Science.gov

Sample records for bone body composition

  1. Body Composition After Bone Marrow Transplantation in Childhood

    PubMed Central

    Ruble, Kathy; Hayat, Matthew; Stewart, Kerry J.; Chen, Allen

    2014-01-01

    Purpose/Objectives To describe the body composition and fat distribution of childhood bone marrow transplantation (BMT) survivors at least one year post-transplantation and examine the ability of the Centers for Disease Control and Prevention criteria to identify survivors with elevated body fat percentage. Design Cross-sectional, descriptive. Setting Pediatric oncology program at a National Cancer Institute–designated comprehensive cancer center. Sample 48 childhood BMT survivors (27 males and 21 females). Methods Measurements included dual-energy x-ray absorptiometry scan, height, weight, and physical activity. Descriptive statistics were reported and mixed-model linear regression models were used to describe findings and associations. Main Research Variables Total body fat percentage and central obesity (defined as a ratio of central to peripheral fat of 1 or greater). Findings Fifty-four percent of survivors had body fat percentages that exceeded recommendations for healthy body composition and 31% qualified as having central obesity. Previous treatment with total body irradiation was associated with higher body fat percentage and central obesity, and graft-versus-host disease was associated with lower body fat percentage. The body mass index (BMI) criteria did not correctly identify the BMT survivors who had elevated body fat percentage. Conclusions Survivors of childhood BMT are at risk for obesity and central obesity that is not readily identified with standard BMI criteria. Implications for Nursing Nurses caring for BMT survivors should include evaluation of general and central obesity in their assessments. Patient education materials and resources for healthy weight and muscle building should be made available to survivors. Research is needed to develop appropriate interventions. PMID:22374492

  2. Bone mineral density and body composition of collegiate modern dancers.

    PubMed

    Friesen, Karlie J; Rozenek, Ralph; Clippinger, Karen; Gunter, Kathy; Russo, Albert C; Sklar, Susan E

    2011-03-01

    This study investigates body composition (BC), bone mineral density (BMD), eating behaviors, and menstrual dysfunction in collegiate modern dancers. Thirty-one female collegiate modern dance majors (D), 18 to 25 years of age, and 30 age-matched controls (C) participated in the study. BC and BMD were measured using dual energy x-ray absorptiometry (DXA). Upper and lower body strength was assessed by chest and leg press one-repetition maximum tests. Participants completed three-day food records, and the diet was analyzed using nutritional software. Menstrual dysfunction (MD) and history of eating disorder (ED) data were collected via questionnaires. BC and BMD variables were analyzed using MANCOVA and frequency of ED and MD by Chi-Square analysis. BMD was greater in D than C at the spine (1.302 ± 0.135 g/cm(2) vs. 1.245 ± 0.098 g/cm(2)), and both the right hip (1.163 ± 0.111 g/cm(2) vs. 1.099 ± 0.106 g/cm(2)) and left hip (1.160 ± 0.114 g/cm(2) vs. 1.101 ± 0.104 g/cm(2); p ≤ 0.05). Total body fat percentage was lower in D than C (25.9 ± 4.2% vs. 32.0 ± 5.9%; p ≤ 0.05), and percent of fat distributed in the android region was also lower in D than C (28.0 ± 6.2% vs. 37.6 ± 8.6%; p ≤ 0.05). With regard to diet composition, only percent fat intake was lower in D than C (27.54 ± 6.8% vs. 31.5 ± 7.4%, p ≤ 0.05). A greater incidence of ED was reported by D than C (12.9% vs. 0%; p ≤ 0.05), as well as a greater incidence of secondary amenorrhea (41.9% vs 13.3%; p ≤ 0.05). No differences were found for incidence of primary amenorrhea, oligomenorrhea, or use of birth control. Strength values were higher in D than C for both chest press (30.1 ± 0.9 kg vs. 28.4 ± 1.0 kg; p ≤ 0.05) and leg press (170.7 ± 4.2 kg vs.163.1 ± 3.9 kg; p ≤ 0.05). It is concluded that the dancers in our study had a healthy body weight, yet reported a higher incidence of eating disorders and menstrual dysfunction, than non-dancers. These dancers' higher BMD may be

  3. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status

    PubMed Central

    Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  4. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status.

    PubMed

    Rodrigues Filho, Edil de Albuquerque; Santos, Marcos André Moura Dos; Silva, Amanda Tabosa Pereira da; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara E Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-03-01

    Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  5. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers.

    PubMed

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-12-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  6. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers

    PubMed Central

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-01-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  7. Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis.

    PubMed

    Rosen, Clifford J; Klibanski, Anne

    2009-05-01

    Disorders of body composition, including obesity and osteoporosis, have reached record proportions. Coincidentally, our understanding of the mechanisms controlling body mass also has greatly improved. Shared regulation at the hypothalamus and the bone marrow highlight major bone-fat interactions. The hypothalamus modulates fat and bone via the sympathetic nervous system by regulating appetite, insulin sensitivity, energy use, and skeletal remodeling. In the bone marrow, fat and bone cells arise from the same stem cells. Insights from disorders such as anorexia nervosa provide a new rationale for examining the mechanisms that link bone to fat. This article explores these relationships in the context of a new paradigm with implications for obesity and osteoporosis. PMID:19375545

  8. Effect of body composition on bone mineral density in Moroccan patients with juvenile idiopathic arthritis

    PubMed Central

    El Badri, Dalal; Rostom, Samira; Bouaddi, Ilham; Hassani, Asmae; Chkirate, Bouchra; Amine, Bouchra; Hajjaj-Hassouni, Najia

    2014-01-01

    Introduction The link between bone mass and body composition is widely recognized, but only few works were selectively performed on subjects with juvenile idiopathic arthritis. The aim of our study was to investigate the effect of body composition on bone mineral density (BMD) in Moroccan patients with juvenile idiopathic arthritis. Methods Thirty three children with juvenile idiopathic arthritis (JIA) were included in a cross-sectional study. The diagnosis of JIA was made according to the criteria of the International League of Association of Rheumatology (ILAR). Body mass index (BMI) was calculated from the ratio of weight/height2(kg/m2). Pubertal status was determined according to the Tanner criteria. Bone status, body composition and bone mineral content (BMC) were analyzed by using dual-energy X-ray absorptiometry (DXA). BMD was assessed at the lumbar spine (L1-L4) and at total body in (g/cm2). Total body fat tissue mass (FTM) and lean tissue mass (LTM) were also analyzed by DXA and expressed in kilograms. In children, low BMD was defined as a Z-score less than -2 and osteoporosis was defined as a Z-score less than -2 with a fracture history. Results A cross-sectional study was conducted in 33 Moroccan patients with JIA aged between 4 and 16 years, Fat mass was not related to bone density; in contrast, BMD was positively associated to LTM in total body(r = =0.41, p= 0.04) but not in lumbar spine (r = 0.29, p= 0.17). There exist significant correlation between BMC and BMD in total body (r = 0.51, p = 0.01). Conclusion This study suggests that the LTM is a determining factor of the BMD during adolescence. Other studies with a broader sample would be useful to confirm this relation. PMID:25120859

  9. Association Between Body Composition and Bone Mineral Density in Men on Hemodialysis.

    PubMed

    Marinho, Sandra M S de A; Wahrlich, Vivian; Mafra, Denise

    2015-10-01

    Studies have revealed complex interactions between bone and fat, however there are few studies about this crosstalk in patients with chronic kidney disease. This study investigated possible relationship between bone mineral density (BMD) and body composition in patients who underwent hemodialysis. Twenty patients were enrolled in a cross-sectional study (47.0 [42.3-56.8] years, body mass index 26.0 ± 4.2 kg/m, dialysis vintage of 48.5 [26.7-95.7] months). Body composition and BMD were assessed by dual-energy X-ray absorptiometry. Leptin and parathormone levels were analyzed using Multiplex kits (R&D System Inc). Low bone mass in the femoral neck was reported in 54.8% of patients. Total BMD and total T-score were positively correlated with lean mass (r = 0.46, P = 0.04; r = 0.47, P = 0.04, respectively), but not with leptin or body fat mass. In conclusion, lean body mass is probably important to maintain bone health in male patients who underwent hemodialysis. PMID:26418381

  10. Body composition and bone mineral density of national football league players.

    PubMed

    Dengel, Donald R; Bosch, Tyler A; Burruss, T Pepper; Fielding, Kurt A; Engel, Bryan E; Weir, Nate L; Weston, Todd D

    2014-01-01

    The purpose of the present study was to examine the body composition of National Football League (NFL) players before the start of the regular season. Four hundred eleven NFL players were measured for height, weight and lean, fat, and bone mass using dual-energy x-ray absorptiometry (DXA). Subjects were categorized by their offensive or defensive position for comparison. On average, positions that mirror each other (i.e., offensive lineman [OL] vs. defensive lineman [DL]) have very similar body composition. Although OL had more fat mass than DL, they were similar in total and upper and lower lean mass. Linebackers (LB) and running backs (RB) were similar for all measures of fat and lean mass. Tight ends were unique in that they were similar to RB and LB on measures of fat mass; however, they had greater lean mass than both RB and LB and upper-body lean mass that was similar to OL. Quarterbacks and punters/kickers were similar in fat and lean masses. All positions had normal levels of bone mineral density. The DXA allowed us to measure differences in lean mass between arms and legs for symmetry assessments. Although most individuals had similar totals of lean mass in each leg and or arms, there were outliers who may be at risk for injury. The data presented demonstrate not only differences in total body composition, but also show regional body composition differences that may provide positional templates. PMID:24149760

  11. Associated among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weight loss reduces co-¬morbidities of obesity but decreases bone mass. Our aims were to determine whether adequate dairy intake could prevent weight loss related bone loss and to evaluate the contribution of energy-related hormones and inflammatory markers to bone metabolism. Overweight and obese w...

  12. Associations between Body Composition, Hormonal and Lifestyle Factors, Bone Turnover, and BMD

    PubMed Central

    Hammett-Stabler, Catherine A.; Renner, Jordan B.; Rubin, Janet E.

    2014-01-01

    Background The relative importance of body composition, lifestyle factors, bone turnover and hormonal factors in determining bone mineral density (BMD) is unknown. We studied younger postmenopausal women to determine whether modifiable or nonmodifiable risk factors for osteoporosis have stronger associations with BMD. Methods In multivariable linear regression models, we tested associations between non-bone body composition measures, self-reported measures of physical activity and dietary intake, urinary N-telopeptide (NTx), sex hormone concentrations, and BMD in 109 postmenopausal women aged 50 to 64 years, adjusting for current hormone therapy use and clinical risk factors for low BMD. Lean mass, fat mass and areal BMD (aBMD) at the lumbar spine, femoral neck, total hip and distal radius were measured using dual energy X-ray absorptiometry. Results Higher body weight and self-reported nonwhite race were independently associated with higher aBMD at the lumbar spine, femoral neck, total hip and distal radius. Lean and fat mass were not independently associated with aBMD. Older age and higher urinary NTx were independently associated with lower aBMD at the distal radius but not at weight-bearing sites. Sensitivity analyses demonstrated lack of an independent association between total daily protein or calorie intake and BMD. Conclusions BMD, weight and race were the most important determinants of aBMD at all sites. Older age and higher bone turnover were independently associated with lower aBMD at the distal radius. In a limited analysis, self-reported physical activity, dietary protein and calorie intake were not associated with aBMD after adjustment for the other variables. PMID:24707468

  13. Energy-restricted diet benefits body composition but degrades bone integrity in middle-aged obese female rats.

    PubMed

    Shen, Chwan-Li; Zhu, Wenbin; Gao, Weimin; Wang, Shu; Chen, Lixia; Chyu, Ming-Chien

    2013-08-01

    This study investigates the effects of a restricted diet (RD) on body composition and musculoskeletal health along with endocrines and molecular mechanism in established mature obese rats. Twenty female rats were fed with a high-fat diet (HFD) ad libitum for 4 months and then assigned to either HFD or RD group for another 4 months. Another 10 rats were on a low-fat diet for 8 months. Outcome measures included body composition, bone mineral density, microarchitecrure, and strength; serum leptin, adiponectin, insulin-like growth factor I, and liver glutathione peroxidase activity; and protein expression and spleen tumor necrosis factor α messenger RNA expression. We hypothesized that mature obese rats on a 35% energy restriction diet for 4 months would improve body composition but degrade microstructural and mechanical properties of long bones, and such changes in musculoskeletal integrity are related to the modulation of obesity-related endocrines and proinflammation. Relative to HFD, RD benefited body composition (decreased body weight and %fat mass and increased %fat-free mass); decreased insulin-like growth factor I and leptin; elevated adiponectin, glutathione peroxidase activity and protein expression and tumor necrosis factor α messenger RNA expression; and suppressed bone formation and increased bone resorption, resulting in decreased trabecular and cortical bone volume, bone mineral density, and bone strength. Relative to low-fat diet, RD had a similar effect on body composition and serum markers but increased bone turnover rate and decreased bone mineral density and strength. Our data suggest that long-term RD has a negative impact on bone remodeling in obese female rats, probably through modification of endocrines and elevation of proinflammation. PMID:23890357

  14. Analysis of the relationships between edentulism, periodontal health, body composition, and bone mineral density in elderly women

    PubMed Central

    Ignasiak, Zofia; Radwan-Oczko, Malgorzata; Rozek-Piechura, Krystyna; Cholewa, Marta; Skrzek, Anna; Ignasiak, Tomasz; Slawinska, Teresa

    2016-01-01

    Objective The relationship between bone mineral density (BMD) and tooth loss in conjunction with periodontal disease is not clear. The suggested effects include alteration in bone remodeling rates as well as the multifaceted etiology of edentulism. There is also a question if other body-related variables besides BMD, such as body composition, may be associated with tooth number and general periodontal health. The aim of this study was to evaluate if tooth number and marginal periodontal status are associated with body composition and BMD in a sample of elderly women. Materials and methods The study involved 91 postmenopausal women. Data included basic anthropometric characteristics, body composition via bioelectrical impedance analysis, and BMD analysis at the distal end of the radial bone of the nondominant arm via peripheral dual-energy X-ray absorptiometry. A dental examination was performed to assess tooth number, periodontal pocket depth (PD), and gingival bleeding. Results In nonosteoporotic women, a significant positive correlation was found between BMD and lean body mass, total body water, and muscle mass. The indicators of bone metabolism correlated negatively with PD. Such relationships did not appear in osteoporotic women. In both groups, basic anthropometric characteristics and body composition were significantly and positively correlated with PD and bleeding on probing. Conclusion The results suggest that body composition and BMD are not significantly correlated with tooth number and gingival bleeding. PMID:27042033

  15. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity. PMID:27344855

  16. Body Composition During Childhood and Adolescence: Relations to Bone Strength and Microstructure

    PubMed Central

    Amin, Shreyasee; LeBrasseur, Nathan K.; Atkinson, Elizabeth J.; Achenbach, Sara J.; McCready, Louise K.; Joseph Melton, L.; Khosla, Sundeep

    2014-01-01

    Context: Numerous studies have examined the association of body composition with bone development in children and adolescents, but none have used micro-finite element (μFE) analysis of high-resolution peripheral quantitative computed tomography images to assess bone strength. Objective: This study sought to examine the relations of appendicular lean mass (ALM) and total body fat mass (TBFM) to bone strength (failure load) at the distal radius and tibia. Design, Participants, and Setting: This was a cross-sectional study of 198 healthy 8- to <15-year-old boys (n = 109) and girls (n = 89) performed in a Clinical Research Unit. Results: After adjusting for bone age, height, fracture history, ALM, and TBFM, multiple linear regression analyses in boys and girls, separately, showed robust positive associations between ALM and failure loads at both the distal radius (boys: β = 0.92, P < .001; girls: β = 0.66, P = .001) and tibia (boys: β = 0.96, P < .001; girls: β = 0.66, P < .001). By contrast, in both boys and girls the relationship between TBFM and failure load at the distal radius was virtually nonexistent (boys: β = −0.07; P = .284; girls: β = −0.03; P = .729). At the distal tibia, positive, albeit weak, associations were observed between TBFM and failure load in both boys (β = 0.09, P = .075) and girls (β = 0.17, P = .033). Conclusions: Our data highlight the importance of lean mass for optimizing bone strength during growth, and suggest that fat mass may have differential relations to bone strength at weight-bearing vs non-weight-bearing sites in children and adolescents. These observations suggest that the strength of the distal radius does not commensurately increase with excess gains in adiposity during growth, which may result in a mismatch between bone strength and the load experienced by the distal forearm during a fall. These findings may explain, in part, why obese children are over-represented among distal forearm fracture cases. PMID:25243571

  17. Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, age, puberty, and physical activity.

    PubMed

    Ausili, Emanuele; Rigante, Donato; Salvaggio, Elio; Focarelli, Benedetta; Rendeli, Claudia; Ansuini, Valentina; Paolucci, Valentina; Triarico, Silvia; Martini, Lucilla; Caradonna, Paolo

    2012-09-01

    Interventions directed to the recognition of abnormal bone mineral density, bone mineral content, and body composition in the pediatric age require the definition of factors influencing bone mass acquisition during growth. We have evaluated in a cross-sectional manner by dual-energy X-ray absorptiometry the impact of sex, age, puberty, and physical activity on total body areal bone mineral density, regional (lumbar and femoral) bone mineral densities, bone mineral content, and body composition (fat mass and lean mass) in a cohort of 359 healthy Italian children aged 3-14 years and investigated their specific contribution to bone mass accrual. Statistical multiple regression analysis was performed dividing the population in pre- and post-pubertal groups. Bone mineral density at the lumbar spine has resulted equally distributed in both sexes before puberty while has resulted higher at the femoral necks in males at whatever age. A significant effect on bone mass acquisition was exerted by male sex and lean mass. In the areas where the cortical bone is prevalent, males of the pre-pubertal group have presented the highest values; in the areas where the cancellous bone is prevalent, both sexes were equivalent until the age of 9 years, but after this age, females have presented higher increases, probably related to the inferior dimensional development of lumbar vertebrae. Conclusively, male sex and lean mass seem to represent independent predictors of bone mass accrual in the cortical bone of the examined children, while female sex and pubertal maturation are independent predictors of bone mass accrual in the trabecular bone. PMID:21809005

  18. Bone mineral density and body composition in a myelomeningocele children population: effects of walking ability and sport activity.

    PubMed

    Ausili, E; Focarelli, B; Tabacco, F; Fortunelli, G; Caradonna, P; Massimi, L; Sigismondi, M; Salvaggio, E; Rendeli, C

    2008-01-01

    Myelomeningocele causes serious locomotor disability, osteoporosis and pathologic fractures. The aim of this study was to investigate the relationship between body composition, bone mineral density, walking ability and sport activity in myelomeningocele children. 60 patients aged between 5 and 14 yrs with myelomeningocele (22 ambulatory and 38 non-ambulatory), were studied. Fat mass and fat-free-mass were calculated by anthropometry. The bone mineral density at lumbar and femoral neck were evaluated. Bone mineral density at the lumbar and femoral neck was lower than in the normal population. In the non-ambulaty group, bone mineral density was approximately 1 SD lower than in the ambulatory one (p < 0.01). Fat mass was greater than expected but without significantly differences between walking group (mean 26%) and wheel-chair users (25%). Patients practised sport activity had a better bone mineral density and body fat compared with other patients with the same disability. Patients with myelomeningocele have decreased bone mineral density and are at higher risk of pathologic bone fractures. All subjects showed an excess of fat as percentage of body weight and are shorter than normal children. The measurement of bone mineral density may help to identify those patients at greatest risk of suffering of multiple fractures. Walk ability and sport activity, associated with the development of muscle mass, are important factors in promoting bone and body growth, to reduce the risk of obesity and of pathological fractures. PMID:19146196

  19. Influence of body composition, muscle strength, diet and physical activity on total body and forearm bone mass in Chinese adolescent girls.

    PubMed

    Foo, Leng Huat; Zhang, Qian; Zhu, Kun; Ma, Guansheng; Greenfield, Heather; Fraser, David R

    2007-12-01

    The aim of the present study was to determine association between body composition, muscle strength, diet and physical exercise with bone mineral content (BMC) and bone area (BA) in 283 Chinese adolescent girls aged 15 years in Beijing, China. Body composition, pubertal stage, physical activity and dietary intakes were assessed using standard validated protocols. Total body and forearm bone, lean body mass (LBM) and fat body mass (FBM) were determined by dual X-ray absorptiometry. Multivariate linear regression analyses were carried out to examine the predictors of BMC and BA, after controlling for potential confounders. The subjects had a mean age of 15.0 (sd 0.9) years and 99.6 % of them had reached menarche. Multivariate analyses showed that LBM, FBM, handgrip muscle strength and milk intake were significant independent determinants of BMC and BA of the total body and/or forearm sites. LBM was found to be a stronger independent determinant than FBM of BMC and BA, whereas handgrip muscle strength was only found as significant determinant of BMC and BA at the forearm sites than in total body BMC and BA. Further, total physical activity level had a significant positive association with handgrip and LBM. This suggested that greater muscle strength and higher LBM may reflect higher levels of physical activity. Therefore, continuous healthy lifestyle practices such as adequate intake of milk and continuous participation in physical activity should be encouraged throughout adolescence to optimise bone growth during this period. PMID:17640423

  20. The effects of long-term whole-body vibration and aerobic exercise on body composition and bone mineral density in obese middle-aged women

    PubMed Central

    Nam, Sang-seok; Park, Hun-young; Moon, Hwang-woon

    2016-01-01

    [Purpose] The purpose of this study was to determine the effectiveness of whole-body passive vibration exercise and its differences from aerobic exercise on body composition, bone mineral density (BMD) and bone mineral content (BMC). [Methods] Obese middle-aged women (n=33 out of 45) with 34±3% body fat completed the training protocol. They were randomly assigned into diet (n=9; control group), diet plus whole-body vibration exercise (n=13; vibration group), and diet plus aerobic exercise (n=11; aerobic group) groups and we compared their body composition, BMD, and BMC before and after 9 months of training. There were no significant differences in nutrient intake among groups during the training period. [Results] Relative body fat (%) decreased significantly (p < .05) in all three groups and the exercise groups showed a greater reduction in fat mass than the diet only group. BMD in the whole body, lumbar spine, hip and forearm were not significantly different among the three groups. Total body BMC increased significantly in the vibration group throughout the first 6 months of training. [Conclusion] Results suggest that long- term vibration training when used in conjunction with a diet program is as effective as aerobic exercise with a diet program in improving body composition of obese middle-aged women without compromising BMC or BMD. Thus, it can be considered a novel and effective method for reducing body fat. PMID:27508150

  1. Impact + resistance training improves bone health and body composition in prematurely menopausal breast cancer survivors: a randomized controlled trial

    PubMed Central

    Dobek, J.; Nail, L. M.; Bennett, J. A.; Leo, M. C.; Torgrimson-Ojerio, B.; Luoh, S.-W.; Schwartz, A.

    2013-01-01

    Summary Our randomized controlled trial in prematurely menopausal breast cancer survivors showed that impact + resistance training prevented increases in percentage of body fat compared with controls and also improved BMD at the hip and prevented BMD loss at the spine among exercise-trained women who were menopausal for >1 year. Introduction Cancer treatment-related menopause worsens bone health and body composition in breast cancer survivors (BCS). We investigated whether impact + resistance training could improve bone mineral density (BMD), reduce bone turnover, build muscle, and decrease fat mass in BCS with premature menopause. Methods We conducted a randomized controlled trial in 71 BCS (mean age, 46.5 years) within 5 years of treatment-related menopause. Women were randomly assigned to one of two groups: (1) impact + resistance training (prevent osteoporosis with impact + resistance (POWIR)) or (2) exercise placebo (FLEX) 3×/week for 1 year. Outcomes were hip and spine BMD (in grams per square centimeter) and body composition (percent body fat (%BF) and lean and fat mass (in kilograms)) by DXA and bone turnover markers (serum osteocalcin (in nanograms per milliliter) and urinary deoxypryrodinoline (in nanomoles per milliliter). Results There were no significant group × time interactions for bone outcomes when using an intent-to-treat approach on the full sample. In analyses restricted to BCS who were menopausal for ≥1 year, POWIR increased BMD at the hip and slowed BMD loss at the spine compared with FLEX (femoral neck—POWIR, 0.004±0.093 g/cm2 vs. FLEX, −0.010±0.089 g/cm2; p<0.01; spine—POWIR, −0.003±0.114 g/cm2 vs. FLEX, −0.020±0.110 g/cm2; p=0.03). POWIR prevented increases in %BF (POWIR, 0.01 % vs. FLEX, 1.3 %; p<0.04). Women with attendance to POWIR at ≥64 % had better improvements in %BF than women attending less often (p<0.03). Conclusion Impact + resistance training may effectively combat bone loss and worsening body composition

  2. Body Composition Tests

    MedlinePlus

    ... more bone and muscle will weigh more in water than a person with less bone and muscle. The volume of the body is calculated and body density and body fat percentage are calculated. This technique ...

  3. Dual X-Ray Absorptiometry Whole Body Composition of Bone Tissue in Rheumatoid Arthritis – a Cross-Sectional Study

    PubMed Central

    POPESCU, Claudiu; BOJINCA, Violeta; OPRIS, Daniela; IONESCU, Ruxandra

    2015-01-01

    Objectives: Previous studies of bone tissue in rheumatoid arthritis (RA) using dual X-ray absorptiometry (DXA) concentrated on regions of interest that were used to diagnose osteoporosis. This study aimed to compare the whole body bone tissue (wbBT) of RA patients with healthy subjects and to identify the RA variables which significantly predict wbBT. Methods: The study was cross-sectionally designed to include postmenopausal RA patients and age-matched healthy female controls. All 107 RA patients and all 104 controls underwent clinical examination, laboratory tests and whole body DXA composition, which recorded total and regional bone indices. Non-parametric standard statistical test and regression models after data normalization were used to assess correlations, associations and differences. Results: Compared to controls, RA patients had significantly lower whole body and regional bone mass (14.9 kg compared to 15.5 kg; p = 0.031). Disease duration (r = -0.402 ; p < 0.001), C-reactive protein (r = -0.279; p = 0.015) and inflammation (2.5% wbBT compared to 2.9%; p = 0.043), radiographic damage (14.3 kg compared to 16.2 kg; p < 0.001), disease activity scores (r = -0.275 ; p = 0.018 for HAQ) are significantly correlated/associated with lower wbBT. Clinical structural damage is associated with lower wbBT and it can significantly predict them (R2 = 0.014; p = 0.001), while glucocorticoid treatment, even in low doses, was associated with lower wbBT percent (2.6% compared to 2.8%; p = 0.045). Treatment with biologics was associated with a lower rate of whole body osteoporosis (0% compared to 22.2%; p = 0.013). Conclusions: The main associated factors with the generalized bone loss in female RA patients are disease duration and disease activity. Clinical structural damage is the most powerful predictor of the whole body bone loss. These results suggest a general disturbance of skeletal bone metabolism in RA and could explain a greater risk of fragility fractures of non

  4. Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers.

    PubMed

    Kreider, Richard B; Ferreira, Maria P; Greenwood, Michael; Wilson, Michael; Almada, Anthony L

    2002-08-01

    Conjugated linoleic acids (CLA) are essential fatty acids that have been reported in animal studies to decrease catabolism, promote fat loss, increase bone density, enhance immunity, and serve as an antiatherogenic and anticarcinogenic agent. For this reason, CLA has been marketed as a supplement to promote weight loss and general health. CLA has also been heavily marketed to resistance-trained athletes as a supplement that may help lessen catabolism, decrease body fat, and promote greater gains in strength and muscle mass during training. Although basic research is promising, few studies have examined whether CLA supplementation during training enhances training adaptations and/or affects markers of health. This study evaluated whether CLA supplementation during resistance training affects body composition, strength, and/or general markers of catabolism and immunity. In a double-blind and randomized manner, 23 experienced, resistance-trained subjects were matched according to body mass and training volume and randomly assigned to supplement their diet with 9 g;pdd(-1) of an olive oil placebo or 6 g;pdd(-1) of CLA with 3 g;pdd(-1) of fatty acids for 28 days. Prior to and following supplementation, fasting blood samples, total body mass, and dual-energy X-ray absorptiometry (DEXA) determined body composition, and isotonic bench press and leg press 1 repetition maximums (1RMs) were determined. Results revealed that although some statistical trends were observed with moderate to large effect sizes, CLA supplementation did not significantly affect (p > 0.05) changes in total body mass, fat-free mass, fat mass, percent body fat, bone mass, strength, serum substrates, or general markers of catabolism and immunity during training. These findings indicate that CLA does not appear to possess significant ergogenic value for experienced resistance-trained athletes. PMID:12173945

  5. Sequences of Regressions Distinguish Nonmechanical from Mechanical Associations between Metabolic Factors, Body Composition, and Bone in Healthy Postmenopausal Women123

    PubMed Central

    Goldberg, Gail R; Prentice, Ann

    2016-01-01

    Background: There is increasing recognition of complex interrelations between the endocrine functions of bone and fat tissues or organs. Objective: The objective was to describe nonmechanical and mechanical links between metabolic factors, body composition, and bone with the use of graphical Markov models. Methods: Seventy postmenopausal women with a mean ± SD age of 62.3 ± 3.7 y and body mass index (in kg/m2) of 24.9 ± 3.8 were recruited. Bone outcomes were peripheral quantitative computed tomography measures of the distal and diaphyseal tibia, cross-sectional area (CSA), volumetric bone mineral density (vBMD), and cortical CSA. Biomarkers of osteoblast and adipocyte function were plasma concentrations of leptin, adiponectin, osteocalcin, undercarboxylated osteocalcin (UCOC), and phylloquinone. Body composition measurements were lean and percent fat mass, which were derived with the use of a 4-compartment model. Sequences of Regressions, a subclass of graphical Markov models, were used to describe the direct (nonmechanical) and indirect (mechanical) interrelations between metabolic factors and bone by simultaneously modeling multiple bone outcomes and their relation with biomarker outcomes with lean mass, percent fat mass, and height as intermediate explanatory variables. Results: The graphical Markov models showed both direct and indirect associations linking plasma leptin and adiponectin concentrations with CSA and vBMD. At the distal tibia, lean mass, height, and adiponectin-UCOC interaction were directly explanatory of CSA (R2 = 0.45); at the diaphysis, lean mass, percent fat mass, leptin, osteocalcin, and age-adiponectin interaction were directly explanatory of CSA (R2 = 0.49). The regression models exploring direct associations for vBMD were much weaker, with R2 = 0.15 and 0.18 at the distal and diaphyseal sites, respectively. Lean mass and UCOC were associated, and the global Markov property of the graph indicated that this association was explained by

  6. Quantitative Comparison of 2 Dual-Energy X-ray Absorptiometry Systems in Assessing Body Composition and Bone Mineral Measurements.

    PubMed

    Xu, Wenhua; Chafi, Hatim; Guo, Beibei; Heymsfield, Steven B; Murray, Kori B; Zheng, Jolene; Jia, Guang

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used in body composition measurement and evaluation. Because of its numerous applications, the probability of instrument discrepancies has increased dramatically. This study quantitatively compares 2 different DXA systems. In this study, 96 subjects (60 female and 36 male, aged 19-82 years) were recruited and scanned using a General Electric Lunar iDXA and a Hologic Discovery scanner. Four measurements (percent fat, total mass, bone mineral density [BMD], and bone mineral content [BMC]) were quantitatively compared in the whole body and in specific anatomic regions (arms, legs, trunk, android, gynoid, head, ribs, and pelvis). A simple linear regression of each measurement was performed to examine the correlation between the 2 systems. Percent fat, total mass, BMC, and BMD were highly correlated between the 2 DXA systems, with correlation r values greater than 0.854 for both the whole body and the individual anatomic regions except for BMC and BMD in ribs. The high correlation between the 2 DXA systems with systematic differences enabled development of calibration equations for extending the multisystem measurements to advanced quantitative analyses. PMID:26206525

  7. Green tea supplementation benefits body composition and improves bone properties in obese female rats fed with high-fat diet and caloric restricted diet.

