Science.gov

Sample records for bond oxidation reaction

  1. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  2. Mechanisms and kinetics of reaction-bonded aluminium oxide ceramics

    SciTech Connect

    Wu, Suxing; Holz, D.; Claussen, N. . Advanced Ceramics Group)

    1993-04-01

    Reaction-bonded Al[sub 2]O[sub 3] (RBAO) ceramics were fabricated starting from mechanically alloyed Al[sub 2]O[sub 3]/Al, Al[sub 2]O[sub 3]/Al/ZrO[sub 2], and Al[sub 2]O[sub 3]/Al/ZrO[sub 2]/Zr mixtures. Isopressed compacts were heat-treated in air up to 1,550 C. Reaction-bonding mechanisms, kinetics, and the influence of ZrO[sub 2] and Zr additions are investigated. Independent of additive, oxidation of Al proceeds both as solid/gas and liquid/gas reaction, and the reaction kinetics follow a parabolic rate law. The reaction rate depends strongly on the particle size of Al. The activation energy of the reaction depends essentially on green density. Below the melting temperature of Al, in samples containing 45 vol% Al and 55 vol% Al[sub 2]O[sub 3], it is 112 and 152 kJ/mol at [approximately]64% and [approximately]74% TD, respectively, while above the melting temperature, it lies in the range [approximately]26--33 kJ/mol. Zr additions reduce the activation energy to some extent. Samples with only ZrO[sub 2] additions exhibit nearly the same activation energies as ZrO[sub 2]-free samples, though ZrO[sub 2] has a very positive effect on the microstructural development in RBAO ceramics. Microstructure evolution and some strength data of RBAO bodies are also reported.

  3. Concurrent Formation of Carbon-Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction.

    PubMed

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-01-01

    Oxidative C-H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C-C bond formation via C-H transformation and production of functionalized graphene. PMID:27181191

  4. Oxidation behavior in reaction-bonded aluminum-silicon alloy/alumina powder compacts

    SciTech Connect

    Yokota, S.H.

    1992-12-01

    Goal of this research is to determine the feasibility of producing low-shrinkage mullite/alumina composites by applying the reaction-bonded alumina (RBAO) process to an aluminum-silicon alloy/alumina system. Mirostructural and compositional changes during heat treatment were studied by removing samples from the furnace at different steps in the heating schedule and then using optical and scanning electron microscopy, EDS and XRD to characterize the powder compacts. Results suggest that the oxidation behavior of the alloy compact is different from the model proposed for the pure Al/alumina system.

  5. Oxidation stability of advanced reaction-bonded Si3N4 materials

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.; Richerson, D. W.; Carruthers, W. D.; Gersch, H. M.

    1982-01-01

    Four slip-cast, injection-molded and isostatically-pressed specimens of reaction-bonded silicon nitride (RBSN) were subjected to static oxidation tests at 900 C for 10 hours. Specimens containing 8-10% interconnected open porosity of size greater than one micron exhibited a 20-30% decrease in average room temperature four-point flexure strength, while those with 10% open porosity of magnitudes much smaller than one micron as well as those with 2-4% interconnected open porosity of about one micron did not decrease in strength after 900 C exposure. It was determined that preoxidation treatment at 1350 C prevents the 20-30% strength degradation due to internal oxidation, and evidence is presented which suggests that surface pit formation in some RBSN may result from contamination by the furnace environment rather than any intrinsic material properties.

  6. Consequences of Metal–Oxide Interconversion for C–H Bond Activation during CH₄ Reactions on Pd Catalysts

    SciTech Connect

    Chin, Ya-Huei; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2013-10-01

    Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH₄ react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to Habstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cationlattice oxygen pairs (Pd2+-O2-) in PdO. The charges in the CH₃ and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*- covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd2+-O2- pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H₃C···Pd···H)‡ transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3 •···*OH)‡ that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd2+ and vicinal O2-, Pdox-Oox, cleave C-H bonds heterolytically via σ-bond metathesis, with Pd2+ adding to the C-H bond, while O2- abstracts the H-atom to form a four-center (H3Cδ-···Pdox···Hδ+···Oox) transition state without detectable Pdox reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH₄ oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory and experiment, resemble those prevalent on organometallic complexes. Metal centers present on surfaces as well as in homogeneous complexes act as both nucleophile and electrophile in oxidative additions, ligands (e.g., O* on surfaces) abstract H-atoms via reductive deprotonation of C-H bonds, and metal-ligand pairs, with the pair as electrophile and the metal as nucleophile, mediate σ-bond metathesis pathways.

  7. Oxidation effects on the mechanical properties of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1989-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  8. Aromatic Cations from Oxidative Carbon–Hydrogen Bond Cleavage in Bimolecular Carbon–Carbon Bond Forming Reactions

    PubMed Central

    Clausen, Dane J.

    2012-01-01

    Chromenes and isochromenes react quickly with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) to form persistent aromatic oxocarbenium ions through oxidative carbon–hydrogen cleavage. This process is tolerant of electron-donating and electron-withdrawing groups on the benzene ring and additional substitution on the pyran ring. A variety of nucleophiles can be added to these cations to generate a diverse set of structures. PMID:22780559

  9. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase

    SciTech Connect

    Lyubimov, Artem Y.; Chen, Lin; Sampson, Nicole S.; Vrielink, Alice

    2009-11-01

    The importance of active-site electrostatics for oxidative and reductive half-reactions in a redox flavoenzyme (cholesterol oxidase) have been investigated by a combination of biochemistry and atomic resolution crystallography. A detailed examination of active-site dynamics demonstrates that the oxidation of substrate and the re-oxidation of the flavin cofactor by molecular oxygen are linked by a single active-site asparagine. Cholesterol oxidase is a flavoenzyme that catalyzes the oxidation and isomerization of 3β-hydroxysteroids. Structural and mutagenesis studies have shown that Asn485 plays a key role in substrate oxidation. The side chain makes an NH⋯π interaction with the reduced form of the flavin cofactor. A N485D mutant was constructed to further test the role of the amide group in catalysis. The mutation resulted in a 1800-fold drop in the overall k{sub cat}. Atomic resolution structures were determined for both the N485L and N485D mutants. The structure of the N485D mutant enzyme (at 1.0 Å resolution) reveals significant perturbations in the active site. As predicted, Asp485 is oriented away from the flavin moiety, such that any stabilizing interaction with the reduced flavin is abolished. Met122 and Glu361 form unusual hydrogen bonds to the functional group of Asp485 and are displaced from the positions they occupy in the wild-type active site. The overall effect is to disrupt the stabilization of the reduced FAD cofactor during catalysis. Furthermore, a narrow transient channel that is shown to form when the wild-type Asn485 forms the NH⋯π interaction with FAD and that has been proposed to function as an access route of molecular oxygen, is not observed in either of the mutant structures, suggesting that the dynamics of the active site are altered.

  10. Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process Effects of Rare Earth Oxide Sintering Additives

    SciTech Connect

    Lee, S. H.; Ko, J. W.; Park, Y. J.; Kim, H. D.; Lin, Hua-Tay; Becher, Paul F

    2012-01-01

    Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, Lu2O3-SiO2 (US), La2O3-MgO (AM) and Y2O3-Al2O3 (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the La2O3-MgO system. Since the Lu2O3-SiO2 system has the highest melting temperature, full densification could not be achieved after sintering at 1950oC. However, the system had a reasonably high bending strength of 527 MPa at 1200oC in air and a high fracture toughness of 9.2 MPa m1/2. The Y2O3-Al2O3 system had the highest room temperature bending strength of 1.2 GPa

  11. Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.

    PubMed

    Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen

    2016-02-01

    A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct. PMID:26698150

  12. Oxidation effects on the mechanical properties of a SiC-fiber-reinforced reaction-bonded Si3N4 matrix composite

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1992-01-01

    The room-temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  13. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    SciTech Connect

    Klobukowski, Erik

    2011-12-29

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and morpholinones and related analogues such as quinoxalinones and benzoxazin-2-ones.

  14. Thermodynamic and kinetic study of cleavage of the N-O bond of N-oxides by a vanadium(III) complex: enhanced oxygen atom transfer reaction rates for adducts of nitrous oxide and mesityl nitrile oxide.

    PubMed

    Palluccio, Taryn D; Rybak-Akimova, Elena V; Majumdar, Subhojit; Cai, Xiaochen; Chui, Megan; Temprado, Manuel; Silvia, Jared S; Cozzolino, Anthony F; Tofan, Daniel; Velian, Alexandra; Cummins, Christopher C; Captain, Burjor; Hoff, Carl D

    2013-07-31

    Thermodynamic, kinetic, and computational studies are reported for oxygen atom transfer (OAT) to the complex V(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2, 1) from compounds containing N-O bonds with a range of BDEs spanning nearly 100 kcal mol(-1): PhNO (108) > SIPr/MesCNO (75) > PyO (63) > IPr/N2O (62) > MesCNO (53) > N2O (40) > dbabhNO (10) (Mes = mesityl; SIPr = 1,3-bis(diisopropyl)phenylimidazolin-2-ylidene; Py = pyridine; IPr = 1,3-bis(diisopropyl)phenylimidazol-2-ylidene; dbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene). Stopped flow kinetic studies of the OAT reactions show a range of kinetic behavior influenced by both the mode and strength of coordination of the O donor and its ease of atom transfer. Four categories of kinetic behavior are observed depending upon the magnitudes of the rate constants involved: (I) dinuclear OAT following an overall third order rate law (N2O); (II) formation of stable oxidant-bound complexes followed by OAT in a separate step (PyO and PhNO); (III) transient formation and decay of metastable oxidant-bound intermediates on the same time scale as OAT (SIPr/MesCNO and IPr/N2O); (IV) steady-state kinetics in which no detectable intermediates are observed (dbabhNO and MesCNO). Thermochemical studies of OAT to 1 show that the V-O bond in O≡V(N[t-Bu]Ar)3 is strong (BDE = 154 ± 3 kcal mol(-1)) compared with all the N-O bonds cleaved. In contrast, measurement of the N-O bond in dbabhNO show it to be especially weak (BDE = 10 ± 3 kcal mol(-1)) and that dissociation of dbabhNO to anthracene, N2, and a (3)O atom is thermodynamically favorable at room temperature. Comparison of the OAT of adducts of N2O and MesCNO to the bulky complex 1 show a faster rate than in the case of free N2O or MesCNO despite increased steric hindrance of the adducts. PMID:23805977

  15. Csp2-N bond formation via ligand-free Pd-catalyzed oxidative coupling reaction of N-tosylhydrazones and indole derivatives.

    PubMed

    Roche, Maxime; Frison, Gilles; Brion, Jean-Daniel; Provot, Olivier; Hamze, Abdallah; Alami, Mouad

    2013-09-01

    In a fresh approach to the synthesis of N-vinylazoles, a ligand-free palladium catalytic system was found to promote the Csp(2)-N bond-forming reaction utilizing N-tosylhydrazones and N-H azoles. This process shows functional group tolerance; di-, tri-, and tetrasubstituted N-vinylazoles were obtained in high yields. Under the optimized conditions, the reaction proceeds with high stereoselectivity depending on the nature of the coupling partners. PMID:23899168

  16. First insertion of NO into a transition-metal cluster-carbon bond: regioselective formation, structure, and reactions of the first alkanenitrile oxide complexes

    SciTech Connect

    Goldhaber, A.; Vollhardt, K.P.C.; Walborsky, E.C.; Wolfgruber, M.

    1986-02-05

    The chemistry of NO in the presence of transition metals is receiving considerable current attention because of its role in air pollution, its potential in organic synthesis by carbon-nitrogen bond formation, and an increasing interest in its basic features. The nitrosyl cation has been reacted with many mono and polynuclear metal systems, leading mainly to substitution and reduction. Insertion into alkyl and aryl metal bonds in mono-metallic complexes is documented. The unprecedented title reaction and some preliminary chemistry of the products are reported here. 27 references, 1 figure.

  17. Cross-Dehydrogenative Coupling Reactions of sp3-Hybridized C-H Bonds

    NASA Astrophysics Data System (ADS)

    Yoo, Woo-Jin; Li, Chao-Jun

    New methodologies in cross-coupling reaction using C-H bonds as substrates is of great interest due to the challenges associated with C-H bond activation and the potential to streamline synthesis by the elimination of pre-activation of coupling reagents. In this chapter, recent developments in oxidative cross-coupling reactions will be presented with the focus on the functionalization of sp3 C-H bonds with other C-H bonds

  18. Sintering of reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Mangels, J. A.

    1983-01-01

    A process to produce sintered reaction-bonded Si3N4 (SRBSN) articles has been developed. This process consists of the addition of an appropriate sintering aid to reaction-bonded Si3N4 followed by sintering between 1780 and 2000 C, using an over pressure of nitrogen. The principal advantage of this process is the low sintering shrinkages of 5 to 10 percent. The properties and microstructure of two SRBSN systems sintered with MgO and Y2O3 additives are described and were found to be comparable to corresponding hot-pressed Si3N4 systems. Examples of applications of both systems are illustrated, demonstrating near net shape fabrication capability of the process.

  19. Effect of processing parameters on reaction bonding of silicon nitride

    NASA Technical Reports Server (NTRS)

    Richman, M. H.; Gregory, O. J.; Magida, M. B.

    1980-01-01

    Reaction bonded silicon nitride was developed. The relationship between the various processing parameters and the resulting microstructures was to design and synthesize reaction bonded materials with improved room temperature mechanical properties.

  20. Sensor/ROIC Integration using Oxide Bonding

    SciTech Connect

    Ye, Zhenyu; /Fermilab

    2009-02-01

    We explore the Ziptronix Direct Bond Interconnect (DBI) technology [2] for the integration of sensors and readout integrated circuits (ROICs) for high energy physics. The technology utilizes an oxide bond to form a robust mechanical connection between layers which serves to assist with the formation of metallic interlayer connections. We report on testing results of sample sensors bonded to ROICs and thinned to 100 {micro}m.

  1. Photoinitiated reactions in weakly bonded complexes

    SciTech Connect

    Wittig, C.

    1993-05-01

    This paper discusses photoinitiated reactions in weakly bonded binary complexes in which the constituents are only mildly perturbed by the intermolecular bond. Such complexes, with their large zero point excursions, set the stage for events that occur following electronic excitation of one of the constituents. This can take several forms, but in all cases, entrance channel specificity is imposed by the character of the complex as well as the nature of the photoinitiation process. This has enabled us to examine aspects of bimolecular processes: steric effects, chemical branching ratios, and inelastic scattering. Furthermore, monitoring reactions directly in the time domain can reveal mechanisms that cannot be inferred from measurements of nascent product excitations. Consequently, we examined several systems that had been studied previously by our group with product state resolution. With CO{sub 2}/HI, in which reaction occurs via a HOCO intermediate, the rates agree with RRKM predictions. With N{sub 2}O/HI, the gas phase single collision reaction yielding OH + N{sub 2} has been shown to proceed mainly via an HNNO intermediate that undergoes a 1,3-hydrogen shift to the OH + N{sub 2} channel. With complexes, ab initio calculations and high resolution spectroscopic studies of analogous systems suggest that the hydrogen, while highly delocalized, prefers the oxygen to the nitrogen. We observe that OH is produced with a fast risetime (< 250 fs) which can be attributed to either direct oxygen-side attack or rapid HNNO decomposition and/or a termolecular contribution involving the nearby iodine.

  2. Reaction bonded silicon carbide gimbaled pointing mirror

    NASA Astrophysics Data System (ADS)

    Robichaud, J.; Akerstrom, A.; Frey, S.; Crompton, D.; Cucchiaro, P.; Deveau, G.; Peters, M.; Mason, S.; Ullathorne, C.

    2007-09-01

    A Silicon Carbide (SiC) based wide field of view Pointing Mirror Assembly (PMA) has been developed to provide two axis line-of-sight control for a fixed, space based imaging sensor. Thermal modeling has been completed in order to project the excellent thermal stability anticipated from the SiC PMA, and closed loop servo testing of the hardware has been conducted in order to quantify the bandwidth associated with line-of-sight control. In addition to the system level testing the SiC mirror substrate itself has been tested for thermal stability. We also report on results obtained with a novel polishing technique which has been applied in order to allow optical finishing of the two-phased Reaction Bonded (RB) SiC mirror substrate without the need for Silicon or SiC claddings.

  3. Development of moldable, high density reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Mangels, J. A.

    1980-01-01

    It is noted that currently available reaction bonded silicon nitride (RBSN) materials are limited by relatively low strength (up to 300 MPa) and oxidation resistance, primarily due to open porosity. Attention is given to technology that was developed and used to produce an improved grade of injection molded RBSN having a density of 2.8 g/cc, with significantly decreased open porosity and a strength exceeding 350 MPa. It is shown that these results are primarily due to advances in two areas: silicon powder processing, and nitriding technique. A comparison of room temperature strength and oxidation resistance of the new material with that of state-of-the-art RBSN, showed significant improvements. It is concluded that turbine stator vanes were produced to show that this improved RBSN technology has been reduced to engineering practice.

  4. Hydrodenitrogenation chemistry. I. Cleavage of alkylcarbon-nitrogen bonds, methane and ammonia formation in the HDN reaction of 1,2,3,4-tetrahydroquinoline with a nickel oxide catalyst supported on silica/alumina

    SciTech Connect

    Fish, R.H.; Thormodsen, A.D.; Moore, R.S.; Perry, D.L.; Heinemann, H.

    1986-11-01

    The hydrodenitrogenation reaction (HDN) is one of the most important industrial processes used in the refining of petroleum feedstocks and involves the removal of the nitrogen atom, as ammonia, from polynuclear heteroaromatic nitrogen compounds at high temperatures and high pressures of hydrogen gas (350-500/sup 0/C and 2000 psi). It is interesting to note that most of the reported heterogeneous catalysts require the complete hydrogenation of both the nitrogen heterocyclic ring and the aromatic ring before carbon-nitrogen bond cleavage can occur. A major breakthrough in the technical and economic aspects of the HDN reaction would take place if, in fact a catalyst could be found that would selectively cleave the C-N bond din the saturated nitrogen ring and subsequently produce ammonia, without substantial reduction of the aromatic rings, at lower temperatures as well as lower pressures of hydrogen gas. In this note, the authors report on a highly loaded nickel oxide catalyst (50% by weight Ni), supported on silica/alumina, that will effectively provide some of the criteria for an ideal HDN catalyst. 8 references.

  5. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds

    NASA Astrophysics Data System (ADS)

    Li, Zhiping; Bohle, D. Scott; Li, Chao-Jun

    2006-06-01

    Cu-catalyzed cross-dehydrogenative coupling (CDC) methodologies were developed based on the oxidative activation of sp3 C-H bonds adjacent to a nitrogen atom. Various sp, sp2, and sp3 C-H bonds of pronucleophiles were used in the Cu-catalyzed CDC reactions. Based on these results, the mechanisms of the CDC reactions also are discussed. C-H activation | catalysis | Baylis-Hillman reaction | Mannich reaction | Friedel-Crafts reaction

  6. Molecular iodine catalyzed cross-dehydrogenative coupling reaction between two sp3 C-H bonds using hydrogen peroxide.

    PubMed

    Nobuta, Tomoya; Tada, Norihiro; Fujiya, Akitoshi; Kariya, Atsumasa; Miura, Tsuyoshi; Itoh, Akichika

    2013-02-01

    A useful method for molecular iodine catalyzed oxidative C-C bond formation between tertiary amines and a carbon nucleophile using hydrogen peroxide as the terminal oxidant is reported. This is the first report of a molecular iodine catalyzed cross-dehydrogenative coupling (CDC) reaction between two sp(3) C-H bonds. PMID:23331076

  7. Anchor Points Reactive Potential for Bond-Breaking Reactions.

    PubMed

    Yang, Ke R; Xu, Xuefei; Truhlar, Donald G

    2014-03-11

    We present a new method for fitting potential energy surfaces in molecular-mechanics-like internal coordinates based on data from electronic structure calculations. The method should be applicable to chemical reactions involving either bond dissociation or isomerization and is illustrated here for bond dissociation, in particular the breaking of an O-H bond in methanol and the breaking of an N-H bond in dimethylamine. As compared to previously available systematic methods for fitting global potential energy surfaces, it extends the maximum size of the system than can be treated by at least an order of magnitude. PMID:26580172

  8. Development and application of bond cleavage reactions in bioorthogonal chemistry.

    PubMed

    Li, Jie; Chen, Peng R

    2016-02-16

    Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research. PMID:26881764

  9. Dynamic fracture toughnesses of reaction-bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Kobayashi, A. S.; Emery, A. F.; Liaw, B. M.

    1983-01-01

    The room-temperature dynamic fracture response of reaction-bonded silicon nitride is investigated using a hybrid experimental-numerical procedure. In this procedure, experimentally determined crack velocities are utilized to drive a dynamic finite-element code or dynamic finite-difference code in its generation mode in order to extract numerically the dynamic stress intensity factor of the fracturing specimen. Results show that the dynamic fracture toughness vs crack velocity relations of the two reaction-bonded silicon nitrides do not follow the general trend in those relations of brittle polymers and steel. A definite slow crack velocity during the initial phase of dynamic crack propagation is observed in reaction-bonded silicon nitride, which results in a nonunique dynamic fracture toughness vs crack velocity relation. In addition, it is found that a propagating crack will continue to propagate under a static stress intensity factor substantially lower than K(IC).

  10. C(aryl)-C(alkyl) bond formation from Cu(ClO4)2-mediated oxidative cross coupling reaction between arenes and alkyllithium reagents through structurally well-defined Ar-Cu(III) intermediates.

    PubMed

    Wang, Zu-Li; Zhao, Liang; Wang, Mei-Xiang

    2012-09-28

    The stable and structurally well-defined Ar-Cu(III) intermediates, that are prepared almost quantitatively from the reaction of azacalix[1]arene[3]pyridines with Cu(ClO(4))(2)·6H(2)O under aerobic conditions, reacted smoothly with a number of alkyllithium reagents under mild conditions to form C(aryl)-C(alkyl) bonds. PMID:22892907

  11. Oxidation and Reduction Reactions in Organic Chemistry

    ERIC Educational Resources Information Center

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.

    2010-01-01

    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  12. Bonding of chlorophenols on iron and aluminum oxides

    SciTech Connect

    Kung, K.S.; McBride, M.B. )

    1991-04-01

    The adsorption of 10 chlorophenols on synthetic, naturally occurring iron and aluminum oxides was studied to elucidate the mechanism of binding and relative bond strength of the chlorine-substituted phenols was identified by spectroscopic methods. Chlorophenolates were found to be chemisorbed on oxide surfaces via an inner-sphere coordination. Chlorophenols also bonded on oxides by weak physical forces (H bonding and condensation), but these types of weak bonding were identified only when adsorption occurred from the vapor phase onto dry surfaces. Physisorbed chlorophenols, unlike chemisorbed molecules, were readily removed from oxide surfaces by washing with water. Poorly crystallized iron and aluminum oxides showed similar mechanisms of chlorophenol binding, although the bond for chlorophenolate chemisorbed on iron oxide was stronger than that on aluminum oxide. Only physically adsorbed chlorophenols were detected on crystalline gibbsite, suggesting that the dominant (001) crystal face, with surface hydroxyl groups doubly coordinated to Al, was not specifically reactive with the chlorophenols. Chemisorption, however, was identified on the crystalline iron, geothite. From the extent of perturbation of aromatic ring electrons, the surface bond strength for chlorophenolates on aluminum oxide was found to correlate with the Lewis basicity of the phenolate anions (the higher the pK{sub {alpha}} of the chlorophenols, the stronger the surface bond). Nevertheless, the amount of chlorophenol adsorbed on noncrystalline iron oxide at controlled pH of 5.4 was limited by the extent of deprotonation (the lower the pK{sub a}, the more adsorption).

  13. Solvent dynamical effects on bond-breaking electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Spirina, O. B.; Cukier, R. I.

    1994-06-01

    The effects of solvent and intramolecular dynamics on the rates of bond-breaking electron transfer (BBET) reactions is investigated. In the model we adopt, suggested by Saveant [J. Am. Chem. Soc. 109, 6788 (1987)], electron transfer and bond breaking are considered to occur as a concerted process. Thermal equilibrium rate constants kie [i=1(2) denoting the forward (reverse) reaction] are derived and exhibit a characteristic Marcus form, with the reorganization energy equal to the sum of contributions from the solvent, intramolecular vibrational and bond-breaking coordinates. The effect of dynamics on the BBET rate constants is studied by using diffusion-reaction equations. We assume that the intramolecular vibrational coordinate is in equilibrium and the solvent and the bond-breaking coordinates can be out of equilibrium. The survival probabilities are derived analytically with the use of a decoupling approximation. The single exponential decay of the survival probabilities leads to nonthermal-equilibrium rate constants ki that interpolate between the thermal equilibrium kie and diffusion controlled kid rate constants (where motion along the nonequilibrium coordinates control the rate) according to k-1i=k-1ie+k-1id. The diffusion controlled rate constants kid depend on the relaxation times along both the bond-breaking and solvent coordinates. For large activation energies, the fast relaxation will dominate the rate, while for small activation energies, the slow relaxation time will dominate the rate. We also discuss the case of the dynamics along the bond-breaking coordinate being characterized by an energy diffusion process. The rate constant is evaluated for high activation barrier reactions and still has the form given above, with a suitably redefined relaxation time for energy diffusion.

  14. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C–C bond formations via the oxidative activation of sp3 C–H bonds

    PubMed Central

    Li, Zhiping; Bohle, D. Scott; Li, Chao-Jun

    2006-01-01

    Cu-catalyzed cross-dehydrogenative coupling (CDC) methodologies were developed based on the oxidative activation of sp3 C–H bonds adjacent to a nitrogen atom. Various sp, sp2, and sp3 C–H bonds of pronucleophiles were used in the Cu-catalyzed CDC reactions. Based on these results, the mechanisms of the CDC reactions also are discussed. PMID:16754869

  15. Syntheses of sulfides and selenides through direct oxidative functionalization of C(sp3)-H bond.

    PubMed

    Du, Bingnan; Jin, Bo; Sun, Peipei

    2014-06-01

    A new protocol for C-S and C-Se bond formation by the direct functionalization of the C(sp(3))-H bond of alkanes under metal-free conditions was developed. Using (t)BuOO(t)Bu as the oxidant, the reaction of disulfides or diselenides with alkanes gave sulfides or selenides in moderate to good yields. The method was very simple and atom-economical. PMID:24835082

  16. Alkali metal mediated C–C bond coupling reaction

    SciTech Connect

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C–C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz){sub 2}, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz){sub 2}, the structure of [Li(Bz){sub 2}]{sup −} was drastically changed: Bz–Bz parallel form was rapidly fluctuated as a function of time, and a new C–C single bond was formed in the C{sub 1}–C{sub 1}′ position of Bz–Bz interaction system. In the hole capture, the intermolecular vibration between Bz–Bz rings was only enhanced. The mechanism of C–C bond formation in the electron capture was discussed on the basis of theoretical results.

  17. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  18. Recent aspects of the proton transfer reaction in H-bonded complexes

    NASA Astrophysics Data System (ADS)

    Szafran, Miros?aw

    1996-07-01

    Proton transfer processes cover a very wide range of situations and time scales and they are of great interest from the viewpoint of chemical reactions in solution. These processes can occur via thermally activated crossing or tunneling. This review considers various aspects of this many-faceted field. Spectroscopic, dielectric, colligative and energetic properties and structures of various species with H-bonds are examined. Proton transfer reactions in water and organic solvents, and the contribution of various H-bonded species and ions to these processes are discussed. Among other topics, this survey includes the effects of solvent, acid-base stoichiometry, concentration, temperature and impurity on proton transfer reactions in complexes of phenols and carboxylic acids with amines, pyridines and pyridine N-oxides. The contribution of the nonstoichiometric acid-base complexes and ionic species to the reversible proton transfer mechanism is discussed.

  19. Carbon-carbon bond cleavage and formation reactions in drug metabolism and the role of metabolic enzymes.

    PubMed

    Bolleddula, Jayaprakasam; Chowdhury, Swapan K

    2015-11-01

    Elimination of xenobiotics from the human body is often facilitated by a transformation to highly water soluble and more ionizable molecules. In general, oxidation-reduction, hydrolysis, and conjugation reactions are common biotransformation reactions that are catalyzed by various metabolic enzymes including cytochrome P450s (CYPs), non-CYPs, and conjugative enzymes. Although carbon-carbon (C-C) bond formation and cleavage reactions are known to exist in plant secondary metabolism, these reactions are relatively rare in mammalian metabolism and are considered exceptions. However, various reactions such as demethylation, dealkylation, dearylation, reduction of alkyl chain, ring expansion, ring contraction, oxidative elimination of a nitrile through C-C bond cleavage, and dimerization, and glucuronidation through C-C bond formation have been reported for drug molecules. Carbon-carbon bond cleavage reactions for drug molecules are primarily catalyzed by CYP enzymes, dimerization is mediated by peroxidases, and C-glucuronidation is catalyzed by UGT1A9. This review provides an overview of C-C bond cleavage and formation reactions in drug metabolism and the metabolic enzymes associated with these reactions. PMID:26390887

  20. Fracture of yttria-doped, sintered reaction-bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Govila, R. K.; Mangels, J. A.; Baer, J. R.

    1985-01-01

    Flexural strength of an yttria-doped, slip-cast, sintered reaction-bonded silicon nitride was evaluated as a function of temperature (20 to 1400 C in air), applied stress, and time. Static oxidation at 700 to 1400 C was investigated in detail; in tests at 1000 C in air, the material showed anomalous weight gain. Flexural stress-rupture testing at 800 to 1200 C in air indicated that the material is susceptible to stress-enhanced oxidation and early failure. Fractographic evidence for time-dependent and -independent failures is presented.

  1. Palladium-catalyzed oxidative carbonylation reactions.

    PubMed

    Wu, Xiao-Feng; Neumann, Helfried; Beller, Matthias

    2013-02-01

    Palladium-catalyzed coupling reactions have become a powerful tool for advanced organic synthesis. This type of reaction is of significant value for the preparation of pharmaceuticals, agrochemicals, as well as advanced materials. Both, academic as well as industrial laboratories continuously investigate new applications of the different methodologies. Clearly, this area constitutes one of the major topics in homogeneous catalysis and organic synthesis. Among the different palladium-catalyzed coupling reactions, several carbonylations have been developed and widely used in organic syntheses and are even applied in the pharmaceutical industry on ton-scale. Furthermore, methodologies such as the carbonylative Suzuki and Sonogashira reactions allow for the preparation of interesting building blocks, which can be easily refined further on. Although carbonylative coupling reactions of aryl halides have been well established, palladium-catalyzed oxidative carbonylation reactions are also interesting. Compared with the reactions of aryl halides, oxidative carbonylation reactions offer an interesting pathway. The oxidative addition step could be potentially avoided in oxidative reactions, but only few reviews exist in this area. In this Minireview, we summarize the recent development in the oxidative carbonylation reactions. PMID:23307763

  2. Oxidative addition of the C-I bond on aluminum nanoclusters

    NASA Astrophysics Data System (ADS)

    Sengupta, Turbasu; Das, Susanta; Pal, Sourav

    2015-07-01

    Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly sensitive to the geometrical shapes and electronic structures of the clusters rather than their size, imposing the fact that comprehensive studies on aluminum clusters can be beneficial for nanoscience and nanotechnology. To understand the possible reaction mechanism in detail, the reaction pathway is investigated with the ab initio Born Oppenheimer Molecular Dynamics (BOMD) simulation and the Natural Bond Orbital (NBO) analysis. In short, our theoretical study highlights the thermodynamic and kinetic details of C-I bond dissociation on aluminum clusters for future endeavors in cluster chemistry.Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly sensitive to the geometrical shapes and electronic structures of the clusters rather than their size, imposing the fact that comprehensive studies on aluminum clusters can be beneficial for nanoscience and nanotechnology. To understand the possible reaction mechanism in detail, the reaction pathway is investigated with the ab initio Born Oppenheimer Molecular Dynamics (BOMD) simulation and the Natural Bond Orbital (NBO) analysis. In short, our theoretical study highlights the thermodynamic and kinetic details of C-I bond dissociation on aluminum clusters for future endeavors in cluster chemistry. Electronic supplementary information (ESI) available: Cartesian coordinates for the optimized structures and harmonic frequencies, sample IRC data and plot, grid data for three dimensional potential energy surface and contour plot and data for BOMD simulation. See DOI: 10.1039/c5nr02278a

  3. Tailoring oxidation degrees of graphene oxide by simple chemical reactions

    SciTech Connect

    Wang Gongkai; Sun Xiang; Lian Jie; Liu Changsheng

    2011-08-01

    High quality graphene oxide (GO) with controllable degrees of oxidation was synthesized by simple chemical reactions inspired by approaches to unzip single wall carbon nanotubes using strong oxidizing agents. As compared to the conventional Hummers method, these reactions are less exo-therm involved without emission of toxic gases. The structural characteristics of the synthesized GO with various oxidation degrees were evaluated by x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy, thermal gravimetric analysis, and UV-vis-IR spectroscopy. GO with tailored degrees of oxidation displays tunable optoelectronic properties and may have a significant impact on developing graphene- or GO-based platforms for various technological applications.

  4. Isolation, Characterization of an Intermediate in an Oxygen Atom-Transfer Reaction, and the Determination of the Bond Dissociation Energy

    SciTech Connect

    Nemykin, Victor N.; Laskin, Julia; Basu, Partha

    2004-07-19

    Redox reactions coupled with the formal loss or gain of an oxygen atom are ubiquitous in chemical processes. Such reactions proceed through the reduction of the donor center (XO) and the oxidation of the acceptor (Y) molecule. Among many examples of the metal centered oxygen atom transfer (OAT) reactivity, those involving molybdenum complexes have been widely investigated due to their involvement in mononuclear molybdenum enzymes. The heat of reaction of the overall atom transfer process can be expressed as a difference between the bond dissociation energies (BDEs) of the oxygen-donor(X) and oxygen-acceptor(Y) bond, i.e., H=DX=o-DY=O.

  5. Diffusion bonding of the oxide dispersion strengthened steel PM2000

    NASA Astrophysics Data System (ADS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2013-11-01

    Ferritic oxide dispersion strengthened (ODS) steels are well suited as structural materials, e.g. for claddings in fission reactors and for plasma facing components in fusion power plants due to their high mechanical and oxidation stability at high temperatures and their high irradiation resistance. PM2000 is an iron based ODS ferritic steel with homogeneously distributed nanometric yttria particles. Melting joining techniques are not suitable for such ODS materials because of the precipitation and agglomeration of the oxide particles and hence the loss of their strengthening effect. Solid state diffusion bonding is thus chosen to join PM2000 and is investigated in this work with a focus on oxide particles. The diffusion bonding process is aided by the computational modeling, including the influence of the ODS particles. For modeling the microstructure stability and the creep behavior of PM2000 at various, diffusion bonding relevant temperatures (50-80% Tm) are investigated. Particle distribution (TEM), strength (tensile test) and toughness (Charpy impact test) obtained at temperatures relevant for bonding serve as input for the prediction of optimal diffusion bonding parameters. The optimally bonded specimens show comparable strength and toughness relative to the base material.

  6. Transition-metal-catalyzed C-S bond coupling reaction.

    PubMed

    Lee, Chin-Fa; Liu, Yi-Chen; Badsara, Satpal Singh

    2014-03-01

    Sulfur-containing molecules such as thioethers are commonly found in chemical biology, organic synthesis, and materials chemistry. While many reliable methods have been developed for preparing these compounds, harsh reaction conditions are usually required in the traditional methods. The transition metals have been applied in this field, and the palladium-catalyzed coupling of thiols with aryl halides and pseudo halides is one of the most important methods in the synthesis of thioethers. Other metals have also been used for the same purpose. Here, we summarize recent efforts in metal-catalyzed C-S bond cross-coupling reactions, focusing especially on the coupling of thiols with aryl- and vinyl halides based on different metals. PMID:24443103

  7. Method of densifying an article formed of reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Mangels, John A. (Inventor)

    1982-01-01

    A method of densifying an article formed of reaction bonded silicon nitride is disclosed. The reaction bonded silicon nitride article is packed in a packing mixture consisting of silicon nitride powder and a densification aid. The reaction bonded silicon nitride article and packing powder are sujected to a positive, low pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause any open porosity originally found in the reaction bonded silicon nitride article to be substantially closed. Thereafter, the reaction bonded silicon nitride article and packing powder are subjected to a positive high pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause a sintering of the reaction bonded silicon nitride article whereby the strength of the reaction bonded silicon nitride article is increased.

  8. Toluene derivatives as simple coupling precursors for cascade palladium-catalyzed oxidative C-H bond acylation of acetanilides.

    PubMed

    Wu, Yinuo; Choy, Pui Ying; Mao, Fei; Kwong, Fuk Yee

    2013-01-25

    A palladium-catalyzed cascade cross-coupling of acetanilide and toluene for the synthesis of ortho-acylacetanilide is described. Toluene derivatives can act as effective acyl precursors (upon sp(3)-C-H bond oxidation by a Pd/TBHP system) in the oxidative coupling between two C-H bonds. This dehydrogenative Pd-catalyzed ortho-acylation proceeds under mild reaction conditions. PMID:23230572

  9. Oxidative hemoglobin reactions: Applications to drug metabolism.

    PubMed

    Spolitak, Tatyana; Hollenberg, Paul F; Ballou, David P

    2016-06-15

    Hb is a protein with multiple functions, acting as an O2 transport protein, and having peroxidase and oxidase activities with xenobiotics that lead to substrate radicals. However, there is a lack of evidence for intermediates involved in these reactions of Hb with redox-active compounds, including those with xenobiotics such as drugs, chemical carcinogens, and sulfides. In particular, questions exist as to what intermediates participate in reactions of either metHb or oxyHb with sulfides. The studies presented here elaborate kinetics and intermediates involved in the reactions of Hb with oxidants (H2O2 and mCPBA), and they demonstrate the formation of high valent intermediates, providing insights into mechanistic issues of sulfur and drug oxidations. Overall, we propose generalized mechanisms that include peroxidatic reactions using H2O2 generated from the autooxidation of oxyHb, with involvement of substrate radicals in reactions of Hb with oxidizable drugs such as metyrapone or 2,4-dinitrophenylhydrazine and with sulfides. We identify ferryl intermediates (with a Soret band at 407 nm) in oxidative reactions with all of the above-mentioned reactions. These spectral properties are consistent with a protonated ferryl heme, such as Cpd II or Cpd ES-like species (Spolitak et al., JIB, 2006, 100, 2034-2044). Mechanism(s) of Hb oxidative reactions are discussed. PMID:27091316

  10. Ab initio modeling of the bonding of benzotriazole corrosion inhibitor to reduced and oxidized copper surfaces.

    PubMed

    Kokalj, Anton

    2015-01-01

    The bonding of benzotriazole-an outstanding corrosion inhibitor for copper-on reduced and oxidized copper surfaces is discussed on the basis of density functional theory (DFT) calculations. Calculations reveal that benzotriazole is able to bond with oxide-free and oxidized copper surfaces and on both of them it bonds significantly stronger to coordinatively unsaturated Cu sites. This suggests that benzotriazole is able to passivate the reactive under-coordinated surface sites that are plausible microscopic sites for corrosion attack. Benzotriazole can adsorb in a variety of different forms, yet it forms a strong molecule-surface bond only in deprotonated form. The bonding is even stronger when the deprotonated form is incorporated into organometallic adcomplexes. This is consistent with existing experimental evidence that benzotriazole inhibits corrosion by forming protective organometallic complexes. It is further shown that adsorption of benzotriazole considerably reduces the metal work function, which is a consequence of a large permanent molecular dipole and a properly oriented adsorption structure. It is argued that such a pronounced effect on the work function might be relevant for corrosion inhibition, because it should diminish the anodic corrosion reaction, which is consistent with existing experimental evidence that benzotriazole, although a mixed type inhibitor, predominantly affects the anodic reaction. PMID:25955130

  11. Transient liquid phase bonding of ferritic oxide dispersion strengthened alloys

    NASA Astrophysics Data System (ADS)

    Krishnardula, Venu Gopal

    2006-04-01

    Oxide dispersion strengthened (ODS) alloys possess excellent properties including resistance to oxidation, corrosion, creep and thermal fatigue. In addition, ferritic ODS alloys exhibit resistance to void swelling and are of particular interest to the nuclear industry. The present study involves the joining of fuel cans to end caps that will be utilized in the nuclear industry. Mechanically alloyed (MA) ODS alloys possess coarse columnar grain structure strengthened with nanosize yttria dispersoids. In that past, fusion welding techniques resulted in microstructural disruption leading to poor joints. This work investigated joining of two ferritic MA ODS alloys, MA956 and PM2000, using; (a) Transient liquid phase (TLP) bonding and (b) Solid-state diffusion bonding. TLP bonds were prepared with MA956 and PM2000 in the unrecrystallized and recrystallized conditions using electron beam physical vapor deposited (EBPVD) boron thin films as interlayers. The use of thin interlayers reduced the amount of substrate dissolution and minimized the bondline microstructural disruption. Different bond orientations were also investigated. Successful bonds with better microstructural continuity were obtained when substrates were joined in the unrecrystallized condition followed by post bond recrystallization heat treatment with the substrate faying surface aligned along the working (extrusion or rolling) direction than when substrates were aligned perpendicular to the working direction. This was attributed to the number of yttria stringers cut by the bondline, which is less when the substrate faying surface is lying parallel to the working direction than when the substrate faying surface is lying perpendicular to the working direction. Solid-state diffusion bonding was conducted using MA956 and PM2000 in the unrecrystallized and recrystallized conditions. Bonding occurred only when an unrecrystallized substrate was involved. Bonding occurred at unusually low stresses. This may be attributed to the grain boundary diffusion, owing to submicron grain size of the unrecrystallized substrates. Post bond heat treatment was conducted in order to induce recrystallization in the bonds. Room temperature mechanical testing was conducted on the bonds and the bulk. Bond shear strengths and tensile strengths of up to 80% and 110% of bulk, respectively, were obtained. Defects in the bulk material such as porosity and unwanted fine grain formation were observed. Pore formation at the bondline during post bond heat treatment seems to decrease the bond strength. These defects were attributed to prior thermomechanical history of the materials.

  12. Sequential N-O and N-N bond cleavage of N-heterocyclic carbene-activated nitrous oxide with a vanadium complex.

    PubMed

    Tskhovrebov, Alexander G; Solari, Euro; Wodrich, Matthew D; Scopelliti, Rosario; Severin, Kay

    2012-01-25

    Chemically induced bond cleavage of nitrous oxide typically proceeds by rupture of the N-O bond with concomitant O-atom transfer and liberation of dinitrogen. On a few occasions, N-N bond scission has been observed instead. We report a reaction sequence involving an N-heterocyclic carbene and a vanadium complex that results in cleavage of both the N-O bond and the N-N bond. PMID:22276774

  13. Graphite Oxidation Thermodynamics/Reactions

    SciTech Connect

    Propp, W.A.

    1998-09-01

    The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study.

  14. Oxidative Reactions with Nonaqueous Enzymes

    SciTech Connect

    Jonathan S. Dordick; Douglas Clark; Brian H Davison; Alexander Klibanov

    2001-12-30

    The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with less waste.

  15. Nucleophilicity and P-C Bond Formation Reactions of a Terminal Phosphanido Iridium Complex.

    PubMed

    Serrano, ngel L; Casado, Miguel A; Ciriano, Miguel A; de Bruin, Bas; Lpez, Jos A; Tejel, Cristina

    2016-01-19

    The diiridium complex [{Ir(ABPN2)(CO)}2(?-CO)] (1; [ABPN2](-) = [(allyl)B(Pz)2(CH2PPh2)](-)) reacts with diphenylphosphane affording [Ir(ABPN2)(CO)(H) (PPh2)] (2), the product of the oxidative addition of the P-H bond to the metal. DFT studies revealed a large contribution of the terminal phosphanido lone pair to the HOMO of 2, indicating nucleophilic character of this ligand, which is evidenced by reactions of 2 with typical electrophiles such as H(+), Me(+), and O2. Products from the reaction of 2 with methyl chloroacetate were found to be either [Ir(ABPN2)(CO)(H)(PPh2CH2CO2Me)][PF6] ([6]PF6) or [Ir(ABPN2)(CO)(Cl)(H)] (7) and the free phosphane (PPh2CH2CO2Me), both involving P-C bond formation, depending on the reaction conditions. New complexes having iridacyclophosphapentenone and iridacyclophosphapentanone moieties result from reactions of 2 with dimethyl acetylenedicarboxylate and dimethyl maleate, respectively, as a consequence of a further incorporation of the carbonyl ligand. In this line, the terminal alkyne methyl propiolate gave a mixture of a similar iridacyclophosphapentanone complex and [Ir(ABPN2){CH?C(CO2Me)-CO}{PPh2-CH?CH(CO2Me)}] (10), which bears the functionalized phosphane PPh2-CH?CH(CO2Me) and an iridacyclobutenone fragment. Related model reactions aimed to confirm mechanistic proposals are also studied. PMID:26695592

  16. BN Bonded BN fiber article from boric oxide fiber

    DOEpatents

    Hamilton, Robert S.

    1978-12-19

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising boron oxide fibers and boric acid, heating the composition in an anhydrous gas to a temperature above the melting point of the boric acid and nitriding the resulting article in ammonia gas.

  17. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1979-01-01

    An element comprising sapphire, ruby or blue sapphire can be bonded to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  18. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  19. Highly Selective Cascade C-C Bond Formation via Palladium- Catalyzed Oxidative Carbonylation-Carbocyclization-Carbonylation-Alkynylation of Enallenes.

    PubMed

    Zhu, Can; Yang, Bin; Bäckvall, Jan-E

    2015-09-23

    A highly efficient palladium-catalyzed oxidative cascade reaction of enallenes undergoing overall four C-C bond formations has been developed. The insertion cascade proceeds via carbonylation-carbocyclization-carbonylation-alkynylation involving sequential insertion of carbon monoxide, olefin, and carbon monoxide. Furthermore, different types of terminal alkynes and functionalized enallenes have been investigated and found to undergo the cascade reaction under mild reaction conditions. PMID:26356201

  20. Kinetic Deuterium Isotope Effects in Cytochrome P450 Oxidation Reactions

    PubMed Central

    Guengerich, F. Peter

    2016-01-01

    Cytochrome P450 (P450) enzymes account for ~ 75% of the metabolism of drugs. Most of the reactions catalyzed by P450s are mixed-function oxidations, and a C-H bond is (usually) broken. The rate-limiting nature of this step can be analyzed using the kinetic isotope effect (KIE) approach. The most relevant type of KIE is one termed intermolecular non-competitive, indicative of rate-limiting C-H bond breaking. A KIE vs. kcat for several P450s showed a correlation coefficient (r2) of 0.62. Deuterium substitution has been considered as a potential means of slowing drug metabolism or redirecting sites of metabolism in some cases, and several general points can be made regarding the potential for application of deuterium in drug design/development based on what is known about P450 KIEs. PMID:24285515

  1. SURFACE REACTIONS OF OXIDES OF SULFUR

    EPA Science Inventory

    Surface reactions of several sulfur-containing molecules have been studied in order to understand the mechanism by which sulfate ions are formed on atmospheric aerosols. At 25C the heterogeneous oxidation of SO2 by NO2 to sulfuric acid and sulfate ions occurred on hydrated silica...

  2. A pyridoxal phosphate-dependent enzyme that oxidizes an unactivated carbon-carbon bond.

    PubMed

    Du, Yi-Ling; Singh, Rahul; Alkhalaf, Lona M; Kuatsjah, Eugene; He, Hai-Yan; Eltis, Lindsay D; Ryan, Katherine S

    2016-03-01

    Pyridoxal 5'-phosphate (PLP)-dependent enzymes have wide catalytic versatility but are rarely known for their ability to react with oxygen to catalyze challenging reactions. Here, using in vitro reconstitution and kinetic analysis, we report that the indolmycin biosynthetic enzyme Ind4, from Streptomyces griseus ATCC 12648, is an unprecedented O2- and PLP-dependent enzyme that carries out a four-electron oxidation of L-arginine, including oxidation of an unactivated carbon-carbon (C-C) bond. We show that the conjugated product of this reaction, which is susceptible to nonenzymatic deamination, is efficiently intercepted and stereospecifically reduced by the partner enzyme Ind5 to give D-4,5-dehydroarginine. Thus, Ind4 couples the redox potential of O2 with the ability of PLP to stabilize anions to efficiently oxidize an unactivated C-C bond, with the subsequent stereochemical inversion by Ind5 preventing off-pathway reactions. Altogether, these results expand our knowledge of the catalytic versatility of PLP-dependent enzymes and enrich the toolbox for oxidative biocatalysis. PMID:26807714

  3. Mullite fiber reinforced reaction bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Saleh, T.; Sayir, A.; Lightfoot, A.; Haggerty, J.

    1996-01-01

    Fracture toughnesses of brittle ceramic materials have been improved by introducing reinforcements and carefully tailored interface layers. Silicon carbide and Si3N4 have been emphasized as matrices of structural composites intended for high temperature service because they combine excellent mechanical, chemical, thermal and physical properties. Both matrices have been successfully toughened with SiC fibers, whiskers and particles for ceramic matrix composite (CMC) parts made by sintering, hot pressing or reaction forming processes. These SiC reinforced CMCs have exhibited significantly improved toughnesses at low and intermediate temperature levels, as well as retention of properties at high temperatures for selected exposures; however, they are vulnerable to attack from elevated temperature dry and wet oxidizing atmospheres after the matrix has cracked. Property degradation results from oxidation of interface layers and/or reinforcements. The problem is particularly acute for small diameter (-20 tim) polymer derived SiC fibers used for weavable toes. This research explored opportunities for reinforcing Si3N4 matrices with fibers having improved environmental stability; the findings should also be applicable to SiC matrix CMCs.

  4. Impact of an easily reducible disulfide bond on the oxidative folding rate of multi-disulfide-containing proteins.

    PubMed

    Leung, H J; Xu, G; Narayan, M; Scheraga, H A

    2005-01-01

    The burial of native disulfide bonds, formed within stable structure in the regeneration of multi-disulfide-containing proteins from their fully reduced states, is a key step in the folding process, as the burial greatly accelerates the oxidative folding rate of the protein by sequestering the native disulfide bonds from thiol-disulfide exchange reactions. Nevertheless, several proteins retain solvent-exposed disulfide bonds in their native structures. Here, we have examined the impact of an easily reducible native disulfide bond on the oxidative folding rate of a protein. Our studies reveal that the susceptibility of the (40-95) disulfide bond of Y92G bovine pancreatic ribonuclease A (RNase A) to reduction results in a reduced rate of oxidative regeneration, compared with wild-type RNase A. In the native state of RNase A, Tyr 92 lies atop its (40-95) disulfide bond, effectively shielding this bond from the reducing agent, thereby promoting protein oxidative regeneration. Our work sheds light on the unique contribution of a local structural element in promoting the oxidative folding of a multi-disulfide-containing protein. PMID:15686534

  5. If C–H Bonds Could Talk – Selective C–H Bond Oxidation

    PubMed Central

    Newhouse, Timothy; Baran, Phil S.

    2014-01-01

    C–H oxidation has a long history and an ongoing presence in research at the forefront of chemistry and interrelated fields. As such, numerous highly useful texts and reviews have been written on this subject. Logically, these are generally written from the perspective of the scope and limitations of the reagents employed. This minireview instead attempts to emphasize chemoselectivity imposed by the nature of the substrate. Consequently many landmark discoveries in the field of C–H oxidation are not discussed, but hopefully the perspective taken herein will allow for the more ready incorporation of C–H oxidation reactions into synthetic planning. PMID:21413105

  6. Catalytic hydrocarbon reactions over supported metal oxides. Progress report, April 1, 1994--January 31, 1995

    SciTech Connect

    Ekerdt, J.G.

    1995-01-31

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. Our approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. Our current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. Oxide catalysis can be a complex process with both metal cation and oxygen anions participating in the chemical reactions. From an energy perspective carbon-carbon bond formation is particularly relevant to CO hydrogenation in isosynthesis. Hydrogenolysis and hydrogenation form the basis for heteroatom removal in fuels processing. Understanding the catalysis of these processes (and others) requires isolating reaction steps in the overall cycle and determining how structure and composition influence the individual reaction steps. Specially designed oxides, such as we use, permit one to study some of the steps in oxidation, carbon-carbon coupling and heteroatom removal catalysis. During the course of our studies we have: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by methathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  7. Cold bond agglomeration of waste oxides for recycling

    SciTech Connect

    D`Alessio, G.; Lu, W.K.

    1996-12-31

    Recycling of waste oxides has been an on-going challenge for integrated steel plants. The majority of these waste oxides are collected from the cleaning systems of ironmaking and steelmaking processes, and are usually in the form of fine particulates and slurries. In most cases, these waste materials are contaminated by oils and heavy metals and often require treatment at a considerable expense prior to landfill disposal. This contamination also limits the re-use or recycling potential of these oxides as secondary resources of reliable quality. However, recycling of some selected wastes in blast furnaces or steelmaking vessels is possible, but first requires agglomeration of the fine particulate by such methods as cold bond briquetting. Cold bond briquetting technology provides both mechanical compacting and bonding (with appropriate binders) of the particulates. This method of recycling has the potential to be economically viable and environmentally sustainable. The nature of the present study is cold bond briquetting of iron ore pellet fines with a molasses-cement-H{sub 2}O binder for recycling in a blast furnace. The inclusion of molasses is for its contribution to the green strength of briquettes. During the curing stage, significant gains in strength may be credited to molasses in the presence of cement. The interactions of cement (and its substitutes), water and molasses and their effects on the properties of the agglomerates during and after various curing conditions were investigated. Tensile strengths of briquettes made in the laboratory and subjected to experimental conditions which simulated the top part of a blast furnace shaft were also examined.

  8. Microstructure and Mechanical Properties of Reaction-Formed Joints in Reaction Bonded Silicon Carbide Ceramics

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1998-01-01

    A reaction-bonded silicon carbide (RB-SiC) ceramic material (Carborundum's Cerastar RB-SIC) has been joined using a reaction forming approach. Microstructure and mechanical properties of three types of reaction-formed joints (350 micron, 50-55 micron, and 20-25 micron thick) have been evaluated. Thick (approximately 350 micron) joints consist mainly of silicon with a small amount of silicon carbide. The flexural strength of thick joints is about 44 plus or minus 2 MPa, and fracture always occurs at the joints. The microscopic examination of fracture surfaces of specimens with thick joints tested at room temperature revealed the failure mode to be typically brittle. Thin joints (<50-55 micron) consist of silicon carbide and silicon phases. The room and high temperature flexural strengths of thin (<50-55 micron) reaction-formed joints have been found to be at least equal to that of the bulk Cerastar RB-SIC materials because the flexure bars fracture away from the joint regions. In this case, the fracture origins appear to be inhomogeneities inside the parent material. This was always found to be the case for thin joints tested at temperatures up to 1350C in air. This observation suggests that the strength of Cerastar RB-SIC material containing a thin joint is not limited by the joint strength but by the strength of the bulk (parent) materials.

  9. A Macroscopic Reaction: Direct Covalent Bond Formation between Materials Using a Suzuki-Miyaura Cross-Coupling Reaction

    NASA Astrophysics Data System (ADS)

    Sekine, Tomoko; Kakuta, Takahiro; Nakamura, Takashi; Kobayashi, Yuichiro; Takashima, Yoshinori; Harada, Akira

    2014-09-01

    Cross-coupling reactions are important to form C-C covalent bonds using metal catalysts. Although many different cross-coupling reactions have been developed and applied to synthesize complex molecules or polymers (macromolecules), if cross-coupling reactions are realized in the macroscopic real world, the scope of materials should be dramatically broadened. Here, Suzuki-Miyaura coupling reactions are realized between macroscopic objects. When acrylamide gel modified with an iodophenyl group (I-gel) reacts with a gel possessing a phenylboronic group (PB-gel) using a palladium catalyst, the gels bond to form a single object. This concept can also be adapted for bonding between soft and hard materials. I-gel or PB-gel selectively bonds to the glass substrates whose surfaces are modified with an electrophile or nucleophile, respectively.

  10. An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis

    SciTech Connect

    Cicchillo, Robert M; Zhang, Houjin; Blodgett, Joshua A.V.; Whitteck, John T; Li, Gongyong; Nair, Satish K; van derDonk, Wilfred A; Metcalf, William W

    2010-01-12

    Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp{sup 3})-C(sp{sup 3}) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(II)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.

  11. Palladium-catalyzed oxidative carbonylation of benzylic C-H bonds via nondirected C(sp3)-H activation.

    PubMed

    Xie, Pan; Xie, Yinjun; Qian, Bo; Zhou, Han; Xia, Chungu; Huang, Hanmin

    2012-06-20

    A new strategy for generating benzylpalladium reactive species from toluenes via nondirected C(sp(3))-H activation has been developed. This led to construction of an efficient Pd-catalyzed reaction protocol for the oxidative carboxylation of benzylic C-H bonds to form substituted 2-phenylacetic acid esters and derivatives from inexpensive, commercially available starting materials. PMID:22662917

  12. Palladium-catalyzed cyclization reactions of allenes in the presence of unsaturated carbon-carbon bonds.

    PubMed

    Ye, Juntao; Ma, Shengming

    2014-04-15

    Modern synthetic chemists have looked for rapid and efficient ways to construct complex molecules while minimizing synthetic manipulation and maximizing atom-economy. Over the last few decades, researchers have made considerable progress toward these goals by taking full advantage of transition metal catalysis and the diverse reactivities of allenes, functional groups which include two cumulative carbon-carbon double bonds. This Account describes our efforts toward the development of Pd-catalyzed cyclization reactions of allenes in the presence of compounds that contain unsaturated carbon-carbon bonds such as alkenyl halides, simple alkenes, allenes, electron-deficient alkynes, or propargylic carbonates. First, we discuss the coupling-cyclization reactions of allenes bearing a nucleophilic functionality in the presence of alkenyl halides, simple alkenes, functionalized and nonfunctionalized allenes, or electron-deficient alkynes. These processes generally involve a Pd(II)-catalyzed sequence: cyclic nucleopalladation, insertion or nucleopalladation, and β-elimination, reductive elimination, cyclic allylation or protonation. We then focus on Pd(0)-catalyzed cyclization reactions of allenes in the presence of propargylic carbonates. In these transformations, oxidative addition of propargylic carbonates with Pd(0) affords allenylpalladium(II) species, which then react with allenes via insertion or nucleopalladation. These transformations provide easy access to a variety of synthetically versatile monocyclic, dumbbell-type bicyclic, and fused multicyclic compounds. We have also prepared a series of highly enantioenriched products using an axial-to-central chirality transfer strategy. A range of allenes are now readily available, including optically active ones with central and/or axial chirality. Expansion of these reactions to include other types of functionalized allenes, such as allenyl thiols, allenyl hydroxyl amines, and other structures with differing steric and electronic character, could allow access to cyclic skeletons that previously were difficult to prepare. We anticipate that other studies will continue to explore this promising area of synthetic organic chemistry. PMID:24479609

  13. The Mechanism of N-O Bond Cleavage in Rhodium-Catalyzed C-H Bond Functionalization of Quinoline N-oxides with Alkynes: A Computational Study.

    PubMed

    Li, Yingzi; Liu, Song; Qi, Zisong; Qi, Xiaotian; Li, Xingwei; Lan, Yu

    2015-07-01

    Metal-catalyzed C-H activation not only offers important strategies to construct new bonds, it also allows the merge of important research areas. When quinoline N-oxide is used as an arene source in C-H activation studies, the N-O bond can act as a directing group as well as an O-atom donor. The newly reported density functional theory method, M11L, has been used to elucidate the mechanistic details of the coupling between quinoline N-O bond and alkynes, which results in C-H activation and O-atom transfer. The computational results indicated that the most favorable pathway involves an electrophilic deprotonation, an insertion of an acetylene group into a Rh-C bond, a reductive elimination to form an oxazinoquinolinium-coordinated Rh(I) intermediate, an oxidative addition to break the N-O bond, and a protonation reaction to regenerate the active catalyst. The regioselectivity of the reaction has also been studied by using prop-1-yn-1-ylbenzene as a model unsymmetrical substrate. Theoretical calculations suggested that 1-phenyl-2-quinolinylpropanone would be the major product because of better conjugation between the phenyl group and enolate moiety in the corresponding transition state of the regioselectivity-determining step. These calculated data are consistent with the experimental observations. PMID:26059235

  14. Why triple bonds protect acenes from oxidation and decomposition.

    PubMed

    Fudickar, Werner; Linker, Torsten

    2012-09-12

    An experimental and computational study on the impact of functional groups on the oxidation stability of higher acenes is presented. We synthesized anthracenes, tetracenes, and pentacenes with various substituents at the periphery, identified their photooxygenation products, and measured the kinetics. Furthermore, the products obtained from thermolysis and the kinetics of the thermolysis are investigated. Density functional theory is applied in order to predict reaction energies, frontier molecular orbital interactions, and radical stabilization energies. The combined results allow us to describe the mechanisms of the oxidations and the subsequent thermolysis. We found that the alkynyl group not only enhances the oxidation stability of acenes but also protects the resulting endoperoxides from thermal decomposition. Additionally, such substituents increase the regioselectivity of the photooxygenation of tetracenes and pentacenes. For the first time, we oxidized alkynylpentacenes by using chemically generated singlet oxygen ((1)O(2)) without irradiation and identified a 6,13-endoperoxide as the sole regioisomer. The bimolecular rate constant of this oxidation amounts to only 1 × 10(5) s(-1) M(-1). This unexpectedly slow reaction is a result of a physical deactivation of (1)O(2). In contrast to unsubstituted or aryl-substituted acenes, photooxygenation of alkynyl-substituted acenes proceeds most likely by a concerted mechanism, while the thermolysis is well explained by the formation of radical intermediates. Our results should be important for the future design of oxidation stable acene-based semiconductors. PMID:22881365

  15. Formation of porous surface layers in reaction bonded silicon nitride during processing

    NASA Technical Reports Server (NTRS)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

  16. Understanding bond formation in polar one-step reactions. Topological analyses of the reaction between nitrones and lithium ynolates.

