Science.gov

Sample records for bone cell cultures

  1. The Effect of Spaceflight on Bone Cell Cultures

    NASA Technical Reports Server (NTRS)

    Landis, William J.

    1999-01-01

    Understanding the response of bone to mechanical loading (unloading) is extremely important in defining the means of adaptation of the body to a variety of environmental conditions such as during heightened physical activity or in extended explorations of space or the sea floor. The mechanisms of the adaptive response of bone are not well defined, but undoubtedly they involve changes occurring at the cellular level of bone structure. This proposal has intended to examine the hypothesis that the loading (unloading) response of bone is mediated by specific cells through modifications of their activity cytoskeletal elements, and/or elaboration of their extracellular matrices. For this purpose, this laboratory has utilized the results of a number of previous studies defining molecular biological, biochemical, morphological, and ultrastructural events of the reproducible mineralization of a primary bone cell (osteoblast) culture system under normal loading (1G gravity level). These data and the culture system then were examined following the use of the cultures in two NASA shuttle flights, STS-59 and STS-63. The cells collected from each of the flights were compared to respective synchronous ground (1G) control cells examined as the flight samples were simultaneously analyzed and to other control cells maintained at 1G until the time of shuttle launch, at which point they were terminated and studied (defined as basal cells). Each of the cell cultures was assayed in terms of metabolic markers- gene expression; synthesis and secretion of collagen and non-collagenous proteins, including certain cytoskeletal components; assembly of collagen into macrostructural arrays- formation of mineral; and interaction of collagen and mineral crystals during calcification of the cultures. The work has utilized a combination of biochemical techniques (radiolabeling, electrophoresis, fluorography, Western and Northern Blotting, and light microscopic immunofluorescence) and structural methods (conventional and high voltage electron microscopy, inununocytochemistry, stereomicroscopy, and 3D image reconstruction). The studies have provided new knowledge of aspects of bone cell development and structural regulation, extracellular matrix assembly, and mineralization during spaceflight and under normal gravity. The information has contributed to insights into the means in general by which cells respond and adapt to different conditions of gravity (loading). The data may as well have suggested an underlying basis for the observed loss of bone by vertebrates, including man, in microgravity; and these scientific results may have implications for understanding bone loss following fracture healing and extended periods of inactivity such as during long-term bedrest.

  2. Comparisons of Mouse Mesenchymal Stem Cells in Primary Adherent Culture of Compact Bone Fragments and Whole Bone Marrow

    PubMed Central

    Cai, Yiting; Liu, Tianshu; Fang, Fang; Xiong, Chengliang; Shen, Shiliang

    2015-01-01

    The purification of mouse bone marrow mesenchymal stem cells (BMSCs) by using the standard method of whole bone marrow adherence to plastic still remains ineffective. An increasing number of studies have indicated compact bone as an alternative source of BMSCs. We isolated BMSCs from cultured compact bone fragments and investigated the proliferative capacity, surface immunophenotypes, and osteogenic and adipogenic differentiations of the cells after the first trypsinization. The fragment culture was based on the fact that BMSCs were assembled in compact bones. Thus, the procedure included flushing bone marrow out of bone cavity and culturing the fragments without any collagenase digestion. The cell yield from cultured fragments was slightly less than that from cultured bone marrow using the same bone quantity. However, the trypsinized cells from cultured fragments exhibited significantly higher proliferation and were accompanied with more CD90 and CD44 expressions and less CD45 expression. The osteogenic and adipogenic differentiation capacity of cells from cultured fragments were better than those of cells from bone marrow. The directly adherent culture of compact bone is suitable for mouse BMSC isolation, and more BMSCs with potentially improved proliferation capacity can be obtained in the primary culture. PMID:25821472

  3. Spaceflight effects on cultured embryonic chick bone cells

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C.

    2000-01-01

    A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the same statistical levels as control counterparts. Flight cells elaborated a less extensive extracellular matrix, evidenced by a reduced collagen gene expression and collagen protein appearance compared with controls. Osteocalcin was expressed by all cells, a result indicating progressive differentiation of both flight and control osteoblasts, but its message levels also were reduced in flight cells compared with ground samples. This finding suggested that osteoblasts subjected to flight followed a slower progression toward a differentiated function. The summary of data indicates that spaceflight, including microgravity exposure, demonstrably affects bone cells by down-regulating type I collagen and osteocalcin gene expression and thereby inhibiting expression of the osteogenic phenotype notably by committed osteoblasts. The information is important for insight into the response of bone cells to changes of gravity and of force in general.

  4. Spaceflight effects on cultured embryonic chick bone cells.

    PubMed

    Landis, W J; Hodgens, K J; Block, D; Toma, C D; Gerstenfeld, L C

    2000-06-01

    A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the same statistical levels as control counterparts. Flight cells elaborated a less extensive extracellular matrix, evidenced by a reduced collagen gene expression and collagen protein appearance compared with controls. Osteocalcin was expressed by all cells, a result indicating progressive differentiation of both flight and control osteoblasts, but its message levels also were reduced in flight cells compared with ground samples. This finding suggested that osteoblasts subjected to flight followed a slower progression toward a differentiated function. The summary of data indicates that spaceflight, including microgravity exposure, demonstrably affects bone cells by down-regulating type I collagen and osteocalcin gene expression and thereby inhibiting expression of the osteogenic phenotype notably by committed osteoblasts. The information is important for insight into the response of bone cells to changes of gravity and of force in general. PMID:10841178

  5. Expansion of endothelial progenitor cells in high density dot culture of rat bone marrow cells.

    PubMed

    Lu, Yang; Gong, Yiyi; Lian, Jie; Wang, Ling; Kretlow, James D; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie

    2014-01-01

    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2 10(5) cells/cm(2)) by seeding total 9 10(5) cells into six high density dots or cultured in regular density (1.6 10(4) cells/cm(2)) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  6. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells

    PubMed Central

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie

    2014-01-01

    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2105 cells/cm2) by seeding total 9105 cells into six high density dots or cultured in regular density (1.6104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  7. Expression of bone morphogenetic proteins in stromal cells from human bone marrow long-term culture.

    PubMed

    Martinovic, Snjezana; Mazic, Sanja; Kisic, Veronika; Basic, Nikolina; Jakic-Razumovic, Jasminka; Borovecki, Fran; Batinic, Drago; Simic, Petra; Grgurevic, Lovorka; Labar, Boris; Vukicevic, Slobodan

    2004-09-01

    Highly purified primitive hemopoietic stem cells express BMP receptors but do not synthesize bone morphogenetic proteins (BMPs). However, exogenously added BMPs regulate their proliferation, differentiation, and survival. To further explore the mechanism by which BMPs might be involved in hemopoietic differentiation, we tested whether stromal cells from long-term culture (LTC) of normal human bone marrow produce BMPs, BMP receptors, and SMAD signaling molecules. Stromal cells were immunohistochemically characterized by the presence of lyzozyme, CD 31, factor VIII, CD 68, S100, alkaline phosphatase, and vimentin. Gene expression was analyzed by RT-PCR and the presence of BMP protein was confirmed by immunohistochemistry (IHC). The supportive role of the stromal cell layer in hemopoiesis in vitro was confirmed by a colony assay of clonogenic progenitors. Bone marrow stromal cells express mRNA and protein for BMP-3, -4, and -7 but not for BMP-2, -5, and -6 from the first to the eighth week of culture. Furthermore, stromal cells express the BMP type I receptors, activin-like kinase-3 (ALK-3), ALK-6, and the downstream transducers SMAD-1, -4, and -5. Thus, human bone marrow stromal cells synthesize BMPs, which might exert their effects on hemopoietic stem cells in a paracrine manner through specific BMP receptors. PMID:15314083

  8. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

    SciTech Connect

    Miyahara, Tatsuro; Takata, Masakazu; Miyata, Masaki; Nagai, Miyuki; Sugure, Akemi; Kozuka, Hiroshi; Kuze, Shougo )

    1991-08-01

    Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

  9. The impairment of osteogenesis in bone sialoprotein (BSP) knockout calvaria cell cultures is cell density dependent.

    PubMed

    Bouet, Guenaelle; Bouleftour, Wafa; Juignet, Laura; Linossier, Marie-Thrse; Thomas, Mireille; Vanden-Bossche, Arnaud; Aubin, Jane E; Vico, Laurence; Marchat, David; Malaval, Luc

    2015-01-01

    Bone sialoprotein (BSP) belongs to the "small integrin-binding ligand N-linked glycoprotein" (SIBLING) family, whose members interact with bone cells and bone mineral. BSP is strongly expressed in bone and we previously showed that BSP knockout (BSP-/-) mice have a higher bone mass than wild type (BSP+/+) littermates, with lower bone remodelling. Because baseline bone formation activity is constitutively lower in BSP-/- mice, we studied the impact of the absence of BSP on in vitro osteogenesis in mouse calvaria cell (MCC) cultures. MCC BSP-/- cultures exhibit fewer fibroblast (CFU-F), preosteoblast (CFU-ALP) and osteoblast colonies (bone nodules) than wild type, indicative of a lower number of osteoprogenitors. No mineralized colonies were observed in BSP-/- cultures, along with little/no expression of either osteogenic markers or SIBLING proteins MEPE or DMP1. Osteopontin (OPN) is the only SIBLING expressed in standard density BSP-/- culture, at higher levels than in wild type in early culture times. At higher plating density, the effects of the absence of BSP were partly rescued, with resumed expression of osteoblast markers and cognate SIBLING proteins, and mineralization of the mutant cultures. OPN expression and amount are further increased in high density BSP-/- cultures, while PHEX and CatB expression are differentiatlly regulated in a manner that may favor mineralization. Altogether, we found that BSP regulates mouse calvaria osteoblast cell clonogenicity, differentiation and activity in vitro in a cell density dependent manner, consistent with the effective skeletogenesis but the low levels of bone formation observed in vivo. The BSP knockout bone microenvironment may alter the proliferation/cell fate of early osteoprogenitors. PMID:25710686

  10. The Impairment of Osteogenesis in Bone Sialoprotein (BSP) Knockout Calvaria Cell Cultures Is Cell Density Dependent

    PubMed Central

    Bouet, Guenaelle; Bouleftour, Wafa; Juignet, Laura; Linossier, Marie-Thrse; Thomas, Mireille; Vanden-Bossche, Arnaud; Aubin, Jane E.; Vico, Laurence; Marchat, David; Malaval, Luc

    2015-01-01

    Bone sialoprotein (BSP) belongs to the "small integrin-binding ligand N-linked glycoprotein" (SIBLING) family, whose members interact with bone cells and bone mineral. BSP is strongly expressed in bone and we previously showed that BSP knockout (BSP-/-) mice have a higher bone mass than wild type (BSP+/+) littermates, with lower bone remodelling. Because baseline bone formation activity is constitutively lower in BSP-/- mice, we studied the impact of the absence of BSP on in vitro osteogenesis in mouse calvaria cell (MCC) cultures. MCC BSP-/- cultures exhibit fewer fibroblast (CFU-F), preosteoblast (CFU-ALP) and osteoblast colonies (bone nodules) than wild type, indicative of a lower number of osteoprogenitors. No mineralized colonies were observed in BSP-/- cultures, along with little/no expression of either osteogenic markers or SIBLING proteins MEPE or DMP1. Osteopontin (OPN) is the only SIBLING expressed in standard density BSP-/- culture, at higher levels than in wild type in early culture times. At higher plating density, the effects of the absence of BSP were partly rescued, with resumed expression of osteoblast markers and cognate SIBLING proteins, and mineralization of the mutant cultures. OPN expression and amount are further increased in high density BSP-/- cultures, while PHEX and CatB expression are differentiatlly regulated in a manner that may favor mineralization. Altogether, we found that BSP regulates mouse calvaria osteoblast cell clonogenicity, differentiation and activity in vitro in a cell density dependent manner, consistent with the effective skeletogenesis but the low levels of bone formation observed in vivo. The BSP knockout bone microenvironment may alter the proliferation/cell fate of early osteoprogenitors. PMID:25710686

  11. Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age.

    PubMed

    Mendes, S C; Tibbe, J M; Veenhof, M; Bakker, K; Both, S; Platenburg, P P; Oner, F C; de Bruijn, J D; van Blitterswijk, C A

    2002-12-01

    At present, it is well known that populations of human bone marrow stromal cells (HBMSCs) can differentiate into osteoblasts and produce bone. However, the amount of cells with osteogenic potential that is ultimately obtained will still be dependent on both patient physiological status and culture system. In addition, to use a cell therapy approach in orthopedics, large cell numbers will be required and, as a result, knowledge of the factors affecting the growth kinetics of these cells is needed. In the present study we investigated the effect of dexamethasone stimulation on the in vivo osteogenic potential of HBMSCs. After a proliferation step, the cells were seeded and cultured on porous calcium phosphate scaffolds for 1 week, and then subcutaneously implanted in nude mice for 6 weeks, in order to evaluate their in vivo bone-forming ability. Furthermore, the effect of donor age on the proliferation rate of the cultures and their ability to induce in vivo bone formation was studied. In 67% of the assayed patients (8 of 12), the presence of dexamethasone in culture was not required to obtain in vivo bone tissue formation. However, in cultures without bone-forming ability or with a low degree of osteogenesis, dexamethasone increased the bone-forming capacity of the cells. During cellular proliferation, a significant age-related decrease was observed in the growth rate of cells from donors older than 50 years as compared with younger donors. With regard to the effect of donor age on in vivo bone formation, HBMSCs from several donors in all age groups proved to possess in vivo osteogenic potential, indicating that the use of cell therapy in the repair of bone defects can be applicable irrespective of patient age. However, the increase in donor age significantly decreased the frequency of cases in which bone formation was observed. PMID:12542937

  12. Cultured human bone marrow-derived mast cells, their similarities to cultured murine E-mast cells.

    PubMed Central

    Gilead, L; Rahamim, E; Ziv, I; Or, R; Razin, E

    1988-01-01

    Homogeneous populations of human mast cells were differentiated and grown by culturing bone marrow cells in the presence of conditioned medium derived from lectin-stimulated human peripheral blood mononuclear cells. The cells obtained were similar in ultrastructure, proteoglycan type and lipid products generated upon calcium ionophore A23187, and immunological activation to the murine E-mast cells (E-MC) differentiated in culture containing IL-3. Fluorescence analysis revealed that the human E-MC expressed IgE-Fc receptors which retained bound IgE through several washes. These cells did not express cell-surface lymphoid determinants (T11, T4, T8 and B4) and myeloid determinants 'My'. However, 40% of these cells expressed monocytic surface determinants, such as M-1. The amount of histamine that was found per 10(6) cells was 525 +/- 106 ng (mean +/- SE, n = 4). These cultured mast cells possessed granular chondroitin sulphate E proteoglycan of about 180,000 MW. Following activation with either calcium ionophore A23187 or anti-hIgE challenge, these mast cells released their preformed mediators and generated mainly leukotriene C4 leukotriene B4, and platelet-activating factor. In conclusion, according to all of these criteria, these human cultured mast cells show many similarities to the murine cultured E-mast cells, and therefore could be considered as the culture analogue of the human intestinal E-mast cells identified recently. Images Figure 1 PMID:3130309

  13. Characterization of natural killer cells cultured from human bone marrow cells

    SciTech Connect

    Yoda, Y.; Kawakami, Z.; Shibuya, A.; Abe, T.

    1988-09-01

    Human bone marrow (BM) cells, depleted of nylon wool-adherent cells, T cells, and natural killer (NK) cells, were cultured in medium containing recombinant interleukin 2 (rIL2). After 21 or 24 days in culture, numerous lymphoid cells with multiple azurophilic granules and a morphology similar to large granular lymphocytes (LGL) were found. Two-color analysis of surface phenotype showed many of these cells to be NKH1-positive and a limited number of cells had other NK markers such as CD16, CD2, or CD8. The CD3 antigen was not coexpressed with NKH1. The cultured BM cells were cytotoxic for K562, Daudi, and Raji cell lines. The NKH1+, CD2-, CD3-, CD16- cells were sorted and, in addition to having the LGL morphology, were found to be cytotoxic for K562 cells (NK (K562)). The generation of NK(K562) activity was significantly suppressed by 5-bromodeoxyuridine plus ultraviolet light treatment, indicating that DNA synthesis is required. These experiments suggest that the described culture conditions allow differentiation of progenitor cells, into immature, but functionally active, NK cells.

  14. Estrogens and antiestrogens stimulate release of bone resorbing activity by cultured human breast cancer cells.

    PubMed Central

    Valentin-Opran, A; Eilon, G; Saez, S; Mundy, G R

    1985-01-01

    Patients with advanced breast cancer may develop acute, severe hypercalcemia when treated with estrogens or antiestrogens. In this study, we examined the effects of estrogens and related compounds on the release of bone resorbing activity by cultured human breast cancer cells in vitro. We found that the estrogen receptor positive breast cancer cell line MCF-7 releases bone resorbing activity in response to low concentrations of 17 beta-estradiol. Bone resorbing activity was also released in response to the antiestrogen nafoxidine. Other steroidal compounds had no effect on the release of bone resorbing activity. Estrogen-stimulated release of bone resorbing activity occurred with live bone cultures, but not with devitalized bones, indicating that the effect was bone cell mediated. The breast cancer cell line MDA-231, which does not have estrogen receptors, did not release bone resorbing activity in response to 17 beta-estradiol or nafoxidine. Release of the bone resorbing activity by MCF-7 cells incubated with 17 beta-estradiol was inhibited by indomethacin (10 microM) and flufenamic acid (50 microM), two structurally unrelated compounds that inhibit prostaglandin synthesis. Concentrations of 17 beta-estradiol and nafoxidine that caused increased release of bone resorbing activity by the breast cancer cells caused a four- to fivefold increase in release of prostaglandins of the E series by MCF-7 cells. These data may explain why some patients with advanced breast cancer develop acute hypercalcemia when treated with estrogens or antiestrogens, and why bone metastases are more common in patients with estrogen receptor positive tumors. PMID:3855865

  15. Bone tissue engineering with a collagen–hydroxyapatite scaffold and culture expanded bone marrow stromal cells

    PubMed Central

    Villa, Max M.; Wang, Liping; Huang, Jianping; Rowe, David W.; Wei, Mei

    2015-01-01

    Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen–hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen–HA scaffold, the in vivo performance was compared with a commercial collagen–HA scaffold (Healos®, Depuy). The in-house collagen–HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n=5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen–HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen–hydroxyapatite biomaterials for bone tissue engineering. PMID:24909953

  16. Vascularized Bone Tissue Formation Induced by Fiber-Reinforced Scaffolds Cultured with Osteoblasts and Endothelial Cells

    PubMed Central

    Liu, Xinhui; Zhang, Guoping; Hou, Chuanyong; Wang, Hua; Yang, Yelin; Guan, Guoping; Dong, Wei; Gao, Hongyang

    2013-01-01

    The repair of the damaged bone tissue caused by damage or bone disease was still a problem. Current strategies including the use of autografts and allografts have the disadvantages, namely, diseases transmission, tissue availability and donor morbidity. Bone tissue engineering has been developed and regarded as a new way of regenerating bone tissues to repair or substitute damaged or diseased ones. The main limitation in engineering in vitro tissues is the lack of a sufficient blood vessel system, the vascularization. In this paper, a new-typed hydroxyapatite/collagen composite scaffold which was reinforced by chitosan fibers and cultured with osteoblasts and endothelial cells was fabricated. General observation, histological observation, detection of the degree of vascularization, and X-ray examination had been done to learn the effect of vascularized bone repair materials on the regeneration of bone. The results show that new vessel and bone formed using implant cultured with osteoblasts and endothelial cells. Nanofiber-reinforced scaffold cultured with osteoblasts and endothelial cells can induce vascularized bone tissue formation. PMID:24369019

  17. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    SciTech Connect

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-05-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and /sup 14/C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of /sup 14/C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose.

  18. Osteogenic performance of donor-matched human adipose and bone marrow mesenchymal cells under dynamic culture.

    PubMed

    Wu, Wei; Le, Andrew V; Mendez, Julio J; Chang, Julie; Niklason, Laura E; Steinbacher, Derek M

    2015-05-01

    Adipose-derived mesenchymal cells (ACs) and bone marrow-derived mesenchymal cells (BMCs) have been widely used for bone regeneration and can be seeded on a variety of rigid scaffolds. However, to date, a direct comparison of mesenchymal cells (MC) harvested from different tissues from the same donor and cultured in identical osteogenic conditions has not been investigated. Indeed, it is unclear whether marrow-derived or fat-derived MC possess intrinsic differences in bone-forming capabilities, since within-patient comparisons have not been previously done. This study aims at comparing ACs and BMCs from three donors ranging in age from neonatal to adult. Matched cells from each donor were studied in three distinct bioreactor settings, to determine the best method to create a viable osseous engineered construct. Human ACs and BMCs were isolated from each donor, cultured, and seeded on decellularized porcine bone (DCB) constructs. The constructs were then subjected to either static or dynamic (stirring or perfusion) bioreactor culture conditions for 7-21 days. Afterward, the constructs were analyzed for cell adhesion and distribution and osteogenic differentiation. ACs demonstrated higher seeding efficiency than BMCs. However, static and dynamic culture significantly increased BMCs proliferation more than ACs. In all conditions, BMCs demonstrated stronger osteogenic activity as compared with ACs, through higher alkaline phosphatase activity and gene expression for various bony markers. Conversely, ACs expressed more collagen I, which is a nonspecific matrix molecule in most connective tissues. Overall, dynamic bioreactor culture conditions enhanced osteogenic gene expression in both ACs and BMCs. Scaffolds seeded with BMCs in dynamic stirring culture conditions exhibit the greatest osteogenic proliferation and function in vitro, proving that marrow-derived MC have superior bone-forming potential as compared with adipose-derived cells. PMID:25668104

  19. Bone culture research

    NASA Technical Reports Server (NTRS)

    Partridge, Nicola C.

    1993-01-01

    The experiments described are aimed at exploring PTH regulation of production of collagenase and protein inhibitors of collagenase (tissue inhibitors of metalloproteases, TIMP-1 and -2) by osteoblast-like osteosarcoma cells under conditions of weightlessness. The results of this work will contribute to information as to whether a microgravity environment alters the functions and responsiveness of the osteoblast. The objectives of the Bone Culture Research (BCR) experiment are: to observe the effects of microgravity on the morphology, rate of proliferation, and behavior of the osteoblastic cells, UMR 106-01; to determine whether microgravy affects the hormonal sensitivity of osteroblastic cells; and to measure the secretion of collagenase and its inhibitors into the medium under conditions of microgravity. The methods employed will consist of the following: the osteoblast-like cells, UMR-106-01, will be cultured in four NASDA cell culture chambers; two chambers will be subjected to microgravity on SL-J; two chambers will remain on the ground at KSC as ground controls but subjected to an identical set of culture conditions as on the shuttle; media will be changed four times; twice the cells will receive the hormone parathyroid hormone-related protein (PTHrP) and media collected; cells will be photographed under conditions of microgravity; and media and photographs will be analyzed upon return to determine whether functions of the cells changed.

  20. Effects of Laddec on the formation of calcified bone matrix in rat calvariae cells culture.

    PubMed

    Hofman, S; Sidqui, M; Abensur, D; Valentini, P; Missika, P

    1999-07-01

    Osteoblasts from 21 day-old fetal rats calvaria were isolated using a collagenase digestion procedure. Cells were cultured in the presence of Laddec (a highly purified bovine xenograft) and Bio-Oss (natural bone mineral). Optical microscopic observations showed that osteoblasts attached on the plastic culture dishes and formed close contact with biomaterial particles. By day 5, the osteoblasts formed a confluent monolayer. A cytozymatic method showed intense alkaline phosphatase (ALP) staining around and between the substrate granules of the two materials. By day 14, inverted phase microscopic observations showed that osteoblasts formed bone nodules around and between substrate particles. In addition, at this time, the Von Kossa staining was positive. Using a conventional assay, ALP specific activity was higher in the presence of Laddec than in the presence of Bio-Oss. A quantitative morphological method using image analysis showed that the proportion of mineralized bone formed around biomaterial particles in relation to total bone was increased with Laddec (15% more than with Bio-Oss). Ultrastructural observations by TEM showed the presence of an electron dense collagen-free layer at the biomaterial/bone interface and a collagenous matrix deposited at the periphery, indicating the bioactivity of the biomaterials. These results indicated that Laddec increased the expression of ALP in osteoblast cultures and facilitated the formation of multiple cell layers, providing a culture environment suitable for mineralization. PMID:10395384

  1. Clonal distribution of osteoprogenitor cells in cultured chick periostea: Functional relationship to bone formation

    SciTech Connect

    McCulloch, C.A.; Fair, C.A.; Tenenbaum, H.C.; Limeback, H.; Homareau, R. )

    1990-08-01

    Folded explants of periosteum from embryonic chick calvaria form bone-like tissue when grown in the presence of ascorbic acid, organic phosphate, and dexamethasone. All osteoblast-like cells in these cultures arise de novo by differentiation of osteoprogenitor cells present in the periosteum. To study the spatial and functional relationships between bone formation and osteoprogenitor cells, cultures were continuously labeled with (3H)thymidine for periods of 1-5 days. Radioautographs of serial 2-microns plastic sections stained for alkaline phosphatase (AP) showed maximal labeling of 30% of fibroblastic (AP-negative) cells by 3 days while osteogenic cells (AP-positive) exhibited over 95% labeling by 5 days. No differential shifts in labeling indices, grain count histograms of fibroblastic and osteogenic cells or numbers of AP-positive cells were observed, indicating no significant recruitment of cells from the fibroblastic to the osteogenic compartment. Despite the continuous presence of (3H)thymidine, less than 35% of both osteoblasts and osteocytes were labeled at 5 days, indicating that only one-third of the osteoprogenitor cells had cycled prior to differentiation. Spatial clustering of (3H)thymidine-labeled cells was measured by computer-assisted morphometry and application of the Poisson distribution to assess contagion. Cluster size and number of labeled cells per cluster did not vary between 1-3 days, but the number of clusters increased 20-fold between Day 1 and Day 3. Three-dimensional reconstruction from serial sections showed that clusters formed long, tubular arrays of osteogenic cells up to eight cells in length and located within 2-3 cell layers from the bone surface. Selective killing of S-phase cells with two pulse labels of high specific activity (3H)thymidine at 1 and 2 days of culture completely blocked bone formation.

  2. Stimulation of Mucosal Mast Cell Growth in Normal and Nude Rat Bone Marrow Cultures

    NASA Astrophysics Data System (ADS)

    Haig, David M.; McMenamin, Christine; Gunneberg, Christian; Woodbury, Richard; Jarrett, Ellen E. E.

    1983-07-01

    Mast cells with the morphological and biochemical properties of mucosal mast cells (MMC) appear and proliferate to form the predominant cell type in rat bone marrow cultures stimulated with factors from antigen- or mitogen-activated lymphocytes. Conditioned media causing a selective proliferation of MMC were derived from mesenteric lymph node cells of Nippostrongylus brasiliensis-infected rats restimulated in vitro with specific antigen or from normal or infected rat mesenteric lymph node cells stimulated with concanavalin A. MMC growth factor is not produced by T-cell-depleted mesenteric lymph node cells or by the mesenteric lymph node cells of athymic rats. By contrast, MMC precursors are present in the bone marrow of athymic rats and are normally receptive to the growth factor produced by the lymphocytes of thymus-intact rats. The thymus dependence of MMC hyperplasia is thus based on the requirement of a thymus-independent precursor for a T-cell-derived growth promoter.