    PubMed

    Shen, Chwan-Li; Han, Jia; Wang, Shu; Chung, Eunhee; Chyu, Ming-Chien; Cao, Jay J

    2015-12-01

    This study investigated the effects of green tea polyphenols (GTP) supplementation on body composition, bone properties, and serum markers in obese rats fed a high-fat diet (HFD) or a caloric restricted diet (CRD). Forty-eight female rats were fed an HFD ad libitum for 4 months, and then either continued on the HFD or the CRD with or without 0.5% GTP in water. Body composition, bone efficacy, and serum markers were measured. We hypothesized that GTP supplementation would improve body composition, mitigate bone loss, and restore bone microstructure in obese animals fed either HFD or CRD. CRD lowered percent fat mass; bone mass and trabecular number of tibia, femur and lumbar vertebrae; femoral strength; trabecular and cortical thickness of tibia; insulin-like growth factor-I and leptin. CRD also increased percent fat-free mass; trabecular separation of tibia and femur; eroded surface of tibia; bone formation rate and erosion rate at tibia shaft; and adiponectin. GTP supplementation increased femoral mass and strength (P = .026), trabecular thickness (P = .012) and number (P = .019), and cortical thickness of tibia (P < .001), and decreased trabecular separation (P = .021), formation rate (P < .001), and eroded surface (P < .001) at proximal tibia, and insulin-like growth factor-I and leptin. There were significant interactions (diet type × GTP) on osteoblast surface/bone surface, mineral apposition rate at periosteal and endocortical bones, periosteal bone formation rate, and trabecular thickness at femur and lumbar vertebrate (P < .05). This study demonstrates that GTP supplementation for 4 months benefited body composition and improved bone microstructure and strength in obese rats fed with HFD or HFD followed by CRD diet. PMID:26525915

  8. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH) Vitamin D Serum Levels in Systemic Sclerosis.

    PubMed

    Corrado, Addolorata; Colia, Ripalta; Mele, Angiola; Di Bello, Valeria; Trotta, Antonello; Neve, Anna; Cantatore, Francesco Paolo

    2015-01-01

    A reduced bone mineral density (BMD) is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc); nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc) or diffuse cutaneous (dcSSc) SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD) were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content. PMID:26375284

  9. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH) Vitamin D Serum Levels in Systemic Sclerosis

    PubMed Central

    Corrado, Addolorata; Colia, Ripalta; Mele, Angiola; Di Bello, Valeria; Trotta, Antonello; Neve, Anna; Cantatore, Francesco Paolo

    2015-01-01

    A reduced bone mineral density (BMD) is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc); nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc) or diffuse cutaneous (dcSSc) SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD) were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content. PMID:26375284

  10. Biodegradable synthetic bone composites

    DOEpatents

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  11. Relationship of body composition, knee extensor strength, and standing balance to lumbar bone mineral density in postmenopausal females

    PubMed Central

    Shin, Seungsub; Lee, Kyeongjin; Song, Changho

    2016-01-01

    [Purpose] This study aimed to investigate correlations between lumbar bone mineral density (BMD) and general characteristics of postmenopausal females, including body composition, knee extensor strength, standing balance, and femur BMD. [Subjects and Methods] A total of 40 postmenopausal females (55.6 ± 4.6 years) who were caregivers or guardians of patients in the K hospital were included in the study. The weight, height, body composition, left and right knee extensor strength, standing balance, femur BMD, and lumbar BMD measurements of the subjects were obtained. [Results] The effect of measurement variables on lumbar BMD was examined. Increases in age and menopausal duration were observed to significantly increase lumbar BMD, whereas an increase in height was found to significantly decrease lumbar BMD. An increase in soft lean mass, skeletal muscle mass, fat-free mass, and femur BMD was also associated with significantly decreased lumbar BMD. [Conclusion] Age, menopausal duration, soft lean mass, skeletal muscle mass, and fat-free mass were factors that decreased lumbar BMD in menopausal females. This study is expected to provide basic knowledge for osteoporosis prevention and treatment programs for postmenopausal females. PMID:27512276

  12. Relationship of body composition, knee extensor strength, and standing balance to lumbar bone mineral density in postmenopausal females.

    PubMed

    Shin, Seungsub; Lee, Kyeongjin; Song, Changho

    2016-07-01

    [Purpose] This study aimed to investigate correlations between lumbar bone mineral density (BMD) and general characteristics of postmenopausal females, including body composition, knee extensor strength, standing balance, and femur BMD. [Subjects and Methods] A total of 40 postmenopausal females (55.6 ± 4.6 years) who were caregivers or guardians of patients in the K hospital were included in the study. The weight, height, body composition, left and right knee extensor strength, standing balance, femur BMD, and lumbar BMD measurements of the subjects were obtained. [Results] The effect of measurement variables on lumbar BMD was examined. Increases in age and menopausal duration were observed to significantly increase lumbar BMD, whereas an increase in height was found to significantly decrease lumbar BMD. An increase in soft lean mass, skeletal muscle mass, fat-free mass, and femur BMD was also associated with significantly decreased lumbar BMD. [Conclusion] Age, menopausal duration, soft lean mass, skeletal muscle mass, and fat-free mass were factors that decreased lumbar BMD in menopausal females. This study is expected to provide basic knowledge for osteoporosis prevention and treatment programs for postmenopausal females. PMID:27512276

  13. The influence of anthropometry and body composition on children's bone health: the childhood health, activity and motor performance school (the CHAMPS) study, Denmark.

    PubMed

    Heidemann, Malene; Holst, René; Schou, Anders J; Klakk, Heidi; Husby, Steffen; Wedderkopp, Niels; Mølgaard, Christian

    2015-02-01

    Overweight, physical inactivity and sedentary behaviour have become increasing problems during the past decade. Increased sedentary behaviour may change the body composition (BC) by increasing the fat mass relative to the lean mass (LM). These changes may influence bone health to describe how anthropometry and BC predict the development of the bone accruement. The longitudinal study is a part of The CHAMPS study-DK. Children were DXA scanned at baseline and at 2-year follow-up. BC (LM, BF %) and BMC, BMD and BA were measured. The relationship between bone traits, anthropometry and BC was analysed by multilevel regression analyses. Of the invited children, 742/800 (93%) accepted to participate. Of these, 682/742 (92%) participated at follow-up. Mean (range) of age at baseline was 9.5 years (7.7-12.1). Height, BMI, LM and BF % predicted bone mineral accrual and bone size positively and independently. Height and BMI are both positive predictors of bone accruement. LM is a more precise predictor of bone traits than BF % in both genders. The effects of height and BMI and LM on bone accruement are nearly identical in the two genders, while changes in BF % have different but positive effects on bone accretion in both boys and girls. PMID:25539855

  14. Aged-Related Changes in Body Composition and Association between Body Composition with Bone Mass Density by Body Mass Index in Chinese Han Men over 50-year-old

    PubMed Central

    Jin, Mengmeng; Gu, Zhaoyan; Pei, Yu; Meng, Ping

    2015-01-01

    Objectives Aging, body composition, and body mass index (BMI) are important factors in bone mineral density (BMD). Although several studies have investigated the various parameters and factors that differentially influence BMD, the results have been inconsistent. Thus, the primary goal of the present study was to further characterize the relationships of aging, body composition parameters, and BMI with BMD in Chinese Han males older than 50 years. Methods The present study was a retrospective analysis of the body composition, BMI, and BMD of 358 Chinese male outpatients between 50 and 89 years of age that were recruited from our hospital between 2009 and 2011. Qualified subjects were stratified according to age and BMI as follows: 50–59 (n = 35), 60–69 (n = 123), 70–79 (n = 93), and 80–89 (n = 107) years of age and low weight (BMI: < 20 kg/m2; n = 21), medium weight (20 ≤ BMI < 24 kg/m2; n = 118), overweight (24 ≤ BMI < 28 kg/m2; n = 178), and obese (BMI ≥ 28 kg/m2; n = 41). Dual-energy X-ray absorptiometry (DEXA) was used to assess bone mineral content (BMC), lean mass (LM), fat mass (FM), fat-free mass (FFM), lumbar spine (L1-L4) BMD, femoral neck BMD, and total hip BMD. Additionally, the FM index (FMI; FM/height2), LM index (LMI; LM/height2), FFM index (FFMI; [BMC+LM]/height2), percentage of BMC (%BMC; BMC/[BMC+FM+LM] × 100%), percentage of FM (%FM; FM/[BMC+FM+LM] × 100%), and percentage of LM (%LM; LM/(BMC+FM+LM) × 100%) were calculated. Osteopenia or osteoporosis was identified using the criteria and T-score of the World Health Organization. Results Although there were no significant differences in BMI among the age groups, there was a significant decline in height and weight according to age (p < 0.0001 and p = 0.0002, respectively). The LMI and FFMI also declined with age (both p < 0.0001) whereas the FMI exhibited a significant increase that peaked in the 80-89-years group (p = 0.0145). Although the absolute values of BMC and LM declined

  15. Body Composition. A Round Table.

    ERIC Educational Resources Information Center

    Physician and Sportsmedicine, 1986

    1986-01-01

    Four experts discuss body composition, what it is, why it is assessed, how it is measured, and how to measure it in children and the aged. Standards of fatness, both overfat and underfat, and bone and muscle assessment are covered in the discussion. (MT)

  16. Relationship of Physical Performance with Body Composition and Bone Mineral Density in Individuals over 60 Years of Age: A Systematic Review

    PubMed Central

    Shin, Hyehyung; Panton, Lynn B.; Dutton, Gareth R.; Ilich, Jasminka Z.

    2011-01-01

    The purpose of this review was to examine the relationship between physical performance and body composition measurements, including fat/muscle mass and bone mineral density (BMD) in individuals ≥60 years of age. Various measurements used to assess body composition, BMD, and physical performance (PP) were discussed as well. Medline/PubMed, CINAHL, and SCIE were used to identify articles. After limiting the search for age and kind of physical performance measures, 33 articles were evaluated. Higher fat mass was associated with poorer physical performance while higher muscle mass was a predictor of better physical performance, especially in the lower extremities. Additionally, evidence showed that higher muscle fat infiltration was a determinant of poorer physical performance. BMD was shown to be a good predictor of physical performance although the relationship was stronger in women than in men. Developing standardized methods for PP measurements could help in further investigation and conclusions of its relationship with body composition. PMID:21318048

  17. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity. PMID:23562363

  18. The effects of a 6-month resistance training and dried plum consumption intervention on strength, body composition, blood markers of bone turnover, and inflammation in breast cancer survivors.

    PubMed

    Simonavice, Emily; Liu, Pei-Yang; Ilich, Jasminka Z; Kim, Jeong-Su; Arjmandi, Bahram; Panton, Lynn B

    2014-06-01

    The purpose of this study was to examine the effects of resistance training (RT) and dried plum (DP) consumption on strength, body composition, blood markers of bone, and inflammation in breast cancer survivors (BCS). Twenty-three BCS (RT, n = 12; RT+DP, n = 11), aged 64 ± 7 years, were evaluated at baseline and after 6 months of intervention on the following: muscular strength (chest press and leg extension) via 1-repetition maximums (1RMs); body composition, specifically bone mineral density (BMD) by dual energy X-ray absorptiometry; biochemical markers of bone turnover (bone-specific alkaline phosphatase (BAP), tartrate resistant acid phosphatase (TRAP-5b)); and inflammation (C-reactive protein (CRP)). Target RT prescription was 2 days/week of 10 exercises, including 2 sets of 8-12 repetitions at ∼60%-80% of 1RM. RT+DP also consumed 90 g of DP daily. There were no baseline differences between groups or any group-by-time interactions for any of the variables. BCS increased upper (p < 0.05) (RT: 64 ± 14 to 80 ± 17 kg; RT+DP: 72 ± 23 to 91 ± 20 kg) and lower (p < 0.05) (RT: 69 ± 20 to 87 ± 28 kg; RT+DP: 78 ± 19 to 100 ± 21 kg) body strength. Body composition and BMD improvements were not observed. TRAP-5b decreased in the RT group (p < 0.05) (4.55 ± 1.57 to 4.04 ± 1.63 U/L) and the RT+DP group (p = 0.07) (5.10 ± 2.75 to 4.27 ± 2.03 U/L). Changes in BAP and CRP were not observed. RT was effective for improving biochemical markers of bone turnover and muscular strength in BCS. A longer and higher intensity intervention may be needed to reveal the true effects of RT and DP on body composition and biochemical markers of inflammation. PMID:24869977

  19. Sexual dimorphism of body composition.

    PubMed

    Wells, Jonathan C K

    2007-09-01

    Sexual dimorphism in human body composition is evident from fetal life, but emerges primarily during puberty. At birth, males have a similar fat mass to females but are longer and have greater lean mass. Such differences remain detectable during childhood; however, females enter puberty earlier and undergo a more rapid pubertal transition, whereas boys have a substantially longer growth period. After adjusting for dimorphism in size (height), adult males have greater total lean mass and mineral mass, and a lower fat mass than females. These whole-body differences are complemented by major differences in tissue distribution. Adult males have greater arm muscle mass, larger and stronger bones, and reduced limb fat, but a similar degree of central abdominal fat. Females have a more peripheral distribution of fat in early adulthood; however, greater parity and the menopause both induce a more android fat distribution with increasing age. Sex differences in body composition are primarily attributable to the action of sex steroid hormones, which drive the dimorphisms during pubertal development. Oestrogen is important not only in body fat distribution but also in the female pattern of bone development that predisposes to a greater female risk of osteoporosis in old age. Disorders of sex development are associated with significant abnormalities of body composition, attributable largely to their impact on mechanisms of hormonal regulation. PMID:17875489

  20. Body composition and bone density reference data for Korean children, adolescents, and young adults according to age and sex: results of the 2009-2010 Korean National Health and Nutrition Examination Survey (KNHANES).

    PubMed

    Kang, Min Jae; Hong, Hyun Sook; Chung, Seung Joon; Lee, Young Ah; Shin, Choong Ho; Yang, Sei Won

    2016-07-01

    We established the timing of peak bone mass acquisition and body composition maturation and provide an age- and sex-specific body composition and bone density reference database using dual-energy X-ray absorptiometry in Korean subjects 10-25 years of age. Reference percentiles and curves were developed for bone mineral content (BMC), bone mineral density (BMD) of the whole body, the lumbar spine, and the femoral neck, and for fat mass (FM) and lean mass (LM) of 1969 healthy participants (982 males) who participated in the 2009-2010 Korean National Health and Nutrition Examination Survey. Additionally, bone mineral apparent density (BMAD), FM index, and LM index were calculated to adjust for body size. BMC and BMD at all skeletal sites as well as LM increased with age, reaching plateaus at 17-20 years of age in females and 20-23 years of age in males. The femoral neck was the first to reach a bone mass plateau, followed by the lumbar spine and then the whole body. Spine BMAD increased with age in both sexes, but femoral and whole-body BMAD remained the same over time. Females displayed a dramatic increase in FM during puberty, but the FM of males decreased until mid-puberty. These findings indicate that bone health and body composition should be monitored using a normal reference database until the late second to early third decade of life, when statural growth and somatic maturation are completed. PMID:26056024

  1. Multivariate analysis of lifestyle, constitutive and body composition factors influencing bone health in community-dwelling older adults from Madeira, Portugal.

    PubMed

    Gouveia, Élvio Rúbio; Blimkie, Cameron Joseph; Maia, José António; Lopes, Carla; Gouveia, Bruna Raquel; Freitas, Duarte Luís

    2014-01-01

    This study describes the association between habitual physical activity (PA), other lifestyle/constitutive factors, body composition, and bone health/strength in a large sample of older adults from Madeira, Portugal. This cross-sectional study included 401 males and 401 females aged 60-79 years old. Femoral strength index (FSI) and bone mineral density (BMD) of the whole body, lumbar spine (LS), femoral neck (FN), and total lean tissue mass (TLTM) and total fat mass (TFM) were determined by dual-energy X-ray absorptiometry-DXA. PA was assessed during face-to-face interviews using the Baecke questionnaire and for a sub-sample by Tritrac accelerometer. Demographic and health history information were obtained by telephone interview through questionnaire. The relationship between habitual PA variables and bone health/strength indicators (whole body BMD, FNBMD, LSBMD, and FSI) investigated using Pearson product-moment correlation coefficient was similar for females (0.098≤r≤0.189) and males (0.104≤r≤0.105). Results from standard multiple regression analysis indicated that the primary and most significant predictors for FNBMD in both sexes were age, TLTM, and TFM. For LSBMD, the most significant predictor was TFM in men and TFM, age, and TLTM in females. Our regression model explained 8.3-14.2% and 14.8-29.6% of the total variance in LSBMD and FNBMD for males and females, respectively. This study suggests that habitual PA is minimally but positively associated with BMD and FSI among older adult males and females and that body composition factors like TLTM and TFM are the strongest determinants of BMD and FSI in this population. PMID:24704345

  2. Seven years of follow up of trabecular bone score, bone mineral density, body composition and quality of life in adults with growth hormone deficiency treated with rhGH replacement in a single center

    PubMed Central

    Allo Miguel, Gonzalo; Serraclara Plá, Alicia; Partida Muñoz, Myriam Lorena; Martínez Díaz-Guerra, Guillermo; Hawkins, Federico

    2016-01-01

    Background: Adult growth hormone deficiency (AGHD) is characterized by impaired physical activity, diminished quality of life (QoL), weight and fat mass gain, decreased muscle mass and decreased bone mineral density (BMD). The aim of this study was to evaluate the effects of long-term treatment (7 years) with recombinant human growth hormone (rhGH) on metabolic parameters, body composition (BC), BMD, bone microarchitecture and QoL. Patients and Methods: In this prospective study, BMD and BC were assessed by dual-energy X-ray absorptiometry (DXA). Bone microarchitecture was assessed with the trabecular bone score (TBS). The QoL-AGHDA test was used to assess QoL. Results: A total of 18 AGHD patients (mean age, 37.39 ± 12.42) were included. Body weight and body mass index (BMI) showed a significant increase after 7 years (p = 0.03 and p = 0.001, respectively). There was a significant tendency of body fat mass (BFM) (p = 0.028) and lean body mass (LBM) (p = 0.005) to increase during the 7 years of rhGH treatment. There was a significant increase in lumbar spine (LS) BMD (p = 0.01). TBS showed a nonsignificant decrease after 7 years of treatment, with a change of -0.86% ± 1.95. QoL showed a large and significant improvement (p = 0.02). Conclusion: Long-term rhGH treatment in AGHD patients induces a large and sustained improvement in QoL. Metabolic effects are variable with an increase in LBM as well as in BMI and BFM. There is a positive effect on BMD based on the increase in LS BMD, which stabilizes during long-term therapy and is not associated with a similar increase in bone microarchitecture. PMID:27293538

  3. Body Composition Changes Associated With Methadone Treatment

    PubMed Central

    Sadek, Gamal E.; Chiu, Simon; Cernovsky, Zack Z.

    2016-01-01

    Background: Methadone is associated with a statistically significant increase in BMI in the first 2 years of treatment. Objectives: To evaluate the changes of body composition (bone mass, % fat, % muscle mass, % water, and basal metabolic rate) related to this increase. Patients and Methods: Changes in body composition were monitored, via bioelectrical impedance, in 29 patients in methadone treatment for opiate dependency (age 18 to 44, mean = 29.3, SD = 7.0, 13 men, 16 women). Results: Within one year from admission to treatment, a statistically significant (t-tests, P < 0.05) increase was noted in their body mass index (BMI), % of body fat, average body mass, and average basal metabolic rate, and relative decrease in their % of muscle mass and % of bone mass. Neither absolute bone mass nor muscle mass changed significantly. Conclusions: Physicians involved in care of methadone patients should recommend dietary and lifestyle changes to improve their overall health. PMID:27162765

  4. Oroesophageal Fish Bone Foreign Body.

    PubMed

    Kim, Heung Up

    2016-07-01

    Fish bone foreign body (FFB) is the most frequent food-associated foreign body (FB) in adults, especially in Asia, versus meat in Western countries. The esophageal sphincter is the most common lodging site. Esophageal FB disease tends to occur more frequently in men than in women. The first diagnostic method is laryngoscopic examination. Because simple radiography of the neck has low sensitivity, if perforation or severe complications requiring surgery are expected, computed tomography should be used. The risk factors associated with poor prognosis are long time lapse after FB involvement, bone type, and longer FB (>3 cm). Bleeding and perforation are more common in FFB disease than in other FB diseases. Esophageal FB disease requires urgent treatment within 24 hours. However, FFB disease needs emergent treatment, preferably within 2 hours, and definitely within 6 hours. Esophageal FFB disease usually occurs at the physiological stricture of the esophagus. The aortic arch eminence is the second physiological stricture. If the FB penetrates the esophageal wall, a life-threatening aortoesophageal fistula can develop. Therefore, it is better to consult a thoracic surgeon prior to endoscopic removal. PMID:27461891

  5. Oroesophageal Fish Bone Foreign Body

    PubMed Central

    Kim, Heung Up

    2016-01-01

    Fish bone foreign body (FFB) is the most frequent food-associated foreign body (FB) in adults, especially in Asia, versus meat in Western countries. The esophageal sphincter is the most common lodging site. Esophageal FB disease tends to occur more frequently in men than in women. The first diagnostic method is laryngoscopic examination. Because simple radiography of the neck has low sensitivity, if perforation or severe complications requiring surgery are expected, computed tomography should be used. The risk factors associated with poor prognosis are long time lapse after FB involvement, bone type, and longer FB (>3 cm). Bleeding and perforation are more common in FFB disease than in other FB diseases. Esophageal FB disease requires urgent treatment within 24 hours. However, FFB disease needs emergent treatment, preferably within 2 hours, and definitely within 6 hours. Esophageal FFB disease usually occurs at the physiological stricture of the esophagus. The aortic arch eminence is the second physiological stricture. If the FB penetrates the esophageal wall, a life-threatening aortoesophageal fistula can develop. Therefore, it is better to consult a thoracic surgeon prior to endoscopic removal. PMID:27461891

  6. Applications of the direct photon absorption technique for measuring bone mineral content in vivo. Determination of body composition in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.

    1972-01-01

    The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.

  7. Increasing the number of unloading/reambulation cycles does not adversely impact body composition and lumbar bone mineral density but reduces tissue sensitivity

    NASA Astrophysics Data System (ADS)

    Gupta, Shikha; Manske, Sarah L.; Judex, Stefan

    2013-11-01

    A single exposure to hindlimb unloading leads to changes in body mass, body composition and bone, but the consequences of multiple exposures are not yet understood. Within a 18 week period, adult C57BL/6 male mice were exposed to 1 (1x-HLU), 2 (2x-HLU) or 3 (3x-HLU) cycles of 2 weeks of hindlimb unloading (HLU) followed by 4 weeks of reambulation (RA), or served as ambulatory age-matched controls. In vivo μCT longitudinally tracked changes in abdominal adipose and lean tissues, lumbar vertebral apparent volumetric bone mineral density (vBMD) and upper hindlimb muscle cross-sectional area before and after the final HLU and RA cycle. During the final HLU cycle, significant decreases in total adipose tissue and vertebral vBMD in the three experimental groups occurred such that there were no significant between-group differences at the beginning of the final RA cycle. However, the magnitude of the HLU induced losses diminished in mice undergoing their 2nd or 3rd HLU cycle. Irrespective of the number of HLU/RA cycles, total adipose tissue and vertebral vBMD recovered and were no different from age-matched controls after the final RA period. In contrast, upper hindlimb muscle cross-sectional area was significantly lower than controls in all unloaded groups after the final RA period. These results suggest that tissues in the abdominal region are more resilient to multiple bouts of unloading and more amenable to recovery during reambulation than the peripheral musculoskeletal system.

  8. The Multicomponent Anthropometric Model for Assessing Body Composition in a Male Pediatric Population: A Simultaneous Prediction of Fat Mass, Bone Mineral Content, and Lean Soft Tissue

    PubMed Central

    Machado, Dalmo; Oikawa, Sérgio; Barbanti, Valdir

    2013-01-01

    The aim of this study was to propose and cross-validate an anthropometric model for the simultaneous estimation of fat mass (FM), bone mineral content (BMC), and lean soft tissue (LST) using DXA as the reference method. A total of 408 boys (8–18 years) were included in this sample. Whole-body FM, BMC, and LST were measured by DXA and considered as dependent variables. Independent variables included thirty-two anthropometrics measurements and maturity offset determined by the Mirwald equation. From a multivariate regression model (Ymn = x(r + 1)(r + 1)nβm + εnm), a matrix analysis was performed resulting in a multicomponent anthropometric model. The cross-validation was executed through the sum of squares of residuals (PRESS) method. Five anthropometric variables predicted simultaneously FM, BMC, and LST. Cross-validation parameters indicated that the new model is accurate with high RPRESS2 values ranging from 0.94 to 0.98 and standard error of estimate ranging from 0.01 to 0.09. The newly proposed model represents an alternative to accurately assess the body composition in male pediatric ages. PMID:23555052

  9. Impact of age, anthropometric data and body composition on calcaneal bone characteristics, as measured by quantitative ultrasound (QUS) in an older German population.

    PubMed

    Brunner, Christiane; Pons-Kühnemann, Jörn; Neuhäuser-Berthold, Monika

    2011-12-01

    The impact of fat-free mass (FFM), fat mass (FM), body mass index (BMI), body mass and body height on calcaneal bone characteristics as measured with quantitative ultrasound (QUS) was investigated in 137 women and 85 men aged 62-92 years, considering age, smoking, waist-to-hip ratio (WHR) and physical activity level (PAL). In regression analyses using various models, in women, age was a negative predictor of speed of sound (SOS), broadband ultrasound attenuation (BUA) and stiffness index (SI) and smoking was a negative predictor of SOS; positive predictors of SOS, BUA, and SI were BMI, body mass and FFM. In men, smoking was a negative predictor and BMI, body mass and FFM were positive predictors of BUA and SI. In both sexes, PAL, body height, WHR and FM had no effect on QUS parameters. The influence of BMI on calcaneal bone characteristics in elderly people depends on FFM rather than on FM. PMID:22036641

  10. Effect of recombinant human growth hormone on changes in height, bone mineral density, and body composition over 1-2 years in children with Hurler or Hunter syndrome.

    PubMed

    Polgreen, Lynda E; Thomas, William; Orchard, Paul J; Whitley, Chester B; Miller, Bradley S

    2014-02-01

    Patients with Hurler or Hunter syndrome typically have moderate to severe growth deficiencies despite therapy with allogeneic hematopoietic stem cell transplantation and/or enzyme replacement therapy. It is unknown whether treatment with recombinant human growth hormone (hGH) can improve growth in these children. The objectives of this study were to determine the effects of hGH on growth, bone mineral density (BMD), and body composition in children with Hurler or Hunter syndrome enrolled in a longitudinal observational study. The difference in annual change in outcomes between hGH treated and untreated subjects was estimated by longitudinal regression models that adjusted for age, Tanner stage, and sex where appropriate. We report on 23 participants who completed at least 2 annual study visits (10 [43%] treated with hGH): Hurler syndrome (n=13) average age of 9.8 ± 3.1 years (range 5.3-13.6 years; 54% female) and Hunter syndrome (n=10) average age of 12.0 ± 2.7 years (range 7.0-17.0 years; 0% female). As a group, children with Hurler or Hunter syndrome treated with hGH had no difference in annual change in height (growth velocity) compared to those untreated with hGH. Growth velocity in hGH treated individuals ranged from -0.4 to 8.1cm/year and from 0.3 to 6.6 cm/year in the untreated individuals. Among children with Hunter syndrome, 100% (N=4) of those treated but only 50% of those untreated with hGH had an annual increase in height standard deviation score (SDS). Of the individuals treated with hGH, those with GHD had a trend towards higher annualized growth velocity compared to those without GHD (6.5 ± 1.9 cm/year vs. 3.5 ± 2.1cm/year; p=.050). Children treated with hGH had greater annual gains in BMD and lean body mass. In conclusion, although as a group we found no significant difference in growth between individuals treated versus not treated with hGH, individual response was highly variable and we are unable to predict who will respond to treatment. Thus

  11. Body composition analysis in the pediatric population.

    PubMed

    Weber, David R; Leonard, Mary B; Zemel, Babette S

    2012-11-01

    Body composition analysis has become a useful tool in both clinical and research settings. Its use in the pediatric population is complicated by the rapid periods of growth and physical development that are characteristic of infancy, childhood, and adolescence. A thorough understanding of the changing nature of body composition during this time is essential for choosing the most appropriate measurement technique for a given individual, population, or clinical question. Growing evidence suggests that tissues such as fat, muscle, and bone are intimately involved in the regulation of whole body energy metabolism. This knowledge, when coupled with advancements in imaging techniques such as MRI and PET-CT, offers the possibility of developing new models of "functional" body composition. These models may prove to be especially important when assessing malnutrition and metabolic risk in patients with chronic disease. PMID:23469390

  12. Body composition in detoxified alcoholics.

    PubMed

    York, J L; Pendergast, D E

    1990-04-01

    Body composition was evaluated in healthy detoxified alcoholics (aged 20-39) and lifestyle controls, with the expectation that prolonged, excessive consumption of alcohol may bring about nutritional or toxicologic alterations in the relationship between body fat and lean body mass. Body fat was assessed by measurements of skin-fold thickness and by means of bioelectric impedance methodology. No noteworthy differences were observed between alcoholics and controls with regard to the relationship between lean body mass and body fat or in the relationship between extracellular and intracellular water. It would appear that 15-20 years of heavy alcohol consumption does not necessarily alter body composition in healthy, young alcoholics. PMID:2190482

  13. Body composition measurements during infancy.

    PubMed

    Koo, W W

    2000-05-01

    Infancy is the period of most rapid postnatal growth and is accompanied by major changes in body composition (BC). There are many challenges to successfully measuring BC of infants in vivo, which include the inherent limitations in the underlying assumptions for each technique. The small body mass and rapid nonuniform changes in body parts, that is, the components of BC during infancy, can strain the technical limits of all methods. Many techniques for in vivo BC measurement used in older people have been applied to infants. However, the vast majority of them either are difficult to adapt for widespread use in infants, or the roles and limitations for using them during infancy are ill-defined because of limited or no critical validation and cross-calibration studies. Based on validation data from animals, well-defined methodological issues in data acquisition and analyses, availability of normative data, and pertinent accuracy and precision of the technique to allow us to determinate clinically relevant changes in BC within a reasonable time interval, three techniques appear to be most suitable for in vivo BC measurement in infants. Anthropometric measurements can be used in field studies or for group comparisons, and total body electrical conductivity (TOBEC) and selected dual-energy X-ray absorptiometry (DXA) measurements can be used to compare BC in individual infants. DXA has the advantages of being able to measure bone mass and the potential to be adaptable to the widely available existing instruments. However, regardless of the techniques used in measuring BC in infants, meticulous attention to details in data acquisition and data analysis, and a knowledge of the limitations of the particular technique are the prerequisites for generating valid data. PMID:10865776

  14. Influence of body weight on bone mass, architecture and turnover.

    PubMed

    Iwaniec, Urszula T; Turner, Russell T

    2016-09-01

    Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating the development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. Although the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size. PMID:27352896

  15. Whole body bone scan. Case report

    SciTech Connect

    Nagle, C.E.; Morayati, S.J.; Carichner, S.; Winkes, B.; Cassisi, R.; McGraw, R.; Schane, E.

    1988-03-01

    The authors present the case example of a patient whose bone scan did not reveal an ulnar abnormality because the ulnae were not included on the whole body scan image. This interesting case demonstrates the importance of positioning the patient for the whole body scan to include the entire skeleton or obtaining additional spot views of the appendicular or axial skeleton not included on whole body images.

  16. Sire carcass breeding values affect body composition in lambs--2. Effects on fat and bone weight and their distribution within the carcass as measured by computed tomography.