    PubMed

    Roca-López, David; Polo, Victor; Tejero, Tomás; Merino, Pedro

    2015-04-17

    The mechanism of the reaction between nitrones and lithium ynolates has been studied using DFT methods at the M06-2X/cc-pVTZ/PCM=THF level. After the formation of a starting complex an without energy barrier, in which the lithium atom is coordinated to both nitrone and ynolate, the reaction takes place in one single kinetic step through a single transition structure. However, the formation of C-C and C-O bonds takes place sequentially through a typical two-stage, one-step process. A combined study of noncovalent interactions (NCIs) and electron localization function (ELFs) of selected points along the intrinsic reaction coordinate (IRC) of the reaction confirmed that, in the transition structure, only the C-C bond is being formed to some extent, whereas an electrostatic interaction is present between carbon and oxygen atoms previous to the formation of the C-O bond. Indeed, the formation of the second C-O bond only begins when the first C-C bond is completely formed without formation of any intermediate. Once the C-C bond is formed and before the C-O bond formation starts the RMS gradient norm dips, approaching but not reaching 0, giving rise to a hidden intermediate. PMID:25803829

  17. Synthesis of substituted β-diketiminate gallium hydrides via oxidative addition of H-O bonds.

    PubMed

    Herappe-Mejía, Eduardo; Trujillo-Hernández, Karla; Carlos Garduño-Jiménez, Juan; Cortés-Guzmán, Fernando; Martínez-Otero, Diego; Jancik, Vojtech

    2015-10-14

    Oxidative addition of LGa into the OH bonds from HCCCH2OH, Ph2Si(OH)2, (nBuO)2P(O)(OH) and 4-MeC6H4S(O)2(OH) results in the formation of four compounds of the general formula LGa(H)(O-X). The correlation of the Ga-O bond length and the strength of the Ga-H bond depending on the acidity of the OH group in the starting materials has been demonstrated. The molecular structures of all four compounds have been determined using single crystal X-ray diffraction experiments. DFT calculations were performed on the reacting complex of LGa with propargyl alcohol and show an OHGa hydrogen bond as the first interaction between the reagents. This reacting complex changes into a D-A complex where the oxygen atom of the propargyl alcohol coordinates to the gallium atom and in a concerted reaction the oxidative addition product is formed. PMID:26351779

  18. Mode specificity in bond selective reactions F + HOD → HF + OD and DF + OH

    SciTech Connect

    Song, Hongwei; Guo, Hua

    2015-05-07

    The influence of vibrational excitations in the partially deuterated water (HOD) reactant on its bond selective reactions with F is investigated using a full-dimensional quantum wave packet method on an accurate global potential energy surface. Despite the decidedly early barrier of the F + H{sub 2}O reaction, reactant vibrational excitation in each local stretching mode of HOD is found to significantly enhance the reaction which breaks the excited bond. In the mean time, excitation of the HOD bending mode also enhances the reaction, but with much lower efficacy and weaker bond selectivity. Except for low collision energies, all vibrational modes are more effective in promoting the bond selective reactions than the translational energy. These results are compared with the predictions of the recently proposed sudden vector projection model.

  19. Unexpected copper-catalyzed aerobic oxidative cleavage of C(sp3)-C(sp3) bond of glycol ethers.

    PubMed

    Liu, Zhong-Quan; Zhao, Lixing; Shang, Xiaojie; Cui, Zili

    2012-06-15

    An unexpected Cu-catalyzed oxidative cleavage of the C(sp(3))-C(sp(3)) bond in glycol ethers by using air or molecular oxygen as the terminal stoichiometric oxidant is demonstrated. As a result, the corresponding α-acyloxy ethers and formates of 1,2-ethanediol are formed by direct coupling of carboxylic acids and aldehydes with glycol ethers under the reaction conditions. This method represents the first example of Cu-catalyzed aerobic cleavage of saturated C-C bond in ethers. PMID:22668348

  20. Palladium-catalyzed oxidative insertion of carbon monoxide to N-sulfonyl-2-aminobiaryls through C-H bond activation: access to bioactive phenanthridinone derivatives in one pot.

    PubMed

    Rajeshkumar, Venkatachalam; Lee, Tai-Hua; Chuang, Shih-Ching

    2013-04-01

    Palladium-catalyzed oxidative carbonylation of N-sulfonyl-2-aminobiaryls through C-H bond activation and C-C, C-N bond formation under TFA-free and milder conditions has been developed. The reaction tolerates a variety of substrates and provides biologically important phenanthridinone derivatives in yields up to 94%. PMID:23477600

  1. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions.

    PubMed

    Dong, Kun; Zhang, Suojiang; Wang, Jianji

    2016-05-21

    Ionic liquids (ILs) have many potential applications in the chemical industry. In order to understand ILs, their molecular details have been extensively investigated. Intuitively, electrostatic forces are solely important in ILs. However, experiments and calculations have provided strong evidence for the existence of H-bonds in ILs and their roles in the properties and applications of ILs. As a structure-directing force, H-bonds are responsible for ionic pairing, stacking and self-assembling. Their geometric structure, interaction energy and electronic configuration in the ion-pairs of imidazolium-based ILs and protic ionic liquids (PILs) show a great number of differences compared to conventional H-bonds. In particular, their cooperation with electrostatic, dispersion and π interactions embodies the physical nature of H-bonds in ILs, which anomalously influences their properties, leading to a decrease in their melting points and viscosities and thus fluidizing them. Using ILs as catalysts and solvents, many reactions can be activated by the presence of H-bonds, which reduce the reaction barriers and stabilize the transition states. In the dissolution of lignocellulosic biomass by ILs, H-bonds exhibit a most important role in disrupting the H-bonding network of cellulose and controlling microscopic ordering into domains. In this article, a critical review is presented regarding the structural features of H-bonds in ILs and PILs, the correlation between H-bonds and the properties of ILs, and the roles of H-bonds in typical reactions. PMID:27042709

  2. Heterogeneous reaction of ozone with aluminum oxide

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1976-01-01

    Rates and collision efficiencies for ozone decomposition on aluminum oxide surfaces were determined. Samples were characterized by BET surface area, X-ray diffraction, particle size, and chemical analysis. Collision efficiencies were found to be between 2 times 10 to the -10 power and 2 times 10 to the -9 power. This is many orders of magnitude below the value of 0.000001 to 0.00001 needed for appreciable long-term ozone loss in the stratosphere. An activation energy of 7.2 kcal/mole was found for the heterogeneous reaction between -40 C and 40 C. Effects of pore diffusion, outgassing and treatment of the aluminum oxide with several chemical species were also investigated.

  3. Strength of hot isostatically pressed and sintered reaction bonded silicon nitrides containing Y2O3

    NASA Technical Reports Server (NTRS)

    Sanders, William A.; Mieskowski, Diane M.

    1989-01-01

    The hot isostatic pressing of reaction bonded Si3N4 containing Y2O3 produced specimens with greater room temperature strengths than those by high pressure nitrogen sintering of the same material. Average room temperature bend strengths for hot isostatically pressed reaction bonded silicon nitride and high pressure nitrogen sintered reaction bonded silicon nitride were 767 and 670 MPa, respectively. Values of 472 and 495 MPa were observed at 1370 C. For specimens of similar but lower Y2O3 content produced from Si3N4 powder using the same high pressure nitrogen sintering conditions, the room temperature strength was 664 MPa and the 1370 C strength was 402 MPa. The greater strengths of the reaction bonded silicon nitride materials in comparison to the sintered silicon nitride powder material are attributed to the combined effect of processing method and higher Y2O3 content.

  4. Topological description of the bond-breaking and bond-forming processes of the alkene protonation reaction in zeolite chemistry: an AIM study.

    PubMed

    Zalazar, María Fernanda; Peruchena, Nélida Maria

    2011-10-01

    Density functional theory and atoms in molecules theory were used to study bond breakage and bond formation in the trans-2-butene protonation reaction in an acidic zeolitic cluster. The progress of this reaction along the intrinsic reaction coordinate, in terms of several topological properties of relevant bond critical points and atomic properties of the key atoms involved in these concerted mechanisms, were analyzed in depth. At B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p) level, the results explained the electron density redistributions associated with the progressive bond breakage and bond formation of the reaction under study, as well as the profiles of the electronic flow between the different atomic basins involved in these electron reorganization processes. In addition, we found a useful set of topological indicators that are useful to show what is happening in each bond/atom involved in the reaction site as the reaction progresses. PMID:21193939

  5. Concerted proton-electron transfer in the oxidation of hydrogen-bonded phenols.

    PubMed

    Rhile, Ian J; Markle, Todd F; Nagao, Hirotaka; DiPasquale, Antonio G; Lam, Oanh P; Lockwood, Mark A; Rotter, Katrina; Mayer, James M

    2006-05-10

    Three phenols with pendant, hydrogen-bonded bases (HOAr-B) have been oxidized in MeCN with various one-electron oxidants. The bases are a primary amine (-CPh(2)NH(2)), an imidazole, and a pyridine. The product of chemical and quasi-reversible electrochemical oxidations in each case is the phenoxyl radical in which the phenolic proton has transferred to the base, (*)OAr-BH(+), a proton-coupled electron transfer (PCET) process. The redox potentials for these oxidations are lower than for other phenols, predominately from the driving force for proton movement. One-electron oxidation of the phenols occurs by a concerted proton-electron transfer (CPET) mechanism, based on thermochemical arguments, isotope effects, and DeltaDeltaG(++)/DeltaDeltaG degrees . The data rule out stepwise paths involving initial electron transfer to form the phenol radical cations [(*)(+)HOAr-B] or initial proton transfer to give the zwitterions [(-)OAr-BH(+)]. The rate constant for heterogeneous electron transfer from HOAr-NH(2) to a platinum electrode has been derived from electrochemical measurements. For oxidations of HOAr-NH(2), the dependence of the solution rate constants on driving force, on temperature, and on the nature of the oxidant, and the correspondence between the homogeneous and heterogeneous rate constants, are all consistent with the application of adiabatic Marcus theory. The CPET reorganization energies, lambda = 23-56 kcal mol(-)(1), are large in comparison with those for electron transfer reactions of aromatic compounds. The reactions are not highly non-adiabatic, based on minimum values of H(rp) derived from the temperature dependence of the rate constants. These are among the first detailed analyses of CPET reactions where the proton and electron move to different sites. PMID:16669677

  6. Carbon-oxygen bond strength as a control of reaction kinetics: Phenol on Mo(110)

    NASA Astrophysics Data System (ADS)

    Serafin, J. G.; Friend, C. M.

    The reaction of phenol on Mo(110) has been studied using temperature programmed reaction and X-ray photoelectron spectroscopies. After desorption of multilayers and a weakly bound molecular species, decomposition produces the only reaction products observed: gaseous dihydrogen, surface carbon and surface oxygen. The OH bond cleaves first at temperatures below 360 K to form surface phenoxide (C 6H 5O-), followed by CH bond activation commencing at 370 K. CO bonds are cleaved in the temperature range of 370 to 450 K. After annealing to 300 K, multiple species are detected on the surface by X-ray photoelectron spectroscopy. The cleavage of CH bonds in the same temperature regime as CO bonds is thought to lead to selective decomposition of phenol on Mo(110). The reaction of phenol is contrasted to that of a sulfur-containing analogue, benzenethiol, on the Mo(110) surface. The stability of the phenoxide intermediate with respect to carbon-heteroatom bond cleavage is greater than that of the corresponding phenyl thiolate formed from benzenethiol. Comparison of the reaction of phenol and benzenethiol demonstrates the importance of C X ( X = O, S) bond strength in determining the reactivity and selectivity of these molecules.

  7. Carbon-oxygen bond strength as a control of reaction kinetics: Phenol on Mo(110)

    NASA Astrophysics Data System (ADS)

    Serafin, J. G.; Friend, C. M.

    1989-03-01

    The reaction of phenol on Mo(110) has been studied using temperature programmed reaction and X-ray photoelectron spectroscopies. After desorption of multilayers and a weakly bound molecular species, decomposition produces the only reaction products observed: gaseous dihydrogen, surface carbon and surface oxygen. The O-H bond cleaves first at temperatures below 360 K to form surface phenoxide (C 6H 5O-), followed by C-H bond activation commencing at 370 K. C-O bonds are cleaved in the temperature range of 370 to 450 K. After annealing to 300 K, multiple species are detected on the surface by X-ray photoelectron spectroscopy. The cleavage of C-H bonds in the same temperature regime as C-O bonds is thought to lead to selective decomposition of phenol on Mo(110). The reaction of phenol is contrasted to that of a sulfur-containing analogue, benzenethiol, on the Mo(110) surface. The stability of the phenoxide intermediate with respect to carbon-heteroatom bond cleavage is greater than that of the corresponding phenyl thiolate formed from benzenethiol. Comparison of the reaction of phenol and benzenethiol demonstrates the importance of C- X ( X = O, S) bond strength in determining the reactivity and selectivity of these molecules.

  8. Modeling and experimental evaluation of the diffusion bonding of the oxide dispersion strengthened steel PM2000

    NASA Astrophysics Data System (ADS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2015-10-01

    A modeling based optimization process of the solid state diffusion bonding is presented for joining ferritic oxide dispersion strengthened steels PM2000. An optimization study employing varying bonding temperatures and pressures results in almost the same strength and toughness of the bonded compared to the as received material. TEM investigations of diffusion bonded samples show a homogeneous distribution of oxide particles at the bonding seam similar to that in the bulk. Hence, no loss in strength or creep resistance due to oxide particle agglomeration is found, as verified by the mechanical properties observed for the joint.

  9. Mechanochemical Reactions Reporting and Repairing Bond Scission in Polymers.

    PubMed

    Clough, Jess M; Balan, Abidin; Sijbesma, Rint P

    2015-01-01

    The past 10 years have seen a resurgence of interest in the field of polymer mechanochemistry. Whilst the destructive effects of mechanical force on polymer chains have been known for decades, it was only recently that researchers tapped into these forces to realize more useful chemical transformations. The current review discusses the strategic incorporation of weak covalent bonds in polymers to create materials with stress-sensing and damage-repairing properties. Firstly, the development of mechanochromism and mechanoluminescence as stress reporters is considered. The second half focuses on the net formation of covalent bonds as a response to mechanical force, via mechanocatalysis and mechanically unmasked chemical reactivity, and concludes with perspectives for the field. PMID:26104999

  10. Catalytic hydrocarbon reactions over supported metal oxides. Final report, August 1, 1986--July 31, 1995

    SciTech Connect

    Ekerdt, J.G.

    1995-10-20

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. The approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. The current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. During the course of these studies the author has: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by metathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  11. Chemical bonding and stability of multilayer graphene oxide layers

    NASA Astrophysics Data System (ADS)

    Gong, Cheng; Kim, Suenne; Zhou, Si; Hu, Yike; Acik, Muge; de Heer, Walt; Berger, Claire; Bongiorno, Angelo; Riedo, Eliso; Chabal, Yves

    2014-03-01

    The chemistry of graphene oxide (GO) and its response to external stimuli such as temperature and light are not well understood and only approximately controlled. This understanding is however crucial to enable future applications of the material that typically are subject to environmental conditions. The nature of the initial GO is also highly dependent on the preparation and the form of the initial carbon material. Here, we consider both standard GO made from oxidizing graphite and layered GO made from oxidizing epitaxial graphene on SiC, and examine their evolution under different stimuli. The effect of the solvent on the thermal evolution of standard GO in vacuum is first investigated. In situ infrared absorption measurements clearly show that the nature of the last solvent in contact with GO prior to deposition on a substrate for vacuum annealing studies substantially affect the chemical evolution of the material as GO is reduced. Second, the stability of GO derived from epitaxial graphene (on SiC) is examined as a function of time. We show that hydrogen, in the form of CH, is present after the Hummers process, and that hydrogen favors the reduction of epoxide groups and the formation of water molecules. Importantly, this transformation can take place at room temperature, albeit slowly (~ one month). Finally, the chemical interaction (e.g. bonding) between GO layers in multilayer samples is examined with diffraction (XRD) methods, spectroscopic (IR, XPS, Raman) techniques, imaging (APF) and first principles modeling.

  12. Rhodium(III)-Catalyzed C-H Activation/Alkyne Annulation by Weak Coordination of Peresters with O-O Bond as an Internal Oxidant.

    PubMed

    Mo, Jiayu; Wang, Lianhui; Cui, Xiuling

    2015-10-16

    A redox-economic strategy has been developed, involved in an efficient Rh(III)-catalyzed oxidative C-H activation and alkyne annulation with perester as the oxidizing directing group. In this process, the cleavage of an oxidizing O-O bond as an internal oxidant is described for the first time. This reaction could be carried out under mild conditions and exhibits excellent regioselectivity and wide functional groups tolerance. PMID:26414431

  13. Elementary steps in Fischer-Tropsch synthesis: CO bond scission, CO oxidation and surface carbiding on Co(0001)

    NASA Astrophysics Data System (ADS)

    Weststrate, C. J.; van Helden, P.; van de Loosdrecht, J.; Niemantsverdriet, J. W.

    2016-06-01

    Dissociation of CO on a Co(0001) surface is explored in the context of Fischer-Tropsch synthesis on cobalt catalysts. Experiments show that CO dissociation can occur on defect sites around 330 K, with an estimated barrier between 90 and 104 kJ mol- 1. Despite the ease of CO dissociation on defect sites, extensive carbon deposition onto the cobalt surface up to 0.33 ML requires a combination of high surface temperature and a relatively high CO pressure. Experimental data on the CO oxidation reaction indicate a high reaction barrier for the CO + O reaction, and it is argued that, due to the rather strong Co-O bond, (i) oxygen removal is the rate-limiting step during surface carbidization and (ii) in the context of Fischer-Tropsch synthesis, removal of surface oxygen rather than CO bond scission might be limiting the overall reaction rate.

  14. A molecular dynamics study of bond exchange reactions in covalent adaptable networks.

    PubMed

    Yang, Hua; Yu, Kai; Mu, Xiaoming; Shi, Xinghua; Wei, Yujie; Guo, Yafang; Qi, H Jerry

    2015-08-21

    Covalent adaptable networks are polymers that can alter the arrangement of network connections by bond exchange reactions where an active unit attaches to an existing bond then kicks off its pre-existing peer to form a new bond. When the polymer is stretched, bond exchange reactions lead to stress relaxation and plastic deformation, or the so-called reforming. In addition, two pieces of polymers can be rejoined together without introducing additional monomers or chemicals on the interface, enabling welding and reprocessing. Although covalent adaptable networks have been researched extensively in the past, knowledge about the macromolecular level network alternations is limited. In this study, molecular dynamics simulations are used to investigate the macromolecular details of bond exchange reactions in a recently reported epoxy system. An algorithm for bond exchange reactions is first developed and applied to study a crosslinking network formed by epoxy resin DGEBA with the crosslinking agent tricarballylic acid. The trace of the active units is tracked to show the migration of these units within the network. Network properties, such as the distance between two neighboring crosslink sites, the chain angle, and the initial modulus, are examined after each iteration of the bond exchange reactions to provide detailed information about how material behaviors and macromolecular structure evolve. Stress relaxation simulations are also conducted. It is found that even though bond exchange reactions change the macroscopic shape of the network, microscopic network characteristic features, such as the distance between two neighboring crosslink sites and the chain angle, relax back to the unstretched isotropic state. Comparison with a recent scaling theory also shows good agreement. PMID:26166382

  15. Remarkable oxidation stability of glycals: excellent substrates for cerium(IV)-mediated radical reactions.

    PubMed

    Linker, Torsten; Schanzenbach, Dirk; Elamparuthi, Elangovan; Sommermann, Thomas; Fudickar, Werner; Gyóllai, Viktor; Somsák, László; Demuth, Wolfgang; Schmittel, Michael

    2008-11-26

    The remarkable stability of glycals under oxidative conditions becomes apparent by their redox data in solution, computed HOMO energies, and behavior on the addition of electrophilic radicals generated in the presence of cerium(IV) ammonium nitrate. Oxidation potentials up to 2.03 V vs ferrocene were obtained, which are exceptionally high for cyclic enol ethers but correlate nicely with the reaction times of the radical reactions. Protecting groups have a strong influence on the oxidation stability and HOMO energies of glycals as E(ox) is shifted from O-silyl over O-benzyl to O-acetyl by more than 500 mV. Interestingly, this effect must be transmitted through sigma-bonds, even up to the para-position of a benzoate group, as verified by a wide variation of remote substituents in the carbohydrate. Favorable interactions of the sigma*-orbital of the adjacent C-O bond with the HOMO of the double bond are proposed as a mechanistic rationale, which might be important for the redox behavior of other allylic systems. Finally, donors and acceptors in the 1-position exert the strongest influence on the oxidation stability, shifting the potentials by almost 1 V and resulting in different follow-up reactions of the cerium(IV)-mediated additions of malonates. It is the remarkable oxidation stability of glycals that makes them valuable building blocks in carbohydrate chemistry. PMID:18975872

  16. Copper-Promoted Tandem Reaction of Azobenzenes with Allyl Bromides via N═N Bond Cleavage for the Regioselective Synthesis of Quinolines.

    PubMed

    Yi, Xiangli; Xi, Chanjuan

    2015-12-01

    A copper-promoted tandem reaction of a variety of azobenzenes and allyl bromides via N═N bond cleavage to regioselectively construct quinoline derivatives has been developed. The azobenzenes act as not only construction units but also an oxidant for quinoline formation. PMID:26580318

  17. Radical Chain Polymerization Catalyzed by Graphene Oxide and Cooperative Hydrogen Bonding.

    PubMed

    Zhu, Zhongcheng; Shi, Shengjie; Wang, Huiliang

    2016-01-01

    Graphene oxide (GO) is effective in catalyzing a wide variety of organic reactions and a few types of polymerization reactions. No radical chain polymerizations catalyzed by GO have been reported. In this article, we probe the catalytic role and acceleration effect of GO for self-initiated radical chain polymerizations of acrylic acid (AA) in the presence of GO and a pre-existing polymer, poly(N-vinylpyrrolidone) (PVP), from a calorimetric perspective. Gelation experiments and DSC studies show that GO can function as a catalyst to accelerate the radical chain polymerization of AA. Isothermal polymerization kinetic data shows that the addition of GO diminishes the induction periods and increases the polymerization rates, as indicated by the much enhanced overall kinetic rate constants and lowered activation energies. The catalytic effect of GO for the polymerization of AA is attributed to the acidity of GO and the hydrogen bonding interactions between GO and monomer molecules and/or polymers. PMID:26775874

  18. Effects of Thermal Cycling on Thermal Expansion and Mechanical Properties of Sic Fiber-reinforced Reaction-bonded Si3n4 Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1994-01-01

    Thermal expansion curves for SiC fiber-reinforced reaction-bonded Si3N4 matrix composites (SiC/RBSN) and unreinforced RBSN were measured from 25 to 1400 C in nitrogen and in oxygen. The effects of fiber/matrix bonding and cycling on the thermal expansion curves and room-temperature tensile properties of unidirectional composites were determined. The measured thermal expansion curves were compared with those predicted from composite theory. Predicted thermal expansion curves parallel to the fiber direction for both bonding cases were similar to that of the weakly bonded composites, but those normal to the fiber direction for both bonding cases resulted in no net dimensional changes at room temperature, and no loss in tensile properties from the as-fabricated condition. In contrast, thermal cycling in oxygen for both composites caused volume expansion primarily due to internal oxidation of RBSN. Cyclic oxidation affected the mechanical properties of the weakly bonded SiC/RBSN composites the most, resulting in loss of strain capability beyond matrix fracture and catastrophic, brittle fracture. Increased bonding between the SiC fiber and RBSN matrix due to oxidation of the carbon-rich fiber surface coating and an altered residual stress pattern in the composite due to internal oxidation of the matrix are the main reasons for the poor mechanical performance of these composites.

  19. Bimolecular Coupling Reactions through Oxidatively Generated Aromatic Cations: Scope and Stereocontrol

    PubMed Central

    Cui, Yubo; Villafane, Louis A.; Clausen, Dane J.

    2013-01-01

    Chromenes, isochromenes, and benzoxathioles react with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone to form stable aromatic cations that react with a range of nucleophiles. These oxidative fragment coupling reactions provide rapid access to structurally diverse heterocycles. Conducting the reactions in the presence of a chiral Brønsted acid results in the formation of an asymmetric ion pair that can provide enantiomerically enriched products in a rare example of a stereoselective process resulting from the generation of a chiral electrophile through oxidative carbon–hydrogen bond cleavage. PMID:23913987

  20. Oxidative addition of methane and benzene C--H bonds to rhodium center: A DFT study

    NASA Astrophysics Data System (ADS)

    Bi, Siwei; Zhang, Zhenwei; Zhu, Shufen

    2006-11-01

    A density functional theory study on mechanisms of the oxidative addition of methane and benzene C-H bonds to the rhodium center containing Cp and PMe 3 ligands has been performed. Our calculated results confirm that the C-H bond cleavage from a sigma complex to a hydride alkyl complex is the rate-determining step. Compared with the case of methane C-H bond, the oxidative addition of benzene C-H bond is more favorable kinetically and thermodynamically. Stronger backdonation from metal center to the σ ∗ antibonding orbital of benzene C-H bond is responsible for the observations.

  1. Overcoming the "oxidant problem": strategies to use O2 as the oxidant in organometallic C-H oxidation reactions catalyzed by Pd (and Cu).

    PubMed

    Campbell, Alison N; Stahl, Shannon S

    2012-06-19

    Oxidation reactions are key transformations in organic chemistry because they can increase chemical complexity and incorporate heteroatom substituents into carbon-based molecules. This principle is manifested in the conversion of petrochemical feedstocks into commodity chemicals and in the synthesis of fine chemicals, pharmaceuticals, and other complex organic molecules. The utility and function of these molecules correlate directly with the presence and specific placement of oxygen and nitrogen heteroatoms and other functional groups within the molecules. Methods for selective oxidation of C-H bonds have expanded significantly over the past decade, and their role in the synthesis of organic chemicals will continue to increase. Our group's contributions to this field are linked to our broader interest in the development and mechanistic understanding of aerobic oxidation reactions. Molecular oxygen (O(2)) is the ideal oxidant. Its low cost and lack of toxic byproducts make it a highly appealing reagent that can address key "green chemistry" priorities in industry. With strong economic and environmental incentives to use O(2), the commmodity chemicals industry often uses aerobic oxidation reactions. In contrast, O(2) is seldom used to prepare more-complex smaller-volume chemicals, a limitation that reflects, in part, the limited synthetic scope and utility of existing aerobic reactions. Pd-catalyzed reactions represent some of the most versatile methods for selective C-H oxidation, but they often require stoichiometric transition-metal or organic oxidants, such as Cu(II), Ag(I), or benzoquinone. This Account describes recent strategies that we have identified to use O(2) as the oxidant in these reactions. In Pd-catalyzed C-H oxidation reactions that form carbon-heteroatom bonds, the stoichiometric oxidant is often needed to promote difficult reductive elimination steps in the catalytic mechanism. To address this challenge, we have identified new ancillary ligands for Pd that promote reductive elimination, or replaced Pd with a Cu catalyst that undergoes facile reductive elimination from a Cu(III) intermediate. Both strategies have enabled O(2) to be used as the sole stoichiometric oxidant in the catalytic reactions. C-H oxidation reactions that form the product via β-hydride or C-C reductive elimination steps tend to be more amenable to the use of O(2). The use of new ancillary ligands has also overcome some of the limitations in these methods. Mechanistic studies are providing insights into some (but not yet all) of these advances in catalytic reactivity. PMID:22263575

  2. New Insights into the Diels-Alder Reaction of Graphene Oxide.

    PubMed

    Brisebois, Patrick P; Kuss, Christian; Schougaard, Steen B; Izquierdo, Ricardo; Siaj, Mohamed

    2016-04-18

    Graphene oxide is regarded as a major precursor for graphene-based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels-Alder cycloaddition. The Diels-Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high-resolution (13) C-SS NMR spectra, we show evidence for the formation of new sp(3) carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies. PMID:26953926

  3. Iterative reactions of transient boronic acids enable sequential C-C bond formation

    NASA Astrophysics Data System (ADS)

    Battilocchio, Claudio; Feist, Florian; Hafner, Andreas; Simon, Meike; Tran, Duc N.; Allwood, Daniel M.; Blakemore, David C.; Ley, Steven V.

    2016-04-01

    The ability to form multiple carbon-carbon bonds in a controlled sequence and thus rapidly build molecular complexity in an iterative fashion is an important goal in modern chemical synthesis. In recent times, transition-metal-catalysed coupling reactions have dominated in the development of C-C bond forming processes. A desire to reduce the reliance on precious metals and a need to obtain products with very low levels of metal impurities has brought a renewed focus on metal-free coupling processes. Here, we report the in situ preparation of reactive allylic and benzylic boronic acids, obtained by reacting flow-generated diazo compounds with boronic acids, and their application in controlled iterative C-C bond forming reactions is described. Thus far we have shown the formation of up to three C-C bonds in a sequence including the final trapping of a reactive boronic acid species with an aldehyde to generate a range of new chemical structures.

  4. On the electronic nature of low-barrier hydrogen bonds in enzymatic reactions.

    PubMed

    Schiøtt, B; Iversen, B B; Madsen, G K; Larsen, F K; Bruice, T C

    1998-10-27

    The electronic nature of low-barrier hydrogen bonds (LBHBs) in enzymatic reactions is discussed based on combined low temperature neutron and x-ray diffraction experiments and on high level ab initio calculations by using the model substrate benzoylacetone. This molecule has a LBHB, as the intramolecular hydrogen bond is described by a double-well potential with a small barrier for hydrogen transfer. From an "atoms in molecules" analysis of the electron density, it is found that the hydrogen atom is stabilized by covalent bonds to both oxygens. Large atomic partial charges on the hydrogen-bonded atoms are found experimentally and theoretically. Therefore, the hydrogen bond gains stabilization from both covalency and from the normal electrostatic interactions found for long, weak hydrogen bonds. Based on comparisons with other systems having short-strong hydrogen bonds or LBHBs, it is proposed that all short-strong and LBHB systems possess similar electronic features of the hydrogen-bonded region, namely polar covalent bonds between the hydrogen atom and both heteroatoms in question. PMID:9788994

  5. Method and reaction pathway for selectively oxidizing organic compounds

    DOEpatents

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  6. Novel dehydrogenase catalyzes oxidative hydrolysis of carbon-nitrogen double bonds for hydrazone degradation.

    PubMed

    Itoh, Hideomi; Suzuta, Tetsuya; Hoshino, Takayuki; Takaya, Naoki

    2008-02-29

    Hydrazines and their derivatives are versatile artificial and natural compounds that are metabolized by elusive biological systems. Here we identified microorganisms that assimilate hydrazones and isolated the yeast, Candida palmioleophila MK883. When cultured with adipic acid bis(ethylidene hydrazide) as the sole source of carbon, C. palmioleophila MK883 degraded hydrazones and accumulated adipic acid dihydrazide. Cytosolic NAD+- or NADP+-dependent hydrazone dehydrogenase (Hdh) activity was detectable under these conditions. The production of Hdh was inducible by adipic acid bis(ethylidene hydrazide) and the hydrazone, varelic acid ethylidene hydrazide, under the control of carbon catabolite repression. Purified Hdh oxidized and hydrated the C=N double bond of acetaldehyde hydrazones by reducing NAD+ or NADP+ to produce relevant hydrazides and acetate, the latter of which the yeast assimilated. The deduced amino acid sequence revealed that Hdh belongs to the aldehyde dehydrogenase (Aldh) superfamily. Kinetic and mutagenesis studies showed that Hdh formed a ternary complex with the substrates and that conserved Cys is essential for the activity. The mechanism of Hdh is similar to that of Aldh, except that it catalyzed oxidative hydrolysis of hydrazones that requires adding a water molecule to the reaction catalyzed by conventional Aldh. Surprisingly, both Hdh and Aldh from baker's yeast (Ald4p) catalyzed the Hdh reaction as well as aldehyde oxidation. Our findings are unique in that we discovered a biological mechanism for hydrazone utilization and a novel function of proteins in the Aldh family that act on C=N compounds. PMID:18096698

  7. Large-scale computer simulation of an electrochemical bond-breaking reaction

    NASA Astrophysics Data System (ADS)

    Calhoun, August; Koper, Marc T. M.; Voth, Gregory A.

    1999-05-01

    A novel Hamiltonian is employed to explicitly simulate an electrochemical bond-breaking reaction in which an electron-transfer reaction is directly coupled to the dissociation of a molecular species. The free energy surface as a function of both the collective solvation coordinate of the electron transfer and the intramolecular bond length of a CH 3Cl molecule is computed by virtue of a classical molecular dynamics (MD) simulation. The method is also easily generalized to treat a variety of electrochemically catalyzed phenomenon. The simulation data show very significant deviations from the predictions of standard analytical theory.

  8. Transition-Metal-Catalyzed Laboratory-Scale Carbon–Carbon Bond-Forming Reactions of Ethylene

    PubMed Central

    Saini, Vaneet; Stokes, Benjamin J.; Sigman, Matthew S.

    2014-01-01

    Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transitionmetal–catalyzed carbon-carbon bond-forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond-forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product. PMID:24105881

  9. Theory of chemical bonds in metalloenzymes - Manganese oxides clusters in the oxygen evolution center -

    NASA Astrophysics Data System (ADS)

    Yamaguchi, K.; Shoji, M.; Saito, T.; Isobe, H.; Yamada, S.; Nishihara, S.; Kawakami, T.; Kitagawa, Y.; Yamanaka, S.; Okumura, M.

    2012-12-01

    In early 1980 we have initiated broken-symmetry (BS) MO theoretical calculations of transition-metal oxo species M = O (M = Ti,V,Cr,Mn,Fe,Ni,Cu) to elucidate the nature of dσ-pσ and dπ-pπ bonds. It has been concluded that high-valent M = O species such as [Mn(IV) = O]2+ and [Fe(IV) = O]2+ exhibit electrophilic property in a sharp contrast with nucleophilic character of low-valent M = O bonds: [M(II)O2-]0, and closed-shell dπ-pπ bonds of high-valent M = O species often suffer the triplet-instability, giving rise to open-shell (BS) configurations with significant metal-diradical (MDR) character: •M-O•: note that these bonds are therefore regarded as typical examples of strongly correlated electron systems. Because of the MDR character, 1,4-metal diradical mechanism was indeed preferable to four-centered mechanism in the case of addition reaction of naked Mn(IV) = O to ethylene. Recently the manganese-oxo species have been receiving renewed interest in relation to catalytic cycle of oxygen evolution from water molecules in the photosynthesis II (PSII) system. Accumulated experimental results indicate that this process is catalyzed with four manganese oxide clusters coordinated with calcium ion (CaMn4O4). Past decade we have performed BS MO theoretical investigations of manganese oxide clusters related to CaMn4O4. These calculations have elucidated that high-valent Mn(X) = O (X = IV,V) bonds exhibit intermediate MDR character (y=40-60%) in the case of total low-spin (LS) configuration but the MDR character decreases with coordination of Ca2+ and water molecules. While the MDR character of the Mn-oxo bonds becomes very high at the high-spin (HS) configuration. Our computational results enabled us to propose two possible mechanisms on the theoretical ground: (A) electrophilic (EP) mechanism and (B) radical coupling (RC) mechanism. The theoretical results indicate that the EP mechanism is preferable for the low-spin (LS) state in polar media like in the protein environments (native OEC), whereas the RC mechanism is feasible at the state without such environmental stabilization: local singlet and local triplet diradical mechanisms are proposed for the OO coupling process. Possibilities of EP and RC mechanisms are examined in comparison with a lot of experimental results accumulated and theoretical results with several groups.

  10. Potential energy surfaces for CH bond cleavage reactions

    SciTech Connect

    Harding, L.B.

    1996-12-31

    Ab initio, multi-reference, configuration interaction calculations are reported for CH{sub 4}{leftrightarrow}CH{sub 3}+H, CH{sub 3}F{leftrightarrow}CH{sub 2}F+H, CH{sub 2}F{sub 2}{leftrightarrow}CHF{sub 2}+H, and CHF{sub 3}{leftrightarrow}CF{sub 3}+H. Two equivalent, barrier-less paths are found for the CH{sub 3}+H recombination, two inequivalent, barrier-less paths are found for the CH{sub 2}F+H and CHF{sub 2}+H recombinations (depending on which side of the radical the H atom approaches), and only one barrier-less path is found for the CF{sub 3}+H recombination. Minimum energy path for H atom approaching CF{sub 3} from the concave side is predicted to have a barrier of 27 kcal/mole. Both minimum energy path energies and transitional frequencies as function of R{sub CH} for all 4 reactions are predicted to be similar.

  11. Nitric oxide in star-forming regions: further evidence for interstellar N-O bonds.

    PubMed

    Ziurys, L M; McGonagle, D; Minh, Y; Irvine, W M

    1991-06-01

    Nitric oxide has been newly detected towards several star-forming clouds, including Orion-KL, Sgr B2(N), W33A, W51M, and DR21(OH) via its J = 3/2 --> 1/2 transitions near 150 GHz, using the FCRAO 14 m telescope. Both lambda-doubling components of NO were observed towards all sources. Column densities derived for nitric oxide in these clouds are N approximately 10(15)-10(16) cm-2, corresponding to fractional abundances of f approximately 0.5-1.0 x 10(-8), relative to H2. Towards Orion-KL, the NO line profile suggests that the species arises primarily from hot, dense gas. Nitric oxide may arise from warm material toward the other clouds as well. Nitric oxide in star-forming regions could be synthesized by high-temperature reactions, although the observed abundances do not disagree with values predicted from low-temperature, ion-molecule chemistry by more than one order of magnitude. The abundance of NO, unlike other simple interstellar nitrogen compounds, does appear to be reproduced by chemical models, at least to a good approximation. Regardless of the nature of formation of NO, it appears to be a common constituent of warm, dense molecular clouds. N-O bonds may therefore be more prevalent than previously thought. PMID:11538086

  12. Prediction of Reliable Metal-PH₃ Bond Energies for Ni, Pd, and Pt in the 0 and +2 Oxidation States

    SciTech Connect

    Craciun, Raluca; Vincent, Andrew J.; Shaughnessy, Kevin H.; Dixon, David A.

    2010-06-21

    Phosphine-based catalysts play an important role in many metal-catalyzed carbon-carbon bond formation reactions yet reliable values of their bond energies are not available. We have been studying homogeneous catalysts consisting of a phosphine bonded to a Pt, Pd, or Ni. High level electronic structure calculations at the CCSD(T)/complete basis set level were used to predict the M-PH₃ bond energy (BE) for the 0 and +2 oxidation states for M=Ni, Pd, and Pt. The calculated bond energies can then be used, for example, in the design of new catalyst systems. A wide range of exchange-correlation functionals were also evaluated to assess the performance of density functional theory (DFT) for these important bond energies. None of the DFT functionals were able to predict all of the M-PH3 bond energies to within 5 kcal/mol, and the best functionals were generalized gradient approximation functionals in contrast to the usual hybrid functionals often employed for main group thermochemistry.

  13. C-H Bond Oxidation Catalyzed by an Imine-Based Iron Complex: A Mechanistic Insight.

    PubMed

    Olivo, Giorgio; Nardi, Martina; Vìdal, Diego; Barbieri, Alessia; Lapi, Andrea; Gómez, Laura; Lanzalunga, Osvaldo; Costas, Miquel; Di Stefano, Stefano

    2015-11-01

    A family of imine-based nonheme iron(II) complexes (LX)2Fe(OTf)2 has been prepared, characterized, and employed as C-H oxidation catalysts. Ligands LX (X = 1, 2, 3, and 4) stand for tridentate imine ligands resulting from spontaneous condensation of 2-pycolyl-amine and 4-substituted-2-picolyl aldehydes. Fast and quantitative formation of the complex occurs just upon mixing aldehyde, amine, and Fe(OTf)2 in a 2:2:1 ratio in acetonitrile solution. The solid-state structures of (L1)2Fe(OTf)(ClO4) and (L3)2Fe(OTf)2 are reported, showing a low-spin octahedral iron center, with the ligands arranged in a meridional fashion. (1)H NMR analyses indicate that the solid-state structure and spin state is retained in solution. These analyses also show the presence of an amine-imine tautomeric equilibrium. (LX)2Fe(OTf)2 efficiently catalyze the oxidation of alkyl C-H bonds employing H2O2 as a terminal oxidant. Manipulation of the electronic properties of the imine ligand has only a minor impact on efficiency and selectivity of the oxidative process. A mechanistic study is presented, providing evidence that C-H oxidations are metal-based. Reactions occur with stereoretention at the hydroxylated carbon and selectively at tertiary over secondary C-H bonds. Isotopic labeling analyses show that H2O2 is the dominant origin of the oxygen atoms inserted in the oxygenated product. Experimental evidence is provided that reactions involve initial oxidation of the complexes to the ferric state, and it is proposed that a ligand arm dissociates to enable hydrogen peroxide binding and activation. Selectivity patterns and isotopic labeling studies strongly suggest that activation of hydrogen peroxide occurs by heterolytic O-O cleavage, without the assistance of a cis-binding water or alkyl carboxylic acid. The sum of these observations provides sound evidence that controlled activation of H2O2 at (LX)2Fe(OTf)2 differs from that occurring in biomimetic iron catalysts described to date. PMID:26457760

  14. Gas-phase reaction of CeV2O7+ with C2H4: activation of C-C and C-H bonds.

    PubMed

    Ma, Jia-Bi; Yuan, Zhen; Meng, Jing-Heng; Liu, Qing-Yu; He, Sheng-Gui

    2014-12-15

    The reactivity of metal oxide clusters toward hydrocarbon molecules can be changed, tuned, or controlled by doping. Cerium-doped vanadium cluster cations CeV2O7(+) are generated by laser ablation, mass-selected by a quadrupole mass filter, and then reacted with C2H4 in a linear ion trap reactor. The reaction is characterized by a reflectron time-of-flight mass spectrometer. Three types of reaction channels are observed: 1) single oxygen-atom transfer , 2) double oxygen-atom transfer , and 3) C=C bond cleavage. This study provides the first bimetallic oxide cluster ion, CeV2O7(+), which gives rise to C=C bond cleavage of ethene. Neither Ce(x)O(y)(±) nor V(x)O(y)(±) alone possess the necessary topological and electronic properties to bring about such a reaction. PMID:25208512

  15. E1 reaction-induced synthesis of hydrophilic oxide nanoparticles in a non-hydrophilic solvent

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Jun; Gao, Jiefeng; Yang, Shiliu; Dong, Yucheng; Ping Wong, Julia Shuk; Xu, Jiaju; Shan, Guangcun; Li, Robert K. Y.

    2012-09-01

    In this paper, tert-amyl alcohol was employed to directly react with metal chlorides for the preparation of oxide nanoparticles. Some typical metal oxide or hydroxides with different morphologies, such as TiO2 nanoparticles, TiO2 nanorods, FeOOH nanowires, Fe2O3 nanoparticles, and SnO2 nanoparticles, can be easily fabricated through such simple chemical reactions. E1 reaction was found to play the leading role in the synthesis of metal oxides attributed to better stability of tertiary carbocations in tert-amyl alcohol and the strong interaction of metal chlorides with hydroxyl groups that results in the easy dissociation of carbon-oxygen bonds in tert-amyl alcohol. SN1 reaction can also occur in certain reactions due to nucleophilic substitution of chloride ions for hydroxyl groups. As-prepared metal oxides show good compatibility with an aqueous system while they were synthesized in a non-hydrophilic solvent probably attributed to the specific E1 reaction mechanism involving the generation of water, and can be directly incorporated into an aqueous soluble polymer, such as PVA, to exhibit many promising applications.In this paper, tert-amyl alcohol was employed to directly react with metal chlorides for the preparation of oxide nanoparticles. Some typical metal oxide or hydroxides with different morphologies, such as TiO2 nanoparticles, TiO2 nanorods, FeOOH nanowires, Fe2O3 nanoparticles, and SnO2 nanoparticles, can be easily fabricated through such simple chemical reactions. E1 reaction was found to play the leading role in the synthesis of metal oxides attributed to better stability of tertiary carbocations in tert-amyl alcohol and the strong interaction of metal chlorides with hydroxyl groups that results in the easy dissociation of carbon-oxygen bonds in tert-amyl alcohol. SN1 reaction can also occur in certain reactions due to nucleophilic substitution of chloride ions for hydroxyl groups. As-prepared metal oxides show good compatibility with an aqueous system while they were synthesized in a non-hydrophilic solvent probably attributed to the specific E1 reaction mechanism involving the generation of water, and can be directly incorporated into an aqueous soluble polymer, such as PVA, to exhibit many promising applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32255b

  16. A theory for nonadiabatic electrochemical electron-transfer reactions involving the breaking of a bond

    NASA Astrophysics Data System (ADS)

    Schmickler, W.

    2000-02-01

    A simple model for bond-breaking electrochemical electron-transfer reactions is considered in the nonadiabatic limit, and an explicit expression for the rate constant is derived from first-order perturbation theory. Explicit model calculations are performed for the quantum regime. Tunneling effects are important, and the energy of activation is considerably smaller than predicted by classical theories. The energy-resolved rate exhibits features that are quite different from those of outer-sphere reactions.

  17. Relationship of bond strengths to selectivity in heterogeneous surface reactions: Mercaptoethanol and ethanedithiol on Ni(110)

    SciTech Connect

    Huntley, D.R.

    1995-08-24

    The reaction selectivities and bonding configurations in mercaptoethanol (HSCH{sub 2}CH{sub 2}OH) and ethanedithiol (HSCH{sub 2}CH{sub 2}SH) on Ni(110) were determined and found to be correlated to the relative strengths of the C-S and C-O bonds. Mechanistic details of the mercaptoethanol reaction have been elucidated. Mercaptoethanol reacts with Ni(110) to form ethanol, acetaldehyde, methane, CO, and hydrogen. Mercaptoethanol reactivity is dominated by thiolate formation as suggested by the S 2p core level binding energy. Near 200-250K, the C-S bond cleaves with the evolution of ethanol and formation of surface ethoxide which is easily discernible from vibrational spectroscopy. The ethoxide dehydrogenates to form acetaldehyde, which either desorbs or reacts to form methane and CO. In dramatic contrast, the structurally similar ethanedithiol apparently adsorbs in a bidentate fashion, resulting in a dithiolate which selectively splits out thylene and produces surface sulfur. The difference in the reactivity of ethanedithiol and mercaptoethanol is understood in terms of the inactivity of the Ni(110) surface toward C-O bond scission, which is primarily a reflection of the strength of C-O bonds compared with C-S bonds. 35 refs., 8 figs., 2 tabs.

  18. Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides

    SciTech Connect

    Dimitrov, Vesselin; Komatsu, Takayuki

    2012-12-15

    A suitable relationship between free-cation polarizability and electronegativity of elements in different valence states and with the most common coordination numbers has been searched on the basis of the similarity in physical nature of both quantities. In general, the cation polarizability increases with decreasing element electronegativity. A systematic periodic change in the polarizability against the electronegativity has been observed in the isoelectronic series. It has been found that generally the optical basicity increases and the single bond strength of simple oxides decreases with decreasing the electronegativity. The observed trends have been discussed on the basis of electron donation ability of the oxide ions and type of chemical bonding in simple oxides. - Graphical abstract: This figure shows the single bond strength of simple oxides as a function of element electronegativity. A remarkable correlation exists between these independently obtained quantities. High values of electronegativity correspond to high values of single bond strength and vice versa. It is obvious that the observed trend in this figure is closely related to the type of chemical bonding in corresponding oxide. Highlights: Black-Right-Pointing-Pointer A suitable relationship between free-cation polarizability and electronegativity of elements was searched. Black-Right-Pointing-Pointer The cation polarizability increases with decreasing element electronegativity. Black-Right-Pointing-Pointer The single bond strength of simple oxides decreases with decreasing the electronegativity. Black-Right-Pointing-Pointer The observed trends were discussed on the basis of type of chemical bonding in simple oxides.

  19. From DNA to catalysis: a thymine-acetate ligated non-heme iron(iii) catalyst for oxidative activation of aliphatic C-H bonds.

    PubMed

    Al-Hunaiti, Afnan; Räisänen, Minnä; Repo, Timo

    2016-01-26

    A non-heme, iron(iii)/THA(thymine-1-acetate) catalyst together with H2O2 as an oxidant is efficient in oxidative C-H activation of alkanes. Although having a higher preference for tertiary C-H bonds, the catalyst also oxidizes aliphatic secondary C-H bonds into carbonyl compounds with good to excellent conversions. Based on the site selectivity of the catalyst and our mechanistic studies the reaction proceeds via an Fe-oxo species without long lived carbon centered radicals. PMID:26685988

  20. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  1. From polymer to monomer: cleavage and rearrangement of Si-O-Si bonds after oxidation yielded an ordered cyclic crystallized structure.

    PubMed

    Zuo, Yujing; Gou, Zhiming; Cao, Jinfeng; Yang, Zhou; Lu, Haifeng; Feng, Shengyu

    2015-07-27

    Polymerization reactions are very common in the chemical industry, however, the reaction in which monomers are obtained from polymers is rarely invesitgated. This work reveals for the first time that oxone can break the Si-O-Si bond and induce further rearrangement to yield an ordered cyclic structure. The oxidation of P1, which is obtained by reaction of 2,2'-1,2-ethanediylbis(oxy)bis(ethanethiol) (DBOET) with 1,3-divinyl-1,1,3,3-tetramethyldisiloxane (MM(Vi)), with oxone yielded cyclic crystallized sulfone-siloxane dimer (P1-ox) after unexpected cleavage and rearrangement of the Si-O-Si bond. PMID:26186500

  2. Synthesis and characterization of VLS (vapor-liquid-solid) silicon carbide whisker reinforced reaction bonded silicon nitride

    SciTech Connect

    Gac, F.D.

    1989-10-01

    Four different types of vapor-liquid-solid (VLS) SiC whiskers were added to a reaction bonded silicon nitride (RBSN) matrix in levels of 4, 8, and 17 vol%. Each whisker type represented a distinct surface treatment: as-beneficiated, oxidized in air at 1000{degree}C for one hour, carbon coated and boron nitride (BN) coated. The tensile strength of the carbon coated whiskers was not affected by the coating process, whereas the oxidation and BN coating treatments reduced the strengths of the whiskers. A correlation was observed between the mechanical performance of the composites and the degree of degradation experienced by the different whisker types during nitridation of the RBSN matrix composite. 119 refs., 43 figs., 22 tabs.

  3. Students' Understandings of Chemical Bonds and the Energetics of Chemical Reactions.

    ERIC Educational Resources Information Center

    Boo, Hong Kwen

    1998-01-01

    Investigates Grade 12 students' understandings of the nature of chemical bonds and the energetics elicited across five familiar chemical reactions following a course of instruction. Discusses the many ways in which students can misconstruct concepts and principles. Contains 63 references. (DDR)

  4. Reactions of imines, nitriles, and isocyanides with pentaphenylborole: coordination, ring expansion, C-H bond activation, and hydrogen migration reactions.

    PubMed

    Huang, Kexuan; Couchman, Shannon A; Wilson, David J D; Dutton, Jason L; Martin, Caleb D

    2015-09-21

    The reactions of pentaphenylborole with imines, isocyanides, and acetonitrile were investigated experimentally and theoretically. On the basis of literature precedent, we envisioned that the dipolar substrates would undergo facile ring expansion reactions to yield new BNC5 heterocycles. For acetonitrile and one particular imine, this ring expansion process was observed. However, in many cases, unexpected reactivity occurred. This included hydride migration of an imine ring expanded product and the ortho C-H bond activation of an aryl group of an imine if two phenyl groups were present on the α-carbon. A bulky group on the nitrogen atom of an imine prevented coordination to the boron center, and no reaction was observed, indicating that coordination to the borole is a critical step for any type of reaction to occur. Isocyanides made coordination complexes, but heating to induce further reactivity resulted in mixtures. The mechanisms were elucidated via DFT calculations, which complement the experimental findings. PMID:26325341

  5. Heterogeneous ozone oxidation reactions of 1-pentene, cyclopentene, cyclohexene, and a menthenol derivative studied by sum frequency generation.

    PubMed

    Stokes, Grace Y; Buchbinder, Avram M; Gibbs-Davis, Julianne M; Scheidt, Karl A; Geiger, Franz M

    2008-11-20

    We report vibrational sum frequency generation (SFG) spectra of glass surfaces functionalized with 1-pentene, 2-hexene, cyclopentene, cyclohexene, and a menthenol derivative. The heterogeneous reactions of ozone with hydrocarbons covalently linked to oxide surfaces serve as models for studying heterogeneous oxidation of biogenic terpenes adsorbed to mineral aerosol surfaces commonly found in the troposphere. Vibrational SFG is also used to track the C=C double bond oxidation reactions initiated by ozone in real time and to characterize the surface-bound product species. Combined with contact angle measurements carried out before and after ozonolysis, the kinetic and spectroscopic studies presented here suggest reaction pathways involving vibrationally hot Criegee intermediates that compete with pathways that involve thermalized surface species. Kinetic measurements suggest that the rate limiting step in the heterogeneous C=C double bond oxidation reactions is likely to be the formation of the primary ozonide. From the determination of the reactive uptake coefficients, we find that ozone molecules undergo between 100 and 10000 unsuccessful collisions with C=C double bonds before the reaction occurs. The magnitude of the reactive uptake coefficients for the cyclic and linear olefins studied here does not follow the corresponding gas-phase reactivities but rather correlates with the accessibility of the C=C double bonds at the surface. PMID:18942815

  6. C-H bond activation by aluminum oxide cluster anions, an experimental and theoretical study.

    PubMed

    Tian, Li-Hua; Ma, Tong-Mei; Li, Xiao-Na; He, Sheng-Gui

    2013-08-21

    Aluminum oxide cluster anions are produced by laser ablation and reacted with n-butane in a fast flow reactor. A reflectron time-of-flight mass spectrometer is used to detect the cluster distribution before and after the reactions. Aluminum oxide clusters Al₂O4,6⁻ and Al₃O₇⁻ can react with n-C₄H₁₀ to produce Al₂O4,6H⁻ and Al₃O₇⁻, respectively, while cluster Al₃O₆⁻ reacts with n-C₄H₁₀ to produce both the Al₃O₆H⁻ and Al₃O₆H₂⁻. The theoretical calculations are performed to study the structures and bonding properties of clusters Al₂O4,6⁻ and Al₃O6,7⁻ as well as the reaction mechanism of Al₂O₄⁻ + n-C₄H₁₀. The calculated results show that the mononuclear oxygen-centred radicals (O⁻˙) on Al₂O4,6⁻ and Al₃O₇⁻, and oxygen-centred biradical on Al₃O₆⁻ are the active sites responsible for the observed hydrogen atom abstraction reactivity. Furthermore, mechanism investigation of the O⁻˙ generation in Al₃O₇⁻ upon O₂ molecule adsorption on un-reactive Al₃O₅⁻ is performed by theoretical calculations. PMID:23807463

  7. Thermochemistry and reaction paths in the oxidation reaction of benzoyl radical: C6H5C•(═O).

    PubMed

    Sebbar, Nadia; Bozzelli, Joseph W; Bockhorn, Henning

    2011-10-27

    Alkyl substituted aromatics are present in fuels and in the environment because they are major intermediates in the oxidation or combustion of gasoline, jet, and other engine fuels. The major reaction pathways for oxidation of this class of molecules is through loss of a benzyl hydrogen atom on the alkyl group via abstraction reactions. One of the major intermediates in the combustion and atmospheric oxidation of the benzyl radicals is benzaldehyde, which rapidly loses the weakly bound aldehydic hydrogen to form a resonance stabilized benzoyl radical (C6H5C(•)═O). A detailed study of the thermochemistry of intermediates and the oxidation reaction paths of the benzoyl radical with dioxygen is presented in this study. Structures and enthalpies of formation for important stable species, intermediate radicals, and transition state structures resulting from the benzoyl radical +O2 association reaction are reported along with reaction paths and barriers. Enthalpies, ΔfH298(0), are calculated using ab initio (G3MP2B3) and density functional (DFT at B3LYP/6-311G(d,p)) calculations, group additivity (GA), and literature data. Bond energies on the benzoyl and benzoyl-peroxy systems are also reported and compared to hydrocarbon systems. The reaction of benzoyl with O2 has a number of low energy reaction channels that are not currently considered in either atmospheric chemistry or combustion models. The reaction paths include exothermic, chain branching reactions to a number of unsaturated oxygenated hydrocarbon intermediates along with formation of CO2. The initial reaction of the C6H5C(•)═O radical with O2 forms a chemically activated benzoyl peroxy radical with 37 kcal mol(-1) internal energy; this is significantly more energy than the 21 kcal mol(-1) involved in the benzyl or allyl + O2 systems. This deeper well results in a number of chemical activation reaction paths, leading to highly exothermic reactions to phenoxy radical + CO2 products. PMID:21942384

  8. Competitive intramolecular C-C vs. C-O bond coupling reactions toward C6 ring-fused 2-pyridone synthesis.

    PubMed

    Lepitre, T; Pintiala, C; Muru, K; Comesse, S; Rebbaa, A; Lawson, A M; Daïch, A

    2016-04-14

    An interesting competitive C-C vs. C-O bond coupling reaction on N,3,5-trisubstituted pyridones is reported. These coupling reactions provided selective access to C- or O-ring-fused pyridones, both at the challenging C6-pyridone position. 1,6-C-Annulated pyridones were generally achieved in good yields with excellent chemoselectivity under Pd(0) conditions. On the other hand, full C6-regioselective Csp(2) aryloxylation was achieved under oxidative coupling promoted by silver salts to access 5,6-O-annulated pyridones. Based on various experiments and observations, mechanistic evidence of these competitive reactions was provided and it was proposed that C-O bond formation proceeded through radical cyclization. These processes were performed under mild reaction conditions and offer an efficient and attractive methodology to selectively access a large scope of C-arylated and O-arylated pyridones of biological interest. PMID:26976735

  9. Accurate thermochemistry of hydrocarbon radicals via an extended generalized bond separation reaction scheme.

    PubMed

    Wodrich, Matthew D; Corminboeuf, Clémence; Wheeler, Steven E

    2012-04-01

    Detailed knowledge of hydrocarbon radical thermochemistry is critical for understanding diverse chemical phenomena, ranging from combustion processes to organic reaction mechanisms. Unfortunately, experimental thermochemical data for many radical species tend to have large errors or are lacking entirely. Here we develop procedures for deriving high-quality thermochemical data for hydrocarbon radicals by extending Wheeler et al.'s "generalized bond separation reaction" (GBSR) scheme (J. Am. Chem. Soc., 2009, 131, 2547). Moreover, we show that the existing definition of hyperhomodesmotic reactions is flawed. This is because transformation reactions, in which one molecule each from the predefined sets of products and reactants can be converted to a different product and reactant molecule, are currently allowed. This problem is corrected via a refined definition of hyperhomodesmotic reactions in which there are equal numbers of carbon-carbon bond types inclusive of carbon hybridization and number of hydrogens attached. Ab initio and density functional theory (DFT) computations using the expanded GBSRs are applied to a newly derived test set of 27 hydrocarbon radicals (HCR27). Greatly reduced errors in computed reaction enthalpies are seen for hyperhomodesmotic and other highly balanced reactions classes, which benefit from increased matching of hybridization and bonding requirements. The best performing DFT methods for hyperhomodesmotic reactions, M06-2X and B97-dDsC, give average deviations from benchmark computations of only 0.31 and 0.44 (±0.90 and ±1.56 at the 95% confidence level) kcal/mol, respectively, over the test set. By exploiting the high degree of error cancellation provided by hyperhomodesmotic reactions, accurate thermochemical data for hydrocarbon radicals (e.g., enthalpies of formation) can be computed using relatively inexpensive computational methods. PMID:22385306

  10. Water oxidation reaction in natural and artificial photosynthetic systems

    SciTech Connect

    Yano, Junko; Yachandra, Vittal

    2013-12-10

    Understanding the structure and mechanism of water oxidation catalysts is an essential component for developing artificial photosynthetic devices. In the natural water oxidation catalyst, the geometric and electronic structure of its inorganic core, the Mn{sub 4}CaO{sub 5} cluster, has been studied by spectroscopic and diffraction measurements. In inorganic systems, metal oxides seem to be good candidates for water oxidation catalysts. Understanding the reaction mechanism in both natural and oxide-based catalysts will helpin further developing efficient and robust water oxidation catalysts.