  3. Evaluation ofprimary blood monocyte and bone marrow cell culture for the isolation of Rickettsia rickettsii.

    PubMed

    Buhles, W C; Huxsoll, D L; Ruch, G; Kenyon, R H; Elisberg, B L

    1975-12-01

    Rickettsia rickettsii was isolated from experimentally infected guinea pigs by culture of blood monocytes and bone marrow cells, and from experimentally infected rhesus monkeys by blood monocyte culture. Rickettsiae were identified in monocyte-macrophage monolayers stained by Gimnez or flourescent antibody techniques. A total of 78 culture attempts were made from 20 guinea pigs and 16 monkeys. The success of isolation of R. rickettsii in culture was positively correlated with the numbers of rickettsiae present in the blood and bone marrow. in cultures derived from infected guinea pigs, rickettsiae were usually observed after 5 to 7 days of culture, and in monkeys monocyte cultures they were usually observed within 3 to 5 days. Positive cultures were derived from guinea pigs and monkeys as early as the first day of fever and 1 to 3 days before the appearance of other clinical signs. Monocyte cultures became negative with the resolution of rickettsemia and concomitantly with the appearance of serum antibody. Monocyte culture isolation of R. rickettsii may be as sensitive for the detection of rickettsiae in blood and marrow as the intraperitoneal inoculation of guinea pigs or the plaque assay technique. Because of the simplicity of the method and because rickettsiae were often identified within 3 to 5 days after initiation, the monocyte culture technique may be useful in the early diagnois of human rickettsial disease. PMID:812828

  4. Estradiol synthesis and release in cultured female rat bone marrow stem cells.

    PubMed

    Zhang, Dalei; Yang, Bei; Zou, Weiying; Lu, Xiaying; Xiong, Mingdi; Wu, Lei; Wang, Jinglei; Gao, Junhong; Xu, Sifan; Zou, Ting

    2013-01-01

    Bone marrow stem cells (BMSCs) have the capacity to differentiate into mature cell types of multiple tissues. Thus, they represent an alternative source for organ-specific cell replacement therapy in degenerative diseases. In this study, we demonstrated that female rat BMSCs could differentiate into steroidogenic cells with the capacity for de novo synthesis of Estradiol-17 ? (E2) under high glucose culture conditions with or without retinoic acid (RA). The cultured BMSCs could express the mRNA and protein for P450arom, the enzyme responsible for estrogen biosynthesis. Moreover, radioimmunoassay revealed that BMSCs cultured in the present culture system produced and secreted significant amounts of testosterone, androstenedione, and E2. In addition, RA promoted E2 secretion but did not affect the levels of androgen. These results indicate that BMSCs can synthesize and release E2 and may contribute to autologous transplantation therapy for estrogen deficiency. PMID:23484106

  5. Evaluation of Posterolateral Lumbar Fusion in Sheep Using Mineral Scaffolds Seeded with Cultured Bone Marrow Cells

    PubMed Central

    Cuenca-López, María D.; Andrades, José A.; Gómez, Santiago; Zamora-Navas, Plácido; Guerado, Enrique; Rubio, Nuria; Blanco, Jerónimo; Becerra, José

    2014-01-01

    The objective of this study is to investigate the efficacy of hybrid constructs in comparison to bone grafts (autograft and allograft) for posterolateral lumbar fusion (PLF) in sheep, instrumented with transpedicular screws and bars. Hybrid constructs using cultured bone marrow (BM) mesenchymal stem cells (MSCs) have shown promising results in several bone healing models. In particular, hybrid constructs made by calcium phosphate-enriched cells have had similar fusion rates to bone autografts in posterolateral lumbar fusion in sheep. In our study, four experimental spinal fusions in two animal groups were compared in sheep: autograft and allograft (reference group), hydroxyapatite scaffold, and hydroxyapatite scaffold seeded with cultured and osteoinduced bone marrow MSCs (hybrid construct). During the last three days of culture, dexamethasone (dex) and beta-glycerophosphate (β-GP) were added to potentiate osteoinduction. The two experimental situations of each group were tested in the same spinal segment (L4–L5). Spinal fusion and bone formation were studied by clinical observation, X-ray, computed tomography (CT), histology, and histomorphometry. Lumbar fusion rates assessed by CT scan and histology were higher for autograft and allograft (70%) than for mineral scaffold alone (22%) and hybrid constructs (35%). The quantity of new bone formation was also higher for the reference group, quite similar in both (autograft and allograft). Although the hybrid scaffold group had a better fusion rate than the non-hybrid scaffold group, the histological analysis revealed no significant differences between them in terms of quantity of bone formation. The histology results suggested that mineral scaffolds were partly resorbed in an early phase, and included in callus tissues. Far from the callus area the hydroxyapatite alone did not generate bone around it, but the hybrid scaffold did. In nude mice, labeled cells were induced to differentiate in vivo and monitored by bioluminescence imaging (BLI). Although the cultured MSCs had osteogenic potential, their contribution to spinal fusion when seeded in mineral scaffolds, in the conditions disclosed here, remains uncertain probably due to callus interference with the scaffolds. At present, bone autografts are better than hybrid constructs for posterolateral lumbar fusion, but we should continue to seek better conditions for efficient tissue engineering. PMID:25522168

  6. Dynamic cell culture on calcium phosphate microcarriers for bone tissue engineering applications

    PubMed Central

    Perez, Roman A; Riccardi, Kiara; Altankov, George

    2014-01-01

    Developing appropriate cell culturing techniques to populate scaffolds has become a great challenge in tissue engineering. This work describes the use of spinner flask dynamic cell cultures to populate hydroxyapatite microcarriers for bone tissue engineering. The microcarriers were obtained through the emulsion of a self-setting aqueous ?-tricalcium phosphate slurry in oil. After setting, hydroxyapatite microcarriers were obtained. The incorporation of gelatin in the liquid phase of the ?-tricalcium phosphate slurry allowed obtaining hybrid gelatin/hydroxyapatite-microcarriers. Initial cell attachment on the microcarriers was strongly influenced by the speed of the dynamic culture, achieving higher attachment at low speed (40 r/min) as compared to high speed (80 r/min). Under moderate culture speeds (40 r/min), the number of cells present in the culture as well as the number of microcarrier-containing cells considerably increased after 3 days, particularly in the gelatin-containing microcarriers. At longer culture times in dynamic culture, hydroxyapatite-containing microcarriers formed aggregates containing viable and extracellular matrix proteins, with a significantly higher number of cells compared to static cultures. PMID:25383168

  7. Onset of heterogeneity in culture-expanded bone marrow stromal cells.

    PubMed

    Whitfield, Matthew J; Lee, Wong Cheng J; Van Vliet, Krystyn J

    2013-11-01

    Inconsistencies among in vitro and in vivo experiments using adult mesenchymal stem cells (MSCs) confound development of therapeutic, regenerative medicine applications, and in vitro expansion is typically required to achieve sufficient cell numbers for basic research or clinical trials. Though heterogeneity in both morphology and differentiation capacity of culture-expanded cells is noted, sources and consequences are not well understood. Here, we endeavored to observe the onset of population heterogeneity by conducting long-term continuous in vitro observation of human adult bone marrow stromal cell (BMSC) populations, a subset of which has been shown to be stem cells (also known as bone marrow-derived MSCs). Semi-automated identification and tracking of cell division and migration enabled construction of cell lineage maps that incorporated cell morphology. We found that all BMSCs steadily grew larger over time; this growth was interrupted only when a cell divided, producing two equally sized, morphologically similar daughter cells. However, a finite probability existed that one or both of these daughters then continued to increase in size without dividing, apparently exiting the cell cycle. Thus, larger BMSCs are those cells that have exited the normal cell cycle. These results hold important implications for MSC in vitro culture expansion and biophysical sorting strategies. PMID:24103495

  8. Kinetics of hematopoietic stem cells and supportive activities of stromal cells in a three-dimensional bone marrow culture system.

    PubMed

    Harada, Tomonori; Hirabayashi, Yukio; Hatta, Yoshihiro; Tsuboi, Isao; Glomm, Wilhelm Robert; Yasuda, Masahiro; Aizawa, Shin

    2015-10-01

    In the bone marrow, hematopoietic cells proliferate and differentiate in close association with a three-dimensional (3D) hematopoietic microenvironment. Previously, we established a 3D bone marrow culture system. In this study, we analyzed the kinetics of hematopoietic cells, and more than 50% of hematopoietic progenitor cells, including CFU-Mix, CFU-GM and BFU-E in 3D culture were in a resting (non-S) phase. Furthermore, we examined the hematopoietic supportive ability of stromal cells by measuring the expression of various mRNAs relevant to hematopoietic regulation. Over the 4 weeks of culture, the stromal cells in the 3D culture are not needlessly activated and "quietly" regulate hematopoietic cell proliferation and differentiation during the culture, resulting in the presence of resting hematopoietic stem cells in the 3D culture for a long time. Thus, the 3D culture system may be a new tool for investigating hematopoietic stem cell-stromal cell interactions in vitro. PMID:26431462

  9. Therapeutic benefits in thalassemic mice transplanted with long term cultured bone marrow cells

    PubMed Central

    Hatada, Seigo; Walton, William; Hatada, Tomoko; Wofford, Anne; Fox, Raymond; Liu, Naiyou; Lill, Michael C.; Fair, Jeffery H.; Kirby, Suzanne L.; Smithies, Oliver

    2011-01-01

    Objective Autologous bone marrow (BM) cells with a faulty gene corrected by gene targeting could provide a powerful therapeutic option for patients with genetic blood diseases. Achieving this goal is hindered by the low abundance of therapeutically useful BM cells and the difficulty of maintaining them in tissue culture long enough for completing gene targeting without them differentiating. Our objective was to devise a simple long-term culture system, using unfractioned BM cells, that maintains and expands therapeutically useful cells for ?4 weeks. Materials and Methods From 2 to 60 million BM cells from wild-type (WT) mice, or from mice carrying a truncated erythropoietin receptor transgene (tEpoR-tg), were plated with or without irradiated fetal-liver derived AFT024 stromal cells in 25 cm2 culture flasks. Four-week cultured cells were analyzed and transplanted into sublethally irradiated thalassemic mice (1 million cells / mouse). Results After 4 weeks, the cultures with AFT024 cells had extensive cobblestone areas. Optimum expansion of Sca-1 positive cells was 5.5-fold with 20 106 WT cells/flask and 27-fold with 2 106 tEpoR-tg cells. More than 85% of thalassemic mice transplanted with either type of cells had almost complete reversal of their thalassemic phenotype for at least 6 months, including blood smear dysmorphology, reticulocytosis, high ferritin plasma levels and hepatic/renal hemosiderosis. Conclusion When plated at high cell densities on irradiated fetal-liver derived stromal cells, BM cells from WT mice maintain their therapeutic potential for 4 weeks in culture, which is sufficient time for correction of a faulty gene by targeting. PMID:21184801

  10. Quantitative interactions between Pb2+ and Ca2+ homeostasis in cultured osteoclastic bone cells.

    PubMed

    Rosen, J F; Pounds, J G

    1989-05-01

    Cellular calcium homeostasis and calcium-mediated cell functions are conceptually attractive processes to be involved in the manifestation(s) of lead toxicity including impaired skeletal growth and cardiovascular and neurological dysfunction. Knowledge of Ca:Pb and Pb:Ca ratios in different structural and functional compartments of cells is essential for identifying, characterizing, and understanding the significance of Pb2+-Ca2+ interactions. Experiments were conducted to characterize the steady-state kinetic distribution and behavior of 45Ca in primary cultures of murine osteoclastic bone cells. Bone cells, derived from mouse calvaria, were enriched for osteoclasts by a sequential collagenase digestion and maintained in primary culture for 1 week. Cultures were labeled with 45Ca for two or 24 hr and the kinetic parameters were obtained by analysis of 45Ca washout curves. Cellular metabolism was based upon a model with three kinetic pools of intracellular Ca2+ containing approximately 45, 25, and 30% of the total cell calcium. In addition, we describe quantitative measurements of Ca:Pb and Pb:Ca ratios at important functional cell sites of Ca2+ transport and storage in intact cells. The intracellular relationships of Ca2+ and Pb2+ were calculated concurrently in individual cultures, using kinetic analysis of dual-label 45Ca and 203Pb washout curves. The Ca:Pb ratios of the rate constants and half-times were approximately 1:1, supporting the concept of similar cellular metabolism of the two elements. The Ca:Pb ratios for the kinetic pools and fluxes were considerably higher than 1:1. These in situ Ca:Pb relationships should be useful for designing and evaluating Ca-Pb studies with calmodulin, isolated mitochondria, and other individual components of the calcium messenger system. Moreover, these data demonstrate both similarities and differences in the kinetic distribution and behavior of Ca2+ and Pb2+ in osteoclastic bone cells. PMID:2718179

  11. Chondrogenic differentiation of bone marrow?derived stem cells cultured in the supernatant of elastic cartilage cells.

    PubMed

    Zhang, Xiaodie; Xue, Ke; Zhou, Jia; Xu, Peng; Huang, Huizhen; Liu, Kai

    2015-10-01

    Repair of cartilage defects remains a challenge for surgeons, owing to its poor self?repairing capacity. Cartilage tissue engineering, particularly marrow stem cell?based cartilage regeneration, provides a promising option for the regeneration of damaged cartilage. Although producing tissue?engineered cartilage from marrow stem cells appeared to be a feasible method, constructing certain sub?types of cartilage, including elastic cartilage, remains difficult. Therefore, the present study explored the feasibility of constructing elastic cartilage by culturing bone marrow?derived stem cells (BMSCs) in the supernatant of elastic cartilage cells to generate elastic cartilage. The elastic cartilage cells were obtained from the auricle cartilage of a newborn pig, and BMSCs were isolated from pig bone marrow aspirate. The supernatant of the chondrocytes was collected and then used to the culture BMSCs. At various time?points, the differentiation of BMSCs was evaluated by gross view, histological examination and quantitative polymerase chain reaction. BMSCs changed from spindle?shaped cells into polygonal cells with increasing culture time. The expression of collagen II and elastin was observed in the cells cultured in the supernatant of elastic chondrocytes, while no expression was observed in the control cells. Furthermore, the expression of collagen I and collagen X was downregulated in the cells cultured in the supernatant of elastic cartilage cells. The supernatant of elastic cartilage cells promoted the differentiation of BMSCs into elastic cartilage cells, which may be a promising method for constructing certain sub?types of tissue?engineered cartilage. PMID:26238630

  12. Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures.

    PubMed

    Amaral, M; Dias, A G; Gomes, P S; Lopes, M A; Silva, R F; Santos, J D; Fernandes, M H

    2008-10-01

    Nanocrystalline diamond (NCD) has a great potential for prosthetic implants coating. Nevertheless, its biocompatibility still has to be better understood. To do so, we employed several materials characterization techniques (SEM, AFM, micro-Raman spectroscopy) and cell culture assays using MG63 osteoblast-like and human bone marrow cells. Biochemical routines (MTT assays, Lowry's method, ALP activity) supported by SEM and confocal microscopy characterization were carried out. We used silicon nitride (Si3N4) substrates for NCD coatings based on a previous demonstration of the superior adhesion and tribological performance of these NCD coated ceramics. Results demonstrate an improved human osteoblast proliferation and the stimulation of differentiated markers, like ALP activity and matrix mineralization, compared with standard polystyrene tissue culture plates. The nanometric featuring of NCD, associated to its chemical affinity are key points for bone regeneration purposes. PMID:18085649

  13. MDR1 gene expression enhances long-term engraftibility of cultured bone marrow cells

    SciTech Connect

    Rentala, Satyanarayana; Sagar Balla, Murali Mohan; Khurana, Satish; Mukhopadhyay, Asok . E-mail: asok@nii.res.in

    2005-09-30

    Primitive hematopoietic stem cells are responsible for long-term engraftment in irradiated host. Here, we report that multi-drug resistance 1 (mdr1) gene expressing primitive hematopoietic cells were multiplied in ex vivo culture, with the support of extracellular matrix components and cytokines. About 20-fold expansion of total nucleated cells was achieved in a 10-day culture. Lin{sup -}Sca-1{sup +} and long-term culture-initiating cells were increased by 54- and 26-fold, respectively. Expanded cells were long-term multi-lineage engraftible in sub-lethally irradiated mice. Donor-derived peripheral blood chimerism was significantly higher (73.2 {+-} 9.1%, p < 0.01) in expanded cells than in normal and 5-flurouracil-treated bone marrow cells. Most interestingly, the expression of mdr1 gene was significantly enhanced in cultured cells than in other two sources of donor cells. The mdr1 gene was functional since expanded cells effluxed Hoechst 33342 and Rh123 dyes. These results suggest that primitive engraftible stem cells can be expanded in the presence of suitable microenvironments.

  14. In Vivo Ectopic Bone Formation by Devitalized Mineralized Stem Cell Carriers Produced Under Mineralizing Culture Condition

    PubMed Central

    Chai, Yoke Chin; Geris, Liesbet; Bolander, Johanna; Pyka, Grzegorz; Van Bael, Simon; Luyten, Frank P.

    2014-01-01

    Abstract Functionalization of tissue engineering scaffolds with in vitro–generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca2+) and phosphate (PO43−) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography [nano-CT]). Histological analysis revealed different bone formation patterns, either bone ossicles containing bone marrow surrounding the scaffold struts (in BM2) or bone apposition directly on the struts' surface (in BM1 and BM3). In conclusion, we have presented experimental data on the feasibility to produce devitalized osteoinductive mineralized carriers by functionalizing 3D porous scaffolds with an in vitro cell-made mineralized matrix under the mineralizing culture conditions. PMID:25469312

  15. In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition.

    PubMed

    Chai, Yoke Chin; Geris, Liesbet; Bolander, Johanna; Pyka, Grzegorz; Van Bael, Simon; Luyten, Frank P; Schrooten, Jan

    2014-12-01

    Functionalization of tissue engineering scaffolds with in vitro-generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca(2+)) and phosphate (PO4 (3-)) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography [nano-CT]). Histological analysis revealed different bone formation patterns, either bone ossicles containing bone marrow surrounding the scaffold struts (in BM2) or bone apposition directly on the struts' surface (in BM1 and BM3). In conclusion, we have presented experimental data on the feasibility to produce devitalized osteoinductive mineralized carriers by functionalizing 3D porous scaffolds with an in vitro cell-made mineralized matrix under the mineralizing culture conditions. PMID:25469312

  16. Biocompatibility analysis of different biomaterials in human bone marrow cell cultures.

    PubMed

    Wilke, A; Orth, J; Lomb, M; Fuhrmann, R; Kienapfel, H; Griss, P; Franke, R P

    1998-05-01

    A cell culture system for biocompatibility testing of hip implant materials is described. Human bone marrow cells have been chosen because these cells are in direct contact with the biomaterial after implantation in situ. The sensitivity of this method is evaluated for materials which are already being used as implants in humans and animal, e.g., hydroxyapatite (HA) ceramic, pure titanium, and ultra-high-molecular-weight polyethylene (UHMWPE). As indicative parameters of biocompatibility primary cell adherence, cell number, cell proliferation, production of extracellular matrix, cell vitality, and cell differentiation are described. After 2 weeks in culture, obvious differences between the biomaterials with respect to the indicative parameters could be observed. Cell numbers were greatest on the HA specimens. In the case of titanium alloys, we observed a decreased number of cells. The production of extracellular matrix was high for the HA ceramics but reduced for titanium specimens. The polymers allowed only a few adherent cells and showed no signs of extracellular matrix production. The results can be correlated astonishingly well to animal experiments and clinical experiences. Therefore, we suggest that this cell culture system seems to be a useful tool for biocompatibility testing of bone implantation materials. It also helps reduce animal experiments. With the help of flow cytophotometry, we analyzed the influence of biomaterials on large numbers of cells with respect to differentiation. There were similar populations of T cells and monocytes on all specimens tested. Extended B-cell and granulocyte populations, however, were observed with titanium and UHMWPE. Most osteocalcin-containing cells adhered to the HA ceramics. PMID:9549625

  17. Genetic control of mast cell development in bone marrow cultures. Strain-dependent variation in cultures from inbred mice.

    PubMed Central

    Reed, N D; Wakelin, D; Lammas, D A; Grencis, R K

    1988-01-01

    A comparison was made of the capacity of bone marrow cells (BM) from genetically distinct strains of mice to develop into mast cells under defined conditions of in vitro culture. In the presence of conditioned media derived from ConA treated spleen cells from normal or Trichinella spiralis-infected mice, mast cell development occurred readily. After 21 days of culture mast cells comprised more than 90% of the total cell population. BM taken from certain strains of mice (SWR and NIH) produced large numbers of mast cells, total cell numbers increasing between 2 and 5 fold; other strains (C57BL/10 [B10] B10 congenics) produced relatively few mast cells, total cell numbers not increasing above the starting concentration or declining during culture. The genetic factors determining the strain-response phenotype (no. of mast cells in culture) were predominantly associated with the background genome. No significant differences in response were noted between the B10 congenic strains B10 [H-2b], B10.G [H-2q] or B10.BR [H-2k], which differ only at the MHC, whereas major differences were seen between B10.G and the other H-2q strains [SWR and NIH]. Response phenotype was not inherited as a simple dominant trait; F1 progeny of high x low responder strains were intermediate between the parental values. The expression of genetic influences upon mast cell response phenotype appears to be at both the level of mast cell precursor cells, as determined from limiting dilution assays of BM from high, low and F1 (high x low) strains, and at the level of mast cell proliferation, as determined by repeated sub-culture of mast cells from these strains. PMID:3208455

  18. Cytocompatibility of the selected calcium phosphate based bone cements: comparative study in human cell culture.

    PubMed

    Olkowski, Rados?aw; Kaszczewski, Piotr; Czechowska, Joanna; Siek, Dominika; Pijocha, Dawid; Zima, Aneta; ?lsarczyk, Anna; Lewandowska-Szumie?, Ma?gorzata

    2015-12-01

    Calcium phosphate cements (CPC) are valuable bone fillers. Recently they have been also considered as the basis for drug-, growth factors- or cells-delivery systems. Broad possibilities to manipulate CPC composition provide a unique opportunity to obtain materials with a wide range of physicochemical properties. In this study we show that CPC composition significantly influences cell response. Human bone derived cells were exposed to the several well-characterized different cements based on calcium phosphates, magnesium phosphates and calcium sulfate hemihydrate (CSH). Cell viability assays, live/dead staining and real-time observation of cells in contact with the materials (time-laps) were performed. Although all the investigated materials have successfully passed a standard cytocompatibility assay, cell behavior in a direct contact with the materials varied depending on the material and the experimental system. The most recommended were the ?-TCP-based materials which proved suitable as a support for cells in a direct contact. The materials which caused a decrease of calcium ions concentration in culture induced the negative cell response, however this effect might be expected efficiently compensated in vivo. All the materials consisting of CSH had negative impact on the cells. The obtained results strongly support running series of cytocompatibility studies for preclinical evaluation of bone cements. PMID:26511138

  19. Three-dimensional cancer-bone metastasis model using ex-vivo co-cultures of live calvarial bones and cancer cells.

    PubMed

    Curtin, Paul; Youm, Helen; Salih, Erdjan

    2012-02-01

    One of the major limitations of studying cancer-bone metastasis has been the lack of an appropriate ex-vivo model which can be used under defined conditions that simulates closely the in vivo live bone microenvironment in response to cancer-bone interactions. We have developed and utilized a three-dimensional (3D) cancer-bone metastasis model using free-floating live mouse calvarial bone organs in the presence of cancer cells in a roller tube system. In such co-cultures under hypoxia and a specifically defined bone remodeling stage, viz., resorption system, cancer cells showed a remarkable affinity and specificity for the "endosteal side" of the bone where they colonize and proliferate. This was concurrent with differentiation of resident stem/progenitor cells to osteoclasts and bone resorption. In contrast, under bone formation conditions this model revealed different pathophysiology where the breast cancer cells continued to induce osteoclastic bone resorption whereas prostate cancer cells led to osteoblastic bone formation. The current 3D model was used to demonstrate its application to studies involving chemical and biochemical perturbations in the absence and presence of cancer cells and cellular responses. We describe proof-of-principle with examples of the broad versatility and multi-faceted application of this model that adds another dimension to the ongoing studies in the cancer-bone metastasis arena. PMID:22071100

  20. Desensitization of parathyroid hormone receptors on cultured bone cells

    SciTech Connect

    Pun, K.K.; Ho, P.W.; Nissenson, R.A.; Arnaud, C.D. )

    1990-12-01

    Administration of excessive amounts of parathyroid hormone (PTH) in the treatment of osteoporosis can reverse the beneficial effects of a low-dose, intermittent regime. To investigate the direct actions and the possible cellular mechanisms of PTH in inducing desensitization of PTH receptors, we studied the effects of desensitization on rat osteoblastic UMR-106 cells. When the osteoblasts were preincubated with bPTH-(1-34), complete refractoriness to a subsequent challenge with the hormone developed within 1 h and at hormone concentrations as low as 5 nM. When osteoblasts thus desensitized were incubated in hormone-free medium, recovery of the cAMP responses began within 2 h and reached maximum after 16 h. Cycloheximide did not affect the process of desensitization. (Nle8,Nle18,Tyr34)bPTH-(3-34)amide significantly impaired the desensitization process by PTH-(1-34) but did not have stimulatory effect on cAMP responses. No significant heterologous desensitization was obvious after preincubation with isoprenaline (50 microM), prostaglandin E1 (50 microM), or prostaglandin E2 (50 microM) for 2 h. Binding experiments with (125I)PLP-(1-36)amide after desensitization revealed that there was an approximate twofold decrease in receptor affinities as analyzed by Scatchard analysis, showing that the decrease in affinity was prominent in the process of desensitization. When the cells were treated with monensin during desensitization, PTH challenge after desensitization produced significantly lower cyclic AMP responses. Recovery after desensitization occurred over a period of 16 h. Inclusion of monensin, but not cycloheximide, impaired the recovery. The results show that homologous desensitization of rat osteoblasts to PTH is brought about by the occupancy of receptors by PTH-(1-34) but not by cAMP generation itself.

  1. Stimulation of osteoclast-like cell formation by Pasteurella multocida toxin from hemopoietic progenitor cells in mouse bone marrow cultures.

    PubMed Central

    Jutras, I; Martineau-Doiz, B

    1996-01-01

    The effects of purified Pasteurella multocida toxin (PMT) on osteoclast formation from hemopoietic progenitor cells were studied using an in vitro system. Mononuclear adherent mouse bone marrow cells were cultured for 7 or 14 days in the presence of PMT, or 1,25-dihydroxy-vitamin D3, or both. Mononuclear osteoclast-like cells, which are postmitotic osteoclast precursor cells, were identified as tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells possessing calcitonin receptors. Multinucleated osteoclast-like cells were TRAP-positive multinuclear cells with calcitonin receptors. The results demonstrate that, as does 1,25(OH)2D3, Pasteurella multocida toxin stimulates proliferation of adherent bone marrow mononuclear cells (progenitor cells), and their differentiation into postmitotic mononuclear osteoclast precursor cells. It also causes fusion of the latter into multinuclear osteoclasts; however, the number of osteoclasts obtained with PMT is smaller than with 1,25-dihydroxy-vitamin D3. Images Figure 1. PMID:8825991

  2. The cellular metabolism of lead and calcium: A kinetic analysis in cultured osteoclastic bone cells

    SciTech Connect

    Rosen, J.F.; Pounds, J.G.

    1986-01-01

    Characterization of lead metabolism in bone is necessary to understand the role of skeletal lead, an endogenous source of this toxic metal, in the expression of adverse effects of lead intoxication in concert with external sources. Moreover, it has been postulated that an early manifestation of lead toxicity common to diverse cell types may be pertubations in intracellular calcium homeostasis. Furthermore, it has been suggested that calciotropic hormones may express their actions on bone cells by modulating the messenger functions of intracellular Ca. Before these postulates can be more fully tested, the homeostasis of intracellular Pb and Ca must be understood more clearly. We have designed experiments to characterize the steady-state kinetic distribution and behavior of /sup 210/Pb and /sup 45/Ca in osteoclastic bone cells and to identify biological structures or functions associated with the kinetic pools. Cultures were labeled with /sup 210/Pb or /sup 45/Ca and the kinetic parameters were obtained by analysis of isotope washout curves. Cellular metabolism was defined by three kinetic pools of intracellular Pb and Ca. The largest and slowest exchanging pool was characterized as a mitochondrial compartment for both metals. These data indicate that Pb and Ca share similar intracellular pathways in osteoclastic bone cells and that both metals are readily exchangeable in this in vitro system. The results of other experiments have revealed that lead, at relatively low medium concentrations, produces a marked increase in all three intracellular Ca compartments. 18 refs., 2 figs.

  3. [Evaluation of the biocompatibility of implant materials with human bone marrow cell cultures].

    PubMed

    Wilke, A; Schrder, G; Orth, J; Griss, P; Franke, R P

    1993-06-01

    A cell culture biocompatibility test for implant materials is described. For the first time, the human bone marrow cells that actually come into direct contact with the implanted biomaterial can be employed. The usefulness of this method is shown for materials which have long been used in the clinical situation (hydroxyapatite, commercially pure titanium and ultra-high molecular weight polyethylene). After two weeks in culture, light- and fluorescence-microscopic and SEM studies revealed significant differences in cell growth. Maximum compatibility was shown by the hydroxyapatite specimen. In the case of commercially pure titanium we found somewhat decreased biocompatibility. Polyethylene was associated with distinct signs of cytotoxicity. These results are compatible with those of animal experiments and clinical experience. Our system would thus appear to be a useful screening test for some implantation materials, and may help reduce the need for animal tests. PMID:8395905

  4. Stromal cells in long-term murine bone marrow culture: FACS studies and origin of stromal cells in radiation chimeras

    SciTech Connect

    Lennon, J.E.; Micklem, H.S.

    1986-05-01

    Adherent layers from hematopoietically active long-term bone marrow cultures (LTBMC), incubated with fluorescent beads, were analyzed for autofluorescence and phagocytic ability, using a fluorescence-activated cell sorter (FACS). Four groups of cells were separated from the adherent layers, including a group of large polygonal fibroblastoid stromal cells. Long-term chimeras were made by lethal irradiation of CBA/Ca (CBA) and C57Bl6/J (B6) mice and repopulation with phosphoglycerate kinase (PGK-1) alloenzyme-congenic bone marrow cells. Hematopoietically active LTBMC were established from such chimeras, and donor and host contributions of FACS-sorted adherent-layer cells were measured. While macrophages and other hematopoietic cells were of donor origin, the fibroblastoid stromal cells were mainly or entirely host derived.

