at offering a comprehensive framework for plasmon enhanced luminescence upconversion. We first present quantum electrodynamics descriptions for all the processes involved in luminescence upconversion, which include absorption, emission, energy transfer and nonradiative transitions. We then present a bird's eye view of published works on plasmon enhanced upconversion, followed by more detailed discussion on comparable classes of nanostructures, the effects of spacer layers and local heating, and the dynamics of the plasmon enhanced upconversion process. Plasmon enhanced upconversion is a challenging and exciting field from the fundamental scientific perspective and also from technological standpoints. It offers an excellent system to study how optical processes are affected by the local photonic environment. This type of research is particularly timely as the plasmonics is placing heavier emphasis on nonlinearity. At the same time, efficient upconversion

  17. A plasmonic Fano switch.

    PubMed

    Chang, Wei-Shun; Lassiter, J Britt; Swanglap, Pattanawit; Sobhani, Heidar; Khatua, Saumyakanti; Nordlander, Peter; Halas, Naomi J; Link, Stephan

    2012-09-12

    Plasmonic clusters can support Fano resonances, where the line shape characteristics are controlled by cluster geometry. Here we show that clusters with a hemicircular central disk surrounded by a circular ring of closely spaced, coupled nanodisks yield Fano-like and non-Fano-like spectra for orthogonal incident polarization orientations. When this structure is incorporated into an uniquely broadband, liquid crystal device geometry, the entire Fano resonance spectrum can be switched on and off in a voltage-dependent manner. A reversible transition between the Fano-like and non-Fano-like spectra is induced by relatively low (∼6 V) applied voltages, resulting in a complete on/off switching of the transparency window. PMID:22924610

  18. Planar plasmonic chiral nanostructures.

    PubMed

    Zu, Shuai; Bao, Yanjun; Fang, Zheyu

    2016-02-21

    A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. PMID:26818746

  19. Tunable surface plasmon devices

    DOEpatents

    Shaner, Eric A.; Wasserman, Daniel

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  20. Plasmonics in Biology and Plasmon-Controlled Fluorescence

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    Fluorescence technology is fully entrenched in all aspects of biological research. To a significant extent, future advances in biology and medicine depend on the advances in the capabilities of fluorescence measurements. As examples, the sensitivity of many clinical assays is limited by sample autofluorescence, single-molecule detection is limited by the brightness and photostability of the fluorophores, and the spatial resolution of cellular imaging is limited to about one-half of the wavelength of the incident light. We believe a combination of fluorescence, plasmonics, and nanofabrication can fundamentally change and increase the capabilities of fluorescence technology. Surface plasmons are collective oscillations of free electrons in metallic surfaces and particles. Surface plasmons, without fluorescence, are already in use to a limited extent in biological research. These applications include the use of surface plasmon resonance to measure bioaffinity reactions and the use of metal colloids as light-scattering probes. However, the uses of surface plasmons in biology are not limited to their optical absorption or extinction. We now know that fluorophores in the excited state can create plasmons that radiate into the far field and that fluorophores in the ground state can interact with and be excited by surface plasmons. These reciprocal interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location, and direction of fluorophore emission. We refer to these phenomena as plasmon-controlled fluorescence (PCF). We predict that PCF will result in a new generation of probes and devices. These likely possibilities include ultrabright single-particle probes that do not photobleach, probes for selective multiphoton excitation with decreased light intensities, and distance measurements in biomolecular assemblies in the range from 10 to 200 nm. Additionally, PCF is likely to allow

  1. Automatic segmentation of overlapping and touching chromosomes

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqiang; Chen, Xiaohua; Zhang, Renli; Yu, Chang