  11. Vibrational Control of Bimolecular Reactions with Methane by Mode, Bond, and Stereo Selectivity.

    PubMed

    Liu, Kopin

    2016-05-27

    Vibrational motions of a polyatomic molecule are multifold and can be as simple as stretches or bends or as complex as concerted motions of many atoms. Different modes of excitation often possess different capacities in driving a bimolecular chemical reaction, with distinct dynamic outcomes. Reactions with vibrationally excited methane and its isotopologs serve as a benchmark for advancing our fundamental understanding of polyatomic reaction dynamics. Here, some recent progress in this area is briefly reviewed. Particular emphasis is placed on the key concepts developed from those studies. The interconnections among mode and bond selectivity, Polanyi's rules, and newly introduced vibrational-induced steric phenomena are highlighted. PMID:26980310

  12. Organosulfur compounds: electrophilic reagents in transition-metal-catalyzed carbon-carbon bond-forming reactions.

    PubMed

    Dubbaka, Srinivas Reddy; Vogel, Pierre

    2005-12-01

    Transition-metal-catalyzed carbon-carbon bond-forming reactions are among the most powerful methods in organic synthesis and play a crucial role in modern materials science and medicinal chemistry. Recent developments in the area of ligands and additives permit the cross-coupling of a large variety of reactants, including inexpensive and readily available sulfonyl chlorides. Their desulfitative carbon-carbon cross-coupling reactions (Negishi, Stille, carbonylative Stille, Suzuki-Miyaura, and Sonogashira-Hagihara-type cross-couplings and Mizoroki-Heck-type arylations) are reviewed together with carbon-carbon cross-coupling reactions with other organosulfur compounds as electrophilic reagents. PMID:16287179

  13. Modeling of metal-oxide semiconductor: Analytical bond-order potential for cupric oxide

    NASA Astrophysics Data System (ADS)

    Li, Kun; Yang, Wen; Wei, Ji-Lin; Du, Shi-Wen; Li, Yong-Tang

    2014-04-01

    Atomistic potentials for cupric element and cupric oxide are derived based on the analytical bond-order scheme that was presented by Brenner [Brenner D W, “Erratum: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”, Phys. Rev. B 1992, 46 1948]. In this paper, for the pure cupric element, the energy and structural parameters for several bulk phases as well as dimmer structure are well reproduced. The reference data are taken from our density functional theory calculations and the available experiments. The model potential also provides a good description of the bulk properties of various solid structures of cupric oxide compound structures, including cohesive energies, lattice parameters, and elastic constants.

  14. Interfacial bonding, wettability and reactivity in metal/oxide systems

    NASA Astrophysics Data System (ADS)

    Eustathopoulos, N.; Drevet, B.

    1994-10-01

    Pure non-reactive metals develop weak interactions with iono-covalent oxides (insulators) which can be both physical (van der Waals) and chemical (low density interfacial electronic states). As a result, non-wetting is generally observed, the contact angle being larger than 90 degrees. Improvement of wetting can be obtained by alloying the metal with a reactive solute B capable of modifying in a favourable sense the metal/oxide interface. This can be achieved via two mechanisms depending on the strength of the interactions between solute B and dissolved oxygen. For moderate O-B interactions, the solute B can modify the liquid-side of the interface by adsorption of OB clusters, the oxygen coming from the dissolution of the oxide substrate. This mechanism can lead to a decrease of θ down to ≈ 60^{circ}. For strong O-B interactions, the solute B can also lead to the precipitation at the solid-side of the interface of a new phase. When this new phase features metallic bonding, wetting can be strongly improved and nearly perfect wetting can be obtained. La liaison interfaciale entre un métal pur non réactif et un oxyde iono-covalent (isolant) est généralement assurée par de faibles interactions de type physique (van der Waals) et chimique (états électroniques interfaciaux de faible densité). Par conséquent, un mauvais mouillage est observé, caractérisé par un angle de contact supérieur à 90^{circ}. Un moyen d'améliorer le mouillage est de rajouter, dans une matrice métallique, un soluté B capable de modifier favorablement l'interface métal/oxyde. Cet effet est obtenu via deux mécanismes, dépendant de la force des interactions entre le soluté B et l'oxygène dissous. Pour des interactions 0-B modérées, l'interface côté liquide peut être modifiée par adsorption de clusters OB, l'oxygène provenant de la dissolution du substrat d'oxyde. Ce mécanisme entraîne une diminution de θ jusqu'à des valeurs de l'ordre de 60^{circ}. Pour de fortes interactions 0-B, l'élément B peut conduire à la précipitation d'une nouvelle phase à l'interface. Lorsque ce produit possède un caractère partiellement métallique, le mouillage est amélioré de façon significative, un mouillage presque parfait pouvant être obtenu.

  15. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    NASA Astrophysics Data System (ADS)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule atomic force microscopy (AFM) techniques, as shown here, can probe dynamic rearrangements within an enzyme's active site which cannot be resolved with any other current structural biological technique. Furthermore, our work at the single bond level directly demonstrates that thiol/disulfide exchange in proteins is a force-dependent chemical reaction. Our findings suggest that mechanical force plays a role in disulfide reduction in vivo, a property which has never been explored by traditional biochemistry. 1.-Wiita, A.P., Ainavarapu, S.R.K., Huang, H.H. and Julio M. Fernandez (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single molecule techniques. Proc Natl Acad Sci U S A. 103(19):7222-7 2.-Wiita, A.P., Perez-Jimenez, R., Walther, K.A., Gräter, F. Berne, B.J., Holmgren, A., Sanchez-Ruiz, J.M., and Fernandez, J.M. (2007) Probing the chemistry of thioredoxin catalysis with force. Nature, 450:124-7.

  16. Iodine Oxide Thermite Reactions: Physical and Biological Effects

    NASA Astrophysics Data System (ADS)

    Russell, Rod; Pantoya, Michelle; Bless, Stephan; Clark, William

    2009-06-01

    We investigated the potential for some thermite-like material reactions to kill bacteria spores. Iodine oxides and silver oxides react vigorously with metals like aluminum, tantalum, and neodymium. These reactions theoretically produce temperatures as high as 8000K, leading to vaporization of the reactants, producing very hot iodine and/or silver gases. We performed a series of computations and experiments to characterize these reactions under both quasi-static and ballistic impact conditions. Criteria for impact reaction were established. Measurements of temperature and pressure changes and chemical evolution will be reported. Basic combustion characterizations of these reactions, such as thermal equilibrium analysis and reaction propagation rates as well as ignition sensitivity, will be discussed. Additionally, testing protocols were developed to characterize the biocidal effects of these reactive materials on B. subtilis spores. The evidence from these tests indicates that these reactions produce heat, pressure, and highly biocidal gases.

  17. Acetaldehyde partial oxidation on the Au(111) model catalyst surface: C-C bond activation and formation of methyl acetate as an oxidative coupling product

    NASA Astrophysics Data System (ADS)

    Karatok, Mustafa; Vovk, Evgeny I.; Shah, Asad A.; Turksoy, Abdurrahman; Ozensoy, Emrah

    2015-11-01

    Partial oxidation of acetaldehyde (CH3CHO) on the oxygen pre-covered Au(111) single crystal model catalyst was investigated via Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction Spectroscopy (TPRS) techniques, where ozone (O3) was utilized as the oxygen delivery agent providing atomic oxygen to the reacting surface. We show that for low exposures of O3 and small surface oxygen coverages, two partial oxidation products namely, methyl acetate (CH3COOCH3) and acetic acid (CH3COOH) can be generated without the formation of significant quantities of carbon dioxide. The formation of methyl acetate as the oxidative coupling reaction product implies that oxygen pre-covered Au(111) single crystal model catalyst surface can activate C-C bonds. In addition to the generation of these products; indications of the polymerization of acetaldehyde on the gold surface were also observed as an additional reaction route competing with the partial and total oxidation pathways. The interplay between the partial oxidation, total oxidation and polymerization pathways reveals the complex catalytic chemistry associated with the interaction between the acetaldehyde and atomic oxygen on catalytic gold surfaces.

  18. Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Manivannan, A; Balasubramanian, M; Prakash, GKS; Narayanan, SR

    2015-04-16

    Rechargeable metal-air batteries and water electrolyzers based on aqueous alkaline electrolytes hold the potential to be sustainable solutions to address the challenge of storing large amounts of electrical energy generated from solar and wind resources. For these batteries and electrolyzers to be economically viable, it is essential to have efficient, durable, and inexpensive electrocatalysts for the oxygen evolution reaction. In this article, we describe new insights for predicting and tuning the activity of inexpensive transition metal oxides for designing efficient and inexpensive electrocatalysts. We have focused on understanding the factors determining the electrocatalytic activity for oxygen evolution in a strong alkaline medium. To this end, we have conducted a systematic investigation of nanophase calcium-doped lanthanum cobalt manganese oxide, an example of a mixed metal oxide that can be tuned for its electrocatalytic activity by varying the transition metal composition. Using X-ray absorption spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS), electrochemical polarization experiments, and analysis of mechanisms, we have identified the key determinants of electrocatalytic activity. We have found that the Tafel slopes are determined by the oxidation states and the bond energy of the surface intermediates of Mn-OH and Co-OH bonds while the catalytic activity increased with the average d-electron occupancy of the sigma* orbital of the M-OH bond. We anticipate that such understanding will be very useful in predicting the behavior of other transition metal oxide catalysts.

  19. From reactants to products via simple hydrogen-bonding networks: Information transmission in chemical reactions

    PubMed Central

    Brancato, Giuseppe; Coutrot, Frdric; Leigh, David A.; Murphy, Aden; Wong, Jenny K. Y.; Zerbetto, Francesco

    2002-01-01

    The transmission of information is ubiquitous in nature and often occurs through supramolecular hydrogen bonding processes. Here we report that there is a remarkable correlation during synthesis between the efficiency of the hydrogen-bond-directed assembly of peptide-based [2]rotaxanes and the symmetry distortion of the macrocycle in the structure of the final product. It transpires that the ability of the flexible macrocycle-precursor to wrap around an unsymmetrical hydrogen bonding template affects both the reaction yield and a quantifiable measure of the symmetry distortion of the macrocycle in the product. When the yields of peptide rotaxane-forming reactions are high, so is the symmetry distortion in the macrocycle; when the yields are low, indicating a poor fit between the components, the macrocycle symmetry is relatively unaffected by the thread. Thus during a synthetic sequence, as in complex biological assembly processes, hydrogen bonding can code and transmit informationin this case a distortion from symmetrybetween chemical entities by means of a supramolecularly driven multicomponent assembly process. If this phenomenon is general, it could have far reaching consequences for the use of supramolecular-directed reactions in organic chemistry. PMID:11959948

  20. Generation of pyridyl coordinated organosilicon cation pool by oxidative Si-Si bond dissociation

    PubMed Central

    Nokami, Toshiki; Soma, Ryoji; Yamamoto, Yoshimasa; Kamei, Toshiyuki; Itami, Kenichiro; Yoshida, Jun-ichi

    2007-01-01

    An organosilicon cation stabilized by intramolecular pyridyl coordination was effectively generated and accumulated by oxidative Si-Si bond dissociation of the corresponding disilane using low temperature electrolysis, and was characterized by NMR and CSI-MS. PMID:17288603

  1. Generation of pyridyl coordinated organosilicon cation pool by oxidative Si-Si bond dissociation.

    PubMed

    Nokami, Toshiki; Soma, Ryoji; Yamamoto, Yoshimasa; Kamei, Toshiyuki; Itami, Kenichiro; Yoshida, Jun-Ichi

    2007-01-01

    An organosilicon cation stabilized by intramolecular pyridyl coordination was effectively generated and accumulated by oxidative Si-Si bond dissociation of the corresponding disilane using low temperature electrolysis, and was characterized by NMR and CSI-MS. PMID:17288603

  2. In-process oxidation protection in fluxless brazing or diffusion bonding of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.; Featherston, A. B.

    1974-01-01

    Aluminum is cleaned of its oxide coating and is sealed immediately with polymeric material which makes it suitable for fluxless brazing or diffusion bonding. Time involved between cleaning and brazing is no longer critical factor.

  3. Bond-forming reactions of small triply charged cations with neutral molecules.

    PubMed

    Fletcher, James D; Parkes, Michael A; Price, Stephen D

    2013-08-12

    Time-of-flight mass spectrometry reveals that atomic and small molecular triply charged cations exhibit extensive bond-forming chemistry, following gas-phase collisions with neutral molecules. These experiments show that at collision energies of a few eV, I(3+) reacts with a variety of small molecules to generate molecular monocations and molecular dications containing iodine. Xe(3+) and CS2(3+) react in a similar manner to I(3+), undergoing bond-forming reactions with neutrals. A simple model, involving relative product energetics and electrostatic interaction potentials, is used to account for the observed reactivity. PMID:23843367

  4. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    NASA Astrophysics Data System (ADS)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  5. d0 ferromagnetism in black phosphorous oxide caused by surface P-O bonds

    NASA Astrophysics Data System (ADS)

    Gui, Q. F.; Sun, L. L.; Liu, L. Z.; Wu, X. L.; Chu, Paul K.

    2016-02-01

    The room-temperature d0 ferromagnetism in black phosphorous (BP) oxide is investigated experimentally and theoretically. Electrochemical oxidation does not alter the single-crystal structure of BP and the degree of oxidation depends on the oxidation time, thereby resulting in changeable d0 ferromagnetism caused by surface P-O bonds. First-principles calculation reveals that different surface P-O bonds have different binding energies and contributions to the ferromagnetism and the bridge and dangling oxygen atoms are responsible for the observed ferromagnetism which stems from p orbital spin polarization of the oxygen and phosphorus atoms.

  6. Evaluation of reaction mechanism of coal-metal oxide interactions in chemical-looping combustion

    SciTech Connect

    Siriwardane, Ranjani; Richards, George; Poston, James; Tian, Hanjing; Miller, Duane; Simonyi, Thomas

    2010-11-15

    The knowledge of reaction mechanism is very important in designing reactors for chemical-looping combustion (CLC) of coal. Recent CLC studies have considered the more technically difficult problem of reactions between abundant solid fuels (i.e. coal and waste streams) and solid metal oxides. A definitive reaction mechanism has not been reported for CLC reaction of solid fuels. It has often been assumed that the solid/solid reaction is slow and therefore requires that reactions be conducted at temperatures high enough to gasify the solid fuel, or decompose the metal oxide. In contrast, data presented in this paper demonstrates that solid/solid reactions can be completed at much lower temperatures, with rates that are technically useful as long as adequate fuel/metal oxide contact is achieved. Density functional theory (DFT) simulations as well as experimental techniques such as thermo-gravimetric analysis (TGA), flow reactor studies, in situ X-ray photo electron spectroscopy (XPS), in situ X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to evaluate how the proximal interaction between solid phases proceeds. The data indicate that carbon induces the Cu-O bond breaking process to initiate the combustion of carbon at temperatures significantly lower than the spontaneous decomposition temperature of CuO, and the type of reducing medium in the vicinity of the metal oxide influences the temperature at which the oxygen release from the metal oxide takes place. Surface melting of Cu and wetting of carbon may contribute to the solid-solid contacts necessary for the reaction. (author)

  7. Reaction Mechanism for m-Xylene Oxidation in the Claus Process by Sulfur Dioxide.

    PubMed

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S; Chung, Suk Ho

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. PMID:26334187

  8. Classification of metal-oxide bonded interactions based on local potential- and kinetic-energy densities

    SciTech Connect

    Gibbs, Gerald V.; Cox, David; Crawford, T Daniel; Rosso, Kevin M.; Ross, Nancy; Downs, R. T.

    2006-02-28

    A classification of the HF bonded interactions comprising a large number of molecules has been proposed by Espinosa et al. [J. Chem. Phys. 117, 5529 (2002)] based on the ratio |V(rc)|/G(rc) where |V(rc)| is the magnitude of the local potential energy density and G(rc) is the local kinetic density evaluated at the bond critical points, rc. A calculation of the ratio for the MO bonded interactions comprising a relatively large number of molecules and earth materials, together with the constraints imposed by the values of Ñ2ρ(rc) and the local electronic energy density H(rc) = G(rc) + V(rc) in the HF study, yielded the same classification for the oxides as found for the fluorides. This is true despite the different trends of the bond critical point and local energy properties with the bond length displayed by the HF and MO bonded interactions. LiO, NaO and MgO bonded interactions classify as closed shell ionic bonds, BeO, AlO, SiO, BO and PO bonded interactions classify as bonds of intermediate character and NO bonded interactions classify as shared covalent bonds. CO and SO bonded interactions classify as both intermediate and covalent bonded interactions. The CO triple bonded interaction classifies as a bond of intermediate character and the CO single bonded interaction classifies as a covalent bond whereas their H(rc) value indicates that they are both covalent bonds. The |V(rc)|/G(rc) ratios for the BeO, AlO and SiO bonded interactions indicate that they have a substantial component of ionic character despite their classification as bonds of intermediate character. The trend between |V(rc)|/G(rc) and the character of the bonded interaction is consistent with trends expected from electronegativity considerations. The connection between the net charges and the experimental SiO bond length evaluated for the Si and O atoms comprising two orthosilicates are examined in terms of the |V(rc)|/G(rc) values.

  9. Carbon-oxygen bond cleavage reactions by electron transfer. 1. Electrochemical studies on the formation and subsequent reaction pathways of cyanoanisole radical anions

    SciTech Connect

    Koppang, M.D.; Woolsey, N.F.; Bartak, D.E.

    1984-05-16

    The radical anions of three isomers of cyanoanisole have been electrochemically generated and subsequently shown to react by at least three different reaction pathways in dry N,N-dimethylformamide (DMF). The o-cyanoanisole radical anion (E/sub pc/ = -2.3 V vs. SCE) dimerizes (k/sub 2/ = 3.2 X 10/sup 2/ M/sup -1/s/sup -1/) to form an intermediate dimeric dianion. The dianion, which can be oxidized (E/sub pa = 1.1 V vs. SCE), undergoes a slow intramolecular disproportionation reaction to form o-cyanophenoxide ion, methide ion, and unreduced substrate (k/sub 3/ = 1.9 X 10/sup -2/s/sup -1/). Subsequent protonation results in the formation of methane and p-cyanophenol in an overall two-electron process. The m-cyanoanisole radical anion (E/sub pc/ = -2.3 V vs. SCE) is very stable (t/sub 1/2/ > 10/sup 3/ s) under anhydrous DMF conditions. Overall, slow carbon-carbon bond cleavage with loss of cyanide occurs competitively with ..beta.. carbon-oxygen bond cleavage to produce anisole and m-cyanophenol, respectively. The final products of the reduction of p-cyanoanisole are p-cyanophenol and methane; however, the radical anion of p-cyanoanisole (E/sub pc/ = -2.5 V vs. SCE) undergoes a relatively rapid unimolecular fragmentation reaction (k/sub 1/ = 7 s/sup -1/). The initial products of the fragmentation are p-cyanophenoxide ion and the methyl radical, which is reduced further to methide ion. Hydrogen atom abstraction reactions by the methyl radical can also occur in the bulk solution to produce methane.

  10. High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation

    NASA Astrophysics Data System (ADS)

    Sabourin, Justin L.

    Tungsten, which is a material used in many high temperature applications, is limited by its susceptibility to oxidation at elevated temperatures. Although tungsten has the highest melting temperature of any metal, at much lower temperatures volatile oxides are formed during oxidation with oxygen containing species. This differs from many heterogeneous oxidation reactions involving metals since most reactions form very stable oxides that have higher melting or boiling points than the pure metal (e.g., aluminum, iron). Understanding heterogeneous oxidation and vaporization processes may allow for the expansion and improvement of high temperature tungsten applications. In order to increase understanding of the oxidation processes of tungsten, there is a need to develop reaction mechanisms and kinetics for oxidation processes involving oxidizers and environmental conditions of interest. Tungsten oxidation was thoroughly studied in the past, and today there is a good phenomenological understanding of these processes. However, as the design of large scale systems increasingly relies on computer modeling there becomes a need for improved descriptions of chemical reactions. With the increase in computing power over the last several decades, and the development of quantum chemistry and physics theories, heterogeneous systems can be modeled in detail at the molecular level. Thermochemical parameters that may not be measured experimentally may now be determined theoretically, a tool that was previously unavailable to scientists and engineers. Additionally, chemical kinetic modeling software is now available for both homogeneous and heterogeneous reactions. This study takes advantage of these new theoretical tools, as well as a thermogravimetric (TG) flow reactor developed as part of this study to learn about mechanisms and kinetics of tungsten oxidation. Oxidizers of interest are oxygen (O2), carbon dioxide (CO 2), water (H2O), and other oxidizers present in combustion and energy systems. The primary application for this research topic is the migration of erosion processes in solid rocket motor nozzles. Since oxidation is the primary erosion mechanism of tungsten based nozzles, mitigation of this process through improved comprehension of the chemical mechanisms will increase performance of future rocket systems. In this dissertation, results of the high temperature reaction rates of bulk tungsten are studied using TG analysis in oxidizing atmospheres of O2, CO2, and H2O using helium (He) as an inert carrier gas. Isothermal reaction rates were determined at temperatures up to 1970 K, and oxidizing species partial pressures up to 64.6 torr. Kinetic parameters such as activation energies, frequency factors, and pressure exponents were determined for each reactive system. An important contribution of this work was quantifying the effects of carbon monoxide (CO) on the CO2 reaction, and hydrogen (H2) on the H2O reaction. In both cases the non-oxidizing species significantly reduced oxidation rates. Results have led to new interpretations and thought processes for limiting nozzle erosion in rocket motors. Combined with the TG analysis, as well as recent theoretical interpretations of reaction thermodynamics and kinetics, a new mechanism for tungsten and O2 oxidation has been developed using a one-dimensional numerical model of the TG flow reactor. Important chemical processes and species are also identified for reaction systems involving H2O and CO2. In the future, additional studies are needed to improve our understanding of these chemical species and processes so that more advanced kinetic mechanisms may be developed. In addition to a detailed analysis of high temperature tungsten corrosion processes, synthetic graphite corrosion processes are studied in detail as well. Details of these studies are presented in an attached appendix of this dissertation. These studies considered not only oxidation processes, but decomposition of synthetic graphite in the presence of reducing and inert gas environments.

  11. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  12. Formation of aromatics in thermally induced reactions of chemically bonded RP-C18 stationary phase.

    PubMed

    Prus, Wojciech

    2014-10-01

    In continuation of the research on the thermally induced chemical transformation of the silica-based chemically bonded stationary phases (C18), the oxidative cleavage of the silicon-carbon bonds with hydrogen peroxide and potassium fluoride was utilized, followed by the gas chromatography coupled with mass spectrometry (GC-MS) study of the resulting products. These investigations allowed determination of the probable structures of certain thermal modification products as the various different alkyl derivatives of the phenylsilane ligands. Apart from aromatic compounds, the products with unsaturated bonds and carbonyl functionalities were found in the analyzed extracts. The analysis of the GC-MS chromatograms reveals that under the applied working conditions, the investigated process runs with relatively low yields. PMID:24105920

  13. Catalysis of the Aza-Diels-Alder Reaction by Hydrogen and Halogen Bonds.

    PubMed

    Nziko, Vincent de Paul N; Scheiner, Steve

    2016-03-18

    The combination of H2C═NH and cis-1,3-butadiene to form a six-membered ring was examined by quantum calculations. The energy barrier for this reaction is substantially lowered by the introduction of an imidazolium catalyst with either a H or halogen (X) atom in the 2-position, which acts via a H or halogen bond to the N atom of the imine, respectively. X = I has the largest effect, and Cl the smallest; Br and H are roughly equivalent. The catalyst retards the formation of the incipient N-C bond from imine to diene while simultaneously accelerating the C-C bond formation. The energy of the π* LUMO of the imine is lowered by the catalyst, which thereby enhances charge transfer from the diene to the imine. Assessment of free energies suggests catalytic rate acceleration by as much as 4-6 orders of magnitude. PMID:26907727

  14. Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions.

    PubMed

    Zeng, Yongfei; Zou, Ruyi; Luo, Zhong; Zhang, Huacheng; Yao, Xin; Ma, Xing; Zou, Ruqiang; Zhao, Yanli

    2015-01-28

    Covalent organic frameworks (COFs) are excellent candidates for various applications. So far, successful methods for the constructions of COFs have been limited to a few condensation reactions based on only one type of covalent bond formation. Thus, the exploration of a new judicious synthetic strategy is a crucial and emergent task for the development of this promising class of porous materials. Here, we report a new orthogonal reaction strategy to construct COFs by reversible formations of two types of covalent bonds. The obtained COFs consisting of multiple components show high surface area and high H2 adsorption capacity. The strategy is a general protocol applicable to construct not only binary COFs but also more complicated systems in which employing regular synthetic methods did not work. PMID:25581488

  15. Iterative reactions of transient boronic acids enable sequential C-C bond formation.

    PubMed

    Battilocchio, Claudio; Feist, Florian; Hafner, Andreas; Simon, Meike; Tran, Duc N; Allwood, Daniel M; Blakemore, David C; Ley, Steven V

    2016-04-01

    The ability to form multiple carbon-carbon bonds in a controlled sequence and thus rapidly build molecular complexity in an iterative fashion is an important goal in modern chemical synthesis. In recent times, transition-metal-catalysed coupling reactions have dominated in the development of C-C bond forming processes. A desire to reduce the reliance on precious metals and a need to obtain products with very low levels of metal impurities has brought a renewed focus on metal-free coupling processes. Here, we report the in situ preparation of reactive allylic and benzylic boronic acids, obtained by reacting flow-generated diazo compounds with boronic acids, and their application in controlled iterative C-C bond forming reactions is described. Thus far we have shown the formation of up to three C-C bonds in a sequence including the final trapping of a reactive boronic acid species with an aldehyde to generate a range of new chemical structures. PMID:27001732

  16. Assessment of density functional theory for thermochemical approaches based on bond separation reactions.

    PubMed

    Bakowies, Dirk

    2013-01-10

    The recently proposed ATOMIC protocol is a fully ab initio thermochemical protocol that rests upon the concept of bond separation reactions (BSRs) to correct for systematic errors of composite wave function approaches. It achieves high accuracy for atomization energies and derived heats of formation if basis set requirements for all contributing components are balanced carefully. The present work explores the potential of density functionals as possible replacements of composite wave function approaches in the ATOMIC protocol. Twenty density functionals are examined for their accuracy in thermochemical predictions based on calculated bond-separation energies and precomputed high-level data for the small parent molecules entering BSRs. The best density functionals outperform CCSD (coupled cluster with singles and doubles excitations), but none reaches the accuracy of well-balanced composite wave function approaches that consider quasiperturbational connected triples excitations at least with small basis sets. Some functionals show unexpected problems with bond separation reactions and are analyzed further with a model of empirically calibrated bond additivity corrections. Finally, the benefit of adding empirical dispersion terms to common density functionals is analyzed in the context of BSR-corrected thermochemistry. PMID:23214917

  17. Reaction Pathways and Energetics of Etheric C−O Bond Cleavage Catalyzed by Lanthanide Triflates

    SciTech Connect

    Assary, Rajeev S.; Atesin, Abdurrahman C.; Li, Zhi; Curtiss, Larry A.; Marks, Tobin J.

    2013-07-15

    Efficient and selective cleavage of etheric C−O bonds is crucial for converting biomass into platform chemicals and liquid transportation fuels. In this contribution, computational methods at the DFT B3LYP level of theory are employed to understand the efficacy of lanthanide triflate catalysts (Ln(OTf)3, Ln = La, Ce, Sm, Gd, Yb, and Lu) in cleaving etheric C−O bonds. In agreement with experiment, the calculations indicate that the reaction pathway for C−O cleavage occurs via a C−H → O−H proton transfer in concert with weakening of the C−O bond of the coordinated ether substrate to ultimately yield a coordinated alkenol. The activation energy for this process falls as the lanthanide ionic radius decreases, reflecting enhanced metal ion electrophilicity. Details of the reaction mechanism for Yb(OTf)3-catalyzed ring opening are explored in depth, and for 1-methyl-d3-butyl phenyl ether, the computed primary kinetic isotope effect of 2.4 is in excellent agreement with experiment (2.7), confirming that etheric ring-opening pathway involves proton transfer from the methyl group alpha to the etheric oxygen atom, which is activated by the electrophilic lanthanide ion. Calculations of the catalytic pathway using eight different ether substrates indicate that the more rapid cleavage of acyclic versus cyclic ethers is largely due to entropic effects, with the former C−O bond scission processes increasing the degrees of freedom/particles as the transition state is approached.

  18. Solvent-Dependent Reaction Pathways Operating in Copper(II) Tetrafluoroborate Promoted Oxidative Ring-Opening Reactions of Cyclopropyl Silyl Ethers.

    PubMed

    Hasegawa, Eietsu; Nemoto, Kazuki; Nagumo, Ryosuke; Tayama, Eiji; Iwamoto, Hajime

    2016-04-01

    Oxidative ring-opening reactions of benzene-fused bicyclic cyclopropyl silyl ethers, promoted by copper(II) tetrafluoroborate, were investigated. The regioselectivity of cyclopropane ring-opening as well as product distributions were found to be highly dependent on the nature of the solvent. In alcohols, dimeric substances arising from external bond cleavage are major products. Radical rearrangement products are also formed in solvents such as ether and ethyl acetate. On the contrary, nucleophile addition to carbocation intermediates, generated by internal bond cleavage, occurs mainly in reactions taking place in acetonitrile. It is proposed that the observed solvent effects that govern the reaction pathways followed are a consequence of varying solvation of copper intermediates, which governs their reactivity and redox properties. In addition, the influence of counteranions of the copper salts, organonitriles, cyclic dienes, and substrate structures on the pathways followed in these reactions was also examined. PMID:26799089

  19. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    SciTech Connect

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  20. Solid-state bonding of oxide ceramic to steel

    NASA Astrophysics Data System (ADS)

    Suganuma, Katsuaki; Okamoto, Taira; Koizumi, Mitsue; Shimada, Masahiko

    1985-08-01

    A study has been conducted to examine the effects of interlayers on both the bonding strength and the resistance to thermal cycling for alumina (Al 2O 3)/steel joints. The interlayers used in the present study were niobium (Nb) and niobium/molybdenum (Nb/Mo) laminated layers, and the bonding was performed by hot-isostatic pressing (HIP), under the conditions of 100 MPa and 1573 or 1673 K for 30 min. The joint with a Nb/Mo layer bonded at 1673 K had a high strength of 450-550 MPa measured in a 4-point bending test. The results of a thermal cycle test between room temperature and 773 K revealed that Nb/Mo is the superior interlayer.

  1. Reaction bonded silicon nitride prepared from wet attrition-milled silicon. [fractography

    NASA Technical Reports Server (NTRS)

    Herball, T. P.; Glasgow, T. K.; Shaw, N. J.

    1980-01-01

    Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 volume percent hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high strength specimens and both subsurface and surface flaws in low strength specimens.

  2. Reaction bonded silicon nitride prepared from wet attrition-milled silicon

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.; Shaw, N. J.

    1980-01-01

    Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 vol% hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high-strength specimens and both subsurface and surface flaws in low-strength specimens.

  3. Large-Amplitude Deformation and Bond Breakage in Shock-Induced Reactions of Explosive Molecules

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey

    The response of explosive molecules to large-amplitude mechanical deformation plays an important role in shock-induced reactions and the initiation of detonation in explosive materials. In this presentation, the response of a series of explosive molecules (nitromethane, 2,4,6-trinitrotoluene [TNT], and 2,4,6-triamino-1,3,5-trinitrobenzene [TATB]) to a variety of large-amplitude deformations are examined using ab initio quantum chemical calculations. Large-amplitude motions that result in bond breakage are described, and the insights these results provide into both previous experimental observations and previous theoretical predictions of shock-induced reactions are discussed.

  4. Radiation response of reaction-bonded and sintered SiC: Effects of boron isotopes

    NASA Astrophysics Data System (ADS)

    Carey, A. M.; Pineau, F. J.; Lee, C. W.; Corelli, J. C.

    The response of mechanical, thermal and microstructural properties of reaction-bonded SiC and sintered SiC were studied after reactor irradiation. The effects of 10B(n,α) 7Li reaction products were studied by doping the material from which samples were produced with enriched isotopes of 10B, 11B and natural boron. Silicon carbide doped with 10B exhibits a pronounced effect on the fracture strength. The thermal diffusivity decrease can account for the lowering of the resistance against thermal shock of irradiated material.

  5. Thermal oxidative degradation reactions of perfluoroalkylethers

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Kratzer, R. H.

    1981-01-01

    The mechanisms operative in thermal oxidative degradation of Fomblin Z and hexafluoropropene oxide derived fluids and the effect of alloys and additives upon these processes are investigated. The nature of arrangements responsible for the inherent thermal oxidative instability of the Fomblin Z fluids is not established. It was determined that this behavior is not associated with hydrogen end groups or peroxy linkages. The degradation rate of these fluids at elevated temperatures in oxidizing atmospheres is dependent on the surface/volume ratio. Once a limiting ratio is reached, a steady rate appears to be attained. Based on elemental analysis and oxygen consumption data, CF2OCF2CF2O2, no. CF2CF2O, is one of the major arrangements present. The action of the M-50 and Ti(4 Al, 4 Mn) alloys is much more drastic in the case of Fomblin Z fluids than that observed for the hexafluoropropene derived materials. The effectiveness of antioxidation anticorrosion additives, P-3 and phospha-s-triazine, in the presence of metal alloys is very limited at 316 C; at 288 C the additives arrested almost completely the fluid degradation. The phospha-s-triazine appears to be at least twice as effective as the P-3 compound; it also protected the coupon better. The Ti(4 Al, 4 Mn) alloy degraded the fluid mainly by chain scission processes this takes place to a much lesser degree with M-50.

  6. Bond length estimates for oxide crystals with a molecular power law expression

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, Nancy L.; Cox, David F.

    2015-07-01

    A molecular power law bond length regression expression, R(M-O) = 1.39( s/ r)-0.22, defined in terms of the quotient, s/ r, where s is the averaged Pauling bond strength for the bonded interaction comprising a given molecular coordination polyhedron and r is the periodic table row number for the M atom, serves to replicate the bulk of the 470 individual experimental M-O average bond lengths estimated with Shannon's (Acta Crystallogr A 32(5):751-767, 1976) crystal radii for oxides to within 0.10 . The success of the molecular expression is ascribed to a one-to-one deep-seated connection that obtains between the electron density accumulated between bonded pairs of atoms and the average Pauling bond strength. It also implies that the bonded interactions that constitute oxide crystals are governed in large part by local forces. Although the expression reproduces the bond lengths involving rare earth atoms typically to within ~0.05 , it does not reproduce the lanthanide ionic radius contraction. It also fails to reproduce the experimental bond lengths for selected transition cations like Cu1+, Ag1+ and VILSFe2+ and for cations like IVK+, VIBa2+ and IIU6+.

  7. Thermal oxidative degradation reactions of perfluoroalklethers

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Harris, D. H.; Smythe, M. E.; Kratzer, R. H.

    1983-01-01

    The objective of this contract was to investigate the mechanisms operative in thermal and thermal oxidative degradation of Fomblin Z and hexafluoropropene oxide derived fluids and the effect of alloys and additives upon these processes. The nature of arrangements responsible for the inherent thermal oxidative instability of the Fomblin Z fluids has not been established. It was determined that this behavior was not associated with hydrogen end-groups or peroxy linkages. The degradation rate of these fluids at elevated temperatures in oxidizing atmospheres was found to be dependent on the surface/volume ratio. Once a limiting ratio was reached, a steady rate appeared to be attained. Based on elemental analysis and oxygen consumption data, -CF2OCF2CF2O-, not -CF2CF2O-, is one of the major arrangements present. The action of the M-50 and Ti(4 Al, 4 Mn) alloys was found to be much more drastic in the case of Fomblin Z fluids than that observed for the hexalfuoropropane oxide derived materials. The effectiveness of antioxidation/anticorrosion additives, P-3 and phospha-s-triazine, in the presence of metal alloys was very limited at 316 C; at 288 C the additives arrested almost completely the fluid degradation. The phospha-s-triazine appeared to be at least twice as effective as the P-3 compound; it also protected the coupon better. The Ti(4 Al, 4 Mn) alloy degraded the fluid mainly by chain scission processes; this took place to a much lesser degree with M-50.

  8. Palladium-mediated C-C bond forming reactions: Cross-coupling reactions of organozinc and organotin reagents with purinones and triazines

    SciTech Connect

    Xia, Y.; Mirzai, B.; Chackalamannil, S.

    1995-12-31

    Palladium-mediated cross coupling reactions of organozinc and organotin reagents were used to form C-C bonds on heterocyclic substrates (8-bromopurin-6-ones and monochloro-1,3,5-triazines). These reactions represent the first examples of such coupling reactions on the above heterocyclic systems and they offer new ways to introduce a variety of carbon substituents into purinones and triazines.

  9. Concerted O atom-proton transfer in the O—O bond forming step in water oxidation

    SciTech Connect

    Chen, Zuofeng; Concepcion, Javier C.; Hu, Xiangqian; Yang, Weitao; Hoertz, Paul G.; Meyer, Thomas J

    2010-04-20

    As the terminal step in photosystem II, and a potential half-reaction for artificial photosynthesis, water oxidation (2H2O → O2 + 4e- + 4H+) is key, but it imposes a significant mechanistic challenge with requirements for both 4e-/4H- loss and O—O bond formation. Significant progress in water oxidation catalysis has been achieved recently by use of single-site Ru metal complex catalysts such as [Ru(Mebimpy)(bpy)(OH2)]2+ [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine]. When oxidized from RuII-OH22+ to RuV = O3+, these complexes undergo O—O bond formation by O-atom attack on a H2O molecule, which is often the rate-limiting step. Microscopic details of O—O bond formation have been explored by quantum mechanical/molecular mechanical (QM/MM) simulations the results of which provide detailed insight into mechanism and a strategy for enhancing catalytic rates. It utilizes added bases as proton acceptors and concerted atom–proton transfer (APT) with O-atom transfer to the O atom of a water molecule in concert with proton transfer to the base (B). Base catalyzed APT reactivity in water oxidation is observed both in solution and on the surfaces of oxide electrodes derivatized by attached phosphonated metal complex catalysts. These results have important implications for catalytic, electrocatalytic, and photoelectrocatalytic water oxidation.

  10. Oxidation of antibiotics during water treatment with potassium permanganate: reaction pathways and deactivation.

    PubMed

    Hu, Lanhua; Stemig, Amanda M; Wammer, Kristine H; Strathmann, Timothy J

    2011-04-15

    Recent work demonstrates that three widely administered antibiotics (ciprofloxacin, lincomycin, and trimethoprim) are oxidized by potassium permanganate [KMnO(4), Mn(VII)] under conditions relevant to water treatment operations. However, tests show that little to no mineralization occurs during reactions with Mn(VII), so studies were undertaken to characterize the reaction products and pathways and to assess the effects of Mn(VII)-mediated transformations on the antibacterial activity of solutions. Several oxidation products were identified for each antibiotic by liquid chromatography-tandem mass spectrometry (LC-MS/MS). For ciprofloxacin, 12 products were identified, consistent with oxidation of the tertiary aromatic and secondary aliphatic amine groups on the piperazine ring and the cyclopropyl group. For lincomycin, seven products were identified that indicate structural changes to the pyrrolidine ring and thioether group. For trimethoprim, seven products were identified, consistent with Mn(VII) reaction at C═C double bonds on the pyrimidine ring and the bridging methylene group. Oxidation pathways are proposed based on the identified products. Bacterial growth inhibition bioassays (E. coli DH5α) show that the mixture of products resulting from Mn(VII) reactions with the antibiotics collectively retain negligible antibacterial potency in comparison to the parent antibiotics. These results suggest that permanganate can be an effective reagent for eliminating the pharmaceutical activity of selected micropollutants during drinking water treatment. PMID:21417319

  11. Titanium oxide complexes with dinitrogen. Formation and characterization of the side-on and end-on bonded titanium oxide-dinitrogen complexes in solid neon.

    PubMed

    Zhou, Mingfei; Zhuang, Jia; Zhou, Zijian; Li, Zhen Hua; Zhao, Yanying; Zheng, Xuming; Fan, Kangnian

    2011-06-23

    The reactions of titanium oxide molecules with dinitrogen have been studied by matrix isolation infrared spectroscopy. The titanium monoxide molecule reacts with dinitrogen to form the TiO(N(2))(x) (x = 1-4) complexes spontaneously on annealing in solid neon. The TiO(η(1)-NN) complex is end-on bonded and was predicted to have a (3)A'' ground state arising from the (3)Δ ground state of TiO. Argon doping experiments indicate that TiO(η(1)-NN) is able to form complexes with one or more argon atoms. Argon atom coordination induces a large red-shift of the N-N stretching frequency. The TiO(η(2)-N(2))(2) complex was characterized to have C(2v) symmetry, in which both the N(2) ligands are side-on bonded to the titanium metal center. The tridinitrogen complex TiO(η(1)-NN)(3) most likely has C(3v) symmetry with three end-on bonded N(2) ligands. The TiO(η(1)-NN)(4) complex was determined to have a C(4v) structure with four equivalent end-on bonded N(2) ligands. In addition, evidence is also presented for the formation of the TiO(2)(η(1)-NN)(x) (x = 1-4) complexes, which were predicted to be end-on bonded. PMID:21604730

  12. Intramolecular anodic olefin coupling reactions: using competition studies to probe the mechanism of oxidative cyclization reactions.

    PubMed

    Xu, Hai-Chao; Moeller, Kevin D

    2010-04-16

    A competition experiment was designed so that the relative rates of anodic cyclization reactions under various electrolysis conditions can be determined. Reactions with ketene dithioacetal and enol ether-based substrates that use lithium methoxide as a base were shown to proceed through radical cation intermediates that were trapped by a sulfonamide anion. Results for the oxidative coupling of a vinyl sulfide with a sulfonamide anion using the same conditions were consistent with the reaction proceeding through a nitrogen-radical. PMID:20302359

  13. Oxidatively Triggered Carbon-Carbon Bond Formation in Ene-amide Complexes.

    PubMed

    Jacobs, Brian P; Wolczanski, Peter T; Lobkovsky, Emil B

    2016-05-01

    Ene-amides have been explored as ligands and substrates for oxidative coupling. Treatment of CrCl2, Cl2Fe(PMe3)2, and Cl2Copy4 with 2 equiv of {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}Li afforded pseudosquare planar {η(3)-C,C,N-(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Cr (1-Cr, 78%), trigonal {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Fe(PMe3) (2-Fe, 80%), and tetrahedral {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Co(py)2 (3-Co, 91%) in very good yields. The addition of CrCl3 to 1-Cr, and FeCl3 to 2-Fe, afforded oxidatively triggered C-C bond formation as rac-2,2'-di(2,6-(i)Pr2C6H3N═)2dicyclohexane (EA2) was produced in modest yields. Various lithium ene-amides were similarly coupled, and the mechanism was assessed via stoichiometric reactions. Some ferrous compounds (e.g., 2-Fe, FeCl2) were shown to catalyze C-arylation of {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}Li with PhBr, but the reaction was variable. Structural characterizations of 1-Cr, 2-Fe, and 3-Co are reported. PMID:27064509

  14. DFT study of the hydrolysis reaction in atranes and ocanes: the influence of transannular bonding.

    PubMed

    Ignatyev, Igor S; Montejo, Manuel; Rodriguez Ortega, Pilar G; Kochina, Tatiana A; Lpez Gonzlez, Juan Jess

    2016-01-01

    Thermochemical kinetics of hydrolysis reactions of compounds with transannular intramolecular MN bonds, i.e., atranes RM(OCH2CH2)3N and ocanes R2M(OCH2CH2)2NH (M?=?Si, Ge; R?=?F, Cl, Me), is studied at the B3LYP/aug-cc-pVDZ theoretical level. Several DFT methods are assessed for the reproduction of the experimental activation barrier for the Si-O bond cleavage of 1-methylsilatrane. Activation barriers for atranes and ocanes show the tendency for their growth with the decrease of the electronegativity of a substituent R on going from F to Me and their decrease from Si to Ge. Hydrolysis activation barriers of atranes and ocanes are compared with those of their acyclic analogs RM(OCH3)3 and R2M(OCH2)2NH in order to study the role of transannular MN bonds in the stability of these molecules to hydrolysis. Substantially larger barriers for atranes support the opinion that stability of atranes may be explained by the formation of intramolecular bonds; however, the strengthening of transannular MN bonds results in lower M-O cleavage barriers. It was proposed that the M-O cleavage barrier height is determined not by a weak MN bonding itself, but rather by the contribution of a nitrogen lone pair to the antibonding orbitals of M-O bonds. The NBO analysis show that this interaction increases with the decrease of the electronegativity of a substituent R and decreases on going from atranes to ocanes. In ocanes, the presence of MN bonds does not kinetically hinder the hydrolytic process; M-O cleavage activation barriers for acyclic analogs are higher. M-Hal cleavage barriers are substantially higher than those for M-O cleavage for R?=?F, but lower for R?=?Cl. Graphical Abstract The experimental barrier height of the Si-O bond cleavage in 1-methylsilatrane is well reproduced when three explicit water molecules are included in the B3LYP/aug-cc-pVDZ theoretical model. PMID:26645807

  15. Oxidation of a polycrystalline silver foil by reaction with ozone

    NASA Astrophysics Data System (ADS)

    Waterhouse, G. I. N.; Bowmaker, G. A.; Metson, J. B.

    2001-11-01

    The surface oxidation of a polycrystalline silver foil by reaction with ozone (5 mol% O 3 in O 2) at 300 K and ambient pressure was investigated. The morphology, microstructure and chemical composition of the oxide scale which developed on the foil surface during exposure to ozone was characterised by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The surface of silver foil was rapidly oxidised upon contact with ozone, initially producing a thick Ag 2O protective film. After 10 min reaction, the oxide film thickness was around 8-10 μm. SEM analysis revealed that Ag 2O film thickening occurred via a discontinuous film growth mechanism. Growth stresses, resulting from the large lattice volume mismatch between the oxide and the metal, caused the oxide film to crack and flake extensively during development. Spallation of the oxide film exposed fresh silver metal to ozone, which lead to further Ag 2O deposition. The continued recurrence of this process resulted in the formation a thick, discontinuous Ag 2O film on the silver foil. After foil exposure to ozone for 300 min, the oxide film thickness was 17-20 μm. Furthermore, Ag 2O at the surface of the oxide film was slowly oxidised to AgO with prolonged exposure to ozone. The combined results of our experimental studies were used to develop a better understanding of the oxidation of silver surfaces by O 3.

  16. Pathways to soot oxidation: reaction of OH with phenanthrene radicals.

    PubMed

    Edwards, David E; Zubarev, Dmitry Yu; Lester, William A; Frenklach, Michael

    2014-09-18

    Energetics and kinetics of the oxidation of possible soot surface sites by hydroxyl radicals were investigated theoretically. Energetics were calculated by employing density functional theory. Three candidate reactions were selected as suitable prototypes of soot oxidation by OH. The first two, OH + benzene and OH + benzene-phenol complex, did not produce pathways that lead to substantial CO expulsion. The third reaction, OH attack on the phenanthrene radical, had multiple pathways leading to CO elimination. The kinetics of the latter reaction system were determined by solving the master equations with the MultiWell suite of codes. The barrierless reaction rates of this system were computed using the VariFlex program. The computations were carried out over the ranges 1500-2500 K and 0.01-10 atm. At higher temperatures, above 2000 K, the oxidation of phenanthrene radicals by OH followed a chemically activated path. At temperatures lower than 2000 K, chemical activation was not sufficient to drive the reaction to products; reaction progress was impeded by intermediate adducts rapidly de-energizing before reaching products. In such cases, the reaction system was modeled by treating the accumulating adducts as distinct chemical species and computing their kinetics via thermal decomposition. The overall rate coefficient of phenanthrene radical oxidation by OH forming CO was found to be insensitive to pressure and temperature and is approximately 1 10(14) cm(3) mol(-1) s(-1). The oxidation of phenanthrene radicals by OH is shown to be controlled by two main processes: H atom migration/elimination and oxyradical decomposition. H atom migration and elimination made possible relatively rapid rearrangement of the aromatic edge to form oxyradicals with favorable decomposition rates. The reaction then continues down the fastest oxyradical pathways, eliminating CO. PMID:24761798

  17. Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1979-01-01

    Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.

  18. Cu/Fe Catalyzed Intermolecular Oxidative Amination of Benzylic C-H Bonds.

    PubMed

    Liu, Cong; Zhang, Qi; Li, Hongbo; Guo, Shuangxi; Xiao, Bin; Deng, Wei; Liu, Lei; He, Wei

    2016-04-25

    We report a Cu/Fe co-catalyzed Ritter-type C-H activation/amination reaction that allows efficient and selective intermolecular functionalization of benzylic C-H bonds. This new reaction is featured by simple reaction conditions, readily available reagents and general substrate scope, allowing facile synthesis of biologically interesting nitrogen containing heterocycles. The Cu and Fe salts were found to play distinct roles in this cooperative catalysis. PMID:26919545

  19. Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2.

    PubMed

    Vedernikov, Andrei N

    2012-06-19

    Atom economy and the use of "green" reagents in organic oxidation, including oxidation of hydrocarbons, remain challenges for organic synthesis. Solutions to this problem would lead to a more sustainable economy because of improved access to energy resources such as natural gas. Although natural gas is still abundant, about a third of methane extracted in distant oil fields currently cannot be used as a chemical feedstock because of a dearth of economically and ecologically viable methodologies for partial methane oxidation. Two readily available "atom-economical" "green" oxidants are dioxygen and hydrogen peroxide, but few methodologies have utilized these oxidants effectively in selective organic transformations. Hydrocarbon oxidation and C-H functionalization reactions rely on Pd(II) and Pt(II) complexes. These reagents have practical advantages because they can tolerate moisture and atmospheric oxygen. But this tolerance for atmospheric oxygen also makes it challenging to develop novel organometallic palladium and platinum-catalyzed C-H oxidation reactions utilizing O(2) or H(2)O(2). This Account focuses on these challenges: the development of M-C bond (M = Pt(II), Pd(II)) functionalization and related selective hydrocarbon C-H oxidations with O(2) or H(2)O(2). Reactions discussed in this Account do not involve mediators, since the latter can impart low reaction selectivity and catalyst instability. As an efficient solution to the problem of direct M-C oxidation and functionalization with O(2) and H(2)O(2), this Account introduces the use of facially chelating semilabile ligands such as di(2-pyridyl)methanesulfonate and the hydrated form of di(2-pyridyl)ketone that enable selective and facile M(II)-C(sp(n)) bond functionalization with O(2) (M = Pt, n = 3; M = Pd, n = 3 (benzylic)) or H(2)O(2) (M = Pd, n = 2). The reactions proceed efficiently in protic solvents such as water, methanol, or acetic acid. With the exception of benzylic Pd(II) complexes, the organometallic substrates studied form isolable high-valent Pt(IV) or Pd(IV) intermediates as a result of an oxidant attack at the M(II) atom. The resulting high-valent M(IV) intermediates undergo C-O reductive elimination, leading to products in high yields. Guidelines for the synthesis of products containing other C-X bonds (X = OAc, Cl, Br) while using O(2) or H(2)O(2) as oxidants are also discussed. Although the M(II)-C bond functionalization reactions including high-valent intermediates are well understood, the mechanism for the aerobic functionalization of benzylic Pd(II) complexes will require a more detailed exploration. Importantly, further optimization of the systems suitable for stoichiometric M(II)-C bond functionalization led to the development of catalytic reactions, including selective acetoxylation of benzylic C-H bonds with O(2) as the oxidant and hydroxylation of aromatic C-H bonds with H(2)O(2) in acetic acid solutions. Both reactions proceed efficiently with substrates that contain a directing heteroatom. This Account also describes catalytic methods for ethylene dioxygenation with H(2)O(2) using M(II) complexes supported by facially chelating ligands. Mechanistic studies of these new oxidation reactions point to important ways to improve their substrate scope and to develop "green" CH functionalization chemistry. PMID:22087633

  20. Cluster reactivity experiments: Employing mass spectrometry to investigate the molecular level details of catalytic oxidation reactions

    PubMed Central

    Johnson, Grant E.; Tyo, Eric C.; Castleman, A. W.

    2008-01-01

    Mass spectrometry is the most widely used tool in the study of the properties and reactivity of clusters in the gas phase. In this article, we demonstrate its use in investigating the molecular-level details of oxidation reactions occurring on the surfaces of heterogeneous catalysts via cluster reactivity experiments. Guided ion beam mass spectrometry (GIB-MS) employing a quadrupole–octopole–quadrupole (Q–O–Q) configuration enables mass-selected cluster ions to be reacted with various chemicals, providing insight into the effect of size, stoichiometry, and ionic charge state on the reactivity of catalyst materials. For positively charged tungsten oxide clusters, it is shown that species having the same stoichiometry as the bulk, WO3+, W2O6+, and W3O9+, exhibit enhanced activity and selectivity for the transfer of a single oxygen atom to propylene (C3H6), suggesting the formation of propylene oxide (C3H6O), an important monomer used, for example, in the industrial production of plastics. Furthermore, the same stoichiometric clusters are demonstrated to be active for the oxidation of CO to CO2, a reaction of significance to environmental pollution abatement. The findings reported herein suggest that the enhanced oxidation reactivity of these stoichiometric clusters may be due to the presence of radical oxygen centers (W–O●) with elongated metal–oxygen bonds. The unique insights gained into bulk-phase oxidation catalysis through the application of mass spectrometry to cluster reactivity experiments are discussed. PMID:18687883

  1. I2-Catalyzed Oxidative Coupling Reactions of Hydrazones and Amines and the Application in the Synthesis of 1,3,5-Trisubstituted 1,2,4-Triazoles.

    PubMed

    Chen, Zhengkai; Li, Hongli; Dong, Weipeng; Miao, Maozhong; Ren, Hongjun

    2016-03-18

    A general and expeditious approach for the metal-free mediated synthesis of 1,3,5-trisubstituted 1,2,4-triazoles from hydrazones and aliphatic amines has been achieved under aerobic oxidative conditions. The reaction proceeds through a cascade C-H functionalization, double C-N bonds formation, and oxidative aromatization sequence. PMID:26914527

  2. Exploring Regioselective Bond Cleavage and Cross-Coupling Reactions using a Low-Valent Nickel Complex.

    PubMed

    Desnoyer, Addison N; Friese, Florian W; Chiu, Weiling; Drover, Marcus W; Patrick, Brian O; Love, Jennifer A

    2016-03-14

    Recently, esters have received much attention as transmetalation partners for cross-coupling reactions. Herein, we report a systematic study of the reactivity of a series of esters and thioesters with [{(dtbpe)Ni}2 (μ-η(2) :η(2) -C6 H6 )] (dtbpe=1,2-bis(di-tert-butyl)phosphinoethane), which is a source of (dtbpe)nickel(0). Trifluoromethylthioesters were found to form η(2) -carbonyl complexes. In contrast, acetylthioesters underwent rapid Cacyl -S bond cleavage followed by decarbonylation to generate methylnickel complexes. This decarbonylation could be pushed backwards by the addition of CO, allowing for regeneration of the thioester. Most of the thioester complexes were found to undergo stoichiometric cross-coupling with phenylboronic acid to yield sulfides. While ethyl trifluoroacetate was also found to form an η(2) -carbonyl complex, phenyl esters were found to predominantly undergo Caryl -O bond cleavage to yield arylnickel complexes. These could also undergo transmetalation to yield biaryls. Attempts to render the reactions catalytic were hindered by ligand scrambling to yield nickel bis(acetate) complexes, the formation of which was supported by independent syntheses. Finally, 2-naphthyl acetate was also found to undergo clean Caryl -O bond cleavage, and although stoichiometric cross-coupling with phenylboronic acid proceeded with good yield, catalytic turnover has so far proven elusive. PMID:26879766

  3. IBX-mediated synthesis of indazolone via oxidative N-N bond formation and unexpected formation of quinazolin-4-one: in situ generation of formaldehyde from dimethoxyethane.

    PubMed

    Park, Sang Won; Choi, Hoon; Lee, Jung-Hun; Lee, Yeon-Ju; Ku, Jin-Mo; Lee, Sang Yeul; Nam, Tae-Gyu

    2016-03-01

    Synthesis of indazolone derivatives, which exhibit diverse biological and pharmaceutical activities, were achieved by hypervalent λ(5) iodine reagents, such as iodoxybenzoic acid (IBX),-mediated oxidative N-N bond forming cyclization. In this study, the equivalence of IBX was optimized to promote the formation of N-N bond by oxidatively generated acylnitrenium ion. Dimethoxyethane and dichloroethane were discovered as alternative solvents and the reaction could be conducted in more concentrated condition. Some unprecedented substrates successfully afforded the corresponding indazolone in new condition discovered in this study. When the reactions were conducted in DME solvent, substrates with no electron-rich phenyl substituted amides afforded the unanticipated quinazolin-4-ones in moderate yields, which were not formed in DCE solvent. The formation of quinazolin-4-ones was attributed to the in situ generation of formaldehyde from DME. Therefore, the reaction might undergo different pathway in DME when the substrate aryl amides have phenyl rings without electron donating substituents. PMID:26780246

  4. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  5. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  6. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  7. Bond activation sequence observed in the chemisorption and surface reaction of ethanol on Ni(111)

    NASA Astrophysics Data System (ADS)

    Gates, S. M.; Russell, J. N.; Yates, J. T.

    1986-05-01

    The mechanism of ethanol decomposition on the Ni(111) surface has been investigated between 155 and 500 K. The sequence of bond scission steps which occur as ethanol undergoes dissociative reactions on this surface has been deduced using deuterium and 13C isotopic labels. Bond activation occurs in the order (1) O?H, (2) CH 2 (methylene C?H), (3) C?C, (4) CH 3 (methyl C?H). The products observed are CH 3?CHO(g), CH 4(g), CO(g), H 2(g) and surface carbon, C(a). The latter species exhibits a carbidic AES lineshape in the temperature range 450 to 670 K, at which temperature it dissolves into the Ni bulk. Acetaldehyde, CH 3?CHO, and methane, CH 4, desorb with the same threshold temperature (260-265 K), and the formation of both of these products is controlled by scission of the methylene C?H bond (CH 2 group). The CH 3 group is cleaved from the intermediate surface CH 3?CHO species to form CH 3(ads). H 2 exhibits a broad, doublet desorption peak from 300 to 450 K. The carbon?oxygen bond in ethanol remains intact and CO ultimately desorbs in a single desorption limited process ( Tp = 430 K). A small fraction of CO(a) species undergo exchange with the carbidic surface carbon in a minor process observed above 440 K.

  8. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: The effect of mononucleotide structure on phosphodiester bond formation

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Kamaluddin

    1989-11-01

    Adenine deoxynucleotides bind more strongly to Na+-montmorillonite than do the corresponding ribonucleotides. Thymidine nucleotides binds less strongly to Na+-montmorillonite than do the corresponding adenine deoxynucleotides. Oligomers of 2'-dpA up to the tetramer were detected in the reaction 2'-d-5'-AMP with EDAC (a water-soluble carbodiimide) in the presence of Na+-montmorillonite. Reaction of 3'-d-5'-AMP with EDAC on Na+-montmorillonite yields 3'-d-2',5'-pApA while the reaction of 2'-d-3'-AMP yields almost exclusively 3',5'-cdAMP. The reaction of 5'-TMP under the same reaction conditions give 3',5'-cpTpT and 3',5'-pTpT while 3'-TMP gives mainly 3',5'-cpT. The yield of dinucleotide products (dpNpN) containing the phosphodiester bond is 1% or less when Na+-montmorillonite is omitted from the reaction mixture.

  9. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: the effect of mononucleotide structure on phosphodiester bond formation.

    PubMed

    Ferris, J P; Kamaluddin

    1989-01-01

    Adenine deoxynucleotides bind more strongly to Na(+)-montmorillonite than do the corresponding ribonucleotides. Thymidine nucleotides binds less strongly to Na(+)-montmorillonite than do the corresponding adenine deoxynucleotides. Oligomers of 2'-dpA up to the tetramer were detected in the reaction 2'-d-5'-AMP with EDAC (a water-soluble carbodiimide) in the presence of Na(+)-montmorillonite. Reaction of 3'-d-5'-AMP with EDAC on Na(+)-montmorillonite yields 3'-d-2',5'-pApA while the reaction of 2'-d-3'-AMP yields almost exclusively 3',5'-cdAMP. The reaction of 5'-TMP under the same reaction conditions give 3',5'-cpTpT and 3',5'-pTpT while 3'-TMP gives mainly 3',5'-cpT. The yield of dinucleotide products (dpNpN) containing the phosphodiester bond is 1% or less when Na(+)-montmorillonite is omitted from the reaction mixture. PMID:11538680

  10. Interplay of Experiment and Theory in Elucidating Mechanisms of Oxidation Reactions by a Nonheme Ru(IV)O Complex.

    PubMed

    Dhuri, Sunder N; Cho, Kyung-Bin; Lee, Yong-Min; Shin, Sun Young; Kim, Jin Hwa; Mandal, Debasish; Shaik, Sason; Nam, Wonwoo

    2015-07-01

    A comprehensive experimental and theoretical study of the reactivity patterns and reaction mechanisms in alkane hydroxylation, olefin epoxidation, cyclohexene oxidation, and sulfoxidation reactions by a mononuclear nonheme ruthenium(IV)-oxo complex, [Ru(IV)(O)(terpy)(bpm)](2+) (1), has been conducted. In alkane hydroxylation (i.e., oxygen rebound vs oxygen non-rebound mechanisms), both the experimental and theoretical results show that the substrate radical formed via a rate-determining H atom abstraction of alkanes by 1 prefers dissociation over oxygen rebound and desaturation processes. In the oxidation of olefins by 1, the observations of a kinetic isotope effect (KIE) value of 1 and styrene oxide formation lead us to conclude that an epoxidation reaction via oxygen atom transfer (OAT) from the Ru(IV)O complex to the C═C double bond is the dominant pathway. Density functional theory (DFT) calculations show that the epoxidation reaction is a two-step, two-spin-state process. In contrast, the oxidation of cyclohexene by 1 affords products derived from allylic C-H bond oxidation, with a high KIE value of 38(3). The preference for H atom abstraction over C═C double bond epoxidation in the oxidation of cyclohexene by 1 is elucidated by DFT calculations, which show that the energy barrier for C-H activation is 4.5 kcal mol(-1) lower than the energy barrier for epoxidation. In the oxidation of sulfides, sulfoxidation by the electrophilic Ru-oxo group of 1 occurs via a direct OAT mechanism, and DFT calculations show that this is a two-spin-state reaction in which the transition state is the lowest in the S = 0 state. PMID:26075466

  11. Low-temperature thermal oxide to plasma-enhanced chemical vapor deposition oxide wafer bonding for thin-film transfer application

    NASA Astrophysics Data System (ADS)

    Tan, C. S.; Fan, A.; Chen, K. N.; Reif, R.