  5. Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells.

    PubMed

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Mastrodonato, Maria; Blasi, Antonella; Francioso, Edda; Rossi, Roberta; Crovace, Antonio; Resta, Leonardo

    2015-09-01

    Ovine bone marrow-derived mesenchymal stromal cells (oBM-MSCs) represent a good animal model for cell-based therapy and tissue engineering. Despite their use as a new therapeutic tool for several clinical applications, the morphological features of oBM-MSCs are yet unknown. Therefore, in this study the ultrastructural phenotype of these cells was analysed by transmission electron microscopy (TEM). The oBM-MSCs were isolated from the iliac crest and cultured until they reached near-confluence. After trypsinization, they were processed to investigate their ultrastructural features as well as specific surface marker proteins by flow cytometry and immunogold electron microscopy. Flow cytometry displayed that all oBM-MSCs lacked expression of CD31, CD34, CD45, HLA-DR whereas they expressed CD44, CD58, HLAI and a minor subset of the cell population (12%) exhibited CD90. TEM revealed the presence of two morphologically distinct cell types: cuboidal electron-lucent cells and spindle-shaped electron-dense cells, both expressing the CD90 antigen. Most of the electron-lucent cells showed glycogen aggregates, dilated cisternae of RER, moderately developed Golgi complex, and secretory activity. The electron-dense cell type was constituted by two different cell-populations: type A cells with numerous endosomes, dense bodies, rod-shaped mitochondria and filopodia; type B cells with elongated mitochondria, thin pseudopodia and cytoplasmic connectivity with electron-lucent cells. These morphological findings could provide a useful support to identify "in situ" the cellular components involved in the cell-therapy when cultured oBM-MSCs are injected. PMID:26196242

  6. Embryonic stem cells in scaffold-free three-dimensional cell culture: osteogenic differentiation and bone generation

    PubMed Central

    2011-01-01

    Extracorporeal formation of mineralized bone-like tissue is still an unsolved challenge in tissue engineering. Embryonic stem cells may open up new therapeutic options for the future and should be an interesting model for the analysis of fetal organogenesis. Here we describe a technique for culturing embryonic stem cells (ESCs) in the absence of artificial scaffolds which generated mineralized miromasses. Embryonic stem cells were harvested and osteogenic differentiation was stimulated by the addition of dexamethasone, ascorbic acid, and -glycerolphosphate (DAG). After three days of cultivation microspheres were formed. These spherical three-dimensional cell units showed a peripheral zone consisting of densely packed cell layers surrounded by minerals that were embedded in the extracellular matrix. Alizarine red staining confirmed evidence of mineralization after 10 days of DAG stimulation in the stimulated but not in the control group. Transmission electron microscopy demonstrated scorching crystallites and collagenous fibrils as early indication of bone formation. These extracellular structures resembled hydroxyl apatite-like crystals as demonstrated by distinct diffraction patterns using electron diffraction analysis. The micromass culture technique is an appropriate model to form three-dimensional bone-like micro-units without the need for an underlying scaffold. Further studies will have to show whether the technique is applicable also to pluripotent stem cells of different origin. PMID:21752302

  7. Effect of the co-culture of human bone marrow mesenchymal stromal cells with human umbilical vein endothelial cells in vitro.

    PubMed

    Lin, Qiwang; Wang, Linhui; Bai, Yuling; Hu, Menglin; Mo, Jianling; He, Haixin; Lou, Aiju; Yang, Bo; Zhao, Hongpu; Guo, Yuan; Wu, Yanfeng; Wang, Le

    2016-06-01

    Mesenchymal stem cells (MSCs) give origin to the marrow tromal environment that supports hematopoiesis. These cells present a wide range of differentiation potentials and a complex relationship with hematopoietic stem cells (HSCs) and endothelial cells. In addition to bone marrow (BM), MSCs can be obtained from other sites in the adult or the fetus. Recent studies have shown that cocultured endothelial cells and osteoblasts are mutually promotive in bone tissues repair. In this study, we observed the effects of coculture of endothelial cells and osteoblasts at different ratios on vasculogenesis and bone formation, and we found that angiogenic effect is more effective when endothelial cells are cocultured with osteoblasts at the ratio of 4:1, and osteogenic effect is more effective at the ratio of 1:4. It is concluded that the co-culture of human bone marrow mesenchymal stromal cells with human umbilical vein endothelial cells could be a promising culture system for bone tissue engineering applications. PMID:26479150

  8. Long-term three-dimensional perfusion culture of human adult bone marrow mononuclear cells in bioreactors.

    PubMed

    Schmelzer, Eva; Finoli, Anthony; Nettleship, Ian; Gerlach, Jörg C

    2015-04-01

    The construction and long-term maintenance of three-dimensional in vitro bone marrow models is of great interest but still quite challenging. Here we describe the use of a multi-compartment hollow-fiber membrane based three-dimensional perfusion bioreactor for long-term culture of whole human bone marrow mononuclear cells. We also investigated bioreactors with incorporated open-porous foamed hydroxyapatite scaffolds, mimicking the in vivo bone matrix. Cells in bioreactors with and without scaffolds were cultured to 6 weeks and compared to Petri dish controls. Cells were analyzed for gene expression, surface markers by flow cytometry, metabolic activity, hematopoietic potential, viability, and attachment by immunocytochemistry. Cells in bioreactors were metabolic active during long-term culture. The percentages of hematopoietic stem cell and mature endothelial cell fractions were maintained in bioreactors. The expression of most of the analyzed genes stabilized and increased after long-term culture of 6 weeks. Compared to Petri dish culture controls, bioreactor perfusion culture improved in both the short and long-term, the colony formation unit capacity of hematopoietic progenitors. Cells attached to the ample surface area provided by hydroxyapatite scaffolds. The implementation of a hydroxyapatite scaffold did not influence colony formation capacity, percentages of cell type specific fractions, gene expression, cell viability or metabolic turnover when compared to control cells cultured in bioreactors without scaffolds. In conclusion, three-dimensional perfusion bioreactor culture enables long-term maintenance of primary human bone marrow cells, with hydroxyapatite scaffolds providing an in vivo-like scaffold for three-dimensional culture. PMID:25335987

  9. The Effect of Culture on Human Bone Marrow Mesenchymal Stem Cells: Focus on DNA Methylation Profiles

    PubMed Central

    Bentivegna, Angela; Roversi, Gaia; Riva, Gabriele; Paoletta, Laura; Redaelli, Serena; Miloso, Mariarosaria; Tredici, Giovanni; Dalpr, Leda

    2016-01-01

    Human bone marrow mesenchymal stem cells (hBM-MSCs) are the best characterized multipotent adult stem cells. Their self-renewal capacity, multilineage differentiation potential, and immunomodulatory properties have indicated that they can be used in many clinical therapies. In a previous work we studied the DNA methylation levels of hBM-MSC genomic DNA in order to delineate a kind of methylation signature specific for early and late passages of culture. In the present work we focused on the modification of the methylation profiles of the X chromosome and imprinted loci, as sites expected to be more stable than whole genome. We propose a model where cultured hBM-MSCs undergo random modifications at the methylation level of most CGIs, nevertheless reflecting the original methylation status. We also pointed out global genome-wide demethylation connected to the long-term culture and senescence. Modification at CGIs promoters of specific genes could be related to the decrease in adipogenic differentiation potential. In conclusion, we showed important changes in CGIs methylation due to long-term in vitro culture that may affect the differentiation potential of hBM-MSCs. Therefore it is necessary to optimize the experimental conditions for in vitro expansion in order to minimize these epigenetic changes and to standardize safer procedures. PMID:26880970

  10. Scaffold-free and scaffold-assisted 3D culture enhances differentiation of bone marrow stromal cells.

    PubMed

    Vidyasekar, Prasanna; Shyamsunder, Pavithra; Sahoo, Sanjeeb Kumar; Verma, Rama Shanker

    2016-02-01

    3D cultures of stem cells can preserve differentiation potential or increase the efficiency of methods that induce differentiation. Mouse bone marrow-derived stromal cells (BMSCs) were cultured in 3D as scaffold-free spheroids or "mesoid bodies" (MBs) and as aggregates on poly(lactic) acid microspheres (MB/MS). 3D cultures demonstrated viable cells, interaction on multiple planes, altered cell morphology, and the formation of structures similar to epithelial cell bridges. Cell proliferation was limited in suspension cultures of MB and MB/MS; however, cells regained proliferative capacity when transferred to flat substrates of tissue culture plates (TCPs). Expanded as monolayer, cells retained expression of Sca-1 and CD44 stem cell markers. 3D cultures demonstrated enhanced potential for adipogenic and osteogenic differentiation showing higher triglyceride accumulation and robust mineralization in comparison with TCP cultures. Enhanced and efficient adipogenesis was also observed in 3D cultures generated in a rotating cell culture system. Preservation of multilineage potential of BMSC was demonstrated in 5-azacytidine treatment of 3D cultures and TCP by expression of cardiac markers GATA4 and ACTA1 although functioning cardiomyocytes were not derived. PMID:26542170

  11. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation

    PubMed Central

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo. PMID:26808122

  12. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  13. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  14. Effect of Ex Vivo Culture of CD34+ Bone Marrow Cells on Immune Reconstitution of XSCID Dogs Following Allogeneic Bone Marrow Transplantation

    PubMed Central

    Kennedy, Douglas R.; McLellan, Kyle; Moore, Peter F.; Henthorn, Paula S.; Felsburg, Peter J.

    2009-01-01

    Successful genetic treatment of most primary immunodeficiencies or hematological disorders will require the transduction of pluripotent, self-renewing hematopoietic stem cells (HSC) rather than their progeny in order to achieve enduring production of genetically corrected cells and durable immune reconstitution. Current ex vivo transduction protocols require manipulation of HSC by culture in cytokines for various lengths of time depending upon the retroviral vector that may force HSC to enter pathways of proliferation, and possibly differentiation, that could limit their engraftment potential, pluripotentiality and long-term repopulating capacity. We have compared the ability of normal CD34+ cells cultured in a standard cytokine cocktail for 18 hours or 4.5 days to reconstitute XSCID dogs following bone marrow transplantation in the absence of any pre-transplant conditioning with that of freshly isolated CD34+ cells. CD34+ cells cultured under standard γ-retroviral transduction conditions (4.5 days) showed decreased engraftment potential and ability to sustain long-term thymopoiesis. In contrast, XSCID dogs transplanted with CD34+ cells cultured for 18 hours showed a robust T cell immune reconstitution similar to dogs transplanted with freshly isolated CD34+ cells, however, the ability to sustain long-term thymopoiesis was impaired. These results emphasize the need to determine ex vivo culture conditions that maintain both the engraftment potential and “stem cell” potential of the cultured cells. PMID:19450750

  15. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice

    SciTech Connect

    Perkins, S.; Fleischman, R.A.

    1988-04-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produced by placental injection of bone marrow into genetically anemic Wx/Wv fetuses, a technique that essentially precludes engraftment of nonhematopoietic cells. Using two-color indirect immunofluorescence, the stromal cells in long-term bone marrow culture derived from these chimeras were analyzed for donor or host origin by strain-specific H-2 antigens, and for cell lineage by a variety of other specific markers. 75-95% of the stromal cells were shown to be hematopoietic cells of the monocyte-macrophage lineage, based upon donor origin, phagocytosis, and expression of specific hematopoietic surface antigens. The remaining 5-25% of the stromal cells were exclusively host in origin. Apart from occasional fat cells, these cells uniformly expressed collagen type IV, laminin, and a surface antigen associated with endothelial cells. Since these endothelial-like cells are not transplantable into radiation or fetal chimeras, they are not derived from hematopoietic stem cells. The contrast between our findings and human studies suggests either unexpected species differences in the origin of stromal lineages or limitations in the previous methodology used to detect nonhematopoietic stromal cells.

  16. Hyaluronan Binding Identifies a Functionally Distinct Alveolar Macrophage-like Population in Bone Marrow-Derived Dendritic Cell Cultures.

    PubMed

    Poon, Grace F T; Dong, Yifei; Marshall, Kelsey C; Arif, Arif; Deeg, Christoph M; Dosanjh, Manisha; Johnson, Pauline

    2015-07-15

    Although classical dendritic cells (DCs) arise from distinct progenitors in the bone marrow, the origin of inflammatory DCs and the distinction between monocyte-derived DCs and macrophages is less clear. In vitro culture of mouse bone marrow cells with GM-CSF is a well-established method to generate DCs, but GM-CSF has also been used to generate bone marrow-derived macrophages. In this article, we identify a distinct subpopulation of cells within the GM-CSF bone marrow-derived DC culture based on their ability to bind hyaluronan (HA), a major component of the extracellular matrix and ligand for CD44. HA identified a morphologically distinct subpopulation of cells within the immature DC population (CD11c(+) MHC II(mid/low)) that were CCR5(+)/CCR7(-) and proliferated in response to GM-CSF, but, unlike immature DCs, did not develop into mature DCs expressing CCR7 and high levels of MHC II, even after stimulation with LPS. The majority of these cells produced TNF-α in response to LPS but were unable to activate naive T cells, whereas the majority of mature DCs produced IL-12 and activated naive T cells. This HA binding population shared many characteristics with alveolar macrophages and was retained in the alveolar space after lung instillation even after LPS stimulation, whereas the MHC II(high) mature DCs were found in the draining lymph node. Thus, HA binding in combination with MHC II expression can be used to identify alveolar-like macrophages from GM-CSF-treated bone marrow cultures, which provides a useful in vitro model to study alveolar macrophages. PMID:26085682

  17. Isolation, culture, and osteogenic/chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Grssel, Susanne; Stckl, Sabine; Jenei-Lanzl, Zsuzsa

    2012-01-01

    Musculoskeletal disorders, as non-healing fractures and large bone defects, articular cartilage and subchondral bone injuries, often result in lifelong chronic pain and compromised quality of life. Although generally a natural process, failure of large bone defects to heal such as after complex fractures, resection of tumours, infections, or revisions of joint replacements remains a critical challenge that requires more appropriate solutions as those currently available. In addition, regeneration of chondral and osteochondral defects continues to be a challenge until to date. A profound understanding of the underlying mechanisms of endogenous regeneration is a prerequisite for successful bone and cartilage regeneration. Presently, one of the most promising therapeutic approaches is cell-based tissue engineering which provides a healthy population of cells to the injured site. Use of differentiated cells has severe limitations; an excellent alternative would be the application of adult marrow stromal cells/mesenchymal stem cells (MSC) which possess extensive proliferation potential and proven capability to differentiate along the osteochondral pathway. The process of osteo-/chondrogenesis can be mimicked in vitro by inducing osteo-chondroprogenitor stem cells to undergo osteogenesis and chondrogenesis through exposure of osteo-/chondrogenic favourable microenvironmental, mechanical, and nutritional conditions. This chapter provides comprehensive protocols for the isolation, expansion, and osteo-/chondrogenic differentiation of adult bone marrow-derived MSC. PMID:22610563

  18. Ki-energy (Life-energy) Stimulates Osteoblastic Cells and Inhibits the Formation of Osteoclast-like Cells in Bone Cell Culture Models

    PubMed Central

    Nishino, Kozo; Uchiyama, Satoshi; Ohnishi, Tomoko; Yamaguchi, Masayoshi

    2007-01-01

    Some practitioners of the Nishino Breathing Method (NBM) were found to have a higher bone density than the average values of age- and gender-matched non-practitioners. Using bone cell culture models, we investigated a possible mechanism behind this observation. For the study of bone mineralization, we performed the following two experiments using cultured osteoblastic MC3T3-E1 cells: (i) Kozo Nishino, a Japanese Ki expert, sent Ki-energy to the cells once for 5 or 10 min after they were seeded in culture dishes in the presence of 10% fetal bovine serum (FBS). They were incubated for 72 h and the cells were counted. The number in the dish with 10-min Ki-exposure was significantly greater than that in the control (P < 0.01 with n = 8). We performed a reverse transcription-polymerase chain reaction (RT–PCR) study using these cells, but the mRNA expressions did not change significantly. (ii) After cells were incubated for 72 h without Ki-exposure (in the presence of FBS), they were further cultured for 48 h (in the absence of FBS) to promote differentiation. At the beginning of the second culture stage, Ki was applied once for 10 min. After 48 h, RT–PCR was performed. The mRNA expressions which are related to bone mineralization, such as Runx2, α1(I) collagen, alkaline phosphatase and osteocalcin, increased significantly (P < 0.05 and n = 4 for all). For the bone resorption study, we used mouse marrow cultures, which can form osteoclast-like cells in the presence of (1–34) parathyroid hormone (PTH), and stimulate resorption. We exposed these cells to Ki-energy twice for the duration of 5 or 10 min on day 0 and day 4. On day 7, the cells were counted. The number of osteoclast-like cells in dishes with Ki exposure was significantly smaller than those in control dishes (P < 0.05 with n = 5). The difference between 5-min exposure and 10-min exposure was not statistically significant. All of our data suggest that the Ki-effect on osteoporosis should be further explored. PMID:17549240

  19. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    SciTech Connect

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi; Nishiyama, Masahiko

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  20. Human bone marrow and umbilical cord blood cells generate CD4+ and CD8+ single-positive T cells in murine fetal thymus organ culture.

    PubMed Central

    Yeoman, H; Gress, R E; Bare, C V; Leary, A G; Boyse, E A; Bard, J; Shultz, L D; Harris, D T; DeLuca, D

    1993-01-01

    Murine fetal thymus lobes isolated from both normal and scid/scid mice can be colonized by donor cells from either human bone marrow or human umbilical cord blood in vitro. Subsequent organ culture results in a transient production of a few CD4+ CD8+ (double-positive) cells and then the accumulation of CD4+ or CD8+ (single-positive) T cells. A significant number of immature T-cell intermediates (e.g., CD8low, CD3-/low cells) were present in early organ cultures, suggesting that these were progenitors of the mature CD3+/high single-positive T cells that dominated late cultures. Depletion of mature T cells from the donor-cell populations did not affect their ability to colonize thymus lobes. However, colonization depended on the presence of CD7+ progenitor T cells. Limiting dilution experiments using mature T-cell populations (human peripheral blood leukocytes, human bone marrow cells, and human umbilical cord blood cells) suggested that thymic organ culture supports the growth of progenitor T cells but does not support the growth of mature human T cells. Each of these donor populations produced single-positive populations with different CD4/CD8 ratios, suggesting that precursor cells from different sources differ qualitatively in their capacity to differentiate into T cells. Images Fig. 1 PMID:7902570

  1. Microgravity and bone cell mechanosensitivity.

    PubMed

    Klein-Nulend, J; Bacabac, R G; Veldhuijzen, J P; Van Loon, J J W A

    2003-01-01

    The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone. The in vivo operating cell stress derived from bone loading is likely the flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Earlier studies have shown that the disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity, or better near weightlessness, is associated with the loss of bone in astronauts, and has catabolic effects on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found earlier that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGE2 production. Therefore it is possible that the mechanosensitivity of bone cells is altered under near weightlessness conditions, and that this abnormal mechanosensation contributes to disturbed bone metabolism observed in astronauts. In our current project for the International Space Station, we wish to test this hypothesis experimentally using an in vitro model. The specific aim of our research project is to test whether near weightlessness decreases the sensitivity of bone cells for mechanical stress through a decrease in early signaling molecules (NO, PGs) that are involved in the mechanical loading-induced osteogenic response. Bone cells are cultured with or without gravity prior to and during mechanical loading, using our modified in vitro oscillating fluid flow apparatus. In this "FlowSpace" project we are developing a cell culture module that is used to provide further insight in the mechanism of mechanotransduction in bone. PMID:15000126

  2. Microgravity and bone cell mechanosensitivity

    NASA Astrophysics Data System (ADS)

    Klein-Nulend, J.; Bacabac, R. G.; Veldhuijzen, J. P.; Van Loon, J. J. W. A.

    2003-10-01

    The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone. The in vivo operating cell stress derived from bone loading is likely the flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Earlier studies have shown that the disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity, or better near weightlessness, is associated with the loss of bone in astronauts, and has catabolic effects on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found earlier that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGEZ production. Therefore it is possible that the mechanosensitivity of bone cells is altered under near weightlessness conditions, and that this abnormal mechanosensation contributes to disturbed bone metabolism observed in astronauts. In our current project for the International Space Station, we wish to test this hypothesis experimentally using an in vitro model. The specific aim of our research project is to test whether near weightlessness decreases the sensitivity of bone cells for mechanical stress through a decrease in early signaling molecules (NO, PGs) that are involved in the mechanical loading-induced osteogenic response. Bone cells are cultured with or without gravity prior to and during mechanical loading, using our modified in vitro oscillating fluid flow apparatus. In this "FlowSpace" project we are developing a cell culture module that is used to provide further insight in the mechanism of mechanotransduction in bone.

  3. Culture human mesenchymal stem cells with calcium phosphate cement scaffolds for bone repair.

    PubMed

    Weir, Michael D; Xu, Hockin H K

    2010-04-01

    Because of its moldability and excellent osteoconductivity, calcium phosphate cement (CPC) is highly promising for craniofacial and orthopedic applications. The objectives of this study were to investigate the response of human mesenchymal stem cells (hMSCs) to a high-strength CPC-chitosan scaffold and to examine cell proliferation and osteogenic differentiation. hMSCs were seeded onto CPC-chitosan composite, CPC control, and tissue culture polystyrene (TCPS). Alkaline phosphatase activity (ALP) and mineralization of hMSCs were measured. CPC-chitosan had a flexural strength (mean + or - SD; n = 5) of (19.5 + or - 1.4) MPa, higher than (8.0 + or - 1.4) MPa of CPC control (p < 0.05). The percentage of live hMSCs on CPC-chitosan was (90.5 + or - 1.3)% at 8 days, matching (90.7 + or - 3.8)% of CPC control (p > 0.1). The CPC-chitosan surface area covered by the attached hMSCs increased from (51 + or - 11)% at 1 day to (90 + or - 4)% at 8 days (p < 0.05), matching those of CPC control (p > 0.1). Hence, the CPC strength was significantly increased via chitosan without compromising the hMSC response. At 8 days, there was a significant increase in ALP of cells in osteogenic media (10.99 + or - 0.93) [(mM pNpp/min)/(microg DNA)] versus control media (3.62 + or - 0.40) (p < 0.05). hMSCs in osteogenic media exhibited greater mineralization area of (47.5 + or - 19.7)% compared with (6.1 + or - 2.3)% in control medium on TCPS (p < 0.05). In conclusion, hMSCs showed excellent attachment and viability on the strong and tough CPC-chitosan scaffold, matching the hMSC response on CPC control. hMSCs were successfully differentiated down the osteogenic lineage. Hence, the strong, in situ hardening CPC-chitosan scaffold may be useful as a moderate load-bearing vehicle to deliver hMSCs for maxillofacial and orthopedic bone tissue engineering. PMID:20091907

  4. Culture Human Mesenchymal Stem Cells With Calcium Phosphate Cement Scaffolds for Bone Repair

    PubMed Central

    Weir, Michael D.; Xu, Hockin H. K.

    2010-01-01

    Because of its moldability and excellent osteoconductivity, calcium phosphate cement (CPC) is highly promising for craniofacial and orthopedic applications. The objectives of this study were to investigate the response of human mesenchymal stem cells (hMSCs) to a high-strength CPC-chitosan scaffold and to examine cell proliferation and osteogenic differentiation. hMSCs were seeded onto CPC-chitosan composite, CPC control, and tissue culture polystyrene (TCPS). Alkaline phosphatase activity (ALP) and mineralization of hMSCs were measured. CPC-chitosan had a flexural strength (mean SD; n = 5) of (19.5 1.4) MPa, higher than (8.0 1.4) MPa of CPC control (p < 0.05). The percentage of live hMSCs on CPC-chitosan was (90.5 1.3)% at 8 days, matching (90.7 3.8)% of CPC control (p > 0.1). The CPC-chitosan surface area covered by the attached hMSCs increased from (51 11)% at 1 day to (90 4)% at 8 days (p < 0.05), matching those of CPC control (p > 0.1). Hence, the CPC strength was significantly increased via chitosan without compromising the hMSC response. At 8 days, there was a significant increase in ALP of cells in osteogenic media (10.99 0.93) [(mM pNpp/min)/(?g DNA)] versus control media (3.62 0.40) (p < 0.05). hMSCs in osteogenic media exhibited greater mineralization area of (47.5 19.7)% compared with (6.1 2.3)% in control medium on TCPS (p < 0.05). In conclusion, hMSCs showed excellent attachment and viability on the strong and tough CPC-chitosan scaffold, matching the hMSC response on CPC control. hMSCs were successfully differentiated down the osteogenic lineage. Hence, the strong, in situ hardening CPC-chitosan scaffold may be useful as a moderate load-bearing vehicle to deliver hMSCs for maxillofacial and orthopedic bone tissue engineering. PMID:20091907

  5. Microgravity and Bone Cell Mechanosensitivity

    NASA Astrophysics Data System (ADS)

    Klein-Nulend, J.; Bacabac, R.; Veldhuijzen, J.; van Loon, J.

    The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone.The in vivo operating cell stress derived from bone loading is likely flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction.Microgravity, or better near weightlessness, has catabolic effects on the skeleton of astronauts, and on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGE2 production. Therefore it is possible that the mechanosensitivity of bone cells is altered under near weightlessness conditions, and that this abnormal mechanosensation contributes to disturbed bone metabolism observed in astronauts.In our current project for the International Space Station, we wish to test this hypothesis experimentally using an in vitro model. The specific aim of our research project is to test whether near weightlessness decreases the sensitivity of bone cells for mechanical stress through a decrease in early signaling molecules (NO, PGs) that are involved in the mechanical loading-induced osteogenic response. Bone cells are cultured with or without gravity prior to and during mechanical loading, using our modified in vitro oscillating fluid flow apparatus. In this "FlowSpace" project we are developing a cell culture module that is used to provide further insight in the mechanism of mechanotransduction in bone.

  6. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

    SciTech Connect

    Aguirre, A.; Planell, J.A.; Dept. of Material Science and Metallurgical Engineering, Technical University of Catalonia , ETSEIB, Av. Diagonal 647, 08028 Barcelona; CIBER-BBN, Maria de Luna 11, Ed. CEEI, 50118 Zaragoza ; Engel, E.

    2010-09-17

    Research highlights: {yields} BM-EPCs and MSCs establish complex, self-organizing structures in co-culture. {yields} Co-culture decreases proliferation by cellular self-regulatory mechanisms. {yields} Co-cultured cells present an activated proangiogenic phenotype. {yields} qRT-PCR and cluster analysis identify new target genes playing important roles. -- Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

  7. Composite Scaffolds Containing Silk Fibroin, Gelatin, and Hydroxyapatite for Bone Tissue Regeneration and 3D Cell Culturing

    PubMed Central

    Moisenovich, M. M.; Arkhipova, A. Yu.; Orlova, A. A.; Drutskaya, M. S; Volkova, S. V.; Zacharov, S. E.; Agapov, I. I.; Kirpichnikov, M. P.

    2014-01-01

    Three-dimensional (3D) silk fibroin scaffolds were modified with one of the major bone tissue derivatives (nano-hydroxyapatite) and/or a collagen derivative (gelatin). Adhesion and proliferation of mouse embryonic fibroblasts (MEF) within the scaffold were increased after modification with either nano-hydroxyapatite or gelatin. However, a significant increase in MEF adhesion and proliferation was observed when both additives were introduced into the scaffold. Such modified composite scaffolds provide a new and better platform to study wound healing, bone and other tissue regeneration, as well as artificial organ bioengineering. This system can further be applied to establish experimental models to study cell-substrate interactions, cell migration and other complex processes, which may be difficult to address using the conventional two-dimensional culture systems. PMID:24772332

  8. A study of murine bone marrow cells cultured in bioreactors which create an environment which simulated microgravity

    NASA Technical Reports Server (NTRS)

    Lawless, Brother Desales

    1990-01-01

    Previous research indicated that mouse bone marrow cells could be grown in conditions of simulated microgravity. This environment was created in rotating bioreactor vessels. On three attempts mouse cells were grown successfully in the vessels. The cells reached a stage where the concentrations were doubling daily. Phenotypic analysis using a panel of monoclonal antibodies indicated that the cell were hematopoietic pluripotent stem cells. One unsuccessful attempt was made to reestablish the immune system in immunocompromised mice using these cells. Since last summer, several unsuccessful attempts were made to duplicate these results. It was determined by electron microscopy that the cells successfully grown in 1989 contained virus particles. It was suggested that these virally parasitized cells had been immortalized. The work of this summer is a continuation of efforts to grow mouse bone marrow in these vessels. A number of variations of the protocol were introduced. Certified pathogen free mice were used in the repeat experiments. In some attempts the medium of last summer was used; in others Dexture Culture Medium containing Iscove's Medium supplemented with 20 percent horse serum and 10-6 M hydrocortisone. Efforts this summer were directed solely to repeating the work of last summer. Plans were made for investigations if stem cells were isolated. Immortalization of the undifferentiated stem cell would be attempted by transfection with an oncogenic vector. Selective differentiation would be induced in the stem cell line by growing it with known growth factors and immune response modulators. Interest is in identifying any surface antigens unique to stem cells that would help in their characterization. Another goal was to search for markers on stem cells that would distinguish them from stem cells committed to a particular lineage. If the undifferentiated hematopoietic stem cell was obtained, the pathways that would terminally convert it to myeloid, lyphoid, erythroid, or other cell lines would be studied. Transfection with a known gene would be attempted and then conversion to a terminally identifiable cell.