    2001-09-01

    This paper describes a technique to segment overlapping and touching chromosomes of human metaphase cells. Automated chromosome classification has been an important pattern recognition problem for decades, numerous attempts were made in the past to characterize chromosome band patterns. But successful separation between touching and overlapping chromosomes is vital for correct classification. Since chromosomes are non-rigid objects, common methods for separation between touching chromosomes are not usable. We proposed a method using shape concave and convex information, topology analysis information, and band pale paths for segmentation of touching and overlapping chromosomes. To detect shape concave and convex information, we should first pre-segment the chromosomes and get the edge of overlapping and touching chromosomes. After filtering the original image using edge-preserving filter, we adopt the Otsu's segmentation method and extract the boundary of chromosomes. Hence the boundary can be used for segment the overlapping and touching chromosomes by detecting the concave and convex information based on boundary information. Most of the traditional boundary-based algorithms detect corners based on two steps: the first step is to acquire the smoothed version of curvature at every point along the contour, and the second step is to detect the positions where curvature maximal occur and threshold the curvature as corner points. Recently wavelet transform has been adopted into corner detection algorithms. Since the metaphase overlapping chromosomes has multi-scale corners, we adopt a multi-scale corner detection method based on Hua's method for corner detection. For touching chromosomes, it is convenient to split them using pale paths. Starting from concave corner points, a search algorithm is represented. The searching algorithm traces three pixels into the object in the direction of the normal vector in order to avoid stopping at the initial boundary until it

  2. Modified long-range surface plasmon polariton modes for laser nanoresonators

    NASA Astrophysics Data System (ADS)

    Ikeda, Kazuhiro; Fainman, Yeshaiahu; Alan Shore, K.; Kawaguchi, Hitoshi

    2011-09-01

    We investigate a modification of long-range surface plasmon polariton modes supported by thin metal-coated dielectric cylinders for laser nanoresonators. A drawback of the low loss surface modes is the small mode overlap with the core dielectric cylinder that will be intended for the gain region in typical nanolasers. We show that increasing the refractive index of the outermost dielectric cladding improves the poor mode overlap, but still keeps the mode low loss and well confined in a small radius of the cylinder. The high refractive index of the dielectric cladding offers another possibility of a nanolaser structure whose gain region resides in the cladding.

  3. EDITORIAL: Plasmas and plasmons: links in nanosilver Plasmas and plasmons: links in nanosilver

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-03-01

    appearing in the 620-800 nm regions of the absorption spectra. A number of research groups have investigated the possibility of exploiting the plasmonic properties of silver and gold nanostructures for optoelectronic devices [7-9]. The advantages can be quite substantial. Researchers in Korea successfully used silver nanoparticles to obtain a 38% increase in performance of blue LEDs by using silver nanoparticles embedded in p-GaN [10]. The researchers attribute the improvement to an increase in the spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and localized surface plasmons in the silver nanoparticles. In their work reported in this issue Kostya Ostrikov and his co-authors bridge the link between microplasma-assisted electrochemical process parameters and the plasmonic response. As they point out, 'This is an important experimental step towards bringing together plasma chemistry and plasmonics' [1]. All-gas-phase plasma approaches have already been demonstrated for the synthesis of nanoparticles of other metals. X D Pi and colleagues from the University of Minnesota demonstrated how one simple gas-phase process could produce stable silicon nanocrystal emitters with tailored size and surface functionalization [11]. Previously silicon nanocrystals had been prone to emission instabilities in air. Now Ostrikov and colleagues at the University of Sydney, CSIRO Materials Science and Engineering in Australia and the Key Laboratory for Laser Plasmas in China have studied microplasma-assisted electrochemical synthesis of Ag nanoparticles for plasmonic applications [1]. The synthesis uses moderate temperatures and atmospheric pressures and does not involve any toxic reducing agents. In addition they demonstrate how it allows control over nanoparticle size and interparticle spacing to optimize performance in device applications. Despite the overlap in plasma physics and the origins of plasmonic phenomena, studies of the

  4. Generating Composite Overlapping Grids on CAD Geometries

    SciTech Connect

    Henshaw, W.D.