    2003-04-01

    Low-temperature direct plasma-enhanced chemical vapor deposition (PECVD) oxide to thermal oxide bonding is described. The PECVD oxide is densified at 350 °C and chemical-mechanically polished to obtain reasonably smooth surface for bonding. The PECVD oxide wafer is bonded to the thermal oxide wafer at room temperature after piranha clean that leaves the wafer surfaces hydrophilic. A postbonding anneal at 300 °C completes the bonding. A void-free bonding interface is observed from infrared imaging and the bonding strength is estimated to be 432 mJ/m2. This bonding method can be used in a variety of applications, including three-dimensional integration.

  12. Discovery and synthetic applications of novel silicon-carbon bond cleavage reactions based on the coordination number change of organosilicon compounds

    PubMed Central

    TAMAO, Kohei

    2008-01-01

    Some synthetically useful transformations of organosilicon compounds have been developed since the mid 1970s, based on the new concept that the silicon-carbon bonds are activated toward electrophilic cleavage via the formation of penta- and hexa-coordinate species. This review mainly consists of the following aspects: (1) a general concept for the activation of the silicon-carbon bond via penta- and hexa-coordinate species, (2) synthetic application of hexa-coordinate organopentafluorosilicates, and (3) development of the H2O2 oxidation of the silicon-carbon bond and its synthetic applications via the intramolecular hydrosilylation, silicon-tethered intramolecular radical cyclization and Diels-Alder reaction, and some silicon-containing organometallic reagents for nucleophilic hydroxymethylation and hydroxyallylation synthons. PMID:18941292

  13. Selective oxidation reactions of natural compounds with hydrogen peroxide mediated by methyltrioxorhenium.

    PubMed

    Amato, Maria E; Ballistreri, Francesco P; Pappalardo, Andrea; Tomaselli, Gaetano A; Toscano, Rosa M; Sfrazzetto, Giuseppe Trusso

    2013-01-01

    We have investigated the oxidative behaviour of natural compounds such as methyl abietate (1), farnesyl acetate (2), α-ionone (3), β-ionone (4), methyl linolelaidate (5), methyl linolenate (6) and bergamottin (7) with the oxidant system methyltrioxo-rhenium/ H2O2/pyridine. The reactions, performed in CH2Cl2/H2O at 25 °C, have shown good regio- and stereoselectivity. The oxidation products were isolated by HPLC or silica gel chromatography and characterized by MS(EI), 1H-, 13C-NMR, APT, gCOSY, HSQC, TOCSY and NOESY measurements. The selectivity seems to be controlled by the nucleophilicity of double bonds and by stereoelectronic and steric effects. PMID:24213654

  14. Reaction of ethanol on oxidized and metallic cobalt surfaces

    NASA Astrophysics Data System (ADS)

    Hyman, Matthew P.; Vohs, John M.

    2011-02-01

    The reaction of ethanol on metallic and oxidized cobalt surfaces was studied using temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) in order to determine the dependence of the reaction pathways on the cobalt oxidation state. The primary reaction for ethoxide species on metallic cobalt surfaces was decarbonylation producing CO, H 2 and carbon. This reaction was facile and occurred below 400 K. In contrast, CoO x surfaces which predominantly contained Co 2+ were selective for the dehydrogenation of ethoxide groups to produce acetaldehyde at 400 K. A fraction of the acetaldehyde molecules produced by this pathway were further oxidized to acetate which decomposed to produce CO 2 at 495 K. More highly oxidized Co surfaces that contained both CO 2+ and Co 3+ were active for the complete oxidation of ethanol producing CO, CO 2, and H 2O as the primary products. The insights that these results provide for understanding the mechanism of the steam reforming of ethanol on cobalt catalysts is discussed.

  15. A critical study of the role of the surface oxide layer in titanium bonding

    NASA Technical Reports Server (NTRS)

    Dias, S.; Wightman, J. P.

    1982-01-01

    The molecular understanding of the role which the surface oxide layer of the adherend plays in titanium bonding is studied. The effects of Ti6-4 adherends pretreatment, bonding conditions, and thermal aging of the lap shear specimens were studied. The use of the SEM/EDAX and ESCA techniques to study surface morphology and surface composition was emphasized. In addition, contact angles and both infrared and visible reflection spectroscopy were used in ancillary studies.

  16. Improving the bond strength between steel rebar and concrete by oxidation treatments of the rebar

    SciTech Connect

    Fu, X.; Chung, D.D.L.

    1996-10-01

    Oxidation treatments of steel rebar by water immersion (2--5 days) and ozone exposure increased the bond strength between steel rebar and concrete by 14% and 22% respectively. The treatments slightly increased the electrical contact resistivity between rebar and concrete. Increase of the water immersion time to 7 or 10 days caused the bond strength to decrease to values still above that of the case without water treatment. The contact resistivity increased monotonically with the water immersion time.

  17. Oxidative addition of an aromatic ortho C-H bond of tetraphosphine to asymmetric diiridium(i) centres.

    PubMed

    Nakajima, Takayuki; Noda, Sayo; Sakamoto, Miyuki; Matsui, Aya; Nakamae, Kanako; Kure, Bunsho; Ura, Yasuyuki; Tanase, Tomoaki

    2016-03-21

    Reactions of a tetraphosphine, meso-bis{[(diphenylphosphinomethyl)phenyl]phosphino}propane (dpmppp), with [IrCl(cod)]2 and CO (1 atm) or isocyanide (RNC) in the presence of NH4PF6 at 80-100 °C in dichloromethane/acetonitrile/acetone and/or methanol mixed solvents afforded asymmetric diiridium(ii) complexes, [Ir2(H)(Cl)(μ-(dpmppp-H)-κP(4)C)(CO)3]PF6 (1) and [Ir2(H)(μ-(dpmppp-H)-κP(4)C)(RNC)4)]-(PF6)2 (R = 2,6-xylyl (2), 2,4,6-mesityl (3); dpmppp-H = {PPh(o-C6H4)CH2P(Ph)(CH2)3P(Ph)CH2PPh2}(-)). A similar reaction with (t)BuNC resulted in the formation of a mononuclear Ir(III) complex of [Ir(H)(dpmppp-κP(3))((t)BuNC)2](PF6)2 (4). Complexes 1-3 were characterized by ESI mass spectrometry, (1)H and (31)P NMR spectroscopy and X-ray diffraction analyses. They were found to consist of cis/trans-P,P asymmetric Ir(II)-Ir(II) bonded dinuclear structures derived from oxidative addition of an ortho C-H bond of dpmppp (Ir-Ir = 2.8044(2) Å (1), 2.8569(2) Å (2), and 2.8524(5) Å (3)), resulting in a [IrPCCIr] intermetallic cyclometal-bridge and a terminal hydride. DFT calculations indicated the presence of Ir-Ir, Ir-H, and Ir-Cortho covalent bonds. Initial stages of the reactions with CO and XylNC at room temperature were investigated by (31)P{(1)H} NMR spectroscopy and found to contain a symmetrical Ir(I) dinuclear unit with dpmppp that was readily transformed into 1 and 2 upon heating. The Ir intermediate with XylNC, [Ir2(XylNC)4(μ-dpmppp)](PF6)2 (6), was isolated and characterized by X-ray crystallography and DFT calculations as an electron-deficient 32e(-) Ir species involving a Ir(I)→Ir(I) dative bond (2.7989(5) Å). The reaction pathways from 6 to 2 were investigated by DFT calculations. The present study suggested that a novel oxidative addition of an ortho C-H bond proceeded on the cis/trans-P,P asymmetric diiridium(i) scaffold supported by the tetraphosphine, dpmppp, which was assumed to be facilitated by dimetal cooperation with switching Ir→Ir dative interactions. PMID:26863395

  18. Coupling of oxidative dehydrogenation and aromatization reactions of butane

    SciTech Connect

    Xu, Wen-Qing; Suib, S.L. )

    1994-01-01

    Coupling of oxidative dehydrogenation and aromatization of butane by using a dual function catalyst has led to a significant enhancement of the yields (from 25 to 40%) and selectivities to aromatics (from 39 to 64%). Butane is converted to aromatics by using either zinc-promoted [Ga]-ZSM-5 or zinc and gallium copromoted [Fe]-ZSM-5 zeolite as a catalyst. However, the formation of aromatics is severely limited by hydrocracking of butane to methane, ethane, and propane due to the hydrogen formed during aromatization reactions. On the other hand, the oxidative dehydrogenation of butane to butene over molybdate catalysts is found to be accompanied by a concurrent undesirable reaction, i.e., total oxidation. When two of these reactions (oxidative dehydrogenation and aromatization of butane) are coupled by using a dual function catalyst they have shown to complement each other. It is believed that the rate-limiting step for aromatization (butane to butene) is increased by adding an oxidative dehydrogenation catalyst (Ga-Zn-Mg-Mo-O). The formation of methane, ethane, and propane was suppressed due to the removal of hydrogen initially formed as water. Studies of ammonia TPD show that the acidities of [Fe]-ZSM-5 are greatly affected by the existence of metal oxides such as Ga[sub 2]O[sub 3], MgO, ZnO, and MoO[sub 3]. 40 refs., 9 figs., 1 tab.

  19. Studies of the kinetics and mechanisms of perfluoroether reactions on iron and oxidized iron surfaces

    NASA Technical Reports Server (NTRS)

    Napier, Mary E.; Stair, Peter C.

    1992-01-01

    Polymeric perfluoroalkylethers are being considered for use as lubricants in high temperature applications, but have been observed to catalytically decompose in the presence of metals. X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) were used to explore the decomposition of three model fluorinated ethers on clean polycrystalline iron surfaces and iron surfaces chemically modified with oxygen. Low temperature adsorption of the model fluorinated ethers on the clean, oxygen modified and oxidized iron surfaces was molecular. Thermally activated defluorination of the three model compounds was observed on the clean iron surface at remarkably low temperatures, 155 K and below, with formation of iron fluoride. Preferential C-F bond scission occurred at the terminal fluoromethoxy, CF3O, of perfluoro-1-methoxy-2-ethoxy ethane and perfluoro-1-methoxy-2-ethoxy propane and at CF3/CF2O of perfluoro-1,3-diethoxy propane. The reactivity of the clean iron toward perfluoroalkylether decomposition when compared to other metals is due to the strength of the iron fluoride bond and the strong electron donating ability of the metallic iron. Chemisorption of an oxygen overlayer lowered the reactivity of the iron surface to the adsorption and decomposition of the three model fluorinated ethers by blocking active sites on the metal surface. Incomplete coverage of the iron surface with chemisorbed oxygen results in a reaction which resembles the defluorination reaction observed on the clean iron surface. Perfluoro-1-methoxy-2-ethoxy ethane reacts on the oxidized iron surface at 138 K, through a Lewis acid assisted cleavage of the carbon oxygen bond, with preferential attack at the terminal fluoromethoxy, CF3O. The oxidized iron surface did not passivate, but became more reactive with time. Perfluoro-1-methoxy-2-ethoxy propane and perfluoro-1,3-diethoxy propane desorbed prior to the observation of decomposition on the oxidized iron surface.

  20. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    NASA Technical Reports Server (NTRS)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  1. Variations in pore structure of reaction-bonded silicon nitride /RBSN/

    NASA Technical Reports Server (NTRS)

    Danforth, S. C.; Richman, M. H.

    1979-01-01

    A discussion is presented relating the observed pore structures (sizes) to the reaction mechanisms in reaction-bonded silicon nitride (alpha- and beta-Si3N4) on the basis of information available from the literature. While the techniques for reducing the residual macroporosity are quite well-developed for reaction-bonded Si3N4 (RBSN), it is important to be aware of three other orders of magnitude for porosity present in RBSN as a result of the nitriding process itself, and how these types of nitridation-induced porosity can be controlled. For ease of description, these types of nitridation-induced porosity are called micropores, nanopores, and picopores in order of their decreasing size. A scanning electron micrograph is presented, showing nanopores isolated in the unreacted Si and picopores in the alpha-matte Si3N4. The assumption that an alpha-matte growth mechanism is active explains the occurrence of nanopores and their partial filling with alpha-Si3N4, leaving behind very fine-grained alpha-matte and picopores.

  2. Catalyst-controlled regioselectivity in the synthesis of branched conjugated dienes via aerobic oxidative Heck reactions.

    PubMed

    Zheng, Changwu; Wang, Dian; Stahl, Shannon S

    2012-10-10

    Pd-catalyzed aerobic oxidative coupling of vinylboronic acids and electronically unbiased alkyl olefins provides regioselective access to 1,3-disubstituted conjugated dienes. Catalyst-controlled regioselectivity is achieved by using 2,9-dimethylphenanthroline as a ligand. The observed regioselectivity is opposite to that observed from a traditional (nonoxidative) Heck reaction between a vinyl bromide and an alkene. DFT computational studies reveal that steric effects of the 2,9-dimethylphenanthroline ligand promote C-C bond formation at the internal position of the alkene. PMID:22998540

  3. A critical study of the role of the surface oxide layer in titanium bonding

    NASA Technical Reports Server (NTRS)

    Dias, S.; Wightman, J. P.

    1983-01-01

    Scanning electron microscope/X-ray photoelectron spectroscopy (SEM/XPS) analysis of fractured adhesively bonded Ti 6-4 samples is discussed. The text adhesives incuded NR 056X polyimide, polypheylquinoxaline (PPQ), and LARC-13 polyimide. Differentiation between cohesive and interfacial failure was based on the absence of presence of a Ti 2p XPS photopeak. In addition, the surface oxide layer on Ti-(6A1-4V) adherends is characterized and bond strength and durability are addressed. Bond durability in various environmental conditions is discussed.

  4. Olefin cis-Dihydroxylation and Aliphatic C-H Bond Oxygenation by a Dioxygen-Derived Electrophilic Iron-Oxygen Oxidant.

    PubMed

    Chatterjee, Sayanti; Paine, Tapan Kanti

    2015-08-01

    Many iron-containing enzymes involve metal-oxygen oxidants to carry out O2-dependent transformation reactions. However, the selective oxidation of C-H and C=C bonds by biomimetic complexes using O2 remains a major challenge in bioinspired catalysis. The reactivity of iron-oxygen oxidants generated from an Fe(II)-benzilate complex of a facial N3 ligand were thus investigated. The complex reacted with O2 to form a nucleophilic oxidant, whereas an electrophilic oxidant, intercepted by external substrates, was generated in the presence of a Lewis acid. Based on the mechanistic studies, a nucleophilic Fe(II)-hydroperoxo species is proposed to form from the benzilate complex, which undergoes heterolytic O-O bond cleavage in the presence of a Lewis acid to generate an Fe(IV)-oxo-hydroxo oxidant. The electrophilic iron-oxygen oxidant selectively oxidizes sulfides to sulfoxides, alkenes to cis-diols, and it hydroxylates the C-H bonds of alkanes, including that of cyclohexane. PMID:26088714

  5. Cold-bonding in sub-10 nm indium tin oxide nanorods.

    PubMed

    Neng, Wan; Tao, Lin; Jun, Xu

    2016-04-22

    Cold-bonding in a typical metal oxide material nanostructure, indium tin oxide nanorods (ITONs), was observed and studied by combining precise in situ nano-manipulation, transmission electron microscopy (TEM) observation and on-line electrical properties measurements. Our studies revealed an oriented attachment process caused by enhanced atom mobility or diffusion and rearrangement at the contact, which worked efficiently in reconnecting the ITONs. Electrical measurements exhibited low contact resistance between the re-connectable ITON segments. Our observations indicate that small-sized nanostructures could be cold-bonded easily following a similar mechanism with their electrical properties retained. PMID:26939723

  6. Cold-bonding in sub-10 nm indium tin oxide nanorods

    NASA Astrophysics Data System (ADS)

    Neng, Wan; Tao, Lin; Jun, Xu

    2016-04-01

    Cold-bonding in a typical metal oxide material nanostructure, indium tin oxide nanorods (ITONs), was observed and studied by combining precise in situ nano-manipulation, transmission electron microscopy (TEM) observation and on-line electrical properties measurements. Our studies revealed an oriented attachment process caused by enhanced atom mobility or diffusion and rearrangement at the contact, which worked efficiently in reconnecting the ITONs. Electrical measurements exhibited low contact resistance between the re-connectable ITON segments. Our observations indicate that small-sized nanostructures could be cold-bonded easily following a similar mechanism with their electrical properties retained.

  7. Bend strengths of reaction bonded silicon nitride prepared from dry attrition milled silicon powder

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.

    1979-01-01

    Dry attrition milled silicon powder was compacted, sintered in helium, and reaction bonded in nitrogen-4 volume percent hydrogen. Bend strengths of bars with as-nitrided surfaces averaged as high as 210 MPa at room temperature and 220 MPa at 1400 C. Bars prepared from the milled powder were stronger than those prepared from as-received powder at both room temperature and at 1400 C. Room temperature strength decreased with increased milling time and 1400 C strength increased with increased milling time.

  8. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    SciTech Connect

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  9. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN

    1989-01-01

    The formation of oligomers from deoxynucleotides, catalyzed by Na(+)-montmorillonite, was investigated with special attention given to the effect of the monomer structure on the phosphodiester bond formation. It was found that adenine deoxynucleotides bind more strongly to montmorillonite than do the corresponding ribonucleotides and thymidine nucleotides. Tetramers of 2-prime-dpA were detected in the reaction of 2-prime-d-5-prime-AMP with a water-soluble carbodiimide EDAC in the presence of Na(+)-montmorillonite, illustrating the possible role of minerals in the formation of biopolymers on the primitive earth.

  10. The production of SiC-matrix composites via the reaction-bonding route

    NASA Astrophysics Data System (ADS)

    Higgins, I.; Whitehead, A. J.

    The fabrication of reaction-bonded silicon carbide components by infiltrating a silicon carbide:carbon powder preform with molten silicon is a well established commercial technique. In the present work this process has been developed to yield a family of SiC-matrix, particulate reinforced composites by varying compositions of the preform and/or the infiltrating liquid. Examples of both boron- and titanium-containing composites are given and the microstructural developments during firing are discussed using available thermodynamic data. The nature of crack propagation through the materials and the role of the secondary particulate phases are described.

  11. Theoretical study of the reaction formalhydrazone with singlet oxygen. Fragmentation of the C=N bond, ene reaction and other processes.

    PubMed

    Rudshteyn, Benjamin; Castillo, Alvaro; Ghogare, Ashwini A; Liebman, Joel F; Greer, Alexander

    2014-01-01

    Photobiologic and synthetic versatility of hydrazones has not yet been established with (1)O2 as a route to commonly encountered nitrosamines. Thus, to determine whether the "parent" reaction of formalhydrazone and (1)O2 leads to facile C=N bond cleavage and resulting nitrosamine formation, we have carried out CCSD(T)//DFT calculations and analyzed the energetics of the oxidation pathways. A [2 + 2] pathway occurs via diradicals and formation of 3-amino-1,2,3-dioxazetidine in a 16 kcal/mol(-1) process. Reversible addition or physical quenching of (1)O2 occurs either on the formalhydrazone carbon for triplet diradicals at 2-3 kcal mol(-1), or on the nitrogen (N(3)) atom forming zwitterions at ~15 kcal/mol(-1), although the quenching channel by charge-transfer interaction was not computed. The computations also predict a facile conversion of formalhydrazone and (1)O2 to hydroperoxymethyl diazene in a low-barrier 'ene' process, but no 2-amino-oxaziridine-O-oxide (perepoxide-like) intermediate was found. A Benson-like analysis (group increment calculations) on the closed-shell species are in accord with the quantum chemical results. PMID:24354600

  12. Real-time observation of bond-by-bond interface formation during oxidation of H-terminated (111)Si by second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Gokce, Bilal; Adles, Eric J.; Aspnes, David E.; Gundogdu, Kenan

    2011-03-01

    Structure of solids is typically determined at the atomic level by techniques such as X-ray and electron diffraction, which are sensitive to positions of atomic nuclei. However, structure is determined by bonds between atoms, which are difficult to measure directly. We combine second-harmonic generation and the bond-charge model of nonlinear optics to probe, in real time, the dynamics of bond-by-bond chemical changes during the oxidation of H-terminated (111)Si, a surface that has been well characterized by static methods. Oxidation is activated by applied macroscopic strain, and exhibits anisotropic kinetics with one of the three equivalent back- bonds of on-axis samples reacting differently from the other two. This also leads to transient changes in bond directions.~Strain is known to increase oxidation rate of Si for thermal oxides, however its affects at the microscopic scale has not been studied at the bond level. By comparing results for surfaces strained in different directions, we show that in-plane control of surface chemistry is possible. The use of nonlinear optics as a bond-specific characterization tool is readily adaptable for studying structural and chemical dynamics in many other condensed-matter systems.

  13. Regioselective Gold-Catalyzed Oxidative C–N Bond Formation

    PubMed Central

    2015-01-01

    A novel protocol for the regioselective intermolecular amination of various arenes has been developed. By using an I(III) oxidant in the presence of a Au(I) catalyst, a direct and novel route for regioselectively accessing a variety of substituted aniline moieties has been achieved with yields as high as 90%. Mechanistic insight suggests that regioselectivity can be predicted based on electrophilic aromatic metalation patterns. PMID:25539392

  14. Catalysis via homolytic substitutions with C-O and Ti-O bonds: oxidative additions and reductive eliminations in single electron steps.

    PubMed

    Gansäuer, Andreas; Fleckhaus, André; Lafont, Manuel Alejandre; Okkel, Andreas; Kotsis, Konstantinos; Anoop, Anakuthil; Neese, Frank

    2009-11-25

    In a combined theoretical and experimental study, an efficient catalytic reaction featuring epoxide opening and tetrahydrofuran formation through homolytic substitution reactions at C-O and Ti-O bonds was devised. The performance of these two key steps of the catalytic cycle was studied and could be adjusted by modifying the electronic properties of the catalysts through introduction of electron-donating or -withdrawing substituents to the titanocene catalysts. By regarding both steps as single electron versions of oxidative addition and reductive elimination, a mechanism-based platform for the design of catalysts and reagents for electron transfer reactions evolved that opens broad perspectives for further investigations. PMID:19919150

  15. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    SciTech Connect

    Jannotti, Phillip; Subhash, Ghatu; Zheng, James Q.; Halls, Virginia; Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K.

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  16. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    NASA Astrophysics Data System (ADS)

    Jannotti, Phillip; Subhash, Ghatu; Zheng, James Q.; Halls, Virginia; Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K.

    2015-01-01

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  17. Thermochemical properties and bond dissociation enthalpies of 3- to 5-member ring cyclic ether hydroperoxides, alcohols, and peroxy radicals: cyclic ether radical + (3)O(2) reaction thermochemistry.

    PubMed

    Auzmendi-Murua, Itsaso; Bozzelli, Joseph W

    2014-05-01

    The formation of cyclic ethers is a major product in the oxidation of hydrocarbons, and the oxidation of biomass derived alcohols. Cyclic ethers are formed in the initial reactions of alkyl radicals with dioxygen in combustion and precombustion processes that occur at moderate temperatures. They represent a significant part of the oxygenated pollutants found in the exhaust gases of engines. Cyclic ethers can also be formed from atmospheric reactions of olefins. Additionally, cyclic ethers have been linked to the formation of the secondary organic aerosol (SOA) in the atmosphere. In combustion and thermal oxidation processes these cyclic ethers will form radicals that react with (3)O2 to form peroxy radicals. Density functional theory and higher level ab initio calculations are used to calculate thermochemical properties and bond dissociation enthalpies of 3 to 5 member ring cyclic ethers (oxirane, yC2O, oxetane, yC3O, and oxolane, yC4O), corresponding hydroperoxides, alcohols, hydroperoxy alkyl, and alkyl radicals which are formed in these oxidation reaction systems. Trends in carbon-hydrogen bond dissociation energies for the ring and hydroperoxide group relative to ring size and to distance from the ether group are determined. Bond dissociation energies are calculated for use in understanding effects of the ether oxygen in the cyclic ethers, their stability, and kinetic properties. Geometries, vibration frequencies, and enthalpies of formation, ΔH°f,298, are calculated at the B3LYP/6-31G(d,p), B3LYP/6-31G(2d,2p), the composite CBS-QB3, and G3MP2B3 methods. Entropy and heat capacities, S°(T) and Cp°(T) (5 K ≤ T ≤ 5000), are determined using geometric parameters and frequencies from the B3LYP/6-31G(d,p) calculations. The strong effects of ring strain on the bond dissociation energies in these peroxy systems are also of fundamental interest. Oxetane and oxolane exhibit a significant stabilization, 10 kcal mol(-1), lower ΔfH°298 when an oxygen group is on the ether carbon relative to the isomer with the oxygen group on a secondary carbon. Relative to alkane systems the ether oxygen decreases bond dissociation energies (BDEs) on carbon sites adjacent to the ether by ∼5 kcal mol(-1), and increases BDEs on nonether carbons ∼1 kcal mol(-1). The cyclic structures have significant effects on the C-H, CO-OH, COO-H, and CO-H bond dissociation enthalpies. These values can be used to help calibrate calculations of larger more complex bicyclic and tricyclic hydrocarbon and ether species. PMID:24660891

  18. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    PubMed

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex. Reactivity of a mononuclear copper(II)-alkylperoxide complex has also been examined to get insights into the intrinsic reactivity of copper(II)-peroxide species, which is usually considered as a sluggish oxidant or just a precursor of copper-oxyl radical type reactive species. However, our studies have unambiguously demonstrated that copper(II)-alkylperoxide complex can be a direct oxidant for C-H bond activation of organic substrates, when the C-H bond activation is coupled with O-O bond cleavage (concerted mechanism). The reactivity studies of these mononuclear copper(II) active-oxygen species (superoxide and alkylperoxide) will provide significantly important insights into the catalytic mechanism of copper monooxygenases as well as copper-catalyzed oxidation reactions in synthetic organic chemistry. PMID:26086527

  19. Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Thostenson, Erik T.; Karandikar, Prashant G.; Chou, Tsu-Wei

    2005-11-01

    Carbon nanotubes have generated considerable excitement in the scientific and engineering communities because of their exceptional mechanical and physical properties observed at the nanoscale. Carbon nanotubes possess exceptionally high stiffness and strength combined with high electrical and thermal conductivities. These novel material properties have stimulated considerable research in the development of nanotube-reinforced composites (Thostenson et al 2001 Compos. Sci. Technol. 61 1899, Thostenson et al 2005 Compos. Sci. Technol. 65 491). In this research, novel reaction bonded silicon carbide nanocomposites were fabricated using melt infiltration of silicon. A series of multi-walled carbon nanotube-reinforced ceramic matrix composites (NT-CMCs) were fabricated and the structure and properties were characterized. Here we show that carbon nanotubes are present in the as-fabricated NT-CMCs after reaction bonding at temperatures above 1400 C. Characterization results reveal that a very small volume content of carbon nanotubes, as low as 0.3 volume %, results in a 75% reduction in electrical resistivity of the ceramic composites. A 96% decrease in electrical resistivity was observed for the ceramics with the highest nanotube volume fraction of 2.1%.

  20. Method for facilitating catalyzed oxidation reactions, device for facilitating catalyzed oxidation reactions

    DOEpatents

    Beuhler, Robert J. (East Moriches, NY); White, Michael G. (Blue Point, NY); Hrbek, Jan (Rocky Point, NY)

    2006-08-15

    A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.

  1. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.

    PubMed

    Oloo, Williamson N; Que, Lawrence

    2015-09-15

    Recent efforts to design synthetic iron catalysts for the selective and efficient oxidation of C-H and C═C bonds have been inspired by a versatile family of nonheme iron oxygenases. These bioinspired nonheme (N4)Fe(II) catalysts use H2O2 to oxidize substrates with high regio- and stereoselectivity, unlike in Fenton chemistry where highly reactive but unselective hydroxyl radicals are produced. In this Account, we highlight our efforts to shed light on the nature of metastable peroxo intermediates, which we have trapped at -40 °C, in the reactions of the iron catalyst with H2O2 under various conditions and the high-valent species derived therefrom. Under the reaction conditions that originally led to the discovery of this family of catalysts, we have characterized spectroscopically an Fe(III)-OOH intermediate (EPR g(max) = 2.19) that leads to the hydroxylation of substrate C-H bonds or the epoxidation and cis-dihydroxylation of C═C bonds. Surprisingly, these organic products show incorporation of (18)O from H2(18)O, thereby excluding the possibility of a direct attack of the Fe(III)-OOH intermediate on the substrate. Instead, a water-assisted mechanism is implicated in which water binding to the iron(III) center at a site adjacent to the hydroperoxo ligand promotes heterolytic cleavage of the O-O bond to generate an Fe(V)(O)(OH) oxidant. This mechanism is supported by recent kinetic studies showing that the Fe(III)-OOH intermediate undergoes exponential decay at a rate enhanced by the addition of water and retarded by replacement of H2O with D2O, as well as mass spectral evidence for the Fe(V)(O)(OH) species obtained by the Costas group. The nature of the peroxo intermediate changes significantly when the reactions are carried out in the presence of carboxylic acids. Under these conditions, spectroscopic studies support the formation of a (κ(2)-acylperoxo)iron(III) species (EPR g(max) = 2.58) that decays at -40 °C in the absence of substrate to form an oxoiron(IV) byproduct, along with a carboxyl radical that readily loses CO2. The alkyl radical thus formed either reacts with O2 to form benzaldehyde (as in the case of PhCH2COOH) or rebounds with the incipient Fe(IV)(O) moiety to form phenol (as in the case of C6F5COOH). Substrate addition leads to its 2-e(-) oxidation and inhibits these side reactions. The emerging mechanistic picture, supported by DFT calculations of Wang and Shaik, describes a rather flat reaction landscape in which the (κ(2)-acylperoxo)iron(III) intermediate undergoes O-O bond homolysis reversibly to form an Fe(IV)(O)((•)OC(O)R) species that decays to Fe(IV)(O) and RCO2(•) or isomerizes to its Fe(V)(O)(O2CR) electromer, which effects substrate oxidation. Another short-lived S = 1/2 species just discovered by Talsi that has much less g-anisotropy (EPR g(max) = 2.07) may represent either of these postulated high-valent intermediates. PMID:26280131

  2. III-V/Si wafer bonding using transparent, conductive oxide interlayers

    SciTech Connect

    Tamboli, Adele C. Hest, Maikel F. A. M. van; Steiner, Myles A.; Essig, Stephanie; Norman, Andrew G.; Bosco, Nick; Stradins, Paul; Perl, Emmett E.

    2015-06-29

    We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100 °C to 350 °C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 Ω cm{sup 2} for samples bonded at 200 °C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga{sub 0.5}In{sub 0.5}P/Si tandem solar cells operating at 1 sun or low concentration conditions.

  3. Disulfide Bond Formation and Activation of Escherichia coli β-Galactosidase under Oxidizing Conditions

    PubMed Central

    Seras-Franzoso, Joaquin; Affentranger, Roman; Ferrer-Navarro, Mario; Daura, Xavier; Villaverde, Antonio

    2012-01-01

    Escherichia coli β-galactosidase is probably the most widely used reporter enzyme in molecular biology, cell biology, and biotechnology because of the easy detection of its activity. Its large size and tetrameric structure make this bacterial protein an interesting model for crystallographic studies and atomic mapping. In the present study, we investigate a version of Escherichia coli β-galactosidase produced under oxidizing conditions, in the cytoplasm of an Origami strain. Our data prove the activation of this microbial enzyme under oxidizing conditions and clearly show the occurrence of a disulfide bond in the β-galactosidase structure. Additionally, the formation of this disulfide bond is supported by the analysis of a homology model of the protein that indicates that two cysteines located in the vicinity of the catalytic center are sufficiently close for disulfide bond formation. PMID:22286993

  4. Hydrolysis of Surfactants Containing Ester Bonds: Modulation of Reaction Kinetics and Important Aspects of Surfactant Self-Assembly

    ERIC Educational Resources Information Center

    Lundberg, Dan; Stjerndahl, Maria

    2011-01-01

    The effects of self-assembly on the hydrolysis kinetics of surfactants that contain ester bonds are discussed. A number of examples on how reaction rates and apparent reaction orders can be modulated by changes in the conditions, including an instance of apparent zero-order kinetics, are presented. Furthermore, it is shown that the examples on…

  5. Hydrolysis of Surfactants Containing Ester Bonds: Modulation of Reaction Kinetics and Important Aspects of Surfactant Self-Assembly

    ERIC Educational Resources Information Center

    Lundberg, Dan; Stjerndahl, Maria

    2011-01-01

    The effects of self-assembly on the hydrolysis kinetics of surfactants that contain ester bonds are discussed. A number of examples on how reaction rates and apparent reaction orders can be modulated by changes in the conditions, including an instance of apparent zero-order kinetics, are presented. Furthermore, it is shown that the examples on

  6. Silver-mediated oxidative vinylic C-H bond sulfenylation of enamides with disulfides.

    PubMed

    Yang, Luo; Wen, Qing; Xiao, Fuhong; Deng, Guo-Jun

    2014-12-21

    A silver-mediated oxidative vinylic C-H bond sulfenylation of enamides was developed. This method is compatible with diaryl and dialkyl disulfides to deliver biologically precious chalcogenated olefins efficiently. A plausible non-chain radical mechanism was proposed for understanding this novel sulfenylation based on the mechanistic studies. PMID:25354883

  7. Metal-free oxidative cleavage of the C-C bond in ?-hydroxy-?-oxophosphonates.

    PubMed

    Battula, Satyanarayana; Kumar, Atul; Ahmed, Qazi Naveed

    2015-10-21

    The potential of TBHP to promote oxidative hydroxylation of ?-hydroxy-?-oxophosphonates (HOPs) through C(CO)-C bond cleavage is described. This cleavage, as depicted in the mechanism is expected through an isomer of HOP that reacts with TBHP to generate acids. PMID:26365809

  8. Indium Zinc Oxide Mediated Wafer Bonding for III-V/Si Tandem Solar Cells

    SciTech Connect

    Tamboli, Adele C.; Essig, Stephanie; Horowitz, Kelsey A. W.; Woodhouse, Michael; van Hest, Maikel F. A. M.; Norman, Andrew G.; Steiner, Myles A.; Stradins, Paul

    2015-06-14

    Silicon-based tandem solar cells are desirable as a high efficiency, economically viable approach to one sun or low concentration photovoltaics. We present an approach to wafer bonded III-V/Si solar cells using amorphous indium zinc oxide (IZO) as an interlayer. We investigate the impact of a heavily doped III-V contact layer on the electrical and optical properties of bonded test samples, including the predicted impact on tandem cell performance. We present economic modeling which indicates that the path to commercial viability for bonded cells includes developing low-cost III-V growth and reducing constraints on material smoothness. If these challenges can be surmounted, bonded tandems on Si can be cost-competitive with incumbent PV technologies, especially in low concentration, single axis tracking systems.

  9. Spectral Correspondence to the Evolution of Chemical Bond and Valence Band in Oxidation

    NASA Astrophysics Data System (ADS)

    Sun, Chang Q.; Zhang, Sam; Hing, Peter; Wei, Jun; Xie, Hong; Wee, Andrew T. S.

    Spectroscopy covering energies around Fermi level of a metal is of particular interest as it does give direct information of bond forming and its consequence on the energy states (DOS). However, the origin of some outstanding spectral features from metal surface with chemisorbed oxygen has not yet been well established. It is shown in this letter that a bond-to-band model for oxidation enables the nature of a sum of spectral features to be consistently defined. All the spectral changes in the STS, XPS, UPS, photoemission spectroscopy (PES) and the thermal desorption spectroscopy (TDS) are classified by four DOS features around Fermi level and three bonding processes. Such a definition leads not only to new knowledge of the nature of O-metal interaction but also to a direct understanding of the bond-and-band forming dynamics.

  10. Biotransformations utilizing β-oxidation cycle reactions in the synthesis of natural compounds and medicines.

    PubMed

    Swizdor, Alina; Panek, Anna; Milecka-Tronina, Natalia; Kołek, Teresa

    2012-01-01

    β-Oxidation cycle reactions, which are key stages in the metabolism of fatty acids in eucaryotic cells and in processes with a significant role in the degradation of acids used by microbes as a carbon source, have also found application in biotransformations. One of the major advantages of biotransformations based on the β-oxidation cycle is the possibility to transform a substrate in a series of reactions catalyzed by a number of enzymes. It allows the use of sterols as a substrate base in the production of natural steroid compounds and their analogues. This route also leads to biologically active compounds of therapeutic significance. Transformations of natural substrates via β-oxidation are the core part of the synthetic routes of natural flavors used as food additives. Stereoselectivity of the enzymes catalyzing the stages of dehydrogenation and addition of a water molecule to the double bond also finds application in the synthesis of chiral biologically active compounds, including medicines. Recent advances in genetic, metabolic engineering, methods for the enhancement of bioprocess productivity and the selectivity of target reactions are also described. PMID:23443116

  11. Biotransformations Utilizing β-Oxidation Cycle Reactions in the Synthesis of Natural Compounds and Medicines

    PubMed Central

    Œwizdor, Alina; Panek, Anna; Milecka-Tronina, Natalia; Kołek, Teresa

    2012-01-01

    β-Oxidation cycle reactions, which are key stages in the metabolism of fatty acids in eucaryotic cells and in processes with a significant role in the degradation of acids used by microbes as a carbon source, have also found application in biotransformations. One of the major advantages of biotransformations based on the β-oxidation cycle is the possibility to transform a substrate in a series of reactions catalyzed by a number of enzymes. It allows the use of sterols as a substrate base in the production of natural steroid compounds and their analogues. This route also leads to biologically active compounds of therapeutic significance. Transformations of natural substrates via β-oxidation are the core part of the synthetic routes of natural flavors used as food additives. Stereoselectivity of the enzymes catalyzing the stages of dehydrogenation and addition of a water molecule to the double bond also finds application in the synthesis of chiral biologically active compounds, including medicines. Recent advances in genetic, metabolic engineering, methods for the enhancement of bioprocess productivity and the selectivity of target reactions are also described. PMID:23443116

  12. Reaction Energies of Oxides using Random Phase Approximation

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Hummelshoej, Jens; Nrskov, Jens

    2013-03-01

    Oxides are widely used in industrial heterogeneous catalysis, photo catalysis, electrochemistry and in making batteries and fuel cells. To facilitate the computational engineer and design of novel materials in these fields, it is vital important to quantitatively predict the formation and reactions energies of the oxides. LDA/GGA, the success of which has largely relied on the mysterious error cancellation in the exchange-correlation term, generally failed for these oxides, showing systematic and non-canceling errors. Recently, the use of exact exchange (EXX), plus correlation energy from Random Phase Approximation (RPA) emerges as a promising approach to obtain non-empirical exchange-correlation terms. Exact exchange energy is free of self-interaction error, while RPA correlation energy takes into account dynamic electronic screening and is fully non-local. EXX +RPA has shown to systematically improve lattice constants, atomization energies, adsorption energies, reaction barriers for a wide range of systems that have ironic, covalent and van der Waals interactions. In this talk I will present our results comparing RPA and GGA functional for the formation and reaction energies of oxides.

  13. The oxidative burst reaction in mammalian cells depends on gravity

    PubMed Central

    2013-01-01

    Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex. PMID:24359439

  14. The oxidative burst reaction in mammalian cells depends on gravity.

    PubMed

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-01-01

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex. PMID:24359439

  15. Manufacture of Φ1.2m reaction bonded silicon carbide mirror blank CFID

    NASA Astrophysics Data System (ADS)

    Zhang, Ge; Zhao, Rucheng; Zhao, Wenxing; Bao, Jianxun

    2010-05-01

    Silicon carbide (SiC) is a new type candidate material for large-scale lightweight space mirror. Its low thermal distortion, high stiffness, fine optical quality and dimensional stability, make SiC an ideal material for large space born telescope. Since ten years Changchun institute optics, fine mechanics and physics (CIOMP) has developed reaction bonded SiC (RB-SiC) technology for space application, and can fabricate RB-SiC mirror with scale less than 1.0 meter for telescope. The green body is prepared with gel-casting method which is an attractive new ceramic forming process for making high-quality, complex-shaped ceramic parts. And then unmolding, drying, binder burning out, reacting bonded, the RB-SiC can be obtained. But with the development of space-born or ground telescope, the scale of primary mirror has exceeded 1.0 meter. So CIOMP has developed an assembly technique which called novel reaction-formed joint technology for larger RB-SiC mirror blank. The steps include joining of green bodies with mixture comprised of SiC particles and phenolic resin etc, firing, machining and sintering. Joining the Φ1.2 meter RB-SiC mirror blank by the novel reaction-formed joint technology. And testing the welding layer's performance, the results show that the thickness of 54-77μm, the microstructure and thermal property can be comparable to the substrate and the mechanical property are excellent in bending strength of 307MPa.

  16. Harnessing Excited-State Intramolecular Proton-Transfer Reaction via a Series of Amino-Type Hydrogen-Bonding Molecules.

    PubMed

    Tseng, Huan-Wei; Liu, Jun-Qi; Chen, Yi-An; Chao, Chi-Min; Liu, Kuan-Miao; Chen, Chi-Lin; Lin, Tzu-Chieh; Hung, Cheng-Hsien; Chou, Yen-Lin; Lin, Ta-Chun; Wang, Tian-Lin; Chou, Pi-Tai

    2015-04-16

    A series of new amino (NH)-type hydrogen-bonding (H-bonding) compounds comprising 2-(2'-aminophenyl)benzothiazole and its extensive derivatives were designed and synthesized. Unlike in the hydroxyl (OH)-type H-bonding systems, one of the amino hydrogens can be replaced with electron-donating/withdrawing groups. This, together with a versatile capability for modifying the parent moiety, makes feasible the comprehensive spectroscopy and dynamics studies of amino-type excited-state intramolecular proton transfer (ESIPT), which was previously inaccessible in the hydroxyl-type ESIPT systems. Empirical correlations were observed among the hydrogen-bonding strength (the N-H bond distances and proton acidity), ESIPT kinetics, and thermodynamics, demonstrating a trend that the stronger N-H···N hydrogen bond leads to a faster ESIPT, as experimentally observed, and a more exergonic reaction thermodynamics. Accordingly, ESIPT reaction can be harnessed for the first time from a highly endergonic type (i.e., prohibition) toward equilibrium with a measurable ESIPT rate and then to the highly exergonic, ultrafast ESIPT reaction within the same series of amino-type intramolecular H-bond system. PMID:26263155

  17. Homogeneous and heterogeneous reactions of anthracene with selected atmospheric oxidants.

    PubMed

    Zhang, Yang; Shu, Jinian; Zhang, Yuanxun; Yang, Bo

    2013-09-01

    The reactions of gas-phase anthracene and suspended anthracene particles with O3 and O3-NO were conducted in a 200-L reaction chamber, respectively. The secondary organic aerosol (SOA) formations from gas-phase reactions of anthracene with O3 and O3-NO were observed. Meanwhile, the size distributions and mass concentrations of SOA were monitored with a scanning mobility particle sizer (SMPS) during the formation processes. The rapid exponential growths of SOA reveal that the atmospheric lifetimes of gas-phase anthracene towards O3 and O3-NO are less than 20.5 and 4.34 hr, respectively. The particulate oxidation products from homogeneous and heterogeneous reactions were analyzed with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). Gas chromatograph/mass spectrometer (GC/MS) analyses of oxidation products of anthracene were carried out for assigning the time-of-flight (TOF) mass spectra of products from homogeneous and heterogeneous reactions. Anthrone, anthraquinone, 9,10-dihydroxyanthracene, and 1,9,10-trihydroxyanthracene were the ozonation products of anthracene, while anthrone, anthraquinone, 9-nitroanthracene, and 1,8-dihydroxyanthraquinone were the main products of anthracene with O3-NO. PMID:24520724

  18. Exploiting the oxidative coupling reaction of MBTH for indapamide determination.

    PubMed

    Ribeiro, David S M; Prior, João A V; Santos, João L M; Lopes, João A; Lima, José L F C

    2009-09-15

    The oxidative coupling reaction between aromatic amines and 3-methylbenzothiazolin-2-one hydrazone (MBTH) in the presence of cerium(IV) has been extensively used with quantitative analytical purposes. Nevertheless, a literature survey reveals that different wavelengths (visible range) can be used to monitor the reaction products when using MBTH and Ce(IV) as colour developing reagents. In the present work, the oxidative coupling reaction of indapamide (an oral antihypertensive diuretic drug) with MBTH in the presence of cerium(IV) was evaluated using distinct reaction approaches and was implemented in an automated multipumping flow system. The developed methodology was applied in the spectrophotometric control of the drug in pharmaceutical formulations. The optimization of the proposed multipumping flow system was performed by using an experimental design approach, namely by exploiting a Plackett-Burman factorial design and a central cubic faces design. This work revealed the formation of products with different reaction kinetics, chemical stabilities and absorbance spectra, depending on the sequence of addition of the reagents. By exploiting a specific sequence in the addition of reagents, the proposed automatic system allowed the rapid quantification of indapamide in pharmaceutical formulations, with a determination rate of about 25 h(-1), and a relative deviation under 2.1% when comparing with the reference procedure. Detection limit was approximately 1 mg L(-1). PMID:19615526

  19. Organocatalytic Aerobic Oxidation of Benzylic sp(3) C-H Bonds of Ethers and Alkylarenes Promoted by a Recyclable TEMPO Catalyst.

    PubMed

    Zhang, Zhiguang; Gao, Yuan; Liu, Yuan; Li, Jianjun; Xie, Hexin; Li, Hao; Wang, Wei

    2015-11-01

    An entirely metal-free catalyst system consisting of an easily prepared recyclable new TEMPO derived sulfonic salt catalyst, and mineral acids (NaNO2 and HCl) has been developed for selective aerobic oxidation of structurally diverse benzylic sp(3) C-H bonds of ethers and alkylarenes. The mild reaction conditions allow for the generation of synthetically and biologically valued isochromanones and xanthones from readily accessible alkyl aromatic precursors in good yields. PMID:26513695

  20. Oxidation of Annelated Diarylamines: Analysis of Reaction Pathways to Nitroxide Diradical and Spirocyclic Products

    SciTech Connect

    Rajca, Andrzej; Shiraishi, Kouichi; Boraty; #324; ski, Przemyslaw J.; Pink, Maren; Miyasaka, Makoto; Rajca, Suchada

    2012-02-06

    Oxidation of diaryldiamine 2, a tetrahydrodiazapentacene derivative, provides diarylnitroxide diradical 1 accompanied by an intermediate nitroxide monoradical and a multitude of isolable diamagnetic products. DFT-computed tensors for EPR spectra and paramagnetic {sup 1}H NMR isotropic shifts for nitroxide diradical 1 show good agreement with the experimental EPR spectra in rigid matrices and paramagnetic {sup 1}H NMR spectra in solution, respectively. Examination of the diamagnetic products elucidates their formation via distinct pathways involving C-O bond-forming reactions, including Baeyer-Villiger-type oxidations. An unusual diiminoketone structure and two spirocyclic structures of the predominant diamagnetic products are confirmed by either X-ray crystallography or correlations between DFT-computed and experimental spectroscopic data such as {sup 1}H, {sup 13}C, and {sup 15}N NMR chemical shifts and electronic absorption spectra.

  1. Theoretical study of the reaction mechanism of platinum oxide with methane

    NASA Astrophysics Data System (ADS)

    Hwang, Der-Yan; Mebel, Alexander M.

    2002-10-01

    Density functional B3LYP calculations have been employed to investigate the reaction of platinum oxide with methane. PtO is shown to form a molecular complex with CH 4 bound by 13 kcal/mol. At elevated temperatures, direct abstraction of a hydrogen atom is possible leading to PtOH and free methyl radical with a barrier of 26 kcal/mol. A minor reaction channel is insertion into a C-H bond to produce a CH 3PtOH molecule, which can be also formed by recombination of PtOH and CH 3. CH 3PtOH would preferably dissociates through a mechanism involving 1,2-CH 3 migration to produce a PtCH 3OH complex and eventually Pt+CH 3OH.

  2. Cyclic Oxidation Behavior of HVOF Bond Coatings Deposited on La- and Y-doped Superalloys

    SciTech Connect

    Pint, Bruce A; Bestor, Michael A; Haynes, James A

    2011-01-01

    One suggested strategy for improving the performance of thermal barrier coating (TBC) systems used to protect hot section components in gas turbines is the addition of low levels of dopants to the Ni-base superalloy substrate. To quantify the benefit of these dopants, the oxidation behavior of three commercial superalloys with different Y and La contents was evaluated with and without a NiCoCrAlYHfSi bond coating deposited by high velocity oxygen fuel (HVOF) spraying. Cyclic oxidation experiments were conducted in dry O{sub 2} at 1050, 1100 and 1150 C. At the highest temperature, the bare superalloy without La showed more attack due to its lower Al content but no difference in oxidation rate or scale adhesion was noted at lower temperatures. With a bond coating, the alumina scale was non-uniform in thickness and spalled at each temperature. Among the three coated superalloys, no clear difference in oxide growth rate or scale adhesion was observed. Evaluations with a YSZ top coat and a bond coating without Hf are needed to better determine the effect of superalloy dopants on high temperature oxidation performance.

  3. Effects of Oxide Layer on the Bonding Strength of Ni-Cr Alloys with Porcelain Ceramics.

    PubMed

    Park, W U; Jung, S H; Zhao, Jingming; Hwang, Kyu H; Lee, J K; Mitchell, John C

    2015-08-01

    The metal-ceramic crown restoration was the most actively used at esthetic restoration for its convenience of forming. Due to constant rise of gold price, non-precious metal such as Ni-Cr alloy have been widely used as metal-ceramic restorations. For easy casting and lower melting point Be was added as minor component to Ni-Cr for a long time, but the use of Be was regulated to deteriorate to human lung. In this study, Ni-Cr specimens containing Be (T-3, Ticonium, USA) and non-Be (Bellabond Plus, BEGO, Germany) were fabricated and by heat treatments at 800-1050 0C oxide layer was formed for subsequent bonding to porcelain ceramics. By heat treatment of the non-Be specimens at high temperature more thick oxide layer was formed and showed lower bonding strength due to the debonding at oxide layers. But in the Be-containing specimens debonding was occurred at porcelain layer so that they showed higher bonding strength. So by heat treatment of non-Be specimens at vacuum condition rather thinner oxide film could be formed so that showed higher coupling strength due to the debonding at porcelain layers than oxide layers. PMID:26369169

  4. Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon–carbon bond forming reactions

    PubMed Central

    Jouffroy, Matthieu; Gramage-Doria, Rafael; Sémeril, David; Oberhauser, Werner; Toupet, Loïc

    2014-01-01

    Summary The capacity of two cavity-shaped ligands, HUGPHOS-1 and HUGPHOS-2, to generate exclusively singly phosphorus-ligated complexes, in which the cyclodextrin cavity tightly wraps around the metal centre, was explored with a number of late transition metal cations. Both cyclodextrin-derived ligands were assessed in palladium-catalysed Mizoroki–Heck coupling reactions between aryl bromides and styrene on one hand, and the rhodium-catalysed asymmetric hydroformylation of styrene on the other hand. The inability of both chiral ligands to form standard bis(phosphine) complexes under catalytic conditions was established by high-pressure NMR studies and shown to have a deep impact on the two carbon–carbon bond forming reactions both in terms of activity and selectivity. For example, when used as ligands in the rhodium-catalysed hydroformylation of styrene, they lead to both high isoselectivity and high enantioselectivity. In the study dealing with the Mizoroki–Heck reactions, comparative tests were carried out with WIDEPHOS, a diphosphine analogue of HUGPHOS-2. PMID:25383109

  5. Site and bond-specific dynamics of reactions at the gas-liquid interface.

    PubMed

    Tesa-Serrate, Maria A; King, Kerry L; Paterson, Grant; Costen, Matthew L; McKendrick, Kenneth G

    2014-01-01

    The dynamics of the interfacial reactions of O((3)P) with the hydrocarbon liquids squalane (C30H62, 2,6,10,15,19,23-hexamethyltetracosane) and squalene (C30H50, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene) have been studied experimentally. Laser-induced fluorescence (LIF) was used to detect the nascent gas-phase OH products. The O((3)P) atoms are acutely sensitive to the chemical differences of the squalane and squalene surfaces. The larger exothermicity of abstraction from allylic C-H sites in squalene is reflected in markedly hotter OH rotational and vibrational distributions. There is a more modest increase in translational energy release. A larger fraction of the available energy is deposited in the liquid for squalene than for squalane, consistent with a more extensive geometry change on formation of the allylic radical co-product. Although the dominant reaction mechanism is direct, impulsive scattering, there is some evidence for OH being accommodated at both liquid surfaces, resulting in thermalised translation and rotational distributions. Despite the H-abstraction reaction being strongly favoured energetically for squalene, the yield of OH is substantially lower than for squalane. This is very likely due to competitive addition of O((3)P) to the unsaturated sites in squalene, implying that double bonds are extensively exposed at the liquid surface. PMID:24232857

  6. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE.

    PubMed

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5'-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate. PMID:27102684

  7. Carbon–sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE

    NASA Astrophysics Data System (ADS)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C.; Nicolet, Yvain

    2016-05-01

    Carbon–sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5‧-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  8. Csp(3)-P versus Csp(2)-P Bond Formation: Catalyst-Controlled Highly Regioselective Tandem Reaction of Ene-Yne-Ketones with H-Phosphonates.

    PubMed

    Yu, Yue; Yi, Songjian; Zhu, Chuanle; Hu, Weigao; Gao, Bingjie; Chen, Yang; Wu, Wanqing; Jiang, Huanfeng

    2016-02-01

    Under copper-catalyzed or base-promoted conditions, a wide range of ene-yne-ketones react with H-phosphonates to afford various phosphorylated furans in good yields. A copper carbene generation or a Michael addition is proposed as the key step in the selective construction of the Csp(3)-P or Csp(2)-P bond, which is supported by carbene capture reactions and interval (31)P NMR experiments. Furthermore, this method features inexpensive metal catalysts, no usage of oxidant, and high atom economy, which make it attractive and practical. PMID:26760227

  9. Elementary reaction modeling of solid oxide electrolysis cells: Main zones for heterogeneous chemical/electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Li, Wenying; Shi, Yixiang; Luo, Yu; Cai, Ningsheng

    2015-01-01

    A theoretical model of solid oxide electrolysis cells considering the heterogeneous elementary reactions, electrochemical reactions and the transport process of mass and charge is applied to study the relative performance of H2O electrolysis, CO2 electrolysis and CO2/H2O co-electrolysis and the competitive behavior of heterogeneous chemical and electrochemical reactions. In cathode, heterogeneous chemical reactions exist near the outside surface and the electrochemical reactions occur near the electrolyte. According to the mathematical analysis, the mass transfer flux D ∇c determines the main zone size of heterogeneous chemical reactions, while the charge transfer flux σ ∇V determines the other one. When the zone size of heterogeneous chemistry is enlarged, more CO2 could react through heterogeneous chemical pathway, and polarization curves of CO2/H2O co-electrolysis could be prone to H2O electrolysis. Meanwhile, when the zone size of electrochemistry is enlarged, more CO2 could react through electrochemical pathway, and polarization curves of CO2/H2O co-electrolysis could be prone to CO2 electrolysis. The relative polarization curves, the ratio of CO2 participating in electrolysis and heterogeneous chemical reactions, the mass and charge transfer flux and heterogeneous chemical/electrochemical reaction main zones are simulated to study the effects of cathode material characteristics (porosity, particle diameter and ionic conductivity) and operating conditions (gas composition and temperature).

  10. Reaction Mechanism and Kinetics of Enargite Oxidation at Roasting Temperatures

    NASA Astrophysics Data System (ADS)

    Padilla, Rafael; Aracena, Alvaro; Ruiz, Maria C.

    2012-10-01

    Roasting of enargite (Cu3AsS4) in the temperature range of 648 K to 898 K (375 °C to 625 °C) in atmospheres containing variable amounts of oxygen has been studied by thermogravimetric methods. From the experimental results of weight loss/gain data and X-ray diffraction (XRD) analysis of partially reacted samples, the reaction mechanism of the enargite oxidation was determined, which occurred in three sequential stages:

  11. Reaction pathways in methanol oxidation at Cu(110) surfaces

    NASA Astrophysics Data System (ADS)

    Carley, A. F.; Davies, P. R.; Mariotti, G. G.; Read, S.

    1996-08-01

    Previous temperature programmed desorption (TPD) studies [1,2] have concluded that formaldehyde desorption is the only significant pathway in methanol oxidation at Cu(110) surfaces. We show that this is true only under a limited range of experimental conditions, and in fact formate production is often the more favourable reaction pathway. This has important implications for other systems that have been discussed where it has been assumed that the formate formation pathway on copper is unfavourable.

  12. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation. Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect

    Ess, Daniel H.; Goddard, William A.; Periana, Roy A.

    2010-10-29

    The potential energy and interaction energy profiles for metal- and metal-ligand-mediated alkane C-H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7-9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d8, d6, d4, and d0), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal-ligand fragment and the coordinated C-H bond in the transition state for cleavage of the C-H bond allows classification of C-H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, σ-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C-H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C-H bond. Transition states and reaction profiles for d6 Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe3)Ir(Me). Nucleophilic character, where the metal to C-H bond charge-transfer interaction is most stabilizing, was found in metathesis reactions with W(II) and Sc(III) metal center complexes in reactions as well as late transition metal Ir(I) and Rh(I) pincer complexes that undergo C-H bond insertion. Comparison of pincer ligands shows that the PCP ligand imparts more nucleophilic character to an Ir metal center than a deprotonated PNP ligand. The PCP and POCOP ligands do not show a substantial difference in the electronics of C-H activation. It was also found that Rh(I) is substantially more nucleophilic than Ir(I). Lastly, as a qualitative approximation, investigation of transition-state fragment orbital energies showed that relative frontier orbital energy gaps correctly reflect electrophilic, ambiphilic, or nucleophilic charge-transfer stabilization patterns.

  13. Rhodium-catalyzed C-H activation of phenacyl ammonium salts assisted by an oxidizing C-N bond: a combination of experimental and theoretical studies.

    PubMed

    Yu, Songjie; Liu, Song; Lan, Yu; Wan, Boshun; Li, Xingwei

    2015-02-01

    Rh(III)-catalyzed C-H activation assisted by an oxidizing directing group has evolved to a mild and redox-economic strategy for the construction of heterocycles. Despite the success, these coupling systems are currently limited to cleavage of an oxidizing N-O or N-N bond. Cleavage of an oxidizing C-N bond, which allows for complementary carbocycle synthesis, is unprecedented. In this article, α-ammonium acetophenones with an oxidizing C-N bond have been designed as substrates for Rh(III)-catalyzed C-H activation under redox-neutral conditions. The coupling with α-diazo esters afforded benzocyclopentanones, and the coupling with unactivated alkenes such as styrenes and aliphatic olefins gave ortho-olefinated acetophenoes. In both systems the reactions proceeded with a broad scope, high efficiency, and functional group tolerance. Moreover, efficient one-pot coupling of diazo esters has been realized starting from α-bromoacetophenones and triethylamine. The reaction mechanism for the coupling with diazo esters has been studied by a combination of experimental and theoretical methods. In particular, three distinct mechanistic pathways have been scrutinized by DFT studies, which revealed that the C-H activation occurs via a C-bound enolate-assisted concerted metalation-deprotonation mechanism and is rate-limiting. In subsequent C-C formation steps, the lowest energy pathway involves two rhodium carbene species as key intermediates. PMID:25569022

  14. The utilization of microwave heating for the fabrication of sintered reaction-bonded silicon nitride

    SciTech Connect

    Kiggans, J.O.; Tiegs, T.N.; Lin, H.T.; Holcombe, C.E.

    1995-12-31

    The results of studies in which microwave heating was used to fabricate sintered reaction-bonded silicon nitride (SRBSN) are reviewed. These results are compared to parallel studies where conventional heating was used for the fabrication of these materials. Microwave fabrication of SRBSN involves a single heating cycle, whereas conventional processing requires two separate furnace runs and sample packaging steps. SRBSN containing high levels of sintering aids which were fabricated by microwave heating showed improved strength and toughness, as compared to those materials fabricated using a conventional resistance-heated furnace. An analysis of the microstructures of the microwave fabricated materials showed enhanced acicular grain growth as compared to conventionally heated material. Results are presented on studies involving the scale-up of the microwave fabrication process.

  15. Effect of loading rate on dynamic fracture of reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. F.

    1986-01-01

    Wedge-loaded, modified tapered double cantilever beam (WL-MTDCB) specimens under impact loading were used to determine the room temperature dynamic fracture response of reaction bonded silicon nitride (RBSN). The crack extension history, with the exception of the terminal phase, was similar to that obtained under static loading. Like its static counterpart, a distinct crack acceleration phase, which was not observed in dynamic fracture of steel and brittle polymers, was noted. Unlike its static counterpart, the crack continued to propagate at nearly its terminal velocity under a low dynamic stress intensity factor during the terminal phase of crack propagation. These and previously obtained results for glass and RBSN show that dynamic crack arrest under a positive dynamic stress intensity factor is unlikely in static and impact loaded structural ceramics.