  9. Strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures.

    PubMed

    Querido, William; Campos, Andrea P C; Martins Ferreira, Erlon H; San Gil, Rosane A S; Rossi, Alexandre M; Farina, Marcos

    2014-09-01

    We evaluate the effects of strontium ranelate on the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures, a system that gave us the advantage of obtaining mineral samples produced exclusively during treatment. Cells were treated with strontium ranelate at concentrations of 0.05 and 0.5 mM Sr(2+). Mineral substances were isolated and analyzed by using a combination of methods: Fourier transform infrared spectroscopy, solid-state (1)H nuclear magnetic resonance, X-ray diffraction, micro-Raman spectroscopy and energy dispersive X-ray spectroscopy. The minerals produced in all cell cultures were typical bone-like apatites. No changes occurred in the local structural order or crystal size of the minerals. However, we noticed several relevant changes in the mineral produced under 0.5 mM Sr(2+): (1) increase in type-B CO3 (2-) substitutions, which often lead to the creation of vacancies in Ca(2+) and OH(-) sites; (2) incorporation of Sr(2+) by substituting slightly less than 10 % of Ca(2+) in the apatite crystal lattice, resulting in an increase in both lattice parameters a and c; (3) change in the PO4 (3-) environments, possibly because of the expansion of the lattice; (4) the Ca/P ratio of this mineral was reduced, but its (Ca+Sr)/P ratio was the same as that of the control, indicating that its overall cation/P ratio was preserved. Thus, strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures. PMID:24859219

  10. Isolation, Culture, Differentiation, and Nuclear Reprogramming of Mongolian Sheep Fetal Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Su, Xiaohu; Ling, Yu; Liu, Chunxia; Meng, Fanhua; Cao, Junwei; Zhang, Li; Zhou, Huanmin; Liu, Zongzheng; Zhang, Yanru

    2015-08-01

    We have characterized the differentiation potentiality and the developmental potential of cloned embryos of fetal bone marrow mesenchymal stem cells (BMSCs) isolated from Mongolian sheep. BMSCs were harvested by centrifuging after the explants method and the mononuclear cells obtained were cultured. The isolated BMSCs were uniform, with a fibroblast-like spindle or stellate appearance, and we confirmed expression of OCT4, SOX2, and NANOG genes at passage 3 (P3) by RT-PCR. We measured the growth of the passage 1, 5, and 10 cultures and found exponential growth with a population doubling time of 29.70.05?h. We cultured the P3 BMSCs in vitro under inductive environments and were able to induce them to undergo neurogenesis and form cardiomyocytes and adipocytes. Donor cells at passages 3-4 were used for nuclear transfer (NT). We found the BMSCs could be expanded in vitro and used as nuclear donors for somatic cell nuclear transfer (SCNT). Thus, BMSCs are an attractive cell type for large-animal autologous studies and will be valuable material for somatic cell cloning and future transgenic research. PMID:26086202

  11. The Role of Glucose, Serum, and Three-Dimensional Cell Culture on the Metabolism of Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Deorosan, Byron; Nauman, Eric A.

    2011-01-01

    Mesenchymal stem cells (MSCs) have become a critical addition to all facets of tissue engineering. While most in vitro research has focused on their behavior in two-dimensional culture, relatively little is known about the cells' behavior in three-dimensional culture, especially with regard to their metabolic state. To evaluate MSC metabolism during twodimensional culture, murine bone marrow-derived MSCs were cultured for one week using twelve different medium compositions, varying in both glucose and fetal bovine serum (FBS) concentrations. The results indicate that glucose concentration was the more important factor in sustaining cell growth and viability. To evaluate metabolic state during three-dimensional culture, MSCs were cultured for one week using two different medium compositions and two different concentrations of collagen gel matrix. The medium compositions only varied in glucose concentration. The results indicate that glucose and extracellular matrix were significant factors in the metabolic response of the cells. However, cells cultured in low density collagen exhibited considerable cell death, likely because of physical contraction of the collagen hydrogel which was not observed in the higher density collagen. These findings will be useful to the development of in vitro cell culture models that properly mimic in vivo physiological processes. PMID:21603146

  12. Neurotrophic actions of bone marrow stromal cells on primary culture of dorsal root ganglion tissues and neurons.

    PubMed

    Gu, Yun; Wang, Jie; Ding, Fei; Hu, Nan; Wang, Yaxian; Gu, Xiaosong

    2010-03-01

    Application of adult bone marrow stromal cells (BMSCs) provides therapeutic benefits to the treatment of neurological insults. The aim of this study was to explore the potential of nonhematopoietic BMSCs to produce soluble factors and stimulate signaling pathways in neurons that mediate trophic effects. A combination of enzyme-linked immunosorbent assay and two-dimensional gel electrophoresis coupled with mass spectrometry showed that the BMSCs released into the culture medium an array of soluble factors such as nerve growth factor, brain-derived neurotrophic factor, basic fibroblast growth factor, and ciliary neurotrophic factor, which have been shown to exhibit potent neurotrophic effects on neural cells. Immunochemistry, cell viability assay, and quantitative real-time RT-PCR collectively showed that neurite outgrowth and neurogenesis in cultured rat dorsal root ganglion (DRG) explants and neurons were enhanced after they were cocultured with rat BMSCs. Western blot analysis revealed that BMSC-conditioned medium activated phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase and/or phosphoinositide 3-kinase/serine/threonine kinase (PI3K/Akt) in primary culture of rat DRG neurons, which suggested that BMSCs trigger endogenous survival signaling pathways in neurons through their secreted soluble factors. Our data help to elucidate the mechanisms by which BMSCs function as a cell therapy agent in peripheral nerve regeneration. PMID:19894026

  13. Magnetic assembly-mediated enhancement of differentiation of mouse bone marrow cells cultured on magnetic colloidal assemblies

    NASA Astrophysics Data System (ADS)

    Sun, Jianfei; Liu, Xuan; Huang, Jiqing; Song, Lina; Chen, Zihao; Liu, Haoyu; Li, Yan; Zhang, Yu; Gu, Ning

    2014-05-01

    Here we reported an interesting phenomenon that the field-induced assemblies of magnetic nanoparticles can promote the differentiation of primary mouse bone marrow cells into osteoblasts. The reason was thought to lie in the remnant magnetic interaction inside the assemblies which resulted from the magnetic field-directed assembly. Influence of the assemblies on the cells was realized by means of interface effect rather than the internalization effect. We fabricated a stripe-like assemblies array on the glass plate and cultured cells on this surface. We characterized the morphology of assemblies and measured the mechanic property as well as the magnetic property. The cellular differentiation was measured by staining and quantitative PCR. Finally, Fe uptake was excluded as the reason to cause the phenomenon.

  14. Design and validation of a dynamic cell-culture system for bone biology research and exogenous tissue-engineering applications.

    PubMed

    Allori, Alexander C; Davidson, Edward H; Reformat, Derek D; Sailon, Alexander M; Freeman, James; Vaughan, Adam; Wootton, David; Clark, Elizabeth; Ricci, John L; Warren, Stephen M

    2013-09-11

    Bone lacunocanalicular fluid flow ensures chemotransportation and provides a mechanical stimulus to cells. Traditional static cell-culture methods are ill-suited to study the intricacies of bone biology because they ignore the three-dimensionality of meaningful cellular networks and the lacunocanalicular system; furthermore, reliance on diffusion alone for nutrient supply and waste product removal effectively limits scaffolds to 2-3 mm thickness. In this project, a flow-perfusion system was custom-designed to overcome these limitations: eight adaptable chambers housed cylindrical cell-seeded scaffolds measuring 12 or 24 mm in diameter and 1-10 mm in thickness. The porous scaffolds were manufactured using a three-dimensional (3D) periodic microprinting process and were composed of hydroxyapatite/tricalcium phosphate with variable thicknesses, strut sizes, pore sizes and structural configurations. A multi-channel peristaltic pump drew medium from parallel reservoirs and perfused it through each scaffold at a programmable rate. Hermetically sealed valves permitted sampling or replacement of medium. A gas-permeable membrane allowed for gas exchange. Tubing was selected to withstand continuous perfusion for > 2 months without leakage. Computational modelling was performed to assess the adequacy of oxygen supply and the range of fluid shear stress in the bioreactor-scaffold system, using 12 6 mm scaffolds, and these models suggested scaffold design modifications that improved oxygen delivery while enhancing physiological shear stress. This system may prove useful in studying complex 3D bone biology and in developing strategies for engineering thick 3D bone constructs. Copyright 2013 John Wiley & Sons, Ltd. PMID:24027138

  15. Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells.

    PubMed

    Sabatino, Maria Antonietta; Santoro, Rosaria; Gueven, Sinan; Jaquiery, Claude; Wendt, David James; Martin, Ivan; Moretti, Matteo; Barbero, Andrea

    2015-12-01

    Co-culture of mesenchymal stromal cells (MSCs) with articular chondrocytes (ACs) has been reported to improve the efficiency of utilization of a small number of ACs for the engineering of implantable cartilaginous tissues. However, the use of cells of animal origin and the generation of small-scale micromass tissues limit the clinical relevance of previous studies. Here we investigated the in vitro and in vivo chondrogenic capacities of scaffold-based constructs generated by combining primary human ACs with human bone marrow MSCs (BM-MSCs). The two cell types were cultured in collagen sponges (2 6 mm disks) at the BM-MSCs:ACs ratios: 100:0, 95:5, 75:25 and 0:100 for 3 weeks. Scaffolds freshly seeded or further precultured in vitro for 2 weeks were also implanted subcutaneously in nude mice and harvested after 8 or 6 weeks, respectively. Static co-culture of ACs (25%) with BM-MSCs (75%) in scaffolds resulted in up to 1.4-fold higher glycosaminoglycan (GAG) content than what would be expected based on the relative percentages of the different cell types. In vivo GAG induction was drastically enhanced by the in vitro preculture and maximal at the ratio 95:5 (3.8-fold higher). Immunostaining analyses revealed enhanced accumulation of type II collagen and reduced accumulation of type X collagen with increasing ACs percentage. Constructs generated in the perfusion bioreactor system were homogeneously cellularized. In summary, human cartilage grafts were successfully generated, culturing BM-MSCs with a relatively low fraction of non-expanded ACs in porous scaffolds. The proposed co-culture strategy is directly relevant towards a single-stage surgical procedure for cartilage repair. Copyright 2012 John Wiley & Sons, Ltd. PMID:23225781

  16. Concise review: Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic.

    PubMed

    Bara, Jennifer J; Richards, R Geoff; Alini, Mauro; Stoddart, Martin J

    2014-07-01

    Mesenchymal stem cells (MSCs) are increasingly being used in tissue engineering and cell-based therapies in all fields ranging from orthopedic to cardiovascular medicine. Despite years of research and numerous clinical trials, MSC therapies are still very much in development and not considered mainstream treatments. The majority of approaches rely on an in vitro cell expansion phase in monolayer to produce large cell numbers prior to implantation. It is clear from the literature that this in vitro expansion phase causes dramatic changes in MSC phenotype which has very significant implications for the development of effective therapies. Previous reviews have sought to better characterize these cells in their native and in vitro environments, described known stem cell interactions within the bone marrow, and discussed the use of innovative culture systems aiming to model the bone marrow stem cell niche. The purpose of this review is to provide an update on our knowledge of MSCs in their native environment, focusing on bone marrow-derived MSCs. We provide a detailed description of the differences between naive cells and those that have been cultured in vitro and examine the effect of isolation and culture parameters on these phenotypic changes. We explore the concept of "one step" MSC therapy and discuss the potential cellular and clinical benefits. Finally, we describe recent work attempting to model the MSC bone marrow niche, with focus on both basic research and clinical applications and consider the challenges associated with these new generation culture systems. PMID:24449458

  17. Research of osteoblastic induced rat bone marrow mesenchymal stem cells cultured on β-TCP/PLLA porous scaffold

    PubMed Central

    Yang, Yi; Wu, Jiang; Jin, Gele; Li, Liang; Li, Zhongwei; Li, Cao

    2015-01-01

    Background: Ceramic and polymer composite scaffolds are widely used in tissue engineering for bone tissue regeneration. Composite of β-tricalcium phosphate (β-TCP) and poly L-lactic acid (PLLA), due to its biocompatibility and biodegradability, is widely used in bioengineering. However, optimal ratio, porosity and pore size of this kind of scaffolds were not very clear yet. Materials and methods: We cultured osteoblastic induced rMSCs on β-TCP/PLLA scaffolds to investigate the optimum construction, which owned better properties for supporting cells growth, proliferation and differentiation. A total of 24 mice were divided into three groups: rMSCs + β-TCP/PLLA, osteoblastic rMSCs + β-TCP/PLLA and β-TCP/PLLA without cells. 8 rude mice were implanted with rMSCs + β-TCP/PLLA in the left thighs and β-TCP/PLLA without cells in the right thighs. 8 rude mice were implanted with osteoblastic rMSCs + β-TCP/PLLA in the left thighs and the same treatments in the right thighs as the above. After 8 and 12 weeks, the mice were sacrificed and implants with the surrounding tissues were harvested together. Paraffin sections were got and HE stain and Masson-Goldner stain were employed to observe the ectopic bone formation. Results: The scaffolds of β-TCP/PLLA = 2:1 significantly increased osteocalcin production of the cells. In addition, scaffolds with NaCl = 70 wt%, pore size 200~450 μm showed better compatibility to these seeding cells. A significantly larger area of bone formation in the osteoblastic rMSCs and β-TCP/PLLA composite than that in rMSCs/scaffold and in the scaffold without cells in vivo. Conclusion: compounds of osteoblastic induced rMSCs and the scaffold with β-TCP/PLLA = 2:1, NaCl = 70 wt%, pore size = 200-450 μm had good properties as a kind of bone substitute. PMID:26064209

  18. Culture and Identification of Mouse Bone Marrow-Derived Dendritic Cells and Their Capability to Induce T Lymphocyte Proliferation

    PubMed Central

    Wang, Wenguang; Li, Jia; Wu, Kun; Azhati, Baihetiya; Rexiati, Mulati

    2016-01-01

    Background The aim of this study was to establish a culture method for mouse dendritic cells (DCs) in vitro and observe their morphology at different growth stages and their ability to induce the proliferation of T lymphocytes. Material/Methods Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) were used in combination to induce differentiation of mouse bone marrow (BM) mononucleocytes into DCs. The derived DCs were then assessed for morphology, phenotype, and function. Results The mouse BM-derived mononucleocytes had altered cell morphology 3 days after induction by GM-CSF and IL-4 and grew into colonies. Typical dendrites appeared 8 days after induction. Many mature DCs were generated, with typical dendritic morphology observed under scanning electron microscopy. Expression levels of CD11c, a specific marker of BM-derived DCs, and of co-stimulatory molecules such as CD40, CD80, CD86, and MHC-II were elevated in the mature DCs. Furthermore, the mature DCs displayed a strong potency in stimulating the proliferation of syngenic or allogenic T lymphocytes. Conclusions Mouse BM-derived mononucleocytes cultured in vitro can produce a large number of DCs, as well as immature DCs, in high purity. The described in vitro culture method lays a foundation for further investigations of anti-tumor vaccines. PMID:26802068

  19. Culture and Identification of Mouse Bone Marrow-Derived Dendritic Cells and Their Capability to Induce T Lymphocyte Proliferation.

    PubMed

    Wang, Wenguang; Li, Jia; Wu, Kun; Azhati, Baihetiya; Rexiati, Mulati

    2016-01-01

    BACKGROUND The aim of this study was to establish a culture method for mouse dendritic cells (DCs) in vitro and observe their morphology at different growth stages and their ability to induce the proliferation of T lymphocytes. MATERIAL AND METHODS Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) were used in combination to induce differentiation of mouse bone marrow (BM) mononucleocytes into DCs. The derived DCs were then assessed for morphology, phenotype, and function. RESULTS The mouse BM-derived mononucleocytes had altered cell morphology 3 days after induction by GM-CSF and IL-4 and grew into colonies. Typical dendrites appeared 8 days after induction. Many mature DCs were generated, with typical dendritic morphology observed under scanning electron microscopy. Expression levels of CD11c, a specific marker of BM-derived DCs, and of co-stimulatory molecules such as CD40, CD80, CD86, and MHC-II were elevated in the mature DCs. Furthermore, the mature DCs displayed a strong potency in stimulating the proliferation of syngenic or allogenic T lymphocytes. CONCLUSIONS Mouse BM-derived mononucleocytes cultured in vitro can produce a large number of DCs, as well as immature DCs, in high purity. The described in vitro culture method lays a foundation for further investigations of anti-tumor vaccines. PMID:26802068

  20. Osteogenic differentiation of CD271+ cells from rabbit bone marrow cultured on three phase PCL/TZ-HA bioactive scaffolds: comparative study with mesenchymal stem cells (MSCs)

    PubMed Central

    Colosimo, Alessia; Rofani, Cristina; Ciraci, Elisa; Salerno, Aurelio; Oliviero, Maria; Maio, Ernesto Di; Iannace, Salvatore; Netti, Paolo A; Velardi, Francesco; Berardi, Anna C

    2015-01-01

    Tissue engineering is one of the major challenges of orthopedics and trauma surgery for bone regeneration. Biomaterials filled with mesenchymal stem cells (MSCs) are considered the most promising approach in bone tissue engineering. Furthermore, our previous study showed that the multi-phase poly [?-caprolactone]/thermoplastic zein-hydroxyapatite (PCL/TZ-HA) biomaterials improved rabbit (r) MSCs adhesion and osteoblast differentiation, thus demonstrating high potential of this bioengineered scaffold for bone regeneration. In the recent past, CD271 has been applied as a specific selective marker for the enrichment of MSCs from bone marrow (BM-MSCs). In the present study, we aimed at establishing whether CD271-based enrichment could be an efficient method for the selection of rBM-MSCs, displaying higher ability in osteogenic differentiation than non-selected rBM-MSCs in an in vitro system. CD271+ cells were isolated from rabbit bone marrow and were compared with rMSCs in their proliferation rate and osteogenic differentiation capability. Furthermore, rCD271+ cells were tested in their ability to adhere, proliferate and differentiate into osteogenic lineage, while growing on PCL/TZ-HA scaffolds, in comparison to rMSCs. Our result demonstrate that rCD271+ cells were able to adhere, proliferate and differentiate into osteoblasts when cultured on PCL/TZ-HA scaffolds in significantly higher levels as compared to rMSCs. Based on these findings, CD271 marker might serve as an optimal alternative MSCs selection method for the potential preclinical and clinical application of these cells in bone tissue regeneration. PMID:26550238

  1. Beneficial reciprocal effects of bone marrow stromal cells and Schwann cells from adult rats in a dynamic co-culture system in vitro without intercellular contact

    PubMed Central

    ZHOU, LI-NA; CUI, XIAO-JUN; SU, KAI-XIN; WANG, XIAO-HONG; GUO, JIN-HUA

    2015-01-01

    In order to examine how implanted bone marrow stromal cells (BMSCs) encourage peripheral nerve regeneration, the present study investigated the interaction of BMSCs and Schwann cells (SCs) using an indirect in vitro co-culture model. SCs and BMSCs were obtained from adult Sprague-Dawley rats. The passaged BMSCs were CD29- and CD44-positive but CD45-negative and were co-cultured with the primary SCs using a Millicell system, which allows BMSCs and SCs to grow in the same culture medium but without direct contact. Expression of the typical SC markers S-100 and glial fibrillary acidic protein (GFAP) of the treated BMSCs as well as the proliferation capacity of the co-cultured SCs was evaluated by immunocytochemical staining on the 3rd and 5th day of co-culture. Immunocytochemical staining showed that >75% of the BMSCs in the indirect co-culture model were GFAP- and S-100-positive on the 3rd and 5th day after co-culture, as opposed to <5% of the BMSCs in the control group. On the 3rd day after co-culture, only a few co-cultured BMSCs showed the typical SC-like morphology, while most BMSCs still kept their native appearance. By contrast, on the 5th day after co-culture, almost all of the co-cultured BMSCs appeared with the typical SC-like morphology. Furthermore, 70.71% of the SCs in the indirect co-culture model were S-100-positive on the 5th day of co-culture, as opposed to >30.43% of the SCs in the control group. These results indicated that BMSCs may interact synergistically with SCs with regard to promoting peripheral nerve regeneration. PMID:26133460

  2. Bone marrow (stem cell) donation

    MedlinePLUS

    Bone marrow is the soft, fatty tissue inside your bones. Bone marrow contains stem cells, which are immature cells that ... lymphoma , and myeloma can be treated with a bone marrow transplant . This is now often called a stem ...

  3. Investigation of magnesium-zinc-calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture.

    PubMed

    Cipriano, Aaron F; Sallee, Amy; Guan, Ren-Guo; Zhao, Zhan-Yong; Tayoba, Myla; Sanchez, Jorge; Liu, Huinan

    2015-01-01

    Crystalline Mg-Zn-Ca ternary alloys have recently attracted significant interest for biomedical implant applications due to their promising biocompatibility, bioactivity, biodegradability and mechanical properties. The objective of this study was to characterize as-cast Mg-xZn-0.5Ca (x=0.5, 1.0, 2.0, 4.0wt.%) alloys, and determine the adhesion and morphology of bone marrow derived mesenchymal stem cells (BMSCs) at the interface with the Mg-xZn-0.5Ca alloys. The direct culture method (i.e. seeding cells directly onto the surface of the sample) was established in this study to probe the highly dynamic cell-substrate interface and thus to elucidate the mechanisms of BMSC responses to dynamic alloy degradation. The results showed that the BMSC adhesion density on these alloys was similar to the cell-only positive control and the BMSC morphology appeared more anisotropic on the rapidly degrading alloy surfaces in comparison with the cell-only positive control. Importantly, neither culture media supplemented with up to 27.6mM Mg(2+) ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on BMSC responses. We speculated that degradation-induced dynamic surface topography played an important role in modulating cell morphology at the interface. This study presents a clinically relevant in vitro model for screening bioresorbable alloys, and provides useful design guidelines for determining the degradation rate of implants made of Mg-Zn-Ca alloys. PMID:25449917

  4. Culture medium of bone marrow-derived human mesenchymal stem cells effects lymphatic endothelial cells and tumor lymph vessel formation

    PubMed Central

    ZHAN, JIE; LI, YAHONG; YU, JING; ZHAO, YUANYAUN; CAO, WENMING; MA, JIE; SUN, XIAOXIAN; SUN, LI; QIAN, HUI; ZHU, WEI; XU, WENRONG

    2015-01-01

    Human bone marrow mesenchymal stem cells (hBM-MSCs) favor tumor growth and metastasis in vivo and in vitro. Neovascularization is involved in several pathological conditions, including tumor growth and metastasis. Previous studies have demonstrated that human bone marrow MSC-derived conditioned medium (hBM-MSC-CM) can promote tumor growth by inducing the expression of vascular epidermal growth factor (VEGF) in tumor cells. However, the effect of BM-MSCs on tumor lymph vessel formation has yet to be elucidated. In the present study, the effect of BM-MSCs on processes involved in lymph vessel formation, including tube formation, migration and proliferation, was investigated in human-derived lymphatic endothelial cells (HDLECs). It was identified that hBM-MSC-CM promoted the tube formation and migration of HDLECs. In addition, tumor cells were revealed to participate in lymph vessel formation. In the present study, the SGC-7901, HGC-27 and GFP-MCF-7 cell lines were treated with hBM-MSC-CM. The results demonstrated that the expression of the lymph-associated markers, prospero homeobox protein 1 and VEGF receptor-3, were increased in the SGC-7901 and HGC-27 cell lines, but not in the GFP-MCF-7 cells. The tube formation assay demonstrated that the HGC-27 cells treated with hBM-MSC-CM for 20 days underwent tube formation. These findings indicate that hBM-MSC-CM can promote tube formation in HDLECs and HGC-27 cells, which may be associated with lymph vessel formation during tumor growth and metastasis. PMID:25663886

  5. Three-dimensional culture of mouse bone marrow cells on stroma formed within a porous scaffold: influence of scaffold shape and cryopreservation of the stromal layer on expansion of haematopoietic progenitor cells.

    PubMed

    Miyoshi, Hirotoshi; Ohshima, Norio; Sato, Chiaki

    2013-01-01

    This study's primary goal was to develop an effective ex vivo expansion method for haematopoietic cells. 3D culture of mouse bone marrow cells was performed in porous scaffolds using a sheet or cube shape. Bone marrow cells were cultured on bone marrow-derived stromal layers formed within the scaffolds and the effect of scaffold shape on the expansion of haematopoietic cells was examined. In some experiments, stromal layers within cubic scaffolds were frozen and then used to culture bone marrow cells after thawing. Results show that after comparison, total cell density and expansion of haematopoietic cells were greater in cultures using the cubic scaffold, suggesting that it was superior to the sheet-like scaffold for expanding haematopoietic cells. When cryopreserved stroma was used, it effectively supported the expansion of haematopoietic cells, and a greater expansion of haematopoietic cells [(erythroid and haematopoietic progenitor cells (HPCs)] was achieved than in cultures with stromal cells that had not been cryopreserved. Expansion of cells using cryopreserved stroma had several other advantages such as a shorter culture period than the conventional method, a stable supply of stromal cells, and ease of handling and scaling up. As a result, this is an attractive method for ex vivo expansion of haematopoietic stem cells (HSCs) and HPCs for clinical use. PMID:22081538

  6. Co-culture of stromal and erythroleukemia cells in a perfused hollow fiber bioreactor system as an in vitro bone marrow model for myeloid leukemia.

    PubMed

    Usuludin, Suaidah Binte Mohamed; Cao, Xue; Lim, Mayasari

    2012-05-01

    We have developed a hematopoietic co-culture system using the hollow fiber bioreactor (HFBR) as a potential in vitro bone marrow model for evaluating leukemia. Supporting stroma using HS-5 cells was established in HFBR system and the current bioprocess configuration yielded an average glucose consumption of 640 mg/day and an average protein concentration of 6.40 mg/mL in the extracapillary space over 28 days. Co-culture with erythroleukemia K562 cells was used as a model for myelo-leukemic cell proliferation and differentiation. Two distinct localizations of K562 cells (loosely adhered and adherent cells) were identified and characterized after 2 weeks. The HFBR co-culture resulted in greater leukemic cell expansion (3,130 fold vs. 43 fold) compared to a standard tissue culture polystyrene (TCP) culture. Majority of expanded cells (68%) in HFBR culture were the adherent population, highlighting the importance of cell-cell contact for myelo-leukemic proliferation. Differentiation tendencies in TCP favored maturation toward monocyte and erythrocyte lineages but maintained a pool of myeloid progenitors. In contrast, HFBR co-culture exhibited greater lineage diversity, stimulating monocytic and megakaryocytic differentiation while inhibiting erythroid maturation. With the extensive stromal expansion capacity on hollow fiber surfaces, the HFBR system is able to achieve high cell densities and 3D cell-cell contacts mimicking the bone marrow microenvironment. The proposed in vitro system represents a dynamic and highly scalable 3D co-culture platform for the study of cell-stroma dependent hematopoietic/leukemic cell functions and ex vivo expansion. PMID:22161729

  7. Electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy analysis of titanium surfaces cultured with osteoblast-like cells derived from human mandibular bone.