    PubMed

    Anderson, F; Williams, A; Pannier, L; Pethick, D W; Gardner, G E

    2016-06-01

    This study assessed the effect of paternal Australian Sheep Breeding Values for post weaning c-site eye muscle depth (PEMD) and fat depth (PFAT), and post weaning weight (PWWT) on the composition of lamb carcasses. Composition was measured using computed tomography scans of 1665 lambs which were progeny of 85 Maternal, 115 Merino and 155 Terminal sires. Reducing sire PFAT decreased carcass fat weight by 4.8% and increased carcass bone by 1.3% per unit of PFAT (range 5.1 mm). Increasing sire PEMD reduced carcass fat weight by 3.8% in Maternal and 2% in Terminal sired lambs per unit of PEMD (range 4.3 and 7.8 mm), with no impact on bone. Increasing sire PWWT reduced carcass fat weight, but only at some experimental locations. Differences in composition varied between sire types with Maternal sired lambs having the most fat and Merino sired lambs the greatest bone weight. Genetic effects on fatness were greater than the environmental or production factor effects, with the converse true of bone. PMID:26914513

  17. Body Composition and Skeletal Health: Too Heavy? Too Thin?

    PubMed Central

    Faje, Alexander; Klibanski, Anne

    2013-01-01

    The relationship between body composition and skeletal metabolism has received growing recognition. Low body weight is an established risk factor for fracture. The effect of obesity on skeletal health is less well defined. Extensive studies in patients with anorexia nervosa and obesity have illuminated many of the underlying biologic mechanisms by which body composition modulates bone mass. This review examines the relationship between body composition and bone mass through data from recent research studies throughout the weight spectrum ranging from anorexia nervosa to obesity. PMID:22644889

  18. The Association between Trunk Body Composition and Spinal Bone Mineral Density in Korean Males versus Females: a Farmers' Cohort for Agricultural Work-Related Musculoskeletal Disorders (FARM) Study.

    PubMed

    Kang, Eun Kyoung; Park, Hee Won; Baek, Sora; Lim, Jae Young

    2016-10-01

    The purpose of this study was proposed to identify the association of trunk body composition with spinal bone mineral density (BMD) in Korean male and female farmers. A total of 523 Korean farmers (259 males, 44 premenopausal females, and 220 postmenopausal females) were recruited. Computed tomography scans were acquired at the mid-L4 vertebral level, and total trunk muscle mass (TMM, cm³), back muscle mass (BMM), and abdominal wall muscle mass (AMM), total trunk fat mass (TFM), visceral fat mass (VFM), and subcutaneous fat mass (SFM) were assessed. Spinal BMD (g/cm²) was estimated from dual-energy X-ray absorptiometry at the L4 level. In terms of muscle mass, spinal BMD was significantly correlated with all the components of the trunk muscle mass (r = 0.171-0.360; P < 0.05, P < 0.001) in female farmers, while only with AMM (r = 0.181; P < 0.01) in male farmers. In terms of fat mass, spinal BMD was significantly correlated with all components of the trunk fat mass (r = 0.142-0.424; P < 0.05, P < 0.001) in male and premenopausal female farmers, while only with VFM (r = 0.132; P < 0.05) in postmenopausal females. Adjusted multivariate regression analysis showed that AMM in male and post-menopausal female farmers was closely associated with spinal BMD. There may be positive associations between trunk muscle and fat mass and spinal BMD with sexual dimorphism, and abdominal wall muscle mass was an explanatory variable closely related to spinal BMD in Korean farmers. Registered at the Clinical Research Information Service (CRIS, http://cris.nih.go.kr), number KCT0000829. PMID:27550488

  19. [Body composition and comorbidity in the elderly].

    PubMed

    Bonnefoy, Marc; Gilbert, Thomas

    2015-03-01

    Obesity and excess in fat versus lean mass is well known to enhance the risk of mortality and morbidity. Several recent works have pointed the importance of analysing more precisely body composition for the assessment of prognosis of patients in terms of cardiovascular outcomes and mortality. The body mass index (BMI), commonly used for defining obese patients, does not give sufficient indication on the body composition and distribution of fat mass. In the elderly population, relative excess in fat mass associated with a decrease in lean mass is frequently observed. In such situations of sarcopenic obesity, the relative weight stability can be misleading. Sarcopenic obesity is an emerging public health problem in the geriatric population. It appears to be the situation with the worst prognosis for cardiovascular risk. In addition, recent works have highlighted the major impact of visceral fat, clearly linked with cardiovascular events. Body composition has also an impact on other pathologic conditions such as dementia, sleep apnoea or cancer. The links between body composition and morbidity in the elderly population are presented in this review, with emphasis on adipokines and their interactions with other organs such as the heart, liver, skeletal muscle or bones. More precise measurements of body composition, rather than BMI alone, should be developed in the elderly population. PMID:26345585

  20. Body composition in clinical practice.

    PubMed

    Andreoli, Angela; Garaci, Francesco; Cafarelli, Francesco Pio; Guglielmi, Giuseppe

    2016-08-01

    Nutritional status is the results of nutrients intake, absorption and utilization, able to influence physiological and pathological conditions. Nutritional status can be measured for individuals with different techniques, such as CT Body Composition, quantitative Magnetic Resonance Imaging, Ultrasound, Dual-Energy X-Ray Absorptiometry and Bioimpendance. Because obesity is becoming a worldwide epidemic, there is an increasing interest in the study of body composition to monitor conditions and delay in development of obesity-related diseases. The emergence of these evidence demonstrates the need of standard assessment of nutritional status based on body weight changes, playing an important role in several clinical setting, such as in quantitative measurement of tissues and their fluctuations in body composition, in survival rate, in pathologic condition and illnesses. Since body mass index has been shown to be an imprecise measurement of fat-free and fat mass, body cell mass and fluids, providing no information if weight changes, consequently there is the need to find a better way to evaluate body composition, in order to assess fat-free and fat mass with weight gain and loss, and during ageing. Monitoring body composition can be very useful for nutritional and medical interventional. This review is focused on the use of Body Composition in Clinical Practice. PMID:26971404

  1. Bone fragments a body can make

    SciTech Connect

    Stout, S.D.; Ross, L.M. Jr. )

    1991-05-01

    Data obtained from various analytical techniques applied to a number of small bone fragments recovered from a crime scene were used to provide evidence for the occurrence of a fatality. Microscopic and histomorphometric analyses confirmed that the fragments were from a human skull. X-ray microanalysis of darkened areas on the bone fragments revealed a chemical signature that matched the chemical signature of a shotgun pellet recovered at the scene of the crime. The above findings supported the deoxyribonucleic acid (DNA) fingerprint evidence which, along with other evidence, was used to convict a man for the murder of his wife, even though her body was never recovered.

  2. Chitosan Composites for Bone Tissue Engineering—An Overview

    PubMed Central

    Venkatesan, Jayachandran; Kim, Se-Kwon

    2010-01-01

    Bone contains considerable amounts of minerals and proteins. Hydroxyapatite [Ca10(PO4)6(OH)2] is one of the most stable forms of calcium phosphate and it occurs in bones as major component (60 to 65%), along with other materials including collagen, chondroitin sulfate, keratin sulfate and lipids. In recent years, significant progress has been made in organ transplantation, surgical reconstruction and the use of artificial protheses to treat the loss or failure of an organ or bone tissue. Chitosan has played a major role in bone tissue engineering over the last two decades, being a natural polymer obtained from chitin, which forms a major component of crustacean exoskeleton. In recent years, considerable attention has been given to chitosan composite materials and their applications in the field of bone tissue engineering due to its minimal foreign body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth and osteoconduction. The composite of chitosan including hydroxyapatite is very popular because of the biodegradability and biocompatibility in nature. Recently, grafted chitosan natural polymer with carbon nanotubes has been incorporated to increase the mechanical strength of these composites. Chitosan composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering. Herein, the preparation, mechanical properties, chemical interactions and in vitro activity of chitosan composites for bone tissue engineering will be discussed. PMID:20948907

  3. Bone composition: relationship to bone fragility and antiosteoporotic drug effects.

    PubMed

    Boskey, Adele L

    2013-01-01

    The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones. PMID:24501681

  4. Bone composition: relationship to bone fragility and antiosteoporotic drug effects

    PubMed Central

    Boskey, Adele L

    2013-01-01

    The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones. PMID:24501681

  5. A family-centered lifestyle intervention to improve body composition and bone mass in overweight and obese children 6 through 8 years: a randomized controlled trial study protocol

    PubMed Central

    2013-01-01

    Background Childhood obesity gives rise to health complications including impaired musculoskeletal development that associates with increased risk of fractures. Prevention and treatment programs should focus on nutrition education, increasing physical activity (PA), reducing sedentary behaviours, and should monitor bone mass as a component of body composition. To ensure lifestyle changes are sustained in the home environment, programs need to be family-centered. To date, no study has reported on a family-centered lifestyle intervention for obese children that aims to not only ameliorate adiposity, but also support increases in bone and lean muscle mass. Furthermore, it is unknown if programs of such nature can also favorably change eating and activity behaviors. The aim of this study is to determine the effects of a 1 y family-centered lifestyle intervention, focused on both nutrient dense foods including increased intakes of milk and alternatives, plus total and weight-bearing PA, on body composition and bone mass in overweight or obese children. Methods/design The study design is a randomized controlled trial for overweight or obese children (6–8 y). Participants are randomized to control, standard treatment (StTx) or modified treatment (ModTx). This study is family-centred and includes individualized counselling sessions on nutrition, PA and sedentary behaviors occurring 4 weeks after baseline for 5 months, then at the end of month 8. The control group receives counselling at the end of the study. All groups are measured at baseline and every 3 months for the primary outcome of changes in body mass index Z-scores. At each visit blood is drawn and children complete a researcher-administered behavior questionnaire and muscle function testing. Changes from baseline to 12 months in body fat (% and mass), waist circumference, lean body mass, bone (mineral content, mineral density, size and volumetric density), dietary intake, self-reported PA and sedentary

  6. Body composition: Where and when.

    PubMed

    Mazzoccoli, Gianluigi

    2016-08-01

    The in vivo evaluation of body composition is essential in many clinical investigations, in order to accurately describe and monitor the nutritional status of a range of medical conditions and physiological processes, including sick and malnourished patients, pregnant women, breastfeeding women and the elderly, as well as in patients with cancer, osteoporosis and many other diseases. This research area is also important to the field of human nutrition and exercise physiology. Several research investigations have indicated the importance of measuring fat deposition in different body compartments, in order to gain a fuller understanding of the genetic factors that contribute to obesity, obesity-related disorders, such as dyslipidemia, and thereby to a fuller understanding of obesity associated cardio-metabolic disorders, with relevance to the relationship between body composition and energy expenditure. The spatial and temporal dimension, where and when, may influence the physiological relevance and the pathological implications of the fat composition of different body compartments, and, as such, is a new element to be considered when assessing body composition. PMID:26564096

  7. Skeletal and body composition evaluation

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.

    1983-01-01

    Research on radiation detectors for absorptiometry; analysis of errors affective single photon absorptiometry and development of instrumentation; analysis of errors affecting dual photon absorptiometry and development of instrumentation; comparison of skeletal measurements with other techniques; cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals; studies of postmenopausal osteoporosis; organization of scientific meetings and workshops on absorptiometric measurement; and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  8. Influences of dietary vitamin D restriction on bone strength, body composition and muscle in rats fed a high-fat diet: involvement of mRNA expression of MyoD in skeletal muscle.

    PubMed

    Oku, Yuno; Tanabe, Rieko; Nakaoka, Kanae; Yamada, Asako; Noda, Seiko; Hoshino, Ayumi; Haraikawa, Mayu; Goseki-Sone, Masae

    2016-06-01

    Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation and development. The present study investigated the influences of vitamin D restriction on the body composition, bone and skeletal muscle in rats fed a high-fat diet. Sprague-Dawley strain male rats (11weeks old) were divided into four groups and fed experimental diets: a basic control diet (Cont.), a basic control diet with vitamin D restriction (DR), a high-fat diet (F) and a high-fat diet with vitamin D restriction (FDR). At 28days after starting the experimental diets, the visceral fat mass was significantly increased in the F group compared with Cont. group, and the muscle mass tended to decrease in the DR group compared with Cont. group. The total volume of the femur was significantly lower in the DR group compared with Cont. group, and the bone mineral density (BMD) of the femur was significantly lower in the FDR group compared with F group. MyoD is one of the muscle-specific transcription factors. The levels of mRNA expression of MyoD of the gastrocnemius and soleus muscles from the DR group were reduced markedly compared with those from the Cont. group. In conclusion, our findings revealed the influences of a vitamin D-restricted high-fat diet on the bone strength, body composition and muscle. Further studies on vitamin D insufficiency in the regulation of muscle as well as fat and bone metabolism would provide valuable data for the prevention of lifestyle-related disorders, including osteoporosis and sarcopenia. PMID:27142740

  9. Evaluation of body composition. Current issues.

    PubMed

    Heyward, V H

    1996-09-01

    In the selection of body composition field methods and prediction equations, exercise and health practitioners must consider their clients' demographics. Factors, such as age, gender, level of adiposity, physical activity and ethnicity influence the choice of method and equation. Also, it is important to evaluate the relative worth of prediction equations in terms of the criterion method used to derive reference measures of body composition for equation development. Given that hydrodensitometry, hydrometry and dual-energy x-ray absorptiometry are subject to measurement error and violation of basic assumptions underlying their use, none of these should be considered as a 'gold standard' method for in vivo body composition assessment. Reference methods, based on whole-body, 2-component body composition models, are limited, particularly for individuals whose fat-free body (FFB) density and hydration differ from values assumed for 2-component models. Use of field method prediction equations developed from 2-component model (Siri equation) reference measures of body composition will systematically underestimate relative body fatness of American Indian women, Black men and women, and Hispanic women because the average FFB density of these ethnic groups exceeds the assumed value (1.1 g/ml). Thus, some researchers have developed prediction equations based on multicomponent model estimates of body composition that take into account interindividual variability in the water, mineral, and protein content of the FFB. One multicomponent model approach adjusts body density (measured via hydrodensitometry) for total body water (measured by hydrometry) and/or total body mineral estimated from bone mineral (measured via dual-energy x-ray absorptiometry). Skinfold (SKF), bioelectrical impedance analysis (BIA), and near-infrared interactance (NIR) are 3 body composition methods used in clinical settings. Unfortunately, the overwhelming majority of field method prediction equations

  10. Effects of chronic acceleration on body composition

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1982-01-01

    Studies of the centrifugation of adult rats showed an unexpected decrease in the mass of fat-free muscle and bone, in spite of the added load induced by centrifugation. It is suggested that the lower but constant fat-free body mass was probably regulated during centrifugation. Rats placed in weightless conditions for 18.5 days gave indirect but strong evidence that the muscle had increased in mass. Other changes in the rats placed in weightless conditions included a smaller fraction of skeletal mineral, a smaller fraction of water in the total fat-free body, and a net shift of fluid from skin to viscera. Adult rats centrifuged throughout the post-weaning growth period exhibited smaller masses of bone and central nervous system (probably attributable to slower growth of the total body), and a larger mass of skin than controls at 1 G. Efforts at simulating the effects of weightlessness or centrifugation on the body composition of rats by regimens at terrestrial gravity were inconclusive.

  11. Effect of physical activity on body composition

    SciTech Connect

    Zanzi, I; Ellis, K J; Aloia, J; Cohn, S H

    1980-01-01

    It has been noted that the deleterious effects on bone calcium of prolonged periods of inactivity, such as bed rest, are halted following resumption of activity. It would seem possible in light of the observations that have been made, that exercise may stimulate bone formation and perhaps counter, to some extent, bone loss as observed in the osteoporosis of aging. The present study was designed to determine the relation between total body calcium, total body potassium and bone mineral content of the radius to the degree of physical activity in a population of normal subjects. Measurement of the calcium was made by in-vivo total body neutron activation analysis. Bone mineral content of the radius and total body potassium, (an index of lean body mass) were measured by photon absorptiometry and the whole body counter, respectively.

  12. Composites structures for bone tissue reconstruction

    SciTech Connect

    Neto, W.; Santos, João; Avérous, L.; Schlatter, G.; Bretas, Rosario

    2015-05-22

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  13. Composites structures for bone tissue reconstruction

    NASA Astrophysics Data System (ADS)

    Neto, W.; Santos, João.; Avérous, L.; Schlatter, G.; Bretas, Rosario.

    2015-05-01

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  14. Observational study of caloric and nutrient intake, bone density, and body composition in infants and children with Spinal Muscular Atrophy type I

    PubMed Central

    Poruk, Katherine E; Davis, Rebecca Hurst; Smart, Abby L; Chisum, Benjamin S; LaSalle, Bernie A; Chan, Gary M; Gill, Gurmail; Reyna, Sandra P; Swoboda, Kathryn J

    2012-01-01

    Clinical experience supports a critical role for nutrition in patients with spinal muscular atrophy (SMA). Three-day dietary intake records were analyzed for 156 visits in 47 SMA type I patients, 25 males and 22 females, ages 1 month-13 years (median 9.8 months) and compared to dietary reference intakes for gender and age along with anthropometric measures and dual-energy x-ray absorptiometry (DEXA) data. Using standardized growth curves, twelve patients met criteria for failure to thrive (FTT) with weight for age < 3rd percentile; eight met criteria based on weight for height. Percentage of body fat mass was not correlated with weight for height and weight for age across percentile categories. DEXA analysis further demonstrated that SMA type I children have higher fat mass and lower fat free mass than healthy peers (p<0.001). DEXA and dietary analysis indicates a strong correlation with magnesium intake and bone mineral density (r=0.65, p<0.001). Average caloric intake for 1–3 year olds was 68.8 ±15.8 kcal/kg - 67% of peers’ recommended intake. Children with SMA type I may have lower caloric requirements than healthy age-matched peers, increasing risk for over and undernourished states and deficiencies of critical nutrients. Standardized growth charts may overestimate FTT status in SMA type I. PMID:22832342

  15. Dual-energy X-ray absorptiometry and body composition.

    PubMed

    Laskey, M A

    1996-01-01

    This review describes the advantages and limitations of dual-energy absorptiometry (DXA), a technique that is widely used clinically to assess a patient's risk of osteoporosis and to monitor the effects of therapy. DXA is also increasingly used to measure body composition in terms of fat and fat-free mass. There are three commercial manufacturers of DXA instruments: Lunar, Hologic, and Norland. All systems generate X-rays at two different energies and make use of the differential attenuation of the X-ray beam at these two energies to calculate the bone mineral content and soft tissue composition in the scanned region. Most DXA instruments measure bone mineral in the clinically important sites of the spine, hip, and forearm. More specialized systems also perform whole-body scans and can be used to determine the bone and soft tissue composition of the whole body and subregions such as arms, legs, and trunk. The effective dose incurred during DXA scanning is very small, and, consequently, DXA is a simple and safe technique that can be used for children and the old and frail. Precision of all DXA measurements is excellent but varies with the region under investigation. Precision is best for young healthy subjects (coefficient of variation is about 1% for the spine and whole body bone measurements) but is less good for osteoporotic and obese subjects. The accuracy of DXA measurements, however, can be problematic. Marked systematic differences in bone and soft tissue values are found between the three commercial systems due to differences in calibration, bone edge detection, and other factors. In addition, differences in reference data provided by each manufacturer can lead to an individual appearing normal on one machine but at risk of osteoporosis on another. At present, DXA cannot be regarded as a "gold standard" for body composition. However, the continuing development of DXA and the introduction of new software is greatly improving the performance of this

  16. Asymmetry in body composition in female hockey players.

    PubMed

    Krzykała, M; Leszczyński, P

    2015-08-01

    The aim of the study was to determine if a sport in which one side of the body is dominant, like field hockey, influences regional body composition and bone mineral density (BMD) distribution in particular body segments, and whether the sporting level is a determining factor. Dual energy X-ray absorptiometry (DXA) method (Lunar Prodigy Advance; General Electric, Madison, USA) with the whole body scan was used to measure bone mineral density, fat mass and lean mass in 31 female field hockey players divided according to their sporting level. The morphological asymmetry level was assessed between two body sides and body segments in athletes from the National Team (n=17) and from the Youth Team (n=14) separately and between groups. Bone mineral density in the lower extremity and of the trunk was significantly asymmetric in favor of the left side in the National Team. In the case of the Youth Team, only the trunk BMD indicated clear left-right difference with left side dominance. Both the lean mass and fat mass values were relatively higher on the left side of all body segments and it related to both analyzed groups of athletes. The present study shows that playing field hockey contributes to laterality in body composition and BMD and that the sporting level is a determining factor. In most cases the left side dominated. A greater asymmetry level was observed in more experienced female field hockey players. PMID:26077573

  17. Photoacoustic and ultrasound characterization of bone composition

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Yang, Lifeng; Liu, Lixian; Tan, Joel W. Y.; Mandelis, Andreas

    2015-02-01

    This study examines the sensitivity and specificity of backscattered ultrasound (US) and backscattering photoacoustic (PA) signals for bone composition variation assessment. The conventional approach in the evaluation of bone health relies on measurement of bone mineral density (BMD). Although, a crucial and probably the most important parameter, BMD is not the only factor defining the bone health. New trends in osteoporosis research, also pursue the changes in collagen content and cross-links with bone diseases and aging. Therefore, any non-invasive method that can assess any of these parameters can improve the diagnostic tools and also can help with the biomedical studies on the diseases themselves. Our previous studies show that both US and PA are responsive to changes in the BMD, PA is, in addition, sensitive to changes in the collagen content of the bone. Measurements were performed on bone samples before and after mild demineralization and decollagenization at the exact same points. Results show that combining both modalities can enhance the sensitivity and specificity of diagnostic tool.

  18. Composite bone substitutes prepared by two methods

    NASA Astrophysics Data System (ADS)

    Lee, Hoe Y.

    A variety of ceramics and polymers exists that can be used as bone substitute materials with desirable properties such as biocompatibility and osteoconductivity. A key feature missing in these bone substitutes, or scaffolds, is the ability to bear loads. This work explored two methods for solving this problem. The first used cancellous bone taken from bovine femoral bone to create a natural scaffold through a heat treating process that eliminated the organic components and sintered the bone minerals, known as hydroxyapatite, together. The strength and Young's modulus of the natural scaffold were greatly improved after polymer infiltration with polymethylmethacrylate. Unfortunately, compression testing revealed that there was not a good interfacial bond between the mineral and polymer phases. The second method employed a freeze-casting technique to create synthetic hydroxyapatite scaffolds that have an aligned lamellar microstructure. By varying the amount of hydroxyapatite in the initial slurry mixture and the cooling rate, synthetic scaffolds with a range of porosities and strengths was produced. The highest solid loading and fastest cooling rate produced a scaffold with a strength and modulus approaching that of cortical bone. Further study is required to produce a two phase composite that is chemically bonded together for optimal performance. The synthetic scaffolds, with their tunable mechanical properties and ease of fabrication, make them a promising material for a load-bearing bone substitute.

  19. Association between Human Body Composition and Periodontal Disease.

    PubMed

    Salekzamani, Yagoub; Shirmohammadi, Adileh; Rahbar, Mohammad; Shakouri, Seyed-Kazem; Nayebi, Farough

    2011-01-01

    Obesity in humans might increase the risk of periodontitis. The aim of the present study was to examine the relationship between body composition of males and their periodontal status. AS total of 150 males (aged 30-60) were selected: 31 were periodontally healthy, 45 had gingivitis, 39 had initial periodontitis, and 35 suffered from established periodontitis. BMI (body mass index), WC (waist circumference), and body composition parameters (consisting of body water, body fat, and skeletal muscle and bone mass) were measured. After adjusting for age, history of diabetes, smoking, physical activity status, and socioeconomic status, statistically significant correlations were found between periodontitis and BMI, WC, and body composition. There was only a statistically significant difference between the periodontal health and established periodontitis; that is, periodontal disease in mild forms (gingivitis) and initial periodontitis do not influence these variables (BMI, WC, and body composition parameters) and only the severe form of the disease influences the variables. These data suggest that there is a considerable association between severe forms of periodontal disease in males and their body composition, but this preliminary finding needs to be confirmed in more extensive studies. PMID:22111011

  20. Novel tricalcium silicate/monocalcium phosphate monohydrate composite bone cement.

    PubMed

    Huan, Zhiguang; Chang, Jiang

    2007-08-01

    In this paper, we obtained a novel bone cement composed of tricalcium silicate (Ca(3)SiO(5); C(3)S) and monocalcium phosphate monohydrate (MCPM). The weight ratio of MCPM in the cement is 0, 10, 20, and 30%. The initial setting time was dramatically reduced from 90 min to 30 min as the content of MCPM reached 20%. The workable paste with a liquid/powder (L/P) ratio of 0.8 mL/g could be injected for 2-20 min (nozzle diameter 2.0 mm). The pH variation of the composite cement in simulated body environment was obviously lowered. The compressive strength of the composite cement after setting for 4-28 days was slightly lower than that of the tricalcium silicate paste. The in vitro bioactivity was investigated by soaking in simulated body fluid for 7 days. The result showed that the novel bone cement had good bioactivity and could degrade in tris-(hydroxymethyl)-aminomethane-hydrochloric-acid (Tris-HCl) solution. Our result indicated that the Ca(3)SiO(5)/MCPM paste had good hydraulic properties, bioactivity, and degradability. The novel bone cement could be a potential candidate as bone substitute. PMID:17238165

  1. Gravitational effects on body composition in birds

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Sanchez P., O.; Burton, R. R.

    1975-01-01

    Gallinaceous birds, presenting a wide range of body size, were adapted physiologically to hyperdynamic environments, provided by chronic centrifugation. Chemical composition was measured directly on prepared carcasses, which were anatomically comparable, and more amenable to analysis than the intact body. Body mass and body fat decreased arithmetically with increasing field strength and also with increasing body mass. Water content of lean tissue increased in hyperdynamic environments, but irrespectively of body size.

  2. Mechanics of bone/PMMA composite structures: an in vitro study of human vertebrae.

    PubMed

    Race, Amos; Mann, Kenneth A; Edidin, Avram A

    2007-01-01

    The goal of this study was to provide material property data for the cement/bone composite resulting from the introduction of PMMA bone cement into human vertebral bodies. A series of quasistatic tensile and compressive mechanical tests were conducted using cement/bone composite structures machined from cement-infiltrated vertebral bodies. Experiments were performed both at room temperature and at body temperature. We found that the modulus of the composite structures was lower than bulk cement (p<0.0001). For compression at 37( composite function)C: composite =2.3+/-0.5GPa, cement =3.1+/-0.2GPa; at 23( composite function)C: composite =3.0+/-0.3GPa, cement =3.4+/-0.2GPa. Specimens tested at room temperature were stiffer than those tested at body temperature (p=0.0004). Yield and ultimate strength factors for the composite were all diminished (55-87%) when compared to cement properties. In general, computational models have assumed that cement/bone composite had the same modulus as cement. The results of this study suggest that computational models of cement infiltrated vertebrae and cemented arthroplasties could be improved by specifying different material properties for cement and cement/bone composite. PMID:16797554

  3. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Mandelis, Andreas; Tan, Joel W. Y.

    2015-06-01

    Ultrasound (US) backscatter from bones depends on the mechanical properties and the microstructure of the interrogated bone. On the other hand, photoacoustics (PA) is sensitive to optical properties of tissue and can detect composition variation. Therefore, PA can provide complementary information about bone health and integrity. In this work, a comparative study of US backscattering and PA back-propagating signals from animal trabecular bones was performed. Both methods were applied using a linear frequency modulation chirp and matched filtering. A 2.2 MHz ultrasonic transducer was employed to detect both signals. The use of the frequency domain facilitates spectral analysis. The variation of signals shows that in addition to sensitivity to mineral changes, PA exhibits sensitivity to changes in the organic part of the bone. It is, therefore, concluded that the combination of both modalities can provide complementary detailed information on bone health than either method separately. In addition, comparison of PA and US depthwise images shows the higher penetration of US. Surface scan images exhibit very weak correlation between US and PA which could be caused by the different signal generation origins in mechanical versus optical properties, respectively.

  4. In vivo animal models of body composition in aging

    SciTech Connect

    Yasumura, S. |; Jones, K.; Spanne, P.; Schidlovsky, G.; Wielopolski, L.; Ren, X.; Glaros, D.; Xatzikonstantinou, Y. |

    1992-12-31

    We developed several techniques that provide data on body elemental composition from in vivo measurements in rats. These methods include total body potassium by whole-body counting of endogenous {sup 40}K; total body calcium (TBCa), sodium and chloride by in vivo neutron activation analysis and total body phosphorus (TBP) and nitrogen (TBN) by photon activation analysis. These elements provide information on total body fat, total body protein and skeletal mass. Measurements were made in 6-, 12- and 24-month-old rats. TBN Increased slightly between 6 and 12 months but was significantly lower by 24 months, indicating a substantial loss in total body protein. Working at the National Synchrotron light Source, we studied rat femurs by computed microtomography (CMT), and the elemental profile of the femur cortex by synchrotron-radiation induced X-ray emission (SRIXE). Although there were no significant changes in TBCA and TBP, indices of skeletal mass, CMT revealed a marked increase in the size and number of cavities in the endosteal region of the femur cortex with increasing age. The SRIXE analysis of this cortical bone revealed a parallel decrease in the endosteal Ca/P ratio. Thus, there are major alterations in bone morphology and regional elemental composition despite only modest changes in total skeletal mass.

  5. Nutritional assessment with body composition measurements

    SciTech Connect

    Shizgal, H.M.

    1987-09-01

    The measurement of body composition by multiple isotope dilution provides an accurate and precise measure of both the nutritional state and the response to nutritional support. A multiple isotope dilution technique has been developed that permits measurement of the three major components of body composition: body fat, extracellular mass (ECM), and body cell mass (BCM). Normal body composition was defined by data obtained in 25 healthy volunteers. Malnutrition is characterized by a loss of BCM and an expansion of the ECM, and as a result the lean body mass is not significantly different from normal. The loss of body weight with malnutrition therefore often reflects the loss of body fat. The utility of body composition measurements was demonstrated by determining the effect of total parenteral nutrition on body composition to determine the relationship between caloric intake and the change in the BCM. A statistically significant relationship was developed which demonstrated that a caloric intake in the range of 30-40 cal/kg/day is required for maintenance. To restore a depleted or malnourished BCM requires a caloric intake in excess of that required for maintenance. The measurement of body composition by multiple isotope dilution is complex and time consuming, and requires specialized laboratory facilities and specially trained personnel. As a result, these measurements are not suited for routine patient management, but should rather be reserved for research purposes.

  6. Evaluation of Body Composition: Why and How?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of human body composition in vivo remains a critical component in the assessment of nutritional status of an individual.Whereas traditional measurements of standing height and body weight provide information on body mass index and, hence, the risk of some chronic diseases, advanced techno...

  7. Developing bioactive composite scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Chen, Yun

    Poly(L-lactic acid) (PLLA) films were fabricated using the method of dissolving and evaporation. PLLA scaffold was prepared by solid-liquid phase separation of polymer solutions and subsequent sublimation of solvent. Bonelike apatite coating was formed on PLLA films, PLLA scaffolds and poly(glycolic acid) (PGA) scaffolds in 24 hours through an accelerated biomimetic process. The ion concentrations in the simulated body fluid (SBF) were nearly 5 times of those in human blood plasma. The apatite formed was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The apatite formed in 5SBF was similar in morphology and composition to that formed in the classical biomimetic process employing SBF or 1.5SBF, and similar to that of natural bone. This indicated that the biomimetic apatite coating process could be accelerated by using concentrated simulated body fluid at 37°C. Besides saving time, the accelerated biomimetic process is particularly significant to biodegradable polymers. Some polymers which degrade too fast to be coated with apatite by a classical biomimetic process, for example PGA, could be coated with bone-like apatite in an accelerated biomimetic process. Collagen and apatite were co-precipitated as a composite coating on poly(L-lactic acid) (PLLA) in an accelerated biomimetic process. The incubation solution contained collagen (1g/L) and simulated body fluid (SBF) with 5 times inorganic ionic concentrations as human blood plasma. The coating formed on PLLA films and scaffolds after 24 hours incubation was characterized using EDX, XRD, FTIR, and SEM. It was shown that the coating contained carbonated bone-like apatite and collagen, the primary constituents of natural bone. SEM showed a complex composite coating of submicron bone-like apatite particulates combined with collagen fibrils. This work provided an efficient process to obtain

  8. Reference Values for Body Composition and Anthropometric Measurements in Athletes

    PubMed Central

    Santos, Diana A.; Dawson, John A.; Matias, Catarina N.; Rocha, Paulo M.; Minderico, Cláudia S.; Allison, David B.; Sardinha, Luís B.; Silva, Analiza M.