  16. SiC fiber reinforced reaction-bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1986-01-01

    A technique for fabricating strong and tough SiC fiber reinforced reaction bonded Si3N4 matrix composites (SiC/RBSN) was developed. Using this technique, composites containing approximately 23, 30, and 40 volume fractions of aligned 140 micron diameter, chemically vapor deposited SiC fibers were fabricated. The room temperature physical and mechanical properties were evaluated. The results for composite tensile strength, bend strength, and fracture strain indicate that the composite displays excellent properties when compared with the unreinforced matrix of comparable porosity. The composite stress at which the matrix first cracks and the ultimate composite fracture strength increase with increasing volume fraction of fibers, and the composite fails gracefully. The mechanical property data of this ceramic composite are compared with similar data for unreinforced commercially available Si3N4 materials and for SEP SiC/SiC composites.

  17. Experimental investigation on material migration phenomena in micro-EDM of reaction-bonded silicon carbide

    NASA Astrophysics Data System (ADS)

    Liew, Pay Jun; Yan, Jiwang; Kuriyagawa, Tsunemoto

    2013-07-01

    Material migration between tool electrode and workpiece material in micro electrical discharge machining of reaction-bonded silicon carbide was experimentally investigated. The microstructural changes of workpiece and tungsten tool electrode were examined using scanning electron microscopy, cross sectional transmission electron microscopy and energy dispersive X-ray under various voltage, capacitance and carbon nanofibre concentration in the dielectric fluid. Results show that tungsten is deposited intensively inside the discharge-induced craters on the RB-SiC surface as amorphous structure forming micro particles, and on flat surface region as a thin interdiffusion layer of poly-crystalline structure. Deposition of carbon element on tool electrode was detected, indicating possible material migration to the tool electrode from workpiece material, carbon nanofibres and dielectric oil. Material deposition rate was found to be strongly affected by workpiece surface roughness, voltage and capacitance of the electrical discharge circuit. Carbon nanofibre addition in the dielectric at a suitable concentration significantly reduced the material deposition rate.

  18. Evidence concerning oxidation as a surface reaction in Baltic amber.

    PubMed

    Pastorelli, Gianluca; Richter, Jane; Shashoua, Yvonne

    2012-04-01

    The aim of this study was to provide evidence about oxidation as a surface reaction during degradation of Baltic amber. A clear understanding of the amber-oxygen interaction modalities is essential to develop conservation techniques for museum collections of amber objects. Pellet-shaped samples, obtained from pressed amber powder, were subjected to accelerated thermal ageing. Cross-sections of the pellets were analyzed by infrared micro-spectroscopy, in order to identify and quantify changes in chemical properties. The experimental results showed strong oxidation exclusively at the exterior part of cross-sections from samples subjected to long-term thermal ageing, confirming that oxidation of Baltic amber starts from the surface. PMID:22277623

  19. Evidence concerning oxidation as a surface reaction in Baltic amber

    NASA Astrophysics Data System (ADS)

    Pastorelli, Gianluca; Richter, Jane; Shashoua, Yvonne

    2012-04-01

    The aim of this study was to provide evidence about oxidation as a surface reaction during degradation of Baltic amber. A clear understanding of the amber-oxygen interaction modalities is essential to develop conservation techniques for museum collections of amber objects. Pellet-shaped samples, obtained from pressed amber powder, were subjected to accelerated thermal ageing. Cross-sections of the pellets were analyzed by infrared micro-spectroscopy, in order to identify and quantify changes in chemical properties. The experimental results showed strong oxidation exclusively at the exterior part of cross-sections from samples subjected to long-term thermal ageing, confirming that oxidation of Baltic amber starts from the surface.

  20. Manganese chlorins immobilized on silica as oxidation reaction catalysts.

    PubMed

    Castro, Kelly A D F; Pires, Sónia M G; Ribeiro, Marcos A; Simões, Mário M Q; Neves, M Graça P M S; Schreiner, Wido H; Wypych, Fernando; Cavaleiro, José A S; Nakagaki, Shirley

    2015-07-15

    Synthetic strategies that comply with the principles of green chemistry represent a challenge: they will enable chemists to conduct reactions that maximize the yield of products with commercial interest while minimizing by-products formation. The search for catalysts that promote the selective oxidation of organic compounds under mild and environmentally friendly conditions constitutes one of the most important quests of organic chemistry. In this context, metalloporphyrins and analogues are excellent catalysts for oxidative transformations under mild conditions. In fact, their reduced derivatives chlorins are also able to catalyze organic compounds oxidation effectively, although they have been still little explored. In this study, we synthesized two chlorins through porphyrin cycloaddition reactions with 1.3-dipoles and prepared the corresponding manganese chlorins (MnCHL) using adequate manganese(II) salts. These MnCHL were posteriorly immobilized on silica by following the sol-gel process and the resulting solids were characterized by powder X-ray diffraction (PXRD), UVVIS spectroscopy, FTIR, XPS, and EDS. The catalytic activity of the immobilized MnCHL was investigated in the oxidation of cyclooctene, cyclohexene and cyclohexane and the results were compared with the ones obtained under homogeneous conditions. PMID:25841060

  1. Reaction between nitric oxide and ozone in solid nitrogen

    NASA Technical Reports Server (NTRS)

    Lucas, D.; Pimentel, G. C.

    1979-01-01

    Nitrogen dioxide, NO2, is produced when nitric oxide, NO, and ozone, O3, are suspended in a nitrogen matrix at 11-20 K. The NO2 is formed with first-order kinetics, a 12 K rate constant of (1.4 + or - 0.2) x 0.00001/sec, and an apparent activation energy of 106 + or - 10 cal/mol. Isotopic labeling, variation of concentrations, and cold shield experiments show that the growth of NO2 is due to reaction between ozone molecules and NO monomers, and that the reaction is neither infrared-induced nor does it seem to be a heavy atom tunneling process. Reaction is attributed to nearest-neighbor NO.O3 pairs probably held in a specific orientational relationship that affects the kinetic behavior. When the temperature is raised, more such reactive pairs are generated, presumably by local diffusion. Possible mechanisms are discussed.

  2. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    NASA Technical Reports Server (NTRS)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  3. Photocatalytic reactions of oxygenates on tropospheric oxide particles

    SciTech Connect

    Idriss, H.; Seebauer, E.G.; Miller, A.

    1996-10-01

    Oxygenates such as ethanol and tert-butyl methyl ether (MTBE) are finding increased use as additives to fuels. The relative merits of ethanol and MTBE have become the focus of intense debate with their ultimate fate as fugitive emissions representing one aspect of this controversy. Both species are known to react homogeneously with photogenerated OH radicals. Here we show that both can also photoreact on suspended solid particulates in the atmosphere with rates comparable to those of OH reactions. Heterogeneous reactions of ethanol yield acetaldehyde and those of MTBE give isobutene and formaldehyde (carcinogenic). Experiments by spectroscopic and kinetic techniques show that the active phases in fly ash are Fe and Ti oxides. In addition, the effects of humidity and alkali addition on the activity and selectivity of these reactions are also discussed. This work appears to be the first demonstration that volatile organic compounds can react as fast by a heterogeneous mechanism as by a homogeneous one in the atmosphere.

  4. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.

    PubMed

    Shin, Kwangmin; Kim, Hyunwoo; Chang, Sukbok

    2015-04-21

    Owing to the prevalence of nitrogen-containing compounds in functional materials, natural products and important pharmaceutical agents, chemists have actively searched for the development of efficient and selective methodologies allowing for the facile construction of carbon-nitrogen bonds. While metal-catalyzed C-N cross-coupling reactions have been established as one of the most general protocols for C-N bond formation, these methods require starting materials equipped with functional groups such as (hetero)aryl halides or their equivalents, thus generating stoichiometric amounts of halide salts as byproducts. To address this aspect, a transition-metal-catalyzed direct C-H amination approach has emerged as a step- and atom-economical alternative to the conventional C-N cross-coupling reactions. However, despite the significant recent advances in metal-mediated direct C-H amination reactions, most available procedures need harsh conditions requiring stoichiometric external oxidants. In this context, we were curious to see whether a transition-metal-catalyzed mild C-H amination protocol could be achieved using organic azides as the amino source. We envisaged that a dual role of organic azides as an environmentally benign amino source and also as an internal oxidant via N-N2 bond cleavage would be key to develop efficient C-H amination reactions employing azides. An additional advantage of this approach was anticipated: that a sole byproduct is molecular nitrogen (N2) under the perspective catalytic conditions. This Account mainly describes our research efforts on the development of rhodium- and iridium-catalyzed direct C-H amination reactions with organic azides. Under our initially optimized Rh(III)-catalyzed amination conditions, not only sulfonyl azides but also aryl- and alkyl azides could be utilized as facile amino sources in reaction with various types of C(sp(2))-H bonds bearing such directing groups as pyridine, amide, or ketoxime. More recently, a new catalyst system using Ir(III) species was developed for the direct C-H amidation of arenes and alkenes with acyl azides under exceptionally mild conditions. As a natural extension, amidation of primary C(sp(3))-H bonds could also be realized on the basis of the superior activity of the Cp*Ir(III) catalyst. Mechanistic investigations revealed that a catalytic cycle is operated mainly in three stages: (i) chelation-assisted metallacycle formation via C-H bond cleavage; (ii) C-N bond formation through the in situ generation of a metal-nitrenoid intermediate followed by the insertion of an imido moiety to the metal carbon bond; (iii) product release via protodemetalation with the concomitant catalyst regeneration. In addition, this Account also summarizes the recent advances in the ruthenium- and cobalt-catalyzed amination reactions using organic azides, developed by our own and other groups. Comparative studies on the relative performance of those catalytic systems are briefly described. PMID:25821998

  5. Maillard reaction, mitochondria and oxidative stress: potential role of antioxidants.

    PubMed

    Edeas, M; Attaf, D; Mailfert, A-S; Nasu, M; Joubet, R

    2010-06-01

    Glycation and oxidative stress are two important processes known to play a key role in complications of many disease processes. Oxidative stress, either via increasing reactive oxygen species (ROS), or by depleting the antioxidants may modulate the genesis of early glycated proteins in vivo. Maillard Reactions, occur in vivo as well as in vitro and are associated with the chronic complications of diabetes, aging and age-related diseases. Hyperglycaemia causes the autoxidation of glucose, glycation of proteins, and the activation of polyol metabolism. These changes facilitate the generation of reactive oxygen species and decrease the activity of antioxidant enzymes such as Cu,Zn-superoxide dismutase, resulting in a remarkable increase of oxidative stress. A large body of evidence indicates that mitochondria alteration is involved and plays a central role in various oxidative stress-related diseases. The damaged mitochondria produce more ROS (increase oxidative stress) and less ATP (cellular energy) than normal mitochondria. As they are damaged, they cannot burn or use glucose or lipid and cannot provide cell with ATP. Further, glucose, amino acids and lipid will not be correctly used and will accumulate outside the mitochondria; they will undergo more glycation (as observed in diabetes, obesity, HIV infection and lipodystrophia). The objective of this paper is to discuss how to stop the vicious circle established between oxidative stress, Maillard Reaction and mitochondria. The potential application of some antioxidants to reduce glycation phenomenon and to increase the antioxidant defence system by targeting mitochondria will be discussed. Food and pharmaceutical companies share the same challenge, they must act now, urgently and energetically. PMID:20031340

  6. Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations.

    PubMed

    Shi, Jiaqi; Qu, Ruijuan; Feng, Mingbao; Wang, Xinghao; Wang, Liansheng; Yang, Shaogui; Wang, Zunyao

    2015-04-01

    This study found that decabromodiphenyl ether (BDE 209) could be oxidized effectively by potassium permanganate (KMnO4) in sulfuric acid medium. A total of 15 intermediate oxidative products were detected. The reaction pathways were proposed, which primarily included cleavage of the ether bond to form pentabromophenol. Direct oxidation on the benzene ring also played an important role because hydroxylated polybrominated diphenyl ethers (PBDEs) were produced during the oxidation process. The degradation occurred dramatically in the first few minutes and fitted pseudo-first-order kinetics. Increasing the water content decelerated the reaction rate, whereas increasing the temperature facilitated the reaction. In addition, density functional theory (DFT) was employed to determine the frontier molecular orbital (FMO) and frontier electron density (FED) of BDE 209 and the oxidative products. The theoretical calculation results confirmed the proposed reaction pathways. PMID:25751737

  7. Internal displacement reactions in multicomponent oxides: Part III. Solid solutions of ternary oxide compounds

    NASA Astrophysics Data System (ADS)

    Reddy, S. N. S.

    2005-11-01

    In an internal displacement reaction between a reactive metal A and multicomponent oxide ( B,C,D,…) O, the noble cation B in the oxide is selectively displaced by reactive metal A, without changing the crystal structure of the oxide. Concurrently, B is precipitated as an internal metal phase in the oxide matrix. The cations ( C,D,…) are inert in terms of exchange reaction. The solid-state displacement reaction occurs by the counterdiffusion of A and B inside the reaction zone. The diffusion of “inert” cations and the concentration profile in the product oxide are dependent on the nature of the oxide: (1) “line” compound of narrow homogeneity range or (2) solid solution of wide composition range. These reactions were discussed in previous articles[1,2] (Parts I and II) along with specific examples. This article is a continuation of studies in Parts I and II and involves the internal displacement reaction between a metal and a quaternary oxide, which is a solid solution of two ternary line compounds. As a model, the reaction between Fe and an ilmenite solid solution of NiTiO3-MgTiO3 was studied at 1273 K as a function of time: [Figure not available: see fulltext.] In ilmenite solid solution (Ni, Fe, Mg) occupy the same cation sublattice, which is different from the Ti sublattice. During the reaction, only Ni cation in the oxide is displaced Fe; Mg and Ti are “inert” in terms of cation exchange. The reaction products consist of internal “Ni” precipitates (Ni-Fe alloy) in a matrix of (Fe, Mg, Ni)TiO3 solid solution. In particular, the study focuses on cation flux during the reaction and evolution of product oxide composition profile after time t. The three cations in the product oxide that occupy the same sublattice, (Ni, Fe, Mg), show concentration gradients across the reaction zone, even though Mg is inert for cation displacement. The counterdiffusion of Fe and Ni is consistent with their chemical potential gradients. The diffusion of Mg is in the same direction as that of Fe, indicating that, at constant N MgTiO3, the chemical potential for MgTiO3 is higher in (Mg, Fe)TiO 3 solid solution than in (Mg, Ni)TiO3 solid solution. The concentration of Ti, which occupies a different sublattice, remains constant across the reaction zone ( i.e., zero diffusional flux for Ti). The ratio, (Fe+Mg+Ni):Ti=1:1, is consistent with the ilmenite structure of the product oxide. The shape of the cation concentration profiles indicates that terms containing cross-coefficients in the general flux equations contribute significantly to cation diffusion during the reaction.

  8. [Spectral Study on Coordination Reaction Between metMyoglobin and Nitric Oxide].

    PubMed

    Tang, Qian; Zhang, Yue; Cao, Hong-yu; Shi, Shan-shan; Zheng, Xue-fang

    2015-07-01

    As we all known, the instantaneous reaction between protein and ligands are very important to adjust the normal playing of biological function. And nitric oxide interactions with iron are the most important biological reactions in which NO participates. Unlike carbon monoxide or oxygen, NO can also bind reversibly to ferric iron. In this paper, UV-Vis absorption and CD spectra were used to study coordination reaction process between horse heart metMb and NO, to demonstrate the coordination reaction mechanism and to explore the influencing factors of metMb with NO. The experimental results showed that metMb could react with NO, and obtained three new peaks at 420 nm, 534 and 568 nm, respectively, which implied metMb and NO have reacted and generated a new complex-nitrosylmetmyoglobin (metMbNO). Then as time went on, NO concentration decreased in the solution, and the Fe-N bond fractured under the attack of H2O, then NO leaves slowly from metMbNO, and met-Mb was regenerated. In this experiment, we also found that external conditions such as buffer medium, ionic strength, pH, temperature, etc, had an important influence on the coordination reaction between metMb and NO. It was favorable for the coordination reaction, when the 0.01 mol x L(-1) phosphate buffer. solution is near neutral condition, the temperature is 280 K, the coordination reaction could reach equilibrium at a fastest speed. In addition, the CD date show that NO only reacts with Fe atom in the center of heme and has less effect on the secondary structuers of protein. The research of metMb and NO played an important role to further study the function of NO. Especially the establish of equilibrium reaction mechanism between NO and heme protein has an important research value on maintaining the balance of NO in vivo and keeping the normal function in the body's cells. PMID:26717761

  9. Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions

    PubMed Central

    Nguyen, Bichlien H; Perkins, Robert J; Smith, Jake A

    2015-01-01

    Summary The combination of visible light, photovoltaics, and electrochemistry provides a convenient, inexpensive platform for conducting a wide variety of sustainable oxidation reactions. The approach presented in this article is compatible with both direct and indirect oxidation reactions, avoids the need for a stoichiometric oxidant, and leads to hydrogen gas as the only byproduct from the corresponding reduction reaction. PMID:25815081

  10. Identification and cleavage of breakable single bonds by selective oxidation, reduction, and hydrolysis. Annual report, October 1, 1980-September 30, 1981

    SciTech Connect

    Hirschon, A.S.; Zevely, J.; Mayo, F.R.

    1981-11-12

    The objective of this project is to determine the structure of bituminous coal by determining the proportions of the various kinds of connecting bonds and how they can best be broken. Results obtained during the past quarter are presented for the following tasks: (1) extractions and fractionations of coal products which covers pyridine extraction, fractionation of TIPS fractions, EDA extraction of Illinois No. 6 coal and swelling ratios of coal samples; (2) experiments on breakable single bonds which cover reactions of ethylenediamine and model ethers, reaction of pyridine-extracted coal with Me/sub 3/SiI, Baeyer-Villiger oxidations, reaction to diphenylmethane with 15% HNO/sub 3/, cleavage of TIPS with ZnI/sub 2/, and cleavage of black acids; and (3) oxygen oxidation No. 18. Some of the highlights of these studies are: (1) some model ethers are not cleaved by EDA under extraction conditions; (2) oxidation of diaryl ketones with m-chloroperbenzoic acid and saponification of the resulting esters in promising for identifying ketones, (3) treatment of a black acid with pyridine hydroiodide reduced the acid's molecular weight and increased its solubility in pyridine, but treatment with ZnI/sub 2/ was ineffective; (4) in comparison with 0.1 M K/sub 2/S/sub 2/O/sub 8/, 0.01 M persulfate is relatively ineffective in accelerating oxidation of BnNH/sub 2/-extracted coal in water suspension. 2 figures, 3 tables.

  11. Reaction injection molding and direct covalent bonding of OSTE+ polymer microfluidic devices

    NASA Astrophysics Data System (ADS)

    Sandström, N.; Shafagh, R. Z.; Vastesson, A.; Carlborg, C. F.; van der Wijngaart, W.; Haraldsson, T.

    2015-07-01

    In this article, we present OSTE+RIM, a novel reaction injection molding (RIM) process that combines the merits of off-stoichiometric thiol-ene epoxy (OSTE+) thermosetting polymers with the fabrication of high quality microstructured parts. The process relies on the dual polymerization reactions of OSTE+ polymers, where the first curing step is used in OSTE+RIM for molding intermediately polymerized parts with well-defined shapes and reactive surface chemistries. In the facile back-end processing, the replicated parts are directly and covalently bonded and become fully polymerized using the second curing step, generating complete microfluidic devices. To achieve unprecedented rapid processing, high replication fidelity and low residual stress, OSTE+RIM uniquely incorporates temperature stabilization and shrinkage compensation of the OSTE+ polymerization during molding. Two different OSTE+ formulations were characterized and used for the OSTE+RIM fabrication of optically transparent, warp-free and natively hydrophilic microscopy glass slide format microfluidic demonstrator devices, featuring a storage modulus of 2.3 GPa and tolerating pressures of at least 4 bars.

  12. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond

    SciTech Connect

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, N.; More, Karren Leslie; Adzic, Radoslav R.

    2013-01-01

    Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

  13. Recombinant Cyanobacteria for the Asymmetric Reduction of C=C Bonds Fueled by the Biocatalytic Oxidation of Water.

    PubMed

    Köninger, Katharina; Gómez Baraibar, Álvaro; Mügge, Carolin; Paul, Caroline E; Hollmann, Frank; Nowaczyk, Marc M; Kourist, Robert

    2016-04-25

    A recombinant enoate reductase was expressed in cyanobacteria and used for the light-catalyzed, enantioselective reduction of C=C bonds. The coupling of oxidoreductases to natural photosynthesis allows asymmetric syntheses fueled by the oxidation of water. Bypassing the addition of sacrificial cosubstrates as electron donors significantly improves the atom efficiency and avoids the formation of undesired side products. Crucial factors for product formation are the availability of NADPH and the amount of active enzyme in the cells. The efficiency of the reaction is comparable to typical whole-cell biotransformations in E. coli. Under optimized conditions, a solution of 100 mg prochiral 2-methylmaleimide was reduced to optically pure 2-methylsuccinimide (99 % ee, 80 % yield of isolated product). High product yields and excellent optical purities demonstrate the synthetic usefulness of light-catalyzed whole-cell biotransformations using recombinant cyanobacteria. PMID:27029020

  14. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    SciTech Connect

    Roth, Justine P.

    2015-03-03

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  15. Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions.

    PubMed

    Suryanto, Bryan H R; Zhao, Chuan

    2016-05-11

    Carbon black (CB) is popularly used as a catalyst support for metal/metal oxide nanoparticles due to its large surface area, excellent conductivity and stability. Herein, we show that surface oxidized CB itself, after acidic treatment and electrochemical oxidation, exhibits significant catalytic activity for the electrochemical oxidation of water and alcohols. PMID:27097802

  16. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    PubMed

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-01

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIBr-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process. PMID:26943019

  17. Kinetics of the reaction of nitric oxide with hydrogen

    NASA Technical Reports Server (NTRS)

    Flower, W. L.; Hanson, R. K.; Kruger, C. H.

    1975-01-01

    The reaction of nitric oxide with hydrogen has been studied in the temperature range 2400-4500 K using a shock-tube technique. Mixtures of NO and H2 diluted in argon or krypton were heated by incident shock waves, and the infrared emission from the fundamental vibration-rotation band of NO at 5.3 microns was used to monitor the time-varying NO concentration. The decomposition of nitric oxide behind the shock was found to be modeled well by a fifteen-reaction system. A principal result of the study was the determination of the rate constant k1 for the reaction H + NO yields N + OH, which may be the rate-limiting step for NO removal in some combustion systems. Experimental values of k1 were obtained for each test through comparisons of measured and numerically predicted NO profiles. The data are fit closely by the expression k1 = 1.34 times 10 to the fourteenth power exp(-49 200/RT) cu cm/mole-sec. These data appear to be the first available for this rate constant.

  18. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    PubMed Central

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications. PMID:26927109

  19. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions.

    PubMed

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications. PMID:26927109

  20. Mechanistic investigation of oxidative Mannich reaction with tert-butyl hydroperoxide. The role of transition metal salt.

    PubMed

    Ratnikov, Maxim O; Doyle, Michael P

    2013-01-30

    A general mechanism is proposed for transition metal-catalyzed oxidative Mannich reactions of N,N-dialkylanilines with tert-butyl hydroperoxide (TBHP) as the oxidant. The mechanism consists of a rate-determining single electron transfer (SET) that is uniform from 4-methoxy- to 4-cyano-N,N-dimethylanilines. The tert-butylperoxy radical is the major oxidant in the rate-determining SET step that is followed by competing backward SET and irreversible heterolytic cleavage of the carbon-hydrogen bond at the α-position to nitrogen. A second SET completes the conversion of N,N-dimethylaniline to an iminium ion that is subsequently trapped by the nucleophilic solvent or the oxidant prior to formation of the Mannich adduct. The general role of Rh(2)(cap)(4), RuCl(2)(PPh(3))(3), CuBr, FeCl(3), and Co(OAc)(2) in N,N-dialkylaniline oxidations by T-HYDRO is to initiate the conversion of TBHP to tert-butylperoxy radicals. A second pathway, involving O(2) as the oxidant, exists for copper, iron, and cobalt salts. Results from linear free-energy relationship (LFER) analyses, kinetic and product isotope effects (KIE and PIE), and radical trap experiments of N,N-dimethylaniline oxidation by T-HYDRO in the presence of transition metal catalysts are discussed. Kinetic studies of the oxidative Mannich reaction in methanol and toluene are also reported. PMID:23298175

  1. An in vitro study to evaluate the effects of addition of zinc oxide to an orthodontic bonding agent

    PubMed Central

    Jatania, Archana; Shivalinga, B. M.

    2014-01-01

    Objective: The objective of this study is to test the antimicrobial effect of zinc oxide when incorporated into an orthodontic bonding material and to check the effect of addition of zinc oxide on the shear bond strength of the bonding material. Materials and Methods: Zinc oxide was added to a resin modified light cure glass ionomer cement (GIC) (Fuji Ortho LC GC America, Alsip, Ill) to make modified bonding agent containing 13% and 23.1% ZnO and the antimicrobial assay was done using agar disc diffusion method. Discs of the modified bonding agent were prepared and a culture of Streptococcus mutans mixed with soft agar was poured over it and incubated at 38°C for 48 h and zones of inhibition were measured. The test was repeated after a month to check the antimicrobial effect. In addition shear bond strength of the brackets bonded with the modified bonding agent was tested. Results: The agar disc showed zones of inhibition around the modified bonding agent and the antimicrobial activity was more when the concentration of ZnO was increased. The antimicrobial effect was present even after a month. The shear bond strength decreased as the concentration of ZnO increased. Conclusion: The incorporation of ZnO into a resin modified light cure GIC (Fuji Ortho LC GC America, Alsip, Ill) added antimicrobial property to the original compound. PMID:24966757

  2. Substrate Controlled Synthesis of Benzisoxazole and Benzisothiazole Derivatives via PhI(OAc)2-Mediated Oxidation Followed by Intramolecular Oxidative O-N/S-N Bond Formation.

    PubMed

    Anand, Devireddy; Patel, Om P S; Maurya, Rahul K; Kant, Ruchir; Yadav, Prem P

    2015-12-18

    A phenyliodine(III) diacetate (PIDA)-mediated, highly efficient and tandem approach for the synthesis of aryldiazenylisoxazolo(isothiazolo)arenes from simple 2-amino-N'-arylbenzohydrazides has been developed. The reaction proceeds via formation of (E)-(2-aminoaryl)(aryldiazenyl)methanone as the key intermediate, followed by intramolecular oxidative O-N/S-N bond formation in one pot at room temperature. The quiet different reactivity of the substrate is due to the formation of a diazo intermediate which encounters a nucleophilic attack by carbonyl oxygen on the electrophilic amine to produce isoxazole products, as compared to the previous reportsa,b,4 in which an N-acylnitrenium ion intermediate is intramolecularly trapped by an amine group. PMID:26565748

  3. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Rhatt, R. T.; Phillips, R. E.

    1988-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  4. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Phillips, Ronald E.

    1990-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2) sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  5. Rhodium-catalyzed cascade oxidative annulation leading to substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp2)-H/C(sp3)-H and C(sp2)-H/O-H bonds.

    PubMed

    Tan, Xing; Liu, Bingxian; Li, Xiangyu; Li, Bin; Xu, Shansheng; Song, Haibin; Wang, Baiquan

    2012-10-01

    The cascade oxidative annulation reactions of benzoylacetonitrile with internal alkynes proceed efficiently in the presence of a rhodium catalyst and a copper oxidant to give substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp(2))-H/C(sp(3))-H and C(sp(2))-H/O-H bonds. These cascade reactions are highly regioselective with unsymmetrical alkynes. Experiments reveal that the first-step reaction proceeds by sequential cleavage of C(sp(2))-H/C(sp(3))-H bonds and annulation with alkynes, leading to 1-naphthols as the intermediate products. Subsequently, 1-naphthols react with alkynes by cleavage of C(sp(2))-H/O-H bonds, affording the 1:2 coupling products. Moreover, some of the naphtho[1,8-bc]pyran products exhibit intense fluorescence in the solid state. PMID:22989331

  6. RH and H2 production in reactions between ROH and small molybdenum oxide cluster anions.

    PubMed

    Waller, Sarah E; Jarrold, Caroline C

    2014-09-18

    To test recent computational studies on the mechanism of metal oxide cluster anion reactions with water [Ramabhadran, R. O.; et al. J. Phys. Chem. Lett. 2010, 1, 3066; Ramabhadran, R. O.; et al. J. Am. Chem. Soc. 2013, 135, 17039], the reactivity of molybdenum oxo–cluster anions, Mo(x)O(y)(–) (x = 1 – 4; y ≤ 3x) toward both methanol (MeOH) and ethanol (EtOH) has been studied using mass spectrometric analysis of products formed in a high-pressure, fast-flow reactor. The size-dependent product distributions are compared to previous Mo(x)O(y)(–) + H2O/D2O reactivity studies, with particular emphasis on the Mo2O(y)(–) and Mo3O(y)(–) series. In general, sequential oxidation, Mo(x)O(y)(–) + ROH → Mo(x)O(y+1)(–) + RH, and addition reactions, Mo(x)O(y)(–) + ROH → Mo(x)O(y+1)RH(–), largely corresponded with previously studied Mo(x)O(y)(–) + H2O/D2O reactions [Rothgeb, D. W., Mann, J. E., and Jarrold, C. C. J. Chem. Phys. 2010, 133, 054305], though with much lower rate constants than those determined for Mo(x)O(y)(–) + H2O/D2O reactions. This finding is consistent with the computational studies that suggested that −H mobility on the cluster–water complex was an important feature in the overall reactivity. There were several notable differences between cluster–ROH and cluster–water reactions associated with lower R–OH bond dissociation energies relative to the HO–H dissociation energy. PMID:24661103

  7. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile. PMID:22076660

  8. Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora.

    PubMed

    Urza, U; Fernando Larrondo, L; Lobos, S; Larran, J; Vicua, R

    1995-09-01

    A total of 11 manganese peroxidase isoenzymes (MnP1-MnP11) with isoelectric points (pIs) in the range of 4.58-3.20 were isolated from liquid- and solid-state cultures of the basidiomycete Ceriporiopsis subvermispora. In the presence of hydrogen peroxide, these isoenzymes showed different requirements for Mn(II) in the oxidation of vanillylacetone, o-dianisidine, p-anisidine and ABTS, whereas oxidation of guaiacol by any isoenzyme did not take place when this metal was omitted. Km values for o-dianisidine and p-anisidine in the absence of Mn(II) are in the range of 0.5-1.0 mM and 4.5-42.0 mM, respectively. Oxalate and citrate, but not tartrate, accelerate the oxidation of o-dianisidine, both in the presence and in the absence of Mn(II). MnPs from this fungus are able to oxidize kojic acid without externally added hydrogen peroxide, indicating that they can also act as oxidases. In this reaction, however, the requirement for Mn(II) is absolute. PMID:7672112

  9. Oxidation reactions of thymol: a pulse radiolysis and theoretical study.

    PubMed

    Venu, S; Naik, D B; Sarkar, S K; Aravind, Usha K; Nijamudheen, A; Aravindakumar, C T

    2013-01-17

    The reactions of (•)OH and O(•-), with thymol, a monoterpene phenol and an antioxidant, were studied by pulse radiolysis technique and DFT calculations at B3LYP/6-31+G(d,p) level of theory. Thymol was found to efficiently scavenge OH radicals (k = 8.1 × 10(9) dm(3) mol(-1) s(-1)) to produce reducing adduct radicals, with an absorption maximum at 330 nm and oxidizing phenoxyl radicals, with absorption maxima at 390 and 410 nm. A major part of these adduct radicals was found to undergo water elimination, leading to phenoxyl radicals, and the process was catalyzed by OH(-) (or Na(2)HPO(4)). The rate of reaction of O(•-) with thymol was found to be comparatively low (k = 1.1 × 10(9) dm(3) mol(-1) s(-1)), producing H abstracted species of thymol as well as phenoxyl radicals. Further, these phenoxyl radicals of thymol were found to be repaired by ascorbate (k = 2.1 × 10(8) dm(3) mol(-1) s(-1)). To support the interpretation of the experimental results, DFT calculations were carried out. The transients (both adducts and H abstracted species) have been optimized in gas phase at B3LYP/6-31+G(d,p) level of calculation. The relative energy values and thermodynamic stability suggests that the ortho adduct (C6_OH adduct) to be most stable in the reaction of thymol with OH radicals, which favors the water elimination. However, theoretical calculations showed that C4 atom in thymol (para position) can also be the reaction center as it is the main contributor of HOMO. The absorption maxima (λ(max)) calculated from time-dependent density functional theory (TDDFT) for these transient species were close to those obtained experimentally. Finally, the redox potential value of thymol(•)/thymol couple (0.98 V vs NHE) obtained by cyclic voltammetry is less than those of physiologically important oxidants, which reveals the antioxidant capacity of thymol, by scavenging these oxidants. The repair of the phenoxyl radicals of thymol with ascorbate together with the redox potential value makes it a potent antioxidant with minimum pro-oxidant effects. PMID:23240914

  10. Direct Reaction of Amides with Nitric Oxide To Form Diazeniumdiolates

    PubMed Central

    2015-01-01

    We report the apparently unprecedented direct reaction of nitric oxide (NO) with amides to generate ions of structure R(C=O)NH–N(O)=NO–, with examples including R = Me (1a) or 3-pyridyl (1b). The sodium salts of both released NO in pH 7.4 buffer, with 37 °C half-lives of 1–3 min. As NO-releasing drug candidates, diazeniumdiolated amides would have the advantage of generating only 1 equiv of base on hydrolyzing exhaustively to NO, in contrast to their amine counterparts, which generate 2 equiv of base. PMID:25210948

  11. Regioselective alkene carbon-carbon bond cleavage to aldehydes and chemoselective alcohol oxidation of allylic alcohols with hydrogen peroxide catalyzed by [cis-Ru(II)(dmp)2(H2O)2]2+ (dmp = 2,9-dimethylphenanthroline).

    PubMed

    Kogan, Vladimir; Quintal, Miriam M; Neumann, Ronny

    2005-10-27

    [reaction: see text] [cis-Ru(II)(dmp)2(H2O)2]2+ (dmp = 2,9-dimethylphenanthroline) was found to be a selective oxidation catalyst using hydrogen peroxide as oxidant. Thus, primary alkenes were very efficiently oxidized via direct carbon-carbon bond cleavage to the corresponding aldehydes as an alternative to ozonolysis. Secondary alkenes were much less reactive, leading to regioselective oxidation of substrates such as 4-vinylcyclohexene and 7-methyl-1,6-octadiene at the terminal position. Primary allylic alcohols were chemoselectively oxidized to the corresponding allylic aldehydes, e.g., geraniol to citral. PMID:16235952

  12. Fly Ash and Mercury Oxidation/Chlorination Reactions

    SciTech Connect

    Sukh Sidhu; Patanjali Varanasi

    2008-12-31

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using a diffusion tube as the source of Hg0(g). All experiments were conducted using 4% O2 in nitrogen mix as a reaction gas, and other reactants (HCl, H2O and SO2, NO2, Br2) were added as required. The fixed bed reactor was operated over a temperature range of 200 to 400 C. In each experiment, the reactor effluent was analyzed using the modified Ontario-Hydro method. After each experiment, fly ash particles were also analyzed for mercury. The results show that the ability of fly ash to adsorb and/or oxidize mercury is primarily dependent on its carbon, iron and calcium content. There can be either one or more than one key component at a particular temperature and flue gas condition. Surface area played a secondary role in effecting the mercury transformations when compared to the concentration of the key component in the fly ash. Amount of carbon and surface area played a key important role in the adsorption of mercury. Increased concentration of gases in the flue gas other than oxygen and nitrogen caused decreased the amount of mercury adsorbed on carbon surface. Mercury adsorption by iron oxide primarily depended on the crystalline structure of iron oxide. {alpha}-Iron oxide had no effect on mercury adsorption or oxidation under most of the flue gas conditions, but ?-iron oxide adsorbed mercury under most of the flue gas conditions. Bromine is a very good oxidizing agent for mercury. But in the presence of calcium oxide containing fly ashes, all the oxidized mercury would be reduced to elemental form. Among the catalysts, it was observed that presence of free lattice chlorine in the catalyst was very important for the oxidation of mercury. But instead of using the catalyst alone, using it along with carbon may better serve the purpose by providing the adsorption surface for mercury and also some extra surface area for the reaction to occur (especially for fly ashes with low surface area).

  13. Cyclopentadienyl nickel(ii) N,C-chelating benzothiazolyl NHC complexes: synthesis, characterization and application in catalytic C-C bond formation reactions.

    PubMed

    Teo, Wei Jie; Wang, Zhe; Xue, Fei; Andy Hor, T S; Zhao, Jin

    2016-04-25

    Cyclopentadienyl (Cp) Ni(ii) complexes [CpNiL][PF6] containing hybrid N,C chelating benzothiazolyl NHC ligands (L1 = 1-(2-benzothiazolyl)-3-methylimidazol-2-ylidene, ; L2 = 1-(2-benzothiazolyl)-3-allylimidazol-2-ylidene, ; L3 = 1-(2-benzothiazolyl)-3-benzylimidazol-2-ylidene, ) have been synthesized and fully characterized. The catalytic activity of in some C-C bond formation reactions has been examined. They are efficient catalysts for the homo-coupling of benzyl bromide in the presence of MeMgCl at r.t. with good functional group tolerance. Complex is active in the catalytic oxidative homo-coupling of Grignard reagents with 1,2-dichloroethane as an oxidant at r.t. PMID:27011227

  14. Bis(trifluoromethyl)methylene Addition to Vinyl-Terminated SAMs: A Gas-Phase C–C Bond-Forming Reaction on a Surface

    PubMed Central

    2014-01-01

    Vinyl-terminated self-assembled monolayers (SAMs) on silicon oxide substrates were chemically modified by the addition of a bis(trifluoromethyl)methylene group in a rare gas-phase C–C bond-forming reaction to directly generate films carrying terminal CF3 groups. The vinyl-terminated films were treated with hexafluoroacetone azine (HFAA) for modification. The films were characterized with ellipsometry, contact angle measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). In this study, we find that for optimized conditions clean reactions occur on a surface between SAMs with terminal olefins and HFAA, and the product is consistent with bis(trifluoromethyl)cyclopropanation formation after nitrogen extrusion. PMID:24806554

  15. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGESBeta

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  16. Synthesis and oxidation behavior of nanocrystalline MCrAlY bond coatings

    NASA Astrophysics Data System (ADS)

    Ajdelsztajn, L.; Tang, F.; Schoenung, J. M.; Kim, G. E.; Provenzano, V.

    2005-03-01

    Thermal barrier coating systems protect turbine blades against high-temperature corrosion and oxidation. They consist of a metal bond coat (MCrAlY, M = Ni, Co) and a ceramic top layer (ZrO2/Y2O3). In this work, the oxidation behavior of conventional and nanostructured high-velocity oxyfuel (HVOF) NiCrAlY coatings has been compared. Commercially available NiCrAlY powder was mechanically cryomilled and HVOF sprayed on a nickel alloy foil to form a nanocrystalline coating. Freestanding bodies of conventional and nanostructured HVOF NiCrAlY coatings were oxidized at 1000 C for different time periods to form the thermally grown oxide layer. The experiments show an improvement in oxidation resistance in the nanostructured coating when compared with that of the conventional one. The observed behavior is a result of the formation of a continuous Al2O3 layer on the surface of the nanostructured HVOF NiCrAlY coating. This layer protects the coating from further oxidation and avoids the formation of mixed oxide protrusions present in the conventional coating.

  17. Gas-phase reaction of CeVO5(+) cluster ions with C2H4: the reactivity of cluster bonded peroxides.

    PubMed

    Ma, Jia-Bi; Meng, Jing-Heng; He, Sheng-Gui

    2015-02-21

    Cerium-vanadium oxide cluster cations CeVO5(+) were generated by laser ablation, mass-selected using a quadrupole mass filter, thermalized through collisions with helium atoms, and then reacted with ethene molecules in a linear ion trap reactor. The cluster reactions have been characterized by time-of-flight mass spectrometry and density functional theory calculations. The CeVO5(+) cluster has a closed-shell electronic structure and contains a peroxide (O2(2-)) unit. The cluster bonded O2(2-) species is reactive enough to oxidize a C2H4 molecule to generate C2H4O2 that can be an acetic acid molecule. Atomic oxygen radicals (O(-)˙), superoxide radicals (O2(-)˙), and peroxides are the three common reactive oxygen species. The reactivity of cluster bonded O(-)˙ and O2(-)˙ radicals has been widely studied while the O2(2-) species were generally thought to be much less reactive or inert toward small molecules under thermal collision conditions. This work is among the first to report the reactivity of the peroxide unit on transition metal oxide clusters with hydrocarbon molecules, to the best of our knowledge. PMID:25573178

  18. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    SciTech Connect

    Sato, Soshi Honjo, Hiroaki; Niwa, Masaaki; Ikeda, Shoji; Ohno, Hideo; Endoh, Tetsuo

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer. The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.

  19. Optimization of reaction conditions in selective oxidation of styrene over fine crystallite spinel-type CaFe{sub 2}O{sub 4} complex oxide catalyst

    SciTech Connect

    Pardeshi, Satish K.; Pawar, Ravindra Y.

    2010-05-15

    The CaFe{sub 2}O{sub 4} spinel-type catalyst was synthesized by citrate gel method and well characterized by thermogravimetric analysis, atomic absorption spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy. The crystallization temperature of the spinel particle prepared by citrate gel method was 600 {sup o}C which was lower than that of ferrite prepared by other methods. CaFe{sub 2}O{sub 4} catalysts prepared by citrate gel method show better activity for styrene oxidation in the presence of dilute H{sub 2}O{sub 2} (30%) as an oxidizing agent. In this reaction the oxidative cleavage of carbon-carbon double bond of styrene takes place selectively with 38 {+-} 2 mol% conversion. The major product of the reaction is benzaldehyde up to 91 {+-} 2 mol% and minor product phenyl acetaldehyde up to 9 {+-} 2 mol%, respectively. The products obtained in the styrene oxidation reaction were analyzed by gas chromatography and mass spectroscopy. The influence of the catalyst, reaction time, temperature, amount of catalyst, styrene/H{sub 2}O{sub 2} molar ratio and solvents on the conversion and product distribution were studied.

  20. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    NASA Astrophysics Data System (ADS)

    Sato, Soshi; Honjo, Hiroaki; Ikeda, Shoji; Ohno, Hideo; Endoh, Tetsuo; Niwa, Masaaki

    2015-04-01

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer. The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO2, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.

  1. Development of a classical force field for the oxidized Si surface: Application to hydrophilic wafer bonding

    NASA Astrophysics Data System (ADS)

    Cole, Daniel J.; Payne, Mike C.; Csányi, Gábor; Mark Spearing, S.; Colombi Ciacchi, Lucio

    2007-11-01

    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO2 polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90mJ /m2, respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166mJ/m2), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.

  2. Oxidative addition of the fluoromethane C-F bond to Pd. An ab initio benchmark and DFT validation study.

    PubMed

    de Jong, G Theodoor; Bickelhaupt, F Matthias

    2005-10-27

    We have computed a state-of-the-art benchmark potential energy surface (PES) for two reaction pathways (oxidative insertion, OxIn, and S(N)2) for oxidative addition of the fluoromethane C-F bond to the palladium atom and have used this to evaluate the performance of 26 popular density functionals, covering LDA, GGA, meta-GGA, and hybrid density functionals, for describing these reactions. The ab initio benchmark is obtained by exploring the PES using a hierarchical series of ab initio methods (HF, MP2, CCSD, CCSD(T)) in combination with a hierarchical series of seven Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account through a full four-component all-electron approach. Our best estimate of kinetic and thermodynamic parameters is -5.3 (-6.1) kcal/mol for the formation of the reactant complex, 27.8 (25.4) kcal/mol for the activation energy for oxidative insertion (OxIn) relative to the separate reactants, 37.5 (31.8) kcal/mol for the activation energy for the alternative S(N)2 pathway, and -6.4 (-7.8) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). Our work highlights the importance of sufficient higher angular momentum polarization functions for correctly describing metal-d-electron correlation. Best overall agreement with our ab initio benchmark is obtained by functionals from all three categories, GGA, meta-GGA, and hybrid DFT, with mean absolute errors of 1.4-2.7 kcal/mol and errors in activation energies ranging from 0.3 to 2.8 kcal/mol. The B3LYP functional compares very well with a slight underestimation of the overall barrier for OxIn by -0.9 kcal/mol. For comparison, the well-known BLYP functional underestimates the overall barrier by -10.1 kcal/mol. The relative performance of these two functionals is inverted with respect to previous findings for the insertion of Pd into the C-H and C-C bonds. However, all major functionals yield correct trends and qualitative features of the PES, in particular, a clear preference for the OxIn over the alternative S(N)2 pathway. PMID:16866421

  3. Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111)

    SciTech Connect

    Farberow, Carrie A.; Dumesic, James A.; Mavrikakis, Manos

    2014-10-03

    Reaction pathways are explored for low temperature (e.g., 400 K) reduction of nitric oxide by hydrogen on Pt(111). First-principles electronic structure calculations based on periodic, self-consistent density functional theory(DFT-GGA, PW91) are employed to obtain thermodynamic and kinetic parameters for proposed reaction schemes on Pt(111). The surface of Pt(111) during NO reduction by H₂ at low temperatures is predicted to operate at a high NO coverage, and this environment is explicitly taken into account in the DFT calculations. Maximum rate analyses are performed to assess the most likely reaction mechanisms leading to formation of N₂O, the major product observed experimentally at low temperatures. The results of these analyses suggest that the reaction most likely proceeds via the addition of at least two H atoms to adsorbed NO, followed by cleavage of the N-O bond.

  4. Effect of composition on the processing and properties of sintered reaction-bonded silicon nitride

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O.; Montgomery, F.C.; Lin, H.T.; Barker, D.L.; Snodgrass, J.D.; Sabolsky, E.M.; Coffey, D.W.

    1996-04-01

    The type of silicon powder and sintering additive were found to influence the processing and final mechanical properties of sintered reaction bonded silicon nitride. High purity silicon powders produced low {alpha}-Si{sub 3}N{sub 4} content during nitridation. The Si powder type had no apparent effect on densification. More complete nitridation and higher room temperature mechanical properties were observed for the Si powders with higher Fe contents. However, the higher Fe contents resulted in greater high temperature strength degradation and so there was better high temperature strength retention with the higher purity Si. High {alpha}-Si{sub 3}N{sub 4} contents were found after nitridation with {alpha}-Si{sub 3}N{sub 4} seeded materials and with MgO-Y{sub 2}O{sub 3} as the sintering additive. Densification was inhibited by refractory additives, such as Y{sub 2}O{sub 3}-SiO{sub 2}. The highest room temperature strength and fracture toughness values correlated to high nitrided {alpha}-Si{sub 3}N{sub 4} contents. The high temperature strength behavior was similar for all additive types.

  5. Formation of porous surface layers in reaction bonded silicon nitride during processing

    NASA Technical Reports Server (NTRS)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    An effort was undertaken to determine if the formation of the generally observed layer of large porosity adjacent to the as-nitride surfaces of reaction bonded silicon nitrides could be prevented during processing. Isostatically pressed test bars were prepared from wet vibratory milled Si powder. Sintering and nitriding were each done under three different conditions:(1) bars directly exposed to the furnance atmosphere; (2) bars packed in Si powder; (3) bars packed in Si3N4 powder. Packing the bars in either Si of Si3N4 powder during sintering retarded formation of the layer of large porosity. Only packing the bars in Si prevented formation of the layer during nitridation. The strongest bars (316 MPa) were those sintered in Si and nitrided in Si3N4 despite their having a layer of large surface porosity; failure initiated at very large pores and inclusions. The alpha/beta ratio was found to be directly proportional to the oxygen content; a possible explanation for this relationship is discussed.

  6. Recent advances in reaction bonded silicon carbide optics and optical systems

    NASA Astrophysics Data System (ADS)

    Robichaud, Joseph; Schwartz, Jay; Landry, David; Glenn, William; Rider, Brian; Chung, Michael

    2005-08-01

    SSG Precision Optronics, Inc. (SSG) has recently developed a number of Reaction Bonded (RB) Silicon Carbide (SiC) optical systems for space-based remote sensing and astronomical observing applications. RB SiC's superior material properties make it uniquely well suited to meet the image quality and long term dimensional stability requirements associated with these applications. An overview of the RB SiC manufacturing process is presented, along with a summary description of recently delivered RB SiC flight hardware. This hardware includes an RB SiC telescope and Pointing Mirror Assembly (PMA) for the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) mission and an imaging telescope for the Long-Range Reconnaissance Imager (LORRI) mission. SSG continues to advance the state-of-the-technology with SiC materials and systems. A summary of development activities related to a low-cost, fracture tough, fiber reinforced RB SiC material formulation, novel tooling to produce monolithic, partially closed back mirror geometries, and extension of the technology to large aspheric mirrors is also provided.

  7. Formation, structure and bond dissociation thresholds of gas-phase vanadium oxide cluster ions

    NASA Astrophysics Data System (ADS)

    Bell, R. C.; Zemski, K. A.; Justes, D. R.; Castleman, A. W.

    2001-01-01

    The formation and structure of gas-phase vanadium oxide cluster anions are examined using a guided ion beam mass spectrometer coupled with a laser vaporization source. The dominant peaks in the anion total mass distribution correspond to clusters having stoichiometries of the form (VO2)n(VO3)m(O2)q-. Collision-induced dissociation studies of the vanadium oxide species V2O4-6-, V3O6-9-, V4O8-10-, V5O11-13-, V6O13-15-, and V7O16-18- indicate that VO2, VO3, and V2O5 units are the main building blocks of these clusters. There are many similarities between the anion mass distribution and that of the cation distribution studied previously. The principal difference is a shift to higher oxygen content by one additional oxygen atom for the stoichiometric anions (VxOy-) as compared to the cations with the same number of vanadium atoms, which is attributed to the extra pair of electrons of the anionic species. The oxygen-rich clusters, VxOy(O2)-, are shown to more tightly adsorb molecular oxygen than those of the corresponding cationic clusters. In addition, the bond dissociation thresholds for the vanadium oxide clusters ΔE(V+-O)=6.09±0.28 eV, ΔE(OV+-O)=3.51±0.36 eV, and ΔE(O2V--O)=5.43±0.31 eV are determined from the energy-dependent collision-induced dissociation cross sections with Xe as the collision partner. To the best of our knowledge, this is the first bond dissociation energy reported for the breaking of the V-O bond of a vanadium oxide anion.

  8. CBr4 Mediated Oxidative C-N Bond Formation: Applied in the Synthesis of Imidazo[1,2-α]pyridines and Imidazo[1,2-α]pyrimidines.

    PubMed

    Huo, Congde; Tang, Jing; Xie, Haisheng; Wang, Yajun; Dong, Jie

    2016-03-01

    The carbon tetrabromide mediated oxidative carbon-nitrogen bond formation of 2-aminopyridines or 2-aminopyrimidines with β-keto esters or 1,3-diones, leading to a variety of complex imidazo[1,2-α]pyridines or imidazo[1,2-α]pyrimidines, is reported. The reactions were realized under mild and metal-free conditions. PMID:26882001

  9. Thermo-oxidative and hydrothermal ageing of epoxy-dicyandiamide adhesive in bonded stainless steel joints

    NASA Astrophysics Data System (ADS)

    Gaukler, J. Ch; Fehling, P.; Possart, W.

    2009-09-01

    The ageing behaviour of stainless steel joints bonded with hot-curing adhesives is crucial for their reliability and durability in engineering applications. In industry, accelerated artificial ageing regimes are combined with short-term mechanical tests to simulate the in-service long-term behaviour and to predict the life time of the adhesive joints. With such a focus on mechanical bond strength, chemical changes in the adhesive are widely disregarded. Hence, neither the very causes for the decreasing performance of the joint nor their relevance for application can be revealed. Reasoning this study, lap shear samples of the stainless steel alloy 1.4376 are bonded with an epoxy-dicyandiamide adhesive and aged artificially under moderate thermo-oxidative (60 °C, dried air) or hydrothermal (60 °C, distilled water) condition. After testing (shear stress-strain analysis), chemical modifications of this adhesive due to ageing are detected on the fracture faces by μ-ATR-FTIR-spectroscopy as function of ageing time and position in the adhesive joint. The results attest high thermo-oxidative stability to these adhesive joints. For hydrothermal ageing, permeating water deteriorates the EP network from the edges towards the centre of the joint via hydrolysis of imine groups to ammonia, amine species and carbonyls.

  10. Chemical bonds and vibrational properties of ordered (U, Np, Pu) mixed oxides

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Zhang, Ping

    2013-01-01

    We use density functional theory +U to investigate the chemical bonding characters and vibrational properties of the ordered (U, Np, Pu) mixed oxides (MOXs), UNpO4,NpPuO4, and UPuO4. It is found that the 5f electronic states of different actinide elements keep their localized characters in all three MOXs. The occupied 5f electronic states of different actinide elements do not overlap with each other and tend to distribute over the energy band gap of the other actinide element's 5f states. As a result, the three ordered MOXs all show smaller band gaps than those of the component dioxides, with values of 0.91, 1.47, and 0.19 eV for UNpO4,NpPuO4, and UPuO4, respectively. Through careful charge density analysis, we further show that the U-O and Pu-O bonds in MOXs show more ionic character than in UO2 and PuO2, while the Np-O bonds show more covalent character than in NpO2. The change in covalencies in the chemical bonds leads to vibrational frequencies of oxygen atoms that are different in MOXs.

  11. Application of chemical structure and bonding of actinide oxide materials for forensic science

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  12. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    SciTech Connect

    Zhuang Lina; Wang Wenjin; Hong Feng; Yang Shengchun; You Hongjun; Fang Jixiang; Ding Bingjun

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  13. Charge-dependent non-bonded interaction methods for use in quantum mechanical modeling of condensed phase reactions

    NASA Astrophysics Data System (ADS)

    Kuechler, Erich R.

    Molecular modeling and computer simulation techniques can provide detailed insight into biochemical phenomena. This dissertation describes the development, implementation and parameterization of two methods for the accurate modeling of chemical reactions in aqueous environments, with a concerted scientific effort towards the inclusion of charge-dependent non-bonded non-electrostatic interactions into currently used computational frameworks. The first of these models, QXD, modifies interactions in a hybrid quantum mechanical/molecular (QM/MM) mechanical framework to overcome the current limitations of 'atom typing' QM atoms; an inaccurate and non-intuitive practice for chemically active species as these static atom types are dictated by the local bonding and electrostatic environment of the atoms they represent, which will change over the course of the simulation. The efficacy QXD model is demonstrated using a specific reaction parameterization (SRP) of the Austin Model 1 (AM1) Hamiltonian by simultaneously capturing the reaction barrier for chloride ion attack on methylchloride in solution and the solvation free energies of a series of compounds including the reagents of the reaction. The second, VRSCOSMO, is an implicit solvation model for use with the DFTB3/3OB Hamiltonian for biochemical reactions; allowing for accurate modeling of ionic compound solvation properties while overcoming the discontinuous nature of conventional PCM models when chemical reaction coordinates. The VRSCOSMO model is shown to accurately model the solvation properties of over 200 chemical compounds while also providing smooth, continuous reaction surfaces for a series of biologically motivated phosphoryl transesterification reactions. Both of these methods incorporate charge-dependent behavior into the non-bonded interactions variationally, allowing the 'size' of atoms to change in meaningful ways with respect to changes in local charge state, as to provide an accurate, predictive and transferable models for the interactions between the quantum mechanical system and their solvated surroundings.

  14. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation.

    PubMed

    Andersen, M S; Larsen, F; Postma, D

    2001-10-15

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4 x 10(-10) mol FeS2/g x s are measured, and the rates are only weakly correlated with the sediment pyrite content. The reactivity of pyrite, including the inhibition by FeOOH layers formed on its surface, apparently has a major effect on the rate of oxidation. The code PHREEQC 2.0 was used to calculate the reaction stoichiometry and partitioning of gases between the solution and the gas phase. Pyrite oxidation with concurrent calcite dissolution was found to be consistent with the experimental data while organic carbon oxidation was not. The reaction involves changes in the total volume of the gas phase. The reaction scheme predicts the volume of O2 gas consumed to be larger than of CO2 produced. In addition the solubility of CO2 in water is about 30 times larger than of O2 causing a further decrease in total gas volume. The change in total gas volume therefore also depends on the gas/water volume ratio and the lower the ratio the more pronounced the loss of volume will be. Under field conditions the change in total volume may amount up to 20% in the absence of calcite and over 10% in the presence of calcite. Such changes in gas volume during the oxidation of pyrite are expected to result in pressure gradients causing advective transport of gaseous oxygen. PMID:11686369

  15. The Rh(ii)-catalyzed formal N-S bond insertion reaction of aryldiazoacetates into N-phenyl-sulfenyl phthalimide.

    PubMed

    Song, Zhuang; Wu, Yizhou; Xin, Tao; Jin, Chao; Wen, Xiaoan; Sun, Hongbin; Xu, Qing-Long

    2016-05-01

    The Rh(ii)-catalyzed sulfur ylide [1,2]-rearrangement of carbenoids generated from aryldiazoacetates has been realized via N-S bond insertion, generating tertiary sulfides in moderate to excellent yields. This demonstrates the first use of the sulfur ylide [1,2]-rearrangement undergoing N-S bond insertion. This protocol could proceed smoothly with high regioselectivity, low catalyst loading (0.1 mol% Rh2(OAc)4), gram-scale reaction and broad substrate scope. And the product could be converted into glycine derivatives through simple procedures. PMID:27087623

  16. Facile homolytic CS bond breaking: the reaction of 2-propene-1-thiol on Mo(110)

    NASA Astrophysics Data System (ADS)

    Wiegand, B. C.; Friend, C. M.; Uvdal, P.; Napier, M. E.

    1996-06-01

    Investigations of 2-propene-1-thiol on Mo(110) show that the facility for thiol desulfurization correlates with the homolytic CS bond strength of the thiol. A substantial amount of CS bond scission occurs upon adsorption of 2-propene-1-thiol on Mo(110) at 120 K based on X-ray photoelectron data. 2-Propene-1-thiol has an extremely weak CS bond because of the resonance stabilization of the allyl radical. Propene, the product of 2-propene-1-thiol hydrogenolysis, evolves into the gas phase in the range 160-250 K; the propene evolution being controlled by the rate of desorption. Vibrational (electron energy loss) spectra are consistent with formation of 2-propene-1-thiolate via SH bond cleavage, as well as hydrocarbon fragments at low temperature. A large fraction of the thiolate desulfurizes at 120 K to afford propene. A second hydrocarbon species is formed in the range 160-200 K, characterized by a low-frequency CH stretch mode at 2770 cm -1, which reacts further below 250 K. The CC bond in the thiol and in the propene product leads to a greater degree of non-selective reaction than is anticipated from a comparison of saturated thiols. Only in the order of 50% of the thiol reacts to afford propene, despite the facility for CS bond scission.

  17. Some reduced ternary and quaternary oxides of molybdenum. A family of compounds with strong metal-metal bonds

    NASA Astrophysics Data System (ADS)

    Torardi, C. C.; McCarley, R. E.

    1981-05-01

    Several new, reduced ternary and quaternary oxides of molybdenum are reported, each containing molybdenum in an average oxidation state <4.0. All are prepared by reactions between a molybdate salt; metal oxide, if needed; and MoO 2 sealed in Mo tubes held at 1100°C for ca. 7 days. Refinement of the substructure of the new compound Ba 0.62Mo 4O 6 was based on an orthorhombic cell, with a = 9.509(2), b = 9.825(2), c = 2.853(1)Å, Z = 2 in space group Pbam; weak supercell reflections indicate the true structure has c = 8(2.853) Å. The chief structural feature is closely related to that of NaMo 4O 6 (C. C. Torardi, R. E. McCarley, J. Amer. Chem. Soc.101, 3963 (1979)), which consists of infinite chains of Mo 6 octahedral clusters fused on opposite edges, bridged on the outer edges by O atoms and crosslinked by Mo sbnd O sbnd Mo bonding to create four-sided tunnels in which the Ba 2+ ions are located. The structure of Ba 1.13Mo 8O 16 is triclinic, a = 7.311(1), b = 7.453(1), c = 5.726(1)Å, α = 101.49(2), β = 99.60(2), γ = 89.31(2)°, Z = 1, space group P1¯. It is a low-symmetry, metal-metal bonded variant of the hollandite structure, in which two different infinite chains, built up from Mo 4O 2-8 and Mo 4O 0.26-8 cluster units, respectively, are interlinked via Mo sbnd O sbnd Mo bridge bonding to create again four-sided tunnels in which the Ba 2+ ions reside. Other compounds prepared and characterized by analyses and X-ray powder diffraction data arePb xMo 4O 6( x ˜ 0.6), LiZn 2Mo 3O 8, CaMo 5O 8, K 2Mo 12O 19, and Na 2Mo 12O 19.

  18. Double proton transfer behavior and one-electron oxidation effect in double H-bonded glycinamide-formic acid complex.