    PubMed

    Mustafa, Kamal; Pan, Jinshan; Wroblewski, Joanna; Leygraf, Christofer; Arvidson, Kristina

    2002-03-15

    Variations in the oxide films on titanium surfaces blasted with TiO(2) particles of various sizes were analyzed after cultures with cells derived from human mandibular bone. Turned titanium surfaces and surfaces blasted with 63-90-, 106-180-, and 180-300-microm TiO(2) particles were cultured with osteoblast-like cells. The surfaces were characterized before and after the cell culture with electrochemical impedance spectroscopy (EIS). The surface chemical composition of selected samples was analyzed with X-ray photoelectron spectroscopy (XPS). EIS revealed that with respect to the turned surfaces, the effective surface area was about 5, 6, and 4 times larger on the surfaces blasted with 63-90-, 106-180-, and 180-300-microm particles, respectively. After 28 days of the cell culture, the corrosion resistance on all sample types was unaffected. The impedance characteristics suggest a considerable effect of ion incorporation and precipitation during culturing. XPS revealed that before the cell culture, a typical surface layer consisted of TiO(2). After the culture, the surface oxide film contained both phosphorus and calcium, along with large amounts of oxidized carbon (carbonate) and nitrogen. There were lower concentrations of carbon and nitrogen on the blasted surfaces. We concluded that the effective surface area was several times higher on blasted surfaces than on turned surfaces. Cells derived from human mandibular bone affected ion incorporation into the implant surface. PMID:11774327

  8. Transforming growth factor beta inhibits bone resorption in fetal rat long bone cultures.

    PubMed Central

    Pfeilschifter, J; Seyedin, S M; Mundy, G R

    1988-01-01

    TGF-beta 1 is a polypeptide that is abundant in bone matrix, is produced by bone cells, and modulates proliferation and differentiated functions of osteoblastic cells in vitro. TGF-beta 2 is a closely related polypeptide that was originally isolated from bone matrix. TGF-beta 1 has been shown previously to stimulate prostaglandin production in cultures of neonatal mouse calvariae, which causes these bones to resorb. We found similar effects with TGF-beta 2. In comparison, TGF-beta 1 and TGF-beta 2 failed to stimulate bone resorption in fetal rat long bone cultures during a 3-d incubation period in concentrations up to 50-100 times greater than those capable of inducing bone resorption in calvariae. Incubation with TGF-beta 1 for a further 3 d decreased bone resorption up to 30%. Moreover, bone resorption induced by the bone-resorbing agents IL 1 and 1,25-dihydroxyvitamin D3 was partially or completely inhibited by TGF-beta 1 and TGF-beta 2 during the second half of the 6-d incubation period. Inhibition of DNA synthesis with hydroxyurea inhibited bone resorption in long bones in a similar pattern to that seen with TGF-beta 1. The inhibitory effects of TGF-beta 1 and TGF-beta 2 on bone resorption in long bone cultures may therefore be due to inhibition of osteoclast precursor proliferation. PMID:3165385

  9. Nitrogen-containing bisphosphonate, YM529/ONO-5920 (a novel minodronic acid), inhibits RANKL expression in a cultured bone marrow stromal cell line ST2.

    PubMed

    Nishida, Shozo; Tsubaki, Masanobu; Hoshino, Mayumi; Namimatsu, Ayumi; Uji, Hiromi; Yoshioka, Shohei; Tanimori, Yoshihiro; Yanae, Masashi; Iwaki, Masahiro; Irimajiri, Kiyohiro

    2005-03-01

    Increase in bone resorption by osteoclasts can cause metabolic bone diseases, such as osteoporosis. Recent attention has been paid to the receptor activator of the NF-kappaB ligand (RANKL), an accelerator of osteoclast differentiation. RANKL is expressed on the bone marrow-derived stromal cell membrane and induces the differentiation of osteoclasts by binding to RANK expressed on the osteoclast precursor cell membrane. Since the inhibition of RANKL expression can lead to the inhibition of osteoclastic bone resorption, the clinical application of RANKL inhibition could be expected to have a major effect on metabolic bone disease therapy. In this study, we investigated whether or not YM529/ONO-5920, a nitrogen-containing bisphosphonate (a novel minodronic acid), inhibits RANKL expression in a bone marrow-derived stromal cell line (ST2 cells). Reverse transcription-polymerase chain reaction revealed that the administration of YM529/ONO-5920 to ST2 cells inhibited RANKL mRNA expression and reduced RANKL proteins as assessed by Western blot analysis. The inhibition of RANKL mRNA expression was reversed when geranylgeranyl pyrophosphate (GGPP), an intermediate in the mevalonate pathway, was used in combination. Furthermore, YM529/ONO-5920 reduced phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), and similarly, U0126, a mitogen-activated protein kinase kinase 1/2 inhibitor, inhibited RANKL expression. Pretreatment with GGPP reversed the YM529/ONO-5920-induced decrease in phosphorylation of ERK. Furthermore, YM529/ONO-5920 decreased TRAP-positive cells in co-culture of ST2 cells and an osteoclast cell line, C7 cells, and this decrease was inhibited by pretreatment with GGPP. This indicates that YM529/ONO-5920 inhibits GGPP biosynthesis in the mevalonate pathway and then signal transduction in the Ras-mitogen-activated protein kinase pathway, thereby inhibiting RANKL expression on ST2 cells. These results suggest a newly elucidated action of bisphosphonates in the inhibition of bone resorption. PMID:15670755

  10. The Bone Morphogenetic Protein Type Ib Receptor Is a Major Mediator of Glial Differentiation and Cell Survival in Adult Hippocampal Progenitor Cell Culture

    PubMed Central

    Brederlau, A.; Faigle, R.; Elmi, M.; Zarebski, A.; Sjberg, S.; Fujii, M.; Miyazono, K.; Funa, K.

    2004-01-01

    Bone morphogenetic proteins (BMPs) act as growth regulators and inducers of differentiation. They transduce their signal via three different type I receptors, termed activin receptor-like kinase 2 (Alk2), Alk3, or bone morphogenetic protein receptor Ia (BMPRIa) and Alk6 or BMPRIb. Little is known about functional differences between the three type I receptors. Here, we have investigated consequences of constitutively active (ca) and dominant negative (dn) type I receptor overexpression in adult-derived hippocampal progenitor cells (AHPs). The dn receptors have a nonfunctional intracellular but functional extracellular domain. They thus trap BMPs that are endogenously produced by AHPs. We found that effects obtained by overexpression of dnAlk2 and dnAlk6 were similar, suggesting similar ligand binding patterns for these receptors. Thus, cell survival was decreased, glial fibrillary acidic protein (GFAP) expression was reduced, whereas the number of oligodendrocytes increased. No effect on neuronal differentiation was seen. Whereas the expression of Alk2 and Alk3 mRNA remained unchanged, the Alk6 mRNA was induced after impaired BMP signaling. After dnAlk3 overexpression, cell survival and astroglial differentiation increased in parallel to augmented Alk6 receptor signaling. We conclude that endogenous BMPs mediate cell survival, astroglial differentiation and the suppression of oligodendrocytic cell fate mainly via the Alk6 receptor in AHP culture. PMID:15194807

  11. Morphological analysis of osteoclastogenesis induced by RANKL in mouse bone marrow cell cultures.

    PubMed

    Gardner, Colin R

    2007-07-01

    Under the influence of RANKL, in the presence of M-CSF, monocyte/macrophage precursor cells entered the osteoclast lineage and expressed the osteoclast marker tartrate-resistant acid phosphatase (TRAP). These cells were motile and began to differentiate by contacting and fusing together, initially forming cells with several nuclei. All sizes of cells continued to fuse, forming larger cells with more than 6 and as many as 50 nuclei. The degree of osteoclastogenesis was related to the concentration of RANKL. High cell density changed osteoclast morphology from a more rounded form with cytoplasm extended all round the cell to a form with cytoplasm concentrated around the nuclei and more restricted multiple cytoplasmic extensions. At optimal cell density and RANKL concentrations the large numbers of rounded cells fused into large cytoplasmic masses. On reaching a critical size, osteoclasts assumed a spread morphology with a peripheral ring structure. Most of the nuclei were associated with the peripheral ring. When cytoplasmic masses were present, rings also formed within the mass, often with no contact with the cell periphery. All forms of RANKL-induced osteoclastogenesis were blocked by the endogenous decoy receptor osteoprotegerin and were also strongly reduced by calcitonin, with the later arriving morphological categories being the first to disappear. PMID:17303447

  12. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.

    PubMed

    Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna

    2016-04-01

    Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. PMID:26971678

  13. Bone-Immune Cell Crosstalk: Bone Diseases

    PubMed Central

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma. PMID:26000310

  14. In vitro quantitation of lethal and physiologic effects of total body irradiation on stromal and hematopoietic stem cells in continuous bone marrow cultures from Rf mice

    SciTech Connect

    Greenberger, J.S.; Eckner, R.J.; Otten, J.A.; Tennant, R.W.

    1982-07-01

    The effects of in vivo total body irradiation (TBI) and interval from TBI to explant of marrow on: stromal cell proliferation in vitro; stromal cell support of hematopoiesis in continuous bone marrow culture; and generation of WEHI-3 growth factor (GF)-dependent lines of hematopoietic progenitor cells were evaluated. Explant of marrow at 2, 4, 5, or 6 months after single fraction TBI (300-800 rad) was associated with decreased longevity of hemopoiesis and a decrease in the proliferative capacity of fibroblastic adherent-stromal colony forming cells (CFUf) as measured by colony size at 14 days and number of colonies per 10/sup 6/ cells plated. In contrast, explant of marrow 8 to 24 months after TBI produced cultures with longevity that was indistinguishable from age-matched control cultures (19-24 weeks). Marrow from irradiated first and second generation recipients of serially transferred marrow demonstrated a similar 7-month in vivo recovery period; however, the plateau maximum duration of hemopoiesis did not return to control levels. Purified stromal cell cultures were prepared by corticosteroid-deprivation of explanted marrow for 28 days and were then engrafted in vitro with marrow from C57BL/6J or RfM/UN mice that had been irradiated 1 month previously. Hemopoiesis in these cultures was restored, and they produced GM-CFUc and granulocytes for 15-24 weeks. Thus, healthy stroma supported growth of recently irradiated hemopoietic cells in vitro. Indirect effects of x-irradiation on hemopoietic stem cells through damage and repair in the stromal cell compartment can be effectively studied with the present bone marrow culture system. (JMT)

  15. Up-regulation of BMP2/4 signaling increases both osteoblast-specific marker expression and bone marrow adipogenesis in Gja1Jrt/+ stromal cell cultures

    PubMed Central

    Zappitelli, Tanya; Chen, Frieda; Aubin, Jane E.

    2015-01-01

    Gja1Jrt/+ mice carry a mutation in one allele of the gap junction protein α1 gene (Gja1), resulting in a G60S connexin 43 (Cx43) mutant protein that is dominant negative for Cx43 protein production of <50% of wild-type (WT) levels and significantly reduced gap junction formation and function in osteoblasts and other Cx43-expressing cells. Previously we reported that Gja1Jrt/+ mice exhibited early-onset osteopenia caused by activation of osteoclasts secondary to activation of osteoblast lineage cells, which expressed increased RANKL and produced an abnormal resorption-stimulating bone matrix high in BSP content. Gja1Jrt/+ mice also displayed early and progressive bone marrow atrophy, with a significant increase in bone marrow adiposity versus WT littermates but no increase in adipose tissues elsewhere in the body. BMP2/4 production and signaling were increased in Gja1Jrt/+ trabecular bone and osteogenic stromal cell cultures, which contributed to the up-regulated expression of osteoblast-specific markers (e.g., Bsp and Ocn) in Gja1Jrt/+ osteoblasts and increased Pparg2 expression in bone marrow–derived adipoprogenitors in vitro. The elevated levels of BMP2/4 signaling in G60S Cx43-containing cells resulted at least in part from elevated levels of cAMP. We conclude that up-regulation of BMP2/4 signaling in trabecular bone and/or stromal cells increases osteoblast-specific marker expression in hyperactive Gja1Jrt/+ osteoblasts and may also increase bone marrow adipogenesis by up-regulation of Pparg2 in the Cx43-deficient Gja1Jrt/+ mouse model. PMID:25568340

  16. Dynamic perfusion bioreactor system for 3D culture of rat bone marrow mesenchymal stem cells on nanohydroxyapatite/polyamide 66 scaffold in vitro.

    PubMed

    Qian, Xu; Yuan, Fang; Zhimin, Zhu; Anchun, Mo

    2013-08-01

    The aim of the study was to investigate the biocompatibility and osteogenic effectiveness of the porous nanohydroxyapatite/polyamide 66 (n-HA/PA66) scaffold material that was cultured with the rat bone marrow mesenchymal stem cells (rBMSCs), under the static culture condition and the dynamic perfusion culture condition in vitro, and to investigate whether the 3D perfusion culture condition was better in provoking proliferation of rBMSCs than the 3D static culture condition. The Methyl thiazolyl tetrazolium (MTT) assay, alkaline phosphatase (ALP) activity assay, Osteocalcin (OCN) assay and scanning electron microscope (SEM) were used to observe the proliferation and differentiation of rBMSCs. The samples were respectively harvested at 1st, 3rd, 7th, 14th, and 21st days and effect comparisons were made between the two of the culture conditions. The results showed that values of MTT, ALP, and OCN were increased continuously and revealed a significant difference between the two culture conditions (p < 0.05). On the 14th day, SEM revealed calcified nodules 2-8 ?m in diameter in the lamellar structure. Under the static culture condition, the pores were covered with the cells looking like a piece of blanket, but under the perfusion culture condition the cells were observed to have a 3D lamellar structure. In conclusion, the porous n-HA/PA66 scaffold material can be used as a good candidate material for the bone scaffold construction in the tissue engineering because of its excellent 3D structure, which can greatly improve the proliferation and differentiation of rBMSCs and make them proliferate and osteogenesis even better under the perfusion culture condition. PMID:23362119

  17. An assay for growth of mouse bone marrow cells in microtiter liquid culture using the tetrazolium salt MTT, and its application to studies of myelopoiesis.

    PubMed

    Monner, D A

    1988-12-01

    Mouse bone marrow cells were grown in liquid culture in microtiter plates in the presence of different colony-stimulating factors (CSF). Growth was assayed using the tetrazolium salt MTT, which is reduced in the mitochondria of viable cells to a water-insoluble blue formazan dye. Two technical problems have limited the use of this assay: the solubilization of the dye crystals and the necessity to acidify the phenol red in the culture medium. Both could be solved here by the use of a developing solution of 5% formic acid in isopropanol. Using manual mixing combined with a short sonication by floating the plates in a sonic bath, the crystals were dissolved within minutes. There was no flocculation of protein, even using medium with 20% serum. The color remained stable for at least 4 h. This enabled the semi-automatic measurement of large numbers of cultures directly in the microtiter plates. Growth and differentiation of myelopoietic precursor cells in the liquid cultures was shown to be comparable to that in soft agar. Cell growth was CSF-dependent. The calculated cell yield per colony forming cell (CFC) seeded was within the range of the average cell number per colony found in soft agar, and the spectrum of mature cells obtained reflected the type of CSF used as stimulus. Using the combined culture and assay systems, it was possible to perform detailed kinetic studies of myelopoiesis. This technique should be useful for studying the mechanisms of action of pharmacological modulators of myelopoiesis. PMID:3072291

  18. Determination of the radiation sensitivity of the stromal cells in the murine long-term bone marrow culture by measuring the induction and rejoining of interphase chromosome breaks

    SciTech Connect

    Kodym, R. ); Hoerth, E. )

    1993-04-02

    The purpose of this work was to determine the radiosensitivity of bone marrow stromal cells, the rate of interphase chromosome breakage and rejoining of stromal cells in the murine long term bone marrow culture and of human skin fibroblasts were compared. The cells were irradiated with doses up to 6 Gy and repair times up to 6 hr were investigated. After induction of premature chromosome condensation by fusing the cells with mitotic HeLa cells, the number of interphase chromosome fragments was counted. The number of radiation induced breaks was found to be not significantly different for both cell types with 6.16 [+-] 0.26 breaks per Gray for the fibroblasts and 5.96 [+-] 0.20 breaks per Gray for the stromal cells. A significant difference was observed in the repair rate. The fibroblasts rejoined 39.6% of the breaks induced initially during the first hour after irradiation and 5.6 [+-] 1.84 breaks remained unrejoined after 6 hr, while the stromal cells were able to rejoin 63.2% in 1 hr and had 2.05 [+-] 0.07 breaks unrejoined after 6 hr. If the well substantiated assumption is made, that the capacity to repair DNA double strand breaks or interphase chromosome breaks is correlated with the cellular radiosensitivity, these findings indicate that murine bone marrow stromal cells are more radioresistant than human skin fibroblasts. 30 refs., 2 figs.

  19. Interactions between Mesenchymal Stem Cells, Adipocytes, and Osteoblasts in a 3D Tri-Culture Model of Hyperglycemic Conditions in the Bone Marrow Microenvironment

    PubMed Central

    Rinker, Torri E.; Hammoudi, Taymour M.; Kemp, Melissa L.; Lu, Hang; Temenoff, Johnna S.

    2014-01-01

    Recent studies have found that uncontrolled diabetes and consequential hyperglycemic conditions can lead to increased incidence of osteoporosis. Osteoblasts, adipocytes, and mesenchymal stem cells (MSCs) are all components of the bone marrow microenvironment and thus may have an effect on diabetes-related osteoporosis. However, few studies have investigated the influence of these three cell types on each other, especially in the context of hyperglycemia. Thus, we developed a hydrogel-based 3D culture platform engineered to allow live-cell retrieval in order to investigate the interactions between MSCs, osteoblasts, and adipocytes in mono-, co-, and tri-culture configurations under hyperglycemic conditions for 7 days of culture. Gene expression, histochemical analysis of differentiation markers, and cell viability were measured for all cell types, and MSC-laden hydrogels were degraded to retrieve cells to assess colony-forming capacity. Multivariate models of gene expression data indicated that primary discrimination was dependent on neighboring cell type, validating the need for co-culture configurations to study conditions modeling this disease state. MSC viability and clonogenicity were reduced when mono- and co-cultured with osteoblasts in high glucose levels. In contrast, MSCs had no reduction of viability or clonogenicity when cultured with adipocytes in high glucose conditions and adipogenic gene expression indicated that cross-talk between MSCs and adipocytes may occur. Thus, our unique culture platform combined with post-culture multivariate analysis provided novel insight into cellular interactions within the MSC microenvironment and highlights the necessity of multi-cellular culture systems for further investigation of complex pathologies such as diabetes and osteoporosis. PMID:24463781

  20. A Comparison of Three-Dimensional Culture Systems to Evaluate In Vitro Chondrogenesis of Equine Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Watts, Ashlee E.; Ackerman-Yost, Jeremy C.

    2013-01-01

    Objective To compare in vitro three-dimensional (3D) culture systems that model chondrogenesis of bone marrow-derived mesenchymal stem cells (MSCs). Methods MSCs from five horses 23 years of age were consolidated in fibrin 0.3% alginate, 1.2% alginate, 2.5105 cell pellets, 5105 cell pellets, and 2% agarose, and maintained in chondrogenic medium with supplemental TGF-?1 for 4 weeks. Pellets and media were tested at days 1, 14, and 28 for gene expression of markers of chondrogenic maturation and hypertrophy (ACAN, COL2B, COL10, SOX9, 18S), and evaluated by histology (hematoxylin and eosin, Toluidine Blue) and immunohistochemistry (collagen type II and X). Results alginate, fibrin alginate (FA), and both pellet culture systems resulted in chondrogenic transformation. Adequate RNA was not obtained from agarose cultures at any time point. There was increased COL2B, ACAN, and SOX9 expression on day 14 from both pellet culture systems. On day 28, increased expression of COL2B was maintained in 5105 cell pellets and there was no difference in ACAN and SOX9 between FA and both pellet cultures. COL10 expression was significantly lower in FA cultures on day 28. Collagen type II was abundantly formed in all culture systems except alginate and collagen type X was least in FA hydrogels. Conclusion equine MSCs respond to 3D culture in FA blended hydrogel and both pellet culture systems with chondrogenic induction. For prevention of terminal differentiation and hypertrophy, FA culture may be superior to pellet culture systems. PMID:23725547

  1. Effect of cadmium on bone resorption in cultured fetal bone

    SciTech Connect

    Miyahara, T.; Miyakoshi, M.; Kozuka, H.

    1980-08-01

    Itai-itai disease which occurred in Toyama Prefecture, Japan, was thought to be due, at least partly, to chronic cadmium poisoning. Patients suffered severe pain in the waist, back and joints as well as kyphosis spinal column. In addition, x-ray film of these patients revealed abnormalities in the humerus and ribs. These bone lesions have been considered to be caused secondarily by dysfunction of other tissues, especially that of the kidneys, but there are some reports that the bone lesions appear before the occurrence of pathological changes in the kidneys of Cd-administered rat. It is currently unclear whether bone lesions by Cd are due to the direct action on the bone or indirect action which is caused by dysfunction of the kidney or intestine. To clarify the direct action of Cd on the bone, we studied the effect of Cd on the ossification of chick-embryo cultured bones biochemically and histologically. The results showed that Cd inhibited the bone matrix formation and brought about a malfunction in the ossification process. In the present work the effect of Cd on demineralization was studied using /sup 45/Ca-prelabeled bone in tissue culture and low levels of Cd were found to stimulate /sup 45/Ca from the bone.

  2. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions.

    PubMed

    Rath, Subha N; Strobel, Leonie A; Arkudas, Andreas; Beier, Justus P; Maier, Anne-Kathrin; Greil, Peter; Horch, Raymund E; Kneser, Ulrich

    2012-10-01

    In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine. PMID:22304383

  3. An exploratory clinical trial for idiopathic osteonecrosis of femoral head by cultured autologous multipotent mesenchymal stromal cells augmented with vascularized bone grafts.

    PubMed

    Aoyama, Tomoki; Goto, Koji; Kakinoki, Ryosuke; Ikeguchi, Ryosuke; Ueda, Michiko; Kasai, Yasunari; Maekawa, Taira; Tada, Harue; Teramukai, Satoshi; Nakamura, Takashi; Toguchida, Junya

    2014-08-01

    Idiopathic osteonecrosis of femoral head (ION) is a painful disorder that progresses to collapse of the femoral head and destruction of the hip joint. Although its precise pathology remains unknown, the loss of blood supply causing the loss of living bone-forming cells is a hallmark of the pathophysiology of osteonecrosis. Transplantation of multipotent mesenchymal stromal cells (MSCs) is a promising tool for regenerating the musculoskeletal system. The aim of the present study was to assess the safety and efficacy of transplantation of cultured autologous bone marrow-derived MSCs mixed with β-tricalcium phosphate (β-TCP) in combination with vascularized bone grafts for the treatment of advanced stage ION in a clinical trial. Ten patients with stage 3 ION were enrolled in this study. Autologous bone marrow-derived MSCs were cultured with autologous serum, and cells (0.5-1.0×10(8)) were transplanted after mixing with β-TCP granules in combination with vascularized iliac bone grafts. Patients were assessed 24 months after treatment. The primary and secondary endpoints were progression of the radiological stage and changes in bone volume at the femoral head, and clinical score, respectively. Nine of ten patients completed the protocol, seven of whom remained at stage 3, and the remaining two cases progressed to stage 4. The average bone volume increased from 56.5±8.5 cm(3) to 57.7±10.6 cm(3). The average clinical score according to the Japan Orthopaedic Association improved from 65.6±25.5 points to 87.9±19.0 points. One severe adverse event was observed, which was not related to the clinical trial. Although the efficacy of cell transplantation was still to be determined, all procedures were successfully performed and some young patients with extensive necrotic lesions with pain demonstrated good bone regeneration with amelioration of symptoms. Further improvements in our method using MSCs and the proper selection of patients will open a new approach for the treatment of this refractory disease. PMID:24593258

  4. An Exploratory Clinical Trial for Idiopathic Osteonecrosis of Femoral Head by Cultured Autologous Multipotent Mesenchymal Stromal Cells Augmented with Vascularized Bone Grafts

    PubMed Central

    Aoyama, Tomoki; Goto, Koji; Kakinoki, Ryosuke; Ikeguchi, Ryosuke; Ueda, Michiko; Kasai, Yasunari; Maekawa, Taira; Tada, Harue; Teramukai, Satoshi; Nakamura, Takashi

    2014-01-01

    Idiopathic osteonecrosis of femoral head (ION) is a painful disorder that progresses to collapse of the femoral head and destruction of the hip joint. Although its precise pathology remains unknown, the loss of blood supply causing the loss of living bone-forming cells is a hallmark of the pathophysiology of osteonecrosis. Transplantation of multipotent mesenchymal stromal cells (MSCs) is a promising tool for regenerating the musculoskeletal system. The aim of the present study was to assess the safety and efficacy of transplantation of cultured autologous bone marrow-derived MSCs mixed with β-tricalcium phosphate (β-TCP) in combination with vascularized bone grafts for the treatment of advanced stage ION in a clinical trial. Ten patients with stage 3 ION were enrolled in this study. Autologous bone marrow-derived MSCs were cultured with autologous serum, and cells (0.5–1.0×108) were transplanted after mixing with β-TCP granules in combination with vascularized iliac bone grafts. Patients were assessed 24 months after treatment. The primary and secondary endpoints were progression of the radiological stage and changes in bone volume at the femoral head, and clinical score, respectively. Nine of ten patients completed the protocol, seven of whom remained at stage 3, and the remaining two cases progressed to stage 4. The average bone volume increased from 56.5±8.5 cm3 to 57.7±10.6 cm3. The average clinical score according to the Japan Orthopaedic Association improved from 65.6±25.5 points to 87.9±19.0 points. One severe adverse event was observed, which was not related to the clinical trial. Although the efficacy of cell transplantation was still to be determined, all procedures were successfully performed and some young patients with extensive necrotic lesions with pain demonstrated good bone regeneration with amelioration of symptoms. Further improvements in our method using MSCs and the proper selection of patients will open a new approach for the treatment of this refractory disease. PMID:24593258

  5. Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion

    SciTech Connect

    Lu, Li; Song, Hui-Fang; Zhang, Wei-Guo; Liu, Xue-Qin; Zhu, Qian; Cheng, Xiao-Long; Yang, Gui-Jiao; Li, Ang; Xiao, Zhi-Cheng; Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Melbourne 3800

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Prolonged culture expansion retards proliferation and induces senescence of hBMSCs. Black-Right-Pointing-Pointer Reduced 20S proteasomal activity and expression potentially contribute to cell aging. Black-Right-Pointing-Pointer MG132-mediated 20S proteasomal inhibition induces senescence-like phenotype. Black-Right-Pointing-Pointer 18{alpha}-GA stimulates proteasomal activity and restores replicative senescence. Black-Right-Pointing-Pointer 18{alpha}-GA retains differentiation without affecting stem cell characterizations. -- Abstract: Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18{alpha}-glycyrrhetinic acid (18{alpha}-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.

  6. The synthetic tetrapeptide AcSDKP protects cells that reconstitute long-term bone marrow stromal cultures from the effects of mafosfamide (Asta Z 7654).

    PubMed

    Genevay, M C; Mormont, C; Thomas, F; Berthier, R

    1996-01-01

    The tetrapeptide AcSDKP (Seraspenide) has been described as an inhibitor of CFU-S entry into DNA synthesis; as a result, its administration can protect mice against lethal doses of cytosine arabinoside. We have studied the ability of AcSDKP to protect and promote the growth of early CD34+ human bone marrow (BM) stem cells in Dexter long-term cultures following exposure to a toxic concentration of mafosfamide. The protection assay was based on the preincubation of CD34+ BM cells with or without AcSDKP at 10(-10)M or 10(-8)M followed by exposure to a toxic dose of mafosfamide (100 micrograms/mL). The production of granulomonocytic progenitor cells (CFU-GM) was subsequently studied in long-term bone marrow cultures (LTBMC) of the samples exposed to mafosfamide and preincubated or not (control) with AcSDKP. After a lag of 2 to 3 weeks, the number of CFU-GM peaked at the 4th to 5th week in both the supernatant and the adherent layers. A greater production of granulomonocytic progenitor cells was observed in LTBMC from the samples preincubated with AcSDKP compared with control cells. Depending on the BM samples, enhanced production of CFU-GM in the AcSDKP-treated cell cultures was observed at either the 10(-10)M or 10(-8)M concentration. These results suggest that AcSDKP can protect in vitro human long-term culture-initiating cells (LTC-IC) from mafosfamide, resulting in an increased production of CFU-GM from this early stem cell compartment. PMID:8536796

  7. Advances in cell culture

    SciTech Connect

    Maramorosch, K. )

    1987-01-01

    This book presents papers on advances in cell culture. Topics covered include: Genetic changes in the influenza viruses during growth in cultured cells; The biochemistry and genetics of mosquito cells in culture; and Tree tissue culture applications.

  8. A comparative study of the proliferation and osteogenic differentiation of human periodontal ligament cells cultured on ?-TCP ceramics and demineralized bone matrix with or without osteogenic inducers in vitro.

    PubMed

    An, Shaofeng; Gao, Yan; Huang, Xiangya; Ling, Junqi; Liu, Zhaohui; Xiao, Yin

    2015-05-01

    The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. ?-tricalcium phosphate (?-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous ?-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell-Counting kit-8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the ?-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the ?-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the ?-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on ?-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements. PMID:25738431

  9. Cytokine-dependent long-term culture of highly enriched precursors of hematopoietic progenitor cells from human bone marrow.