    2014-01-01

    Background Despite the importance of body composition in athletes, reference sex- and sport-specific body composition data are lacking. We aim to develop reference values for body composition and anthropometric measurements in athletes. Methods Body weight and height were measured in 898 athletes (264 female, 634 male), anthropometric variables were assessed in 798 athletes (240 female and 558 male), and in 481 athletes (142 female and 339 male) with dual-energy X-ray absorptiometry (DXA). A total of 21 different sports were represented. Reference percentiles (5th, 25th, 50th, 75th, and 95th) were calculated for each measured value, stratified by sex and sport. Because sample sizes within a sport were often very low for some outcomes, the percentiles were estimated using a parametric, empirical Bayesian framework that allowed sharing information across sports. Results We derived sex- and sport-specific reference percentiles for the following DXA outcomes: total (whole body scan) and regional (subtotal, trunk, and appendicular) bone mineral content, bone mineral density, absolute and percentage fat mass, fat-free mass, and lean soft tissue. Additionally, we derived reference percentiles for height-normalized indexes by dividing fat mass, fat-free mass, and appendicular lean soft tissue by height squared. We also derived sex- and sport-specific reference percentiles for the following anthropometry outcomes: weight, height, body mass index, sum of skinfold thicknesses (7 skinfolds, appendicular skinfolds, trunk skinfolds, arm skinfolds, and leg skinfolds), circumferences (hip, arm, midthigh, calf, and abdominal circumferences), and muscle circumferences (arm, thigh, and calf muscle circumferences). Conclusions These reference percentiles will be a helpful tool for sports professionals, in both clinical and field settings, for body composition assessment in athletes. PMID:24830292

  9. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions. PMID:14711171

  10. Hierarchically biomimetic scaffold of a collagen-mesoporous bioactive glass nanofiber composite for bone tissue engineering.

    PubMed

    Hsu, Fu-Yin; Lu, Meng-Ru; Weng, Ru-Chun; Lin, Hsiu-Mei

    2015-04-01

    Mesoporous bioactive glass nanofibers (MBGNFs) were prepared by a sol-gel/electrospinning technique. Subsequently, a collagen-MBGNF (CM) composite scaffold that simultaneously possessed a macroporous structure and collagen nanofibers was fabricated by a gelation and freeze-drying process. Additionally, immersing the CM scaffold in a simulated body fluid resulted in the formation of bone-like apatite minerals on the surface. The CM scaffold provided a suitable environment for attachment to the cytoskeleton. Based on the measured alkaline phosphatase activity and protein expression levels of osteocalcin and bone sialoprotein, the CM scaffold promoted the differentiation and mineralization of MG63 osteoblast-like cells. In addition, the bone regeneration ability of the CM scaffold was examined using a rat calvarial defect model in vivo. The results revealed that CM is biodegradable and could promote bone regeneration. Therefore, a CM composite scaffold is a potential bone graft for bone tissue engineering applications. PMID:25805665

  11. Assessing body composition in infants and toddlers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare different body composition techniques in infants and toddlers. Anthropometric measures including mid-upper arm circumference (MAC), triceps skinfold thickness (TSF), and weight-for-height or -length Z-scores (WHZ), and measures of body fat mass assessed wit...

  12. Measurement of Body Composition in Children.

    ERIC Educational Resources Information Center

    Lohman, T. G.

    1982-01-01

    Identification and treatment of obesity in children is believed to be an important factor in its control during the adult years. Laboratory and field methods for body composition measurement are described along with estimates of body fat content from anthropometric dimensions. (CJ)

  13. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  14. Whole body bone scintigraphy in osseous hydatosis: a case report

    PubMed Central

    Ebrahimi, Abdolali; Assadi, Majid; Saghari, Mohsen; Eftekhari, Mohammad; Gholami, Amir; Ghasemikhah, Reza; Assadi, Sakineh

    2007-01-01

    Hydatid disease is common in many parts of the world, and causes considerable health and economic loss. This disease may develop in almost any part of the body. Bone involvement is often asymptomatic, and its diagnosis is primarily based on radiographic findings. A whole body bone scan is able to show the extent and distribution of lesions. We describe an unusual case of multifocal skeletal hydatosis and also explain the clinical and diagnostic points. We hope to stimulate a high index of suspicion among clinicians to facilitate early diagnosis and to consider this disease as a differential diagnosis in cases of multiple abnormal activity in bone scintigraphy especially among people in endemic areas. PMID:17880713

  15. Body/bone-marrow differential-temperature sensor

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  16. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    SciTech Connect

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-02-05

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  17. Body composition as a frailty marker for the elderly community

    PubMed Central

    Falsarella, Gláucia Regina; Gasparotto, Lívia Pimenta Renó; Barcelos, Caroline Coutinho; Coimbra, Ibsen Bellini; Moretto, Maria Clara; Pascoa, Mauro Alexandre; Ferreira, Talita C B Rezende; Coimbra, Arlete Maria Valente

    2015-01-01

    Background Body composition (BC) in the elderly has been associated with diseases and mortality; however, there is a shortage of data on frailty in the elderly. Objective To investigate the association between BC and frailty, and identify BC profiles in nonfrail, prefrail, and frail elderly people. Methods A cross-sectional study comprising 235 elderly (142 females and 93 males) aged ≥65 years, from the city of Amparo, State of São Paulo, Brazil, was undertaken. Sociodemographic and cognitive features, comorbidities, medication, frailty, body mass index (BMI), muscle mass, fat mass, bone mass, and fat percent (%) data were evaluated. Aiming to examine the relationship between BC and frailty, the Mann–Whitney and Kruskal–Wallis nonparametric tests were applied. The statistical significance level was P<0.05. Results The nonfrail elderly showed greater muscle mass and greater bone mass compared with the prefrail and frail ones. The frail elderly had greater fat % than the nonfrail elderly. There was a positive association between grip strength and muscle mass with bone mass (P<0.001), and a negative association between grip strength and fat % (P<0.001). Gait speed was positively associated with fat mass (P=0.038) and fat % (P=0.002). The physical activity level was negatively associated with fat % (P=0.022). The weight loss criterion was positively related to muscle mass (P<0.001), bone mass (P=0.009), fat mass (P=0.018), and BMI (P=0.003). There was a negative association between fatigue and bone mass (P=0.008). Discussion: Frailty in the elderly was characterized by a BC profile/phenotype with lower muscle mass and lower bone mass and with a higher fat %. The BMI was not effective in evaluating the relationship between BC and frailty. The importance of evaluating the fat % was verified when considering the tissue distribution in the elderly BC. PMID:26527868

  18. Effects of weightlessness on body composition in the rat

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Ushakov, A. S.; Pace, N.; Smith, A. H.; Rahlmann, D. F.; Smirnova, T. A.

    1983-01-01

    The effects of weightlessness on the body composition of rats were investigated using 5 male rats exposed to 18.5 days of weightlessness on the COSMOS 1129 biosatellite and killed after reentry. The animals were immediately dissected and the three major body divisions (musculoskeletal system, skin, and pooled viscera) were analyzed for fat, water, solids, and six elements. These results were determined as percentages of the fat-free body or its components and then compared with two groups of terrestrial controls, one of which was subjected to a flight simulation in a spacecraft mock-up while the other was under standard vivarium conditions. Compared with the control groups, the flight group was found to exhibit a reduced fraction of total body water, a net shift of body water from skin to viscera, a marked diminution in the fraction of extracellular water in the fat-free body, a marked reduction in the fraction of bone mineral, no change in the quantity of stored fat or adrenal masses, and a net increase in total muscle mass as indicated by total body creatine, protein, and body cell mass.

  19. Contemporary methods of body composition measurement.

    PubMed

    Fosbøl, Marie Ø; Zerahn, Bo

    2015-03-01

    Reliable and valid body composition assessment is important in both clinical and research settings. A multitude of methods and techniques for body composition measurement exist, all with inherent problems, whether in measurement methodology or in the assumptions upon which they are based. This review is focused on currently applied methods for in vivo measurement of body composition, including densitometry, bioimpedance analysis, dual-energy X-ray absorptiometry, computed tomography (CT), magnetic resonance techniques and anthropometry. Multicompartment models including quantification of trace elements by in vivo neutron activation analysis, which are regarded as gold standard methods, are also summarized. The choice of a specific method or combination of methods for a particular study depends on various considerations including accuracy, precision, subject acceptability, convenience, cost and radiation exposure. The relative advantages and disadvantages of each method are discussed with these considerations in mind. PMID:24735332

  20. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  1. Estimation of body composition of pigs

    SciTech Connect

    Ferrell, C.L.; Cornelius, S.G.

    1984-04-01

    A study was conducted to evaluate the use of deuterium oxide (D2O) for in vivo estimation of body composition of diverse types of pigs. Obese (Ob, 30) and contemporary Hampshire X Yorkshire (C, 30) types of pigs used in the study were managed and fed under typical management regimens. Indwelling catheters were placed in a jugular vein of 6 Ob and 6 C pigs at 4, 8, 12, 18 and 24 wk of age. The D2O was infused (.5 g/kg body weight) as a .9% NaCl solution into the jugular catheter. Blood samples were taken immediately before and at .25, 1, 4, 8, 12, 24 and 48 h after the D2O infusion and D2O concentration in blood water was determined. Pigs were subsequently killed by euthanasia injection. Contents of the gastrointestinal tract were removed and the empty body was then frozen and later ground and sampled for subsequent analyses. Ground body tissue samples were analyzed for water, fat, N, fat-free organic matter and ash. Pig type, age and the type X age interaction were significant sources of variation in live weight, D2O pool size and all empty body components, as well as all fat-free empty body components. Relationships between age and live weight or weight of empty body components, and between live weight, empty body weight, empty body water or D2O space and weight of empty components were highly significant but influenced, in most cases, by pig type. The results of this study suggested that, although relationships between D2O space and body component weights were highly significant, they were influenced by pig type and were little better than live weight for the estimation of body composition.

  2. Vacuum-sintered body of a novel apatite for artificial bone

    NASA Astrophysics Data System (ADS)

    Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko

    2013-12-01

    We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high

  3. Skeletal and body composition evaluation. Final report

    SciTech Connect

    Mazess, R.B.

    1983-03-01

    Research on radiation detectors for absorptiometry analysis of errors affecting single photon absorptiometry and development of instrumentation, analysis of errors affecting dual photon absorptiometry and development of instrumentation, comparison of skeletal measurements with other techniques, cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals, studies of postmenopausal osteoporosis, organization of scientific meetings and workshops on absorptiometric measurement, and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  4. Gamma-ray backscatter for body composition measurement.

    PubMed

    Morgan, H M; Shakeshaft, J T; Lillicrap, S C

    1998-01-01

    The purpose of this study was to examine the potential of using backscatter information to assess regional body composition at selected sites. Two measurement techniques are examined: the measurement of the ratio of coherent to Compton scatter, and the measurement of the Compton scatter profile. Two possible applications are considered: the measurement of trabecular bone mineral density, and the measurement of the average fat/muscle ratio in a tissue volume. The results presented indicate that the analysis of coherent and Compton backscattered gamma-ray spectra from an 241Am source has the potential for measuring both trabecular bone mineral density and average fat/muscle ratio in a tissue volume, with a low absorbed dose to the subject. PMID:9569541

  5. Elastic properties of a porous titanium-bone tissue composite.

    PubMed

    Rubshtein, A P; Makarova, E B; Rinkevich, A B; Medvedeva, D S; Yakovenkova, L I; Vladimirov, A B

    2015-01-01

    The porous titanium implants were introduced into the condyles of tibias and femurs of sheep. New bone tissue fills the pore, and the porous titanium-new bone tissue composite is formed. The duration of composite formation was 4, 8, 24 and 52 weeks. The formed composites were extracted from the bone and subjected to a compression test. The Young's modulus was calculated using the measured stress-strain curve. The time dependence of the Young's modulus of the composite was obtained. After 4 weeks the new bone tissue that filled the pores does not affect the elastic properties of implants. After 24 and 52 weeks the Young's modulus increases by 21-34% and 62-136%, respectively. The numerical calculations of the elasticity of porous titanium-new bone tissue composite were conducted using a simple polydisperse model that is based on the consideration of heterogeneous structure as a continuous medium with spherical inclusions of different sizes. The kinetics of the change in the elasticity of the new bone tissue is presented via the intermediate characteristics, namely the relative ultimate tensile strength or proportion of mature bone tissue in the bone tissue. The calculated and experimentally measured values of the Young's modulus of the composite are in good agreement after 8 weeks of composite formation. The properties of the porous titanium-new bone tissue composites can only be predicted when data on the properties of new bone tissue are available after 8 weeks of contact between the implant and the native bone. PMID:25953540

  6. Top 10 Research Questions Related to Body Composition

    ERIC Educational Resources Information Center

    Going, Scott; Lee, Vinson; Blew, Rob; Laddu, Deepika; Hetherington-Rauth, Megan

    2014-01-01

    An understanding of body composition is crucial to understanding human health, disease, and function. Research in body composition has focused on the development of assessment methods, description of normal changes in body composition with growth and development and aging, and the changes that occur in body composition in response to challenges…

  7. Study of Body Composition by Impedance Analysis

    NASA Astrophysics Data System (ADS)

    González-Solís, J. L.; Vargas-Luna, M.; Sosa-Aquino, M.; Bernal-Alvarado, J.; Gutiérrez-Juárez, G.; Huerta-Franco, R.; Sanchis-Sabater, A.

    2002-08-01

    This work presents a set of impedance measurements and preliminary results on the analysis of body composition using impedance spectroscopy. This study is made using a pork meat sample and spectra from fat and flesh region were independently obtained using the same electrodes array. From these measurements, and theoretical considerations, it is possible to explain the behavior of the composite sample flesh-fat-flesh and, fitting the electrical parameters of the model, it shows the plausibility of a physical and quantitative application to human corporal composition.

  8. Comparison of Some Secondary Body Composition Algorithms

    ERIC Educational Resources Information Center

    Sutton, Robert A.; Miller, Carolyn

    2006-01-01

    Body composition measurements vary greatly in degree of measurement difficulty and accuracy. Hydrostatic weighing, chemical dilution or their equivalents were the accepted "gold" standards for assessing fat mass. Dual Energy X-ray Absorptiometry (DEXA) is fast replacing these techniques as the preferred standard. However, these direct measurement…

  9. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration

    PubMed Central

    2015-01-01

    Objective. A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH) composite with improved properties was reported here. Methods. Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF) of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs) and bone formation capacity after the implantation of Mg/CSH in tibia defects of canine were investigated. Results. Mg/CSH possessed a prolonged setting time and markedly improved injectability and mechanical property (p < 0.05). Mg/CSH samples showed better degradability than CSH in SBF after 21 days of soaking (p < 0.05). Moreover, the degrees of cell attachment, proliferation, and capability of osteogenic differentiation on the Mg/CSH specimens were higher than those on CSH, without significant cytotoxicity and with the increased proliferation index, ALP activity, and expression levels of integrin β1 and Coll I in cBMSCs (p < 0.05). Mg/CSH enhanced the efficiency of new bone formation at the tibia defect area, including the significantly elevated bone mineral density, bone area fraction, and Coll I expression level (p < 0.05). Conclusions. The results implied that this new injectable bone scaffold exhibited promising prospects for bone repair and had a great potential in bone tissue engineering. PMID:26114102

  10. Feasibility of a Braided Composite for Orthopedic Bone Cast

    PubMed Central

    Evans, Katherine R; Carey, Jason P

    2013-01-01

    A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized. PMID:23459455

  11. Feasibility of a braided composite for orthopedic bone cast.

    PubMed

    Evans, Katherine R; Carey, Jason P

    2013-01-01

    A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized. PMID:23459455

  12. Alginate composites for bone tissue engineering: a review.

    PubMed

    Venkatesan, Jayachandran; Bhatnagar, Ira; Manivasagan, Panchanathan; Kang, Kyong-Hwa; Kim, Se-Kwon

    2015-01-01

    Bone is a complex and hierarchical tissue consisting of nano hydroxyapatite and collagen as major portion. Several attempts have been made to prepare the artificial bone so as to replace the autograft and allograft treatment. Tissue engineering is a promising approach to solve the several issues and is also useful in the construction of artificial bone with materials including polymer, ceramics, metals, cells and growth factors. Composites consisting of polymer-ceramics, best mimic the natural functions of bone. Alginate, an anionic polymer owing enormous biomedical applications, is gaining importance particularly in bone tissue engineering due to its biocompatibility and gel forming properties. Several composites such as alginate-polymer (PLGA, PEG and chitosan), alginate-protein (collagen and gelatin), alginate-ceramic, alginate-bioglass, alginate-biosilica, alginate-bone morphogenetic protein-2 and RGD peptides composite have been investigated till date. These alginate composites show enhanced biochemical significance in terms of porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, alkaline phosphatase increase, excellent mineralization and osteogenic differentiation. Hence, alginate based composite biomaterials will be promising for bone tissue regeneration. This review will provide a broad overview of alginate preparation and its applications towards bone tissue engineering. PMID:25020082

  13. Total body composition by dual-photon (153Gd) absorptiometry

    SciTech Connect

    Mazess, R.B.; Peppler, W.W.; Gibbons, M.

    1984-10-01

    The lean-fat composition (%FATR) of soft tissue and the mineral mass of the skeleton were determined in vivo using dual-photon (153Gd) absorptiometry (dose under 2 mrem). A rectilinear raster scan was made over the entire body in 18 subjects (14 female, 4 male). Single-photon absorptiometry (125I) measured bone mineral content on the radius. Percentage fat (%FATD) was determined in the same subjects using body density (from underwater weighing with correction for residual lung volume). Lean body mass (LBM) was determined using both %FATR and %FATD. Percentage fat from absorptiometry and from underwater density were correlated (r . 0.87). The deviation of %FATD from %FATR was due to the amount of skeletal mineral as a percentage of the LBM (r . 0.90). Therefore, skeletal variability, even in normal subjects, where mineral ranges only from 4 to 8% of the LBM, essentially precludes use of body density as a composition indicator unless skeletal mass is measured. Anthropometry (fatfolds and weight) predicted %FATR and LBM at least as well as did underwater density. The predictive error of %FATR from fatfolds was 5% while the predictive error in predicting LBM from anthropometry was 2 to 3 kg (3%).

  14. Composite bone models in orthopaedic surgery research and education.

    PubMed

    Elfar, John; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas; Stanbury, Spencer

    2014-02-01

    Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education-applications that traditionally relied on cadavers. Cadaver bones are suboptimal for many reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high level of anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens. PMID:24486757

  15. Composite Bone Models in Orthopaedic Surgery Research and Education

    PubMed Central

    Elfar, John; Stanbury, Spencer; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas

    2014-01-01

    Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education—applications that traditionally relied on cadavers. Cadaver bones are suboptimal for myriad reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens. PMID:24486757

  16. Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites.

    PubMed

    Rammelt, Stefan; Neumann, Mirjam; Hanisch, Uwe; Reinstorf, Antje; Pompe, Wolfgang; Zwipp, Hans; Biewener, Achim

    2005-06-01

    The effect of osteocalcin (OC), an extracellular bone matrix protein, on bone healing around hydroxyapatite/collagen composites was investigated. Cylindrical nanocrystalline hydroxyapatite implants of 2.5-mm diameter containing 2.5% biomimetically mineralized collagen type I were inserted press-fit into the tibial head of adult Wistar rats. To one implant group, 10 mug/g OC was added. Six specimens per group were analyzed at 2, 7, 14, 28, and 56 days. After 14 days, newly formed woven bone had reached the implant surface of the OC implants whereas a broad fibrous interface could still be observed around controls. Woven bone was formed directly around both implant groups after 28 days and had been replaced partially by lamellar bone around the OC implants only. No significant differences in total bone contact were seen between both groups after 56 days. The higher number of phagocytosing cells and osteoclasts characterized immunohistochemically with ED1, cathepsin D, and tartate-resistant alkaline phosphatase around the OC implants at the early stages of bone healing suggests an earlier onset of bone remodeling. The earlier and increased expression of bone-specific matrix proteins and multifunctional adhesion proteins (osteopontin, bone sialoprotein, CD44) at the interface around the OC implants indicates that OC may accelerate bone formation and regeneration. This study supports the observations from in vitro studies that OC activates both osteoclasts and osteoblasts during early bone formation. PMID:15800855

  17. Sarcopenia and the analysis of body composition.

    PubMed

    Ribeiro, Sandra M L; Kehayias, Joseph J

    2014-05-01

    Reduction of lean mass is a primary body composition change associated with aging. Because many factors contribute to lean mass reduction, the problem has been given various names depending on the proposed cause, such as "age-related sarcopenia," "dynapenia," "myopenia," "sarcopenic obesity," or simply "sarcopenia." There is currently no consensus on how to best diagnose the reduction of lean mass and its consequences on health. We propose that simple body composition methods can be used to indirectly evaluate sarcopenia, provided that those techniques are validated against the "quality of lean" criterion that associates muscle mass and metabolic function with the components of fat-free mass. Promising field methods include the use of stable isotopes for the evaluation of water compartments and new approaches to bioelectrical impedance analysis, which is also associated with the monitoring of water homeostasis. PMID:24829472

  18. Exercise improves body fat, lean mass and bone mass in breast cancer survivors

    PubMed Central

    Irwin, Melinda L.; Alvarez-Reeves, Marty; Cadmus, Lisa; Mierzejewski, Eileen; Mayne, Susan T.; Yu, Herbert; Chung, Gina G.; Jones, Beth; Knobf, M. Tish; DiPietro, Loretta

    2010-01-01

    Given the negative effects of a breast cancer diagnosis and its treatments on body weight and bone mass, we investigated the effects of a 6-month randomized controlled aerobic exercise intervention vs. usual care on body composition in breast cancer survivors. Secondary aims were to examine the effects stratified by important prognostic and physiologic variables. Seventy-five physically inactive postmenopausal breast cancer survivors were recruited through the Yale-New Haven Hospital Tumor Registry and randomly assigned to an exercise (n = 37) or usual care (n = 38) group. The exercise group participated in 150 min/wk of supervised gym- and home-based moderate-intensity aerobic exercise. The usual care group was instructed to maintain their current physical activity level. Body composition was assessed at baseline and 6-months via dual energy x-ray absorptiometry by one radiologist blinded to the intervention group of the participants. On average, exercisers increased moderate-intensity aerobic exercise by 129 min/wk over and above baseline levels compared with 45 min/wk among usual care participants (p < .001). Exercisers experienced decreases in percent body fat (p = .0022) and increases in lean mass (p = .047) compared with increases in body fat and decreases in lean mass in usual care participants. BMD was also maintained among exercisers compared with a loss among usual care participants (p = .043). In summary, moderate-intensity aerobic exercise, such as brisk walking, produces favorable changes in body composition that may improve breast cancer prognosis. PMID:19629060

  19. Methods for nurses to measure body composition.

    PubMed

    Moran, Jose Maria; Lavado-Garcia, Jesus Maria; Pedrera-Zamorano, Juan Diego

    2011-01-01

    Among the methods available for assessing body composition, traditional methods like hydrodensitometry and skin-fold measurements are well known. In this review, we focus on the impedance and interactance methods, which use systems that are usually inexpensive, easily transportable and simple to operate. We also discuss the usefulness of dual energy X-ray absorptiometry, particularly for the measurement of fat distribution. Nurses need to be skilled in the use of the equipment and familiar with the techniques. PMID:21876958

  20. Nutritional assessment by isotope dilution analysis of body composition

    SciTech Connect

    Szeluga, D.J.; Stuart, R.K.; Utermohlen, V.; Santos, G.W.

    1984-10-01

    The three components of body mass, body cell mass (BCM), extracellular fluid (ECF), and fat + extracellular solids (ECS: bone, tendon, etc) can be quantified using established isotope dilution techniques. With these techniques, total body water (TBW) and ECF are measured using 3H/sub 2/O and /sup 82/Bromine, respectively, as tracers. BCM is calculated from intracellular fluid (ICF) where ICF . TBW - ECF. Fat + ECS is estimated as: body weight - (BCM + ECF). TBW and ECF can be determined by either of two calculation methods, one requiring several timed plasma samples (extrapolation method) and one requiring a single plasma sample and a 4-h urine collection (urine-corrected method). The comparability of the two calculation methods was evaluated in 20 studies in 12 bone marrow transplant recipients. We found that for determination of TBW and ECF there was a very strong linear relationship (r2 greater than 0.98) between the calculation methods. Further comparisons (by t test, 2-sided) indicated that for the determination of ECF, the methods were not significantly (p greater than 0.90) different; however, TBW determined by the urine-corrected method was slightly (0.1 to 6%), but significantly (p less than 0.01) greater than that determined by the extrapolation method. Therefore, relative to the extrapolation method, the urine-corrected method ''over-estimates'' BCM and ''under-estimates'' fat + ECS since determination of these compartment sizes depends on measurement of TBW. We currently use serial isotope dilution studies to monitor the body composition changes of patients receiving therapeutic nutritional support.

  1. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men's and Women's Bodies.

    PubMed

    Brierley, Mary-Ellen; Brooks, Kevin R; Mond, Jonathan; Stevenson, Richard J; Stephen, Ian D

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men's bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women. PMID:27257677

  2. Unique biochemical and mineral composition of whale ear bones.

    PubMed

    Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T

    2014-01-01

    Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification. PMID:24940922

  3. Large defect-tailored composite scaffolds for in vivo bone regeneration.

    PubMed

    Ronca, Alfredo; Guarino, Vincenzo; Raucci, Maria Grazia; Salamanna, Francesca; Martini, Lucia; Zeppetelli, Stefania; Fini, Milena; Kon, Elisaveta; Filardo, G; Marcacci, Maurilio; Ambrosio, Luigi

    2014-11-01

    The discovery of new strategies to repair large segmental bone defects is currently an open challenge for worldwide clinicians. In the treatment of critical-sized bone defects, an alternative strategy to traditional bone grafting is always more frequently the use of tailor-made scaffolds modelled on the final size and shape of the implant site. Here, poly-ε-caprolactone-based composite scaffolds including poly-L-lactic acid continuous fibres and hyaluronan derivates (i.e. HYAFF11®) have been investigated for the peculiar 3D architecture characterized by interconnected macroporous networks and tunable mechanical properties. Composite scaffolds were immersed in simulated body fluid solution in order to support in vivo tissue in-growth. Scaffolds loaded with autologous cells (bone marrow stromal cells) plus platelet-rich plasma and osteoconductive protein such bone morphogenetic protein-7 were also tested to evaluate eventual enhancement in bone regeneration. The morphological and mechanical properties of poly-L-lactic acid-reinforced composite scaffolds have been studied to identify the optimal scaffold design to match the implant-site requirements of sheep metatarsal defects. Dynamic mechanical tests allowed to underline the viscoelastic response of the scaffold - resulting in elastic moduli from 2.5 to 1.3 MPa, suitable to temporarily support the structural function of damaged bone tissue. In vivo preliminary investigations in a sheep model of metatarsus shaft defect also showed the attitude of the scaffold to promote osteogenesis, preferentially in association with bone marrow stromal cell and platelet-rich plasma, even if the highest amount of mature bone was reached in the case of scaffold loaded with human bone morphogenetic protein-7 released via hydrolytic degradation of HYAFF11® phases in the implant site. PMID:24951457

  4. Optimisation of composite bone plates for ulnar transverse fractures.

    PubMed

    Chakladar, N D; Harper, L T; Parsons, A J

    2016-04-01

    Metallic bone plates are commonly used for arm bone fractures where conservative treatment (casts) cannot provide adequate support and compression at the fracture site. These plates, made of stainless steel or titanium alloys, tend to shield stress transfer at the fracture site and delay the bone healing rate. This study investigates the feasibility of adopting advanced composite materials to overcome stress shielding effects by optimising the geometry and mechanical properties of the plate to match more closely to the bone. An ulnar transverse fracture is characterised and finite element techniques are employed to investigate the feasibility of a composite-plated fractured bone construct over a stainless steel equivalent. Numerical models of intact and fractured bones are analysed and the mechanical behaviour is found to agree with experimental data. The mechanical properties are tailored to produce an optimised composite plate, offering a 25% reduction in length and a 70% reduction in mass. The optimised design may help to reduce stress shielding and increase bone healing rates. PMID:26875147

  5. Ultrasound: Which role in body composition?

    PubMed

    Bazzocchi, Alberto; Filonzi, Giacomo; Ponti, Federico; Albisinni, Ugo; Guglielmi, Giuseppe; Battista, Giuseppe

    2016-08-01

    Ultrasound is a non-invasive, fast, relatively inexpensive and available tool for estimating adiposity in clinical practice, and in several research settings. It does not expose patients to ionizing radiation risks, making the method ideal for the evaluation, and for follow-up studies. Several parameters and indexes based on adipose tissue thickness have been introduced and tested, and these have been correlated with clinical and laboratoristic parameters. Moreover, ultrasound can also be directed to the estimation of adipose tissue and intracellular fat indirectly, at cellular-molecular level: an opportunity for many radiologists who already and sometimes unconsciously perform "body composition" assessment when looking at the liver, at muscle as well as at other organs. However, standardized procedure and parameters are needing to improve accuracy and reproducibility. The purposes of this review are: 1) to provide a complete overview of the most used and shared measurements of adiposity; 2) to analyze technical conditions, accuracy, and clinical meaning of ultrasound in the study of body composition; 3) to provide some elements for the use of ultrasound in the evaluation of intra-cellular lipids accumulation, in two hot spots: liver and skeletal muscle. PMID:27235340

  6. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.

    PubMed

    Venugopal, Jayarama Reddy; Low, Sharon; Choon, Aw Tar; Kumar, A Bharath; Ramakrishna, Seeram

    2008-05-01

    Bone defects represent a medical and socioeconomic challenge. Engineering bioartificial bone tissues may help to solve problems related to donor site morbidity and size limitations. Nanofibrous scaffolds were electrospun into a blend of synthetic biodegradable polycaprolactone (PCL) with hydroxyapatite (HA) and natural polymer gelatin (Gel) at a ratio of 1:1:2 (PCL/HA/Gel) compared to PCL (9%), PCL/HA (1:1), and PCL/Gel (1:2) nanofibers. These fiber diameters were around 411 +/- 158 to 856 +/- 157 nm, and the pore size and porosity around 5-35 microm and 76-93%, respectively. The interconnecting porous structure of the nanofibrous scaffolds provides large surface area for cell attachment and sufficient space for nutrient transportation. The tensile property of composite nanofibrous scaffold (PCL/HA/Gel) was highly flexible and allows penetrating osteoblasts inside the scaffolds for bone tissue regeneration. Fourier transform infrared analysis showed that the composite nanofiber contains an amino group, a phosphate group, and carboxyl groups for inducing proliferation and mineralization of osteoblasts for in vitro bone formation. The cell proliferation (88%), alkaline phosphatase activity (77%), and mineralization (66%) of osteoblasts were significantly (P < 0.001) increased in composite nanofibrous scaffold compared to PCL nanofibrous scaffolds. Field emission scanning electron microscopic images showed that the composite nanofibers supported the proliferation and mineralization of osteoblast cells. These results show that the fabrication of electrospun PCL/HA/Gel composite nanofibrous scaffolds has potential for the proliferation and mineralization of osteoblasts for bone regeneration. PMID:18471168

  7. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    PubMed Central

    Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2005-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting. PMID:12567137

  8. Body composition in remission of childhood cancer

    NASA Astrophysics Data System (ADS)

    Tseytlin, G. Ja; Anisimova, A. V.; Godina, E. Z.; Khomyakova, I. A.; Konovalova, M. V.; Nikolaev, D. V.; Rudnev, S. G.; Starunova, O. A.; Vashura, A. Yu

    2012-12-01

    Here, we describe the results of a cross-sectional bioimpedance study of body composition in 552 Russian children and adolescents aged 7-17 years in remission of various types of cancer (remission time 0-15 years, median 4 years). A sample of 1500 apparently healthy individuals of the same age interval was used for comparison. Our data show high frequency of malnutrition in total cancer patients group depending on type of cancer. 52.7% of patients were malnourished according to phase angle and percentage fat mass z-score with the range between 42.2% in children with solid tumors located outside CNS and 76.8% in children with CNS tumors. The body mass index failed to identify the proportion of patients with malnutrition and showed diagnostic sensitivity 50.6% for obesity on the basis of high percentage body fat and even much less so for undernutrition - 13.4% as judged by low phase angle. Our results suggest an advantage of using phase angle as the most sensitive bioimpedance indicator for the assessment of metabolic alterations, associated risks, and the effectiveness of rehabilitation strategies in childhood cancer patients.