    PubMed

    Li, Ping; Bu, Yuxiang

    2004-11-22

    The behavior of double proton transfer occurring in a representative glycinamide-formic acid complex has been investigated at the B3LYP/6-311 + + G( * *) level of theory. Thermodynamic and, especially, kinetic parameters, such as tautomeric energy, equilibrium constant, and barrier heights have been discussed, respectively. The relevant quantities involved in the double proton transfer process, such as geometrical changes, interaction energies, and intrinsic reaction coordinate calculations have also been studied. Computational results show that the participation of a formic acid molecule favors the proceeding of the proton transfer for glycinamide compared with that without mediate-assisted case. The double proton transfer process proceeds with a concerted mechanism rather than a stepwise one since no ion-pair complexes have been located during the proton transfer process. The calculated barrier heights are 11.48 and 0.85 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 2.95 and 2.61 kcal/mol to 8.53 and -1.76 kcal/mol if further inclusion of zero-point vibrational energy corrections, where the negative barrier height implies that the reverse reaction should proceed with barrierless spontaneously, analogous to that occurring between glycinamide and formamide. Furthermore, solvent effects on the thermodynamic and kinetic processes have also been predicted qualitatively employing the isodensity surface polarized continuum model within the framework of the self-consistent reaction field theory. Additionally, the oxidation process for the double H-bonded glycinamide-formic acid complex has also been investigated. Contrary to that neutral form possessing a pair of two parallel intermolecular H bonds, only a single H bond with a comparable strength has been found in its ionized form. The vertical and adiabatic ionization potentials for the neutral complex have been determined to be about 9.40 and 8.69 eV, respectively, where ionization is mainly localized on the glycinamide fragment. Like that ionized glycinamide-formamide complex, the proton transfer in the ionized complex is characterized by a single-well potential, implying that the proton initially attached to amide N4 in the glycinamide fragment cannot be transferred to carbonyl O13 in the formic acid fragment at the geometry of the optimized complex. PMID:15549872

  19. Calmodulin Methionine Residues are Targets For One-Electron Oxidation by Hydroxyl Radicals: Formation of S therefore N three-electron bonded Radical Complexes

    SciTech Connect

    Nauser, Thomas; Jacoby, Michael E.; Koppenol, Willem H.; Squier, Thomas C.; Schoneich, Christian

    2005-02-01

    The one-electron (1e) oxidation of organic sulfides and methionine (Met) constitutes an important reaction mechanism in vivo.1,2 Evidence for a Cu(II)-catalyzed oxidation of Met35 in the Alzheimer's disease -amyloid peptide was obtained,3 and, based on theoretical studies, Met radical cations were proposed as intermediates.4 In the structure of -amyloid peptide, the formation of Met radical cations appears to be facilitated by a preexisting close sulfur-oxygen (S-O) interaction between the Met35 sulfur and the carbonyl oxygen of the peptide bond C-terminal to Ile31.5 Substitution of Ile31 with Pro31 abolishes this S-O interaction,5 significantly reducing the ability of -amyloid to reduce Cu(II), and converts the neurotoxic wild-type -amyloid into a non-toxic peptide.6 The preexisting S-O bond characterized for wild-type -amyloid suggests that electron transfer from Met35 to Cu(II) is supported through stabilization of the Met radical cation by the electron-rich carbonyl oxygen, generating an SO-bonded7 sulfide radical cation (Scheme 1, reaction 1).5

  20. Effectively Exerting the Reinforcement of Dopamine Reduced Graphene Oxide on Epoxy-Based Composites via Strengthened Interfacial Bonding.

    PubMed

    Li, Wenbin; Shang, Tinghua; Yang, Wengang; Yang, Huichuan; Lin, Song; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping

    2016-05-25

    The effects of dopamine reduced graphene oxide (pDop-rGO) on the curing activity and mechanical properties of epoxy-based composites were evaluated. Taking advantage of self-polymerization of mussel-inspired dopamine, pDop-rGO was prepared through simultaneous functionalization and reduction of graphene oxide (GO) via polydopamine coating. Benefiting from the universal binding ability of polydopamine, good dispersion of pDop-rGO in epoxy matrix was able to be achieved as the content of pDop-rGO being below 0.2 wt %. Curing kinetics of epoxy composites with pDop-rGO were systematically studied by nonisothermal differential scanning calorimetry (DSC). Compared to the systems of neat epoxy or epoxy composites containing GO, epoxy composites loaded with pDop-rGO showed lower activation energy (Eα) over the range of cure (α). It revealed that the amino-bearing pDop-rGO was able to react with epoxy matrix and enhance the curing reactions as an amine-type curing agent. The nature of the interactions at GO-epoxy interface was further evaluated by Raman spectroscopy, confirming the occurrence of chemical bonding. The strengthened interfacial adhesion between pDop-rGO and epoxy matrix thus enhanced the effective stress transfer in the composites. Accordingly, the tensile and flexural properties of EP/pDop-rGO composites were enhanced due to both the well dispersion and strong interfacial bonding of pDop-rGO in epoxy matrix. PMID:27159233

  1. Specific Bonds between an Iron Oxide Surface and Outer Membrane Cytochromes MtrC and OmcA from Shewanella oneidensis MR-1

    SciTech Connect

    Lower, Brian H.; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C.; Mccready, David E.; Lower, Steven

    2007-07-31

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration.  A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface.  Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe2O3) thin film, created with oxygen plasma assisted molecular beam epitaxy (MBE), and recombinant MtrC or OmcA molecules coupled to gold substrates.  Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface.  The strength of the OmcA-hematite bond was approximately twice as strong as the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC.  Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite.  The force measurements for the hematite-cytochrome pairs were compared to spectra collected between an iron oxide and S. oneidensis under anaerobic conditions.  There is a strong correlation between the whole cell and pure protein force spectra suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals.  Finally, by comparing the magnitude of binding force for the whole cell vs. pure protein data, we were able to estimate that a single bacterium of S. oneidensis (2 x 0.5 μm) expresses ~104 cytochromes on its outer surface. 

  2. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching the electrolyte to change 3PB kinetics. Compared to Ni, Co doping activates the bulk oxygen more significantly, promoting the reaction at 2PB. The active surface reaction zone is found to be enlarged by the electrolyte with high oxygen activity (SSZ vs. YSZ) when charge transfer is one of the RDS. Due to the larger exchange current for charge transfer in 3PB with SSZ electrolyte, the adsorption gradient zone is broadened, leading to enhanced surface reaction kinetics. The potential application of such finding is demonstrated on SSZ/YSZ/SSZ sandwich, showing largely improved electrode performance, opening a wide door for the utilization of electrolytes that are too expensive, fragile or instable to be used before. The bulk path way in 2PB reaction can be affected by overpotential in terms of local vacancy concentration, built-in electrical field and stability. It is proven that an uneven distribution of lattice oxygen is established under operation conditions with overpotential by both qualitative analysis and analytic solution. An electrostatic field force is present besides the concentration gradient in the anode lattice to control the motion of oxygen ions. Compared to the usual estimation based on chemical diffusion mechanism, the real deviation of ionic defects concentration under polarization from the equilibrium state near electrode/electrolyte interface is smaller with the built-in electrical field. The overpotential is demonstrated to be able to open up or shut down the bulk pathway depending on the ionic defects of electrodes. The analysis on the bulk pathway in terms of local charged species and various potentials provides new insight in anion diffusion and electrode stability.

  3. Bond length and local energy density property connections for non-transition-metal oxide-bonded interactions.

    PubMed

    Gibbs, G V; Spackman, M A; Jayatilaka, D; Rosso, K M; Cox, D F

    2006-11-01

    For a variety of molecules and earth materials, the theoretical local kinetic energy density, G(r(c)), increases and the local potential energy density, V(r(c)), decreases as the M-O bond lengths (M = first- and second-row metal atoms bonded to O) decrease and the electron density, rho(r(c)), accumulates at the bond critical points, r(c). Despite the claim that the local kinetic energy density per electronic charge, G(r(c))/rho(r(c)), classifies bonded interactions as shared interactions when less than unity and closed-shell when greater, the ratio was found to increase from 0.5 to 2.5 au as the local electronic energy density, H(r(c)) = G(r(c)) + V(r(c)), decreases and becomes progressively more negative. The ratio appears to be a measure of the character of a given M-O bonded interaction, the greater the ratio, the larger the value of rho(r(c)), the smaller the coordination number of the M atom and the more shared the bonded interaction. H(r(c))/rho(r(c)) versus G(r(c))/rho(r(c)) scatter diagrams categorize the M-O bonded interactions into domains with the local electronic energy density per electron charge, H(r(c))/rho(r(c)), tending to decrease as the electronegativity differences for the bonded pairs of atoms decrease. The values of G(r(c)) and V(r(c)), estimated with a gradient-corrected electron gas theory expression and the local virial theorem, are in good agreement with theoretical values, particularly for the bonded interactions involving second-row M atoms. The agreement is poorer for shared C-O and N-O bonded interactions. PMID:17078623

  4. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    PubMed Central

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-01-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen. PMID:25902034

  5. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds.

    PubMed

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-01-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen. PMID:25902034

  6. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  7. Oxidation Numbers, Oxidants, and Redox Reactions: Variants of the Electrophilic Bromination of Alkenes and Variants of the Application of Oxone

    ERIC Educational Resources Information Center

    Eissen, Marco; Strudthoff, Merle; Backhaus, Solveig; Eismann, Carolin; Oetken, Gesa; Kaling, Soren; Lenoir, Dieter

    2011-01-01

    Oxidation-state and donor-acceptor concepts are important areas in the chemical education. Student worksheets containing problems that emphasize oxidation numbers, redox reactions of organic compounds, and stoichiometric reaction equations are presented. All of the examples are incorporated under one unifying topic: the production of vicinal

  8. Oxidation Numbers, Oxidants, and Redox Reactions: Variants of the Electrophilic Bromination of Alkenes and Variants of the Application of Oxone

    ERIC Educational Resources Information Center

    Eissen, Marco; Strudthoff, Merle; Backhaus, Solveig; Eismann, Carolin; Oetken, Gesa; Kaling, Soren; Lenoir, Dieter

    2011-01-01

    Oxidation-state and donor-acceptor concepts are important areas in the chemical education. Student worksheets containing problems that emphasize oxidation numbers, redox reactions of organic compounds, and stoichiometric reaction equations are presented. All of the examples are incorporated under one unifying topic: the production of vicinal…

  9. Oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives by nitrous oxide via selective oxygen atom transfer reactions: insights from quantum chemistry calculations.

    PubMed

    Xie, Hujun; Liu, Chengcheng; Yuan, Ying; Zhou, Tao; Fan, Ting; Lei, Qunfang; Fang, Wenjun

    2016-01-21

    The mechanisms for the oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives (Cp* = η(5)-C5Me5) by nitrous oxide via selective oxygen atom transfer reactions have been systematically studied by means of density functional theory (DFT) calculations. On the basis of the calculations, we investigated the original mechanism proposed by Hillhouse and co-workers for the activation of N2O. The calculations showed that the complex with an initial O-coordination of N2O to the coordinatively unsaturated Hf center is not a local minimum. Then we proposed a new reaction mechanism to investigate how N2O is activated and why N2O selectively oxidize phenyl and hydride ligands of . Frontier molecular orbital theory analysis indicates that N2O is activated by nucleophilic attack by the phenyl or hydride ligand. Present calculations provide new insights into the activation of N2O involving the direct oxygen atom transfer from nitrous oxide to metal-ligand bonds instead of the generally observed oxygen abstraction reaction to generate metal-oxo species. PMID:26660046

  10. Oxidation of humic substances supports denitrification reactions in agricultural soils.

    NASA Astrophysics Data System (ADS)

    van Trump, J. I.; Coates, J. D.

    2007-12-01

    Humic substances (HS) are a ubiquitous, recalcitrant, and diverse class of compounds arising from degradation and condensation of plant and microbial biopolymers. Many bacteria oxidize hydroquinones within humic substances to their quinone analogs, providing electrons for respiratory processes such as nitrate reduction. Microbial hydroquinone oxidation contributes to the redox state of HS and supports denitrification, which may be of import to agricultural soils where nitrate retention is critical and HS are prevalent. Most probable number counts were performed on soils collected from a Nebraska farm, with the model humic hydroquinone 2,6- anthrahydroquinone disulfonate (AHDS) serving as an electron donor and nitrate as the electron acceptor. Results indicated that AHDS oxidizing, nitrate reducing bacteria were present in soils from bluegrass fields (104 cells/g) and aspen groves (106 cells/g), as well as in plots of corn (106 cells/g), and soybean treated (106 cells/g) and un-treated (105 cells/g) with pig slurry. These results demonstrate that microorganisms participating in the proposed metabolism are prevalent within agricultural soils. Upflow glass columns were constructed, containing a support matrix of glass beads amended with 10% w/w soil from the corn plot previously mentioned. All columns were subjected to a continual flow of phosphate-buffered water amended with sodium nitrate. Above the point source for nitrate injection, phosphate-buffered water containing electron donor treatments were continually injected. The impacts of electron donor treatments (no donor, oxidized HS, reduced HS, and acetate) on denitrification and other geochemical parameters were observed. Column studies were able to resolve effects of electron donor treatment both spatially as a function of distance from the injection point source, and temporally, as a function of time of donor treatment. Four sample ports in each column were routinely analyzed for concentrations of nitrate, nitrite, Fe(II), and humic-born hydroquinones. All data were analyzed with respect to dilution factors obtained through analysis of a conservative bromide tracer present in electron donor medium. Addition of oxidized HS, reduced HS, and acetate all resulted in significant loss of nitrate from the columns. Significant nitrite accumulation was not observed. Of all the electron donor treatments, reduced HS, enriched for hydroquinone-containing functional moieties, supported the greatest degree of denitrification. The participation of excess hydroquinones in denitrification accounted for approximately 104% of the difference in nitrate reduction between reduced and oxidized HS treatments. This electron balance allowed for assignment of respiratory activity due to hydroquinone oxidation, rather than degradation of humic substances or associated electron-donating compounds. These results suggest that denitrification reactions catalyzed by microbial oxidation of reduced HS may be prevalent in agricultural soils. Likewise, these results demonstrate for the first time that respiratory behavior due to hydroquinone oxidation, as well as impact upon local geochemistry, can be analyzed in complex flow-through model systems.

  11. Oxidative addition of carbon-carbon bonds with a redox-active bis(imino)pyridine iron complex.

    PubMed

    Darmon, Jonathan M; Stieber, S Chantal E; Sylvester, Kevin T; Fernández, Ignacio; Lobkovsky, Emil; Semproni, Scott P; Bill, Eckhard; Wieghardt, Karl; DeBeer, Serena; Chirik, Paul J

    2012-10-17

    Addition of biphenylene to the bis(imino)pyridine iron dinitrogen complexes, ((iPr)PDI)Fe(N(2))(2) and [((Me)PDI)Fe(N(2))](2)(μ(2)-N(2)) ((R)PDI = 2,6-(2,6-R(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N; R = Me, (i)Pr), resulted in oxidative addition of a C-C bond at ambient temperature to yield the corresponding iron biphenyl compounds, ((R)PDI)Fe(biphenyl). The molecular structures of the resulting bis(imino)pyridine iron metallacycles were established by X-ray diffraction and revealed idealized square pyramidal geometries. The electronic structures of the compounds were studied by Mössbauer spectroscopy, NMR spectroscopy, magnetochemistry, and X-ray absorption and X-ray emission spectroscopies. The experimental data, in combination with broken-symmetry density functional theory calculations, established spin crossover (low to intermediate spin) ferric compounds antiferromagnetically coupled to bis(imino)pyridine radical anions. Thus, the overall oxidation reaction involves cooperative electron loss from both the iron center and the redox-active bis(imino)pyridine ligand. PMID:23043331

  12. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers.

    PubMed

    Pahari, Sandip Kumar; Pal, Provas; Srivastava, Divesh N; Ghosh, Subhash Ch; Panda, Asit Baran

    2015-06-28

    We report here a visible light driven selective nitro-reduction and oxidation of saturated sp(3) C-H bonds using ultrathin (0.8 nm) sheet mediated uniform CdS flowers as catalyst under a household 40 W CFL lamp and molecular oxygen as oxidant. The CdS flowers were synthesized using a simple surfactant assisted hydrothermal method. PMID:26024214

  13. Reaction of Laser-Ablated Uranium and Thorium Atoms with H2Se: A Rare Example of Selenium Multiple Bonding.

    PubMed

    Vent-Schmidt, Thomas; Andrews, Lester; Thanthiriwatte, K Sahan; Dixon, David A; Riedel, Sebastian

    2015-10-19

    The compounds H2ThSe and H2USe were synthesized by the reaction of laser-ablated actinide metal atoms with H2Se under cryogenic conditions following the procedures used to synthesize H2AnX (An = Th, U; X = O, S). The molecules were characterized by infrared spectra in an argon matrix with the aid of deuterium substitution and electronic structure calculations at the density functional theory level. The main products, H2ThSe and H2USe, are shown to have a highly polarized actinide-selenium triple bond, as found for H2AnS on the basis of electronic structure calculations. There is an even larger back-bonding of the Se with the An than found for the corresponding sulfur compounds. These molecules are of special interest as rare examples of multiple bonding of selenium to a metal, particularly an actinide metal. PMID:26418218

  14. Formation of the Si-B bond: insertion reactions of silylenes into B-X(X = F, Cl, Br, O, and N) bonds.

    PubMed

    Geng, Bing; Xu, Chongjuan; Chen, Zhonghe

    2016-06-01

    The insertion reactions of the silylene H2Si with H2BXHn-1 (X = F, Cl, Br, O, N; n = 1, 1, 1, 2, 3) have been studied by DFT and MP2 methods. The calculations show that the insertions occur in a concerted manner, forming H2Si(BH2)(XHn-1). The essences of H2Si insertions with H2BXHn-1 are the transfers of the σ electrons on the Si atom to the positive BH2 group and the electrons of X into the empty p orbital on the Si atom in H2Si. The order of reactivity in vacuum shows the barrier heights increase for the same-family element X from up to down and the same-row element X from right to left in the periodic table. The energies relating to the B-X bond in H2BXHn-1, and the bond energies of Si-X and Si-B in H2Si(BH2)(XHn-1) may determine the preference of insertions of H2Si into B-X bonds for the same-column element X or for the same-row element X. The insertion reactions in vacuum are similar to those in solvents, acetone, ether, and THF. The barriers in vacuum are lower than those in solvents and the larger polarities of solvents make the insertions more difficult to take place. Both in vacuum and in solvents, the silylene insertions are thermodynamically exothermic. Graphical Abstract The insertion process of H2Si and H2BXHn-1(X = F, Cl, Br, O, and N; n = 1, 1 , 1, 2, 3). PMID:27184004

  15. Structures and Properties of the Products of the Reaction of Lanthanide Atoms with H2O: Dominance of the +II Oxidation State.

    PubMed

    Mikulas, Tanya C; Chen, Mingyang; Fang, Zongtang; Peterson, Kirk A; Andrews, Lester; Dixon, David A

    2016-02-11

    The reactions of lanthanides with H2O have been studied using density functional theory with the B3LYP functional. H2O forms an initial Lewis acid-base complex with the lanthanides exothermically with interaction energies from -2 to -20 kcal/mol. For most of the Ln, formation of HLnOH is more exothermic than formation of H2LnO, HLnO + H, and LnOH + H. The reactions to produce HLnOH are exothermic from -25 to -75 kcal/mol. The formation of LnO + H2 for La and Ce is slightly more exothermic than formation of HLnOH and is less or equally exothermic for the rest of the lanthanides. The Ln in HLnOH and LnOH are in the formal +II and +I oxidation states, respectively. The Ln in H2LnO is mostly in the +III formal oxidation state with either Ln-O(-)/Ln-H(-) or Ln-(H2)(-)/Ln═O(2-) bonding interactions. A few of the H2LnO have the Ln in the +IV or mixed +III/+IV formal oxidation states with Ln═O(2-)/Ln-H(-) bonding interactions. The Ln in HLnO are generally in the +III oxidation state with the exception of Yb in the +II state. The orbital populations calculated within the natural bond orbital (NBO) analysis are consistent with the oxidation states and reaction energies. The more exothermic reactions to produce HLnOH are always associated with more backbonding from the O(H) and H characterized by more population in the 6s and 5d in Ln and the formation of a stronger Ln-O(H) bond. Overall, the calculations are consistent with the experiments in terms of reaction energies and vibrational frequencies. PMID:26741150

  16. A study on thermal barrier coatings including thermal expansion mismatch and bond coat oxidation

    NASA Technical Reports Server (NTRS)

    Chang, George C.; Phucharoen, Woraphat; Miller, Robert A.

    1986-01-01

    The present investigation deals with a plasma-sprayed thermal barrier coating (TBC) intended for high temperature applications to advanced gas turbine blades. Typically, this type of coating system consists of a zirconia-yttria ceramic layer with a nickel-chromium-aluminum bond coat on a superalloy substrate. The problem on hand is a complex one due to the fact that bond coat oxidation and thermal mismatch occur in the TBC. Cracking in the TBC has also been experimentally illustrated. A clearer understanding of the mechanical behavior of the TBC is investigated. The stress states in a model thermal barrier coating as it cools down in air is studied. The powerful finite element method was utilized to model a coating cylindrical specimen. Four successively refined finite element models were developed. Some results obtained using the first two models have been reported previously. The major accomplishment is the successful development of an elastic TBC finite element model known as TBCG with interface geometry between the ceramic layer and the bond coat. An equally important milestone is the near-completion of the new elastic-plastic TBC finite element model called TBCGEP which yielded initial results. Representative results are presented.

  17. Evaluating hydrogen bonding control in the diastereoselective Diels-Alder reactions of 9-(2-aminoethyl)-anthracene derivatives.

    PubMed

    Bawa, R A; Gautier, F-M; Adams, H; Meijer, A J H M; Jones, S

    2015-11-14

    Several 9-(2-aminoethyl)anthracene derivatives were prepared with different nitrogen substitutents including alkyl, acetamide, trifluoroacaeamide and t-butyl carbamate. The selectivity in Diels-Alder cyclodaddition reaction with N-methyl maleimide was evaluated through single crystal X-ray analysis of the products. Models for the change in selectivity with hydrogen bond acceptor are proposed, supported by DFT level calculations. PMID:26340318

  18. Bond Length and Local Energy Density Property Connections for Non-transition- Metal-Oxide-Bonded Interactions

    SciTech Connect

    Gibbs, Gerald V.; Spackman, M. A.; Jayatilaka, Dylan; Rosso, Kevin M.; Cox, David F.

    2006-11-09

    For a variety of molecules and Earth materials, the theoretical local kinetic energy density, G(rc), increases and the local potential energy density, V(rc), decreases as the MO bond lengths (M = first and second row metal atoms) decrease and electron density, ρ(rc), is localized at the bond critical points, rc. Despite claims that the ratio, G(rc)/ρ(rc), classifies bonded interactions as shared covalent when less than unity and closed shell ionic when greater than unity, the ratio was found to increase from 0.5 to 2.5 a.u. as the local electronic energy density H(rc) = G(rc) + V(rc) decreases and becomes progressively more negative. In any event, the ratio is indicated to be a measure of the character for a given M-O bond, the greater the ratio, the larger the value of ρ(rc), the smaller the coordination number of the M atom and the more covalent the bond. H(rc)/ρ(rc) vs. G(rc)/ρ(rc) scatter diagrams categorize the M-O bond data into domains with the H(rc)/ρ(rc) ratio tending to increase as the electronegativity of the M atoms increase. Estimated values of G(rc) and V(rc), using an expression based on gradient corrected electron gas theory, are in good agreement with theoretical values, particularly for bonded interactions involving second row M atoms. The agreement is poorer for the more covalent C-O and N-O bonds.

  19. Creep analysis of solid oxide fuel cell with bonded compliant seal design

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.

    2013-12-01

    Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.

  20. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    ERIC Educational Resources Information Center

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  1. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    ERIC Educational Resources Information Center

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is

  2. The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide.

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions were studied with the aid of a mass spectrometer. A pinhole bleed system provided continuous sampling of the gas mixture in the cell during the reaction. It was found that the homogeneous reactions of nitric oxide and nitrogen dioxide with hydrogen peroxide are too slow to be of any significance in the upper atmosphere. However, the heterogeneous reactions may be important in the conversion of nitric oxide to nitrogen dioxide in the case of polluted urban atmospheres.

  3. Temporary zinc oxide-eugenol cement: eugenol quantity in dentin and bond strength of resin composite.

    PubMed

    Koch, Tamara; Peutzfeldt, Anne; Malinovskii, Vladimir; Flury, Simon; Hner, Robert; Lussi, Adrian

    2013-08-01

    Uptake of eugenol from eugenol-containing temporary materials may reduce the adhesion of subsequent resin-based restorations. This study investigated the effect of duration of exposure to zinc oxide-eugenol (ZOE) cement on the quantity of eugenol retained in dentin and on the microtensile bond strength (?TBS) of the resin composite. The ZOE cement (IRM Caps) was applied onto the dentin of human molars (21 per group) for 1, 7, or 28 d. One half of each molar was used to determine the quantity of eugenol (by spectrofluorimetry) and the other half was used for ?TBS testing. The ZOE-exposed dentin was treated with either OptiBond FL using phosphoric acid (H?PO?) or with Gluma Classic using ethylenediaminetetraacetic acid (EDTA) conditioning. One group without conditioning (for eugenol quantity) and two groups not exposed to ZOE (for eugenol quantity and ?TBS testing) served as controls. The quantity of eugenol ranged between 0.33 and 2.9 nmol mg? of dentin (median values). No effect of the duration of exposure to ZOE was found. Conditioning with H?PO? or EDTA significantly reduced the quantity of eugenol in dentin. Nevertheless, for OptiBond FL, exposure to ZOE significantly decreased the ?TBS, regardless of the duration of exposure. For Gluma Classic, the ?TBS decreased after exposure to ZOE for 7 and 28 d. OptiBond FL yielded a significantly higher ?TBS than did Gluma Classic. Thus, ZOE should be avoided in cavities later to be restored with resin-based materials. PMID:23841789

  4. Lubricating Properties of Some Bonded Fluoride and Oxide Coatings for Temperature to 1500 F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1960-01-01

    The lubricating properties of some experimental ceramic coatings, diffusion-bonded fluoride coatings, and ceramic-bonded fluoride coatings were determined. The experiments were conducted in an air atmosphere at a sliding velocity of 430 feet per minute and at temperatures from 75 to 1500 F. Several ceramic coatings provided substantial reductions in friction coefficient and rider wear (compared with the unlubricated metals). For example, a cobaltous oxide (CoO) base coating gave friction coefficients of 0.24 to 0.36 within the temperature range of 75 to 1400 F; serious galling and welding of the metal surfaces were prevented. The friction coefficients were higher than the arbitrary maximum (0.2) usually considered for effective boundary lubrication. However, when a moderately high friction coefficient can be tolerated, this type of coating may be a useful antiwear composition. Diffusion-bonded calcium fluoride (CaF2) on Haynes Stellite 21 and on Inconel X gave friction coefficients of 0.1 to 0.2 at 1500 F. Endurance life was dependent on the thermal history of the coating; life improved with increased exposure time at elevated temperatures prior to running. Promising results were obtained with ceramic-bonded CaF2 on Inconel X. Effective lubrication and good adherence were obtained with a 3 to 1 ratio of CaF2 to ceramic. A very thin sintered and burnished film of CaF2 applied to the surface of this coating further improved lubrication, particularly above 1350 F. The friction coefficient was 0.2 at 500 F and decreased with increasing temperature to 0.06-at 1500 F. It was 0.25 at 75 F and 0.22 at 250 F.

  5. Residues in Human Arsenic (+3 Oxidation State) Methyltransferase Forming Potential Hydrogen Bond Network around S-adenosylmethionine

    PubMed Central

    Li, Xiangli; Cao, Jing; Wang, Shuping; Geng, Zhirong; Song, Xiaoli; Hu, Xin; Wang, Zhilin

    2013-01-01

    Residues Tyr59, Gly78, Ser79, Met103, Gln107, Ile136 and Glu137 in human arsenic (+3 oxidation state) methyltransferase (hAS3MT) were deduced to form a potential hydrogen bond network around S-adenosylmethionine (SAM) from the sequence alignment between Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM) and hAS3MT. Herein, seven mutants Y59A, G78A, S79A, M103A, Q107A, I136A and E137A were obtained. Their catalytic activities and conformations were characterized and models were built. Y59A and G78A were completely inactive. Only 7.0%, 10.6% and 13.8% inorganic arsenic (iAs) was transformed to monomethylated arsenicals (MMA) when M103A, Q107A and I136A were used as the enzyme. The Vmax (the maximal velocity of the reaction) values of M103A, Q107A, I136A and E137A were decreased to 8%, 22%, 15% and 50% of that of WT-hAS3MT, respectively. The KM(SAM) (the Michaelis constant for SAM) values of mutants M103A, I136A and E137A were 15.7, 8.9 and 5.1 fold higher than that of WT-hAS3MT, respectively, indicating that their affinities for SAM were weakened. The altered microenvironment of SAM and the reduced capacity of binding arsenic deduced from KM(As) (the Michaelis constant for iAs) value probably synergetically reduced the catalytic activity of Q107A. The catalytic activity of S79A was higher than that of WT despite of the higher KM(SAM), suggesting that Ser79 did not impact the catalytic activity of hAS3MT. In short, residues Tyr59 and Gly78 significantly influenced the catalytic activity of hAS3MT as well as Met103, Ile136 and Glu137 because they were closely associated with SAM-binding, while residue Gln107 did not affect SAM-binding regardless of affecting the catalytic activity of hAS3MT. Modeling and our experimental results suggest that the adenine ring of SAM is sandwiched between Ile136 and Met103, the amide group of SAM is hydrogen bonded to Gly78 in hAS3MT and SAM is bonded to Tyr59 with van der Waals, cation-π and hydrogen bonding contacts. PMID:24124590

  6. Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys

    NASA Technical Reports Server (NTRS)

    Brindley, W. J.; Miller, R. A.

    1990-01-01

    The paper investigates the isothermal oxidation kinetics of Ni-35Cr-6Al-0.95Y, Ni-18Cr-12Al-0.3Y, and Ni-16Cr-6Al-0.3Y low-pressure plasma-sprayed bond coat alloys and examines the effect of these alloys on the thermal barrier coating (TBC) cyclic life. TBC life was examined by cycling substrates coated with the different bond coats and a ZrO2-7 wt pct Y2O3 TBC in an air-rich burner rig flame between 1150 C and room temperature. The oxidation kinetics of the three bond coat alloys was examined by isothermal oxidation of monolithic NJiCrAlY coupons at 1083 C. The Ni-35Cr-6Al-0.95Y alloy exhibits comparatively high isothermal oxidation weight gains and provides the longest TBC life, whereas the Ni-16Cr-6Al-0.3Y alloy had the lowest weight gains and provided the shortest TBC life. The results show that, although bond coat oxidation is known to have a strong detrimental effect on TBC life, it is not the only bond coat factor that determines TBC life.

  7. Air oxidation method employed for the disulfide bond formation of natural and synthetic peptides.

    PubMed

    Calce, Enrica; Vitale, Rosa Maria; Scaloni, Andrea; Amodeo, Pietro; De Luca, Stefania

    2015-08-01

    Among the available protocols, chemically driven approaches to oxidize cysteine may not be required for molecules that, under the native-like conditions, naturally fold in conformations ensuring an effective pairing of the right disulfide bridge pattern. In this contest, we successfully prepared the distinctin, a natural heterodimeric peptide, and some synthetic cyclic peptides that are inhibitors of the CXCR4 receptor. In the first case, the air oxidation reaction allowed to connect two peptide chains via disulfide bridge, while in the second case allowed the cyclization of rationally designed peptides by an intramolecular disulfide bridge. Computational approaches helped to either drive de-novo design or suggest structural modifications and optimal oxidization protocols for disulfide-containing molecules. They are able to both predict and to rationalize the propensity of molecules to spontaneously fold in suitable conformations to achieve the right disulfide bridges. PMID:25900810

  8. Simplified wave function models in thermochemical protocols based on bond separation reactions.

    PubMed

    Bakowies, Dirk

    2014-12-18

    The ATOMIC protocol is a quantum-chemical thermochemistry protocol designed to obtain accurate atomization energies and derived heats of formation. It reduces errors of computationally tractable composite schemes through the use of bond separation reactions, which are implemented in a consistent ab initio framework. The present work explores possible simplification of previously introduced ATOMIC models. While coupled cluster calculations with singles and doubles excitations and perturbational treatments of connected triples excitations [CCSD(T)] are still required for high accuracy, basis-set truncations are possible in the CCSD-MP2 and CCSD(T)-CCSD components. The resulting models B4, B5, and B6 show root-mean-square (RMS) errors of only 0.21 to 0.46 kcal/mol for the AE set, which is a benchmark comprising complete-basis-set CCSD(T)(full) atomization energies of 73 neutral, closed-shell molecules composed of H, C, N, O, and F atoms. The evaluation of connected triples excitations can be avoided at medium levels of accuracy if the complete-basis-set MP2 energy is augmented with an empirically calibrated fraction of the difference between MP3 (or CCSD) and MP2 energies, calculated with small basis sets. The corresponding EMP3 and ECCSD models show RMS errors of 1.01 and 0.70 kcal/mol, respectively. Spin-component scaling is an option to rely entirely on the MP2 level of theory and still cut the RMS error of 4.38 kcal/mol by roughly a factor of 2 and achieve an accuracy comparable to accurate density functionals, such as M05-2X. The proposed new models are additionally tested with the HOF benchmark, a subset of G3/99 heats of formation that includes only neutral closed-shell molecules composed of H, C, N, O, and F atoms. The assessment shows that a number of experimental reference values are in error and should be replaced with more recent data. Results obtained with the new models are compared to original HOF (G3/99) reference data, to updated reference data, and to accurate ATOMIC/A theoretical data. PMID:25426545

  9. A DFT study on the reaction pathways for carbon-carbon bond-forming reactions between propargylic alcohols and alkenes or ketones catalyzed by thiolate-bridged diruthenium complexes.

    PubMed

    Sakata, Ken; Miyake, Yoshihiro; Nishibayashi, Yoshiaki

    2009-01-01

    The reaction pathways of two types of the carbon-carbon bond-forming reactions catalyzed by thiolate-bridged diruthenium complexes have been investigated by density-functional-theory calculations. It is clarified that both carbon-carbon bond-forming reactions proceed through a ruthenium-allenylidene complex as a common reactive intermediate. The attack of pi electrons on propene or the vinyl alcohol on the ruthenium-allenylidene complex is the first step of the reaction pathways. The reaction pathways are different after the attack of nucleophiles on the ruthenium-alkynyl complex. In the reaction with propene, the carbon-carbon bond-forming reaction proceeds through a stepwise process, whereas in the reaction with vinyl alcohol, it proceeds through a concerted process. The interactions between the ruthenium-allenylidene complex and propene or vinyl alcohol have been investigated by applying a simple way of looking at orbital interactions. PMID:18844315

  10. Transition metal-catalyzed C(vinyl)-C(vinyl) bond formation via double C(vinyl)-H bond activation.

    PubMed

    Shang, Xiaojie; Liu, Zhong-Quan

    2013-04-21

    Transition metal-catalyzed oxidative dehydrogenative coupling reactions of Caryl-H bonds with Cvinyl-H bonds to generate a Caryl-Cvinyl bonds have been well developed in recent decades. However, only a few studies have focused on the direct Cvinyl-Cvinyl bond formation via double Cvinyl-H bond activation. Recent developments in this active area have been highlighted in this tutorial review. PMID:23318664

  11. A Cobalt(I) Pincer Complex with an η(2) -Caryl -H Agostic Bond: Facile C-H Bond Cleavage through Deprotonation, Radical Abstraction, and Oxidative Addition.

    PubMed

    Murugesan, Sathiyamoorthy; Stöger, Berthold; Pittenauer, Ernst; Allmaier, Günter; Veiros, Luis F; Kirchner, Karl

    2016-02-01

    The synthesis and reactivity of a Co(I) pincer complex [Co(ϰ(3) P,CH,P-P(CH)P(NMe) -iPr)(CO)2 ](+) featuring an η(2) - Caryl -H agostic bond is described. This complex was obtained by protonation of the Co(I) complex [Co(PCP(NMe) -iPr)(CO)2 ]. The Co(III) hydride complex [Co(PCP(NMe) -iPr)(CNtBu)2 (H)](+) was obtained upon protonation of [Co(PCP(NMe) -iPr)(CNtBu)2 ]. Three ways to cleave the agostic C-H bond are presented. First, owing to the acidity of the agostic proton, treatment with pyridine results in facile deprotonation (C-H bond cleavage) and reformation of [Co(PCP(NMe) -iPr)(CO)2 ]. Second, C-H bond cleavage is achieved upon exposure of [Co(ϰ(3) P,CH,P-P(CH)P(NMe) -iPr)(CO)2 ](+) to oxygen or TEMPO to yield the paramagnetic Co(II) PCP complex [Co(PCP(NMe) -iPr)(CO)2 ](+) . Finally, replacement of one CO ligand in [Co(ϰ(3) P,CH,P-P(CH)P(NMe) -iPr)(CO)2 ](+) by CNtBu promotes the rapid oxidative addition of the agostic η(2) -Caryl -H bond to give two isomeric hydride complexes of the type [Co(PCP(NMe) -iPr)(CNtBu)(CO)(H)](+) . PMID:26823229

  12. Eight steps preceding O-O bond formation in oxygenic photosynthesis--a basic reaction cycle of the Photosystem II manganese complex.

    PubMed

    Dau, Holger; Haumann, Michael

    2007-06-01

    In oxygenic photosynthesis, water is split at a Mn(4)Ca complex bound to the proteins of photosystem II (PSII). Powered by four quanta of visible light, four electrons and four protons are removed from two water molecules before dioxygen is released. By this process, water becomes an inexhaustible source of the protons and electrons needed for primary biomass formation. On the basis of structural and spectroscopic data, we recently have introduced a basic reaction cycle of water oxidation which extends the classical S-state cycle [B. Kok, B. Forbush, M. McGloin, Cooperation of charges in photosynthetic O2 evolution- I. A linear four-step mechanism, Photochem. Photobiol. 11 (1970) 457-475] by taking into account also the role and sequence of deprotonation events [H. Dau, M. Haumann, Reaction cycle of photosynthetic water oxidation in plants and cyanobacteria, Science 312 (2006) 1471-1472]. We propose that the outwardly convoluted and irregular events of the classical S-state cycle are governed by a simple underlying principle: protons and electrons are removed strictly alternately from the Mn complex. Starting in I(0), eight successive steps of alternate proton and electron removal lead to I(8) and only then the O-O bond is formed. Thus not only four oxidizing equivalents, but also four bases are accumulated prior to the onset of dioxygen formation. After reviewing the kinetic properties of the individual S-state transition, we show that the proposed basic model explains a large body of experimental results straightforwardly. Furthermore we discuss how the I-cycle model addresses the redox-potential problem of PSII water oxidation and we propose that the accumulated bases facilitate dioxygen formation by acting as proton acceptors. PMID:17442260

  13. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.

  14. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.

    PubMed

    Wang, Hui-Fang; Liu, Zhi-Pan

    2008-08-20

    Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites. PMID:18642913

  15. Reversible Association of Nitro Compounds with p-Nitrothiophenol Modified on Ag Nanoparticles/Graphene Oxide Nanocomposites through Plasmon Mediated Photochemical Reaction.

    PubMed

    Lin, Tsung-Wu; Tasi, Ting-Ti; Chang, Po-Ling; Cheng, Hsiu-Yao

    2016-03-30

    Because localized surface plasmon resonance in nanostructures of noble metals is accompanied by interesting physical effects such as optical near-field enhancement, heat release, and the generation of hot electrons, it has been employed in a wide range of applications, including plasmon-assisted chemical reactions. Here, we use a composite of silver nanoparticles and graphene oxide (Ag@GO) as the catalytic as well as the analytic platform for plasmon-assisted chemical reactions. Through time-dependent surface-enhanced Raman scattering experiments, it is found that p-nitrothiophenol (pNTP) molecules on Ag@GO can be associated with nitro compounds such as nitrobenzene and 1-nitropropane to form azo compounds when aided by the plasmons. Furthermore, the reaction rate can be modulated by varying the wavelength and power of the excitation laser as well as the nitro compounds used. In addition, the aforementioned coupling reaction can be reversed. We demonstrate that the oxidation of azo compounds on Ag@GO using KMnO4 leads to the dissociation of the N═N double bond in the azo compounds and that the rate of bond dissociation can be accelerated significantly via laser irradiation. Furthermore, the pNTP molecules on Ag@GO can be recovered after the oxidation reaction. Finally, we demonstrate that the plasmon-assisted coupling reaction allows for the immobilization of nitro-group-containing fluorophores at specific locations on Ag@GO. PMID:26977529

  16. Pre-treatments applied to oxidized aluminum surfaces to modify the interfacial bonding with bis-1,2-(triethoxysilyl)ethane (BTSE). Part I. High-purity Al with native oxide

    NASA Astrophysics Data System (ADS)

    Teo, M.; Kim, J.; Wong, P. C.; Wong, K. C.; Mitchell, K. A. R.

    2005-12-01

    A remote microwave-generated H 2 plasma and heating to 250 °C were separately used to modify high-purity oxidized aluminum surfaces and to assess whether these treatments can help enhance adhesion with bis-1,2-(triethoxysilyl)ethane (BTSE) coatings. Different initial oxide surfaces were considered, corresponding to the native oxide and to surfaces formed by the Forest Products Laboratory (FPL) treatment applied for either 15 or 60 min. BTSE is applied from solution at pH 4, and competing processes of etching, protonation (to form OH groups) and coupling (to form Al sbnd O sbnd Si interfacial bonds) occur at the solid-liquid interface. Scanning electron microscopy (SEM) was used to determine how the topographies of the modified Al surfaces changed with the different pre-treatments and with exposure to a buffer solution of pH 4. Secondary-ion mass spectrometry (SIMS) was used to determine the direct amount of Al sbnd O sbnd Si interfacial bonds by measuring the ratio of peak intensities 71-70 amu, while X-ray photoelectron spectroscopy (XPS) was used to determine the overall strength of the silane coating adhesion by measuring the Si 2p signals before and after application of an ultrasonic rinse to the coated sample. Measured Al 2p and O 1s spectra helped assess how the different pre-treatments modified the various Al oxidized surfaces prior to BTSE coating. Pre-treated samples that showed increased Al sbnd O sbnd Si bonding after BTSE coating corresponded to surfaces, which did not show evidence of significant etching after exposure to a pH 4 environment. This suggests that such surfaces are more receptive to the coupling reaction during exposure to the BTSE coating solution. These surfaces include all H 2 plasma-treated samples, the heated native oxide and the sample that only received the 15 min FPL treatment. In contrast, other surfaces that show evidence of etching in pH 4 environments are samples that received lower amounts of Al sbnd O sbnd Si interfacial bonding. Overall, heating improved the BTSE adhesive bonding for the native Al oxide, while H 2 plasma treatment improved the BTSE bonding for surfaces that had initially been FPL-treated for 15 and 60 min.

  17. The Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds: selective C-N bond formation and N-O bond cleavage in one-pot for α-amination of ketones.

    PubMed

    Ramakrishna, Isai; Grandhi, Gowri Sankar; Sahoo, Harekrishna; Baidya, Mahiuddin

    2015-09-21

    A practical protocol for the α-amination of ketones (up to 99% yield) has been developed via the Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds. The reaction with silyl enol ethers having a disilane (-SiMe2TMS) backbone proceeded not only with perfect N-selectivity but concomitant N-O bond cleavage was also accomplished. Such a cascade of C-N bond formation and N-O bond cleavage in a single step was heretofore unknown in the field of nitrosocarbonyl chemistry. A very high diastereoselectivity (dr = 19 : 1) was accomplished using (-)-menthol derived chiral nitrosocarbonyl compounds. PMID:26245149

  18. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhi; Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin; Hu, Chenglong

    2016-03-01

    Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV-vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C4H9)4N+ under the positive and negative potentials as comparison with the small Li+ ion.

  19. Exploring hydrogen bond in the excited state leading toward intramolecular proton transfer: detailed analysis of the structure and charge density topology along the reaction path using QTAIM.

    PubMed

    Mitra, Sivaprasad; Chandra, Asit K; Gashnga, Pynsakhiat Miki; Jenkins, Samantha; Kirk, Steven R

    2012-09-01

    Excited state intramolecular proton transfer (ESIPT) reaction along the O-H[Symbol: see text][Symbol: see text][Symbol: see text][Symbol: see text]O hydrogen bond of o-hydroxy benzaldehyde (OHBA), methyl salicylate (MS) and salicylic acid (SA) was investigated by ab-initio quantum chemical calculation and theory of atoms and molecules (QTAIM) for the first time. Variation in several geometric as well as QTAIM parameters along the reaction coordinate was monitored in the fully relaxed excited state potential energy curve (PEC) obtained from intrinsic reaction coordinate (IRC) analysis. Although, the excited state barrier height for the forward reaction (∆E (0) (#) ) reduces substantially in all the systems, MS and SA do not show any obvious asymmetry for proton transfer. For MS and SA, the crossover of the bond index as well as the lengths of the participating bonds at the saddle point is assigned due to this symmetry in accordance with bond energy - bond order (BEBO) model, which does not hold true in OHBA both in the ground and excited states. Bond ellipticity, covalent and metallic character were examined for different structures along the reaction path within the QTAIM framework. The QTAIM analysis was found to be able to uniquely distinguish between the ground and excited states of the OHBA molecule as well as both determining the effects on the bonding character of adding different substituent groups and differentiating between the ESIPT reactions in the SA and MS molecules. PMID:22555772

  20. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

    SciTech Connect

    Cervantes, O; Kuntz, J; Gash, A; Munir, Z

    2010-02-25

    The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300 C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.

  1. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  2. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  3. Oxidation Behavior of Thermal Barrier Coatings with a TiAl3 Bond Coat on γ-TiAl Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Kong, Lingyan; Li, Tiefan; Xiong, Tianying

    2015-02-01

    The thermal barrier coatings investigated in this paper included a TiAl3 bond coat and a yttria partially stabilized zirconia (YSZ) layer. The TiAl3 bond coat was prepared by deposition of aluminum by cold spray, followed by a heat-treatment. The YSZ layer was prepared by air plasma spray. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 500 cycles to test the oxidation resistance of the thermal barrier coatings. The microstructure and composition of the γ-TiAl alloy with and without the thermal barrier coatings after oxidation were investigated. The results showed that a dense TGO layer about 5 μm had grown between the YSZ layer and the TiAl3 bond coat. The TGO had good adhesion to both the YSZ layer and the bond coat even after the TiAl3 bond coat entirely degraded into the TiAl2 phase, which decreased the inward oxygen diffusion. Thus, the thermal barrier coatings improved the oxidation resistance of γ-TiAl alloy effectively.

  4. Efficient C-C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects.

    PubMed

    Loukrakpam, Rameshwori; Yuan, Qiuyi; Petkov, Valeri; Gan, Lin; Rudi, Stefan; Yang, Ruizhi; Huang, Yunhui; Brankovic, Stanko R; Strasser, Peter

    2014-09-21

    Efficient catalytic C-C bond splitting coupled with complete 12-electron oxidation of the ethanol molecule to CO2 is reported on nanoscale electrocatalysts comprised of a Pt monolayer (ML) and sub-monolayer (sML) deposited on Au nanoparticles (Au@Pt ML/sML). The Au@Pt electrocatalysts were synthesized using surface limited redox replacement (SLRR) of an underpotentially deposited (UPD) Cu monolayer in an electrochemical cell reactor. Au@Pt ML showed improved catalytic activity for ethanol oxidation reaction (EOR) and, unlike their Pt bulk and Pt sML counterparts, was able to generate CO2 at very low electrode potentials owing to efficient C-C bond splitting. To explain this, we explore the hypothesis that competing strain effects due to the Pt layer coverage/morphology (compressive) and the Pt-Au lattice mismatch (tensile) control surface chemisorption and overall activity. Control experiments on well-defined model Pt monolayer systems are carried out involving a wide array of methods such as high-energy X-ray diffraction, pair-distribution function (PDF) analysis, in situ electrochemical FTIR spectroscopy, and in situ scanning tunneling microscopy. The vibrational fingerprints of adsorbed CO provide compelling evidence on the relation between surface bond strength, layer strain and morphology, and catalytic activity. PMID:25081353

  5. Ruthenium-Catalyzed Oxidative Coupling of Primary Amines with Internal Alkynes through C-H Bond Activation: Scope and Mechanistic Studies.

    PubMed

    Ruiz, Sara; Villuendas, Pedro; Ortuño, Manuel A; Lledós, Agustí; Urriolabeitia, Esteban P

    2015-06-01

    The oxidative coupling of primary amines with internal alkynes catalyzed by Ru complexes is presented as a general atom-economy methodology with a broad scope of applications in the synthesis of N-heterocycles. Reactions proceed through regioselective C-H bond activation in 15 minutes under microwave irradiation or in 24 hours with conventional heating. The synthesis of 2,3,5-substituted pyridines, benzo[h]isoquinolines, benzo[g]isoquinolines, 8,9-dihydro-benzo[de]quinoline, 5,6,7,8-tetrahydroisoquinolines, pyrido[3,4g]isoquinolines, and pyrido[4,3g]isoquinolines is achievable depending on the starting primary amine used. DFT calculations on a benzylamine substrate support a reaction mechanism that consists of acetate-assisted C-H bond activation, migratory-insertion, and C-N bond formation steps that involve 28-30 kcal mol(-1) . The computational study is extended to additional substrates, namely, 1-naphthylmethyl-, 2-methylallyl-, and 2-thiophenemethylamines. PMID:25916684

  6. Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction.

    PubMed

    Xiao, Feng; Li, Wentao; Fang, Liping; Wang, Dongsheng

    2016-05-01

    In this work, the composite of reduced graphene oxide and akageneite (Ak/rGO) was synthesised by co-precipitating and reduction processes. The morphological and structural features of the synthesized composites (Ak/rGO) were characterized by XRD, SEM, BET, FTIR, Zeta potential and XPS. The results revealed that (1) beta-FeOOH was successfully loaded on the reduced graphene oxide (rGO); (2) the presence of strong interfacial interactions (FeOC bonds) between rGO and beta-FeOOH was observed; (3) the reduction of graphene oxide may be inhabited in the formation process of beta-FeOOH, producing rGO sheets rather than rGO sphere. In the heterogeneous Fenton-like reaction, the degradation rate constants of 2-chlorophenol (2-CP) increased 2-5 times after the addition of rGO probably due to the FeOC bond. The increase of the content of rGO could contribute to the removal of 2-CP, due to the synergy of catalysis and 2-CP adsorption towards Ak/rGO. In this study, the Ak/rGO composite has exhibited great potential and significant prospects for environmental application. PMID:26808238

  7. A Novel Reaction of Peroxiredoxin 4 towards Substrates in Oxidative Protein Folding

    PubMed Central

    Wang, Xi’e; Wang, Xi; Wang, Chih-chen

    2014-01-01

    Peroxiredoxin 4 (Prx4) is the only endoplasmic reticulum localized peroxiredoxin. It functions not only to eliminate peroxide but also to promote oxidative protein folding via oxidizing protein disulfide isomerase (PDI). In Prx4-mediated oxidative protein folding we discovered a new reaction that the sulfenic acid form of Prx4 can directly react with thiols in folding substrates, resulting in non-native disulfide cross-linking and aggregation. We also found that PDI can inhibit this reaction by exerting its reductase and chaperone activities. This discovery discloses an off-pathway reaction in the Prx4-mediated oxidative protein folding and the quality control role of PDI. PMID:25137134

  8. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    PubMed

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles, paraformaldehyde, and anilines gave 3-[p-(dialkylamino)benzyl]indoles in up to 82% yield (conversion: up to 95%). PMID:20391566

  9. Examining the structure and bonding in complex oxides using aberration-corrected imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Klie, R. F.; Qiao, Q.; Paulauskas, T.; Ramasse, Q.; Oxley, M. P.; Idrobo, J. C.

    2012-02-01

    Our ability to directly characterize the atomic and electronic structures is crucial to developing a fundamental understanding of structure-property relationships in complex-oxide materials. Here, we examine one specific example, the misfit-layered thermoelectric material Ca3Co4O9, which exhibits a high Seebeck coefficient governed by spin-entropy transport as well as hopping-mediated electron transport. However, the role of oxygen and its bonding with cobalt in thermoelectric transport remains unclear. We use atomic-resolution annular bright-field imaging to directly image the oxygen sublattice and to combine our experimental data with multislice image calculations to find that the oxygen atoms in the CoO2 subsystem are highly ordered, while the oxygen-atomic columns are displaced in the Ca2CoO3 subsystem. Atomic-column-resolved electron energy-loss spectroscopy and spectrum image calculations are used to quantify the bonding in the different subsystems of incommensurate Ca3Co4O9. We find that the holes in the CoO2 subsystem are delocalized, which could be responsible for the p-type conductivity found in the CoO2 subsystem.

  10. Chemical Bonding, Interfaces and Defects in Hafnium Oxide/Germanium Oxynitride Gate Stacks on Ge (100)

    SciTech Connect

    Oshima, Yasuhiro; Sun, Yun; Kuzum, Duygu; Sugawara, Takuya; Saraswat, Krishna C.; Pianetta, Piero; McIntyre, Paul C.; /Stanford U., Materials Sci. Dept.

    2008-10-31

    Correlations among interface properties and chemical bonding characteristics in HfO{sub 2}/GeO{sub x}N{sub y}/Ge MIS stacks were investigated using in-situ remote nitridation of the Ge (100) surface prior to HfO{sub 2} atomic layer deposition (ALD). Ultra thin ({approx}1.1 nm), thermally stable and aqueous etch-resistant GeO{sub x}N{sub y} interfaces layers that exhibited Ge core level photoelectron spectra (PES) similar to stoichiometric Ge{sub 3}N{sub 4} were synthesized. To evaluate GeO{sub x}N{sub y}/Ge interface defects, the density of interface states (D{sub it}) was extracted by the conductance method across the band gap. Forming gas annealed (FGA) samples exhibited substantially lower D{sub it} ({approx} 1 x 10{sup 12} cm{sup -2} eV{sup -1}) than did high vacuum annealed (HVA) and inert gas anneal (IGA) samples ({approx} 1x 10{sup 13} cm{sup -2} eV{sup -1}). Germanium core level photoelectron spectra from similar FGA-treated samples detected out-diffusion of germanium oxide to the HfO{sub 2} film surface and apparent modification of chemical bonding at the GeO{sub x}N{sub y}/Ge interface, which is related to the reduced D{sub it}.

  11. Unified view of oxidative C-H bond cleavage and sulfoxidation by a nonheme iron(IV)-oxo complex via Lewis acid-promoted electron transfer.

    PubMed

    Park, Jiyun; Morimoto, Yuma; Lee, Yong-Min; Nam, Wonwoo; Fukuzumi, Shunichi

    2014-04-01

    Oxidative C-H bond cleavage of toluene derivatives and sulfoxidation of thioanisole derivatives by a nonheme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), were remarkably enhanced by the presence of triflic acid (HOTf) and Sc(OTf)3 in acetonitrile at 298 K. All the logarithms of the observed second-order rate constants of both the oxidative C-H bond cleavage and sulfoxidation reactions exhibit remarkably unified correlations with the driving forces of proton-coupled electron transfer (PCET) and metal ion-coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes between PCET and MCET were taken into account, respectively. Thus, the mechanisms of both the oxidative C-H bond cleavage of toluene derivatives and sulfoxidation of thioanisole derivatives by [(N4Py)Fe(IV)(O)](2+) in the presence of HOTf and Sc(OTf)3 have been unified as the rate-determining electron transfer, which is coupled with binding of [(N4Py)Fe(IV)(O)](2+) by proton (PCET) and Sc(OTf)3 (MCET). There was no deuterium kinetic isotope effect (KIE) on the oxidative C-H bond cleavage of toluene via the PCET pathway, whereas a large KIE value was observed with Sc(OTf)3, which exhibited no acceleration of the oxidative C-H bond cleavage of toluene. When HOTf was replaced by DOTf, an inverse KIE (0.4) was observed for PCET from both toluene and [Ru(II)(bpy)3](2+) (bpy =2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+). The PCET and MCET reactivities of [(N4Py)Fe(IV)(O)](2+) with Brønsted acids and various metal triflates have also been unified as a single correlation with a quantitative measure of the Lewis acidity. PMID:24605985

  12. Nitric oxide interaction with oxy-coboglobin models containing trans-pyridine ligand: two reaction pathways.

    PubMed

    Kurtikyan, Tigran S; Eksuzyan, Shahane R; Goodwin, John A; Hovhannisyan, Gohar Sh

    2013-10-21

    The oxy-cobolglobin models of the general formula (Py)Co(Por)(O2) (Por = meso-tetraphenyl- and meso-tetra-p-tolylporphyrinato dianions) were constructed by sequential low-temperature interaction of Py and dioxygen with microporous layers of Co-porphyrins. At cryogenic temperatures small increments of NO were introduced into the cryostat and the following reactions were monitored by the FTIR and UV-visible spectroscopy during slow warming. Similar to the recently studied (NH3)Co(Por)(O2) system (Kurtikyan et al. J. Am. Chem. Soc., 2012, 134, 13671-13680), this interaction leads to the nitric oxide dioxygenation reaction with the formation of thermally unstable nitrato complexes (Py)Co(Por)(η(1)-ONO2). The reaction proceeds through the formation of the six-coordinate peroxynitrite adducts (Py)Co(Por)(OONO), as was demonstrated by FTIR measurements with the use of isotopically labeled (18)O2, (15)NO, N(18)O, and (15)N(18)O species and DFT calculations. In contrast to the ammonia system, however, the binding of dioxygen in (Py)Co(Por)(O2) is weaker and the second reaction pathway takes place due to autoxidation of NO by rebound O2 that in NO excess gives N2O3 and N2O4 species adsorbed in the layer. This leads eventually to partial formation of (Py)Co(Por)(NO) and (Py)Co(Por)(NO2) as a result of NO and NO2 reactions with five-coordinate Co(Por)(Py) complexes that are present in the layer after the O2 has been released. The former is thermally unstable and at room temperature passes to the five-coordinate nitrosyl complex, while the latter is a stable compound. In these experiments at 210 K, the layer consists mostly of six-coordinate nitrato complexes and some minor quantities of six-coordinate nitro and nitrosyl species. Their relative quantities depend on the experimental conditions, and the yield of nitrato species is proportional to the relative quantity of peroxynitrite intermediate. Using differently labeled nitrogen oxide isotopomers in different stages of the process the formation of the caged radical pair after homolytic disruption of the O-O bond in peroxynitrite moiety is clearly shown. The composition of the layers upon farther warming to room temperature depends on the experimental conditions. In vacuo the six-coordinate nitrato complexes decompose to give nitrate anion and oxidized cationic complex Co(III)(Por)(Py)2. In the presence of NO excess, however, the nitro-pyridine complexes (Py)Co(Por)(NO2) are predominantly formed formally indicating the oxo-transfer reactivity of (Py)Co(Por)(η(1)-ONO2) with regard to NO. Using differently labeled nitrogen in nitric oxide and coordinated nitrate a plausible mechanism of this reaction is suggested based on the isotope distribution in the nitro complexes formed. PMID:24090349

  13. Atomic-Scale Chemical Imaging of Composition and Bonding at Perovskite Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Fitting Kourkoutis, L.

    2010-03-01

    Scanning transmission electron microscopy (STEM) in combination with electron energy loss spectroscopy (EELS) has proven to be a powerful technique to study buried perovskite oxide heterointerfaces. With the recent addition of 3^rd order and now 5^th order aberration correction, which provides a factor of 100x increase in signal over an uncorrected system, we are now able to record 2D maps of composition and bonding of oxide interfaces at atomic resolution [1]. Here, we present studies of the microscopic structure of oxide/oxide multilayers and heterostructures by STEM in combination with EELS and its effect on the properties of the film. Using atomic-resolution spectroscopic imaging we show that the degradation of the magnetic and transport properties of La0.7Sr0.3MnO3/SrTiO3 multilayers correlates with atomic intermixing at the interfaces and the presence of extended defects in the La0.7Sr0.3MnO3 layers. When these defects are eliminated, metallic ferromagnetism at room temperature can be stabilized in 5 unit cell thick manganite layers, almost 40% thinner than the previously reported critical thickness of 3-5 nm for sustaining metallic ferromagnetism below Tc in La0.7Sr0.3MnO3 thin films grown on SrTiO3.[4pt] [1] D.A. Muller, L. Fitting Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Science 319, 1073-1076 (2008).