    PubMed Central

    Brandt, J; Srour, E F; van Besien, K; Briddell, R A; Hoffman, R

    1990-01-01

    Human marrow cells positive for the CD34 antigen but not expressing HLA-DR, CD15, or CD71 antigens were isolated. In a liquid culture system supplemented with 48-hourly additions of recombinant interleukins IL-1 alpha, IL-3, IL-6, or granulocyte/macrophage colony-stimulating factor (GM-CSF), these cells were capable of sustaining in vitro hematopoiesis for up to eight weeks. The establishment of an adherent cell layer was never observed. Cultures containing no exogenous cytokine produced clonogenic cells for only 1 wk. IL-1 alpha and IL-6 were alone able to support hematopoiesis for 2 or 3 wk. Cells maintained with GM-CSF proliferated and contained assayable colony-forming cells for 3 or 4 wk, while maximal cellular expansion and generation of assayable progenitor cells occurred in the presence of IL-3 for 4-5 wk. When IL-3 was combined with IL-1 alpha or IL-6, hematopoiesis was sustained for 8 wks. Basophil numbers were markedly increased in the presence of IL-3. These studies indicate that marrow subpopulations can sustain hematopoiesis in vitro in the presence of repeated additions of cytokines. We conclude that a major function of marrow adherent cells in long-term cultures is that of providing cytokines which promote the proliferation and differentiation of primitive hematopoietic cells. PMID:1697607

  10. Combination of enzymes and flow perfusion conditions improves osteogenic differentiation of bone marrow stromal cells cultured upon starch/poly(epsilon-caprolactone) fiber meshes.

    PubMed

    Martins, Ana M; Saraf, Anita; Sousa, Rui A; Alves, Catarina M; Mikos, Antonios G; Kasper, F Kurtis; Reis, Rui L

    2010-09-15

    Previous studies have shown that alpha-amylase and lipase are capable of enhancing the degradation of fiber meshes blends of starch and poly(epsilon-caprolactone) (SPCL) under dynamic conditions, and consequently to promote the proliferation and osteogenic differentiation of bone marrow stromal cells (MSCs). This study investigated the effect of flow perfusion bioreactor culture in combination with enzymes on the osteogenic differentiation of MSCs. SPCL fiber meshes were seeded with MSCs and cultured with osteogenic medium supplemented with alpha-amylase, lipase, or a combination of the two for 8 or 16 days using static or flow conditions. Lipase and its combination with alpha-amylase enhanced cell proliferation after 16 days. In addition, the flow perfusion culture enhanced the infiltration of cells and facilitated greater distribution of extracellular matrix (ECM) throughout the scaffolds in the presence/absence of enzymes. A significant amount of calcium was detected after 16 days in all groups cultured in flow conditions compared with static cultures. Nevertheless, when alpha-amylase and lipase were included in the flow perfusion cultures, the calcium content was 379 +/- 30 microg/scaffold after as few as 8 days. The highest calcium content (1271 +/- 32 microg/scaffold) was obtained for SPCL/cell constructs cultured for 16 days in the presence of lipase and flow. Furthermore, von Kossa staining and tetracycline fluorescence of histological sections demonstrated mineral deposition within the scaffolds for all groups cultured for 16 days under flow. However, all the data corroborate that lipase coupled with flow perfusion conditions improve the osteogenic differentiation of MSCs and enhance ECM mineralization. PMID:20694973

  11. CD200 expression in human cultured bone marrow mesenchymal stem cells is induced by pro-osteogenic and pro-inflammatory cues.

    PubMed

    Pontikoglou, Charalampos; Langonné, Alain; Ba, Mamadou Aliou; Varin, Audrey; Rosset, Philippe; Charbord, Pierre; Sensébé, Luc; Deschaseaux, Frédéric

    2016-04-01

    Similar to other adult tissue stem/progenitor cells, bone marrow mesenchymal stem/stromal cells (BM MSCs) exhibit heterogeneity at the phenotypic level and in terms of proliferation and differentiation potential. In this study such a heterogeneity was reflected by the CD200 protein. We thus characterized CD200(pos) cells sorted from whole BM MSC cultures and we investigated the molecular mechanisms regulating CD200 expression. After sorting, measurement of lineage markers showed that the osteoblastic genes RUNX2 and DLX5 were up-regulated in CD200(pos) cells compared to CD200(neg) fraction. At the functional level, CD200(pos) cells were prone to mineralize the extra-cellular matrix in vitro after sole addition of phosphates. In addition, osteogenic cues generated by bone morphogenetic protein 4 (BMP4) or BMP7 strongly induced CD200 expression. These data suggest that CD200 expression is related to commitment/differentiation towards the osteoblastic lineage. Immunohistochemistry of trephine bone marrow biopsies further corroborates the osteoblastic fate of CD200(pos) cells. However, when dexamethasone was used to direct osteogenic differentiation in vitro, CD200 was consistently down-regulated. As dexamethasone has anti-inflammatory properties, we assessed the effects of different immunological stimuli on CD200 expression. The pro-inflammatory cytokines interleukin-1β and tumour necrosis factor-α increased CD200 membrane expression but down-regulated osteoblastic gene expression suggesting an additional regulatory pathway of CD200 expression. Surprisingly, whatever the context, i.e. pro-inflammatory or pro-osteogenic, CD200 expression was down-regulated when nuclear-factor (NF)-κB was inhibited by chemical or adenoviral agents. In conclusion, CD200 expression by cultured BM MSCs can be induced by both osteogenic and pro-inflammatory cytokines through the same pathway: NF-κB. PMID:26773707

  12. Dynamic culture improves MSC adhesion on freeze-dried bone as a scaffold for bone engineering

    PubMed Central

    Gonçalves, Fabiany da Costa; Paz, Ana Helena da Rosa; Lora, Priscila Schmidt; Passos, Eduardo Pandolfi; Cirne-Lima, Elizabeth Obino

    2012-01-01

    AIM: To investigate the interaction between mesenchymal stem cells (MSCs) and bone grafts using two different cultivation methods: static and dynamic. METHODS: MSCs were isolated from rat bone marrow. MSC culture was analyzed according to the morphology, cell differentiation potential, and surface molecular markers. Before cell culture, freeze-dried bone (FDB) was maintained in culture for 3 d in order to verify culture medium pH. MSCs were co-cultured with FDB using two different cultivation methods: static co-culture (two-dimensional) and dynamic co-culture (three-dimensional). After 24 h of cultivation by dynamic or static methods, histological analysis of Cell adhesion on FDB was performed. Cell viability was assessed by the Trypan Blue exclusion method on days 0, 3 and 6 after dynamic or static culture. Adherent cells were detached from FDB surface, stained with Trypan Blue, and quantified to determine whether the cells remained on the graft surface in prolonged non-dynamic culture. Statistical analyses were performed with SPSS and a P < 0.05 was considered significant. RESULTS: The results showed a clear potential for adipogenic and osteogenic differentiation of MSC cultures. Rat MSCs were positive for CD44, CD90 and CD29 and negative for CD34, CD45 and CD11bc. FDBs were maintained in culture for 3 d and the results showed there was no significant variation in the culture medium pH with FDB compared to pure medium pH (P > 0.05). In histological analysis, there was a significant difference in the amount of adhered cells on FDB between the two cultivation methods (P < 0.05). The MSCs in the dynamic co-culture method demonstrated greater adhesion on the bone surface than in static co-culture method. On day 0, the cell viability in the dynamic system was significantly higher than in the static system (P < 0.05). There was a statistical difference in cell viability between days 0, 3 and 6 after dynamic culture (P < 0.05). In static culture, cell viability on day 6 was significantly lower than on day 3 and 0 (P < 0.05). CONCLUSION: An alternative cultivation method was developed to improve the MSCs adhesion on FDB, demonstrating that dynamic co-culture provides a superior environment over static conditions. PMID:22468180

  13. The use of recombinant cytokines for enhancing immunohematopoietic reconstitution following bone marrow transplantation. I. Effects of in vitro culturing with IL-3 and GM-CSF on human and mouse bone marrow cells purged with mafosfamide (ASTA-Z).

    PubMed

    Slavin, S; Mumcuoglu, M; Landesberg-Weisz, A; Kedar, E

    1989-09-01

    Enhanced colony formation (CFU-GM) in vitro was observed in murine and human bone marrow (BM) cells following pre-incubation for 2-3 days with recombinant murine GM-CSF or natural purified murine IL-3, and recombinant human GM-CSF or IL-3, respectively. Pre-incubation in the presence of both GM-CSF and IL-3 produced additive stimulatory effects. BM cells previously treated in vitro with mafosfamide (ASTA-Z) under conditions identical to those used in the purging of autologous BM grafts, also demonstrated an enhanced cumulative response to combinations of GM-CSF and IL-3, with up to 100-fold increase in CFU-GM as compared with controls (p less than 0.001). In mice, the number of CFU-S was also significantly increased (2-20 times) following incubation of unpurged and purged BM cells in murine IL-3 and/or GM-CSF. Interestingly, the frequency of both CFU-GM and CFU-S in BM cells first purged with ASTA-Z and then cultured with both cytokines was significantly higher (p less than 0.01) than that in fresh, intact BM cells. In addition, mice transplanted with unpurged or purged, cytokine cultured syngeneic BM cells exhibited a significantly (p less than 0.01) earlier reconstitution of peripheral white blood cells and of BM CFU-GM, and a significantly enhanced anti-sheep red blood cell plaque-forming cell response. Overall, the data suggest that it might be possible to enhance immunohematopoietic reconstitution in recipients of unmanipulated, as well as ASTA-Z purged autologous BM following short-term culture of BM cells with recombinant colony stimulating factors prior to bone marrow transplantation. PMID:2676042

  14. Comparative activities of daidzein metabolites, equol and O-desmethylangolensin, on bone mineral density and lipid metabolism in ovariectomized mice and in osteoclast cell cultures.

    PubMed

    Ohtomo, Takuya; Uehara, Mariko; Pealvo, Jos Luis; Adlercreutz, Herman; Katsumata, Shin-ichi; Suzuki, Kazuharu; Takeda, Ken; Masuyama, Ritsuko; Ishimi, Yoshiko

    2008-08-01

    Daidzein, a major isoflavone predominantly found in soybean, is mainly metabolized to equol and O-desmethylangolensin (O-DMA) by the human gut microflora. Equol exhibits a stronger estrogenic activity than daidzein, however, only approximately 30% of the population has been identified as equol-producers and there are too few direct evidences of the effects of the other major metabolite, O-DMA on estrogen-deficient status. The purpose of this study is therefore, to compare the effect of both O-DMA and equol on bone and lipid metabolism in vivo and in vitro. For the in vivo study, 8-week-old female mice were assigned to five groups as follows: sham-operated (sham), ovariectomized (OVX), OVX + 0.5 mg/day O-DMA (OVX + O-DMA), OVX + 0.5 mg/day equol (OVX + Eq), and OVX + 0.03 microg/day 17beta-estradiol (OVX + E2) administration. Three weeks after the intervention, O-DMA and equol did not affect uterine atrophy in OVX mice. The bone mineral density (BMD) of the femur was lower in the OVX group than in the sham group. The administration of equol but not O-DMA, maintained BMD through the intervention. Values of whole body fat mass and plasma lipids were lower in the equol and O-DMA treated OVX mice than those in OVX mice. In the in vitro study, equol significantly inhibited the osteoclast formation induced by 1alpha,25(OH)(2)D(3) in a dose-dependent manner in a co-culture system of mouse bone-marrow cells with primary osteoblastic cells. However, O-DMA slightly inhibited osteoclast formation, and the effect was not dose dependent. These results suggest that the effects of O-DMA on bone and lipid metabolism in OVX mice and osteoclast cell cultures are weaker than those of equol. PMID:18622636

  15. Growth and Potential Damage of Human Bone-Derived Cells Cultured on Fresh and Aged C60/Ti Films

    PubMed Central

    Kopova, Ivana; Lavrentiev, Vasily; Vacik, Jiri; Bacakova, Lucie

    2015-01-01

    Thin films of binary C60/Ti composites, with various concentrations of Ti ranging from ~ 25% to ~ 70%, were deposited on microscopic glass coverslips and were tested for their potential use in bone tissue engineering as substrates for the adhesion and growth of bone cells. The novelty of this approach lies in the combination of Ti atoms (i.e., widely used biocompatible material for the construction of stomatological and orthopedic implants) with atoms of fullerene C60, which can act as very efficient radical scavengers. However, fullerenes and their derivatives are able to generate harmful reactive oxygen species and to have cytotoxic effects. In order to stabilize C60 molecules and to prevent their possible cytotoxic effects, deposition in the compact form of Ti/C60 composites (with various Ti concentrations) was chosen. The reactivity of C60/Ti composites may change in time due to the physicochemical changes of molecules in an air atmosphere. In this study, we therefore tested the dependence between the age of C60/Ti films (from one week to one year) and the adhesion, morphology, proliferation, viability, metabolic activity and potential DNA damage to human osteosarcoma cells (lines MG-63 and U-2 OS). After 7 days of cultivation, we did not observe any negative influence of fresh or aged C60/Ti layers on cell behavior, including the DNA damage response. The presence of Ti atoms resulted in improved properties of the C60 layers, which became more suitable for cell cultivation. PMID:25875338

  16. Histomorphometry and autoradiography of cultured fetal rat long bones

    SciTech Connect

    Nefussi, J.R.; Vignery, A.; Puzas, J.E.; Baron, R.

    1982-10-01

    The behavior of fetal rat long bones cultured in vitro according to Raisz's technique (1969) was studied by histomorphometry and autoradiography for a period of four days. The changes were recorded daily both on the trabecular and cortical bone by measuring the bone volume, the number of osteoclasts, and the number of nuclei per osteoclast. Radioactive calcium release was measured and compared to the changes in bone volume and in the number of osteoclasts. An autoradiographic study, using /sup 3/H-proline and /sup 3/H-thymidine in flash labeling in the medium and /sup 3/H-thymidine in follow-up labeling after one injection in vivo was performed to evaluate the bone formation, the cellular proliferation rate and cell differentiation. After four days in culture, an increase in total calcified bone volume was observed which correlated with changes in the trabecular bone. No significant changes were recorded in the cortical bone. The results showed a good maintenance of the resorption and formation phenomena through an active process of cellular multiplication and differentiation. Undifferentiated cells were labeled in flash label and osteoblast, osteocyte and some osteoclast nuclei were labeled in follow-up studies.

  17. Characteristics of human bone marrow mesenchymal stem cells isolated by immunomagnetic selection.

    PubMed

    Lagar'kova, M A; Lyakisheva, A V; Filonenko, E S; Volchkov, P Yu; Rubtsova, K V; Gerasimov, Yu V; Chailakhyan, R K; Kiselev, S L

    2006-01-01

    Immunophenotype of human bone marrow mesenchymal stem cells was studied after several culturing passages and after cryopreservation. Immunocytochemical analysis showed that bone marrow mesenchymal stem cells acquired homogeneity during in vitro culturing, but initially contained heterogeneous populations. PMID:16929980

  18. Role of CD44 in the development of natural killer cells from precursors in long-term cultures of mouse bone marrow.

    PubMed

    Delfino, D V; Patrene, K D; DeLeo, A B; DeLeo, R; Herberman, R B; Boggs, S S

    1994-06-01

    The role of the adhesion molecule CD44 in the development of NK cells was analyzed in a mouse long-term bone marrow culture system. After 4 wk of culture (day 0), recombinant human IL-2 was added and 13 days later the cells generated were shown to have substantial cytotoxic activity against YAC-1 and to be enriched for NK cells, as assessed for NK-1.1 phenotype by flow cytometric analysis. Physical separation between stroma and precursors partially inhibited proliferation and, consequently, a lower number of cytotoxic cells were produced. Similar results were obtained when an anti-CD44 mAb was added together with IL-2 at day 0. The disruption of hyaluronic acid (HA), one of the ligands of CD44, by hyaluronidase or the competition for the binding of CD44 by soluble HA added with IL-2 on day 0 inhibited both proliferation and development of cytotoxicity to a greater degree than did anti-CD44. These results indicate that interaction of CD44 with HA plays an important role in the development of pre-NK cells into cytotoxic effector cells. PMID:7514628

  19. In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes

    SciTech Connect

    Burger, E.H.; Van der Meer, J.W.; van de Gevel, J.S.; Gribnau, J.C.; Thesingh, G.W.; van Furth, R.

    1982-12-01

    The origin of osteoclasts was studied in an in vitro model using organ cultures of periosteum-free embryonic mouse long-bone primordia, which were co-cultured with various cell populations. The bone rudiments were freed of their periosteum-perichondrium by collagenase treatment in a stage before cartilage erosion and osteoclast formation, and co-cultured for 7 d with either embryonic liver or mononuclear phagocytes from various sources. Light and electron microscopic examination of the cultures showed that mineralized matrix-resorbing osteoclasts developed only in bones co-cultured with embryonic liver or with cultured bone marrow mononuclear phagocytes but not when co-cultured with blood monocytes or resident or exudate peritoneal macrophages. Osteoclasts developed from the weakly adherent, but not from the strongly adherent cells of bone marrow cultures, whereas 1,000 rad irradiation destroyed the capacity of such cultures to form osteoclasts. In bone cultures to which no other cells were added, osteoclasts were virtually absent. Bone-resorbing activity of in vitro formed osteoclasts was demonstrated by /sup 45/Ca release studies. These studies demonstrate that osteoclasts develop from cells present in cultures of proliferating mononuclear phagocytes and that, at least in our system, monocytes and macrophages are unable to form osteoclasts. The most likely candidates for osteoclast precursor cells seem to be monoblasts and promonocytes.

  20. Activity of dental pulp cells in semisolid 3D cultures initiated by transforming growth factor-?1 and bone morphogenetic protein 2, 4.

    PubMed

    Suzergoz, F; Sepet, E; Erdem, A P; Cinar, S; Ikikarakayali, G; Erdem, M A; Gurol, A O

    2015-01-01

    The intention of this study was to investigate the effect of modified 3D culture conditions on dental pulp cells (DPCs). DPCs were isolated from extracted primary molar, premolar, and wisdom teeth. Tooth samples were divided into three groups as control group; plated into methyl cellulose medium without any supplementation, growth factor (GF) group; supplemented with bone morphogenetic proteins (BMP2, BMP4), transforming growth factor?1 (TGF?1) and growth factor+conditioned medium (GF+CM) group; supplemented with both growth factors and pulp conditioned medium. The DPCs were tested for colony forming ability, proliferation capacity and morphology. The highest colony forming ability was detected in the GF and GF+CM groups of DPCs isolated from wisdom teeth. The proliferation capacity was higher in GF+CM group of DPCs isolated from primary molars, and in GF and GF+CM groups of DPCs isolated from wisdom teeth. Scanning electron microscope (SEM) observation of the wisdom teeth samples showed cellcell interactions in the GF and GF+CM groups. Our results indicate that growth factors and pulp conditioned medium in methyl cellulose culture created proper environment to follow the behavior of dental cells threedimensionally. PMID:26475387

  1. Uptake of a fluorinated bisphosphonate by cultured bones

    SciTech Connect

    Rowe, D.J.; Etre, L.A.

    1988-01-01

    The uptake of bisphosphonates into bone was studied using 19-day-old fetal rat bones cultured with a new fluorinated bisphosphonate, difluoromethylidene bisphosphonate (F2MBP). F2MBP uptake was assessed by determining the weight percent of fluoride using electron probe microanalysis. By 30 min the weight percent of fluoride was significantly greater in the F2MBP-treated bones than in controls and continually increased throughout the duration of the experiment to reach a fluoride concentration 6-fold greater than controls after 120 h of incubation. When the peripheral cortical bone was analyzed separately from the interior trabecular bone in the F2MBP-treated bones, the fluoride concentration in the periphery increased until 24 h and then remained somewhat constant, while the interior, which is more actively remodeling, showed a continual increase. The uptake of F2MBP during the 1 to 6 h time intervals demonstrated no differences between vital and devitalized bone and, thus, is not cell-mediated. Because analysis of free fluoride in F2MBP media incubated with bones showed that the concentration of fluoride was less than 1% of the total amount of fluoride, the fluoride detected by the probe was most likely that of the intact molecule and not free fluoride. The rapid uptake of the F2MBP molecule was supported by assessing the effects of short-term F2MBP treatment on subsequent bone resorption, as determined by the release of 45Ca from prelabeled bones. Bones treated with F2MBP for only 5 min exhibited reductions in the percentage of 45Ca released during the remainder of the 120 h incubation period similar to that when F2MBP was continuously in the medium.

  2. Freshly Thawed and Continuously Cultured Human Bone Marrow-Derived Mesenchymal Stromal Cells Comparably Ameliorate Allergic Airways Inflammation in Immunocompetent Mice

    PubMed Central

    Cruz, Fernanda F.; Borg, Zachary D.; Goodwin, Meagan; Sokocevic, Dino; Wagner, Darcy; McKenna, David H.; Rocco, Patricia R.M.

    2015-01-01

    Recent data suggest that freshly thawed previously frozen mesenchymal stromal cells (MSCs) may not have the same effectiveness or breadth of anti-inflammatory activities as do continuously cultured MSCs. This has significant implications for clinical use, in which many infusion schemes use frozen cells thawed at the bedside for administration. The available data, however, predominantly evaluate in vitro MSC properties, and so far there has been limited in vivo analysis. To further assess this issue, we compared freshly thawed (thawed) versus continuously cultured (fresh) human bone marrow-derived MSC (hMSC) administration in a mouse model of mixed Th2/Th17 allergic airway inflammation induced by Aspergillus hyphal extract (AHE) exposures in immunocompetent C57Bl/6 mice. Control cell populations included fresh versus thawed murine bone marrow-derived MSCs (mMSCs) and human lung fibroblasts (HLFs). Systemic administration of both thawed and fresh hMSCs and mMSCs, but not HLFs, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyper-reactivity, lung inflammation, and antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, there was no difference in effects of fresh versus thawed hMSCs or mMSCs on any outcome measured except for some variability in the effects on the bronchoalveolar lavage fluid composition. These results demonstrated potent xenogeneic effects of human MSCs in an immunocompetent mouse model of allergic airways inflammation and that thawed MSCs are as effective as fresh MSCs. The question of fresh versus thawed MSC effectiveness needs to be investigated carefully and may differ in different in vivo disease-specific models. Significance This study addressed whether freshly thawed mesenchymal stromal cells (MSCs) are as effective in in vivo settings as those that have been continuously cultured. It also provided further data demonstrating that xenogeneic use of MSCs in immunocompetent mice is as effective as murine MSCs. This information provides further support and direction for potential clinical use of MSCs in patients with severe asthma. PMID:25925837

  3. Effects of Mssbauer radiation on bone marrow cultures

    NASA Astrophysics Data System (ADS)

    Ortalli, I.; Pedrazzi, G.; Jiang, K.; Zhang, X.; Carlo-Stella, C.; Mangoni, L.; Rizzoli, V.

    1992-04-01

    A low radiation dose approach to cell eradication would be highly desirable in cancer treatments in order to reduce the side ellects of conventional radiotherapy. In the present work we present a preliminary study on coltures of bone marrow mononuclear cells collected from normal subjects and patients with chronic myelogenous leukaemia (CML). Hematin (104, 10-3, 10M) has been added to mattow culture cells which were then irradiated with a 3.7 GBq (100 mCi)57Co/Rh Mossbauer source for 4 hours. Significant inbibition has been observed on the cell growth due to hematin and irradiatron.

  4. Co‑culture of human nucleus pulposus cells with multipotent mesenchymal stromal cells from human bone marrow reveals formation of tunnelling nanotubes.

    PubMed

    Lehmann, Tomasz P; Filipiak, Krystyna; Juzwa, Wojciech; Sujka-Kordowska, Patrycja; Jagodziński, Paweł P; Zabel, Maciej; Głowacki, Jakub; Misterska, Ewa; Walczak, Michał; Głowacki, Maciej

    2014-02-01

    Degeneration of the intervertebral disc (IVD) is the main cause of age-related damage of spinal tissues. Using multipotent mesenchymal stromal cells (MSCs) regenerative medicine intends to restore the IVD components of annulus fibrosus (AF) and nucleus pulposus (NP). In the present study NP cells (NPCs) and MSCs obtained from adolescent patients suffering from scoliosis were used. IVDs and vertebrae were obtained during surgery and subsequently processed in order to establish cultures of NPCs and MSCs. The two cell types were co-cultured in 1-µm pore size insert system (indirect co-culture) or on one surface (direct co-culture). Prior to co-culture in these systems one of the cell types was stained by lipophilic fluorescent dye DiD (red). The results demonstrated that regardless of the cell type, the flow of DiD from stained to non-stained cells was more efficient in the direct co-culture in comparison with the insert system. Moreover, in the direct system the DiD flow was more efficient from MSCs towards NPCs compared with that in the opposite direction. These data indicated that the membrane interchange between the two cell types was asymmetric. To discriminate the subpopulation of cells that underwent membrane interchange, cells were double stained with DiD and DiO (green). In the first part of the experiment NPCs were stained by DiO and MSCs by DiD. In the second, NPCs were stained by DiD and MSCs by DiO. The cells were co-cultured in the direct system for 8 days and subsequently analyzed by flow cytometry and confocal microscopy. This analysis revealed that >50% of cells were stained by the DiO and DiD dyes. NPCs and MSCs formed structures similar to tunnelling nanotubes (TnT). In conclusion, the formation of TnT-like structures is able to promote, phenotypic changes during the direct co-culture of NPCs with MSCs. PMID:24271232

  5. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.

    PubMed

    zdal-Kurt, F; Tu?lu, I; Vatansever, H S; Tong, S; Delilo?lu-Grhan, S I

    2015-10-01

    Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell differentiation in vitro and bone regeneration in vivo. It may be possible to improve healing of bone defects in humans using stem cells from bone marrow. PMID:25994048

  6. Serum plays a critical role in modulating [Ca{sup 2+}]{sub c} of primary culture bone cells exposed to weak ion-resonance magnetic fields

    SciTech Connect

    Reinbold, K.A.; Pollack, S.R.

    1997-05-01

    Primary-culture bone cells were exposed to ion-resonance (IR) magnetic fields tuned to Ca{sup 2+}. Cytosolic calcium concentration, [Ca{sup 2+}]{sub c}, was measured by using fura-2 during field exposure. The fields investigated were 20 {micro}T static + 40 {micro}T p-p at either 15.3 or 76.6 Hz, and 0.13 mT static + either 0.5 or 1.0 mT p-p at 100 Hz. Other parameters included field orientation, culture age, and the presence of serum during exposure. Total experiment time was 29.5 min. The field was applied after 2 min, and bradykinin was added as an agonist control after 22 min. The data were quantified on a single-cell basis during the 2--22 min exposure period in terms of the magnitude of the largest occurring [Ca{sup 2+}]{sub c} spike normalized to local baseline. Field-exposed and control groups were characterized in terms of the percent of cells exhibiting spike magnitudes above thresholds of 100 or 66% over baseline and were compared by using Fisher`s exact test. Without serum, there was little evidence that IR magnetic fields altered [Ca{sup 2+}]{sub c}. However, in the presence of 2% serum, 3 of the 16 experiments exhibited significant effects at the 100% threshold. Reducing this threshold to 66% resulted in five experiments exhibiting significant effects. Most strikingly, in all of these cases, the field acted to enhance [Ca{sup 2+}]{sub c} activity as opposed to suppressing [Ca{sup 2+}]{sub c} activity. These findings suggest a role for serum or for constituents within serum in mediating the effects of IR magnetic fields on cells and may provide a resolution pathway to the dilemma imposed by theoretical arguments regarding the possibility of such phenomena. Possible roles of serum and future studies are discussed.

  7. Bone microdamage and cell apoptosis.

    PubMed

    Noble, B

    2003-12-21

    Accumulation of microdamage in bone leads to the reduced strength of our skeleton. In health, bone adapts to the prevailing mechanical needs of the organism and is also capable of self-repair, sensing, removing and replacing damaged or mechanically insufficient volumes of bone. In disease and old age these characteristics are reduced. In order to undertake both of the processes of functional adaptation and repair the bone resorbing and forming cells must be very accurately targeted to areas of physiological need. The mechanism by which cells are precisely targeted to areas requiring repair is both clinically relevant and poorly understood. The osteocyte has been assumed to play a role in sensing damage and signaling for its removal, due largely to its abundance throughout the mineralized bone matrix. However, until recently there has been little evidence that osteocyte function is modified in the vicinity of the microdamage. Here I outline the possibility that the targeted removal of bone containing microcracks might involve signals derived from the apoptotic death of the osteocyte. I shall discuss data that support or refute this view and will consider the possible molecular mechanisms by which controlled cell death might contribute to the signals for repair in the light of work involving cells in bone and other tissue systems. PMID:14710370

  8. Bone regeneration and stem cells

    PubMed Central

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  9. Growth of erythroid burst-forming units (BFU-E) in cultures of canine bone marrow and peripheral blood cells: effect of serum from irradiated dogs.