  9. Effect of body composition methodology on heritability estimation of body fatness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male ...

  10. Maternal body composition is related to infant body composition, but only in males

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported that maternal obesity at conception programs obesity of offspring in a rodent model. To begin to translate these findings to humans, we assessed the relationship between maternal obesity and offspring body composition (%Fat) in human infants. %Fat was measured with air displa...

  11. Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis.

    PubMed

    Messina, Carmelo; Monaco, Cristian Giuseppe; Ulivieri, Fabio Massimo; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-08-01

    Due to the tight relationship between bone and soft tissues, there has been an increased interest in body composition assessment in patients with secondary osteoporosis as well as other pathological conditions. Dual-energy X-ray absorptiometry (DXA) is primarily devoted to the evaluation of bone mineral status, but continuous scientific advances of body composition software made DXA a rapid and easily available technique to assess body composition in terms of fat mass and lean mass. As a result, the International Society for Clinical Densitometry (ISCD) recently developed Official Positions regarding the use of this technique for body composition analysis. According to ISCD paper, indications are mainly limited to three conditions: HIV patients treated with antiretroviral agents associated with a risk of lipoatrophy; obese patients undergoing treatment for high weight loss; patients with sarcopenia or muscle weakness. Nevertheless, there are several other interesting clinical applications that were not included in the ISCD position paper, such as body composition assessment in patients undergoing organ transplantation, pulmonary disease as well as all those chronic condition that may lead to malnutrition. In conclusion, DXA body composition offers new diagnostic and research possibilities for a variety of diseases; due to its high reproducibility, DXA has also the potential to monitor body composition changes with pharmacological, nutritional or physic therapeutic interventions. ISCD addressed and recommended a list of clinical condition, but the crescent availability of DXA scans and software improvements may open the use of DXA to other indication in the next future. This article provides an overview of DXA body composition indications in the management of secondary osteoporosis and other clinical indications in adults. PMID:27048946

  12. No association between body composition and cognition in ambulatory persons with multiple sclerosis: A brief report.

    PubMed

    Sandroff, Brian M; Hubbard, Elizabeth A; Pilutti, Lara A; Motl, Robert W

    2015-01-01

    There is evidence that body fat is inversely associated with cognitive functioning in adults from the general population, and this has been associated with systemic inflammation. The association between body fat and cognition might further be augmented in the presence of an immune-mediated, inflammatory disease such as multiple sclerosis (MS). This cross-sectional study investigated the associations between objective measures of body composition and cognitive function in 60 persons with MS. Participants underwent a neurological examination for generating Expanded Disability Status Scale scores, followed by the Brief International Cognitive Assessment in Multiple Sclerosis neuropsychological battery for measurement of cognitive processing speed, verbal learning and memory, and visual learning and memory. Whole-body fat mass, percent body fat, lean body mass, and bone mineral density were measured using dual-energy X-ray absorptiometry. Whole-body fat mass and percent body fat were not associated with any cognitive outcome (all p > 0.41). However, lean body mass was associated with cognitive processing speed (p < 0.03), and bone mineral density was associated with cognitive processing speed and verbal learning and memory. Those associations were attenuated and nonsignificant after controlling for age and Expanded Disability Status Scale scores (p > 0.13). Body composition might not represent a target of interventions for improving cognitive processing speed or learning and memory in MS. PMID:26230584

  13. The effect of soluble salt in bone ash and other factors on the rheological properties of bone china bodies

    NASA Astrophysics Data System (ADS)

    Cheng, Shifan

    A dynamic stress rheometric technique was developed to determine the plasticity of bone china bodies. In addition, the effect of natural variations of commercial bone ash on the rheology and processability of bone china was examined. The plasticity was then related to the floc characteristics of the body. In carrying out this study the physical and colloidal characteristics of a wide range of commercial bone ash batches were determined. The effect of washing bone ash on the properties of bone ash was also determined. The preparation of bone china body followed accepted industrial processing. The extent of flocculation of the bone china body was determined using the Carmen-Kozeny model for filter pressed cakes. Dynamic mechanical analyses were conducted on all samples using a dynamic stress rheometer using a of parallel plate geometery. Stress sweep analyses were used to determine the linear viscoelastic range for other tests and the loss factor of the sample. Frequency sweep analyses were run to obtain the instantaneous modulus as the measurement of plasticity. Creep test analyses were carried out to find the steady viscosity. Mean relaxation time was calculated out from the measured instantaneous modulus and steady viscosity.

  14. Administration of saccharin to neonatal mice influences body composition of adult males and reduces body weight of females.

    PubMed

    Parlee, Sebastian D; Simon, Becky R; Scheller, Erica L; Alejandro, Emilyn U; Learman, Brian S; Krishnan, Venkatesh; Bernal-Mizrachi, Ernesto; MacDougald, Ormond A

    2014-04-01

    Nutritional or pharmacological perturbations during perinatal growth can cause persistent effects on the function of white adipose tissue, altering susceptibility to obesity later in life. Previous studies have established that saccharin, a nonnutritive sweetener, inhibits lipolysis in mature adipocytes and stimulates adipogenesis. Thus, the current study tested whether neonatal exposure to saccharin via maternal lactation increased susceptibility of mice to diet-induced obesity. Saccharin decreased body weight of female mice beginning postnatal week 3. Decreased liver weights on week 14 corroborated this diminished body weight. Initially, saccharin also reduced male mouse body weight. By week 5, weights transiently rebounded above controls, and by week 14, male body weights did not differ. Body composition analysis revealed that saccharin increased lean and decreased fat mass of male mice, the latter due to decreased adipocyte size and epididymal, perirenal, and sc adipose weights. A mild improvement in glucose tolerance without a change in insulin sensitivity or secretion aligned with this leaner phenotype. Interestingly, microcomputed tomography analysis indicated that saccharin also increased cortical and trabecular bone mass of male mice and modified cortical bone alone in female mice. A modest increase in circulating testosterone may contribute to the leaner phenotype in male mice. Accordingly, the current study established a developmental period in which saccharin at high concentrations reduces adiposity and increases lean and bone mass in male mice while decreasing generalized growth in female mice. PMID:24456165

  15. Administration of Saccharin to Neonatal Mice Influences Body Composition of Adult Males and Reduces Body Weight of Females

    PubMed Central

    Parlee, Sebastian D.; Simon, Becky R.; Scheller, Erica L.; Alejandro, Emilyn U.; Learman, Brian S.; Krishnan, Venkatesh; Bernal-Mizrachi, Ernesto

    2014-01-01

    Nutritional or pharmacological perturbations during perinatal growth can cause persistent effects on the function of white adipose tissue, altering susceptibility to obesity later in life. Previous studies have established that saccharin, a nonnutritive sweetener, inhibits lipolysis in mature adipocytes and stimulates adipogenesis. Thus, the current study tested whether neonatal exposure to saccharin via maternal lactation increased susceptibility of mice to diet-induced obesity. Saccharin decreased body weight of female mice beginning postnatal week 3. Decreased liver weights on week 14 corroborated this diminished body weight. Initially, saccharin also reduced male mouse body weight. By week 5, weights transiently rebounded above controls, and by week 14, male body weights did not differ. Body composition analysis revealed that saccharin increased lean and decreased fat mass of male mice, the latter due to decreased adipocyte size and epididymal, perirenal, and sc adipose weights. A mild improvement in glucose tolerance without a change in insulin sensitivity or secretion aligned with this leaner phenotype. Interestingly, microcomputed tomography analysis indicated that saccharin also increased cortical and trabecular bone mass of male mice and modified cortical bone alone in female mice. A modest increase in circulating testosterone may contribute to the leaner phenotype in male mice. Accordingly, the current study established a developmental period in which saccharin at high concentrations reduces adiposity and increases lean and bone mass in male mice while decreasing generalized growth in female mice. PMID:24456165

  16. Composite body for gas discharge lamp

    SciTech Connect

    Driessen, A. J. G. C.; Geertsema, E. B.; Oomen, J. J. C.; Rouwendal, J. W.

    1985-02-26

    Composite body, a gas discharge lamp having a sodium pressure from 300-600 torr in particular, having an envelope of densely sintered aluminium oxide or of other sodium vapor-resistant materials and a feed-through member of tantalum, niobium or other metals equivalent thereto, The bonding material consisting of a finely dispersed polycrystalline product having a composition in mole % between the following limits: Al/sub 2/O/sub 3/-5-70 at least one oxide chosen from Sc/sub 2/O/sub 3/ and Ti/sub 2/O /SUB x/ , wherein 2

  17. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  18. Common endocrine control of body weight, reproduction, and bone mass

    NASA Technical Reports Server (NTRS)

    Takeda, Shu; Elefteriou, Florent; Karsenty, Gerard

    2003-01-01

    Bone mass is maintained constant between puberty and menopause by the balance between osteoblast and osteoclast activity. The existence of a hormonal control of osteoblast activity has been speculated for years by analogy to osteoclast biology. Through the search for such humoral signal(s) regulating bone formation, leptin has been identified as a strong inhibitor of bone formation. Furthermore, intracerebroventricular infusion of leptin has shown that the effect of this adipocyte-derived hormone on bone is mediated via a brain relay. Subsequent studies have led to the identification of hypothalamic groups of neurons involved in leptin's antiosteogenic function. In addition, those neurons or neuronal pathways are distinct from neurons responsible for the regulation of energy metabolism. Finally, the peripheral mediator of leptin's antiosteogenic function has been identified as the sympathetic nervous system. Sympathomimetics administered to mice decreased bone formation and bone mass. Conversely, beta-blockers increased bone formation and bone mass and blunted the bone loss induced by ovariectomy.

  19. Bone formation: The rules for fabricating a composite ceramic

    SciTech Connect

    Caplan, A.I. )

    1990-01-01

    Bone, teeth and shells are complex composite ceramics which are fabricated at low temperature by living organisms. The detailed understanding of this fabrication process is required if we are to attempt to mimic this low temperature assembly process. The guiding principles and major components are outlined with the intent of establishing non-vital fabrication schemes to form a complex composite ceramic consisting of an organix matrix inorganic crystalline phase. 19 refs.

  20. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Sima, Felix; Axente, Emanuel; Fini, Milena; Mihailescu, Ion N; Bigi, Adriana

    2015-06-15

    Both strontium and zoledronate (ZOL) are known to be useful for the treatment of bone diseases associated to the loss of bone substance. In this work, we applied an innovative technique, Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE), to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and ZOL modified hydroxyapatite (ZOLHA) on Titanium substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. The coatings display good crystallinity and granular morphology, which do not vary with composition. Osteoblast-like MG63 cells and human osteoclasts were co-cultured on the thin films up to 21 days. The results show that Sr counteracts the negative effect of relatively high concentration of ZOL on osteoblast viability, whereas both Sr and ZOL enhance extracellular matrix deposition. In particular, ZOL promotes type I collagen production, whereas Sr increases the production of alkaline phosphatase. Moreover, ZOL exerts a greater effect than Sr on osteoprotegerin/RANKL ratio and, as a consequence, on the reduction of osteoclast proliferation and activity. The deposition method allows to modulate the composition of the thin films and hence the promotion of bone growth and the inhibition of bone resorption. PMID:25706198

  1. Mineralized polymer composites as biogenic bone substitute material

    NASA Astrophysics Data System (ADS)

    Shah, Rushita; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-05-01

    Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bone-bonding potential of the inorganic phase with the porosity and interconnectivity of the three-dimensional construction. Aiming the advantages of ceramic-polymer composite scaffolds, the calcium carbonate (CaCO3) based biomineralized scaffold was prepared, where the PVP-CMC hydrogel was used as an extracellular matrix. This paper is reported about the morphology, swelling trend (in physiological solution) and viscoelastic behavior of (90 min mineralized) MPC. The dry MPC are off-white, coarse in texture, comparatively less flexible than the original PVP-CMC based hydrogel film, and the deposition of granular structures on the surface of the hydrogel film confirms about the development of biomineralized scaffold/polymer composites. Irrespective of thickness, the dry MPC shows higher values of swelling ratio within 30 min, which varies between 200-250 approximately. The dynamic viscoelastic nature of freshly prepared MPC was investigated applying 1% and 10% strain. At higher strain the viscoelastic moduli (G' and G") show significant change, and the nature of MPC turns from elastic to viscous. Based on the observed basic properties, the MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder.

  2. Body Composition and Somatotype of Male and Female Nordic Skiers

    ERIC Educational Resources Information Center

    Sinning, Wayne E.; And Others

    1977-01-01

    Anthropometric measurements (body composition and somatotype characteristics) for male and female Nordic skiers showed small values for measures of variance, suggesting that the subjects represented a select body type for the sport. (Author/MJB)

  3. The computation of body composition data using a programmable calculator.

    PubMed

    Withers, R T

    1986-01-01

    A body composition programme has been developed for the Texas Instruments TI 59 programmable calculator and printer. The methodology involves the determination of body density by underwater weighing with the ventilated residual volume being measured by helium dilution. Some of the labelled output variables included on the printout are: body density, percent body fat, fat mass and fat free mass. PMID:3755094

  4. A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration

    PubMed Central

    Zhao, Kang; Tang, Yufei; Cheng, Zhe; Chen, Jun; Zang, Yuan; Wu, Jianwei; Kong, Liang; Liu, Shuai; Lei, Wei; Wu, Zixiang

    2013-01-01

    Background Calcium phosphate cement (CPC) can be molded or injected to form a scaffold in situ, which intimately conforms to complex bone defects. Bioactive glass (BG) is known for its unique ability to bond to living bone and promote bone growth. However, it was not until recently that literature was available regarding CPC-BG applied as an injectable graft. In this paper, we reported a novel injectable CPC-BG composite with improved properties caused by the incorporation of BG into CPC. Materials and Methods The novel injectable bioactive cement was evaluated to determine its composition, microstructure, setting time, injectability, compressive strength and behavior in a simulated body fluid (SBF). The in vitro cellular responses of osteoblasts and in vivo tissue responses after the implantation of CPC-BG in femoral condyle defects of rabbits were also investigated. Results CPC-BG possessed a retarded setting time and markedly better injectability and mechanical properties than CPC. Moreover, a new Ca-deficient apatite layer was deposited on the composite surface after immersing immersion in SBF for 7 days. CPC-BG samples showed significantly improved degradability and bioactivity compared to CPC in simulated body fluid (SBF). In addition, the degrees of cell attachment, proliferation and differentiation on CPC-BG were higher than those on CPC. Macroscopic evaluation, histological evaluation, and micro-computed tomography (micro-CT) analysis showed that CPC-BG enhanced the efficiency of new bone formation in comparison with CPC. Conclusions A novel CPC-BG composite has been synthesized with improved properties exhibiting promising prospects for bone regeneration. PMID:23638115

  5. Different Short-Term Mild Exercise Modalities Lead to Differential Effects on Body Composition in Healthy Prepubertal Male Rats

    PubMed Central

    Sontam, D. M.; Vickers, M. H.; O'Sullivan, J. M.; Watson, M.; Firth, E. C.

    2015-01-01

    Physical activity has a vital role in regulating and improving bone strength. Responsiveness of bone mass to exercise is age dependent with the prepubertal period suggested to be the most effective stage for interventions. There is a paucity of data on the effects of exercise on bone architecture and body composition when studied within the prepubertal period. We examined the effect of two forms of low-impact exercise on prepubertal changes in body composition and bone architecture. Weanling male rats were assigned to control (CON), bipedal stance (BPS), or wheel exercise (WEX) groups for 15 days until the onset of puberty. Distance travelled via WEX was recorded, food intake measured, and body composition quantified. Trabecular and cortical microarchitecture of the femur were determined by microcomputed tomography. WEX led to a higher lean mass and reduced fat mass compared to CON. WEX animals had greater femoral cortical cross-sectional thickness and closed porosity compared to CON. The different exercise modalities had no effect on body weight or food intake, but WEX significantly altered body composition and femoral microarchitecture. These data suggest that short-term mild voluntary exercise in normal prepubertal rats can alter body composition dependent upon the exercise modality. PMID:25695074

  6. Rat body size, composition and growth at hypo- and hypergravity

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1983-01-01

    The effects of hypergravity (centrifugation) on body composition were investigated. Hypogravitational and hypergravitational aspects were reflected in the research effort. A list of publications is provided.

  7. Body composition in MesoAmerica.

    PubMed

    Solomons, N W; Mazariegos, M

    1995-03-01

    The fundamental paradigm for the region is short stature. Adult height is on the order of 160 cm for men and 140 cm for women. The timing of this delayed growth has been fixed to the first two years of life, when as much as 2 Z-scores of stature may be loss to the median of the NCHS reference. In the elderly of the region, we have the issue of being initially short and then suffering further loss of stature with age. The height/armspan ratio has proven instructive for exploring that change in height with age. It appears to be less than in Europeans. Demands of a rigorous agricultural lifestyle, the energy content and density of the diet, and the ravages of recurrent infection and parasitism comprise the environmental determinants of body composition in poor MesoAmerican population. They are conducive to a low storage of fat, with lean body mass being subject to response to infections. Because of the basic short stature but muscular maturity of children and adults, one questions whether the assumptions of proportionality of weight for height from the NCHS reference data apply, or whether MesoAmericans should be normally greater in weight for height than a comparably short North American. For some at the lower end of the stature scale, no international reference standards actually exist for adults. All than can be measured with microtoise, calliper, flexible tape and balance has long been recorded in MesoAmerican populations. Certain high-cost and facility- dependent technologies, such as nuclear magnetic resonance imaging and whole-body neutron activation analysis, are beyond the scientific economies of any part of the region. Dual energy x-ray absorbitometry instruments are available for clinical diagnosis in Mexico, Guatemala and Costa Rica, and could be turned to research ends. Underwater weighing has been practiced variously in MesoAmerica. Researchers in Guatemala have pioneered in the investigative use of bioelectrical impedance analysis to all ages from low

  8. REVIEW: Development of methods for body composition studies

    NASA Astrophysics Data System (ADS)

    Mattsson, Sören; Thomas, Brian J.

    2006-07-01

    This review is focused on experimental methods for determination of the composition of the human body, its organs and tissues. It summarizes the development and current status of fat determinations from body density, total body water determinations through the dilution technique, whole and partial body potassium measurements for body cell mass estimates, in vivo neutron activation analysis for body protein measurements, dual-energy absorptiometry (DEXA), computed tomography (CT) and magnetic resonance imaging (MRI, fMRI) and spectroscopy (MRS) for body composition studies on tissue and organ levels, as well as single- and multiple-frequency bioimpedance (BIA) and anthropometry as simple easily available methods. Methods for trace element analysis in vivo are also described. Using this wide range of measurement methods, together with gradually improved body composition models, it is now possible to quantify a number of body components and follow their changes in health and disease.

  9. Single walled carbon nanotube composites for bone tissue engineering.

    PubMed

    Gupta, Ashim; Woods, Mia D; Illingworth, Kenneth David; Niemeier, Ryan; Schafer, Isaac; Cady, Craig; Filip, Peter; El-Amin, Saadiq F

    2013-09-01

    The purpose of this study was to develop single walled carbon nanotubes (SWCNT) and poly lactic-co-glycolic acid (PLAGA) composites for orthopedic applications and to evaluate the interaction of human stem cells (hBMSCs) and osteoblasts (MC3T3-E1 cells) via cell growth, proliferation, gene expression, extracellular matrix production and mineralization. PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40, and 100 mg), characterized and degradation studies were performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Imaging studies revealed that MC3T3-E1 and hBMSCs cells exhibited normal, non-stressed morphology on the composites and all were biocompatible. Composites with 10 mg SWCNT resulted in highest rate of cell proliferation (p < 0.05) among all composites. Gene expression of alkaline phosphatase, collagen I, osteocalcin, osteopontin, Runx-2, and Bone Sialoprotein was observed on all composites. In conclusion, SWCNT/PLAGA composites imparted beneficial cellular growth capabilities and gene expression, and mineralization abilities were well established. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration and bone tissue engineering (BTE) and are promising for orthopedic applications. PMID:23629922

  10. Total body bone mineral density in young children: influence of head bone mineral density.

    PubMed

    Taylor, A; Konrad, P T; Norman, M E; Harcke, H T

    1997-04-01

    Dual-energy X-ray absorptiometry (DXA) with its short scan time, low radiation dose, and high precision and accuracy have made this technique particularly suitable for measuring total body bone mineral density (TBMD) in children. Other published reports have related TBMD to age in children 2-18 years of age. However, in young normal children aged 2-9 years (51 girls, 43 boys), we found that regression equations for TBMD with age as the predictor did not explain enough of the variance to warrant their use for predicting TBMD (adjusted R2 0.47, females; 0.41, males). Subtotal BMD (TBMD-head BMD) is predicted better by age because of a possibly invalid adult algorithm for head BMD (adjusted R2 0.73, females; 0.71, males). PMID:9101377

  11. Bone and body mass changes during space flight

    NASA Astrophysics Data System (ADS)

    Schneider, V.; Oganov, V.; LeBlanc, A.; Rakmonov, A.; Taggart, L.; Bakulin, A.; Huntoon, C.; Grigoriev, A.; Varonin, L.

    Long duration space flight has shown us that humans have significant bone loss and mineral changes because they are living in microgravity. Skylab and the longer Salyut and Mir missions, are providing us useful data and allowing us to explore the mechanism involved in skeletal turnover. Bone redistribution occurs throughout space flight with bone loss predominately in the weight bearing bones of posture and locomotion. The primary health hazards which may occur during space flight induced by skeletal changes include signs and symptoms of hypercalcemia, and the risk of kidney stones and metastatic calcification. After flight lengthy recovery of bone mass and the possible increase in the risk of bone fracture should be considered. Continued research studies are being directed toward determining the mechanisms by which bone is lost in space and developing more effective countermeasures by both the US (Schneider and McDonald, 1984 and Schneider, LeBlanc & Huntoon, 1993) and Russian (Grigoriev et. al., 1989) space programs.

  12. Osteogenic Embryoid Body-Derived Material Induces Bone Formation In Vivo

    PubMed Central

    Sutha, Ken; Schwartz, Zvi; Wang, Yun; Hyzy, Sharon; Boyan, Barbara D.; McDevitt, Todd C.

    2015-01-01

    The progressive loss of endogenous regenerative capacity that accompanies mammalian aging has been attributed at least in part to alterations in the extracellular matrix (ECM) composition of adult tissues. Thus, creation of a more regenerative microenvironment, analogous to embryonic morphogenesis, may be achieved via pluripotent embryonic stem cell (ESC) differentiation and derivation of devitalized materials as an alternative to decellularized adult tissues, such as demineralized bone matrix (DBM). Transplantation of devitalized ESC materials represents a novel approach to promote functional tissue regeneration and reduce the inherent batch-to-batch variability of allograft-derived materials. In this study, the osteoinductivity of embryoid body-derived material (EBM) was compared to DBM in a standard in vivo ectopic osteoinduction assay in nude mice. EBM derived from EBs differentiated for 10 days with osteogenic media (+β-glycerophosphate) exhibited similar osteoinductivity to active DBM (osteoinduction score = 2.50 ± 0.27 vs. 2.75 ± 0.16) based on histological scoring, and exceeded inactive DBM (1.13 ± 0.13, p < 0.005). Moreover, EBM stimulated formation of new bone, ossicles, and marrow spaces, similar to active DBM. The potent osteoinductivity of EBM demonstrates that morphogenic factors expressed by ESCs undergoing osteogenic differentiation yield a novel devitalized material capable of stimulating de novo bone formation in vivo. PMID:25961152

  13. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    NASA Astrophysics Data System (ADS)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  14. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system.

    PubMed

    Huan, Zhiguang; Chang, Jiang

    2009-05-01

    Bioactive composite bone cements were obtained by incorporation of tricalcium silicate (Ca3SiO5, C3S) into a brushite bone cement composed of beta-tricalcium phosphate [beta-Ca3(PO4)2, beta-TCP] and monocalcium phosphate monohydrate [Ca(H2PO4)2.H2O, MCPM], and the properties of the new cements were studied and compared with pure brushite cement. The results indicated that the injectability, setting time and short- and long-term mechanical strength of the material are higher than those of pure brushite cement, and the compressive strength of the TCP/MCPM/C3S composite paste increased with increasing aging time. Moreover, the TCP/MCPM/C3S specimens showed significantly improved in vitro bioactivity in simulated body fluid and similar degradability in phosphate-buffered saline as compared with brushite cement. Additionally, the reacted TCP/MCPM/C3S paste possesses the ability to stimulate osteoblast proliferation and promote osteoblastic differentiation of the bone marrow stromal cells. The results indicated that the TCP/MCPM/C3S cements may be used as a bioactive material for bone regeneration, and might have significant clinical advantage over the traditional beta-TCP/MCPM brushite cement. PMID:18996779

  15. Fabrication of Bone like Composites Material and Evaluation of its Ossiferous Ability

    NASA Astrophysics Data System (ADS)

    Hisamori, Noriyuki; Kimura, Megumi; Morisue, Hikaru; Matsumoto, Morio; Toyama, Yoshiaki

    Many kinds of materials are currently used as artificial bone substitutes. Hydroxyapatite (HA), the same as the main inorganic component of bone, is one of commonly used bio-ceramics and has excellent bioactivity and biocompatibility with hard tissues. However, it has problems as the bone filler or bone tissue-engineering scaffold due to low fracture toughness and low degradation rate. Recently, biodegradable materials for bone tissue have been developed to respond the requirement. Collagen, the same as the main organic component of bone, is biocompatible, biodegradable and promotes cell adhesion. A composites associated with HA is expected to have early osteoconduction and bone replacement ability. The present study was to fabricate bone-like composites consist of HA and collagen. Besides the ossiferous ability of the material in vivo is evaluated by using rabbits. Bone-like composites were successfully fabricated in this study, associating the collagen with HA. And the composites presented good osteoconductive and bone replacement potential.

  16. Peer Victimisation and Its Relationships with Perceptions of Body Composition

    ERIC Educational Resources Information Center

    Frisen, Ann; Lunde, Carolina; Hwang, Philip

    2009-01-01

    The present study examined the links between children's exposure to peer victimisation, in terms of type and frequency, their body composition and subjective perceptions of body composition. A total of 960 Swedish 10-year-olds (515 girls and 445 boys) completed questionnaires about their peer victimisation experiences, weight and height, and…

  17. The Body Composition of a College Football Team.

    ERIC Educational Resources Information Center

    Wickkiser, John D.; Kelly, John M.

    This study focuses on the body composition and anthropometric measurements of 65 college football players. Body composition was determined by underwater weighing with an accurate assessment of residual volume. The anthropometric measurements included height, weight, seven skinfolds, waist circumference, and wrist diameter. A step-wise multiple…

  18. Validation of QMR body composition analysis for infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to validate the use of a quantitative magnetic resonance (QMR) device for measuring the body composition of infants and neonates weighing less than 12 kg using the pig as a model. A total of 25 piglets weighing between 2 and 12 kg were studied. Body composition was assessed by ...

  19. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold

    PubMed Central

    Chen, Xiaohui; Zhao, Yanbing; Geng, Shinan; Miron, Richard J; Zhang, Qiao; Wu, Chengtie; Zhang, Yufeng

    2015-01-01

    Purpose In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG) scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo. Patients and methods To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation. Results Results from the present study demonstrate that PIB nanogels/B-MBG composites showed greater improvement in mechanical strength when compared to PIB nanogels alone. In vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects containing PIB nanogels/B-MBG composite scaffolds when compared to PIB nanogels alone. Tartrate-resistant acid phosphatase-positive staining demonstrated that both scaffolds were degraded over time and bone remodeling occurred in the surrounding bone defect as early as 4 weeks post-implantation. Conclusion The results from the present study indicate that PIB nanogels are a potential bone tissue engineering biomaterial able to treat defects of irregular shapes and deformities as an injectable, thermoresponsive, biocompatible hydrogel which undergoes rapid thermal gelation once body temperature is reached. Furthermore, its combination with B-MBG scaffolds improves the mechanical properties and ability to promote new bone formation when compared to PIB nanogels alone. PMID:25653525

  20. Identification of quantitative trait loci affecting body composition in a mouse intercross

    PubMed Central

    Vitarius, James A.; Sehayek, Ephraim; Breslow, Jan L.

    2006-01-01

    Gravimetric analysis and dual energy x-ray absorptiometry densitometry were used to determine lean, fat, and bone tissue traits in a F2 mouse population from a C57BL/6J and CASA/Rk intercross (B6CASAF2). These traits were used in a linkage analysis to identify quantitative trait loci that affect body composition. Linkage mapping showed that body weight (BW) loci on proximal chromosome 2 occurred in the same region as body length, lean tissue mass, and bone mineral content and on chromosome 13 in the same region as lean tissue mass, bone mineral density, and bone mineral content. Fat-related loci occurring on mid-chromosome 2 near 60 cM, proximal chromosome 6, and mid-chromosome 10 were distinct from BW, lean tissue, and bone tissue loci. In B6CASAF2 females, heterozygotes and CASA/Rk homozygotes at the chromosome 6 locus marker had higher body fat percentages, and this locus was responsible for 11% of the variance for body fat percentage. Female heterozygotes and C57BL/6J homozygotes at the chromosome 15 locus marker had higher bone mineral densities, and this locus could explain 8% of that trait's variance. A survey of the literature did not reveal any previous reports of fat-specific loci in the chromosomal 10 region near 42 cM reported in this study. The results of this study indicate that BW and BMI have limited usefulness as phenotypes in linkage or association studies when used as obesity phenotypes. PMID:17179051

  1. Biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites.

    PubMed

    Gu, Jisheng; Wang, Teng; Fan, Guoxin; Ma, Junhua; Hu, Wei; Cai, Xiaobing

    2016-04-01

    The aim of this study was to evaluate the in vitro and in vivo biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites. In vitro cytotoxicity tests by cholecystokinin octapeptide (CCK-8) assay showed that the 5 %Van-MSN-CaSO4 and Van-CaSO4 bone cements were cytocompatible for mouse osteoblastic cell line MC3T3-E1. The microscopic observation confirmed that MC3T3-E1cells incubated with Van-CaSO4 group and 5 %Van-MSN-CaSO4 group exhibited clear spindle-shaped changes, volume increase and maturation, showing that these cements supported adhesion of osteoblastic cells on their surfaces. In addition, the measurement of alkaline phosphatase activity revealed the osteoconductive property of these biomaterials. In order to assess in vivo biocompatibility, synthesized cements were implanted into the distal femur of twelve adult male and female New Zealand rabbits. After implantation in artificial defects of the distal femur, 5 %Van-MSN-CaSO4 and Van-CaSO4 bone cements did not damage the function of main organs of rabbits. In addition, the Van-MSN-CaSO4 composite allowed complete repair of bone defects with new bone formation 3 months after implantation. These results show potential application of Van-MSN-CaSO4 composites as bone graft materials for the treatment of open fracture in human due to its mechanical, osteoconductive and potential sustained drug release characteristics and the absence of adverse effects on the body. PMID:26883948

  2. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution.

    PubMed

    Zihlman, Adrienne L; Bolter, Debra R

    2015-06-16

    The human body has been shaped by natural selection during the past 4-5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition. PMID:26034269

  3. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution

    PubMed Central

    Zihlman, Adrienne L.; Bolter, Debra R.