    2002-02-07

    We describe some algorithms and tools that have been developed to generate composite overlapping grids on geometries that have been defined with computer aided design (CAD) programs. This process consists of five main steps. Starting from a description of the surfaces defining the computational domain we (1) correct errors in the CAD representation, (2) determine topology of the patched-surface, (3) build a global triangulation of the surface, (4) construct structured surface and volume grids using hyperbolic grid generation, and (5) generate the overlapping grid by determining the holes and the interpolation points. The overlapping grid generator which is used for the final step also supports the rapid generation of grids for block-structured adaptive mesh refinement and for moving grids. These algorithms have been implemented as part of the Overture object-oriented framework.

  5. Detecting overlapping communities in massive networks

    NASA Astrophysics Data System (ADS)

    Sun, Bing-Jie; Shen, Hua-Wei; Cheng, Xue-Qi

    2014-12-01

    Community detection is an essential work for network analysis. However, few methods could be used as off-the-shelf tools to detect communities in real-world networks for two main reasons: Real networks often contain millions of nodes or even hundreds of millions of nodes while most methods cannot handle networks at this scale. One node often belongs to multiple communities, posing another big challenge. In this paper, we circumvent the tricky problem of detecting overlapping communities using a two-stage framework, balancing efficiency and accuracy. Given a network, we first focus on efficiently finding its coarse-grained communities. Starting from them, we next obtain overlapping communities by optimizing a principled objective function. In this divide-and-conquer way, the framework achieves a much better performance than detecting overlapping communities from scratch. Extensive tests on synthetic and real networks demonstrate that it outperforms state-of-the-art methods in terms of both efficiency and accuracy.

  6. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  7. Temporal niche overlap among insectivorous small mammals.

    PubMed

    Vieira, Emerson M; Paise, Gabriela

    2011-12-01

    Being active in the same environment at different times exposes animals to the effects of very different environmental factors, both biotic and abiotic. In the present study, we used live traps equipped with timing devices to evaluate the potential role of biotic factors (competition and food abundance) on overall overlap in the temporal niche axis of 4 insectivorous small mammals in high-elevation grassland fields ('campos de altitude') of southern Brazil. Based on resources availability (invertebrates), data on animal captures were pooled in 2 seasons: 'scarcity' (June 2001-September 2001) and 'abundance' (November 2001-May 2002) seasons. We tested for non-random structure in temporal niche overlap among the species in each season. These species were the rodents Oxymycterus nasutus (Waterhouse, 1837), Deltamys sp., Akodon azarae (Fischer, 1829), and the marsupial Monodelphis brevicaudis Olfers, 1818. The studied community was mainly diurnal with crepuscular peaks. Simulations using the Pianka index of niche overlap indicated that the empirical assemblage-wide overlap was not significantly different from randomly generated patterns in the abundance season but significantly greater than expected by chance alone in the scarcity season. All the species showed an increase in temporal niche breadth during the abundance season, which appears to be related to longer daylength and high nocturnal temperatures. Patterns on both temporal niche overlap and temporal niche breadth were the opposite to those that we were expecting in the case of diel activity patterns determined by competition for dietary resources. Therefore, we conclude that competition did not seem to be preponderant for determining patterns of temporal niche overlap by the studied community. PMID:22182329

  8. Dynamics of overlapping structures in modular networks.

    PubMed

    Almendral, J A; Leyva, I; Li, D; Sendiña-Nadal, I; Havlin, S; Boccaletti, S

    2010-07-01

    Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs has been intensively studied, very little is known on the interactions between functional modules of a graph. Here, we present a general method based on synchronization of networking oscillators, that is able to detect overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical description on the relationship between the overlapping dynamics and the underlying network topology. The method is illustrated by means of a series of applications. PMID:20866697

  9. Sub-Plate Overlap Code Documentation

    NASA Technical Reports Server (NTRS)

    Taff, L. G.; Bucciarelli, B.; Zarate, N.