    PubMed

    Kreja, L; Baltschukat, K; Nothdurft, W

    1988-08-01

    Erythroid burst-forming units (BFU-E) from canine bone marrow and peripheral blood could be grown in methylcellulose in the presence of an appropriate batch of fetal calf serum (FCS), transferrin, and erythropoietin (Epo). However, improved colony formation (size and number of bursts) was obtained when serum from total body irradiated dogs was present in the culture. This serum, obtained from dogs at day 9 after total body irradiation with a dose of 3.9 Gy, reduced markedly the Epo requirement of BFU-E. Furthermore, it allowed the omission of FCS from the culture medium if cholesterol and bovine serum albumin (BSA) were used as FCS substitutes. BFU-E concentrations were found to be rather different in the peripheral blood and in bone marrow samples from different sites (i.e., iliac crest, sternum, and humerus) of normal beagles. The studies further show that canine bone marrow BFU-E can be cryopreserved in liquid nitrogen. PMID:3292279

  10. The Clinical Use of Human CultureExpanded Autologous Bone Marrow Mesenchymal Stem Cells Transplanted on Platelet-Rich Fibrin Glue in the Treatment of Articular Cartilage Defects

    PubMed Central

    Haleem, Amgad M.; Singergy, Abdel Aziz El; Sabry, Dina; Atta, Hazem M.; Rashed, Laila A.; Chu, Constance R.; Shewy, Mohammed T. El; Azzam, Akram; Aziz, Mohammed T. Abdel

    2010-01-01

    Objective: To test the hypothesis that platelet-rich fibrin glue (PR-FG) can be used clinically as a scaffold to deliver autologous culture-expanded bone marrow mesenchymal stem cells (BM-MSCs) for cartilage repair and to report clinical results 1 y after implantation of MSCs PR-FG. Patients and Methods: Autologous BM-MSCs were culture expanded, placed on PR-FG intraoperatively, and then transplanted into 5 full-thickness cartilage defects of femoral condyles of 5 patients and covered with an autologous periosteal flap. Patients were evaluated clinically at 6 and 12 mo by the Lysholm and Revised Hospital for Special Surgery Knee (RHSSK) scores and radiographically by x-rays and magnetic resonance imaging (MRI) at the same time points. Repair tissue in 2 patients was rated arthroscopically after 12 mo using the International Cartilage Repair Society (ICRS) Arthroscopic Score. Study Design: Case series; level of evidence 4. Results: All patients symptoms improved over the follow-up period of 12 mo. Average Lysholm and RHSSK scores for all patients showed statistically significant improvement at 6 and 12 mo postoperatively (P < 0.05). There was no statistically significant difference between the 6 and 12 mo postoperative clinical scores (P = 0.18). ICRS arthroscopic scores were 8/12 and 11/12 (nearly normal) for the 2 patients who consented to arthroscopy. MRI of 3 patients at 12 mo postoperatively revealed complete defect fill and complete surface congruity with native cartilage, whereas that of 2 patients showed incomplete congruity. Conclusion: Autologous BM-MSC transplantation on PR-FG as a cell scaffold may be an effective approach to promote the repair of articular cartilage defects of the knee in human patients. PMID:21170288

  11. Effects of Kagocel on the Counts of Multipotent Stromal Cells, Expression of Cytokine Genes in Primary Cultures of Bone Marrow Stromal Cells, and Serum Cytokine Concentrations in CBA Mice.

    PubMed

    Gorskaya, Yu F; Grabko, V I; Konopleva, M V; Suslov, A P; Nesterenko, V G

    2015-06-01

    The efficiency of cloning of bone marrow multipotent stromal cells (ECF-MSC) from CBA mice and the MSC counts in the femoral bone increased 24 h after a single in vivo (but not in vitro) injection of kagocel (active substance of antiviral drug Kagocel () ) 1.4 times (in response to 50-80 ?g) and 4.6 times (in response to 250 ?g). The maximum increase of ECF-MSC in response to 50 ?g per mouse was detected just 1 h after Kagocel injection to intact mice and to mice previously receiving the drug for 3 days (2 and 1.7 times, respectively). The increase of ECF-MSC was 3-fold less intense in response to oral Kagocel in a dose of 250 ?g/mouse vs. intraperitoneal Kagocel, ECF-MSC corresponding to its level in response to oral Poly (I:C). In vivo Kagocel led to emergence of proinflammatory cytokine IFN-?, IL-1?, and IL-8 mRNA in primary cultures of bone marrow stromal cells. Serum concentrations of IL-2, IL-5, IL-10, GM-CSF, IFN-?, TNF-?, IL-4, and IL-12 increased 1.5 and 2 times just 1 h after Kagocel injection in doses of 30-50 and 250 ?g, respectively, to intact mice and to animals previously treated with the drug for 3 days. The cytokine concentrations normalized after 3 h and increased again after 24 h, though did not reach the levels recorded 1 h after the drug injection. These data indicated that the therapeutic and preventive effects of Kagocel, together with its previously demonstrated stimulation of ?- and ?-interferon production during several days, could be due to the capacity of this drug to increase the bone marrow ECF-MSC, serum cytokine concentrations, and induce the expression of proinflammatory cytokine genes in the bone marrow stromal cells 1 h after its injection. PMID:26087752

  12. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells

    PubMed Central

    Gao, Zhenya; Huo, Lijun; Cui, Dongmei; Yang, Xiao; Zeng, Junwen

    2016-01-01

    Purpose All-trans retinoic acid (ATRA) plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE) cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 2 (MMP-2) and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19) cells. Methods The effects of ATRA (concentrations from 10−9 to 10−5 mol/l) on the expression of retinoic acid receptors (RARs) in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR) and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10−9 to 10−5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ. Results RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10−9 to 10−5 mol/l) with a maximum effect observed at 10−6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10−6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135. Conclusion ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated these cells to secrete BMP-2 and MMP-2. PMID:26967733

  13. Exogenous Nkx2.5- or GATA-4-transfected rabbit bone marrow mesenchymal stem cells and myocardial cell co-culture on the treatment of myocardial infarction in rabbits

    PubMed Central

    LI, PU; ZHANG, LEI

    2015-01-01

    The present study aimed to investigate the effects of Nkx2.5 or GATA-4 transfection with myocardial extracellular environment co-culture on the transformation of bone marrow mesenchymal stem cells (BMSCs) into differentiated cardiomyocytes. Nkx2.5 or GATA-4 were transfected into myocardial extracellular environment co-cultured BMSCs, and then injected into the periphery of infarcted myocardium of a myocardial infarction rabbit model. The effects of these gene transfections and culture on the infarcted myocardium were observed and the results may provide an experimental basis for the efficient myocardial cell differentiation of BMSCs. The present study also suggested that these cells may provide a source and clinical basis for myocardial injury repair via stem cell transplantation. The present study examined whether Nkx2.5 or GATA-4 exogenous gene transfection with myocardial cell extracellular environment co-culture were able to induce the differentiation of BMSCs into cardiac cells. In addition, the effect of these transfected BMSCs on the repair of the myocardium following myocardial infarction was determined using New Zealand rabbit models. The results demonstrated that myocardial cell differentiation was significantly less effective following exogenous gene transfection of Nkx2.5 or GATA-4 alone compared with that of transfection in combination with extracellular environment co-culture. In addition, the results of the present study showed that exogenous gene transfection of Nkx2.5 or GATA-4 into myocardial cell extracellular environment co-cultured BMSCs was able to significantly enhance the ability to repair, mitigating the death of myocardial cells and activation of the myocardium in rabbits with myocardial infarction compared with those of the rabbits transplanted with untreated BMSCs. In conclusion, the exogenous Nkx2.5 and GATA-4 gene transfection into myocardial extracellular environment co-cultured BMSCs induced increased differentiation into myocardial cells compared with that of gene transfection alone. Furthermore, significantly enhanced reparative effects were observed in the myocardium of rabbits following treatment with Nkx2.5- or GATA-4-transfected myocardial cell extracellular environment co-cultured BMSCs compared with those treated with untreated BMSCs. PMID:25975979

  14. Cell Culture Made Easy.

    ERIC Educational Resources Information Center

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  15. Cell Culture Made Easy.

    ERIC Educational Resources Information Center

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are

  16. ACTH promotes chondrogenic nodule formation and induces transient elevations in intracellular calcium in rat bone marrow cell cultures via MC2-R signaling

    PubMed Central

    Evans, Jodi F.; Rodriguez, Sylvana; Ragolia, Louis

    2013-01-01

    Adrenocorticotropic hormone (ACTH) is among the several melanocortin peptide hormones that are derived from proopiomelanocortin (POMC). ACTH has been found to enhance osteogenesis and chondrogenesis. We show that in the presence of dexamethasone, ACTH dose-dependently increases chondrogenic nodule formation in bone marrow stromal cells (BMSC) from the Wystar Kyoto (WKY) rat. The nodules consist of condensed cells highly expressing alkaline phosphatase, Sox9 and type II collagen transcripts, and a proteoglycan rich matrix. Immunoblot analysis of crude membrane fractions was used to determine that these cells express three melanocortin receptors (MC-R); MC2-R, MC3-R and MC5-R, as well as the melanocortin 2-receptor accessory protein (MRAP). To determine which of these receptors mediate ACTH-induced effects, we used MC-R specific peptides and the known agonist profiles of the receptors. Neither ?-MSH, a strong agonist of the MC5-R nor ?2-MSH, a strong agonist of the MC3-R, duplicates ACTH effects in rat BMSC. In addition, calcium flux was examined as a mechanism for ACTH action at the MC2-R. Consistent with MC2-R and MRAP expression patterns in the BMSC cultures, ACTH-induced transient increases in intracellular calcium were increased with dexamethasone treatment. Neither ?-MSH nor ?2-MSH affected calcium flux. Dexamethasone increased MC2-R and MRAP expression as well as POMC peptide expression and cleavage to increase the production of the lipolytic ?-LPH product. Therefore the effects of ACTH in rat BMSC enriched for mesenchymal progenitors are consistent with an MC2-R signaling mechanism and dexamethasone is capable of regulating components of the melanocortin system in these cells. PMID:23358747

  17. ACTH promotes chondrogenic nodule formation and induces transient elevations in intracellular calcium in rat bone marrow cell cultures via MC2-R signaling.

    PubMed

    Evans, Jodi F; Rodriguez, Sylvana; Ragolia, Louis

    2013-05-01

    Adrenocorticotropic hormone (ACTH) is among several melanocortin peptide hormones that are derived from proopiomelanocortin (POMC). ACTH has been found to enhance osteogenesis and chondrogenesis. We show that, in the presence of dexamethasone, ACTH dose-dependently increases chondrogenic nodule formation in bone marrow stromal cells (BMSC) from the Wistar Kyoto (WKY) rat. The nodules consist in condensed cells highly expressing alkaline phosphatase, Sox9 and type II collagen transcripts and a proteoglycan-rich matrix. Immunoblot analysis of crude membrane fractions has shown that these cells express three melanocortin receptors (MC-R), namely MC2-R, MC3-R and MC5-R and the melanocortin 2-receptor accessory protein (MRAP). To determine which of these receptors mediate ACTH-induced effects, we have used MC-R-specific peptides and the known agonist profiles of the receptors. Neither ?-MSH, a strong agonist of MC5-R, nor ?2-MSH, a strong agonist of MC3-R, duplicates ACTH effects in rat BMSC. In addition, calcium flux has been examined as a mechanism for ACTH action at the MC2-R. Consistent with MC2-R and MRAP expression patterns in the BMSC cultures, ACTH-induced transient increases in intracellular calcium are increased with dexamethasone treatment. Neither ?-MSH nor ?2-MSH affects calcium flux. Dexamethasone increases MC2-R and MRAP expression and POMC peptide expression and cleavage increasing the production of the lipolytic ?-lipotropic hormone product. Therefore, the effects of ACTH in rat BMSC enriched for mesenchymal progenitors are consistent with an MC2-R signaling mechanism, with dexamethasone being capable of regulating components of the melanocortin system in these cells. PMID:23358747

  18. Optimizing stem cell culture

    PubMed Central

    Van Der Sanden, Boudewijn; Dhobb, Mehdi; Berger, Franois; Wion, Didier

    2010-01-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindberghs plane. PMID:20803548

  19. Improved adipogenic in vitro differentiation: comparison of different adipogenic cell culture media on human fat and bone stroma cells for fat tissue engineering

    PubMed Central

    Ail, Yahya; Wiltfang, Jrg; Gierloff, Matthias

    2015-01-01

    To date there is no sufficient in vitro fat tissue engineering and a protocol has not been well established for this purpose. Therefore, we evaluated the in vitro influence of two different adipogenic growth media for their stimulation potential on different cell lineages to clearly define the most potent adipogenic growth media for future in vitro tissue engineering approaches. The samples for differentiation were composed of human adipogenic-derived stroma cells (hADSCs) and human bone marrow mesenchymal stroma cells (hMSCs). A normal adipogenic medium (NAM) and a specific adipogenic medium (SAM) were tested for their adipogenic stimulation potential. After 10 days and 21 days the relative gene expression was measured for the adipogenic marker genes PPAR?2, C/EBP?, FABP4, LPL, and GLUT4 detected through real time reverse transcriptase polymease chain reaction (RT-PCR). Other study variables were the comparison between NAM and SAM and between the used cells hADSCs and hMSCs. Additionally an Oil-Red staining was performed after 21 days. Our results revealed that only SAM was significantly (P<0.05) superior in the differentiation process in contrast to NAM for 10 days and 21 days. As well was SAM superior to differentiate the used cell lineages. This was evaluated by the detected marker genes PPAR?2, C/EBP?, FABP4, LPL, and GLUT4 through real time RT-PCR and by Oil-Red staining. In addition, the hMSCs proofed to be equal donor cells for adipogenic differentiation especially when stimulated by SAM. The results suggest that the SAM should be established as a new standard medium for a more promising in vitro adipogenic differentiation. PMID:26140219

  20. Effect of naringin on bone cells.

    PubMed

    Wong, R W K; Rabie, A B M

    2006-11-01

    Statin, a HMG-CoA reductase inhibitor, was shown to increase BMP-2 gene expression for bone formation, by blocking the mevalonate pathway in cholesterol production. We investigated the effect of naringin, a flavonoid available commonly in citrus fruits, which was also a HMG-CoA reductase inhibitor, in UMR 106 osteoblastic cell line in vitro. The control group consisted of cells cultured without any intervention for different time intervals (24 h, 48 h, and 72 h), whereas the experimental (naringin) group consisted of cells cultured with naringin of different concentrations (0.001 micromol/L, 0.01 micromol/L, and 0.1 micromol/L) for the same time intervals of the control. Colorimetric Tetrazolium (MTT) assay, total protein content assay, and alkaline phosphatase activity were used to measure the cellular activities. Results for the naringin group showed an increase in MTT assay compared with the control and the effect was dose dependent. At high concentration (0.1 micromol), the increases ranged from 60% to 80%. In the total protein content assay, naringin also showed an increase compared with control and the effect was also dose dependent. At high concentration (0.1 micromol), the increases ranged from 9% to 20%. In the alkaline phosphatase activity assay, naringin at high concentration (0.1 micromol) significantly increased the activity up to 20%. In conclusion, naringin significantly increased bone cell activities in vitro. This is the first study specifically attempted to investigate the effect of naringin on bone cell activities. Besides statin, this provided another example of mevalonate pathway blockage in the cholesterol production pathway by HMG-CoA reductase inhibition will increase the bone cell activities. PMID:16944474

  1. Bone cells and bone turnover in diabetes mellitus.

    PubMed

    Rubin, Mishaela R

    2015-06-01

    Substantial evidence exists that in addition to the well-known complications of diabetes, increased fracture risk is an important morbidity. This risk is probably due, at least in part, to altered bone remodeling and bone cell function in diabetes. Circulating biochemical markers of bone formation, including P1NP, osteocalcin and bone-specific alkaline phosphatase have been found to be decreased in type 2 diabetes (T2D) and may be predictive of fractures independently of bone mineral density (BMD). These findings have been corroborated by preliminary histomorphometric data. Reductions in the bone resorption marker serum CTx in T2D have also been reported. Serum sclerostin levels have been found to be increased in T2D and appear to be predictive of fracture risk independent of BMD. Other factors such as bone marrow fat saturation, advanced glycation endproduct (AGE) accumulation, and microarchitectural changes might also relate to bone cell function and fracture risk in diabetes. PMID:25740570

  2. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    SciTech Connect

    Miettinen, Johanna A.; Pietilae, Mika; Salonen, Riikka J.; Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu ; Ohlmeier, Steffen; Ylitalo, Kari; Huikuri, Heikki V.; Lehenkari, Petri

    2011-04-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.

  3. Cell isolation and culture.

    PubMed Central

    Zhang, Sihui; Kuhn, Jeffrey R

    2013-01-01

    Cell isolation and culture are essential tools for the study of cell function. Isolated cells grown under controlled conditions can be manipulated and imaged at a level of resolution that is not possible in whole animals or even tissue explants. Recent advances have allowed for large-scale isolation and culture of primary C. elegans cells from both embryos and all four larval stages. Isolated cells can be used for single-cell profiling, electrophysiology, and high-resolution microscopy to assay cell autonomous development and behavior. This chapter describes protocols for the isolation and culture of C. elegans embryonic and larval stage cells. Our protocols describe isolation of embryonic and L1 stage cells from nematodes grown on high-density NA22 bacterial plates and isolation of L2 through L4 stage cells from nematodes grown in axenic liquid culture. Both embryonic and larval cells can be isolated from nematode populations within 3 hours and can be cultured for several days. A primer on sterile cell culture techniques is given in the appendices. PMID:23430760

  4. Chondrocytes Directly Transform into Bone Cells in Mandibular Condyle Growth.

    PubMed

    Jing, Y; Zhou, X; Han, X; Jing, J; von der Mark, K; Wang, J; de Crombrugghe, B; Hinton, R J; Feng, J Q

    2015-12-01

    For decades, it has been widely accepted that hypertrophic chondrocytes undergo apoptosis prior to endochondral bone formation. However, very recent studies in long bone suggest that chondrocytes can directly transform into bone cells. Our initial in vivo characterization of condylar hypertrophic chondrocytes revealed modest numbers of apoptotic cells but high levels of antiapoptotic Bcl-2 expression, some dividing cells, and clear alkaline phosphatase activity (early bone marker). Ex vivo culture of newborn condylar cartilage on a chick chorioallantoic membrane showed that after 5 d the cells on the periphery of the explants had begun to express Col1 (bone marker). The cartilage-specific cell lineage-tracing approach in triple mice containing Rosa 26(tdTomato) (tracing marker), 2.3 Col1(GFP) (bone cell marker), and aggrecan Cre(ERT2) (onetime tamoxifen induced) or Col10-Cre (activated from E14.5 throughout adult stage) demonstrated the direct transformation of chondrocytes into bone cells in vivo. This transformation was initiated at the inferior portion of the condylar cartilage, in contrast to the initial ossification site in long bone, which is in the center. Quantitative data from the Col10-Cre compound mice showed that hypertrophic chondrocytes contributed to ~80% of bone cells in subchondral bone, ~70% in a somewhat more inferior region, and ~40% in the most inferior part of the condylar neck (n = 4, P < 0.01 for differences among regions). This multipronged approach clearly demonstrates that a majority of chondrocytes in the fibrocartilaginous condylar cartilage, similar to hyaline cartilage in long bones, directly transform into bone cells during endochondral bone formation. Moreover, ossification is initiated from the inferior portion of mandibular condylar cartilage with expansion in one direction. PMID:26341973

  5. Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells.

    PubMed

    Murakami, Sho; Yoshino, Hironori; Ishikawa, Junya; Yamaguchi, Masaru; Tsujiguchi, Takakiyo; Nishiyama, Ayaka; Yokoyama, Kouki; Kashiwakura, Ikuo

    2015-11-01

    Mast cells, immune effector cells produced from bone marrow cells, play a major role in immunoglobulin E-mediated allergic responses. Ionizing radiation affects the functions of mast cells, which are involved in radiation-induced tissue damage. However, whether ionizing radiation affects the differential induction of mast cells is unknown. Here we investigated whether bone marrow cells of X-irradiated mice differentiated into mast cells. To induce mast cells, bone marrow cells from X-irradiated and unirradiated mice were cultured in the presence of cytokines required for mast cell induction. Although irradiation at 0.5 Gy and 2 Gy decreased the number of bone marrow cells 1 day post-irradiation, the cultured bone marrow cells of X-irradiated and unirradiated mice both expressed mast cell-related cell-surface antigens. However, the percentage of mast cells in the irradiated group was lower than in the unirradiated group. Similar decreases in the percentage of mast cells induced in the presence of X-irradiation were observed 10 days post irradiation, although the number of bone marrow cells in irradiated mice had recovered by this time. Analysis of mast cell function showed that degranulation of mast cells after immunoglobulin E-mediated allergen recognition was significantly higher in the X-irradiated group compared with in the unirradiated group. In conclusion, bone marrow cells of X-irradiated mice differentiated into mast cells, but ionizing radiation affected the differentiation efficiency and function of mast cells. PMID:26453633

  6. Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells

    PubMed Central

    Murakami, Sho; Yoshino, Hironori; Ishikawa, Junya; Yamaguchi, Masaru; Tsujiguchi, Takakiyo; Nishiyama, Ayaka; Yokoyama, Kouki; Kashiwakura, Ikuo

    2015-01-01

    Mast cells, immune effector cells produced from bone marrow cells, play a major role in immunoglobulin Emediated allergic responses. Ionizing radiation affects the functions of mast cells, which are involved in radiation-induced tissue damage. However, whether ionizing radiation affects the differential induction of mast cells is unknown. Here we investigated whether bone marrow cells of X-irradiated mice differentiated into mast cells. To induce mast cells, bone marrow cells from X-irradiated and unirradiated mice were cultured in the presence of cytokines required for mast cell induction. Although irradiation at 0.5 Gy and 2 Gy decreased the number of bone marrow cells 1 day post-irradiation, the cultured bone marrow cells of X-irradiated and unirradiated mice both expressed mast cellrelated cell-surface antigens. However, the percentage of mast cells in the irradiated group was lower than in the unirradiated group. Similar decreases in the percentage of mast cells induced in the presence of X-irradiation were observed 10 days post irradiation, although the number of bone marrow cells in irradiated mice had recovered by this time. Analysis of mast cell function showed that degranulation of mast cells after immunoglobulin Emediated allergen recognition was significantly higher in the X-irradiated group compared with in the unirradiated group. In conclusion, bone marrow cells of X-irradiated mice differentiated into mast cells, but ionizing radiation affected the differentiation efficiency and function of mast cells. PMID:26453633

  7. The effect of decellularized bone/bone marrow produced by high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Hashimoto, Yoshihide; Funamoto, Seiichi; Kimura, Tsuyoshi; Nam, Kwangwoo; Fujisato, Toshiya; Kishida, Akio

    2011-10-01

    Decellularized bone/bone marrow was prepared to provide a microenvironment mimicking that of the bone marrow for three-dimensional culture in vitro. Bone/bone marrows were hydrostatically pressed at 980 MPa at 30 C for 10 min to dismantle the cells. Then, they were washed with EGM-2 and further treated in an 80% EtOH to remove the cell debris and lipid, respectively. After being rinsed and shaken with PBS again, treated bone/bone marrows were stained with hematoxylin and eosin (H-E) to assess the efficacy of decellularization. Cells were determined to have been completely removed through H-E staining of their sections and DNA quantification. Rat mesenchymal stem cells (rMSCs) were seeded on the decellularized bone/bone marrows and cultured for 21 days. The adhesion of rMSCs on or into decellularized bone/bone marrows was confirmed and proliferated over time in culture. The osteogenic differentiation effect of decellularized bone/bone marrows on rMSCs in the presence or absence of dexamethasone was investigated. Decellularized bone/bone marrows without dexamethasone significantly increased alkaline phosphatase (ALP) activity, indicating promoted osteogenic differentiation of rMSCs. In an animal study, when decellularized bone/bone marrows were implanted into the rat subcutaneous, no immune reaction occurred and clusters of the hematopoietic cells could be observed, suggesting the decellularized bone/bone marrows can provide a microenvironment in vivo. PMID:21724252

  8. Modeling Selective Elimination of Quiescent Cancer Cells from Bone Marrow

    PubMed Central

    Cavnar, Stephen P.; Rickelmann, Andrew D.; Meguiar, Kaille F.; Xiao, Annie; Dosch, Joseph; Leung, Brendan M.; Cai Lesher-Perez, Sasha; Chitta, Shashank; Luker, Kathryn E.; Takayama, Shuichi; Luker, Gary D.

    2015-01-01

    Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer. PMID:26408255

  9. Adipose-derived stem cells combined with a demineralized cancellous bone substrate for bone regeneration.

    PubMed

    Shi, Yaling; Niedzinski, Jerry R; Samaniego, Adrian; Bogdansky, Simon; Atkinson, Brent L

    2012-07-01

    Mesenchymal stem cells (MSCs) isolated from cadaveric adipose tissue can be obtained in large quantities, and have been reported in the literature to be capable of inducing bone formation in vivo and ex vivo.( 1-6 ) The hypothesis tested whether a demineralized cancellous bone matrix (DCBM) can provide an effective substrate for selection and retention of stem cells derived from the stromal vascular fraction (SVF) of adipose. Human cadaveric adipose tissue was recovered from a donor and digested. The resulting SVF-containing MSCs were seeded onto the demineralized bone allografts, after which the nonadherent cells were washed off. The MSCs were characterized using a flow cytometer and tri-lineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) in vitro. The stem cell-seeded allografts were also characterized for cell number, adherence to the DCBM, osteogenic activity (alkaline phosphatase and Alizarin Red staining), and bone morphorgenic protein (BMP) quantity. Flow cytometry identified a mean total of 7.2% MSCs in SVF and 87.2% MSCs after culture. The stem cells showed the capability of differentiating into bone, cartilage, and fat. On the 21 stem cell-seeded bone allografts, there were consistent, attached, viable cells (100,74422,762 cells/cube). An assessment of donor age, gender, and body mass index revealed no significant differences in cell numbers. Enzyme-linked immunosorbent assay revealed the presence of BMP-2 and BMP-7. In conclusion, this bone graft contains three key elements for bone regeneration: adhered osteogenic stem cells, 3D osteoconductive bone scaffold, and osteoinductive BMP signal. It therefore has the potential to be effective for bone regeneration. PMID:22500696

  10. Leukemia cells induce changes in human bone marrow stromal cells

    PubMed Central

    2013-01-01

    Background Bone marrow stromal cells (BMSCs) are multipotent cells that support angiogenesis, wound healing, and immunomodulation. In the hematopoietic niche, they nurture hematopoietic cells, leukemia, tumors and metastasis. BMSCs secrete of a wide range of cytokines, growth factors and matrix proteins which contribute to the pro-tumorigenic marrow microenvironment. The inflammatory cytokines IFN-? and TNF-? change the BMSC secretome and we hypothesized that factors produced by tumors or leukemia would also affect the BMSC secretome and investigated the interaction of leukemia cells with BMSCs. Methods BMSCs from healthy subjects were co-cultured with three myeloid leukemia cell lines (TF-1, TF-1? and K562) using a trans-well system. Following co-culture, the BMSCs and leukemia cells were analyzed by global gene expression analysis and culture supernatants were analyzed for protein expression. As a control, CD34+ cells were also cocultured with BMSCs. Results Co-culture induced leukemia cell gene expression changes in stem cell pluripotency, TGF-? signaling and carcinoma signaling pathways. BMSCs co-cultured with leukemia cells up-regulated a number of proinflammatory genes including IL-17 signaling-related genes and IL-8 and CCL2 levels were increased in co-culture supernatants. In contrast, purine metabolism, mTOR signaling and EIF2 signaling pathways genes were up-regulated in BMSCs co-cultured with CD34+ cells. Conclusions BMSCs react to the presence of leukemia cells undergoing changes in the cytokine and chemokine secretion profiles. Thus, BMSCs and leukemia cells both contribute to the creation of a competitive niche more favorable for leukemia stem cells. PMID:24304929

  11. Mammalian Cell Culture Simplified.

    ERIC Educational Resources Information Center

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  12. Lamellar Spacing in Cuboid Hydroxyapatite Scaffolds Regulates Bone Formation by Human Bone Marrow Stromal Cells

    PubMed Central

    Afghani, Shahrzad; Franco, Jaime; Launey, Max; Marshall, Sally; Marshall, Grayson W.; Nissenson, Robert; Lee, Janice; Tomsia, Antoni P.; Saiz, Eduardo

    2011-01-01

    Background A major goal in bone engineering is the creation of large volume constructs (scaffolds and stem cells) that bear load. The scaffolds must satisfy two competing requirementsthey need be sufficiently porous to allow nutrient flow to maintain cell viability, yet sufficiently dense to bear load. We studied the effect of scaffold macroporosity on bone formation and scaffold strength, for bone formed by human bone marrow stromal cells. Methods Rigid cubical hydroxyapatite/tricalcium phosphate scaffolds were produced by robo-casting. The ceramic line thickness was held constant, but the distance between adjacent lines was either 50, 100, 200, 500, or 1000??m. Cultured human bone marrow stromal cells were combined with the scaffolds in vitro; transplants were placed into the subcutis of immunodeficient mice. Transplants were harvested 9, 18, 23, 38, or 50 weeks later. Bone formation and scaffold strength were analyzed using histology and compression testing. Results Sixty transplants were evaluated. Cortical bone increased with transplant age, and was greatest among 500??m transplants. In contrast, maximum transplant strength was greatest among 200??m transplants. Conclusions Lamellar spacing within scaffolds regulates the extent of bone formation; 500??m yields the most new bone, whereas 200??m yields the strongest transplants. PMID:21294634

  13. Repair of Segmental Bone Defect Using Totally Vitalized Tissue Engineered Bone Graft by a Combined Perfusion Seeding and Culture System

    PubMed Central

    Feng, Ya-Fei; Li, Xiang; Hu, Yun-Yu; Wang, Zhen; Ma, Zhen-Sheng; Lei, Wei

    2014-01-01

    Background The basic strategy to construct tissue engineered bone graft (TEBG) is to combine osteoblastic cells with three dimensional (3D) scaffold. Based on this strategy, we proposed the “Totally Vitalized TEBG” (TV-TEBG) which was characterized by abundant and homogenously distributed cells with enhanced cell proliferation and differentiation and further investigated its biological performance in repairing segmental bone defect. Methods In this study, we constructed the TV-TEBG with the combination of customized flow perfusion seeding/culture system and β-tricalcium phosphate (β-TCP) scaffold fabricated by Rapid Prototyping (RP) technique. We systemically compared three kinds of TEBG constructed by perfusion seeding and perfusion culture (PSPC) method, static seeding and perfusion culture (SSPC) method, and static seeding and static culture (SSSC) method for their in vitro performance and bone defect healing efficacy with a rabbit model. Results Our study has demonstrated that TEBG constructed by PSPC method exhibited better biological properties with higher daily D-glucose consumption, increased cell proliferation and differentiation, and better cell distribution, indicating the successful construction of TV-TEBG. After implanted into rabbit radius defects for 12 weeks, PSPC group exerted higher X-ray score close to autograft, much greater mechanical property evidenced by the biomechanical testing and significantly higher new bone formation as shown by histological analysis compared with the other two groups, and eventually obtained favorable healing efficacy of the segmental bone defect that was the closest to autograft transplantation. Conclusion This study demonstrated the feasibility of TV-TEBG construction with combination of perfusion seeding, perfusion culture and RP technique which exerted excellent biological properties. The application of TV-TEBG may become a preferred candidate for segmental bone defect repair in orthopedic and maxillofacial fields. PMID:24728277

  14. Confocal fluorescence microscopy: some applications in bone cell biology.

    PubMed

    Jones, S J; Taylor, M L

    1990-05-01

    Three-dimensional information is necessary for the proper investigation of the interrelationships of bone cells, and of the complex interface between these cells and the bone matrix they form and destroy. The use of fluorescence confocal microscopy was explored in the determination of the distribution of immunolabelled actin and vinculin--cytoskeletal and attachment proteins--in isolated chick bone cells cultured on dentine, and in neonate rat and rabbit calvaria. Confocal imaging, compared with conventional fluorescence imaging, greatly enhanced the interpretation possible. PMID:2115085

  15. [Thermophilic eukaryotic cell cultures].