  14. Ethanol oxidation: kinetics of the alpha-hydroxyethyl radical + O2 reaction.

    PubMed

    da Silva, Gabriel; Bozzelli, Joseph W; Liang, Long; Farrell, John T

    2009-08-01

    Bioethanol is currently a significant gasoline additive and the major blend component of flex-fuel formulations. Ethanol is a high-octane fuel component, and vehicles designed to take advantage of higher octane fuel blends could operate at higher compression ratios than traditional gasoline engines, leading to improved performance and tank-to-wheel efficiency. There are significant uncertainties, however, regarding the mechanism for ethanol autoignition, especially at lower temperatures such as in the negative temperature coefficient (NTC) regime. We have studied an important chemical process in the autoignition and oxidation of ethanol, reaction of the alpha-hydroxyethyl radical with O2(3P), using first principles computational chemistry, variational transition state theory, and Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation simulations. The alpha-hydroxyethyl + O2 association reaction is found to produce an activated alpha-hydroxy-ethylperoxy adduct with ca. 37 kcal mol(-1) of excess vibrational energy. This activated adduct predominantly proceeds to acetaldehyde + HO(2), with smaller quantities of the enol vinyl alcohol (ethenol), particularly at higher temperatures. The reaction to acetaldehyde + HO2 proceeds with such a low barrier that collision stabilization of C2O3H5 isomers is unimportant, even for high-pressure/low-temperature conditions. The short lifetimes of these radicals precludes the chain-branching addition of a second O2 molecule, responsible for NTC behavior in alkane autoignition. This result helps to explain why ignition delays for ethanol are longer than those for ethane, despite ethanol having a weaker C-C bond energy. Given its relative instability, it is also unlikely that the alpha-hydroxy-ethylperoxy radical acts as a major acetaldehyde sink in the atmosphere, as has been suggested. PMID:19594149

  15. Photo-Fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage.

    PubMed

    Zhou, Xuejiao; Zhang, Yan; Wang, Chong; Wu, Xiaochen; Yang, Yongqiang; Zheng, Bin; Wu, Haixia; Guo, Shouwu; Zhang, Jingyan

    2012-08-28

    Graphene quantum dots (GQDs) are great promising in various applications owing to the quantum confinement and edge effects in addition to their intrinsic properties of graphene, but the preparation of the GQDs in bulk scale is challenging. We demonstrated in this work that the micrometer sized graphene oxide (GO) sheets could react with Fenton reagent (Fe(2+)/Fe(3+)/H(2)O(2)) efficiently under an UV irradiation, and, as a result, the GQDs with periphery carboxylic groups could be generated with mass scale production. Through a variety of techniques including atomic force microscopy, X-ray photoelectron spectroscopy, gas chromatography, ultraperformance liquid chromatography-mass spectrometry, and total organic carbon measurement, the mechanism of the photo-Fenton reaction of GO was elucidated. The photo-Fenton reaction of GO was initiated at the carbon atoms connected with the oxygen containing groups, and C-C bonds were broken subsequently, therefore, the reaction rate depends strongly on the oxidization extent of the GO. Given the simple and efficient nature of the photo-Fenton reaction of GO, this method should provide a new strategy to prepare GQDs in mass scale. As a proof-of-concept experiment, the novel DNA cleavage system using as-generated GQDs was constructed. PMID:22813062

  16. Nitric oxide in star-forming regions - Further evidence for interstellar N-O bonds

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Mcgonagle, D.; Minh, Y.; Irvine, W. M.

    1991-01-01

    Nitric oxide has been newly detected toward several star-forming clouds, including Orion-KL, Sgr B2(N), W33A, W51M, and DR21(OH) via its J = 3/2-1/2 transitions near 150 GHz, using the FCRAO 14 m telescope. Both lambda-doubling components of NO were observed toward all sources. Column densities derived for nitric oxide in these clouds are 10 to the 15th-10 to the 16th/sq cm, corresponding to fractional abundances of 0.5-1.0 x 10 to the -8th, relative to H2. Toward Orion-KL, the NO line profile suggests that the species arises primarily from hot, dense gas. Nitric oxide may arise from warm material toward the other clouds as well. Nitric oxide in star-forming regions could be synthesized by high-temperature reactions, although the observed abundances do not disagree with values predicted from low-temperature, ion-molecule chemistry by more than one order of magnitude.

  17. Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction

    NASA Astrophysics Data System (ADS)

    Zubir, Nor Aida; Yacou, Christelle; Motuzas, Julius; Zhang, Xiwang; Diniz da Costa, João C.

    2014-04-01

    Graphene oxide-iron oxide (GO-Fe3O4) nanocomposites were synthesised by co-precipitating iron salts onto GO sheets in basic solution. The results showed that formation of two distinct structures was dependent upon the GO loading. The first structure corresponds to a low GO loading up to 10 wt%, associated with the beneficial intercalation of GO within Fe3O4 nanoparticles and resulting in higher surface area up to 409 m2 g-1. High GO loading beyond 10 wt% led to the aggregation of Fe3O4 nanoparticles and the undesirable stacking of GO sheets. The presence of strong interfacial interactions (Fe-O-C bonds) between both components at low GO loading lead to 20% higher degradation of Acid Orange 7 than the Fe3O4 nanoparticles in heterogeneous Fenton-like reaction. This behaviour was attributed to synergistic structural and functional effect of the combined GO and Fe3O4 nanoparticles.

  18. NITROGEN OXIDES REACTIONS WITHIN URBAN PLUMES TRANSPORTED OVER THE OCEAN

    EPA Science Inventory

    The report describes an airborne measurements program in the downwind urban plume of Boston. The variables measured included ozone, nitric oxide, oxides of nitrogen, nitric acid, peroxyacetylnitrate, carbon monoxide, nonmethane hydrocarbon, freon-11, C1-C5 hydrocarbons, condensat...

  19. Comparative analysis of oxidation methods of reaction-sintered silicon carbide for optimization of oxidation-assisted polishing.

    PubMed

    Shen, Xinmin; Dai, Yifan; Deng, Hui; Guan, Chaoliang; Yamamura, Kazuya

    2013-11-01

    Combination of the oxidation of reaction-sintered silicon carbide (RS-SiC) and the polishing of the oxide is an effective way of machining RS-SiC. In this study, anodic oxidation, thermal oxidation, and plasma oxidation were respectively conducted to obtain oxides on RS-SiC surfaces. By performing scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX) analysis and scanning white light interferometry (SWLI) measurement, the oxidation behavior of these oxidation methods was compared. Through ceria slurry polishing, the polishing properties of the oxides were evaluated. Analysis of the oxygen element on polished surfaces by SEM-EDX was conducted to evaluate the remaining oxide. By analyzing the three oxidation methods with corresponding polishing process on the basis of schematic diagrams, suitable application conditions for these methods were clarified. Anodic oxidation with simultaneous polishing is suitable for the rapid figuring of RS-SiC with a high material removal rate; polishing of a thermally oxidized surface is suitable for machining RS-SiC mirrors with complex shapes; combination of plasma oxidation and polishing is suitable for the fine finishing of RS-SiC with excellent surface roughness. These oxidation methods are expected to improve the machining of RS-SiC substrates and promote the application of RS-SiC products in the fields of optics, molds, and ceramics. PMID:24216836

  20. Synthesis of a rhodium(i) germyl complex: a useful tool for C-H and C-F bond activation reactions.

    PubMed

    Ahrens, Theresia; Ahrens, Mike; Braun, Thomas; Braun, Beatrice; Herrmann, Roy

    2016-03-21

    The dihydrido germyl complex cis,fac-[Rh(GePh3)(H)2(PEt3)3] (2) was synthesized by an oxidative addition of HGePh3 at [Rh(H)(PEt3)3] (1). Treatment of 2 with neohexene generated the rhodium(i) germyl complex [Rh(GePh3)(PEt3)3] (3). Alternatively, treatment of the methyl complex [Rh(CH3)(PEt3)3] (4) with HGePh3 furnished at room temperature also 3. Low-temperature NMR measurements revealed an initial formation of the oxidative addition product fac-[Rh(GePh3)(H)(CH3)(PEt3)3] (5), which transforms into the intermediate complex [Rh(GePh3)(H)(CH3)(PEt3)2] (6) by dissociation of a triethylphosphine ligand. The reductive elimination of methane and coordination of PEt3 afforded the germyl complex 3. Treatment of 3 with CO gave the biscarbonyl complex [Rh(GePh3)(CO)2(PEt3)2] (7). The molecular structures of the complexes 2, 3 and 7 were determined by X-ray crystallography. The germyl complex 3 reacted with 2,3,5,6-tetrafluoropyridine or pentafluorobenzene to furnish the C-H activation products [Rh(4-C5NF4)(PEt3)3] (8) and [Rh(C6F5)(PEt3)3] (9), respectively. The reaction of 3 with hexafluorobenzene or perfluorotoluene gave selectively the C-F activation products 9 and [Rh(4-C6F4CF3)(PEt3)3] (10). Treatment of 3 with pentafluoropyridine resulted in the formation of the C-F activation products 8 and [Rh(2-C5NF4)(PEt3)3] (11) in a 1 : 10 ratio. The two isomeric activation compounds [Rh{(E)-CF[double bond, length as m-dash]CF(CF3)}(PEt3)3] (12) and [Rh{(Z)-CF[double bond, length as m-dash]CF(CF3)}(PEt3)3] (13) were obtained in a 3 : 1 ratio by reaction of 3 with hexafluoropropene. On exposure to oxygen the highly air sensitive complex 12 reacts to yield the peroxido-bridged dirhodium complex [Rh{(E)-CF[double bond, length as m-dash]CF(CF3)}(μ-κ(1):η(2)-O2)(PEt3)2]2 (14). The molecular structure of 14 was determined by X-ray crystallography. PMID:26863494

  1. The energy and geometric characteristics of the transition state in reactions of RO{2/} with carbonyl compound C-H bonds

    NASA Astrophysics Data System (ADS)

    Shestakov, A. F.; Denisov, E. T.; Emel'Yanova, N. S.; Denisova, T. G.

    2009-03-01

    The energy and geometry of the transition state in reactions of the ethyl peroxyl radical with ethane, ethanol (its ? and ? C-H bonds), acetone, butanone-2, and acetaldehyde were calculated by the density functional theory method. In all these reactions (except EtO2/ + ethanol ? C-H bond), the CHO reaction center has an almost linear configuration (? = 176 2); polar interaction only influences the r ? (CO) interatomic bond. In the reaction of EtO2/ with the ethanol ? C-H bond, it is the O-HO H-bond formed in the transition state that determines the configuration of the reaction center with the angle ?(CHO) = 160. The results were used to estimate the r ? (CH) and r ? (OH) interatomic bonds in the transition state by the method of intersecting parabolas and the contribution of polar interaction to the activation energy of reactions between peroxyl radicals and aldehydes and ketones.

  2. Comparison of properties of sintered and sintered reaction-bonded silicon nitride fabricated by microwave and conventional heating

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O. Jr.; Lin, H.T.

    1995-10-01

    A comparison of microwave and conventional processing of silicon nitride-based ceramics was performed to identify any differences between the two, such as improved fabrication parameters or increased mechanical properties. Two areas of thermal processing were examined: sintered silicon nitride (SSN) and sintered reaction-bonded silicon nitride (SRBSN). The SSN powder compacts showed improved densification and enhanced grain growth. SRBSN materials were fabricated in the microwave with a one-step process using cost-effective raw materials. The SRBSN materials had properties appropriate for structural applications. Observed increases in fracture toughness for the microwave processed SRBSN materials were attributable to enhanced elongated grain growth.

  3. Comparison of properties of sintered and sintered reaction-bonded silicon nitride fabricated by microwave and conventional heating

    SciTech Connect

    Tiegs, T.N.; Kiggans, J.O. Jr.; Lin, H.T.; Willkens, C.A.

    1994-10-01

    A comparison of microwave and conventional processing of silicon nitride-based ceramics was performed to identify any differences between the two, such as improved fabrication parameters or increased mechanical properties. Two areas of thermal processing were examined: (1) sintered silicon nitride (SSN) and (2) sintered reaction-bonded silicon nitride (SRBSN). The SSN powder compacts showed improved densification and enhanced grain growth. SRBSN materials were fabricated in the microwave with a one-step process using cost-effective raw materials. The SRBSN materials had properties appropriate for structural applications. Observed increases in fracture toughness for the microwave processed SRBSN materials were attributable to enhanced elongated grain growth.

  4. Hydrogen-bond-mediated asymmetric cascade reaction of stable sulfur ylides with nitroolefins: scope, application and mechanism.

    PubMed

    Lu, Liang-Qiu; Li, Fang; An, Jing; Cheng, Ying; Chen, Jia-Rong; Xiao, Wen-Jing

    2012-03-26

    A hydrogen-bond-mediated asymmetric [4+1] annulation/rearrangement cascade of stable sulfur ylides and nitroolefins was developed. This reaction provides a facile route to enantioenriched 4,5-substituted oxazolidinones in moderate to excellent isolated yields (65-96 %) with excellent stereocontrol (up to more than 95:5 d.r. and 97:3 e.r.). This methodology was successfully applied to the concise synthesis of two bioactive molecules. The stereocontrolled modes and mechanism have been proposed to explain the origin of this stereochemistry. PMID:22362633

  5. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation.

    PubMed

    Koniev, Oleksandr; Wagner, Alain

    2015-08-01

    Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed. PMID:26000775

  6. Competition between covalent bonding and charge transfer tendencies at complex-oxides interfaces

    NASA Astrophysics Data System (ADS)

    Salafranca, J.; Tornos, J.; García-Barriocanal, J.; León, C.; Santamaria, J.; Rincón, J.; Álvarez, G.; Pennycook, S. J.; Dagotto, E.; Varela, M.

    2013-03-01

    Interfaces alter the subtle balance among different degrees of freedom responsible for exotic phenomena in complex oxides, such as cuprate-manganite interfaces. We study these interfaces by means of scanning transmission electron microscopy and theoretical calculations. Microscopy and EEL spectroscopy indicate that the interfaces are sharp, and the chemical profile is symmetric with two equivalent interfaces. Spectroscopy also allows us to establish an oxidation state profile with sub-nanometer resolution. We find an anomalous charge redistribution: a non-monotonic behavior of the occupancy of d orbitals in the manganite layers as a function of distance to the interface. Relying on model calculations, we establish that this profile is a result of the competition between standard charge transfer tendencies involving materials with different chemical potentials and strong bonding effects across the interface. The competition can be tuned by different factors (temperature, doping, magnetic fields...). As examples, we report different charge distributions as a function of doping of the manganite layers. ACKNOWLEDGEMENTS ORNL:U.S. DOE-BES, Material Sciences and Engineering Division & ORNL's ShaRE. UCM:Juan de la Cierva, Ramon y Cajal, & ERC Starting Investigator Award programs.

  7. Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base.

    PubMed

    Alia, Shaun M; Duong, Kathlynne; Liu, Toby; Jensen, Kurt; Yan, Yushan

    2014-06-01

    Palladium (PdNTs) and gold nanotubes (AuNTs) were synthesized by the galvanic displacement of silver nanowires. PdNTs and AuNTs have wall thicknesses of 6 nm, outer diameters of 60 nm, and lengths of 5-10 and 5-20 μm, respectively. Rotating disk electrode experiments showed that the PdNTs and AuNTs have higher area normalized activities for the oxygen reduction reaction (ORR) than conventional nanoparticle catalysts. The PdNTs produced an ORR area activity that was 3.4, 2.2, and 3.7 times greater than that on carbon-supported palladium nanoparticles (Pd/C), bulk polycrystalline palladium, and carbon-supported platinum nanoparticles (Pt/C), respectively. The AuNTs produced an ORR area activity that was 2.3, 9.0, and 2.0 times greater than that on carbon-supported gold nanoparticles (Au/C), bulk polycrystalline gold, and Pt/C, respectively. The PdNTs also had lower onset potentials than Pd/C and Pt/C for the oxidation of methanol (0.236 V), ethanol (0.215 V), and ethylene glycol (0.251 V). In comparison to Pt/C, the PdNTs and AuNTs further demonstrated improved alcohol tolerance during the ORR. PMID:24757078

  8. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  9. Enantioselective organocatalytic Biginelli reaction: dependence of the catalyst on sterics, hydrogen bonding, and reinforced chirality.

    PubMed

    Saha, Satyajit; Moorthy, Jarugu Narasimha

    2011-01-21

    From a systematic investigation involving the synthesis of a series of catalysts and screening studies, the organocatalyst 16, which is sterically hindered, contains a strong hydrogen-bonding site, and is endowed with reinforced chirality, is shown to promote the Biginelli cyclocondensation of aromatic as well as aliphatic aldehydes with ethyl acetoacetate and urea in a remarkably high enantioselectivity (ee ca. 94-99%). PMID:21192642

  10. Modeling of the reaction-based processing of aluminum oxide (RBAO) and alumina-aluminide alloys (3A)

    NASA Astrophysics Data System (ADS)

    Gaus, Shaun Patrick

    Transient material and energy balances have been utilized to model the reaction-bonded aluminum oxide (RBAO) and alumina-aluminide alloys (3A) processes. The model for the RBAO process considers the diffusion of a gas-phase reactant into a porous solid followed by a solid-gas reaction, while the 3A model considers a solid-solid reaction taking place within a porous solid. The modeling work on the RBAO process reveals that the process may proceed via an ignition/extinguishment phenomenon with thermal runaway. It is believed that this type of behavior can lead to stress development, and subsequent sample cracking. Thus, the model is used to determine conditions under which RBAO bodies may be fired in a controlled manner (i.e., avoiding the runaway reaction). A complimentary experimental study, utilizing simultaneous thermogravimetry (TG) and differential thermal analysis (DTA), in-situ temperature measurements, and analysis of samples fired in a box furnace, verifies the predicted reaction behavior and shows that by controlling the reaction, high Al content powders can be used to produce crack-free RBAO samples. The modeling work on the 3A process demonstrates the effects of various processing parameters on the general reaction behavior. After considering the general behavior, the model is used to predict the reaction behavior of the TiOsb2/Al system. A reaction sequence for the TiOsb2/Al system (based on XRD data) is proposed and used to model the system. The effects of the heating rate, the convective heat transfer coefficient, and sample size are investigated.

  11. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.

    PubMed

    Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-05-17

    The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level. PMID:27071858

  12. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  13. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds

    NASA Astrophysics Data System (ADS)

    Lackmann, J.-W.; Baldus, S.; Steinborn, E.; Edengeiser, E.; Kogelheide, F.; Langklotz, S.; Schneider, S.; Leichert, L. I. O.; Benedikt, J.; Awakowicz, P.; Bandow, J. E.

    2015-12-01

    RNases are among the most stable proteins in nature. They even refold spontaneously after heat inactivation, regaining full activity. Due to their stability and universal presence, they often pose a problem when experimenting with RNA. We investigated the capabilities of nonthermal atmospheric-pressure plasmas to inactivate RNase A and studied the inactivation mechanism on a molecular level. While prolonged heating above 90 °C is required for heat inactivating RNase A, direct plasma treatment with a dielectric barrier discharge (DBD) source caused permanent inactivation within minutes. Circular dichroism spectroscopy showed that DBD-treated RNase A unfolds rapidly. Raman spectroscopy indicated methionine modifications and formation of sulfonic acid. A mass spectrometry-based analysis of the protein modifications that occur during plasma treatment over time revealed that methionine sulfoxide formation coincides with protein inactivation. Chemical reduction of methionine sulfoxides partially restored RNase A activity confirming that sulfoxidation is causal and sufficient for RNase A inactivation. Continued plasma exposure led to over-oxidation of structural disulfide bonds. Using antibodies, disulfide bond over-oxidation was shown to be a general protein inactivation mechanism of the DBD. The antibody’s heavy and light chains linked by disulfide bonds dissociated after plasma exposure. Based on their ability to inactivate proteins by oxidation of sulfur-containing amino acids and over-oxidation of disulfide bonds, DBD devices present a viable option for inactivating undesired or hazardous proteins on heat or solvent-sensitive surfaces.

  14. Full-Dimensional Quantum Dynamical Studies of the Cl + HOD → HCl/DCl + OD/OH Reaction: Bond Selectivity and Isotopic Branching Ratio.

    PubMed

    Song, Hongwei; Lee, Soo-Ying; Lu, Yunpeng; Guo, Hua

    2015-12-17

    Full-dimensional quantum dynamical calculations are carried out to study the mode specificity, bond selectivity, and isotopic branching ratio of the Cl + HOD reaction on an accurate global potential energy surface. Total reaction cross sections have been computed for several low-lying vibrational states of HOD. Our results confirm the experimental observed vibrationally promoted bond cleavage, in which the breaking of the OH(OD) bond is strongly enhanced by the OH(OD) excitation. These results are rationalized by the recently proposed sudden vector projection model. In addition, the OH/OD branching ratio as a function of energy is investigated and rationalized by a reorientation effect. PMID:26244377

  15. Periodate oxidation of 4-O-methylglucuronoxylans: Influence of the reaction conditions.

    PubMed

    Chemin, Maud; Rakotovelo, Alex; Ham-Pichavant, Frédérique; Chollet, Guillaume; Da Silva Perez, Denilson; Petit-Conil, Michel; Cramail, Henri; Grelier, Stéphane

    2016-05-20

    This work aims at studying the sodium periodate oxidation of 4-O-methylglucuronoxylans (MGX) in different experimental conditions for a control of the oxidation degree. A series of sodium periodate oxidation reactions were conducted at three NaIO4/xylose molar ratios: 0.05, 0.20 and 1.00. The effects of xylan molar mass, xylan concentration and reaction temperature on the reaction rate have been evaluated by UV/visible spectroscopy at 0.20 NaIO4/xylose ratio. No depolymerization is observed at 0.05 ratio while depolymerization occurs at 0.20 and is even complete at 1.00 NaIO4/xylose ratio. An increase of the reaction temperature - up to 80°C - leads to an increase of the oxidation rate with no effect on the depolymerization. At high xylan concentrations, the oxidation rate increases but promotes chains aggregation. PMID:26917372

  16. Rim region growth and its composition in reaction bonded boron carbide composites with core-rim structure

    NASA Astrophysics Data System (ADS)

    Hayun, S.; Weizmann, A.; Dilman, H.; Dariel, M. P.; Frage, N.

    2009-06-01

    Aluminum was detected in reaction-bonded boron carbide that had been prepared by pressureless infiltration of boron carbide preforms with molten silicon in a graphite furnace under vacuum. The presence of Al2O3 in the heated zone, even though not in contact with the boron carbide preform, stands behind the presence of aluminium in the rim region that interconnects the initial boron carbide particles. The composition of the rim corresponds to the Bx(C,Si,Al)y quaternary carbide phase. The reaction of alumina with graphite and the formation of a gaseous aluminum suboxide (Al2O) accounts for the transfer of aluminum in the melt and, subsequently in the rim regions. The presence of Al increases the solubility of boron in liquid silicon, but with increasing aluminum content the activity of boron decreases. These features dominate the structural evolution of the rim-core in the presence of aluminum in the melt.

  17. Reaction products and mechanisms for the reaction of n-butyl vinyl ether with the oxidants OH and Cl: Atmospheric implications

    NASA Astrophysics Data System (ADS)

    Colmenar, Inmaculada; Martín, Pilar; Cabañas, Beatriz; Salgado, Sagrario; Tapia, Araceli; Martínez, Ernesto

    2015-12-01

    A reaction product study for the degradation of butyl vinyl ether (CH3(CH2)3OCHdbnd CH2) by reaction with chlorine atoms (Cl) and hydroxyl radicals (OH) has been carried out using Fourier Transform Infrared absorption spectroscopy (FTIR) and/or Gas Chromatography-Mass Spectrometry with a Time of Flight analyzer (GC-TOFMS). The rate coefficient for the reaction of butyl vinyl ether (BVE) with chlorine atoms has also been evaluated for the first time at room temperature (298 ± 2) K and atmospheric pressure (708 ± 8) Torr. The rate coefficient obtained was (9.9 ± 1.5) × 10-10 cm3 molecule-1 s-1 and this indicates the high reactivity of butyl vinyl ether with Cl atoms. However, this value may be affected by the dark reaction of BVE with Cl2. The results of a qualitative study of the Cl reaction show that the main oxidation products are butyl formate (CH3(CH2)3OC(O)H), butyl chloroacetate (CH3(CH2)3OC(O)CH2Cl and formyl chloride (HCOCl). Individual yields in the ranges ∼16-40% and 30-70% in the absence and presence of NOx, respectively, have been estimated for these products. In the OH reaction, butyl formate and formic acid were identified as the main products, with yields of around 50 and 20%, respectively. Based on the results of this work and a literature survey, the addition of OH radicals and Cl atoms at the terminal C atom of the double bond in CH3(CH2)3OCHdbnd CH2 has been proposed as the first step in the reaction mechanism for both of the studied oxidants. The tropospheric lifetime of butyl vinyl ether is very short and, as a consequence, it will be rapidly degraded and will only be involved in tropospheric chemistry at a local level. The degradation products of these reactions should be considered when evaluating the atmospheric impact.

  18. Putative hydrogen bond to tyrosine M208 in photosynthetic reaction centers from Rhodobacter capsulatus significantly slows primary charge separation.

    PubMed

    Saggu, Miguel; Carter, Brett; Zhou, Xiaoxue; Faries, Kaitlyn; Cegelski, Lynette; Holten, Dewey; Boxer, Steven G; Kirmaier, Christine

    2014-06-19

    Slow, ∼50 ps, P* → P(+)HA(-) electron transfer is observed in Rhodobacter capsulatus reaction centers (RCs) bearing the native Tyr residue at M208 and the single amino acid change of isoleucine at M204 to glutamic acid. The P* decay kinetics are unusually homogeneous (single exponential) at room temperature. Comparative solid-state NMR of [4'-(13)C]Tyr labeled wild-type and M204E RCs show that the chemical shift of Tyr M208 is significantly altered in the M204E mutant and in a manner consistent with formation of a hydrogen bond to the Tyr M208 hydroxyl group. Models based on RC crystal structure coordinates indicate that if such a hydrogen bond is formed between the Glu at M204 and the M208 Tyr hydroxyl group, the -OH would be oriented in a fashion expected (based on the calculations by Alden et al., J. Phys. Chem. 1996, 100, 16761-16770) to destabilize P(+)BA(-) in free energy. Alteration of the environment of Tyr M208 and BA by Glu M204 via this putative hydrogen bond has a powerful influence on primary charge separation. PMID:24902471

  19. Putative Hydrogen Bond to Tyrosine M208 in Photosynthetic Reaction Centers from Rhodobacter capsulatus Significantly Slows Primary Charge Separation

    PubMed Central

    2015-01-01

    Slow, ∼50 ps, P* → P+HA– electron transfer is observed in Rhodobacter capsulatus reaction centers (RCs) bearing the native Tyr residue at M208 and the single amino acid change of isoleucine at M204 to glutamic acid. The P* decay kinetics are unusually homogeneous (single exponential) at room temperature. Comparative solid-state NMR of [4′-13C]Tyr labeled wild-type and M204E RCs show that the chemical shift of Tyr M208 is significantly altered in the M204E mutant and in a manner consistent with formation of a hydrogen bond to the Tyr M208 hydroxyl group. Models based on RC crystal structure coordinates indicate that if such a hydrogen bond is formed between the Glu at M204 and the M208 Tyr hydroxyl group, the −OH would be oriented in a fashion expected (based on the calculations by Alden et al., J. Phys. Chem.1996, 100, 16761–16770) to destabilize P+BA– in free energy. Alteration of the environment of Tyr M208 and BA by Glu M204 via this putative hydrogen bond has a powerful influence on primary charge separation. PMID:24902471

  20. High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.; Singh, M.

    1995-01-01

    The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.

  1. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes

    SciTech Connect

    Sheng, WC; Bivens, AP; Myint, M; Zhuang, ZB; Forest, RV; Fang, QR; Chen, JG; Yan, YS

    2014-05-01

    A ternary metallic CoNiMo catalyst is electrochemically deposited on a polycrystalline gold (Au) disk electrode using pulse voltammetry, and characterized for hydrogen oxidation reaction (HOR) activity by temperature-controlled rotating disk electrode measurements in 0.1 M potassium hydroxide (KOH). The catalyst exhibits the highest HOR activity among all non-precious metal catalysts (e.g., 20 fold higher than Ni). At a sufficient loading, the CoNiMo catalyst is expected to outperform Pt and thus provides a promising low cost pathway for alkaline or alkaline membrane fuel cells. Density functional theory (DFT) calculations and parallel H-2-temperature programmed desorption (TPD) experiments on structurally much simpler model alloy systems show a trend that CoNiMo has a hydrogen binding energy (HBE) similar to Pt and much lower than Ni, suggesting that the formation of multi-metallic bonds modifies the HBE of Ni and is likely a significant contributing factor for the enhanced HOR activity.

  2. Pyroprocessing of oxidized sodium-bonded fast reactor fuel - An experimental study of treatment options for degraded EBR-II fuel

    SciTech Connect

    Hermann, S.D.; Gese, N.J.; Wurth, L.A.

    2013-07-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.

  3. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  4. Properties of a reaction-bonded β-SiAlON ceramic doped with an FeMo alloy for application to molten aluminum environments

    NASA Astrophysics Data System (ADS)

    Li, Yan-jun; Yu, Hai-liang; Jin, Hai-yun; Shi, Zhong-qi; Qiao, Guan-jun; Jin, Zhi-hao

    2015-05-01

    An FeMo-alloy-doped β-SiAlON (FeMo/β-SiAlON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, AlN, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical properties of the composite were investigated. Some properties of the composite, including its bending strength at 700°C and after oxidization at 700°C for 24 h in air, thermal shock resistance and corrosion resistance to molten aluminum, were also evaluated. The results show that the density, toughness, bending strength, and thermal shock resistance of the composite are obviously improved with the addition of an FeMo alloy. In addition, other properties of the composite such as its high-temperature strength and oxidized strength are also improved by the addition of FeMo alloy, and its corrosion resistance to molten aluminum is maintained. These findings indicate that the developed FeMo/β-SiAlON composite exhibits strong potential for application to molten aluminum environments.

  5. Weak Intermolecular Hydrogen Bonds with Fluorine: Detection and Implications for Enzymatic/Chemical Reactions, Chemical Properties, and Ligand/Protein Fluorine NMR Screening.

    PubMed

    Dalvit, Claudio; Vulpetti, Anna

    2016-05-23

    It is known that strong hydrogen-bonding interactions play an important role in many chemical and biological systems. However, weak or very weak hydrogen bonds, which are often difficult to detect and characterize, may also be relevant in many recognition and reaction processes. Fluorine serving as a hydrogen-bond acceptor has been the subject of many controversial discussions and there are different opinions about it. It now appears that there is compelling experimental evidence for the involvement of fluorine in weak intramolecular or intermolecular hydrogen bonds. Using established NMR methods, we have previously characterized and measured the strengths of intermolecular hydrogen-bond complexes involving the fluorine moieties CH2 F, CHF2 , and CF3 , and have compared them with the well-known hydrogen-bond complex formed between acetophenone and the strong hydrogen-bond donor p-fluorophenol. We now report evidence for the formation of hydrogen bonds involving fluorine with significantly weaker donors, namely 5-fluoroindole and water. A simple NMR method is proposed for the simultaneous measurement of the strengths of hydrogen bonds between an acceptor and a donor or water. Important implications of these results for enzymatic/chemical reactions involving fluorine, for chemical and physical properties, and for ligand/protein (19) F NMR screening are analyzed through experiments and theoretical simulations. PMID:27112430

  6. Synthesis of Biaryls via Benzylic C-C Bond Cleavage of Styrenes and Benzyl Alcohols.

    PubMed

    Kumar, Arvind; Shah, Bhahwal Ali

    2015-11-01

    A metal-free oxidative coupling of styrenes and benzyl alcohols with arenes has been developed for the synthesis of biaryls. The reaction features a conspicuous benzylic C-C bond cleavage of styrenes and benzyl alcohols. The reaction with both substrates proceeds through a common aldehydic intermediate formed through oxidative C-C bond cleavage of alkene and oxidation of benzyl alcohols. The reaction proceeds efficiently over a broad range of substrates with excellent functional group tolerance. PMID:26479321

  7. Sporicidal effects of iodine-oxide thermite reaction products

    NASA Astrophysics Data System (ADS)

    Russell, Rod; Bless, Stephan; Blinkova, Alexandra; Chen, Tiffany

    2012-03-01

    Iodine pentoxide-aluminum thermite reactions have been driven by impacts at 1000 m/s on steel plates 3 mm or thicker. This reaction releases iodine gas that is known to be a sporicide. To test the impact reactions for sporicidal effects, reactions took place in closed chambers containing dried Bacillus subtilis spores. The reduction in colony-forming units was dependent on the exposure time; long exposure times resulted in a 105 decrease in germination rate. This was shown to be due to the gas exposure rather than the heat or turbulence. Sporicidal effectiveness was increased by adding neodymium and saran resin.

  8. Functional separation of oxidation-reduction reactions and electron transport in PtRu/ND and conductive additive hybrid electrocatalysts during methanol oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Yanhui; Bian, Linyan; Lu, Rui; Zang, Jianbing

    2016-02-01

    Undoped nanodiamond (ND) supported PtRu (PtRu/ND) electrocatalyst for methanol oxidation reactions (MOR) in direct methanol fuel cells was prepared by a microwave-assisted polyol reduction method. Sp3-bonded ND possesses high electrochemical stability but low conductivity, while sp2-bonded carbon nanomaterials with high conductivity are prone to oxidation. Therefore, the functions of the supporting material were separated in this study. ND (sp3), as a support, and AB or CNTs (sp2), as a conductive additive, were combined to form the hybrid electrocatalysts PtRu/ND + AB and PtRu/ND + CNT for MOR. The morphology of the electrocatalysts was characterized by scanning electron microscopy and electrochemical measurements were performed using an electrochemical workstation. The results indicated that the electrocatalytic activity of PtRu/ND for MOR was improved with the addition of AB or CNTs as a conductive additive. Moreover, adding CNTs to PtRu/ND as a conductive additive showed better electrocatalytic activities than adding AB, which can be ascribed to the better electron-transfer ability of CNTs.

  9. Influence of Alumina Reaction Tube Impurities on the Oxidation of Chemically-Vapor-Deposited Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    1995-01-01

    Pure coupons of chemically vapor deposited (CVD) SiC were oxidized for 100 h in dry flowing oxygen at 1300 C. The oxidation kinetics were monitored using thermogravimetry (TGA). The experiments were first performed using high-purity alumina reaction tubes. The experiments were then repeated using fused quartz reaction tubes. Differences in oxidation kinetics, scale composition, and scale morphology were observed. These differences were attributed to impurities in the alumina tubes. Investigators interested in high-temperature oxidation of silica formers should be aware that high-purity alumina can have significant effects on experiment results.

  10. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  11. Molecular Recognition in Mn-Catalyzed C-H Oxidation. Reaction Mechanism and Origin of Selectivity from a DFT Perspective

    PubMed Central

    Balcells, David; Moles, Pamela; Blakemore, James; Raynaud, Christophe; Brudvig, Gary W.; Crabtree, Robert H.

    2010-01-01

    Experimental studies have shown that the C-H oxidation of ibuprofen and methylcyclohexane acetic acid can be carried out with high selectivies using [(terpy)Mn(OH2)(?-O)2Mn(OH2)(terpy)]3+ as catalyst, where terpy is a terpyridine ligand functionalized with a phenylene linker and a Kemps triacid serving to recognize the reactant via H-bonding. Experiments, described here, suggest that the sulfate counter anion, present in stochiometric amounts, coordinates to manganese in place of water. DFT calculations have been carried out using [(terpy)Mn(O)(?-O)2Mn(SO4)(terpy)]+ as model catalyst, to analyze the origin of selectivity and its relation to molecular recognition, as well as the mechanism of catalyst inhibition by tert-butyl benzoic acid. The calculations show that a number of spin states, all having radical oxygen character, are energetically accessible. All these spin states promote C-H oxidation via a rebound mechanism. The catalyst recognizes the substrate by a double H bond. This interaction orients the substrate inducing highly selective C-H oxidation. The double hydrogen bond stabilizes the reactant, the transition state and the product to the same extent. Consequently, the reaction occurs at lower energy than without molecular recognition. The association of the catalyst with tert-butyl benzoic acid is shown to shield the access of unbound substrate to the reactive oxo site, hence preventing non-selective hydroxylation. It is shown that the two recognition sites of the catalyst can be used in a cooperative manner to control the access to the reactive centre. PMID:19623399

  12. Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films

    SciTech Connect

    Ramana, C. V. Rubio, E. J.; Barraza, C. D.; Miranda Gallardo, A.; McPeak, Samantha; Kotru, Sushma; Grant, J. T.

    2014-01-28

    Gallium oxide (Ga{sub 2}O{sub 3}) thin films were made by sputter deposition employing a Ga{sub 2}O{sub 3} ceramic target for sputtering. The depositions were made over a wide range of substrate temperatures (T{sub s}), from 25 to 600 °C. The effect of T{sub s} on the chemical bonding, surface morphological characteristics, optical constants, and electrical properties of the grown films was evaluated using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and four-point probe measurements. XPS analyses indicate the binding energies (BE) of the Ga 2p doublet, i.e., the Ga 2p{sub 3/2} and Ga 2p{sub 1/2} peaks, are located at 1118.0 and 1145.0 eV, respectively, characterizing gallium in its highest chemical oxidation state (Ga{sup 3+}) in the grown films. The core level XPS spectra of O 1s indicate that the peak is centered at a BE ∼ 531 eV, which is also characteristic of Ga-O bonds in the Ga{sub 2}O{sub 3} phase. The granular morphology of the nanocrystalline Ga{sub 2}O{sub 3} films was evident from AFM measurements, which also indicate that the surface roughness of the films increases from 0.5 nm to 3.0 nm with increasing T{sub s}. The SE analyses indicate that the index of refraction (n) of Ga{sub 2}O{sub 3} films increases with increasing T{sub s} due to improved structural quality and packing density of the films. The n(λ) of all the Ga{sub 2}O{sub 3} films follows the Cauchy's dispersion relation. The room temperature electrical resistivity was high (∼200 Ω-cm) for amorphous Ga{sub 2}O{sub 3} films grown at T{sub s} = RT-300 °C and decreased to ∼1 Ω-cm for nanocrystalline Ga{sub 2}O{sub 3} films grown at T{sub s} ≥ 500–600 °C. A correlation between growth conditions, microstructure, optical constants, and electrical properties of Ga{sub 2}O{sub 3} films is derived.

  13. Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films

    NASA Astrophysics Data System (ADS)

    Ramana, C. V.; Rubio, E. J.; Barraza, C. D.; Miranda Gallardo, A.; McPeak, Samantha; Kotru, Sushma; Grant, J. T.

    2014-01-01

    Gallium oxide (Ga2O3) thin films were made by sputter deposition employing a Ga2O3 ceramic target for sputtering. The depositions were made over a wide range of substrate temperatures (Ts), from 25 to 600 °C. The effect of Ts on the chemical bonding, surface morphological characteristics, optical constants, and electrical properties of the grown films was evaluated using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and four-point probe measurements. XPS analyses indicate the binding energies (BE) of the Ga 2p doublet, i.e., the Ga 2p3/2 and Ga 2p1/2 peaks, are located at 1118.0 and 1145.0 eV, respectively, characterizing gallium in its highest chemical oxidation state (Ga3+) in the grown films. The core level XPS spectra of O 1s indicate that the peak is centered at a BE ˜ 531 eV, which is also characteristic of Ga-O bonds in the Ga2O3 phase. The granular morphology of the nanocrystalline Ga2O3 films was evident from AFM measurements, which also indicate that the surface roughness of the films increases from 0.5 nm to 3.0 nm with increasing Ts. The SE analyses indicate that the index of refraction (n) of Ga2O3 films increases with increasing Ts due to improved structural quality and packing density of the films. The n(λ) of all the Ga2O3 films follows the Cauchy's dispersion relation. The room temperature electrical resistivity was high (˜200 Ω-cm) for amorphous Ga2O3 films grown at Ts = RT-300 °C and decreased to ˜1 Ω-cm for nanocrystalline Ga2O3 films grown at Ts ≥ 500-600 °C. A correlation between growth conditions, microstructure, optical constants, and electrical properties of Ga2O3 films is derived.

  14. C-N and N-H Bond Metathesis Reactions Mediated by Carbon Dioxide.

    PubMed

    Wang, Yehong; Zhang, Jian; Liu, Jing; Zhang, Chaofeng; Zhang, Zhixin; Xu, Jie; Xu, Shutao; Wang, Fangjun; Wang, Feng

    2015-06-22

    Herein, we report CO2 -mediated metathesis reactions between amines and DMF to synthesize formamides. More than 20 amines, including primary, secondary, aromatic, and heterocyclic amines, diamines, and amino acids, are converted to the corresponding formamides with good-to-excellent conversions and selectivities under mild conditions. This strategy employs CO2 as a mediator to activate the amine under metal-free conditions. The experimental data and in situ NMR and attenuated total reflectance IR spectroscopy measurements support the formation of the N-carbamic acid as an intermediate through the weak acid-base interaction between CO2 and the amine. The metathesis reaction is driven by the formation of a stable carbamate, and a reaction mechanism is proposed. PMID:26043443

  15. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    SciTech Connect

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si[sub 3]N[sub 4] during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, [approximately] 10 Si[sub 3]N[sub 4] nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si[sub 3]N[sub 4] growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  16. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    SciTech Connect

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si{sub 3}N{sub 4} during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, {approximately} 10 Si{sub 3}N{sub 4} nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si{sub 3}N{sub 4} growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  17. Influence of a reaction medium on the oxidation of aromatic nitrogen-containing compounds by peroxyacids

    NASA Astrophysics Data System (ADS)

    Dutka, V. S.; Matsyuk, N. V.; Dutka, Yu. V.

    2011-01-01

    The influence of different solvents on the oxidation reaction rate of pyridine (Py), quinoline (QN), acridine (AN), α-oxyquinoline (OQN) and α-picolinic acid (APA) by peroxydecanoic acid (PDA) was studied. It was found that the oxidation rate grows in the series Py < QN < AN, and the rate of the oxidation reaction of compounds containing a substituent in the α position from a reactive center is significantly lower than for unsubstituted analogues. The effective energies of activation of the oxidation reaction were found. It was shown that in the first stage, the reaction mechanism includes the rapid formation of an intermediate complex nitrogen-containing compound, peroxyacid, which forms products upon decomposing in the second stage. A kinetic equation that describes the studied process is offered. The constants of equilibrium of the intermediate complex formation ( K eq) and its decomposition constant ( k 2) in acetone and benzene were calculated. It was shown that the nature of the solvent influences the numerical values of both K p and k 2. It was established that introduction of acetic acid (which is able to form compounds with Py) into the reaction medium slows the rate of the oxidation process drastically. Correlation equations linking the polarity, polarizability, electrophilicity, and basicity of solvents with the constant of the PDA oxidation reaction rate for Py were found. It was concluded that the basicity and polarity of the solvent have a decisive influence on the oxidation reaction rate, while the polarizability and electrophilicity of the reaction medium do not influence the oxidation reaction rate.

  18. Oxidative dimerization in metallothionein is a result of intermolecular disulphide bonds between cysteines in the alpha-domain.

    PubMed Central

    Zangger, K; Shen, G; Oz, G; Otvos, J D; Armitage, I M

    2001-01-01

    Upon storage under aerobic conditions metallothioneins (MTs) form a new species, which is characterized by a molecular mass approximately twice the size of monomeric MT and shifted (113/111)Cd- and (1)H-NMR resonances. The investigation of this oxidative dimerization process by NMR spectroscopy allowed us to structurally characterize this MT species that has been described to occur in vivo and might be synthesized under conditions of oxidative stress. The oxidative dimer was characterized by the formation of an intermolecular cysteine disulphide bond involving the alpha-domain, and a detailed analysis of chemical shift changes and intermolecular nuclear Overhauser effects points towards a disulphide bond involving Cys(36). In contrast to the metal-bridged (non-oxidative) dimerization, the metal-cysteine cluster structures in both MT domains remain intact and no conformational exchange or metal-metal exchange was observed. Also in contrast to the many recently reported oxidative processes which involve the beta-domain cysteine groups and result in the increased dynamics of the bound metal ions in this N-terminal domain, we found no evidence for any increased dynamics in the alpha-domain metals following this oxidation. Therefore these findings provide additional corroboration that metal binding in the C-terminal alpha-domain is rather tight, even under conditions of a changing cellular oxidation potential, compared with the more labile/dynamic nature of the metals in the N-terminal beta-domain cluster under similar conditions. PMID:11583581

  19. Comparative temporal analysis of multiwalled carbon nanotube oxidation reactions: Evaluating chemical modifications on true nanotube surface

    NASA Astrophysics Data System (ADS)

    Pacheco, Flávia G.; Cotta, Alexandre A. C.; Gorgulho, Honória F.; Santos, Adelina P.; Macedo, Waldemar A. A.; Furtado, Clascídia A.

    2015-12-01

    The influence of extensive purification on oxidized multiwalled carbon nanotube surface composition was studied through the characterization and differentiation of the actual surface submitted to three oxidation methods: microwave-assisted acid oxidation, hydrogen peroxide reflux, and Fenton reaction. The oxidized samples were purified by a multi-step procedure including the sequential use of basic reflux and dispersion in dimethylformamide (DMF). The results showed a significant increase in the amount of oxidation debris with hydrogen peroxide and Fenton reaction times longer than 8 h and strong surface characteristic modification. With regard to sample purification, basic reflux led to a reduction in oxygenated group concentration of only 10% in the samples treated by acid oxidation. On the other hand, the subsequent use of DMF led to a further decrease in concentration of 39%, proving to be a more efficient method for the removal of oxidation debris.

  20. Effect of oxidation heat treatment on the bond strength between a ceramic and cast and milled cobalt-chromium alloys.

    PubMed

    Li, Jieyin; Ye, Xiuhua; Li, Bohua; Liao, Juankun; Zhuang, Peilin; Ye, Jiantao

    2015-08-01

    There is a dearth of dental scientific literature on the effect of different oxidation heat treatments (OHTs) (as surface pretreatments) on the bonding performance of cast and milled cobalt-chromium (CoCr) alloys. The objective of this study was to evaluate the effect of different OHTs on the bond strength between a ceramic and cast and milled CoCr alloys. Cobalt-chromium metallic specimens were prepared using either a cast or a milled method. Specimens were subjected to four different OHT methods: without OHT; OHT under normal atmospheric pressure; OHT under vacuum; and OHT under vacuum followed by sandblasting. The metal-ceramic bond strength was evaluated using a three-point bending test according to ISO9693. Scanning electron microscopy and energy-dispersive spectroscopy were used to study the specimens' microstructure and elemental composition. The bond strength was not affected by the CoCr manufacturing method. Oxidation heat treatment performed under normal atmospheric pressure resulted in the highest bond strength. The concentration of oxygen on the alloy surfaces varied with the different pretreatment methods in the following order: OHT under normal atmospheric pressure > OHT under vacuum > without OHT ? OHT under vacuum followed by sandblasting. PMID:26104804

  1. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning.

    PubMed

    Zamora, Rosario; Hidalgo, Francisco J

    2005-01-01

    Lipid oxidation and the Maillard reaction are probably the two most important reactions in Food Science. Both include a whole network of different reactions in which an extraordinary complex mixture of compounds are obtained in very different amounts and produce important changes in food flavor, color, texture, and nutritional value, with positive and negative consequences. This article analyzes the interactions between both reactions, with special emphasis in nonenzymatic browning development, by discussing the influence of lipid oxidation products in the Maillard pathway and vice versa, as well as the existence of common intermediates and polymerization mechanisms in both reactions. The existing data suggest that both reactions are so interrelated that they should be considered simultaneously to understand the products of the Maillard reaction in the presence of lipids and vice versa, and should be included in one general pathway that can be initiated by both lipids and carbohydrates. PMID:15730188

  2. Sporicidal Effects of Iodine-oxide Thermite Reaction Products

    NASA Astrophysics Data System (ADS)

    Russell, Rod; Bless, Stephan; Blinkova, Alexandra; Chen, Tiffany; InstituteAdvanced Tehnology Collaboration; Dept of Molecular Genetics; Microbiology-UT Austin Collaboration; Chemistry; Biochemistry-UT Austin Collaboration

    2011-06-01

    Iodine pentoxide-aluminum thermite reactions have been driven by impacts at 1000 m/s on steel plates 3 mm or thicker. The activation energy of this material reaction is 197 J/g. The reactivity is increased by reducing grain size. This reaction releases iodine gas that is known to be a sporicide. In order to test the impact reactions for sporicidal effects, reactions took place in closed chambers containing dried Bacillus subtilis spores. The reduction in colony-forming units was dependent on the exposure time; long exposure times resulted in a 105 decrease in germination rate. This was shown to be due to the gas exposure and not the heat or turbulence. Sporicidal effectiveness was increased by adding neodymium and saran resin. The sporicidal effect is very dependent on exposure time, ranging from about 90% kill for times on the order of a second to 99.99% for one-hour times.

  3. Design and Synthesis of Chiral Zn2+ Complexes Mimicking Natural Aldolases for Catalytic C–C Bond Forming Reactions in Aqueous Solution

    PubMed Central

    Itoh, Susumu; Sonoike, Shotaro; Kitamura, Masanori; Aoki, Shin

    2014-01-01

    Extending carbon frameworks via a series of C–C bond forming reactions is essential for the synthesis of natural products, pharmaceutically active compounds, active agrochemical ingredients, and a variety of functional materials. The application of stereoselective C–C bond forming reactions to the one-pot synthesis of biorelevant compounds is now emerging as a challenging and powerful strategy for improving the efficiency of a chemical reaction, in which some of the reactants are subjected to successive chemical reactions in just one reactor. However, organic reactions are generally conducted in organic solvents, as many organic molecules, reagents, and intermediates are not stable or soluble in water. In contrast, enzymatic reactions in living systems proceed in aqueous solvents, as most of enzymes generally function only within a narrow range of temperature and pH and are not so stable in less polar organic environments, which makes it difficult to conduct chemoenzymatic reactions in organic solvents. In this review, we describe the design and synthesis of chiral metal complexes with Zn2+ ions as a catalytic factor that mimic aldolases in stereoselective C–C bond forming reactions, especially for enantioselective aldol reactions. Their application to chemoenzymatic reactions in aqueous solution is also presented. PMID:24481060

  4. In Pursuit of an Ideal C-C Bond-Forming Reaction

    PubMed Central

    RajanBabu, T. V.

    2009-01-01

    Attempts to introduce the highly versatile vinyl group into other organic molecules in a chemo-, regio- and stereoselective fashion via catalytic activation of ethylene provided challenging opportunities to explore new ligand and salt effects in homogeneous catalysis. This review provides a personal account of the development of enantioselective reactions involving ethylene. PMID:19606231

  5. Enantioselective Synthesis of (+)-Estrone Exploiting a Hydrogen Bond-Promoted Diels−Alder Reaction

    PubMed Central

    2010-01-01

    Starting from Dane’s diene and methylcyclopentenedione, (+)-estrone is synthesized along the Quinkert−Dane route in 24% total yield. The key step is an enantioselective Diels−Alder reaction promoted by an amidinium catalyst as efficiently as by a traditional Ti-TADDOLate Lewis acid. PMID:20302330

  6. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Konopka, Daniel A.

    Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within ˜5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports. For the first time, in situ FTIR measurements in acid electrolyte showed that highly dispersed Pt nanoparticles (2--5nm) on NbRuyO z (at% 8Nb:1Ru) catalyze the formation of CO2 from ethanol in greater yield, and 0.35--0.4V lower, than Pt(111). Compared to conventional Pt/carbon, this indicates that, (1) Pt supported on NbRuyO z can be more effective at splitting the C---C bond in ethanol and, (2) the scission occurs at potentials more ideal for a higher efficiency fuel cell anode. Ex situ-microscopy revealed the polarization-induced two- and three-dimensional formation of Pt-NbOx interfacial adsorption sites responsible for the facilitation of the total oxidation pathway of ethanol. The results show that synthesis and post-treatment of niobia supports can bias the utility of Pt/niobia systems towards the ethanol oxidation reaction at the anode or the oxygen reduction reaction at the cathode. Experimental and computational-theoretical analyses indicate that the mechanism of interfacial site formation is dependent upon the local oxygen concentration, as well as the availability of multiple, energetically accessible oxidation states like those inherent to niobia. Future directions for the development of highly active, niobium-based materials tailored for efficient catalysis of the total oxidation pathway of ethanol are discussed.

  7. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation.

    PubMed

    Offenbacher, Adam R; Polander, Brandon C; Barry, Bridgette A

    2013-10-01

    Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global (13)C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster. PMID:23940038

  8. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    PubMed Central

    2012-01-01

    Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor) or a larger protein (α-amylase). Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a) degradation of protein/recycling amino acids, (b) overall transcription/translation repression, and (c) oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases. PMID:22380681

  9. Bonding Constraints,Elasticity and Electronic Heterogeneity in Transition Metal Oxides*

    NASA Astrophysics Data System (ADS)

    Bishop, Alan

    2004-03-01

    We describe a multiscale "systems" scenario for doped transition metal oxides and related "strongly correlated" electronic materials, in which local polarizable "hotspots" (pairing centers, polarons, charge-transfer centers, etc.) induce elastic strains, which self-consistently drive self-assembly and coherent responses - macroscopically but heterogeneously. The elastic fields are a result of the highly-directional, local bonding "compatibility" constraints, and provide structural templates which couple strongly to electronic wave-functions because of (oxygen) polarizabilities and (metal-oxygen) charge-transfers. This leads to intrinsic "landscapes" of heterogeneous ground and metastable states (and associated multiscale dynamics), which are globally sensitive to local perturbations. Heterogeneity at atomic scales (e.g. filamentary/clump charge/spin localization and perovskite unit cell distortions) are intimately coupled, in multiscale systems, to mesoscale structural textures (twinning, tweed, etc). We describe selected signatures of heterogeneous textures in spin, charge and lattice degrees-of-freedom. We emphasize the importance of soft filamentary phases as the typical consequences of coexisiting anistropic short- and long-range fields and suggest generalizations to other hard, soft and biological matter. We speculate on the role of strain fields in controlling pseudogroups, correlated percolation, soft mesoscopic dynamics, filamentary dielectric breakdown and proximity effects, and effective pairing symmetry. 1)Intrinsic multiscale structure and dynamics in complex electronic oxides, eds. A. Bishop, S. Shenoy, S. Sridhar (World Scientific 2003); 2) A. Bishop et al, Euro. Phys. Lett. 63, 289 (2003); 3) J-X Zhu et al, Phys. Rev. Lett. 91, 057004; 4) J. C. Phillips et al, Rep. Prog. Phys. 66, 2111 (2003). *This work was performed in collaboration with K. Ahn, T. Lookman, A. Saxena, S. Shenoy, J-X Zhu, and work at Los Alamos was supported by the USDOE Office of Basic Energy Sciences-Division of Materials

  10. Bulk Gold-Catalyzed Reactions of Isocyanides, Amines, and Amine N-Oxides

    SciTech Connect

    Klobukowski, Erik; Angelici, Robert; Woo, Keith L.

    2012-01-26

    Bulk gold powder (5–50 μm particles) catalyzes the reactions of isocyanides with amines and amine N-oxides to produce ureas. The reaction of n-butyl isocyanide (nBu–N≡C) with di-n-propylamine and N-methylmorpholine N-oxide in acetonitrile, which was studied in the greatest detail, produced 3-butyl-1,1-dipropylurea (O═C(NHnBu)(NnPr2)) in 99% yield at 60 °C within 2 h. Sterically and electronically different isocyanides, amines, and amine N-oxides react successfully under these conditions. Detailed studies support a two-step mechanism that involves a gold-catalyzed reaction of adsorbed isocyanide with the amine N-oxide to form an isocyanate (RN═C═O), which rapidly reacts with the amine to give the urea product. These investigations show that bulk gold, despite its reputation for poor catalytic activity, is capable of catalyzing these reactions.

  11. Oxidized cellulose (Surgicel) based reaction post thyroidectomy mimicking an abscess: A case report

    PubMed Central

    Royds, J.; Kieran, S.; Timon, C.

    2012-01-01

    Introduction Surgicel (oxidized cellulose) is used for intra-operative haemostasis and adhesion prevention. Previously local tissue reactions to oxidized cellulose have been reported at many surgical sites, but not in the head and neck. Presentation of case A 56 year old lady presented 30 days following total thyroidectomy with wound swelling and erythema. Multiple sinuses were noted within the wound, through which oxidized cellulose partially extruded. Following removal of the un-absorbed material the symptoms resolved over 3 days. Discussion The absence of any systemic symptoms confirm that this was most likely a type four hypersensitivity reaction. The removal of the unabsorbed material was a further unique part of this case. Conclusion We present the first head and neck reaction to oxidized cellulose. This report serves to remind head and neck surgeons of the potential for local tissue reactions to this material. PMID:22572542

  12. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  13. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  14. Process of forming catalytic surfaces for wet oxidation reactions

    NASA Technical Reports Server (NTRS)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  15. Oxidation kinetics of reaction products formed in uranium metal corrosion.

    SciTech Connect

    Totemeier, T. C.

    1998-04-22

    The oxidation behavior of uranium metal ZPPR fuel corrosion products in environments of Ar-4%O{sub 2} and Ar-20%O{sub 2} were studied using thermo-gravimetric analysis (TGA). These tests were performed to extend earlier work in this area specifically, to assess plate-to-plate variations in corrosion product properties and the effect of oxygen concentration on oxidation behavior. The corrosion products from two relatively severely corroded plates were similar, while the products from a relatively intact plate were not reactive. Oxygen concentration strongly affected the burning rate of reactive products, but had little effect on low-temperature oxidation rates.

  16. A kinetics study of the atmospheric pressure CVD reaction of silane and nitrous oxide

    SciTech Connect

    Chapple-Sokol, J.D.; Giunta, C.J.; Gordon, R.G. . Dept. of Chemistry)

    1989-10-01

    A mechanistic study of oxide deposition from silane and nitrous oxide between 495{sup 0}C and 690{sup 0}C was performed in a laminar flow, cool wall reactor. Results indicate the existence of two distinct chemical pathways. At high nitrous oxide concentrations, the deposition reaction is dominated by radical chain chemistry initiated by the decomposition of N/sub 2/O. At lower N/sub 2/O concentrations, the decomposition of silane to form silylene (SiH/sub 2/) initiates the deposition. Studies of the reaction of disilane and nitrous oxide confirmed the role of SiH/sub 2/ in the deposition. Reactions involving SiH/sub 2/ are used to explain the observed growth of sub-stoichiometric oxides under low N/sub 2/O conditions.

  17. Synthesis of Electrochemically Reduced Graphene Oxide Bonded to Thiodiazole-Pd and Applications to Biosensor.

    PubMed

    You, Jung-Min; Han, Hyoung Soon; Jeon, Seungwon

    2015-08-01

    A novel biosensor for the determination of hydrogen peroxide and glucose was developed based on EGN-TDZ-Pd, as an electrocatalyst. The preparation of graphene oxide (GO) nanosheets was functionalized by combining it with 5-amino-1,3,4-thiadiazole-2-thiol (TDZ) and by covalently bonding it to palladium (Pd) nanoparticles (GO-TDZ-Pd). In the electrochemical investigation, EGN-TDZ-Pd was characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry (CV) and chronoamperometry (CA) were used to characterize the performance of EGN-TDZ-Pd. The proposed H2O2 biosensor exhibited a wide linear range from 10 µM to 6.5 mM. Also, a glucose biosensor was prepared using glucose oxidase and EGN-TDZ-Pd placed onto a glassy carbon electrode (GCE). The GOx/EGN-TDZ-Pd/GCE was easily prepared using a rapid and simple procedure, and it was utilized for highly sensitive glucose determination. PMID:26369140

  18. Stable gold(III) catalysts by oxidative addition of a carbon-carbon bond

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Yeh; Horibe, Takahiro; Jacobsen, Christian Borch; Toste, F. Dean

    2015-01-01

    Low-valent late transition-metal catalysis has become indispensable to chemical synthesis, but homogeneous high-valent transition-metal catalysis is underdeveloped, mainly owing to the reactivity of high-valent transition-metal complexes and the challenges associated with synthesizing them. Here we report a carbon-carbon bond cleavage at ambient conditions by a Au(I) complex that generates a stable Au(III) cationic complex. In contrast to the well-established soft and carbophilic Au(I) catalyst, this Au(III) complex exhibits hard, oxophilic Lewis acidity. For example, we observed catalytic activation of ?,?-unsaturated aldehydes towards selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by X-ray crystallographic analysis of an isolated Au(III)-activated cinnamaldehyde intermediate. The concepts revealed suggest a strategy for accessing high-valent transition-metal catalysis from readily available precursors.

  19. On the lithiation reaction of niobium oxide: structural and electronic properties of Li(1.714)Nb2O5.

    PubMed

    Catti, Michele; Ghaani, Mohammad R

    2014-01-28

    Monoclinic α-Nb2O5 was chemically lithiated by reaction with n-butyllithium, mimicking the product of electrochemical discharge of a niobium oxide cathode vs. a Li anode. The compound was investigated by neutron powder diffraction (D2B equipment at ILL, France) and its structure was Rietveld refined in space group P2 to wRp = 0.045, locating the Li atoms inserted in the α-Nb2O5 framework. The ensuing chemical formula is Li12/7Nb2O5. Some Li atoms are more strongly bonded (five coordinated O atoms), some are less strongly bonded (coordination number = 4). Starting from the experimental structure, first-principles periodic DFT calculations based on the hybrid B3LYP functional were performed. The electrochemical voltage of Li insertion was computed to be 1.67 V, fully consistent with the experimental 1.60 V plateau vs. capacity. The analysis of the electron band structure shows that lithiation changes the insulating oxide into a semi-metal; some of the extra electrons inserted with lithium become spin-polarized and give the material weak ferromagnetic properties. PMID:24297157

  20. SPECTROSCOPIC STUDY OF SURFACE REDOX REACTIONS WITH MANGANESE OXIDES

    EPA Science Inventory

    Redox reactions involving soil minerals and materials are important processes in environmental chemistry, but unfortunately they only have been characterized in the solution phase. he lack of a suitable method has prevented investigations of the mineral surface component of redox...

  1. The structure, bond strength and apatite-inducing ability of micro-arc oxidized tantalum and their response to annealing

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Wang, Feng; Han, Yong

    2016-01-01

    In this study, the tantalum oxide coatings were formed on pure tantalum (Ta) by micro-arc oxidation (MAO) in electrolytic solutions of calcium acetate and β-glycerophosphate disodium, and the effect of the applied voltage on the microstructure and bond strength of the MAO coatings was systematically investigated. The effect of annealing treatment on the microstructure, bond strength and apatite-inducing ability of the MAO coatings formed at 350 and 450 V was also studied. The study revealed that during the preparation of tantalum oxide coatings on Ta substrate by MAO, the applied voltage considerably affected the phase components, morphologies and bond strength of the coatings, but had little effect on surface chemical species. After annealing treatment, newly formed CaTa4O11 phase mainly contributed to the much more stronger apatite-inducing ability of the annealed tantalum oxide coatings than those that were not annealed. The better apatite-inducing ability of the MAO coatings formed at 450 V compared to those formed at 350 V was attributed to the less amorphous phase and more crystalline phase as well as more Ca and P contained in the MAO coatings with increasing the applied voltage.