    2015-01-01

    The human body has been shaped by natural selection during the past 4–5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition. PMID:26034269

  4. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    PubMed

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. PMID:26042695

  5. Probable phase composition of the mineral in bone.

    PubMed

    Driessens, F C

    1980-01-01

    Formulas proposed for the mineral of bone were reviewed. Literature data were collected where Ca, P, Na, Mg and CO3 are determined in the same samples. These data were analyzed for their conformity to the above mentioned formulas. According to this analysis Mg is contained in a phase having the Ca/P of magnesium whitlockite within the limites of error. Na is contained in a carbonated calcium phosphate phase which is analogy with synthetic systems must have the apatite structure. The Ca/P ratio of the remaining "rest phase" is 2. This is based on the composition of 101 bone mineral samples taken from fishes, reptiles, amphibians, birds and mammals. The CO3 content of the bone samples agrees with the formula Ca8 (PO4)4 (CO3) (OH)2 . X H2O for the "rest phase" within the limits of experimental error. Such a compound has, however, not been found in synthetic systems. Human bone contains about 15% magnesium whitlockite, 25% of the Na and CO3 containing apatite and the rest is the carbonated calcium phosphate with Ca/P = 2. It is presumed that this compound has a structure similar to that of octo calcium phosphate and that most of the citrate ions which always occur in bone mineral samples are incorporated in that phase. PMID:6773257

  6. From Milk to Bones, Moving Calcium Through the Body: Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    Did you know that when astronauts are in space, their height increases about two inches? This happens because the weightlessness of space allows the spine, usually compressed in Earth's gravity, to expand. While this change is relatively harmless, other more serious things can happen with extended stays in weightlessness, notably bone loss. From previous experiments, scientists have observed that astronauts lose bone mass at a rate of about one percent per month during flight. Scientists know that bone is a dynamic tissue - continually being made and repaired by specialized bone cells throughout life. Certain cells produce new bone, while other cells are responsible for removing and replacing old bone. Research on the mechanisms of bone metabolism and the effects of space flight on its formation and repair are part of the exciting studies that will be performed during STS-107. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. Ninety-nine percent of calcium in the body is stored in the skeleton. However, calcium may be released, or resorbed, from bone to provide for other tissues when you are not eating. To better understand how and why weightlessness induces bone loss, astronauts will participate in a study of calcium kinetics - that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.

  7. Functional adaptation of long bone extremities involves the localized ``tuning'' of the cortical bone composition; evidence from Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Buckley, Kevin; Kerns, Jemma G.; Birch, Helen L.; Gikas, Panagiotis D.; Parker, Anthony W.; Matousek, Pavel; Goodship, Allen E.

    2014-11-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by <5% along the mid-shaft but decreases by >10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  8. Body Composition Measurements of 161-km Ultramarathon Participants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compares body composition characteristics with performance among participants in a 161-km trail ultramarathon. Height, mass, and percent body fat from bioimpedence spectroscopy were measured on 72 starters. Correlation analyses were used to compare body characteristics with finish time, ...

  9. Changes in body composition of neonatal piglets during growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During studies of neonatal piglet growth it is important to be able to accurately assess changes in body composition. Previous studies have demonstrated that quantitative magnetic resonance (QMR) provides precise and accurate measurements of total body fat mass, lean mass and total body water in non...

  10. Fully automated shape model positioning for bone segmentation in whole-body CT scans

    NASA Astrophysics Data System (ADS)

    Fränzle, A.; Sumkauskaite, M.; Hillengass, J.; Bäuerle, T.; Bendl, R.

    2014-03-01

    Analysing osteolytic and osteoblastic bone lesions in systematically affected skeletons, e.g. in multiple myeloma or bone metastasis, is a complex task. Quantification of the degree of bone destruction needs segmentation of all lesions but cannot be managed manually. Automatic bone lesion detection is necessary. Our future objective is comparing modified bones with healthy shape models. For applying model based strategies successfully, identification and position information of single bones is necessary. A solution to these requirements based on bone medullary cavities is presented in this paper. Medullary cavities are useful for shape model positioning since they have similar position and orientation as the bone itself but can be separated more easily. Skeleton segmentation is done by simple thresholding. Inside the skeleton medullary cavities are segmented by a flood filling algorithm. The filled regions are considered as medullary cavity objects. To provide automatic shape model selection, medullary cavity objects are assigned to bone structures with pattern recognition. To get a good starting position for shape models, principal component analysis of medullary cavities is performed. Bone identification was tested on 14 whole-body low-dose CT scans of multiple myeloma patients. Random forest classification assigns medullary cavities of long bones to the corresponding bone (overall accuracy 90%). Centroid and first principal component of medullary cavity are sufficiently similar to those of bone (mean centroid difference 21.7 mm, mean difference angle 1.54° for all long bones of one example patient) and therefore suitable for shape model initialization. This method enables locating long bone structures in whole-body CT scans and provides useful information for a reasonable shape model initialization.

  11. Repairing Fractured Bones by Use of Bioabsorbable Composites

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    2006-01-01

    A proposed method of surgical repair of fractured bones would incorporate recent and future advances in the art of composite materials. The composite materials used in this method would be biocompatible and at least partly bioabsorbable: that is, during the healing process following surgery, they would be wholly or at least partly absorbed into the bones and other tissues in which they were implanted. Relative to the traditional method, the proposed method would involve less surgery, pose less of a risk of infection, provide for better transfer of loads across fracture sites, and thereby promote better healing while reducing the need for immobilization by casts and other external devices. One requirement that both the traditional and proposed methods must satisfy is to fix the multiple segments of a broken bone in the correct relative positions. Mechanical fixing techniques used in the traditional method include the use of plates spanning the fracture site and secured to the bone by screws, serving of wire along the bone across the fracture site, insertion of metallic intramedullary rods through the hollow portion of the fractured bone, and/or inserting transverse rods through the bone, muscle, and skin to stabilize the fractured members. After the bone heals, a second surgical operation is needed to remove the mechanical fixture(s). In the proposed method, there would be no need for a second surgical operation. The proposed method is based partly on the observation that in the fabrication of a structural member, it is generally more efficient and reliable to use multiple small fasteners to transfer load across a joint than to use a single or smaller number of larger fasteners, provided that the stress fields of neighboring small fasteners do not overlap or interact. Also, multiple smaller fasteners are more reliable than are larger and fewer fasteners. However, there is a trade-off between structural efficiency and the cost of insertion time and materials. The

  12. Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Van, Thuy Duong; Tran, Ngoc Quyen; Nguyen, Dai Hai; Nguyen, Cuu Khoa; Tran, Dai Lam; Nguyen, Phuong Thi

    2016-05-01

    Gelatin hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility. In this study, we introduce poly-ethylene glycol (PEG)—grafted gelatin containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles of biphasic calcium phosphate, a mixture of hydroxyapatite and β-tricalcium phosphate, and forming injectable bio-composites. Proton nuclear magnetic resonance (1H NMR) spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the gelatin. The hydrogel composite was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with bio-mineralization on the hydrogel composite surfaces was well-observed after 2 weeks soaking in simulated body fluid solution. The obtained results indicated that the hydrogel composite could be a potential injectable material for bone regeneration.

  13. Impact of milk consumption and resistance training on body composition of female athletes.

    PubMed

    Josse, Andrea R; Phillips, Stuart M

    2012-01-01

    Resistance exercise (RE) preceding the provision of high-quality dairy protein supports muscle anabolism. Milk contains bioactive components, including two high-quality protein fractions, calcium and vitamin D, each of which has been shown modulate body composition (increasing lean mass and decreasing fat mass) under energy balance and hypoenergetic conditions. These dairy nutrients are also essential for skeletal health. Acutely, no study of RE and milk/whey consumption has been undertaken exclusively in female athletes, let alone women, nevertheless, studies with both men and women show increased lean mass accretion following milk/whey compared to soy/placebo. Currently, no longer-term RE studies with milk supplementation have been done in female athletes. However, trials in young recreationally active women demonstrated augmented increases in lean mass and decreases in fat mass with RE and milk or whey protein consumption. The amount of protein consumed post-exercise is also important; two trials using yogurt (5 g protein/6 oz) failed to demonstrate a positive change in body composition compared to placebo. For bone health, RE plus dairy improved bone mineral density at clinically important sites and reduced bone resorption. With energy restriction, in one study, higher dairy plus higher protein resulted in greater fat loss, lean mass gain and improved bone health in overweight women. In another study, milk and calcium supplementation showed no greater benefit. Neither trial exclusively utilized RE. Overall, RE and milk/dairy consumption positively impact body composition in women by promoting losses in fat, gains or maintenance of lean mass and preservation of bone. Future studies in female athletes and under energy restriction with RE alone are warranted. PMID:23075559

  14. Body composition of piglets exhibiting different growth rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth and composition of the neonatal pig is of interest because of potential impact on subsequent growth and finally, composition at market weight. The purpose of this study was to compare at weaning the growth and body composition of the largest and smallest pigs (excluding runts) from each o...

  15. Body composition changes in elite male bodybuilders during preparation for competition.

    PubMed

    Withers, R T; Noell, C J; Whittingham, N O; Chatterton, B E; Schultz, C G; Keeves, J P

    1997-03-01

    Anthropometric profiles together with a 4 compartment criterion model of body composition analysis (total body water, bone mineral, fat and residual masses via a combination of deuterium dilution, dual-energy x-ray absorptiometry and hydrodensitometry) were conducted on 3 elite male bodybuilders 10 wk and then 5 d before competition. A mean body mass reduction from 99.70 (Quetelet's Index = 31.6 kg/m2) to 92.79 kg (Quetelet's Index = 29.2 kg/m2) was accompanied by a decline in the sum of 8 skinfold thicknesses (triceps, subscapular, biceps, iliac crest, supraspinale, abdominal, front thigh and medial calf) from 51.1 to 36.7 mm. The 4 compartment body composition model indicated that there were reductions of: percent body fat (%BF) from 9.1 to 5.0%, fat free mass (FFM) from 90.60 to 88.14 kg and fat mass (FM) from 9.10 to 4.65 kg. Sixty-four percent of the 6.91 kg loss in body mass therefore came from the FM. The 2 compartment hydrodensitometric model yielded higher %BFs (initial = 11.2; final = 7.1) than the 4 compartment model (initial = 9.1; final = 5.0) which is theoretically more valid because it controls for biological variability in the percentages of water and bone mineral in the FFM. Nevertheless, both models registered decreases of 4.1%BF. PMID:9127683

  16. Mechanical validation of whole bone composite femur models.

    PubMed

    Cristofolini, L; Viceconti, M; Cappello, A; Toni, A

    1996-04-01

    Composite synthetic models of the human femur have recently become commercially available as substitutes for cadaveric specimens. Their quick diffusion was justified by the advantages they offer as a substitute for real femurs. The present investigation concentrated on an extensive experimental validation of the mechanical behaviour of the whole bone composite model, compared to human fresh-frozen and dried-rehydrated specimens for different loading conditions. First, the viscoelastic behaviour of the models was investigated under simulated single leg stance loading, showing that the little time dependent phenomena observed tend to extinguish within a few minutes of the load application. The behaviour under axial loading was then studied by comparing the vertical displacement of the head as well as the axial strains, by application of a parametric descriptive model of the strain distribution. Finally, a four point bending test and a torsional test were performed to characterize the whole bone stiffness of the femur. In all these tests, the composite femurs were shown to fall well within the range for cadaveric specimens, with no significant differences being detected between the synthetic femurs and the two groups of cadaveric femurs. Moreover, the interfemur variability for the composite femurs was 20-200 times lower than that for the cadaveric specimens, thus allowing smaller differences to be characterized as significant using the same simple size, if the composite femurs are employed. PMID:8964782

  17. High-acceleration whole body vibration stimulates cortical bone accrual and increases bone mineral content in growing mice.

    PubMed

    Gnyubkin, Vasily; Guignandon, Alain; Laroche, Norbert; Vanden-Bossche, Arnaud; Malaval, Luc; Vico, Laurence

    2016-06-14

    Whole body vibration (WBV) is a promising tool for counteracting bone loss. Most WBV studies on animals have been performed at acceleration <1g and frequency between 30 and 90Hz. Such WBV conditions trigger bone growth in osteopenia models, but not in healthy animals. In order to test the ability of WBV to promote osteogenesis in young animals, we exposed seven-week-old male mice to vibration at 90Hz and 2g peak acceleration for 15min/day, 5 days/week. We examined the effects on skeletal tissues with micro-computed tomography and histology. We also quantified bone vascularization and mechanosensitive osteocyte proteins, sclerostin and DMP1. Three weeks of WBV resulted in an increase of femur cortical thickness (+5%) and area (+6%), associated with a 25% decrease of sclerostin expression, and 35% increase of DMP1 expression in cortical osteocytes. Mass-structural parameters of trabecular bone were unaltered in femur or vertebra, while osteoclastic parameters and bone formation rate were increased at both sites. Three weeks of WBV resulted in higher blood vessel numbers (+23%) in the distal femoral metaphysis. After 9-week WBV, we have not observed the difference in structural cortical or trabecular parameters. However, the tissue mineral density of cortical bone was increased by 2.5%. Three or nine weeks of 2g/90Hz WBV treatment did not affect longitudinal growth rate or body weight increase under our experimental conditions, indicating that these are safe to use. These results validate a potential of 2g/90Hz WBV to stimulate trabecular bone cellular activity, accelerate cortical bone growth, and increase bone mineral density. PMID:27178020

  18. USE OF A NOVEL PEDIATRIC BODY COMPOSITION TECHNIQUE FOR ASSESING BODY FATNESS IN INFANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The assessment of body composition provides key information for assessing infant growth and for the administration of nutritional and pharmacological interventions. However, the use of body composition methods in infants is limited due to practical considerations, accuracy, and safety. This study ev...

  19. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; <-0.010 g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (<0.05%) for lean and fat; -23 and -5 g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good

  20. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.

    PubMed

    Yang, Wanxun; Both, Sanne K; Zuo, Yi; Birgani, Zeinab Tahmasebi; Habibovic, Pamela; Li, Yubao; Jansen, John A; Yang, Fang

    2015-07-01

    Biomaterial scaffolds meant to function as supporting structures to osteogenic cells play a pivotal role in bone tissue engineering. Recently, we synthesized an aliphatic polyurethane (PU) scaffold via a foaming method using non-toxic components. Through this procedure a uniform interconnected porous structure was created. Furthermore, hydroxyapatite (HA) particles were introduced into this process to increase the bioactivity of the PU matrix. To evaluate the biological performances of these PU-based scaffolds, their influence on in vitro cellular behavior and in vivo bone forming capacity of the engineered cell-scaffold constructs was investigated in this study. A simulated body fluid test demonstrated that the incorporation of 40 wt % HA particles significantly promoted the biomineralization ability of the PU scaffolds. Enhanced in vitro proliferation and osteogenic differentiation of the seeded mesenchymal stem cells were also observed on the PU/HA composite. Next, the cell-scaffold constructs were implanted subcutaneously in a nude mice model. After 8 weeks, a considerable amount of vascularized bone tissue with initial marrow stroma development was generated in both PU and PU/HA40 scaffold. In conclusion, the PU/HA composite is a potential scaffold for bone regeneration applications. PMID:25370308

  1. Behavior of plaster of Paris-calcium carbonate composite as bone substitute. A study in rats.

    PubMed

    Dewi, Anne Handrini; Ana, Ika Dewi; Wolke, Joop; Jansen, John

    2013-08-01

    Calcium sulfate, also known as plaster of Paris (POP), is probably the oldest biomaterial used for bone grafting and considered to be a fast degradable material that allows complete resorption before the bone defect area is completely filled by new bone. The aim of this study was to investigate the possibility to combine POP with calcium carbonate in order to increase the the osteoconductivity of this material. Twenty four male Sprague Dawley rats, 5-months-old and weighing 300-350 g, were used in the study. Various treatment groups were created by the implantation of cylindrical samples of POP-100, POP-075 and POP-050 into the femoral condyles. After 1 and 4 weeks of implantation, rats were sacrificed and the implanted areas and the surrounding tissue were retrieved for histological analysis. The study was completed by an in vitro experiment, which included the soaking of the experimental materials into simulated body fluid. The results indicated that the composites were appropriate to be used as bone grafting material. The incorporation of CaCO3 into POP did decrease the degradation rate of the cements and induced faster bone formation, thus provides promising properties to this material. PMID:23239628

  2. Bone architectural and structural properties after 56Fe26+ radiation-induced changes in body mass.

    PubMed

    Willey, J S; Grilly, L G; Howard, S H; Pecaut, M J; Obenaus, A; Gridley, D S; Nelson, G A; Bateman, T A

    2008-08-01

    High-energy, high-charge (HZE) radiation, including iron ions ((56)Fe(26+)), is a component of the space environment. We recently observed a profound loss of trabecular bone in mice after whole-body HZE irradiation. The goal of this study was to examine morphology in bones that were excluded from a (56)Fe(26+) beam used to irradiate the body. Using 10-week-old male Sprague-Dawley rats and excluding the hind limbs and pelvis, we irradiated animals with 0, 1, 2 and 4 Gy (56)Fe(26+) ions and killed them humanely after 9 months. Animals grew throughout the experiment. Trabecular bone volume, connectivity and thickness within the proximal tibiae were significantly lower than control in a dose-dependent manner. Irradiated animals generally had less body mass than controls, which largely accounted for the variability in bone parameters as determined by ANCOVA. Likewise, lower cortical parameters were associated with reduced mass. However, lesser trabecular thickness in the 4-Gy group could not be attributed to body mass alone. Indicators of bone metabolism were generally unchanged, suggesting stabilized turnover. Exposure to (56)Fe(26+) ions can alter trabecular microarchitecture in shielded bones. Reduced body mass seems to be correlated with these deficits of trabecular and cortical bone. PMID:18666808

  3. Poly-ε-caprolactone composite scaffolds for bone repair.

    PubMed

    Di Liddo, R; Paganin, P; Lora, S; Dalzoppo, D; Giraudo, C; Miotto, D; Tasso, A; Barbon, S; Artico, M; Bianchi, E; Parnigotto, P P; Conconi, M T; Grandi, C

    2014-12-01

    Synthetic biomaterials combined with cells and osteogenic factors represent a promising approach for the treatment of a number of orthopedic diseases, such as bone trauma and congenital malformations. To guarantee optimal biological properties, bone substitutes are prepared with a 3D structure and porosity grade functional to drive cell migration and proliferation, diffusion of factors, vascularization and cell waste expulsion. In this study, synthetic hydroxyapatite (HA) or rat bone extracellular matrix (BP) were examined in an effort to optimize the mechanical properties and osteogenic activity of poly-ε-caprolactone scaffolds prepared with alginate threads (PCL-AT). Using rabbit bone marrow-derived mesenchymal stem cells (rMSCs), the effects of PCL composite substrates on cell adhesion, growth and osteogenic differentiation were evaluated. Micro-CT analysis and scanning electron microscopy evidenced that porous PCL scaffolds containing HA or BP acquire a trabecular bone-like structure with interconnected pores homogenously distributed and are characterized by a pore diameter of approximately 10 µm (PCL-AT-BP) or ranging from 10 to 100 µm. Although the porosity grade of both PCL-AT-HA and PCL-AT-BP promoted optimal conditions for the cell growth of rMSCs at the early phase, the presence of BP was crucial to prolong the cell viability at the late phase. Moreover, a precocious expression of Runx2 (at 7 days) was observed in PCL-AT-BP in combination with osteogenic soluble factors suggesting that BP controls better than HA the osteogenic maturation process in bone substitutes. PMID:25319350

  4. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease.

    PubMed

    Seabolt, Lynn A; Welch, E Brian; Silver, Heidi J

    2015-09-01

    Advances in the technological qualities of imaging modalities for assessing human body composition have been stimulated by accumulating evidence that individual components of body composition have significant influences on chronic disease onset, disease progression, treatment response, and health outcomes. Importantly, imaging modalities have provided a systematic method for differentiating phenotypes of body composition that diverge from what is considered normal, that is, having low bone mass (osteopenia/osteoporosis), low muscle mass (sarcopenia), high fat mass (obesity), or high fat with low muscle mass (sarcopenic obesity). Moreover, advances over the past three decades in the sensitivity and quality of imaging not just to discern the amount and distribution of adipose and lean tissue but also to differentiate layers or depots within tissues and cells is enhancing our understanding of distinct mechanistic, metabolic, and functional roles of body composition within human phenotypes. In this review, we focus on advances in imaging technologies that show great promise for future investigation of human body composition and how they are being used to address the pandemic of obesity, metabolic syndrome, and diabetes. PMID:26250623

  5. Validation of dual x-ray absorptiometry for body-composition assessment of rats exposed to dietary stressors.

    PubMed

    Lukaski, H C; Hall, C B; Marchello, M J; Siders, W A

    2001-01-01

    Evidence of the validity and accuracy of dual x-ray absorptiometry (DXA) to measure soft-tissue composition of laboratory rats with altered body composition associated with nutritional perturbations is lacking. We compared DXA determinations made in prone and supine positions with measurements of chemical composition of 49 male, weanling Sprague-Dawley rats that were fed the basal AIN-93 growth diet, were fed the basal diet modified to contain 30% fat, were fasted for 2 d, were limit fed 6 g of the basal diet daily for 1 wk, or were treated with furosemide (10 mg/kg intraperitoneally 2 h before DXA). DXA produced similar estimates of body mass and soft-tissue composition in the prone and supine positions. DXA estimates of body composition were significantly correlated with reference composition values (R(2) = 0.371-0.999). DXA discriminated treatment effects on body mass, fat-free and bone-free mass, fat mass, and body fatness; it significantly underestimated body mass (1% to 2%) and fat-free and bone-free mass (3%) and significantly overestimated fat mass and body fatness (3% to 25%). The greatest errors occurred in treatment groups in which body mass was diminished and body hydration was decreased. These findings suggest that DXA can determine small changes in fat-free, bone-free mass in response to obesity and weight loss. Errors in DXA determination of fat mass and body fatness associated with extra corporeal fluid and dehydration indicate the need for revision of calculation algorithms for soft-tissue determination. PMID:11448581

  6. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration.

    PubMed

    Subramaniam, Sadhasivam; Fang, Yen-Hsin; Sivasubramanian, Savitha; Lin, Feng-Huei; Lin, Chun-pin

    2016-01-01

    Periodontitis is a very severe inflammatory condition of the periodontium that progressively damages the soft tissue and destroys the alveolar bone that supports the teeth. The bone loss is naturally irreversible because of limited reparability of the teeth. Advancement in tissue engineering provides an effective regeneration of osseous defects with suitable dental implants or tissue-engineered constructs. This study reports a hydroxyapatite, calcium sulfate hemihydrate and hyaluronic acid laden collagenase (HAP/CS/HA-Col) as a bone substitute for the alveolar bone regeneration. The composite material was mechanically tested and the biocompatibility was evaluated by WST-1 assay. The in vivo bone formation was assessed in rat with alveolar bone defects and the bone augmentation by the HAP/CS/HA-Col composite was confirmed by micro-CT images and histological examination. The mechanical strength of 6.69 MPa with excellent biocompatibility was obtained for the HAP/CS/HA-Col composite. The collagenase release profile had facilitated the acceleration of bone remodeling process and it was confirmed by the findings of micro-CT and H&E staining. The bone defects implanted with HAP/CS/HA composite containing 2 mg/mL type I collagenase have shown improved new bone formation with matured bone morphology in comparison with the HAP/CS/HA composite that lacks the collagenase and the porous hydroxyapatite (p-HAP) granules. The said findings demonstrated that the collagenase inclusion in HAP/CS/HA composite is a feasible approach for the alveolar bone regeneration and the same design can also be applied to other defective tissues. PMID:26454048

  7. Non-invasive techniques for determining musculoskeleton body composition

    SciTech Connect

    Cohn, S.H.

    1984-01-01

    In vivo neutron activation analysis, combined with gamma spectrometry, has ushered in a new era of clinical diagnosis and evaluation of therapies, as well as investigation into and modelling of body composition in both normal individuals and patients suffering from various diseases and dysfunctions. Body composition studies have provided baseline data on such vital constituents as nitrogen, potassium and calcium. The non-invasive measurement techniques are particularly suitable for study of the musculo-skeletal changes in body composition. Of particular relevance here is the measurement of calcium loss in astronauts during prolonged space flights.

  8. Compositional Homogeneity of CM Parent Bodies

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    CM chondrites are the most common type of hydrated meteorites, making up ˜1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (˜0°C–120°C) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a “low” temperature (<300°C) thermal evolution of the CM parent body(ies). It follows that an impact origin is the likely explanation for the existence of heated CM chondrites. Finally, similarly to S-type asteroids and (2) Pallas, the surfaces of large (D > 100 km)—supposedly primordial—Ch/Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.

  9. Compositional Homogeneity of CM Parent Bodies

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    CM chondrites are the most common type of hydrated meteorites, making up ∼1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (∼0°C–120°C) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a “low” temperature (<300°C) thermal evolution of the CM parent body(ies). It follows that an impact origin is the likely explanation for the existence of heated CM chondrites. Finally, similarly to S-type asteroids and (2) Pallas, the surfaces of large (D > 100 km)—supposedly primordial—Ch/Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.

  10. Hydroxyapatite-titanium bulk composites for bone tissue engineering applications.

    PubMed

    Kumar, Alok; Biswas, Krishanu; Basu, Bikramjit

    2015-02-01

    The research work on bulk hydroxyapatite (HA)-based composites are driven by the need to develop biomaterials with better mechanical properties without compromising its bioactivity and biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of this review on the HA-based bulk biomaterials is limited to the processing and the mechanical as well as biocompatibility properties for bone tissue engineering applications of a model system that is hydroxyapatite-titanium (HA-Ti) bulk composites. It will be discussed in this review how HA-Ti based bulk composites can be processed to have better fracture toughness and strength without compromising biocompatibility. The advantages of the functionally gradient materials to integrate the mechanical and biocompatibility properties is a promising approach in hard tissue engineering and has been emphasized here in reference to the limited literature reports. On the biomaterials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing techniques, like spark plasma sintering can be adopted as a processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms related to careful tailoring of microstructure are discussed. The in vitro cytocompatibilty, cell fate processes as well as in vivo biocompatibility results are also reviewed and the use of flow cytometry to quantify in vitro cell fate processes is being emphasized. PMID:24737723

  11. Myeloid regeneration after whole body irradiation, autologous bone marrow transplantation, and treatment with an anabolic steroid.

    PubMed

    Ambrus, C M; Ambrus, J L

    1975-01-01

    Stumptail monkeys (Macaca speciosa) received lethal whole body radiation. Autologous bone marrow injection resulted in survival of the majority of the animals. Treatment with Deca-Durabolin, an anabolic steroid, caused more rapid recovery of colony-forming cell numbers in the bone marrow than in control animals. Both the Deca-Durabolin-treated and control groups were given autologous bone marrow transplantation. Anabolic steroid effect on transplanted bone marrow colonyforming cells may explain the increased rate of leukopoietic regeneration in anabolic steroid-treated animals as compared to controls. PMID:124758

  12. The accuracy and precision of DXA for assessing body composition in team sport athletes.

    PubMed

    Bilsborough, Johann Christopher; Greenway, Kate; Opar, David; Livingstone, Steuart; Cordy, Justin; Coutts, Aaron James

    2014-01-01

    This study determined the precision of pencil and fan beam dual-energy X-ray absorptiometry (DXA) devices for assessing body composition in professional Australian Football players. Thirty-six professional Australian Football players, in two groups (fan DXA, N = 22; pencil DXA, N = 25), underwent two consecutive DXA scans. A whole body phantom with known values for fat mass, bone mineral content and fat-free soft tissue mass was also used to validate each DXA device. Additionally, the criterion phantom was scanned 20 times by each DXA to assess reliability. Test-retest reliability of DXA anthropometric measures were derived from repeated fan and pencil DXA scans. Fat-free soft tissue mass and bone mineral content from both DXA units showed strong correlations with, and trivial differences to, the criterion phantom values. Fat mass from both DXA showed moderate correlations with criterion measures (pencil: r = 0.64; fan: r = 0.67) and moderate differences with the criterion value. The limits of agreement were similar for both fan beam DXA and pencil beam DXA (fan: fat-free soft tissue mass = -1650 ± 179 g, fat mass = -357 ± 316 g, bone mineral content = 289 ± 122 g; pencil: fat-free soft tissue mass = -1701 ± 257 g, fat mass = -359 ± 326 g, bone mineral content = 177 ± 117 g). DXA also showed excellent precision for bone mineral content (coefficient of variation (%CV) fan = 0.6%; pencil = 1.5%) and fat-free soft tissue mass (%CV fan = 0.3%; pencil = 0.5%) and acceptable reliability for fat measures (%CV fan: fat mass = 2.5%, percent body fat = 2.5%; pencil: fat mass = 5.9%, percent body fat = 5.7%). Both DXA provide precise measures of fat-free soft tissue mass and bone mineral content in lean Australian Football players. DXA-derived fat-free soft tissue mass and bone mineral content are suitable for assessing body composition in lean team sport athletes. PMID:24914773

  13. Bone growth and composition in weanling and mature rats exposed to chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Evans, J. W.

    1982-01-01

    The primary objective of the study is to determine the effect of continuous exposure to hypergravity on the development and composition of weight-bearing bone. The experimental results are seen to suggest that many, if not all, of the changes observed in bone growth and composition derive from the retarded growth rate of the centrifuged rats. Both centrifuged weanling and mature rats exhibit a significant reduction in femur length and mass. The changes in femur size are more apparent in the weanlings since they are exposed to hypergravity during their most rapid phase of skeletal development. In addition to a slower growth rate, the body mass of the mature and weanling animals is reduced even further by the depletion of body fat. The rapid loss of body fat observed in rats and mice during centrifugation, it is found, can produce a prompt and significant rise in relative femur mass after two weeks of exposure. After adaptation to centrifugation, however, relative femur mass is similar to that of controls at four and eight weeks. At 18 weeks, the centrifuged rats again exhibit an increase in relative femur mass. It is thought that this increase in relative femur mass may be generated by the difference in fat deposition between the 1-G controls and the high-G rats.

  14. Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration.

    PubMed

    Chen, Chen; Li, Hong; Pan, Jianfeng; Yan, Zuoqin; Yao, Zhenjun; Fan, Wenshuai; Guo, Changan

    2015-02-01

    Hemostasis in orthopedic osteotomy or bone cutting requires different methods and materials. The bleeding of bone marrow can be mostly stopped by bone wax. However, the wax cannot be absorbed, which leads to artificial prosthesis loosening, foreign matter reaction, and infection. Here, a bioactive glass/chitosan/carboxymethyl cellulose (BG/CS/CMC) composite scaffold was designed to replace traditional wax. WST-1 assay indicated the BG/CS/CMC composite resulted in excellent biocompatibility with no cytotoxicity. In vivo osteogenesis assessment revealed that the BG/CS/CMC composite played a dominant role in bone regeneration and hemostasis. The BG/CS/CMC composite had the same hemostasis effect as bone wax; in addition its biodegradation also led to the functional reconstruction of bone defects. Thus, BG/CS/CMC scaffolds can serve as a potential material for bone repair and hemostasis in critical-sized bone defects. PMID:25326173

  15. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  16. Postnatal Anthropometric and Body Composition Profiles in Infants with Intrauterine Growth Restriction Identified by Prenatal Doppler

    PubMed Central

    Mazarico, E.; Martinez-Cumplido, R.; Díaz, M.; Sebastiani, G.; Ibáñez, L.; Gómez-Roig, M. D.