    1997-01-01

    An expansion of the plate overlap method of astrometric data reduction to a single plate has been proposed and successfully tested. Each plate is (artificially) divided into sub-plates which can then be overlapped. This reduces the area of a 'plate' over which a plate model needs to accurately represent the relationship between measured coordinates and standard coordinates. Application is made to non-astrographic plates such as Schmidt plates and to wide-field astrographic plates. Indeed, the method is completely general and can be applied to any type of recording media.

  10. Active graphene plasmonics for terahertz device applications

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Popov, Vyacheslav; Ryzhii, Victor

    2014-03-01

    This paper reviews recent advances in graphene active plasmonics for terahertz (THz) device applications. Two-dimensional plasmons in graphene exhibit unique optoelectronic properties and mediate extraordinary light-matter interactions. It has been discovered theoretically that when the population of Dirac fermionic carriers in graphene are inverted by optical or electrical pumping, the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned into a micro- or nanoribbon array by grating metallization, the structure acts as an active THz plasmonic amplifier, providing a superradiant plasmonic lasing with a giant gain at the plasmon modes in a wide THz frequency range. These new findings can lead to the creation of new types of plasmonic THz emitters and lasers operating even at room temperature.

  11. Surface Plasmon-Assisted Solar Energy Conversion.

    PubMed

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion. PMID:26092694

  12. Integrating plasmonic diagnostics and microfluidics.

    PubMed

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-09-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics. PMID:26392832

  13. Integrating plasmonic diagnostics and microfluidics

    PubMed Central

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-01-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics. PMID:26392832

  14. Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenglong; Sheng, Shaoxiang; Zheng, Hairong; Xu, Hongxing; Sun, Mengtao

    2014-04-01

    The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis, photosynthesis and the degradation of plastic, it is hard to break individual molecular bonds for those molecules adsorbed on the surface because of the weak light-absorption in molecules and the redistribution of the resulting vibrational energy both inside the molecule and to its surrounding environment. Here we show how to overcome these obstacles with a plasmonic hot-electron mediated process and demonstrate a new method that allows the sensitive control of resonant dissociation of surface-adsorbed molecules by `plasmonic' scissors. To that end, we used a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup to dissociate resonantly excited NC2H6 fragments from Malachite green. The surface plasmons (SPs) excited at the sharp metal tip not only enhance the local electric field to harvest the light incident from the laser, but crucially supply `hot electrons' whose energy can be transferred to individual bonds. These processes are resonant Raman, which result in some active chemical bonds and then weaken these bonds, followed by dumping in lots of indiscriminant energy and breaking the weakest bond. The method allows for sensitive control of both the rate and probability of dissociation through their dependence on the density of hot electrons, which can be manipulated by tuning the laser intensity or tunneling current/bias voltage in the HV-TERS setup, respectively. The concepts of plasmonic scissors open up new versatile avenues for the deep understanding of in situ surface-catalyzed chemistry.The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis

  15. Brightening Gold Nanoparticles: New Sensing Approach Based on Plasmon Resonance Energy Transfer

    PubMed Central

    Shi, Lei; Jing, Chao; Gu, Zhen; Long, Yi-Tao

    2015-01-01

    Scattering recovered plasmonic resonance energy transfer (SR-PRET) was reported by blocking the plasmon resonance energy transfer (PRET) from gold nanoparticle (GNP) to the adsorbed molecules (RdBS). Due to the selective cleavage of the Si-O bond by F− ions, the quenching is switched off causing an increase in the brightness of the GNPs,detected using dark-field microscopy (DFM) were brightened. This method was successfully applied to the determination of fluoride ions in water. The SR-PRET provides a potential approach for a vitro/vivo sensing with high sensitivity and selectivity. PMID:25959016

  16. Plasmonic Gold Nanorods Coverage Influence on Enhancement of the Photoluminescence of Two-Dimensional MoS2 Monolayer

    PubMed Central

    Lee, Kevin C. J.; Chen, Yi-Huan; Lin, Hsiang-Yu; Cheng, Chia-Chin; Chen, Pei-Ying; Wu, Ting-Yi; Shih, Min-Hsiung; Wei, Kung-Hwa; Li, Lain-Jong; Chang, Chien-Wen