  2. Effect of Oxidation and SiO2 Coating on the Bonding Strength of Ti-Porcelain

    NASA Astrophysics Data System (ADS)

    Guo, Litong; Liu, Xiaochen; Zhu, Yabo; Xu, Cheng; Gao, Jiqiang; Guo, Tianwen

    2010-11-01

    Investigations on the effect of oxidation on titanium-ceramic adhesion were performed. Cast pure titanium was subjected to surface modification by preoxidation and introduction of an intermediate layer of SiO2 by sol-gel process. Specimens were characterized by TG-DSC, XRD, and SEM/EDS. The adhesion between the titanium and porcelain was evaluated by three-point flexure bond test. Failure of the titanium-porcelain with preoxidation treatment predominantly occurred at the titanium-oxide interface. Preoxidation treatment did not affect the fracture mode of the titanium-ceramic system and did not increase the bonding strength of Ti-porcelain. The SEM results revealed the existence of microcracks on the SiO2 coating surface oxidized at 800 °C in an air furnace. During the porcelain fusion, minute amounts of oxygen were able to penetrate the cracks and caused localized oxidation of the Ti-substrate. Failure of the titanium-porcelain with SiO2 coating predominantly occurred at the SiO2 layer. The SiO2 coating served as an effective oxygen diffusion barrier and improved the mechanical and chemical bonding between porcelain and titanium.

  3. Control of oxidation selectivity by alkyl substitution: the reactions of t-butyl iodide and t-butanethiol on Rh(111)-p(2 × 1)O

    NASA Astrophysics Data System (ADS)

    Bol, C. W. J.; Friend, C. M.

    1996-08-01

    We report the formation of adsorbed t-butoxy by addition of transient t-butyl radicals to surface oxygen, in the reactions of t-butyl iodide and t-butanethiol on Rh(111)-p(2 × 1)O. t-Butanethiol reacts by cleavage of the weak SH bond, forming adsorbed t-butyl thiolate upon adsorption at 100 K. t-Butyl thiolate subsequently forms t-butanol, isobutene and water in the range of 325-345 K via a transient t-butyl radical formed by cleavage of the CS bond. Similarly, t-butyl iodide reacts by cleavage of the CI bond to yield isobutene and t-butanol at 260 K. In both cases, isobutene is proposed to form via a combination of rapid β-hydrogen elimination of the t-butyl radical and decomposition of t-butoxide formed from addition of the radical to O a. t-Butanol is produced via a competing hydrogenation of t-butoxide. The relative reaction temperatures correlate with the CI and CS bond strengths, indicating that homolytic CI and CS bond scission limit the rates of the reaction. Some t-butoxy remains on the surface up to 380 K, and is identified using high resolution electron energy-loss and temperature-programmed reaction spectroscopies. These studies demonstrate that the product distributions for reactions of alkyls on oxygen-covered Rh(111) can be manipulated by altering the molecular structure. Specifically, we were able to induce partial oxidation of the alkyl radical to the corresponding alcohol by effectively eliminating the pathway for dehydrogenation at the carbon adjacent to the oxygen via alkyl substitution.

  4. Visible Light Driven Nanosecond Bromide Oxidation by a Ru Complex with Subsequent Br-Br Bond Formation.

    PubMed

    Li, Guocan; Ward, William M; Meyer, Gerald J

    2015-07-01

    Visible light excitation of [Ru(deeb)(bpz)2](2+) (deeb = 4,4'-diethylester-2,2'-bipyridine; bpz = 2,2'-bipyrazine), in Br(-) acetone solutions, led to the formation of Br-Br bonds in the form of dibromide, Br2(-). This light reactivity stores ?1.65 eV of free energy for milliseconds. Combined (1)H NMR, UV-vis and photoluminescence measurements revealed two distinct mechanisms. The first involves diffusional quenching of the excited state by Br(-) with a rate constant of (8.1 0.1) 10(10) M(-1) s(-1). At high Br(-) concentrations, an inner-sphere pathway is dominant that involves the association of Br(-), most likely with the 3,3'-H atoms of a bpz ligand, before electron transfer from Br(-) to the excited state, ket = (2.5 0.3) 10(7) s(-1). In both mechanisms, the direct photoproduct Br() subsequently reacts with Br(-) to yield dibromide, Br() + Br(-) ? Br2(-). Under pseudo-first-order conditions, this occurs with a rate constant of (1.1 0.4) 10(10) M(-1) s(-1) that was, within experimental error, the same as that measured when Br() were generated with ultraviolet light. Application of Marcus theory to the sensitized reaction provided an estimate of the Br() formal reduction potential E(Br()/Br(-)) = 1.22 V vs SCE in acetone, which is about 460 mV less positive than the accepted value in H2O. The results demonstrate that Br(-) oxidation by molecular excited states can be rapid and useful for solar energy conversion. PMID:26085129

  5. Mechanism of the quenching of the tris(bipyridine)ruthenium(II) emission by persulfate: implications for photoinduced oxidation reactions.

    PubMed

    Lewandowska-Andralojc, A; Polyansky, D E

    2013-10-10

    A revised mechanism for the oxidation of the excited state of Ru(bpy)3(2+) with the persulfate anion is described in this work. The formation of the precursor complex in the electron transfer reaction involves ion pairing between the metal complex in ground and excited states and S2O8(2-). The equilibrium constant for the ion-pair formation (K(IP) = 2.7 M(-1)) was determined from electrochemical measurements and analysis of thermal reaction between Ru(bpy)3(2+) and persulfate. It was found to be consistent with the calculated value estimated from the Debye-Hückel model. The analysis of rate constants for reactions between persulfate and various metal complexes indicates that thermal and photochemical reactions most likely proceed through a common pathway. Extremely high reorganization energy (ca. 3.54 eV) for the electron transfer obtained from fitting experimental data with the Marcus equation is indicative of significant nuclear reorganization during the electron transfer step. In view of these results the electron transfer can be described as dissociative probably involving substantial elongation or complete scission of the O-O bond. The proposed model accurately describes experimental results for the quenching of *Ru(bpy)3(2+) over a wide range of persulfate concentrations and resolves some discrepancies between the values of K(IP) and k(et) previously reported. The implications of various factors such as the ionic strength and dielectric constant of the medium are discussed in relation to measurements of the quantum yields in photodriven oxidation reactions employing the Ru(bpy)3(2+)/persulfate couple. PMID:24040757

  6. Oxidative condensation reactions of (diethylenetriamine)cobalt(III) complexes with substituted bis(pyridin-2-yl)methane ligands

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangting; Hockless, David C. R.; Willis, Anthony C.; Jackson, W. Gregory

    2005-04-01

    The synthesis and characterisation of Co(III) complexes derived from a condensation reaction with a central or terminal nitrogen of a dien ligand and the α-carbon of a range of substituted bis(pyridin-2-yl)methane ligands are described. Aerial oxidation of bpm {bis(pyridin-2-yl)methane with Co(II)/dien or direct reaction with Co(dien)Cl 3 provided in low yield a single C-N condensation product 1 (at the primary terminal NH 2) after the pyridyl -CH 2- is formally oxidised to -CH +-. The methyl substituted ligand bpe {1,1-bis(pyridin-2-yl)ethane} behaves likewise, except both terminal (prim) and central (sec) amines condense to yield isomeric products 2 and 3. Two of these three materials have been characterised by single crystal X-ray crystallography. The corresponding reactions for the bis(pyridyl) ligand bpk {bis(pyridin-2-yl)ketone} provided C-N condensation products without the requirement for oxidation at the α-C center; two carbinolamine complexes in different geometrical configurations resulted, mer-anti-[Co(dienbpc)Cl]ZnCl 4, 5, and unsym- fac-[Co(dienbpc)Cl]ZnCl 4, 6, {dienbpc=[2-(2-aminoethylamino)-ethylamino]-di-pyridin-2-yl-methanol}. In addition, a novel complex, [Co(bpk)(bpd-OH)Cl]ZnCl 4, 4, in which one bidentate N, N-bonded bpk ligand and one tridentate N, O, N-bonded bpd (the diol from bpk+OH -) were coordinated, was obtained via the Co(II)/O 2 synthetic route. When the bpc ligand (bpc=bis(pyridin-2-yl)methanol) was employed directly as a reagent along with dien, no condensation reactions were observed, but rather a single isomeric complex [Co(dien)(bpc)]Cl.ZnCl 4, 7, in which the ligand bpc acted as a N,N,O-bonded tridentate ligand rather than as a N,N-bidentate ligand was isolated. 13C, 1D and 2D 1H NMR studies are reported for all the complexes; they establish the structures unambiguously.

  7. Water-medium and solvent-free organic reactions over a bifunctional catalyst with Au nanoparticles covalently bonded to HS/SO3H functionalized periodic mesoporous organosilica.

    PubMed

    Zhu, Feng-Xia; Wang, Wei; Li, He-Xing

    2011-08-01

    An operationally simple approach for the preparation of a new class of bifunctional Au nanoparticle-acid catalysts has been developed. In situ reduction of Au(3+) with HS-functionalized periodic mesoporous organosilicas (PMOs) creates robust, fine Au nanoparticles and concomitantly produces a sulfonic acid moiety strongly bonded to PMOs. Characterizations of the nanostructures reveal that Au nanoparticles are formed with uniformed, narrow size distribution around 1-2 nm, which is very critical for essential catalytic activities. Moreover, the Au nanoparticles are mainly attached onto the pore surface rather than onto the outer surface with ordered mesoporous channels, allowing for maximal exposure to reaction substrates while minimizing Au nanoparticle leaching. Their higher S(BET), V(P), and D(P) than either the Au-HS-PMO(Et) or the Au/SO(3)H-PMO(Et) render the catalyst with comparably even higher catalytic efficiency than its homogeneous counterparts. Furthermore, the unique amphiphilic compartment of the Au-HS/SO(3)H-PMO(Et) nanostructures enables organic reactions to proceed efficiently in a pure aqueous solution without using any organic solvents or even without water. As demonstrated experimentally, remarkably, the unique bifunctional Au-HS/SO(3)H-PMO(Et) catalyst displays higher efficiencies in promoting water-medium alkyne hydration, intramolecular hydroamination, styrene oxidation, and three-component coupling reactions and even the solvent-free alkyne hydration process than its homogeneous catalysts. The robust catalyst can be easily recycled and used repetitively at least 10 times without loss of catalytic efficiency. These features render the catalyst particularly attractive in the practice of organic synthesis in an environmentally friendly manner. PMID:21707062

  8. Long-term bone tissue reaction to polyethylene oxide/polybutylene terephthalate copolymer (Polyactive) in metacarpophalangeal joint reconstruction.

    PubMed

    Waris, Eero; Ashammakhi, Nureddin; Lehtimäki, Mauri; Tulamo, Riitta-Mari; Törmälä, Pertti; Kellomäki, Minna; Konttinen, Yrjö T

    2008-06-01

    The poly-L/D-lactide 96/4 joint scaffolds are used to engineer fibrous tissue joints in situ for the reconstruction of metacarpophalangeal joints. In this experimental study, a supplementary elastomeric stem made of Polyactive 1000PEO70PBT30 (a segmented block copolymer of polyethylene oxide and polybutylene terephtalate with 70/30 PEO/PBT ratio) was used to anchor the joint scaffold in the arthroplasty space. Eleven resected fifth metacarpophalangeal joints of minipig were reconstructed and evaluated radiologically and histologically for 3 years. Plain joint scaffold and Swanson silicone implant arthroplasties (11 of each) in metacarpophalangeal joints of minipig served as controls. Altogether fore limbs of eighteen minipigs were operated for the study. Deleterious tissue reaction with dramatic signs of osteolysis and inflammatory foreign-body reaction was observed around the Polyactive stems. The mean maximum diameter of the osteolytic stem cavity was statistically wider when compared to the mean maximum diameter of Swanson implant group during the first postoperative year. Numerous osteoclasts were found at the margins of the osteolytic areas. No direct bone contact could be seen. At 1 year osteoblastic regeneration and formation of new trabecular bone followed. Finally the foreign-body reaction settled, but the adjoining bones were at this stage highly sclerotic and composed of coarse trabeculae. In contrary to previous in vivo studies suggesting biocompatibility, osteoconductivity and capability to bond to bone, Polyactive 1000PEO70PBT30 stem in this setting caused massive osteolytic lesions and foreign-body reactions. PMID:18336902

  9. Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh(111)

    NASA Astrophysics Data System (ADS)

    Gibson, K. D.; Viste, M.; Sibener, S. J.

    2006-10-01

    Supersonic molecular beams have been used to determine the yield of CO from the partial oxidation of CH4 on a Rh(111) catalytic substrate, CH4+(1/2)O2→CO +2H2, as a function of beam kinetic energy. These experiments were done under ultrahigh vacuum conditions with concurrent molecular beams of O2 and CH4, ensuring that there was only a single collision for the CH4 to react with the surface. The fraction of CH4 converted is strongly dependent on the normal component of the incident beam's translational energy, and approaches unity for energies greater than ˜1.3eV. Comparison with a simplified model of the methane-Rh(111) reactive potential gives insight into the barrier for methane dissociation. These results demonstrate the efficient conversion of methane to synthesis gas, CO +2H2, are of interest in hydrogen generation, and have the optimal stoichiometry for subsequent utilization in synthetic fuel production (Fischer-Tropsch or methanol synthesis). Moreover, under the reaction conditions explored, no CO2 was detected, i.e., the reaction proceeded with the production of very little, if any, unwanted greenhouse gas by-products. These findings demonstrate the efficacy of overcoming the limitations of purely thermal reaction mechanisms by coupling nonthermal mechanistic steps, leading to efficient C-H bond activation with subsequent thermal heterogeneous reactions.

  10. Applied reaction dynamics: efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh111.

    PubMed

    Gibson, K D; Viste, M; Sibener, S J

    2006-10-01

    Supersonic molecular beams have been used to determine the yield of CO from the partial oxidation of CH4 on a Rh111 catalytic substrate, CH4+12O2-->CO+2H2, as a function of beam kinetic energy. These experiments were done under ultrahigh vacuum conditions with concurrent molecular beams of O2 and CH4, ensuring that there was only a single collision for the CH4 to react with the surface. The fraction of CH4 converted is strongly dependent on the normal component of the incident beam's translational energy, and approaches unity for energies greater than approximately 1.3 eV. Comparison with a simplified model of the methane-Rh111 reactive potential gives insight into the barrier for methane dissociation. These results demonstrate the efficient conversion of methane to synthesis gas, CO+2H2, are of interest in hydrogen generation, and have the optimal stoichiometry for subsequent utilization in synthetic fuel production (Fischer-Tropsch or methanol synthesis). Moreover, under the reaction conditions explored, no CO2 was detected, i.e., the reaction proceeded with the production of very little, if any, unwanted greenhouse gas by-products. These findings demonstrate the efficacy of overcoming the limitations of purely thermal reaction mechanisms by coupling nonthermal mechanistic steps, leading to efficient C-H bond activation with subsequent thermal heterogeneous reactions. PMID:17029475

  11. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the O2 addition reaction pathways.

    PubMed

    Shiroudi, A; Deleuze, M S; Canneaux, S

    2015-05-28

    Atmospheric oxidation of the naphthalene-OH adduct [C10H8OH]˙ (R1) by molecular oxygen in its triplet electronic ground state has been studied using density functional theory along with the B3LYP, ωB97XD, UM05-2x and UM06-2x exchange-correlation functionals. From a thermodynamic viewpoint, the most favourable process is O2 addition at the C2 position in syn mode, followed by O2 addition at the C2 position in anti mode, O2 addition at the C4 position in syn mode, and O2 addition at the C4 position in anti mode, as the second, third and fourth most favourable processes. The syn modes of addition at these positions are thermodynamically favoured over the anti ones by the formation of an intramolecular hydrogen bond between the hydroxyl and peroxy substituents. Analysis of the computed structures, bond orders and free energy profiles demonstrate that the reaction steps involved in the oxidation of the naphthalene-OH adduct by O2 satisfy Hammond's principle. Kinetic rate constants and branching ratios under atmospheric pressure and in the fall-off regime have been supplied, using transition state and RRKM theories. By comparison with experiment, these data confirm the relevance of a two-step reaction mechanism. Whatever the addition mode, O2 addition in C4 position is kinetically favoured over O2 addition in C2 position, in contrast with the expectations drawn from thermodynamics and reaction energies. Under a kinetic control of the reaction, and in line with the computed reaction energy barriers, the most efficient process is O2 addition at the C4 position in syn mode, followed by O2 addition at the C2 position in syn mode, O2 addition at the C4 position in anti mode, and O2 addition at the C2 position in anti mode as the second, third and fourth most rapid processes. The computed branching ratios also indicate that the regioselectivity of the reaction decreases with increasing temperatures and decreasing pressures. PMID:25942699

  12. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings

    PubMed Central

    2013-01-01

    Background One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2΄-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. Results We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H2O2 loadings can be used that may result in up to a 50-65% decrease in H2O2 application (from 100 mg H2O2/g biomass to 35–50 mg/g) with only minor losses in glucose and xylose yield, (2) a 60% decrease in the catalyst concentration from 5.0 mM to 2.0 mM (corresponding to a catalyst loading of 25 μmol/g biomass to 10 μmol/g biomass) can be achieved without a subsequent loss in glucose yield, (3) an order of magnitude improvement in the time required for pretreatment (minutes versus hours or days) can be realized using the catalyzed pretreatment approach, and (4) enzyme dosage can be reduced to less than 30 mg protein/g glucan and potentially further with only minor losses in glucose and xylose yields. In addition, we established that the reaction rate is improved in both catalyzed and uncatalyzed AHP pretreatment by increased solids concentrations. Conclusions This work explored the relationship between reaction conditions impacting a catalyzed oxidative pretreatment of woody biomass and identified that significant decreases in the H2O2, catalyst, and enzyme loading on the biomass as well as decreases in the pretreatment time could be realized with only minor losses in the subsequent sugar released enzymatically. Together these changes would have positive implications for the economics of a process based on this pretreatment approach. PMID:23971902

  13. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.

    PubMed

    Yu, Seung-Ho; Lee, Soo Hong; Lee, Dong Jun; Sung, Yung-Eun; Hyeon, Taeghwan

    2016-04-01

    Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications. PMID:26627913

  14. Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction.

    PubMed

    Zhu, Chengzhou; Wen, Dan; Leubner, Susanne; Oschatz, Martin; Liu, Wei; Holzschuh, Matthias; Simon, Frank; Kaskel, Stefan; Eychmüller, Alexander

    2015-05-01

    A class of novel nickel cobalt oxide hollow nanosponges were synthesized through a sodium borohydride reduction strategy. Due to their porous and hollow nanostructures, and synergetic effects between their components, the optimized nickel cobalt oxide nanosponges exhibited excellent catalytic activity towards oxygen evolution reaction. PMID:25855058

  15. Preparation of fluoro-functionalized graphene oxide via the Hunsdiecker reaction.

    PubMed

    Xing, Ruiguang; Li, Yanan; Yu, Huitao

    2016-01-01

    We report our effort in the development of a new synthetic method for fluoro-functionalized graphene oxide, which was prepared via the Hunsdiecker reaction, and the treatment of carboxylated graphene oxide with selectfluor at 90°C for 10 h under an atmosphere of nitrogen, using silver nitrate as a catalyst. PMID:26524464

  16. AQUEOUS-PHASE OXIDATION OF SLUDGE USING THE VERTICAL REACTION VESSEL SYSTEM

    EPA Science Inventory

    The overall objective of the study was to provide plant-scale operating data on the wet-oxidation of municipal wastewater sludge utilizing the Vertical Reaction Vessel System and the effect of the return flow from the wet-oxidation process on the operation of the wastewater treat...

  17. Ceramic oxide reactions with V2O5 and SO3

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Williams, C. E.

    1985-01-01

    Ceramic oxides are not inert in combustion environments, but can react with, inter alia, SO3, and Na2SO4 to yield low melting mixed sulfate eutectics, and with vanadium compounds to produce vanadates. Assuming ceramic degradation to become severe only when molten phases are generated in the surface salt (as found for metallic hot corrosion), the reactivity of ceramic oxides can be quantified by determining the SO3 partial pressure necessary for molten mixed sulfate formation with Na2SO3. Vanadium pentoxide is an acidic oxide that reacts with Na2O, SO3, and the different ceramic oxides in a series of Lux-Flood type of acid-base displacement reactions. To elucidate the various possible vanadium compound-ceramic oxide interactions, a study was made of the reactions of a matrix involving, on the one axis, ceramix oxides of increasing acidity, and on the other axis, vanadium compounds of increasing acidity. Resistance to vanadium compound reaction increased as the oxide acidity increased. Oxides more acidic than ZrO2 displaced V2O5. Examination of Y2O3- and CeO2-stabilized ZrO2 sintered ceramics which were degraded in 700 C NaVO3 has shown good agreement with the reactions predicted above, except that the CeO2-ZrO2 ceramic appears to be inexplicably degraded by NaVO3.

  18. EFFECTS OF SOLAR RADIATION ON MANGANESE OXIDE REACTIONS WITH SELECTED ORGANIC COMPOUNDS

    EPA Science Inventory

    The effects of sunlight on aqueous redox reactions between manganese oxides (MnOx) and selected organic substances are reported. o sunlight-induced rate enhancement was observed for the MnOx oxidation of substituted phenols, anisole, o-dichlorobenzene, or p-chloroaniline. n the o...

  19. Copper N-Heterocyclic Carbene: A Catalyst for Aerobic Oxidation or Reduction Reactions.

    PubMed

    Zhan, Le-Wu; Han, Lei; Xing, Ping; Jiang, Biao

    2015-12-18

    Copper N-heterocyclic carbene complexes can be readily used as catalysts for both aerobic oxidation of alcohols to aldehydes and reduction of imines to amines. Our methodology is universal for aromatic substrates and shows versatile tolerance to potential cascade reactions. A one-pot tandem synthetic strategy could afford useful imines and secondary amines via an oxidation-reduction strategy. PMID:26633757

  20. Aromatic C-H Bond Functionalization Induced by Electrochemically in Situ Generated Tris(p-bromophenyl)aminium Radical Cation: Cationic Chain Reactions of Electron-Rich Aromatics with Enamides.

    PubMed

    Li, Long-Ji; Jiang, Yang-Ye; Lam, Chiu Marco; Zeng, Cheng-Chu; Hu, Li-Ming; Little, R Daniel

    2015-11-01

    An effective Friedel-Crafts alkylation reaction of electron-rich aromatics with N-vinylamides, induced by electrochemically in situ-generated TBPA radical cation, has been developed; the resulting adducts are produced in good to excellent yields. In the "ex-cell" type electrolysis, TBPA is transformed to its oxidized form in situ and subsequently employed as an electron transfer reagent to initiate a cationic chain reaction. An easily recoverable and reusable polymeric ionic liquid-carbon black (PIL-CB) composite was also utilized as a supporting electrolyte for the electrochemical generation of TBPA cation radical, without sacrificing efficiency or stability after four electrolyses. Cyclic voltammetry analysis and the results of control experiments demonstrate that the reaction of electron-rich aromatics and N-vinylamides occurs via a cationic chain reaction, which takes place though an oxidative activation of a C-H bond of electron-rich aromatics instead of oxidation of the N-vinylamide as previously assumed. PMID:26444498

  1. Hydrogen bond network around the semiquinone of the secondary quinone acceptor Q(B) in bacterial photosynthetic reaction centers.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2015-05-01

    By utilizing a combined pulsed EPR and DFT approach, the high-resolution structure of the QB site semiquinone (SQB) was determined. The development of such a technique is crucial toward an understanding of protein-bound semiquinones on the structural level, as (i) membrane protein crystallography typically results in low resolution structures, and (ii) obtaining protein crystals in the semiquinone form is rarely feasible. The SQB hydrogen bond network was investigated with Q- (∼34 GHz) and X-band (∼9.7 GHz) pulsed EPR spectroscopy on fully deuterated reactions centers from Rhodobacter sphaeroides. Simulations in the SQB g-tensor reference frame provided the principal values and directions of the H-bond proton hyperfine tensors. Three protons were detected, one with an anisotropic tensor component, T = 4.6 MHz, assigned to the histidine NδH of His-L190, and two others with similar anisotropic constants T = 3.2 and 3.0 MHz assigned to the peptide NpH of Gly-L225 and Ile-L224, respectively. Despite the strong similarity in the peptide couplings, all hyperfine tensors were resolved in the Q-band ENDOR spectra. The Euler angles describing the series of rotations that bring the hyperfine tensors into the SQB g-tensor reference frame were obtained by least-squares fitting of the spectral simulations to the ENDOR data. These Euler angles show the locations of the hydrogen bonded protons with respect to the semiquinone. Our geometry optimized model of SQB used in previous DFT work is in strong agreement with the angular constraints from the spectral simulations, providing the foundation for future joint pulsed EPR and DFT semiquinone structural determinations in other proteins. PMID:25885036

  2. Mutagenicity screening of reaction products from the enzyme-catalyzed oxidation of phenolic pollutants

    SciTech Connect

    Massey, I.J.; Aitken, M.D.; Ball, L.M.; Heck, P.E. . Dept. of Environmental Sciences and Engineering)

    1994-11-01

    Phenol-oxidizing enzymes such as peroxidases, laccases, and mushroom polyphenol oxidase are capable of catalyzing the oxidation of a wide range of phenolic pollutants. Although the use of these enzymes in waste-treatment applications has been proposed by a number of investigators, little information exists on the toxicological characteristics of the oxidation products. The enzymes chloroperoxidase, horseradish peroxidase, lignin peroxidase, and mushroom polyphenol oxidase were used in this study to catalyze the oxidation of phenol, several mono-substituted phenols, and pentachlorophenol. Seventeen reaction mixtures representing selected combinations of enzyme and parent phenol were subjected to mutagenicity screening using the Ames Salmonella typhimurium plate incorporation assay; five selected mixtures were also incubated with the S9 microsomal preparation to detect the possible presence of promutagens. The majority of reaction mixtures tested were not directly mutagenic, and none of those tested with S9 gave a positive response. Such lack of mutagenicity of enzymatic oxidation products provides encouragement for establishing the feasibility of enzyme-catalyzed oxidation as a waste-treatment process. The only positive responses were obtained with reaction products from the lignin peroxidase-catalyzed oxidation of 2-nitrophenol and 4-nitrophenol. Clear positive responses were observed when strain TA100 was incubated with 2-nitrophenol reaction-product mixtures, and when strain TA98 was incubated with the 4-nitrophenol reaction mixture. Additionally, 2,4-dinitrophenol was identified as a reaction product from 4-nitrophenol, and preliminary evidence indicates that both 2,4- and 2,6-dinitrophenol are produced from the oxidation of 2-nitrophenol. Possible mechanism by which these nitration reactions occur are discussed.

  3. The Effect of Si contents on the reaction-bonded Si3N4/SiC composite ceramics

    NASA Astrophysics Data System (ADS)

    Li, J.; Yuan, W. J.; Deng, C. J.; Zhu, H. X.

    2013-12-01

    Effect of Si contents on reaction-bonded Si3N4/SiC composite ceramics under pressureless was investigated. Si3N4/SiC composite ceramics were sintered at 1600 °C under nitrogen atmosphere by using SiC powders (1.5μm), Si powders (74μm) with different contents 37~55wt% and sintering additives Y2O3 as raw materials. The phases, microstructure and mechanical property were characterized by XRD, SEM, and compressive strength tests. The results demonstrated that when the content of Si powders was 37wt%, the more dense samples with the bulk density of 2.41 g/cm3 and the higher compressive strength of 319 MPa could be obtained under pressureless.

  4. Studies on the scale-up of the microwave-assisted nitridation and sintering of reaction-bonded silicon nitride

    SciTech Connect

    Kiggans, J.O.: Tiegs, T.N.; Kimrey, H.D.

    1996-05-01

    Studies using laboratory test samples have shown that microwave heating produces sintered reaction-bonded silicon nitride materials with improved properties. The final challenge for processing this material by microwave heating is the development of a technology for processing larger batch-size quantities of these materials. Initial microwave scale-up experiments were performed using powder compacts of a bucket tappet geometry. In experiments using microwave-transparent boron nitride sample crucibles, temperature gradients within some crucibles led to larger variations in the sample densities than were obtained with the conventionally processed samples. The use of a microwave-suscepter type crucible made of silicon carbide and boron nitride resulted in an improved temperature uniformity and in density variations comparable to those obtained for the control groups.

  5. Thermal effects on the mechanical properties of SiC fibre reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Phillips, R. E.

    1990-01-01

    The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.

  6. Processing and properties of SiC whisker- and particulate-reinforced reaction bonded Si3N4

    NASA Technical Reports Server (NTRS)

    Lightfoot, A.; Ewart, L.; Haggerty, J.; Cai, Z. Q.; Ritter, J.; Nair, S.

    1991-01-01

    The microstructure and mechanical properties of reaction bonded Si3N4 (RBSN) reinforced with SiC whiskers of particles were investigated using RBSN composites made from colloidally pressed octanol dispersions of high-purity Si powders mixed with either SiC whiskers or alpha-SiC particles. Results of investigations, revealing high conversions of Si to Si3N4, specific surface areas, and constant relative densities and strengths, showed that the uniform microstructure and small flaw size of the matrix were maintained in the composites and that no degradation of the reinforcements was taking place. Neither the monolithic nor the composite materials exhibited R-curve behavior. A modest increase in fracture toughness was observed only in the RBSN containing 33 vol pct SiC(p).

  7. Mechanical behavior of fiber reinforced SiC/RBSN ceramic matrix composites - Theory and experiment. [Reaction Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Chulya, Abhisak; Gyekenyesi, John P.; Bhatt, Ramakrishna T.

    1991-01-01

    The mechanical behavior of continuous fiber reinforced SiC/RBSN (Reaction Bonded Silicon Nitride) composites with various fiber contents is evaluated. Both catastrophic and noncatastrophic failures are observed in tensile specimens. Damage and failure mechanisms are identified via in-situ monitoring using NDE (nondestructive evaluation) techniques throughout the loading history. Effects of fiber/matrix interface debonding (splitting) parallel to fibers are discussed. Statistical failure behavior of fibers is also observed, especially when the interface is weak. Micromechanical models incorproating residual stresses to calculate the critical matrix cracking strength, ultimate strength, and work of pull-out are reviewed and used to predict composite response. For selected test problems, experimental measurements are compared to analytical predictions.

  8. Mechanical properties of SiC fiber-reinforced reaction-bonded Si3N4 composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1985-01-01

    The room temperature mechanical and physical properties of silicon carbide fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) have been evaluated. The composites contained 23 and 40 volume fraction of aligned 140 micro m diameter chemically vapor deposited SiC fibers. Preliminary results for composite tensile and bend strengths and fracture strain indicate that the composites displayed excellent properties when compared with unreinforced RBSN of comparable porosity. Fiber volume fraction showed little influence on matrix first cracking strain but did influence the stressed required for matrix first cracking and for ultimate composite fracture strength. It is suggested that by reducing matrix porosity and by increasing the volume fraction of the large diameter SiC fiber, it should be possible to further improve the composite stress at which the matrix first cracks.

  9. Site-Specific Conjugation of Peptides and Proteins via Rebridging of Disulfide Bonds Using the Thiol-Yne Coupling Reaction.

    PubMed

    Griebenow, Nils; Dilmaç, Alicia M; Greven, Simone; Bräse, Stefan

    2016-04-20

    Herein, we describe an extension of our previously reported photomediated disulfide rebridging methodology to the conjugation of peptides and proteins. The methodology proved to be reproducible with various alkynes and different peptides. This study includes the first rebridging of the disulfide bond of a peptide through a thiol-yne reaction with a cyclooctyne. In all cases, the rebridging was proven by MS analyses and confirmed by the absence of olefinic protons on (1)H NMR spectra of the resulting products. Finally, this one-pot reduction thiol-yne conjugation was successfully applied to an antibody Fab fragment with a promising conversion, which set a good ground for the future syntheses of new protein and antibody conjugates. PMID:27031217

  10. Bismuth(iii)dichalcogenones as highly active catalysts in multiple C-C bond formation reactions.

    PubMed

    Srinivas, Katam; Sathyanarayana, Arruri; Naga Babu, Chatla; Prabusankar, Ganesan

    2016-03-15

    Thirteen new bismuth(iii) dichalcogenone derivatives of triflates and halides were synthesized and structurally characterized. The mono, di, tetra and heptanuclear complexes were isolated with different bismuth(iii) coordination environments. These newly isolated bismuth(iii)dichalcogenones were characterized by multinuclear NMR, FT-IR, UV-vis, TGA and single crystal X-ray diffraction techniques. These complexes were tested for the synthesis of symmetrical triaryl- or triheteroarylmethanes and the catalysts were found to be highly active. In particular, the selone complexes were relatively more active than thione complexes. Subsequently, the scope of the catalytic reactions was further explored with different substituents. PMID:26891252

  11. Trinuclear organooxotin assemblies from solvothermal synthesis reaction: Crystal structure, hydrogen bonding and π π stacking interaction

    NASA Astrophysics Data System (ADS)

    Ma, Chunlin; Sun, Junshan; Zhang, Rufen

    2007-05-01

    Two new trinuclear mono-organooxotin(IV) complexes with 2,3,4,5-tetrafluorobenzoic acid and sodium perchlorate of the types: [(SnR) 3(OH)(2,3,4,5-F 4C 6HCO 2) 4 · ClO 4] · [O 2CC 6HF 4](R = PhCH 2, 1; o- F-PhCH 2 for 2), have been solvothermally synthesized and structurally characterized by elemental, IR, 1H, 13C and 119Sn NMR and X-ray crystallography diffraction analyses. Complex 2 is also characterized by X-ray crystallography diffraction analyses. In complex 2, four carboxyl groups and a perchlorate bridged three tin atoms in a cyclohexane chair arrangement and form the basic framework. A hydroxyl group comprises the oxygen components of the stannoxane ring system. In these complexes, weak but significant intramolecular hydrogen bonding and π-π stacking interaction are also shown. These contacts lead to aggregation and supramolecular assembly of complexes 1 and 2 into 1D or 2D framework.

  12. Bond cleavage reactions in the tripeptide trialanine upon free electron capture

    NASA Astrophysics Data System (ADS)

    Puschnigg, Benjamin; Huber, Stefan E.; Scheier, Paul; Probst, Michael; Denifl, Stephan

    2014-05-01

    In the present study we performed dissociative electron attachment (DEA) measurements with the tripeptide trialanine, C9H17N3O4, utilizing a crossed electron-molecular beam experiment with high electron energy resolution (~100 meV). Anion efficiency yields as a function of the incident electron energy are obtained for the most abundant anions up to electron energies of ~4 eV. Quantum chemical calculations are performed to determine the thermochemical thresholds for the anions observed in the measurements. There is no evidence of a molecular anion with lifetime of mass spectrometric timescales. The dehydrogenated closed shell anion (M-H)- is one of the fragment anions observed for which the calculations show that H-loss is energetically possible from carboxyl, as well as amide groups. In contrast to the dipeptide dialanine and monomer alanine the cleavage of the N-Cα bond in the peptide chain is already possible by attachment of electrons at ~0 eV. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  13. Fluorine-Doped and Partially Oxidized Tantalum Carbides as Nonprecious Metal Electrocatalysts for Methanol Oxidation Reaction in Acidic Media.

    PubMed

    Yue, Xin; He, Chunyong; Zhong, Chengyong; Chen, Yuanping; Jiang, San Ping; Shen, Pei Kang

    2016-03-01

    A nonprecious metal electrocatalyst based on fluorine-doped tantalum carbide with an oxidative surface on graphitized carbon (TaCx Fy Oz /(g) C) is developed by using a simple one-pot in situ ion exchange and adsorption method, and the TaCx Fy Oz /(g) C shows superior performance and durability for methanol oxidation reaction and extreme tolerance to CO poisoning in acidic media. PMID:26779940

  14. THE USE OF ISOTOPE CROSSOVER EXPERIMENTS IN INVESTIGATING CARBON-CARBON BOND FORMING REACTIONS OF BINUCLEAR DIALKYL COBALT COMPLEXES

    SciTech Connect

    Bergman, Robert G.

    1980-01-01

    Our present understanding of the mechanisms of organometallic reactions stems almost completely from investigation of complexes containing only one metal. Recently interest has been increasing in the synthesis, structure elucidation and reaction mechanisms of polynuclear clusters, complexes containing more than one metal. This attention derives partially from the possibility that polynuclear catalysts and reagents might be designed in such a way that the metals could interact, generating cooperative systems which might be much more selective than their mononuclear analogs. Another stimulant to this work has been the relationship of cluster complexes to larger multi-metal systems, such as heterogeneous catalysts. Many polynuclear clusters have been prepared and characterized, and some of these have been found to function as unique catalysts or catalyst precursors. However, very little is yet known about how chemical transformations take place at multinuclear reaction centers. Given this paucity of information, they decided a few years ago to initiate mechanistic study of simple cluster systems containing two metal centers, in which each of the metals has a {sigma}-bound organic ligand attached to it. They also choose to focus on reactions of these complexes in which new carbon-carbon or carbon-hydrogen bonds are formed. This Account describes the work on such a system: a binuclear alkyl cobalt complex capable of transferring both alkyl groups to a molecule of carbon monoxide. In this work they have adopted as one of our highest priorities the determination of whether the cluster 'holds together' during its reactions, a question that is in our opinion too often ignored in such studies. They have found that isotope crossover experiments provide a powerful tool for investigating this structural integrity questions, and in this Account they outline a number of examples in which such crossover experiments have provided important, and occasionally surprising, informationa bout the mechanisms involved in the reactions of binuclear cluster complexes. Also summarized are studies of the reactions of related mononuclear complexes which have provided information critical to understanding the chemistry of these binuclear system.

  15. Irrelevance of Carbon Monoxide Poisoning in the Methanol Oxidation Reaction on a PtRu Electrocatalyst.

    PubMed

    Chen, De-Jun; Tong, YuYe J

    2015-08-01

    Based on detailed in situ attenuated total-reflection-surface-enhanced IR reflection absorption spectroscopy (ATR-SEIRAS) studies of the methanol oxidation reaction (MOR) on Ru/Pt thin film and commercial Johnson-Matthey PtRu/C, a revised MOR enhancement mechanism is proposed in which CO on Pt sites is irrelevant but instead Pt-Ru boundary sites catalyze the oxygen insertion reaction that leads to the formation of formate and enhances the direct reaction pathway. PMID:26148459

  16. Determination of carbon by the oxidation reduction reaction with chromium

    NASA Technical Reports Server (NTRS)

    Mashkovich, L.; Kuteynikov, A. F.

    1978-01-01

    Free carbon was determined in silicon and boron carbides in ash, oxides, and other materials by oxidation to carbon dioxide with a mixture of K2Cr2O7 + H2SO4. The determination was made from the amount of CR(6) consumed, by adding excess Mohr's salt and titrating with a standard solution of KMnO4. The amount of Cr(6) self reduced was determined in a blank test. Optimum oxidation and conditions were achieved when the volumes of 5% k2Cr2Oz and H2SO4 were equal. The mixture was boiled for 1-2 hours using a reflex condenser. The volume should not be reduced, in order to avoid an increase in the sulfuric acid concentration. The relative error was 4-7% for 0.005-0.04 g C and less than or equal to 3.5% for 0.1 g C.

  17. Method for catalyzing oxidation/reduction reactions of simple molecules

    SciTech Connect

    Bicker, D.; Bonaventura, J.

    1988-06-14

    A method for oxidizing carbon monoxide to carbon dioxide is described comprising: (1) contacting, together, carbon monoxide, a nitrogen-containing chelating agent and water; wherein the chelating agent is at least one member selected from the group consisting of methmeoglobin bound to a support, ferric hemoglobin bound to a support, iron-containing porphyrins bound to a support, and sperm whale myoglobin bound to a support, wherein the support is glass, a natural fiber, a synthetic fiber, a gel, charcoal, carbon ceramic material, a metal oxide, a synthetic polymer, a zeolite, a silica compound of an alumina compound; and (2) obtaining carbon dioxide.

  18. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    SciTech Connect

    Medford, Andrew

    2012-02-16

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  19. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid

    PubMed Central

    2013-01-01

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation. PMID:24229051

  20. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  1. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  2. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction.

    PubMed

    Sanchez Casalongue, Hernan G; Ng, May Ling; Kaya, Sarp; Friebel, Daniel; Ogasawara, Hirohito; Nilsson, Anders

    2014-07-01

    An iridium oxide nanoparticle electrocatalyst under oxygen evolution reaction conditions was probed in situ by ambient-pressure X-ray photoelectron spectroscopy. Under OER conditions, iridium undergoes a change in oxidation state from Ir(IV) to Ir(V) that takes place predominantly at the surface of the catalyst. The chemical change in iridium is coupled to a decrease in surface hydroxide, providing experimental evidence which strongly suggests that the oxygen evolution reaction on iridium oxide occurs through an OOH-mediated deprotonation mechanism. PMID:24889896

  3. Rheological kinetics of thermo-sensitive supramolecular assemblies from poly( N-isopropyl acrylamide) and adenine-functionalized poly(ethylene oxide) stabilized by complementary multiple hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Wang; Kuo, Shiao-Wei

    2014-05-01

    In this study, we synthesized a poly( N-isopropylacrylamide) (PNIPAm) through the polymerization of N-isopropylacrylamide in distilled water with azodiisobutyronitrile as the initiator and a bisadenine-functionalized poly(ethylene oxide) (A-PEO-A) from the reaction of adenine with a difunctionalized toluenesulfonyl-PEO. When blended together in distilled water, PNIPAm and A-PEO-A formed supramolecular aggregates stabilized through complementary multiple hydrogen bonds between the amide groups of PNIPAm and the adenine units of A-PEO-A. Agrawal integral equation and rheometry revealed the rheological kinetics of supramolecular assemblies, which were influenced significantly by the spherical micelles, large associated aggregates of spherical micelles, network structures, and toroid structures formed in aqueous solutions.

  4. Method to Improve Indium Bump Bonding via Indium Oxide Removal Using a Multi-Step Plasma Process

    NASA Technical Reports Server (NTRS)

    Greer, H. Frank (Inventor); Jones, Todd J. (Inventor); Vasquez, Richard P. (Inventor); Hoenk, Michael E. (Inventor); Dickie, Matthew R. (Inventor); Nikzad, Shouleh (Inventor)

    2012-01-01

    A process for removing indium oxide from indium bumps in a flip-chip structure to reduce contact resistance, by a multi-step plasma treatment. A first plasma treatment of the indium bumps with an argon, methane and hydrogen plasma reduces indium oxide, and a second plasma treatment with an argon and hydrogen plasma removes residual organics. The multi-step plasma process for removing indium oxide from the indium bumps is more effective in reducing the oxide, and yet does not require the use of halogens, does not change the bump morphology, does not attack the bond pad material or under-bump metallization layers, and creates no new mechanisms for open circuits.

  5. Biomass Oxidation: Formyl C-H Bond Activation by the Surface Lattice Oxygen of Regenerative CuO Nanoleaves.

    PubMed

    Amaniampong, Prince N; Trinh, Quang Thang; Wang, Bo; Borgna, Armando; Yang, Yanhui; Mushrif, Samir H

    2015-07-27

    An integrated experimental and computational investigation reveals that surface lattice oxygen of copper oxide (CuO) nanoleaves activates the formyl C-H bond in glucose and incorporates itself into the glucose molecule to oxidize it to gluconic acid. The reduced CuO catalyst regains its structure, morphology, and activity upon reoxidation. The activity of lattice oxygen is shown to be superior to that of the chemisorbed oxygen on the metal surface and the hydrogen abstraction ability of the catalyst is correlated with the adsorption energy. Based on the present investigation, it is suggested that surface lattice oxygen is critical for the oxidation of glucose to gluconic acid, without further breaking down the glucose molecule into smaller fragments, because of C-C cleavage. Using CuO nanoleaves as catalyst, an excellent yield of gluconic acid is also obtained for the direct oxidation of cellobiose and polymeric cellulose, as biomass substrates. PMID:26119659

  6. REACTION OF BENZENE OXIDE WITH THIOLS INCLUDING GLUTATHIONE

    EPA Science Inventory

    This study accounts for the observations that the metabolism of benzene is dominated by the formation of phenol. As demonstrated here, the pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at ...

  7. Oxidation Reactions of Ethane over Ba-Ce-O Based Perovskites

    SciTech Connect

    Miller, James E.; Sault, Allen G.; Trudell, Daniel E.; Nenoff, Tina M.; Thoma, Steven G.; Jackson, Nancy B.

    1999-08-18

    Ethane oxidation reactions were studied over pure and Ca-, Mg-, Sr-, La-, Nd-, and Y-substituted BaCeO{sub 3} perovskites under oxygen limited conditions. Several of the materials, notably the Ca- and Y-substituted materials, show activity for complete oxidation of the hydrocarbon to CO{sub 2} at temperatures below 650 C. At higher temperatures, the oxidative dehydrogenation (ODH) to ethylene becomes significant. Conversions and ethylene yields are enhanced by the perovskites above the thermal reaction in our system in some cases. The perovskite structure is not retained in the high temperature reaction environment. Rather, a mixture of carbonates and oxides is formed. Loss of the perovskite structure correlates with a loss of activity and selectivity to ethylene.

  8. Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization: Selective C-N Bond Over C-S Bond Formation.

    PubMed

    Gogoi, Anupal; Guin, Srimanta; Rajamanickam, Suresh; Rout, Saroj Kumar; Patel, Bhisma K

    2015-09-18

    The higher propensity of C-N over C-S bond forming ability was demonstrated, through formal C-H functionalization during the construction of 4,5-disubstituted 1,2,4-triazole-3-thiones from arylidenearylthiosemicarbazides catalyzed by Cu(II). However, steric factors imparted by the o-disubstituted substrates tend to change the reaction path giving thiodiazole as the major or an exclusive product. Upon prolonging the reaction time, the in situ generated thiones are transformed to 4,5-disubstituted 1,2,4-triazoles via a desulfurization process. Two classes of heterocycles viz. 4,5-disubstituted 1,2,4-triazole-3-thiones and 4,5-disubstituted 1,2,4-triazoles can be synthesized from arylidenearylthiosemicarbazides by simply adjusting the reaction time. Desulfurization of 1,2,4-triazole-3-thiones is assisted by thiophilic Cu to provide 1,2,4-triazoles with concomitant formation of CuS and polynuclear sulfur anions as confirmed from scanning electron microscope and energy dispersive X-ray spectroscopy measurements. A one-pot synthesis of an antimicrobial compound has been successfully achieved following this strategy. PMID:26332253

  9. The reactions of imidogen with nitric oxide and molecular oxygen

    SciTech Connect

    Miller, J.A.; Melius, C.F.

    1991-01-01

    Using potential energy surface information from BAC-MP4 calculations and statistical-dynamical methods, we have calculated the branching fraction for the NH + NO reaction, NH + NO {r arrow} N{sub 2} + H (1) NH + NO {r arrow} N{sub 2}O + H (2). We find that reaction (2) dominates over the entire temperature range considered, 300 K < T < 3500 K, with f=k{sub 1}/(k{sub 1} + K{sub 2}) varying from about 0.07 at room temperature to about 0.20 at 3500 K. In addition, we have calculated rate coefficients for the two-channel process, NH + O{sub 2} {r arrow} HNO + O (3) NH + O{sub 2} {r arrow} NO + OH (4). In this case we find that reaction (4) dominates at low temperature, reaction (3) at high temperature. All these results are discussed in terms of the experimental results available and compared with previous theoretical investigations where appropriate. 21 refs., 4 figs., 3 tabs.

  10. The reactions of imidogen with nitric oxide and molecular oxygen

    SciTech Connect

    Miller, J.A.; Melius, C.F.

    1991-12-31

    Using potential energy surface information from BAC-MP4 calculations and statistical-dynamical methods, we have calculated the branching fraction for the NH + NO reaction, NH + NO {r_arrow} N{sub 2} + H (1) NH + NO {r_arrow} N{sub 2}O + H (2). We find that reaction (2) dominates over the entire temperature range considered, 300 K < T < 3500 K, with f=k{sub 1}/(k{sub 1} + K{sub 2}) varying from about 0.07 at room temperature to about 0.20 at 3500 K. In addition, we have calculated rate coefficients for the two-channel process, NH + O{sub 2} {r_arrow} HNO + O (3) NH + O{sub 2} {r_arrow} NO + OH (4). In this case we find that reaction (4) dominates at low temperature, reaction (3) at high temperature. All these results are discussed in terms of the experimental results available and compared with previous theoretical investigations where appropriate. 21 refs., 4 figs., 3 tabs.

  11. Electrophilic and nucleophilic reactions of the vinylidene complex (Cp(PMe sub 3 ) sub 2 Ru double bond C double bond C(SMe) sub 2 )BF sub 4 and its derivatives

    SciTech Connect

    Miller, D.C.; Angelici, R.J. )

    1991-01-01

    The cationic vinylidene complex (Cp(PMe{sub 3}){sub 2}Ru{double bond}C{double bond}C(SMe){sub 2})BF{sub 4} (1) undergoes addition of electrophiles such as HBF{sub 4}{center dot}Et{sub 2}O, (MeSSMe{sub 2})SO{sub 3}CF{sub 3}, and (Me{sub 3}O)BF{sub 4} to give the complexes ((Ru) = Cp(PMe{sub 3}){sub 2}Ru) {l brace}Ru(S(Me)C{double bond}(H)SMe){r brace}(BF{sub 4}){sub 2} (2a), {l brace}Ru(S(Me)C{double bond}C(SMe)(H)){r brace}(BF{sub 4}){sub 2} (2b), {l brace}Ru(S(Me)C{double bond}C(H)SMe){sub 2}{r brace}(BF{sub 4}){sub 2} (3), and (Ru{double bond}C{double bond}C(SMe{sub 2})(SMe))(BF{sub 4}){sub 2} (4). An X-ray diffraction investigation shows that 2a crystallizes in space group C2/c with a = 31.558 (5) {angstrom}, b = 10.492 (2) {angstrom}, c = 16.484 (5) {angstrom}, {beta} = 100.89 (2){degree}, and Z = 8. The reaction of 4 with phosphines results in the cleavage of MeS{sup +} to form the sulfonio acetylide (Cp(PMe{sub 3}){sub 2}Ru-C{triple bond}CSMe{sub 2})BF{sub 4} (5) and (MeS-PPh{sub 2}R){sup +} (R = Me, Ph). Anionic nucleophiles such as NaSR (R = Et, Me) displace Me{sub 2}S from 4 to yield the vinylidene complexes (Cp(PMe{sub 3}){sub 2}Ru{double bond}C{double bond}(SR)(SMe))BF{sub 4} (R = Et (7), R = Me (1)). Complex 4 also reacts with pyridines, 4-NC{sub 5}H{sub 4}R (R = H, Et, NMe{sub 2} (DMAP)), and SEt{sub 2} to displace Me{sub 2}S to yield the dicationic vinylidene complexes (Cp(PMe{sub 3}){sub 2}Ru{double bond}C{double bond}C(4-NC{sub 5}H{sub 4}R)(SMe))(BF{sub 4}){sub 2} (R = H (8), Et (9), NMe{sub 2} (10)) and (Cp(PMe{sub 3}){sub 2}Ru{double bond}C{double bond}C(SEt{sub 2})(SMe))(BF{sub 4}){sub 2} (11).

  12. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    SciTech Connect

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; Liu, Haiqing; Wong, Stanislaus S.

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication of crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.

  13. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    DOE PAGESBeta

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; Liu, Haiqing; Wong, Stanislaus S.

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication ofmore » crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.« less

  14. Evaluation of Salivary Nitric Oxide Levels in Smokers, Tobacco Chewers and Patients with Oral Lichenoid Reactions

    PubMed Central

    Jose, Joy Idiculla; Sivapathasundharam, B.; Sabarinath, B.

    2016-01-01

    Introduction Nitric oxide (NO), a free radical, acts as a signalling molecule affecting numerous physiological and pathological processes. Role of nitric oxide as a mediator in tobacco related habits and the resultant oral lichenoid reactions was assessed. Aim The aim of the study is to evaluate and compare the salivary nitric oxide levels in normal patients with that of smokers, tobacco chewers and patients with oral lichenoid reactions. Materials and Methods One hundred and twenty patients were enrolled in the study which included 30 healthy patients without any chronic inflammatory lesion and habit as controls (group I), 30 smokers without the habit of tobacco/betel nut chewing and any oral lesion (group II), 30 tobacco chewers without the habit of smoking and any oral lesion (group III) and 30 histologically confirmed cases of oral lichenoid reaction with the habit of tobacco usage (group IV). Saliva from these patients was collected and the nitrite concentration was assessed. Results Our results concluded that there was highly significant increase in the nitric oxide levels in smokers, tobacco chewers and patients with oral lichenoid reactions compared to that of controls. Also, there was a significant increase in nitric oxide levels in patients with smoking associated oral lichenoid reactions in comparison with smokers and in patients with lichenoid reactions associated with tobacco chewing in comparison with tobacco chewers. Conclusion Estimation of salivary nitric oxide levels is a simple, non-invasive procedure and could be analysed to suggest the role of nitric oxide in the pathogenesis of these lesions. The increased activity of the enzyme may indicate that nitric oxide has a pathophysiological role in these lesions. PMID:26894179

  15. Reaction of oleic acid particles with NO3 radicals: Products, mechanism, and implications for radical-initiated organic aerosol oxidation.

    PubMed

    Docherty, Kenneth S; Ziemann, Paul J

    2006-03-16

    The heterogeneous reaction of liquid oleic acid aerosol particles with NO3 radicals in the presence of NO2, N2O5, and O2 was investigated in an environmental chamber using a combination of on-line and off-line mass spectrometric techniques. The results indicate that the major reaction products, which are all carboxylic acids, consist of hydroxy nitrates, carbonyl nitrates, dinitrates, hydroxydinitrates, and possibly more highly nitrated products. The key intermediate in the reaction is the nitrooxyalkylperoxy radical, which is formed by the addition of NO3 to the carbon-carbon double bond and subsequent addition of O2. The nitrooxyalkylperoxy radicals undergo self-reactions to form hydroxy nitrates and carbonyl nitrates, and may also react with NO2 to form nitrooxy peroxynitrates. The latter compounds are unstable and decompose to carbonyl nitrates and dinitrates. It is noteworthy that in this reaction nitrooxyalkoxy radicals appear not to be formed, as indicated by the absence of the expected products of decomposition or isomerization of these species. This is different from gas-phase alkene-NO3 reactions, in which a large fraction of the products are formed through these pathways. The results may indicate that, for liquid organic aerosol particles in low NOx environments, the major products of the radical-initiated oxidation (including by OH radicals) of unsaturated and saturated organic compounds will be substituted forms of the parent compound rather than smaller decomposition products. These compounds will remain in the particle and can potentially enhance particle hygroscopicity and the ability of particles to act as cloud condensation nuclei. PMID:16526637

  16. Probing the Electronic Structure and Chemical Bonding of Mono-Uranium Oxides with Different Oxidation States: UOx(-) and UOx (x = 3-5).

    PubMed

    Su, Jing; Li, Wei-Li; Lopez, Gary V; Jian, Tian; Cao, Guo-Jin; Li, Wan-Lu; Schwarz, W H Eugen; Wang, Lai-Sheng; Li, Jun

    2016-02-25

    Uranium oxide clusters UOx(-) (x = 3-5) were produced by laser vaporization and characterized by photoelectron spectroscopy and quantum theory. Photoelectron spectra were obtained for UOx(-) at various photon energies with well-resolved detachment transitions and vibrational resolution for x = 3 and 4. The electron affinities of UOx were measured as 1.12, 3.60, and 4.02 eV for x = 3, 4, and 5, respectively. The geometric and electronic structures of both the anions and the corresponding neutrals were investigated by quasi-relativistic electron-correlation quantum theory to interpret the photoelectron spectra and to provide insight into their chemical bonding. For UOx clusters with x ≤ 3, the O atoms appear as divalent closed-shell anions around the U atom, which is in various oxidation states from U(II)(fds)(4) in UO to U(VI)(fds)(0) in UO3. For x > 3, there are no longer sufficient valence electrons from the U atom to fill the O(2p) shell, resulting in fractionally charged and multicenter delocalized valence states for the O ligands as well as η(1)- or η(2)-bonded O2 units, with unusual spin couplings and complicated electron correlations in the unfilled poly oxo shell. The present work expands our understanding of both the bonding capacities of actinide elements with extended spdf valence shells as well as the multitude of oxygen's charge and bonding states. PMID:26825216

  17. Gas-phase hydrodenitrogenation reactions of polynuclear heteroaromatic nitrogen compounds and selected intermediates with a 50% nickel oxide/aluminate supported on silica-alumina catalyst

    SciTech Connect

    Fish, R.H.; Heinemann, H. ); Michaels, J.N.; Moore, R.S. )

    1990-05-01

    The gas-phase hydrodenitrogenation (HDN) of quinoline, 1,2,3,4-tetrahydroquinoline, 2-propylaniline, and propylbenzene with a 50% nickel oxide/aluminate on SiO{sub 2}-Al{sub 2}O{sub 3} catalyst has been studied at 250{degree}C under 1 atm of hydrogen gas. Under these mild conditions, alkylaromatics are the predominant HDN products. In the reaction network of this catalytic process, quinoline is hydrogenated to 1,2,3,4-tetrahydroquinoline, which subsequently undergoes C-N bond hydrogenolysis to form 2-propylaniline and then propylbenzene. Significant alkyl side-chain hydrogenolysis occurs in parallel to these reactions, producing a mixture of alkylanilines and alkylbenzenes. Small amounts of alkylcyclohexanes are produced by hydrogenation of the alkylbenzenes. This network differs significantly from that of commercial HDN processes in which quinoline is hydrogenated fully to decahydroquinoline prior to C-H bond cleavage. Pseudo-first-order rate constants have been estimated for quinoline hydrogenation, alkylaniline formation, alkylaniline HDN, and alkylbenzene hydrogenation and compared to analogous data for commercial HDN. This comparison indicates that the activity of the nickel oxide/aluminate on SiO{sub 2}-Al{sub 2}O{sub 3} catalyst is within an order of magnitude of the activity of commercial HDN catalysts. The nickel oxide catalyst is irreversibly poisoned by sulfur and slowly deactivates during HDN due to coke formation; the coked catalyst can be regenerated by oxidation in air and subsequent reduction in hydrogen.

  18. Oxidation as an important factor of protein damage: Implications for Maillard reaction.

    PubMed

    Trnkova, L; Drsata, J; Bousova, I

    2015-06-01

    Protein oxidation, the process caused especially by reactive oxygen and nitrogen species, is thought to play a major role in various oxidative processes within cells and is implicated in the development of many human diseases. This review provides a brief overview of the protein oxidation with the emphasis on the types of oxidation (oxidation of protein backbone and amino acid residues side chains, site-specific metal-catalysed protein oxidation), oxidationdependent generation of protein hydroperoxides, carbonyl derivatives and protein-protein cross-linkages. Nonenzymatic glycoxidation (also known as Maillard reaction) as an important factor of protein damage, consequences of oxidative protein impairment and related diseases as well as means of monitoring and assessment of protein modifications are discussed. PMID:25963268

  19. Assessment of theoretical procedures for a diverse set of isomerization reactions involving double-bond migration in conjugated dienes

    NASA Astrophysics Data System (ADS)

    Yu, Li-Juan; Karton, Amir

    2014-09-01

    We introduce a representative database of 60 accurate diene isomerization energies obtained by means of the high-level, ab initio Wn-F12 thermochemical protocols. The isomerization reactions involve a migration of one double bond that breaks the π-conjugated system. The considered dienes involve a range of hydrocarbon functional groups, including linear, branched, and cyclic moieties. This set of benchmark isomerization energies allows an assessment of the performance of more approximate theoretical procedures for the calculation of π-conjugation stabilization energies in dienes. We evaluate the performance of a large number of density functional theory (DFT) and double-hybrid DFT (DHDFT) procedures. We find that, with few exceptions (most notably BMK-D3 and M05-2X), conventional DFT procedures have difficulty describing reactions of the type: conjugated diene → non-conjugated diene, with root mean square deviations (RMSDs) between 4.5 and 11.7 kJ mol-1. However, DHDFT procedures show excellent performance with RMSDs well below the ‘chemical accuracy' threshold.

  20. Theoretical study of reactions of HO{sub 2} in low-temperature oxidation of benzene

    SciTech Connect

    Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.; Kennedy, Eric M.; Mackie, John C.

    2010-07-15

    We have generated a set of thermodynamic and kinetic parameters for the reactions involving HO{sub 2} in the very early stages of benzene oxidation at low temperatures using density functional theory (DFT). In particular, we report the rate constants for the reactions of HO{sub 2} with benzene and phenyl. The calculated reaction rate constant for the abstraction of H-C{sub 6}H{sub 5} by HO{sub 2} is found to be in good agreement with the limited experimental values. HO{sub 2} addition to benzene is found to be more important than direct abstraction. We show that the reactions of HO{sub 2} with the phenyl radical generate the propagating radical OH in a highly exoergic reaction. The results presented herein should be useful in modeling the oxidation of aromatic compounds at low temperatures. (author)