    2016-01-01

    Introduction Infant anthropometry and body composition have been previously assessed to gauge the impact of intrauterine growth restriction (IUGR) at birth, but the interplay between prenatal Doppler measurements and postnatal development has not been studied in this setting. The present investigation was performed to assess the significance of prenatal Doppler findings relative to postnatal anthropometrics and body composition in IUGR newborns over the first 12 months of life. Patients and Methods Consecutive cases of singleton pregnancies with suspected IUGR were prospectively enrolled over 12 months. Fetal biometry and prenatal Doppler ultrasound examinations were performed. Body composition was assessed by absorptiometry at ages 10 days, and at 4 and12 months. Results A total of 48 pregnancies qualifying as IUGR were studied. Doppler parameters were normal in 26 pregnancies. The remaining 22 deviated from normal, marked by an Umbilical Artery Pulsatility Index (UA-PI) >95th centil or Cerebro-placental ratio (CPR) <5th centile. No significant differences emerged when comparing anthropometry and body composition at each time point, in relation to Doppler findings. Specifically, those IUGR newborns with and without abnormal Doppler findings had similar weight, length, body mass index, lean and fat mass, and bone mineral content throughout the first 12 months of life. In a separate analysis, when comparing IUGR newborns by Doppler (abnormal UA-PI vs. abnormal CPR), anthropometry and body composition did not differ significantly. Conclusions Infants with IUGR maintain a pattern of body composition during the first year of life that is independent of prenatal Doppler findings. Future studies with larger sample sizes and correlating with hormonal status are warranted to further extend the phenotypic characterization of the various conditions now classified under the common label of IUGR. PMID:26938993

  17. Relationships between body composition analysis measures in Greek women and US white women.

    PubMed

    Theodorou, Stavroula J; Theodorou, Daphne J; Kalef-Ezra, John; Fotopoulos, Andreas; Agnantis, Niki; Tsatsoulis, Agathocles; Tsampoulas, Konstantinos

    2015-06-01

    We investigated the regional changes in body composition relative to age, in healthy Caucasian women living in the Mediterranean area. Body composition of total and subtotal body was measured, and fat mass (FM) ratios along with FM and lean mass (LM) indices were calculated in 330 women aged 20-85 years, using DXA. Data were compared with the NHANES reference database. Peak bone mineral density and bone mineral content of total body were 1.149 g/cm(2) and 2,209 g and were achieved between ages 41 and 50. Peak %FM of total body, FM index (FMI; FM/height(2)), FM of trunk to legs, and FM of trunk to limbs were 41.5%, 13.69 kg/m(2), 1.623, and 1.14, respectively. Peak %FM and FMI were achieved between 61 and 70 years. Unlike US counterparts, in our series, both FM ratios showed a propensity for women to accrue fat in the trunk following the android pattern of fat distribution. Peak LM index for total body (LMI; LM/height(2)) and limbs (ASMMI; appendicular skeletal muscle mass/height(2)) was 18.08 kg/m(2) and 7.33 kg/m(2), respectively, and was achieved between 61 and 70 years. For Greeks, the ASMMI was greater from 55 years onwards. Greek women have increasing bone mass in early adulthood followed by significant decline during fifties and onwards. Compared with US white women, Greek women have significantly greater truncal fat for all ages, implying a greater risk of obesity-associated diseases. Middle-aged and older Greek women have greater appendicular skeletal muscle mass, which may eliminate the overall risk of sarcopenic obesity. PMID:25366468

  18. Changes in the Mechanical Properties and Composition of Bone during Microdamage Repair

    PubMed Central

    Yu, Zhifeng

    2014-01-01

    Under normal conditions, loading activities result in microdamage in the living skeleton, which is repaired by bone remodeling. However, microdamage accumulation can affect the mechanical properties of bone and increase the risk of fracture. This study aimed to determine the effect of microdamage on the mechanical properties and composition of bone. Fourteen male goats aged 28 months were used in the present study. Cortical bone screws were placed in the tibiae to induce microdamage around the implant. The goats were euthanized, and 3 bone segments with the screws in each goat were removed at 0 days, 21 days, 4 months, and 8 months after implantation. The bone segments were used for observing microdamage and bone remodeling, as well as nanoindentation and bone composition, separately. Two regions were measured: the first region (R1), located 1.5 mm from the interface between the screw hole and bone; and the second region (R2), located>1.5 mm from the bone-screw interface. Both diffuse and linear microdamage decreased significantly with increasing time after surgery, with the diffuse microdamage disappearing after 8 months. Thus, screw implantation results in increased bone remodeling either in the proximal or distal cortical bone, which repairs the microdamage. Moreover, bone hardness and elastic modulus decreased with microdamage repair, especially in the proximal bone tissue. Bone composition changed greatly during the production and repair of microdamage, especially for the C (Carbon) and Ca (Calcium) in the R1 region. In conclusion, the presence of mechanical microdamage accelerates bone remodeling either in the proximal or distal cortical bone. The bone hardness and elastic modulus decreased with microdamage repair, with the micromechanical properties being restored on complete repair of the microdamage. Changes in bone composition may contribute to changes in bone mechanical properties. PMID:25313565

  19. Body composition data from the rat subjects of Cosmos 1129 experiment K-316

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.; Pitts, G. C.; Ushakov, A. S.; Smirnova, T. A.

    1982-01-01

    The effects of 18.5 days of weightlessness on the body composition of young, growing, male laboratory rats were examined. Three groups of 5 rats each were examined. It is indicated that exposure of young, growing, male rats to 18.5 days of weightlessness produces: (1) no effect on the quantity of fat stored by the body; (2) a slight reduction in the quantity of fat free tissue laid down by the body; (3) a small reduction in the fraction of water contained by the fat free body mass; (4) a similar reduction in the fraction of water contained by the fat free skin and fat free carcass; (5) a shift in relative distribution of the total body water from skin to viscera; (6) a diminution in the fraction of extracellular water contained by the fat free body; (7) no effect on the fraction of total skeletal musculature contained by the fat free body, as indicated by body creatine content; (8) a sizeable reduction in the fraction of bone mineral contained by the fat free body, as calculated from body calcium content. The nature of the physiological changes induced by unloading from Earth gravity in the mammalian organism are illustrated.

  20. The Effects of Body Composition, Dietary Intake, and Physical Activity on Calcaneus Quantitative Ultrasound in Spanish Young Adults.

    PubMed

    Correa-Rodríguez, María; Rio-Valle, Jacqueline Schmidt; González-Jiménez, Emilio; Rueda-Medina, Blanca

    2016-07-01

    Identifying modifiable factors that influence bone gain during early adulthood in order to maximize peak bone mass (PBM) is a potential primary strategy in the prevention of osteoporosis in later life. The present study examined the relationships between body composition, dietary intake and physical activity (PA), and bone health measured by quantitative ultrasound (QUS) at the right calcaneus. The study population consisted of 781 Spanish men and women (age 19.1 ± 3.6). Body composition, dietary intake, PA, and bone strength were assessed. Calcaneus QUS was significantly correlated with age, height, weight, body mass index, lean mass, fat mass, protein intake, and moderate and high PA. No significant correlation between calcium intake and broadband ultrasound attenuation (BUA, dB/MHz) was detected. Linear regression analyses revealed that independent variables accounted for 18.8% of the total variance of calcaneus BUA (p = .000). Lean mass and high PA were significant predictors of BUA variance in young adults (p = .000 and p = .045, respectively). Results indicate that lifestyle choices and their consequences during early adulthood could influence bone mass, particularly PA and lean mass. Furthermore, this study provides novel data about bone mass as indicated by the QUS measurements at the time of PBM acquisition. PMID:26933147

  1. Effect of in vivo loading on bone composition varies with animal age

    PubMed Central

    Aido, Marta; Kerschnitzki, Michael; Hoerth, Rebecca; Checa, Sara; Spevak, Lyudmila; Boskey, Adele; Fratzl, Peter; Duda, Georg N.; Wagermaier, Wolfgang; Willie, Bettina M.

    2015-01-01

    Loading can increase bone mass and size and this response is reduced with aging. It is unclear, however how loading affects bone mineral and matrix properties. Fourier Transform Infrared Imaging and high resolution synchrotron scanning small angle X-ray scattering were used to study how bone’s microscale and nanoscale compositional properties were altered in the tibial midshaft of young, adult, and elderly female C57Bl/6J mice after two weeks of controlled in vivo compressive loading in comparison to physiological loading. The effect of controlled loading on bone composition varied with animal age, since it predominantly influenced the bone composition of elderly mice. Interestingly, controlled loading led to enhanced collagen maturity in elderly mice. In addition, although the rate of bone formation was increased by controlled loading based on histomorphometry, the newly formed tissue had similar material quality to new bone tissue formed during physiological loading. Similar to previous studies, our data showed that bone composition was animal and tissue age dependent during physiological loading. The findings that the new tissue formed in response to controlled loading and physiological loading had similar bone composition and that controlled loading enhanced bone composition in elderly mice further supports the use of physical activity as a noninvasive treatment to enhance bone quality as well as maintain bone mass in individuals suffering from age-related bone loss. PMID:25639943

  2. Calcium phosphate cement - gelatin powder composite testing in canine models: Clinical implications for treatment of bone defects.

    PubMed

    Yomoda, Mitsuhiro; Sobajima, Satoshi; Kasuya, Akihiro; Neo, Masashi

    2015-05-01

    Previous studies have reported the excellent biocompatibility of calcium phosphate cement. However, calcium phosphate cement needs further improvement in order for it to promote bone replacement and eventual bone substitution, as it exhibits slow biodegradability and thus remains in the body over an extended period of time. In this study, we mixed calcium phosphate cement with gelatin powder in order to create a composite containing macropores with interconnectivity, and we then implanted it into canine femurs from the diaphysis to the distal metaphysis. Eight dogs were divided into the sham group, the control (C0) group with 100 wt% calcium phosphate cement, the C10 group with 90 wt% calcium phosphate cement and 10 wt% gelatin powder, and the C15 group with 85 wt% calcium phosphate cement and 15 wt% gelatin powder. Bone replaceability in C10 and C15 at 3 and 6 months was evaluated by radiography, micro-CT, histomorphometry, and mineral apposition rate. New bone formation was seen in C10 and C15 although that was not seen in C0 at six months. The mineral apposition rate was significantly higher in C15 than in C10 in both the diaphysis and metaphysis, and the composite was found to have excellent biodegradability and bone replaceability in canine subjects. As the composite is easily and rapidly prepared, it is likely to become a new bone substitute for use in clinical settings. PMID:25550332

  3. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. PMID:24755526

  4. In vivo measurement of human body composition

    NASA Technical Reports Server (NTRS)

    Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Price, D. C.

    1974-01-01

    The female bed rest study has shown that, the response of women to prolonged recumbency of 2 to 3 weeks duration is very similar to that displayed by men. Some of the key findings in the women after 17 days of continuous recumbency are: (1) a decrease in plasma volume of 12-13 per cent; (2) a small decrease in total body water; (3) a decrease in total body potassium of 3 to 4 per cent; (4) a decrease in plasma potassium concentration of 4 to 5 per cent; (5) a decrease in total circulating plasma protein of 11 to 12 per cent; (6) a decrease in urinary norepinephrine excretion rate of 27 to 28 per cent; (7) a possible increase in urinary magnesium, calcium, and phosphate excretion rates; and (8) a possible increase in urinary citrate excretion rate.

  5. Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women

    PubMed Central

    Casale, Maria; von Hurst, Pamela R.; Beck, Kathryn L.; Shultz, Sarah; Kruger, Marlena C.; O’Brien, Wendy; Conlon, Cathryn A.; Kruger, Rozanne

    2016-01-01

    Anecdotally, it is suggested that Pacific Island women have good bone mineral density (BMD) compared to other ethnicities; however, little evidence for this or for associated factors exists. This study aimed to explore associations between predictors of bone mineral density (BMD, g/cm2), in pre-menopausal Pacific Island women. Healthy pre-menopausal Pacific Island women (age 16–45 years) were recruited as part of the larger EXPLORE Study. Total body BMD and body composition were assessed using Dual X-ray Absorptiometry and air-displacement plethysmography (n = 83). A food frequency questionnaire (n = 56) and current bone-specific physical activity questionnaire (n = 59) were completed. Variables expected to be associated with BMD were applied to a hierarchical multiple regression analysis. Due to missing data, physical activity and dietary intake factors were considered only in simple correlations. Mean BMD was 1.1 ± 0.08 g/cm2. Bone-free, fat-free lean mass (LMO, 52.4 ± 6.9 kg) and age were positively associated with BMD, and percent body fat (38.4 ± 7.6) was inversely associated with BMD, explaining 37.7% of total variance. Lean mass was the strongest predictor of BMD, while many established contributors to bone health (calcium, physical activity, protein, and vitamin C) were not associated with BMD in this population, partly due to difficulty retrieving dietary data. This highlights the importance of physical activity and protein intake during any weight loss interventions to in order to minimise the loss of muscle mass, whilst maximizing loss of adipose tissue. PMID:27483314

  6. Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women.

    PubMed

    Casale, Maria; von Hurst, Pamela R; Beck, Kathryn L; Shultz, Sarah; Kruger, Marlena C; O'Brien, Wendy; Conlon, Cathryn A; Kruger, Rozanne

    2016-01-01

    Anecdotally, it is suggested that Pacific Island women have good bone mineral density (BMD) compared to other ethnicities; however, little evidence for this or for associated factors exists. This study aimed to explore associations between predictors of bone mineral density (BMD, g/cm²), in pre-menopausal Pacific Island women. Healthy pre-menopausal Pacific Island women (age 16-45 years) were recruited as part of the larger EXPLORE Study. Total body BMD and body composition were assessed using Dual X-ray Absorptiometry and air-displacement plethysmography (n = 83). A food frequency questionnaire (n = 56) and current bone-specific physical activity questionnaire (n = 59) were completed. Variables expected to be associated with BMD were applied to a hierarchical multiple regression analysis. Due to missing data, physical activity and dietary intake factors were considered only in simple correlations. Mean BMD was 1.1 ± 0.08 g/cm². Bone-free, fat-free lean mass (LMO, 52.4 ± 6.9 kg) and age were positively associated with BMD, and percent body fat (38.4 ± 7.6) was inversely associated with BMD, explaining 37.7% of total variance. Lean mass was the strongest predictor of BMD, while many established contributors to bone health (calcium, physical activity, protein, and vitamin C) were not associated with BMD in this population, partly due to difficulty retrieving dietary data. This highlights the importance of physical activity and protein intake during any weight loss interventions to in order to minimise the loss of muscle mass, whilst maximizing loss of adipose tissue. PMID:27483314

  7. Effects of diet containing flaxseed flour (Linum usitatissimum) on body adiposity and bone health in young male rats.

    PubMed

    da Costa, Carlos Alberto Soares; da Silva, Paula Cristina Alves; Ribeiro, Danielle Cavalcante; Pereira, Aline D'Avila; dos Santos, Aline de Sousa; de Abreu, Maíra Duque Coutinho; Pessoa, Letícia Rozeno; Boueri, Bianca Ferolla da Camara; Pessanha, Carolina Ribeiro; do Nascimento-Saba, Celly Cristina Alves; da Silva, Eduardo Moreira; Boaventura, Gilson Teles

    2016-02-01

    Flaxseed flour has been described as an excellent alpha-linolenic acid source. This study was designed to evaluate the effects of flaxseed flour on body adiposity and bone health in rats fed a flaxseed flour diet during lactation until 90 days. At birth, male Wistar rats were randomly assigned to control (C) and experimental (FF) groups, whose dams were treated with a control or flaxseed flour diet, respectively, during lactation. At 21 days, pups were weaned and fed a control and experimental diet until 90 days. Food intake, body mass and length were evaluated during a 21-90 day period. At 90 days, composition by dual-energy X-ray absorptiometry, serum hormonal profile, intra-abdominal fat mass, and lumbar vertebra and femur analyses was determined. Differences were deemed significant at p < 0.05. The FF group displayed the following (P < 0.05): a higher total lean mass (+7%), a lower total (-16%) and intra-abdominal (-24%) fat mass, a smaller adipocyte area (-30%), a higher femoral mass (+5%), bone mineral density (+5%) and radiodensity (+20%), and a higher maximum force (+10%) and breaking strength (+11%). The flaxseed flour diet displayed functional properties related to body growth maintenance associated with a lower risk of developing metabolic alterations, obesity and bone fragility. PMID:26822538

  8. Application of standards and models in body composition analysis.

    PubMed

    Müller, Manfred J; Braun, Wiebke; Pourhassan, Maryam; Geisler, Corinna; Bosy-Westphal, Anja

    2016-05-01

    The aim of this review is to extend present concepts of body composition and to integrate it into physiology. In vivo body composition analysis (BCA) has a sound theoretical and methodological basis. Present methods used for BCA are reliable and valid. Individual data on body components, organs and tissues are included into different models, e.g. a 2-, 3-, 4- or multi-component model. Today the so-called 4-compartment model as well as whole body MRI (or computed tomography) scans are considered as gold standards of BCA. In practice the use of the appropriate method depends on the question of interest and the accuracy needed to address it. Body composition data are descriptive and used for normative analyses (e.g. generating normal values, centiles and cut offs). Advanced models of BCA go beyond description and normative approaches. The concept of functional body composition (FBC) takes into account the relationships between individual body components, organs and tissues and related metabolic and physical functions. FBC can be further extended to the model of healthy body composition (HBC) based on horizontal (i.e. structural) and vertical (e.g. metabolism and its neuroendocrine control) relationships between individual components as well as between component and body functions using mathematical modelling with a hierarchical multi-level multi-scale approach at the software level. HBC integrates into whole body systems of cardiovascular, respiratory, hepatic and renal functions. To conclude BCA is a prerequisite for detailed phenotyping of individuals providing a sound basis for in depth biomedical research and clinical decision making. PMID:26541411

  9. The Head Bone's Connected to the Neck Bone: When Do Toddlers Represent Their Own Body Topography?

    ERIC Educational Resources Information Center

    Brownell, Celia A.; Nichols, Sara R.; Svetlova, Margarita; Zerwas, Stephanie; Ramani, Geetha

    2010-01-01

    Developments in very young children's topographic representations of their own bodies were examined. Sixty-one 20- and 30-month-old children were administered tasks that indexed the ability to locate specific body parts on oneself and knowledge of how one's body parts are spatially organized, as well as body-size knowledge and self-awareness. Age…

  10. Calcium phosphate porous composites and ceramics prospective as bone implants

    NASA Astrophysics Data System (ADS)

    Rabadjieva, D.; Tepavitcharova, S.; Gergulova, R.; Sezanova, K.; Ilieva, R.; Gabrashanska, M.; Alexandrov, M.

    2013-12-01

    Two types of calcium phosphate materials prospective as bone implants were prepared in the shape of granules and their biochemical behavior was tested by in vivo studies: (i) composite materials consisting of gelatin and bi-phase ion modified calcium phosphate Mg,Zn-(HA + β-TCP); and (ii) ceramics of ion modified calcium phosphate Mg,Zn-(HA + β-TCP). The starting fine powders were prepared by the method of biomimetic precipitation of the precursors followed by hightemperature treatment. Then granules were prepared by dispersion in liquid paraffin of a thick suspension containing 20% of gelatin gel and thus prepared calcium phosphate powders (1:1 ratios). The composite granules were obtained by subsequent hardening in a glutaraldehyde solution, while the highly porous ceramic granules - by further sintering at 1100°C. The in vivo behavior of both types of granules was tested in experimental rat models. Bone defects were created in rat tibia and were filled with the implants. Biochemical studies were performed. Three months after operation both bio-materials displayed analogous behavior.

  11. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  12. UREA SPACE AND BODY CONDITION SCORE TO PREDICT BODY COMPOSITION OF MEAT GOATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yearling Boer x Spanish wethers (n=40) were used to develop and compare body composition prediction equations for mature meat goats based on urea space (US) and body condition score (BCS). Before the experiment, one-half of the animals were managed to have high BW and BCS (1-5, with 1 being extreme...

  13. A bone composition model for Monte Carlo x-ray transport simulations

    SciTech Connect

    Zhou Hu; Keall, Paul J.; Graves, Edward E.

    2009-03-15

    In the megavoltage energy range although the mass attenuation coefficients of different bones do not vary by more than 10%, it has been estimated that a simple tissue model containing a single-bone composition could cause errors of up to 10% in the calculated dose distribution. In the kilovoltage energy range, the variation in mass attenuation coefficients of the bones is several times greater, and the expected error from applying this type of model could be as high as several hundred percent. Based on the observation that the calcium and phosphorus compositions of bones are strongly correlated with the bone density, the authors propose an analytical formulation of bone composition for Monte Carlo computations. Elemental compositions and densities of homogeneous adult human bones from the literature were used as references, from which the calcium and phosphorus compositions were fitted as polynomial functions of bone density and assigned to model bones together with the averaged compositions of other elements. To test this model using the Monte Carlo package DOSXYZnrc, a series of discrete model bones was generated from this formula and the radiation-tissue interaction cross-section data were calculated. The total energy released per unit mass of primary photons (terma) and Monte Carlo calculations performed using this model and the single-bone model were compared, which demonstrated that at kilovoltage energies the discrepancy could be more than 100% in bony dose and 30% in soft tissue dose. Percentage terma computed with the model agrees with that calculated on the published compositions to within 2.2% for kV spectra and 1.5% for MV spectra studied. This new bone model for Monte Carlo dose calculation may be of particular importance for dosimetry of kilovoltage radiation beams as well as for dosimetry of pediatric or animal subjects whose bone composition may differ substantially from that of adult human bones.

  14. The Head Bone's Connected to the Neck Bone: When do Toddlers Represent Their Own Body Topography?

    PubMed Central

    Brownell, Celia A.; Nichols, Sara R.; Svetlova, Margarita; Zerwas, Stephanie; Ramani, Geetha

    2010-01-01

    Developments in very young children's topographic representations of their own bodies were examined. Sixty one 20- and 30-month old children were administered tasks that indexed the ability to locate specific body parts on oneself and knowledge of how one's body parts are spatially organized, as well as body-size knowledge and self-awareness. Age differences in performance emerged for every task. Body-part localization and body spatial configuration knowledge were associated; however, body topography knowledge was not associated with body-size knowledge. Both were related to traditional measures of self-awareness, mediated by their common associations with age. It is concluded that children possess an explicit, if rudimentary, topographic representation of their own body's shape, structure, and size by 30 months of age. PMID:20573105

  15. Somatic maturation and body composition in female healthy adolescents with or without adjustment for body fat

    PubMed Central

    Miranda, Valter Paulo N.; de Faria, Franciane Rocha; de Faria, Eliane Rodrigues; Priore, Silvia Eloiza

    2014-01-01

    Objective: To evaluate the relationship between the stages of somatic maturation and body composition in eutrophic female adolescents with or without excessive body fat. Methods: Cross-sectional study of 118 female adolescents, from 14 to 19 years-old, in Viçosa, Minas Gerais, Southeast Brazil. The adolescents were divided in two groups: Group 1 (G1), eutrophic with adequate body fat percentage, and Group 2 (G2), eutrophic with high body fat percentage. The somatic maturation was assessed by the formula for estimating the Peak Height Velocity (PHV). Results: The PHV had higher average score in G1 adolescents compared to G2 (0.26 versus 0.05; p=0.032). There was an association between G1, G2 and the somatic maturation (p=0.049). The female adolescents before and during PHV presented higher values of fat body BMI (p=0.034) and percentage of central fat (p=0.039) compared to the adolescents after PHV. There was a correspondence between before PHV stage and the excess of body fat (α=0.751). Conclusions: There was an association between somatic maturation and body composition in eutrophic female adolescents. Length, BMI and fat percentage were different among the somatic maturation stages. It is relevant to evaluate the somatic maturation and the changes occurring in the body composition during adolescence in order to better evaluate and manage the nutritional status and the body fat excess. PMID:24676194

  16. Top 10 research questions related to body composition.

    PubMed

    Going, Scott; Lee, Vinson; Blew, Rob; Laddu, Deepika; Hetherington-Rauth, Megan

    2014-03-01

    An understanding of body composition is crucial to understanding human health, disease, and function. Research in body composition has focused on the development of assessment methods, description of normal changes in body composition with growth and development and aging, and the changes that occur in body composition in response to challenges ranging from illness to planned interventions. Each focus is significant, and in a sense, they are interdependent, because technological advances allow more sophisticated questions to be addressed, which in turn drives the development of better methods. Significant advances have been made in each area, although perhaps surprisingly basic questions remain. For example, growth trajectories are often estimated from cross-sectional data, given the resources needed for long-term observational studies, and thus, longitudinal descriptive data are still needed. Along with advances in laboratory methods, development of field methods remains relevant for screening and clinical practice. Despite recognition of wide interindividual differences in intervention response, average outcomes continue to be emphasized. With technological advances, it is now possible to examine genetic along with nongenetic factors that underlie changes in body composition, and these techniques need to be applied in long-term, well-controlled trials. In this article, we review 10 key questions in related areas in which research is needed to continue to advance the field. PMID:24749235

  17. History of the U.S. Navy Body Composition program.

    PubMed

    Peterson, David D

    2015-01-01

    The Navy currently employs maximum weight-for-height tables and body fat prediction equations based on circumference measurements to assess body composition. However, many Sailors believe the current method fails to accurately predict body fat percentage. As a result, the Naval Health Research Center (NHRC) conducted numerous studies in an attempt to improve the accuracy and reliability of the Navy's Body Composition Analysis program. In 2012, NHRC conducted a study that researched the feasibility of using a single abdominal circumference (AC) measurement in lieu of circumference measurements. The Air Force and National Institutes of Health (NIH) employ a single AC measurement taken at the superior border of the iliac crest to assess body composition and all-cause mortality risk. Although the Air Force and NIH use the iliac crest, NHRC is proposing the Navy use the umbilicus as the AC site since it is less invasive and easier to identify. If implemented, the Navy would use cutoff values of 40 in. and 36 in. for males and females, respectively. The purpose of this article is to provide a brief history of the Navy's Body Composition Analysis program as well as propose the transition from circumference measurements to a single AC measurement. PMID:25562863

  18. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men’s and Women’s Bodies

    PubMed Central

    Brierley, Mary-Ellen; Brooks, Kevin R.; Mond, Jonathan; Stevenson, Richard J.

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men’s bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women. PMID:27257677

  19. Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments.

    PubMed

    Sprio, Simone; Guicciardi, Stefano; Dapporto, Massimiliano; Melandri, Cesare; Tampieri, Anna

    2013-01-01

    Bioactive tricalcium phosphate/titania ceramic composites were synthesized by pressureless air sintering of mixed hydroxyapatite and titania (TiO2) powders. The sintering process was optimized to achieve dense ceramic bodies consisting in a bioactive/bioresorbable matrix (β-tricalcium phosphate) reinforced with defined amounts of sub-micron sized titania particles. Extensive chemico-physical and mechanical characterization was carried out on the resulting composites, which displayed values of flexural strength, fracture toughness and elastic modulus in the range or above the typical ranges of values manifested by human cortical bone. It was shown that titania particles provided a toughening effect to the calcium-phosphate matrix and a reinforcement in fracture strength, in comparison with sintered hydroxyapatite bodies characterized by similar relative density. The characteristics of the resulting composites, i.e. bioactivity/bioresorbability and ability of manifesting biomimetic mechanical behavior, are features that can promote processes of bone regeneration in load-bearing sites. Hence, in the perspective of developing porous bone scaffolds with high bioactivity and improved biomechanical behavior, TCP/TiO2 composites with controlled composition can be considered as very promising biomaterials for application in a field of orthopedics where no acceptable clinical solutions still exist. PMID:23122887

  20. Increased Gs Signaling in Osteoblasts Reduces Bone Marrow and Whole-Body Adiposity in Male Mice.

    PubMed

    Cain, Corey J; Valencia, Joel T; Ho, Samantha; Jordan, Kate; Mattingly, Aaron; Morales, Blanca M; Hsiao, Edward C

    2016-04-01

    Bone is increasingly recognized as an endocrine organ that can regulate systemic hormones and metabolism through secreted factors. Although bone loss and increased adiposity appear to be linked clinically, whether conditions of increased bone formation can also change systemic metabolism remains unclear. In this study, we examined how increased osteogenesis affects metabolism by using an engineered G protein-coupled receptor, Rs1, to activate Gs signaling in osteoblastic cells in ColI(2.3)(+)/Rs1(+) transgenic mice. We previously showed that these mice have dramatically increased bone formation resembling fibrous dysplasia of the bone. We found that total body fat was significantly reduced starting at 3 weeks of age. Furthermore, ColI(2.3)(+)/Rs1(+) mice showed reduced O2 consumption and respiratory quotient measures without effects on food intake and energy expenditure. The mice had significantly decreased serum triacylglycerides, leptin, and adiponectin. Resting glucose and insulin levels were unchanged; however, glucose and insulin tolerance tests revealed increased sensitivity to insulin. The mice showed resistance to fat accumulation from a high-fat diet. Furthermore, ColI(2.3)(+)/Rs1(+) mouse bones had dramatically reduced mature adipocyte differentiation, increased Wingless/Int-1 (Wnt) signaling, and higher osteoblastic glucose utilization than controls. These findings suggest that osteoblasts can influence both local and peripheral adiposity in conditions of increased bone formation and suggest a role for osteoblasts in the regulation of whole-body adiposity and metabolic homeostasis. PMID:26901092

  1. Body Composition in Individuals with Asymptomatic Osteoarthritis of the Knee.

    PubMed

    Ho-Pham, Lan T; Lai, Thai Q; Mai, Linh D; Doan, Minh C; Nguyen, Tuan V

    2016-02-01

    Greater body mass index (BMI) is associated with a greater risk of osteoarthritis (OA). This study sought to investigate whether the association is mediated by fat mass or lean mass. The study involved 170 men and 488 women aged between 20 and 90 (average age: 55) who were randomly recruited from Ho Chi Minh City, Vietnam. The presence of knee OA was radiographically diagnosed based on the Kellgren-Lawrence criteria. Lean mass (LM) and fat mass (FM) were obtained from the DXA whole body scan (Hologic QDR-4500). The relationship between OA, LM, and FM was analyzed by a series of multiple linear regression models which take into account the effects of gender and age. As expected, men and women with knee OA were older than those without OA (65 vs 51 year in men, and 64 vs 52 year in women). After adjusting for age, OA was associated with greater FM and percent body fat (PBF), but the association was only observed in women, not in men. There was no statistically significant difference in LM between OA and non-OA individuals. Moreover, after adjusting for age and BMI or PBF, bone density in OA patients was not significantly different from non-OA individuals. Women with OA of the knee have greater fat mass than non-OA individuals, and that there is no significant difference in bone density between OA and non-OA individuals. Thus, the association between body mass index and OA is mainly mediated by fat mass. PMID:26590808

  2. Bone engineering by phosphorylated-pullulan and β-TCP composite.

    PubMed

    Takahata, Tomohiro; Okihara, Takumi; Yoshida, Yasuhiro; Yoshihara, Kumiko; Shiozaki, Yasuyuki; Yoshida, Aki; Yamane, Kentaro; Watanabe, Noriyuki; Yoshimura, Masahide; Nakamura, Mariko; Irie, Masao; Van Meerbeek, Bart; Tanaka, Masato; Ozaki, Toshifumi; Matsukawa, Akihiro

    2015-12-01

    A multifunctional biomaterial with the capacity bond to hard tissues, such as bones and teeth, is a real need for medical and dental applications in tissue engineering and regenerative medicine. Recently, we created phosphorylated-pullulan (PPL), capable of binding to hydroxyapatite in bones and teeth. In the present study, we employed PPL as a novel biocompatible material for bone engineering. First, an in vitro evaluation of the mechanical properties of PPL demonstrated both PPL and PPL/β-TCP composites have higher shear bond strength than materials in current clinical use, including polymethylmethacrylate (PMMA) cement and α-tricalcium phosphate (TCP) cement, Biopex-R. Further, the compressive strength of PPL/β-TCP composite was significantly higher than Biopex-R. Next, in vivo osteoconductivity of PPL/β-TCP composite was investigated in a murine intramedular injection model. Bone formation was observed 5 weeks after injection of PPL/β-TCP composite, which was even more evident at 8 weeks; whereas, no bone formation was detected after injection of PPL alone. We then applied PPL/β-TCP composite to a rabbit ulnar bone defect model and observed bone formation comparable to that induced by Biopex-R. Implantation of PPL/β-TCP composite induced new bone formation at 4 weeks, which was remarkably evident at 8 weeks. In contrast, Biopex-R remained isolated from the surrounding bone at 8 weeks. In a pig vertebral bone defect model, defects treated with PPL/β-TCP composite were almost completely replaced by new bone; whereas, PPL alone failed to induce bone formation. Collectively, our results suggest PPL/β-TCP composite may be useful for bone engineering. PMID:26586655

  3. Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles.