    2015-01-01

    The 2-D transition metal dichalcogenide (TMD) semiconductors, has received great attention due to its excellent optical and electronic properties and potential applications in field-effect transistors, light emitting and sensing devices. Recently surface plasmon enhanced photoluminescence (PL) of the weak 2-D TMD atomic layers was developed to realize the potential optoelectronic devices. However, we noticed that the enhancement would not increase monotonically with increasing of metal plasmonic objects and the emission drop after the certain coverage. This study presents the optimized PL enhancement of a monolayer MoS2 in the presence of gold (Au) nanorods. A localized surface plasmon wave of Au nanorods that generated around the monolayer MoS2 can provide resonance wavelength overlapping with that of the MoS2 gain spectrum. These spatial and spectral overlapping between the localized surface plasmon polariton waves and that from MoS2 emission drastically enhanced the light emission from the MoS2 monolayer. We gave a simple model and physical interpretations to explain the phenomena. The plasmonic Au nanostructures approach provides a valuable avenue to enhancing the emitting efficiency of the 2-D nano-materials and their devices for the future optoelectronic devices and systems. PMID:26576041

  17. Overlapping Community Detection based on Network Decomposition.

    PubMed

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-01-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms. PMID:27066904

  18. Power divergences in overlapping Wilson lines

    NASA Astrophysics Data System (ADS)

    Berwein, Matthias

    2016-01-01

    We discuss the divergence structure of Wilson line operators with partially overlapping segments on the basis of the cyclic Wilson loop as an explicit example. The generalized exponentiation theorem is used to show the exponentiation and factorization of power divergences for certain linear combinations of associated loop functions.

  19. Overlapping Community Detection based on Network Decomposition

    NASA Astrophysics Data System (ADS)

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-04-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.

  20. Liberal Education: An Overlapping Pragmatic Consensus.

    ERIC Educational Resources Information Center

    Paris, David C.; Kimball, Bruce A.

    2000-01-01

    Suggests in Bruce Kimball's thesis that a pragmatic consensus was emerging about the understanding of liberal education offers that it might be best understood by comparing it to J. Rawl's idea of an "overlapping consensus." States that by comparing and contrasting these ideas that the emerging consensus is pragmatic in nature. (CMK)

  1. Overlapping Community Detection based on Network Decomposition

    PubMed Central

    Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin

    2016-01-01

    Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms. PMID:27066904

  2. Autism and ADHD: Overlapping and Discriminating Symptoms

    ERIC Educational Resources Information Center

    Mayes, Susan Dickerson; Calhoun, Susan L.; Mayes, Rebecca D.; Molitoris, Sarah

    2012-01-01

    Children with ADHD and autism have some similar features, complicating a differential diagnosis. The purpose of our study was to determine the degree to which core ADHD and autistic symptoms overlap in and discriminate between children 2-16 years of age with autism and ADHD. Our study demonstrated that 847 children with autism were easily…

  3. Stochastic Cooling with Schottky Band Overlap

    SciTech Connect

    Lebedev, Valeri

    2006-03-20

    Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for Tevatron Run II. Good understanding and characterization of the cooling is important for the optimization. The paper is devoted to derivation of the Fokker-Plank equations justified in the case of near or full Schottky base overlap for both longitudinal and transverse coolings.

  4. Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated Around Plasmonic Nanoparticles

    PubMed Central

    Lukianova-Hleb, Ekaterina; Hu, Ying; Latterini, Loredana; Tarpani, Luigi; Lee, Seunghyun; Drezek, Rebekah A.; Hafner, Jason H.; Lapotko, Dmitri O.