    PubMed

    Miola, Marta; Fucale, Giacomo; Maina, Giovanni; Verné, Enrica

    2015-09-01

    A bioactive silica-based glass powder (SBA2) was doped with silver (Ag(+)) ions by means of an ion-exchange process. Scanning electron microscopy (SEM), energy dispersion spectrometry (EDS) and x-ray diffraction (XRD) evidenced that the glass powder was enriched with Ag(+) ions. However, a small amount of Ag2CO3 precipitated with increased Ag concentrations in the exchange solution. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Ag-SBA2 towards Staphylococcus aureus were also evaluated and were respectively 0.05 mg ml(-1) and 0.2 mg ml(-1). Subsequently, Ag-SBA2 glass was used as filler (30%wt) in a commercial formulation of bone cement (Simplex(™) P) in order to impart both antibacterial and bioactive properties. The composite bone cement was investigated in terms of morphology (using SEM) and composition (using EDS); the glass powder was well dispersed and exposed on the cement surface. Bioactivity tests in simulated body fluid (SBF) evidenced the precipitation of hydroxyapatite on sample surfaces. Composite cement demonstrated antibacterial properties and a compressive strength comparable to the commercial formulation. PMID:26481324

  4. Two-body wear resistance of some indirect composite resins.

    PubMed

    Savabi, Omid; Nejatidanesh, Farahnaz; Shabanian, Mitra; Anbari, Zahra

    2011-06-01

    The aim of this study was to evaluate two-body wear of five indirect composites and compare them with enamel. Signum, belleGlass HP, SR Adoro, Dialog, GC Gradia and enamel were formed into cylinders (n = 10). Two-body abrasive wear rates were determined using a porcelain disk and a pin on disk apparatus. The height and weight loss of the specimens were measured by stereomicroscope and digital scale. The data were subjected to analysis of variance and Tukey HSD tests to determine significant differences (alpha = 0.05). GC Gradia showed significantly less wear resistance than the other materials. Enamel was more resistant than any of the tested composites. Within the limitations of this study it can be concluded that the type of resin, filler size and method of polymerization could have affect the two-body abrasion resistance of indirect composites. PMID:21780731

  5. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls

    PubMed Central

    L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista

    2013-01-01

    Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic black girls (n=59) ages 4–10 years. Femoral BMAT volume was measured by magnetic resonance imaging, BMC and body fat by dual-energy X-ray absorptiometry. Metabolic parameters were assessed in the fasted state. Total fat and BMC were positively associated with BMAT; however, simultaneous inclusion of BMC and body fat in the statistical model attenuated the association between BMC and BMAT. Differences in BMAT volume were observed, non-Hispanic black girls exhibiting marginally greater BMAT at age eight (P=0.05) and white girls exhibiting greater BMAT at age ten (P<0.001). Metabolic parameters conferred differential impact by race, such that, a positive association for BMAT and leptin (P=0.02) and adiponectin (P=0.002) in white girls while BMAT and insulin were inversely related in non-Hispanic black girls (P=0.008). Our findings revealed a positive relationship between BMAT, body fat and BMC, although body fat, respective to leptin, contributed partly to the relationship between BMAT and BMC. Despite large differences in total fat between non-Hispanic black and white, the relationship between BMAT and BMC was similar to white girls. However, this relationship appeared to be impacted through different mechanisms according to race. PMID:23951544

  6. Bioactive ceramic-reinforced composites for bone augmentation

    PubMed Central

    Tanner, K. E.

    2010-01-01

    Biomaterials have been used to repair the human body for millennia, but it is only since the 1970s that man-made composites have been used. Hydroxyapatite (HA)-reinforced polyethylene (PE) is the first of the ‘second-generation’ biomaterials that have been developed to be bioactive rather than bioinert. The mechanical properties have been characterized using quasi-static, fatigue, creep and fracture toughness testing, and these studies have allowed optimization of the production method. The in vitro and in vivo biological properties have been investigated with a range of filler content and have shown that the presence of sufficient bioactive filler leads to a bioactive composite. Finally, the material has been applied clinically, initially in the orbital floor and later in the middle ear. From this initial combination of HA in PE other bioactive ceramic polymer composites have been developed. PMID:20591846

  7. Relationships among Fitness, Body Composition, and Physical Activity

    PubMed Central

    LOHMAN, TIMOTHY G.; RING, KIMBERLY; PFEIFFER, KARIN; CAMHI, SARAH; ARREDONDO, ELVA; PRATT, CHARLOTTE; PATE, RUSS; WEBBER, LARRY S.

    2008-01-01

    Purpose This study was designed to examine the associations of physical activity and body composition with cardiorespiratory fitness in eighth grade girls. Methods A random sample of 1440 eighth grade girls at 36 schools participated in this cross-sectional investigation, which represented an ethnically and geographically diverse group. Cardiorespiratory fitness was assessed using a modified physical work capacity test on a cycle ergometer that predicted workload at a heart rate of 170 beats·min−1. Physical activity was assessed over 6 d in each girl using an accelerometer and body composition was estimated from body mass index and triceps skinfolds using a previously validated equation. Pearson correlations and multiple regression analyses were used to determine the relationships among fitness, physical activity, and body composition. Results Significant linear relationships among cardiorespiratory fitness, body composition, and physical activity were found. The combination of fat and fat-free mass along with racial group and a race by fat-free-mass interaction accounted for 18% (R2) of the variation in physical fitness. Adding moderate-to-vigorous physical activity to the regression model increased the R2 to 22%. Black girls had somewhat lower fitness levels (P < 0.05) especially at higher levels of fat and fat-free mass than other racial/ethnic groups. Conclusions Physical activity, fat-free mass, and the interaction between fat-free mass and racial group are significantly associated with cardiorespiratory fitness in adolescent girls. PMID:18460987

  8. Study of bone mineral metabolism. [during body immobilization, bed rest, and space flight

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    The use of Sr-85 as an indicator of the skeletal location and relative amount of bone demineralization which occurs during immobilization of the body or body parts, bed-rest or space flight was studied. The bone mineral replacement which occurs after immobilization was measured rather than the bone loss which occurs during immobilization. In a study with two adult beagle dogs, the Sr-85 uptake in a leg which had been immobilized for two months was 400 percent higher than the uptake in the legs in regular use. This increased uptake probably resulted from only a few percent loss in bone mineral and indicates that losses less than one percent can be easily detected and located. The sensitivity, simplicity, and low radiation dose associated with the use of this method indicates that it should receive consideration for use on humans in bed-rest and space flight studies. Methods for measuring changes in total body nitrogen and in assisting the Johnson Space Center in calibrating a whole body counter for total body potassium measurements were also investigated.

  9. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    NASA Technical Reports Server (NTRS)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  10. Body composition and risk for metabolic alterations in female adolescents

    PubMed Central

    de Faria, Eliane Rodrigues; Gontijo, Cristiana Araújo; Franceschini, Sylvia do Carmo C.; Peluzio, Maria do Carmo G.; Priore, Silvia Eloiza

    2014-01-01

    OBJECTIVE: To study anthropometrical and body composition variables as predictors of risk for metabolic alterations and metabolic syndrome in female adolescents. METHODS: Biochemical, clinical and corporal composition data of 100 adolescents from 14 to 17 years old, who attended public schools in Viçosa, Southeastern Brazil, were collected. RESULTS: Regarding nutritional status, 83, 11 and 6% showed eutrophia, overweight/obesity and low weight, respectively, and 61% presented high body fat percent. Total cholesterol presented the highest percentage of inadequacy (57%), followed by high-density lipoprotein (HDL - 50%), low-density lipoprotein (LDL - 47%) and triacylglycerol (22%). Inadequacy was observed in 11, 9, 3 and 4% in relation to insulin resistance, fasting insulin, blood pressure and glycemia, respectively. The highest values of the fasting insulin and the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) were verified at the highest quartiles of body mass index (BMI), waist perimeter, waist-to-height ratio and body fat percent. Body mass index, waist perimeter, and waist-to-height ratio were the better predictors for high levels of HOMA-IR, blood glucose and fasting insulin. Waist-to-hip ratio was associated to arterial hypertension diagnosis. All body composition variables were effective in metabolic syndrome diagnosis. CONCLUSIONS: Waist perimeter, BMI and waist-to-height ratio showed to be good predictors for metabolic alterations in female adolescents and then should be used together for the nutritional assessment in this age range. PMID:25119752

  11. Body composition analyses in normal weight obese women.

    PubMed

    Di Renzo, L; Del Gobbo, V; Bigioni, M; Premrov, M G; Cianci, R; De Lorenzo, A

    2006-01-01

    The purpose of this study was to identify new indexes of body composition that characterize the normal weight obese (NWO) women. We measured body composition by dual energy x-ray absorptiometry (DXA) and resting metabolic rate (RMR) by indirect calorimetry in a cohort of seventy-five healthy Italian women, subdivided into three groups (nonobese/controls, NWO, preobese-obese women). Despite a normal body mass index (BMI), the NWO women have a higher body fat mass percentage (FAT %) (38.99 +/- 6.03) associated to a significant (p = 0.02) lower amount of lean mass of legs (12.24 +/- 1.31) and lean mass of left leg (6.07 +/- 0.64) with respect to the control group. The NWO group showed a significant (p = 0.043) lower RMR (1201.25 +/- 349.02) in comparison with nonobese and preobese-obese women. To classify NWO individuals among general population, we identified three significant body composition indexes: abdominal index, leg index and trunk index. The NWO women showed significant increased value in the three indexes (p < 0.001). Our results suggest that, despite a normal BMI, the NWO women displayed a cluster of anthropometric characteristics (body fat mass percentage, leg indexes) not different to obese women ones. An appropriate diet-therapy and physical activity may be protecting NWO individuals from diabetes and cardiovascular diseases associated to preobese-obese women. PMID:16910350

  12. Effect of Body Composition Methodology on Heritability Estimation of Body Fatness

    PubMed Central

    Elder, Sonya J.; Roberts, Susan B.; McCrory, Megan A.; Das, Sai Krupa; Fuss, Paul J.; Pittas, Anastassios G.; Greenberg, Andrew S.; Heymsfield, Steven B.; Dawson-Hughes, Bess; Bouchard, Thomas J.; Saltzman, Edward; Neale, Michael C.

    2014-01-01

    Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male and female monozygotic twin pairs reared apart or together. Body composition was assessed by six methods – body mass index (BMI), dual energy x-ray absorptiometry (DXA), underwater weighing (UWW), total body water (TBW), bioelectric impedance (BIA), and skinfold thickness. Body fatness was expressed as percent body fat, fat mass, and fat mass/height2 to assess the effect of body fatness expression on heritability estimates. Model-fitting multivariate analyses were used to assess the genetic and environmental components of variance. Mean BMI was 24.5 kg/m2 (range of 17.8–43.4 kg/m2). There was a significant effect of body composition methodology (p<0.001) on heritability estimates, with UWW giving the highest estimate (69%) and BIA giving the lowest estimate (47%) for fat mass/height2. Expression of body fatness as percent body fat resulted in significantly higher heritability estimates (on average 10.3% higher) compared to expression as fat mass/height2 (p=0.015). DXA and TBW methods expressing body fatness as fat mass/height2 gave the least biased heritability assessments, based on the small contribution of specific genetic factors to their genetic variance. A model combining DXA and TBW methods resulted in a relatively low FM/ht2 heritability estimate of 60%, and significant contributions of common and unique environmental factors (22% and 18%, respectively). The body fatness heritability estimate of 60% indicates a smaller contribution of genetic variance to total variance than many previous studies using less powerful research designs have indicated. The results also highlight the importance of environmental factors and possibly genotype by environmental

  13. The Distribution of the Magnetic Field in the Spine Depends on the Composition of Bone Marrow

    NASA Astrophysics Data System (ADS)

    Schick, F.

    1995-07-01

    Although the composition of bone marrow with hemopoietic cells, fat cells, and extracellular fluid can be roughly assessed by standard MR-imaging techniques and especially water and lipid-selective chemical-shift-imaging methods, a new approach to the characterization of the magnetic properties of marrow was performed by special field-mapping techniques. The distribution of the magnetic field inside and outside vertebral bodies containing paramagnetic substances was systematically studied for phantoms and by measurements in vivo. Nineteen healthy volunteers and 26 patients with alterations of the bone marrow due to hematologic diseases were examined. The amount of paramagnetic substances in the marrow was estimated by measuring steps of Larmor frequency of the water resonances at the transition between vertebral bodies and adjacent intervertebral disks. These frequency steps were exhibited by MAGSUS imaging on a 1.5 Tesla whole-body imager. Additional volume-localized H-1 spectroscopy allowed a more quantitative assessment of the spectral components. The measured frequency steps of the water resonances ranged between 0 and 26 Hz for the healthy volunteers examined. In contrast, patients with pathologically altered marrow and high amount of paramagnetic substances revealed frequency steps of up to 85 Hz. The frequency steps in 8 patients after bone marrow transplantation (BMT) with slow reconstitution (mean 48.9 Hz, standard deviation (s.d.) 21.7 Hz) were significantly (p < 0.001) higher than in normal volunteers. Seven BMT patients with good reconstitution (frequency steps: mean 16.7 Hz, s.d. 13.9 Hz) were not clearly different from the healthy subjects. Six patients with acute leukemia showed significantly (p < 0.01) increasing frequency steps during initial cytotoxic treatment: The frequency steps increased from a mean of 4.7 Hz (s.d, 2.7 Hz) before treatment to a mean of 30.2 Hz (s.d. 14.6 Hz) after a few months of therapy.

  14. Fractionated sublethal total body irradiation and donor bone marrow infusion for induction of specific allograft tolerance

    SciTech Connect

    Pierce, G.E.; Kimler, B.F.; Thomas, J.H.; Watts, L.M.; Kinnaman, M.L.

    1981-03-01

    Fractionated total lymphoid irradiation (FT-lymphoid-I) plus donor bone marrow (BM) can induce tolerance to skin allografts. In the present study, fractionated total body irradiation (FT-body-I) was studied as an alternative to FT-lymphoid-I. FT-body-I produces less pulmonary and gastrointestinal injury than does single exposure total body irradiation, but because of the decreased capacity of lymphoid tissues to recover from the effects of irradiation between fractions, the effect of FT-body-I on lymphoid cells, when delivered within 24 h, is approximately the same as an equivalent single exposure of total body irradiation. Therefore, FT-body-I, like FT-lymphoid-I, has some selectivity for lymphoid tissues and has the advantage that it can be delivered within the time constraints of ex vivo organ preservation.

  15. Bayesian Analyses of Multiple Epistatic QTL Models for Body Weight and Body Composition in Mice

    PubMed Central

    Yi, Nengjun; Zinniel, Denise K.; Kim, Kyoungmi; Eisen, Eugene J.; Bartolucci, Alfred; Allison, David B.; Pomp, Daniel

    2016-01-01

    Summary To comprehensively investigate the genetic architecture of growth and obesity, we performed Bayesian analyses of multiple epistatic quantitative trait locus (QTL) models for body weights at five ages (12 days, 3, 6, 9 and 12 weeks) and body composition traits (weights of two fat pads and five organs) in mice produced from a cross of the F1 between M16i (selected for rapid growth rate) and CAST/Ei (wild-derived strain of small and lean mice) back to M16i. Bayesian model selection revealed a temporally regulated network of multiple QTL for body weight, involving both strong main effects and epistatic effects. No QTL had strong support for both early and late growth, although overlapping combinations of main and epistatic effects were observed at adjacent ages. Most main effects and epistatic interactions had an opposite effect on early and late growth. The contribution of epistasis was more pronounced for body weights at older ages. Body composition traits were also influenced by an interacting network of multiple QTL. Several main and epistatic effects were shared by the body composition and body weight traits, suggesting that pleiotropy plays an important role in growth and obesity. PMID:16545150

  16. Seasonal DXA-measured body composition changes in professional male soccer players.

    PubMed

    Milanese, Chiara; Cavedon, Valentina; Corradini, Giuliano; De Vita, Francesco; Zancanaro, Carlo

    2015-01-01

    This work investigated changes in body composition of professional soccer players attending an Italian Serie A club across the competitive season; it is original insofar as body composition was assessed at multiple time points across the season using the accurate three-compartment model provided by Dual-Energy X-Ray Absorptiometry (DXA). Thirty-one players (4 goalkeepers, 13 defenders, 8 midfielders, 6 forwards) underwent DXA and anthropometry at pre-, mid- and end-season. One operator measured whole body and regional body composition (fat mass, FM; fat-free soft tissue mass, FFSTM; mineral mass). Two players were excluded from analysis due to serious injury. Data were analysed with repeated measures ANOVA; factors were season time point and playing position. Results showed that whole-body FM and %FM significantly (P < 0.001) decrease at mid-season (-11.9%; -1.3%, respectively) and end-season (-8.3%; -0.8%, respectively) whereas FFSTM significantly (P < 0.001) increase at mid-season (+1.3%) and end-season (+1.5%). Limited, but significant changes took place in bone mineral content. Some regional (upper and lower limbs, trunk) differences in the pattern of body composition changes across the season were also found. Changes were similar for all playing positions. It was concluded that professional soccer players undergo changes in their FM, FFSTM, and mineral mass across the season with some regional variations, irrespective of the playing position. Changes are mostly positive at mid-season, possibly due to difference in training between the first and second phase of the season. PMID:25773172

  17. Chemical composition of whole body and carcass of Bos indicus and tropically adapted Bos taurus breeds.

    PubMed

    Bonilha, S F M; Tedeschi, L O; Packer, I U; Razook, A G; Nardon, R F; Figueiredo, L A; Alleoni, G F

    2011-09-01

    Relationships between the chemical composition of the 9th- to 11th-rib section and the chemical composition of the carcass and empty body were evaluated for Bos indicus (108 Nellore and 36 Guzerah; GuS) and tropically adapted Bos taurus (56 Caracu; CaS) bulls, averaging 20 to 24 mo of age at slaughter. Nellore cattle were represented by 56 animals from the selected herd (NeS) and 52 animals from the control herd (NeC). The CaS and GuS bulls were from selected herds. Selected herds were based on 20 yr of selection for postweaning BW. Carcass composition was obtained after grinding, homogenizing, sampling, and analyzing soft tissue and bones. Similarly, empty body composition was obtained after grinding, homogenizing, sampling, analyzing, and combining blood, hide, head + feet, viscera, and carcass. Bulls were separated into 2 groups. Group 1 was composed of 36 NeS, 36 NeC, 36 CaS, and 36 GuS bulls and had water, ether extract (EE), protein, and ash chemically determined in the 9th- to 11th-rib section and in the carcass. Group 2 was composed of 20 NeS, 16 NeC, and 20 CaS bulls and water, EE, protein, and ash were determined in the 9th- to 11th-rib section, carcass, and empty body. Linear regressions were developed between the carcass and the 9th- to 11th-rib section compositions for group 1 and between carcass and empty body compositions for group 2. The 9th- to 11th-rib section percentages of water (RWt) and EE (RF) predicted the percentages of carcass water (CWt) and carcass fat (CF) with high precision: CWt, % = 29.0806 + 0.4873 × RWt, % (r(2) = 0.813, SE = 1.06) and CF, % = 10.4037 + 0.5179 × RF, % (r(2) = 0.863, SE = 1.26), respectively. Linear regressions between percentage of CWt and CF and empty body water (EBWt) and empty body fat (EBF) were also predicted with high precision: EBWt, % = -9.6821 + 1.1626 × CWt, % (r(2) = 0.878, SE = 1.43) and EBF, % = 0.3739 + 1.0386 × CF, % (r(2) = 0.982, SE = 0.65), respectively. Chemical composition of the 9th- to 11

  18. Study of body composition in small animals by a multifrequency impedancemeter

    NASA Astrophysics Data System (ADS)

    Ribbe, E.; Khider, N.; Moreno, M. V.

    2010-04-01

    Bioimpedance is essentially used today to study the body composition in the human body but not really in small animals. The aim of this paper is to develop a model for body composition in rats to help pharmaceutical labs assessing effects of medicine on rats. We propose a non invasive, rapid and scientific method. With a multifrequency impedancemeter, Z-Métrix® (BioparHom© Company France), resistances and reactances are measured at 55 frequencies for a population of 40 rats (males and females). With our model, derived from Cole-Cole model, resistances of extracellular (Re) and total body (Rinf) compartment are extrapolated. Three methods were applied: posterior to posterior leg, anterior to posterior leg on the left and on the right side. Measurements by CT imaging were performed on the anesthetized population to determine Fat Mass (FM), Lean Body Mass (LBM) and Bone Mineral Content (BMC), as our reference measurements. With electrical data, age, sex and weight, equations are created to calculate FM, LBM and BMC with the three methods. Graphs of correlation, between tissue masses calculated by bioimpedance and obtained with scanner, indicate that measurements with posterior to posterior leg are better. Moreover, there is no significantly difference between tissue masses measured by bioimpedance and with the scanner.

  19. Physique and Body Composition in Soccer Players across Adolescence

    PubMed Central

    Nikolaidis, Pantelis Theodoros; Vassilios Karydis, Nikos

    2011-01-01

    Purpose Although the contribution of physique and body composition in soccer performance was recognized, these parameters of physical fitness were not well-studied in adolescent players. Aim of this study was to investigate physique and body composition across adolescence. Methods Male adolescents (N=297 aged 12.01–20.98 y), classified into nine one-year age-groups, child (control group, N=16 aged 7.34–11.97 y) and adult players (control group, N=29 aged 21.01–31.59 y), all members of competitive soccer clubs, performed a series of anthropometric measures (body mass, height, skinfolds, circumferences and girths), from which body mass index (BMI), percentage of body fat (BF%), fat mass (FM), fat free mass (FFM) and somatotype (Heath-Carter method) were calculated. Results Age had a positive association with FM (r=0.2, P<0.001) and FFM (r=0.68, P<0.001), and a negative association with BF (r=−0.12, P=0.047). Somatotype components changed across adolescence as well; age was linked to endomorphy (r=−0.17, P=0.005), mesomorphy (r=0.14, P=0.019) and ectomorphy (r=−0.17, P=0.004). Compared with age-matched general population, participants exhibited equal body mass, higher stature, lower body mass index and lower BF. Conclusion During adolescence, soccer players presented significant differences in terms of body composition and physique. Thus, these findings could be employed by coaches and fitness trainers engaged in soccer training in the context of physical fitness assessment and talent identification. PMID:22375222

  20. Second quantization techniques in the scattering of nonidentical composite bodies

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.

    1986-01-01

    Second quantization techniques for describing elastic and inelastic interactions between nonidentical composite bodies are presented and are applied to nucleus-nucleus collisions involving ground-state and one-particle-one-hole excitations. Evaluations of the resultant collision matrix elements are made through use of Wick's theorem.

  1. Design for manufacturability evaluation: Composite NIF Pockel Cell body

    SciTech Connect

    Jensen, W.A.; Spellman, G.P.

    1994-04-01

    A survey of composite materials and processes for the NIF Optical Switch Body is described. Mechanical and physical criterion set upon the part are used as guidelines for the selection of materials and processes for manufacturing. Benefits, costs, and risks associated with selected processes, as well as a recommendation for prototype fabrication is presented.

  2. Body Composition Reference Data for Exclusively Breast-Fed Infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited data are available on the body composition (BC) of infants. BC reference data are needed to estimate energy and nutrient requirements; to evaluate normal growth and nutritional status of pediatric populations; for clinical research studies of the relationship between early diet and risk of c...

  3. Assessment and Interpretation of Body Composition in Physical Education

    ERIC Educational Resources Information Center

    Vehrs, Pat; Hager, Ron

    2006-01-01

    The physical educator's role is evolving into that of a teacher who is well educated in the areas of teaching, skill acquisition and development, motor learning, exercise physiology, physical conditioning, weight management, health, and lifestyle management. In an era when childhood obesity is at an all-time high, body composition can be one…

  4. Effect of chronic centrifugation on body composition in the rat.

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Bull, L. S.; Oyama, J.

    1972-01-01

    Two groups of adult female rats were chronically centrifuged for 60 days (2.76 G, 4.15 G, controls at 1.00 G). Live weights of centrifugal rats decreased about 20 g (6%) per Delta 1 G above control. This weight loss comprised reductions in both body fat and fat-free body weight (FFBW) as determined by body-composition studies on eight rats per group killed at the end of centrifugation. Of nine components constituting the FFBW, only skeletal muscle, liver, and heart changed significantly in weight. Chemical composition showed reductions (compared with controls) in the fat fraction of most components and increases in the water fraction of liver and gut. Identical measurements were made on the remaining eight rats per group killed 43 days after return to 1 G. Neither centrifuged group had reached the control body-weight level at this time. No statistically significant effect of previous G level was found in any of the body-composition parameters. The possible involvment of physiological regulation was considered.

  5. Antibiotic-free composite bone cements with antibacterial and bioactive properties. A preliminary study.

    PubMed

    Miola, Marta; Bruno, Matteo; Maina, Giovanni; Fucale, Giacomo; Lucchetta, Giovanni; Vernè, Enrica

    2014-10-01

    Two bone cements (Palacos R® and Palacos LV®) based on polymethylmethacrylate (PMMA), clinically used in several cemented prosthetic devices, have been enriched with silver containing bioactive glass powders and compared with the plain commercial ones. The obtained composite cements have been subjected to a preliminary characterization by means of morphological and compositional analyses, compression mechanical tests, bioactivity test (by soaking into simulated body fluids), leaching tests and in vitro antibacterial test (count of colonies forming units, McFarland index evaluation, inhibition zone evaluation). The glass powders appeared uniformly dispersed inside the PMMA matrix and good mechanical properties (in compression) have been reached. The composite cements showed a bioactive behavior (since they developed hydroxyapatite on their surface after soaking in simulated body fluid) and a good antibacterial performance. The release of silver ions, which is the principal reason of antibacterial properties, is mainly reached after the first hours of contact with the leaching solution, as it is expected for a reasonable prevention of bacterial colonization during in vivo applications. PMID:25175189

  6. Longitudinal Body Composition Changes in NCAA Division I College Football Players

    PubMed Central

    Trexler, Eric T.; Smith-Ryan, Abbie E.; Mann, J. Bryan; Ivey, Pat A.; Hirsch, Katie R.; Mock, Meredith G.

    2016-01-01

    Many athletes seek to optimize body composition to fit the physical demands of their sport. American football requires a unique combination of size, speed, and power. The purpose of the current study was to evaluate longitudinal changes in body composition in Division I collegiate football players. For 57 players (Mean ± SD; Age=19.5 ± 0.9 yrs; Height=186.9 ± 5.7 cm; Weight=107.7 ± 19.1 kg), body composition was assessed via dual-energy x-ray absorptiometry in the off-season (March-Pre), end of off-season (May), mid-July (Pre-Season), and the following March (March-Post). Outcome variables included weight, body fat percentage (BF%), fat mass (FM), lean mass (LM), android (AND) and gynoid (GYN) fat, bone mineral content (BMC), and bone density (BMD). For a subset of athletes (n=13 out of 57), changes over a 4-year playing career were evaluated with measurements taken every March. Throughout a single year, favorable changes were observed for BF% (Δ=−1.3 ± 2.5%), LM (Δ=2.8 ± 2.8 kg), GYN (Δ=−1.5 ± 3.0%), BMC (Δ=0.06 ± 0.14 kg), and BMD (Δ=0.015 ± 0.027g·cm−2; all p<0.05). Across four years, weight increased significantly (Δ=6.6 ± 4.1kg), and favorable changes were observed for LM (Δ=4.3 ± 3.0 kg), BMC (Δ=0.18 ± 0.17 kg), and BMD (Δ=0.033 ± 0.039 g·cm−2; all p<0.05). Similar patterns in body composition changes were observed for linemen and non-linemen. Results indicate that well-trained collegiate football players at high levels of competition can achieve favorable changes in body composition, even late in the career, which may confer benefits for performance and injury prevention. PMID:11834106

  7. Association of Body Weight and Body Mass Index with Bone Mineral Density in Women and Men from Kosovo

    PubMed Central

    Rexhepi, Sylejman; Bahtiri, Elton; Rexhepi, Mjellma; Sahatciu-Meka, Vjollca; Rexhepi, Blerta

    2015-01-01

    Background and objective: Body weight and body mass index (BMI) are considered potentially modifiable determinants of bone mass. Therefore, the aim of this study was to explore the association between body weight and body mass index (BMI) with total hip and lumbar spine bone mineral density (BMD). Methods: This cross-sectional study included a population of 100 women and 32 men from Kosovo into three BMI groups. All the study subjects underwent dual-energy X-ray absorptiometry (DXA) measurements. Results: Total hip BMD levels of obese menopausal and premenopausal women and men were significantly higher compared to overweight or normal weight subjects, while lumbar spine BMD levels of only menopausal women and men were higher among obese subjects. Age-adjusted linear regression analysis showed that BMI is a significant independent associate of lumbar spine and total hip BMD in menopausal women and men. Conclusion: Despite positive association between BMI and lumbar spine and total hip BMD in menopausal women, presence of more obese and osteoporotic subjects among menopausal women represent a population at risk for fractures because of poor balance and frequent falls; therefore, both obesity and osteoporosis prevention efforts should begin early on in life. PMID:26543419

  8. Comparison of total and regional body composition in adolescent patients with anorexia nervosa and pair-matched controls.

    PubMed

    Schneider, P; Biko, J; Schlamp, D; Trott, G E; Badura, F; Warnke, A; Reiners, C

    1998-12-01

    Body composition in 31 adolescent girls suffering from anorexia nervosa (AN) was measured at the time of hospitalization in order to assess the muscle/bone relationship as a potential source of the development of osteopenia. Differences in lean tissue, fat and bone mass in total body, weight bearing and non weight bearing limbs were estimated in AN and pair-matched controls aged 14.2 +/- 1.8 years (range: 9-17 years). Further, it was investigated if bone mineral density (BMD) better reflects the muscle/bone relationship than bone mineral content (BMC). At the distal radius parameters measured by peripheral quantitative computed tomography (pQCT) were used to estimate the association of volumetric bone density to bone strength and lean body mass. The correspondence to the same and different body regions was assessed. Total lean mass in the controls was closely related to total body bone mineral content (TBBMC), as was lean tissue and bone mass of the limb subregions (r = 0.82 to 0.93). In contrast, the correlation was significantly lower in AN (r = 0.33 to 0.77). In the controls, the pQCT-derived bone strength was correlated with muscle mass of the forearm (r = 0.78, p < 0.001), but only moderately in AN (r = 0.47, n.s.). Regional lean tissue was 11-20% and fat mass was 56-66% lower in AN (p < 0.01). After adjustment for height, TBBMC was different at p = 0.01. Within the limbs subregions, BMC (but not BMD) was different in both groups only in the upper arm and the thigh. BMC reflected the bone/muscle relationship better than BMD. Intra- and between group regressions gave no significant differences between weight bearing and non weight bearing limbs. In conclusion, the assessment of musculoskeletal factors may be a useful tool to develop individual preventive measures for therapy after recovery of our patients. PMID:10728169

  9. Process for preparing ceramic-metal composite bodies

    SciTech Connect

    Breslin, M.C.

    1993-05-25

    A process for forming an aluminum/ceramic composite is described comprising the non-vapor phase oxidation of molten aluminum achieved by contacting the molten aluminum to a sacrificial ceramic body, wherein the molten aluminum is at a temperature at least 300 degrees above the melting point of aluminum but below the softening point of the ceramic body, wherein the sacrificial ceramic body is a material selected from the group consisting of silica, quartz, sand, wollastonite, mullite, silicate glass, fluorosilicate glass, fluoroborosilicate glass, aluminosilicate glass, calcium silicate glass, calcium aluminum silicate glass, calcium aluminum fluorosilicate glass, titanium dioxide, titanium carbide, zirconium dioxide, magnesium oxide, silicon nitride, silicon carbide, zirconium carbide, zirconium nitride, metal sulfides, and mixtures thereof, whereby the sacrificial ceramic body at least partially oxidizes the aluminum to form an aluminum oxide ceramic component, and wherein molten aluminum flows into the aluminum oxide ceramic component, and wherein the sacrificial ceramic body is at least partially reduced, whereby an aluminum/ceramic composite is produced possessing a near net shape relative to the shape of the sacrificial ceramic body.

  10. Synthesis, characterization, and mineralization of polyamide-6/calcium lactate composite nanofibers for bone tissue engineering.

    PubMed

    Pant, Hem Raj; Risal, Prabodh; Park, Chan Hee; Tijing, Leonard D; Jeong, Yeon Jun; Kim, Cheol Sang

    2013-02-01

    Polyamide-6 nanofibers containing calcium lactate (CL) on their surface were prepared by neutralization of lactic acid (LA) in core-shell structured polyamide-6/LA electrospun fibers. First, simple blending of LA with polyamide-6 solution was used for electrospinning which interestingly formed a thin LA layer around polyamide-6 nanofibers (core-shell structure) and then subsequent conversion of this LA into calcium lactate via neutralization using calcium base. FE-SEM and TEM images revealed that plasticizer capacity of LA led the formation of point-bonded structure due to the formation of shell layer of LA and core of polyamide-6. The bone formation ability of polyamide-6/calcium lactate composite fibers was evaluated by incubating in biomimetic simulated body fluid (SBF). The SBF incubation test confirmed the faster deposition of large amount of calcium phosphate around the composite polyamide-6/calcium lactate fibers compared to pristine polyamide-6. This study demonstrated a simple post electrospinning calcium compound coating technique of polymeric nanofibers for enhancing the bone biocompatibility of polyamide-6 fibers. PMID:23006560