    2010-01-01

    We have used short laser pulses to generate transient vapor nanobubbles around plasmonic nanoparticles. The photothermal, mechanical and optical properties of such bubbles were found to be different from those of plasmonic nanoparticle and vapor bubbles as well. This phenomena was considered as a new complex nanosystem – plasmonic nanobubble (PNB). Mechanical and optical scattering properties of PNB depended upon the nanoparticle surface and heat capacity, clusterization state, and the optical pulse length. The generation of the PNB required much higher laser pulse fluence thresholds than the explosive boiling level, and was characterized by the relatively high lower threshold of the minimal size (lifetime) of PNB. Optical scattering by PNB and its diameter (measured as the lifetime) has been varied with the fluence of laser pulse and this has demonstrated the tunable nature of PNB. PMID:20307085

  5. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles.

    PubMed

    Lukianova-Hleb, Ekaterina; Hu, Ying; Latterini, Loredana; Tarpani, Luigi; Lee, Seunghyun; Drezek, Rebekah A; Hafner, Jason H; Lapotko, Dmitri O

    2010-04-27

    We have used short laser pulses to generate transient vapor nanobubbles around plasmonic nanoparticles. The photothermal, mechanical, and optical properties of such bubbles were found to be different from those of plasmonic nanoparticle and vapor bubbles, as well. This phenomenon was considered as a new complex nanosystem-plasmonic nanobubble (PNB). Mechanical and optical scattering properties of PNB depended upon the nanoparticle surface and heat capacity, clusterization state, and the optical pulse length. The generation of the PNB required much higher laser pulse fluence thresholds than the explosive boiling level and was characterized by the relatively high lower threshold of the minimal size (lifetime) of PNB. Optical scattering by PNB and its diameter (measured as the lifetime) has been varied with the fluence of laser pulse, and this has demonstrated the tunable nature of PNB. PMID:20307085

  6. A spiral plasmonic lens with directional excitation of surface plasmons

    PubMed Central

    Guo, Qingrui; Zhang, Chi; Hu, Xinhua

    2016-01-01

    Conventional plasmonic lenses are composed of curved slits carved through metallic films. Here, we propose a new plasmonic lens based on a metallic slit with an auxiliary groove. When the lens is illumined normally, only inward surface plasmon polaritons (SPPs) can be generated and then focused into a hot spot at the center of the lens. The focusing effect is theoretically investigated by varying the groove parameters and incident polarizations. It is found that this phenomenon exists for both the circular and linear polarizations of incidence. Under optimal groove parameters, the intensity of the focal spot in our lens can be 2.5 times of that in one without grooves for both linearly and circularly polarized illuminations. PMID:27562227

  7. A spiral plasmonic lens with directional excitation of surface plasmons.

    PubMed

    Guo, Qingrui; Zhang, Chi; Hu, Xinhua

    2016-01-01

    Conventional plasmonic lenses are composed of curved slits carved through metallic films. Here, we propose a new plasmonic lens based on a metallic slit with an auxiliary groove. When the lens is illumined normally, only inward surface plasmon polaritons (SPPs) can be generated and then focused into a hot spot at the center of the lens. The focusing effect is theoretically investigated by varying the groove parameters and incident polarizations. It is found that this phenomenon exists for both the circular and linear polarizations of incidence. Under optimal groove parameters, the intensity of the focal spot in our lens can be 2.5 times of that in one without grooves for both linearly and circularly polarized illuminations. PMID:27562227

  8. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  9. Defect-assisted plasmonic crystal sensor

    PubMed Central

    Briscoe, Jayson L.; Cho, Sang-Yeon; Brener, Igal

    2014-01-01

    We demonstrate enhanced sensitivity of a nanostructured plasmonic sensor that utilizes resonance in intentional structural defects within a plasmonic crystal. The measured sensitivity of the fabricated nanosensor is ~500 nm/RIU showing improvement over traditional nanohole array sensors. Furthermore, the defects provide an additional design parameter to increase sensitivity by engineering plasmon lifetime. PMID:23939114

  10. Chiral plasmons without magnetic field.

    PubMed

    Song, Justin C W; Rudner, Mark S

    2016-04-26

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090