    PubMed

    Bakhutashvili, V I; Dzhavakhishvili, N A; Kupradze, S A; Chkhotua, R N; Bobokhidze, N G

    1991-01-01

    Thermophilic clones of lymphoblastoid cell cultures Namalwa were generated and found to be capable of life and reproduction at a temperature of 60 degrees C. The reproductive dynamics, cytology, and ultrastructure of these clones were studied. PMID:1803780

  16. Digital Microfluidic Cell Culture.

    PubMed

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R

    2015-12-01

    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF. PMID:26643019

  17. Cell interactions in bone tissue engineering

    PubMed Central

    Pirraco, R P; Marques, A P; Reis, R L

    2010-01-01

    Abstract Bone fractures, where the innate regenerative bone response is compromised, represent between 4 and 8 hundred thousands of the total fracture cases, just in the United States. Bone tissue engineering (TE) brought the notion that, in cases such as those, it was preferable to boost the healing process of bone tissue instead of just adding artificial parts that could never properly replace the native tissue. However, despite the hype, bone TE so far could not live up to its promises and new bottom-up approaches are needed. The study of the cellular interactions between the cells relevant for bone biology can be of essential importance to that. In living bone, cells are in a context where communication with adjacent cells is almost permanent. Many fundamental works have been addressing these communications nonetheless, in a bone TE approach, the 3D perspective, being part of the microenvironment of a bone cell, is as crucial. Works combining the study of cell-to-cell interactions in a 3D environment are not as many as expected. Therefore, the bone TE field should not only gain knowledge from the field of fundamental Biology but also contribute for further understanding the biology of bone. In this review, a summary of the main works in the field of bone TE, aiming at studying cellular interactions in a 3D environment, and how they contributed towards the development of a functional engineered bone tissue, is presented. PMID:20050963

  18. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    SciTech Connect

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C. )

    1989-11-25

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.

  19. Effect of culture conditions and calcium phosphate coating on ectopic bone formation.

    PubMed

    Vaquette, Cdryck; Ivanovski, Saso; Hamlet, Stephen M; Hutmacher, Dietmar W

    2013-07-01

    This study investigated the effect of a calcium phosphate (CaP) coating onto a polycaprolactone melt electrospun scaffold and in vitro culture conditions on ectopic bone formation in a subcutaneous rat model. The CaP coating resulted in an increased alkaline phosphatase activity (ALP) in ovine osteoblasts regardless of the culture conditions and this was also translated into higher levels of mineralisation. A subcutaneous implantation was performed and increasing ectopic bone formation was observed over time for the CaP-coated samples previously cultured in osteogenic media whereas the corresponding non-coated samples displayed a lag phase before bone formation occurred from 4 to 8 weeks post-implantation. Histology and immunohistochemistry revealed bone fill through the scaffolds 8 weeks post-implantation for coated and non-coated specimens and that ALP, osteocalcin and collagen 1 were present at the ossification front and in the bone tissues. Vascularisation in the vicinity of the bone tissues was also observed indicating that the newly formed bone was not deprived of oxygen and nutrients. We found that in vitro osteogenic induction was essential for achieving bone formation and CaP coating accelerated the osteogenic process. We conclude that high cell density and preservation of the collagenous and mineralised extracellular matrix secreted in vitro are factors of importance for ectopic bone formation. PMID:23623428

  20. Liver Cell Culture Devices

    PubMed Central

    Andria, B.; Bracco, A.; Cirino, G.; Chamuleau, R. A. F. M.

    2010-01-01

    In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver regeneration) and as in vitro screening systems in the early stages of the drug development process, like assessing hepatotoxicity, hepatic drug metabolism, and induction/inhibition studies. Relevant literature is summarized about artificial human liver cell culture systems by scrutinizing PubMed from 2003 to 2009. Existing devices are divided in 2D configurations (e.g., static monolayer, sandwich, perfused cells, and flat plate) and 3D configurations (e.g., liver slices, spheroids, and different types of bioreactors). The essential features of an ideal liver cell culture system are discussed: different types of scaffolds, oxygenation systems, extracellular matrixes (natural and artificial), cocultures with nonparenchymal cells, and the role of shear stress problems. Finally, miniaturization and high-throughput systems are discussed. All these factors contribute in their own way to the viability and functionality of liver cells in culture. Depending on the aim for which they are designed, several good systems are available for predicting hepatotoxicity and hepatic metabolism within the general population. To predict hepatotoxicity in individual cases genomic analysis might be essential as well.

  1. Mechanotransduction in bone: do bone cells act as sensors of fluid flow?

    PubMed

    Turner, C H; Forwood, M R; Otter, M W

    1994-08-01

    When compact bone is subjected to bending loads, interstitial fluid in the bone matrix flows away from regions of high compressive stress. The amount of interstitial fluid flow is strongly influenced by the loading rate in a dose-dependent fashion. We hypothesize that interstitial fluid flow affects bone formation, and we tested this hypothesis indirectly by measuring the effect of different loading frequencies on bone formation rate in vivo. The right tibiae of adult female rats were subjected to applied bending at frequencies of 0.05, 0.1, 0.2, 0.5, 1.0, and 2.0 Hz for a 2-wk period. The rats were then killed and histomorphometric measurements of bone formation were made of the midshaft of the tibia. Bending of the tibia increased bone formation rate in the higher-frequency (0.5 to 2.0 Hz) loading groups as much as fourfold, yet no increase in bone formation rate was observed for loading frequencies below 0.5 Hz. In a separate experiment, we found stress-generated potentials (SGP) in the rat tibia to increase monotonically with increasing loading frequency. The dose-response relationship between loading frequency and the bone formation response closely resembles the relationship between loading frequency and SGP within bone. The qualitative similarity between these two relationships suggests that increased bone formation is associated with increased SGP, which are caused by interstitial fluid flow. Bone cells are known to be sensitive to electric fields and may respond directly to SGP. Also, fluid shear forces have been shown to stimulate bone cells in culture, so it is possible that increased interstitial fluid flow directly affects bone formation. PMID:8070637

  2. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  3. [Standardized testing of bone implant surfaces with an osteoblast cell culture cyste. III. PVD hard coatings and Ti6Al4V].

    PubMed

    Steinert, A; Hendrich, C; Merklein, F; Rader, C P; Schtze, N; Thull, R; Eulert, J

    2000-12-01

    The effect of titanium-based PVD coatings and a titanium alloy on the proliferation and differentiation of osteoblasts was investigated using a standardised cell culture system. Human fetal osteoblasts (hFOB 1.19) were cultured on titanium-niobium-nitride ([Ti,Nb]N), titanium-niobium-oxy-nitride coatings ([Ti,Nb]ON) and titanium-aluminium-vanadium alloy (Ti6Al4V) for 17 days. Cell culture polystyrene (PS) was used as reference. For the assessment of proliferation, the numbers and viability of the cells were determined, while alkaline phosphatase activity, collagen I and osteocalcin synthesis served as differentiation parameters. On the basis of the cell culture experiments, a cytotoxic effect of the materials can be excluded. In comparison with the other test surfaces, [Ti,Nb]N showed greater cell proliferation. The [Ti,Nb]N coating was associated with the highest level of osteocalcin production, while all other differentiation parameters were identical on all three surfaces. The test system described reveals the influence of PVD coatings on the osteoblast differentiation cycle. The higher oxygen content of the [Ti,Nb]ON surface does not appear to have any positive impact on cell proliferation. The excellent biocompatibility of the PVD coatings is confirmed by in vivo findings. The possible use of these materials in the fields of osteosynthesis and articular surfaces is still under discussion. PMID:11194641

  4. Generation of Eosinophils from Cryopreserved Murine Bone Marrow Cells

    PubMed Central

    Schollaert, Kaila L.; Stephens, Michael R.; Gray, Jerilyn K.; Fulkerson, Patricia C.

    2014-01-01

    Eosinophils are produced in the bone marrow from CD34+ eosinophil lineagecommitted progenitors, whose levels in the bone marrow are elevated in a variety of human diseases. These findings suggest that increased eosinophil lineagecommitted progenitor production is an important process in disease-associated eosinophilia. The pathways central to the biology of the eosinophil lineagecommitted progenitor remain largely unknown. Thus, developing new methods to investigate the regulators of eosinophil lineagecommitted progenitor differentiation is needed to identify potential therapeutic targets to specifically inhibit eosinophil production. We tested cytokine regimens to optimize liquid cultures for the study of eosinophil lineagecommitted progenitor and eosinophil precursor differentiation into mature eosinophils. Stem cell factor (but not fms-related tyrosine kinase 3 ligand) was required for optimal yield of eosinophils. Furthermore, we evaluated the effects of cell preservation and scale on the culture, successfully culturing functional eosinophils from fresh and frozen murine bone marrow cells and in a standard-sized and 96-well culture format. In summary, we have developed an adaptable culture system that yields functionally competent eosinophils from murine low-density bone marrow cells and whose cytokine regime includes expansion of progenitors with stem cell factor alone with subsequent differentiation with interleukin 5. PMID:25551463

  5. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid dynamic shear (i.e., as required for viability of shear-sensitive cells) to the developing engineered tissue construct. This bioreactor was recently utilized to show independent and interactive effects of a growth factor (IGF-I) and slow bidirectional perfusion on the survival, differentiation, and contractile performance of 3D tissue engineering cardiac constructs. The main application of this system is within the tissue engineering industry. The ideal final application is within the automated mass production of tissue- engineered constructs. Target industries could be both life sciences companies as well as bioreactor device producing companies.

  6. Inhibiting and stimulating effects of TGF-. beta. 1 on osteoclastic bone resorption in fetal mouse bone organ cultures

    SciTech Connect

    Dieudonne, S.C.; Foo, P.; van Zoelen, E.J.; Burger, E.H. )

    1991-05-01

    The effects of TGF-{beta} 1 on osteoclastic resorption of fetal mouse calvaria and long bones at various stages of development was studied in organ culture. In resorbing calvariae and long bones with an established marrow cavity TGF-beta 1 (4-10 ng/ml) had a stimulating effect on 45Ca release that was partially inhibited by indomethacin. In primitive long bones, however, which were explanted before osteoclast invasion and excavation of a marrow cavity had started, TGF-beta 1 (1-4 ng/ml) inhibited 45Ca release by an indomethacin-insensitive mechanism. Histomorphometry of long bones after staining for tartrate-resistant acid phosphatase (TRAP) revealed that TGF-beta 1 treatment inhibited the migration of TRAP-positive cells from periosteum to developing marrow cavity and inhibited cell fusion. However, the formation of (mononuclear) TRAP-positive cells in the periosteum-perichondrium was strongly enhanced. These data suggest that TGF-beta 1 modulates various steps in the cascade of osteoclast development, recruitment, and activation in different ways, involving both prostaglandin-mediated and prostaglandin-independent pathways. Therefore the net effect of exogenous TGF-beta 1 on osteoclastic resorption in bone organ cultures depends on the relative prevalence of osteoclast progenitors, precursors, and mature osteoclasts in the tissue under study.

  7. A Three-dimensional Tissue Culture Model to Study Primary Human Bone Marrow and its Malignancies

    PubMed Central

    Parikh, Mukti R.; Belch, Andrew R.; Pilarski, Linda M; Kirshner, Julia

    2014-01-01

    Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions. PMID:24637629

  8. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, α particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by γH2AX-immunostaining. Osteoblastogenesis was estimated by measurement of alkaline phosphatase (ALP) activity and production of mineralized matrix (von-Kossa staining, Alizarin Red staining). During the process of osteoblastic cell differentiation, the expression of the bone specific marker genes osteocalcin (OCN) and osteopontin (OPN) were recorded by quantitative real time reverse transcription PCR (qRT-PCR). Compared with standard culture conditions, the osteogenic marker genes OCN and OPN were highly expressed during the differentiation process induced either by osteo-inductive media additives (50 µg/ml ascorbic acid, 10 mmol/l β-glycero phosphate) or by sparsely ionizing radiation (X-rays). After 21 days of postirradiation incubation sparsely ionizing radiation could be shown to induce the formation of bone-like nodules (von-Kossa staining) for OCT-1 and MC3T3-E1 S4 cells but nor for MC3T3- E1 S24 cells. Ionizing radiation leads to a cell cycle arrest which is resolved in a dose and time dependent way. This was accompanied by a dose dependent regulation of the cyclin kinase inhibitor CDKN1A (p21/WAF) and transforming growth factor beta 1 (TGF-β1). TGF-β1 is known to affect osteoblast differentiation, matrix formation and mineralization. Modulation of its expression could influence the expression of main osteogenic transcription factors. For exposure with high LET radiation a pronounced cell cycle block was evident. The expression of the osteogenic marker genes OCN and Osterix (OSX) was increased in the OCT-1 cells with differentiation potential for exposure to α particles and accelerated carbon and argon ions. The results on the expression of differentiation markers during radiation-induced premature differentiation of bone cells of the osteoblast lineage show that densely ionizing radiation results in expression of proteins essential for bone formation and consequently in an increase in bone volume. Such an effect has been observed in in-vivo carbon ion irradiated rats. As radiation dependent permanent cell cycle blocks lead to a depletion of proliferation-competent cells from the osteoblastic precursor pool in the body, a gradual decrease of bone mass in weightlessness may be attributed to synergistic effects of radiation and weightlessness.

  9. Stem cell plasticity in muscle and bone marrow.

    PubMed

    Goodell, M A; Jackson, K A; Majka, S M; Mi, T; Wang, H; Pocius, J; Hartley, C J; Majesky, M W; Entman, M L; Michael, L H; Hirschi, K K

    2001-06-01

    Recent discoveries have demonstrated the extraordinary plasticity of tissue-derived stem cells, raising fundamental questions about cell lineage relationships and suggesting the potential for novel cell-based therapies. We have examined this phenomenon in a potential reciprocal relationship between stem cells derived from the skeletal muscle and from the bone marrow. We have discovered that cells derived from the skeletal muscle of adult mice contain a remarkable capacity for hematopoietic differentiation. Cells prepared from muscle by enzymatic digestion and 5 day in vitro culture were harvested and introduced into each of six lethally irradiated recipients together with distinguishable whole bone marrow cells. Six and twelve weeks later, all recipients showed high-level engraftment of muscle-derived cells representing all major adult blood lineages. The mean total contribution of muscle cell progeny to peripheral blood was 56%, indicating that the cultured muscle cells generated approximately 10- to 14-fold more hematopoietic activity than whole bone marrow. Although the identity of the muscle-derived hematopoietic stem cells is still unknown, they may be identical to muscle satellite cells, some of which lack myogenic regulators and could respond to hematopoietic signals. We have also found that stem cells in the bone marrow can contribute to cardiac muscle repair and neovascularization after ischemic injury. We transplanted highly purified bone marrow stem cells into lethally irradiated mice that subsequently were rendered ischemic by coronary artery occlusion and reperfusion. The engrafted stem cells or their progeny differentiated into cardiomyocytes and endothelial cells and contributed to the formation of functional tissue. PMID:11458510

  10. Physiological effects of microgravity on bone cells.

    PubMed

    Arfat, Yasir; Xiao, Wei-Zhong; Iftikhar, Salman; Zhao, Fan; Li, Di-Jie; Sun, Yu-Long; Zhang, Ge; Shang, Peng; Qian, Ai-Rong

    2014-06-01

    Life on Earth developed under the influence of normal gravity (1g). With evidence from previous studies, scientists have suggested that normal physiological processes, such as the functional integrity of muscles and bone mass, can be affected by microgravity during spaceflight. During the life span, bone not only develops as a structure designed specifically for mechanical tasks but also adapts for efficiency. The lack of weight-bearing forces makes microgravity an ideal physical stimulus to evaluate bone cell responses. One of the most serious problems induced by long-term weightlessness is bone mineral loss. Results from in vitro studies that entailed the use of bone cells in spaceflights showed modification in cell attachment structures and cytoskeletal reorganization, which may be involved in bone loss. Humans exposed to microgravity conditions experience various physiological changes, including loss of bone mass, muscle deterioration, and immunodeficiency. In vitro models can be used to extract valuable information about changes in mechanical stress to ultimately identify the different pathways of mechanotransduction in bone cells. Despite many in vivo and in vitro studies under both real microgravity and simulated conditions, the mechanism of bone loss is still not well defined. The objective of this review is to summarize the recent research on bone cells under microgravity conditions based on advances in the field. PMID:24687524

  11. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  12. Bone formation in rabbit cancellous bone explant culture model is enhanced by mechanical load

    PubMed Central

    2013-01-01

    Background When studying and designing an artificial bone in vitro with similar features and functionality of natural bone by tissue engineering technology, the culturing environment, especially the mechanical environment is supposed to be an important factor, because a suitable mechanical environment in vitro may improve the adaptability of the planted-in tissue engineering bone in the body. Unfortunately, up to now, the relationship between mechanical stimuli and natural bone growth has not yet been precisely determined, and it is so imperative for a prior study on effect of mechanical loading on growth of the natural bone cultured in vitro. Methods Under sterile conditions, explant models of rabbit cancellous bone with 3?mm in thickness and 8?mm in diameter were prepared and cultured in a dynamic loading and circulating perfusion bioreactor system. By Micro-CT scanning, a 3D model for finite element (FEM) analysis was achieved. According to the results of FEM analysis and physiological load bearing capacity of the natural bone, these models were firstly subjected to mechanical load with 1Hz frequency causing average apparent strain of 1000 ??, 2000 ??, 3000 ?? and 4000 ?? respectively for 30?min every day, activities of alkaline phosphatase (AKP) were detected on the 5th and the 14th loading day and on the 14th and the 21st day, mechanical properties, tissue mineral density (TMD) of the bone explant models were investigated and Von-kossa staining and fluorescence double labeling assays were conducted to evaluate whether there were fresh osteoid in the bone explant models. In addition, Western blot, Elisa and Real-time PCR were employed to analyze expression of Collagen-I (COL-1), bone morphogenetic protein-2 (BMP-2) and osteoprotegerin (OPG) protein and RNA. Results The explant models of rabbit cancellous bone prepared under sterile conditions grew well in the bioreactor system. With the increasing culturing time and load levels, bone explant models in groups with 1000 ?? and 2000 ?? average apparent strain experienced improving mechanical properties and TMD (P<0.05), and results of Von-kossa staining and fluorescence double labeling also showed apparent fresh osteoid formation. Under the same loading conditions, a up-regulations in protein and RNA of COL-1, BMP-2 and OPG were detected, especially, relative genes notably expressed after 21?days. Conclusion Our study demonstrated that mechanical load could improve function and activity of osteoblasts in explant models of cancellous bone. Through regulations of COL-1, OPG and BMP-2 secreted by osteoblasts, the mechanical load could improve the tissue structural density and stiffness due to formation of fresh osteoid. PMID:23597232

  13. Osteogenic potential of mandibular vs. long-bone marrow stromal cells.

    PubMed

    Aghaloo, T L; Chaichanasakul, T; Bezouglaia, O; Kang, B; Franco, R; Dry, S M; Atti, E; Tetradis, S

    2010-11-01

    Although fundamentally similar to other bones, the jaws demonstrate discrete responses to developmental, mechanical, and homeostatic regulatory signals. Here, we hypothesized that rat mandible vs. long-bone marrow-derived cells possess different osteogenic potential. We established a protocol for rat mandible and long-bone marrow stromal cell (BMSC) isolation and culture. Mandible BMSC cultures formed more colonies, suggesting an increased CFU-F population. Both mandible and long-bone BMSCs differentiated into osteoblasts. However, mandible BMSCs demonstrated augmented alkaline phosphatase activity, mineralization, and osteoblast gene expression. Importantly, upon implantation into nude mice, mandible BMSCs formed 70% larger bone nodules containing three-fold more mineralized bone compared with long-bone BMSCs. Analysis of these data demonstrates an increased osteogenic potential and augmented capacity of mandible BMSCs to induce bone formation in vitro and in vivo. Our findings support differences in the mechanisms underlying mandible homeostasis and the pathophysiology of diseases unique to the jaws. PMID:20811069

  14. Bone repair using periodontal ligament progenitor cell-seeded constructs.

    PubMed

    Tour, G; Wendel, M; Moll, G; Tcacencu, I

    2012-08-01

    The success of tissue-engineering therapies is dependent on the ability of scaffolds to guide differentiation of progenitor cells. Here we present a new approach using a biomimetic construct composed of hydroxyapatite modified with an in vitro-derived extracellular matrix (HA-ECM) and seeded with periodontal ligament progenitor cells (PDLCs). The study aimed to investigate the effect of HA-ECM on osteogenic differentiation of PDLCs and in vivo evaluation of the PDLC-seeded HA-ECM constructs using a rat calvarial critical-sized defect model. After flow-cytometric phenotyping of PDLCs for typical mesenchymal stem cell markers, the PDLCs were cultured on HA-ECM or HA alone in osteogenic media and assessed by MTT, alkaline phosphatase (ALP) assays, and real-time qPCR at different time intervals after seeding. New bone formation induced by PDLC-seeded constructs was assessed by histomorphometric analysis at 12 weeks post-operatively. The PDLCs seeded on HA-ECM showed significantly higher ALP activity and up-regulation of bone-related genes. The treatment with PDLC-seeded HA-ECM significantly improved calvarial bone repair, with the highest amount of newly formed bone elicited by cell-seeded constructs cultured for 14 days. Our results highlight the PDLC-seeded HA-ECM constructs as a promising tool for craniofacial bone regeneration. PMID:22736447

  15. LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance.

    PubMed

    Ziegler, Patrick; Boettcher, Steffen; Takizawa, Hitoshi; Manz, Markus G; Brmmendorf, Tim H

    2016-01-01

    The nonhematopoietic bone marrow (BM) microenvironment provides a functional niche for hematopoietic cell maintenance, recruitment, and differentiation. It consists of multiple cell types including vasculature, bone, adipose tissue, and fibroblast-like bone marrow stromal cells (BMSC), which can be summarized under the generic term niche cells. BMSC express Toll-like receptors (TLRs) and are capable to respond to TLR-agonists by changing their cytokine expression pattern in order to more efficiently support hematopoiesis. Here, we show that in addition to enhanced myeloid colony formation from human CD34+ cells, lipopolysaccharide (LPS) stimulation retains overall higher numbers of CD34+ cells in co-culture assays using BMSC, with eightfold more CD34+ cells that underwent up to three divisions as compared to non-stimulated assays. When subjected to cytokine-supplemented myeloid colony-forming unit (CFU) assays or transplanted into newborn RAG2(-/-) ?c (-/-) mice, CD34(+) cells from LPS-stimulated BMSC cultures give rise to the full spectrum of myeloid colonies and T and B cells, respectively, thus supporting maintenance of myeloid and lymphoid primed hematopoietic progenitor cells (HPCs) under inflammatory conditions. Collectively, we suggest that BMSC enhance hematopoiesis during inflammatory conditions to support the replenishment of innate immune effector cells and to prevent the exhaustion of the hematopoietic stem and progenitor cell (HSPC) pool. PMID:26555286

  16. Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    PubMed Central

    Vianna, Verônica Fernandes; Bonfim, Danielle Cabral; Cavalcanti, Amanda dos Santos; Fernandes, Marco Cury; Kahn, Suzana Assad; Casado, Priscila Ladeira; Lima, Inayá Correa; Murray, Samuel S.; Murray, Elsa J. Brochmann; Duarte, Maria Eugenia Leite

    2013-01-01

    Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics. PMID:23710460

  17. Long-term bone marrow culture systems: normal and cyclic hematopoietic dogs.

    PubMed Central

    Al-Lebban, Z S; Lange, R D; Jones, J B; Lothrop, C D

    1987-01-01

    A continuous long-term liquid culture in both a micro and macro system that incorporates bone marrow cells from normal and cyclic hematopoietic dogs is described. An adherent layer composed of fibroblasts, endothelial cells, mononuclear phagocytic cells, and fat-containing cells is essential for continuous hematopoiesis. Hematopoiesis was measured by the recovery of the nonadherent cells and the generation of committed granulocyte-monocyte progenitor cells for a period of seven weeks. Optimum growth factors include the use of horse serum, fetal bovine serum, dog serum, hydrocortisone, a 33 degrees C incubation temperature and feeding twice a week. As is true for both human and murine marrow liquid cultures, horse serum and hydrocortisone are essential for development and maintenance of fat-containing cells in the described systems. Both factors are important in hematopoiesis but their respective roles have not been defined. Normal and cyclic hematopoietic dogs bone marrow cells are comparable in their ability to establish long-term cultures. The micro-method (Linbro-well culture) gave similar results in maintaining hematopoiesis as did a macromethod (flask culture). Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3607647

  18. Stimulative effects of lead on bone resorption in organ culture.

    PubMed

    Miyahara, T; Komiyama, H; Miyanishi, A; Takata, M; Nagai, M; Kozuka, H; Hayashi, T; Yamamoto, M; Ito, Y; Odake, H

    1995-03-31

    To clarify whether hypercalcemia after injection of Pb to rats is due to biological bone resorption or physicochemical mineral dissolution, the effect of lead (Pb) on release of previously incorporated 45Ca in organ culture was investigated. Pb at 50 microM and above stimulated the release of 45Ca and hydroxyproline (Hyp). Pb did not stimulate 45Ca release from the bones inactivated by freezing and thawing. Eel calcitonin (ECT), bafilomycin A1 and scopadulcic acid B (SDB) inhibited Pb-stimulated 45Ca release. These results indicate that Pb-induced 45Ca release is due to osteoclastic bone resorption. Pb-stimulated bone resorption was inhibited by indomethacin and flurbiprofen. Pb stimulated the release of prostaglandin E2 (PGE2) from the bones into the media. There was significantly high correlation between 45Ca and PGE2 release. Pb-induced bone resorption was inferred to be mediated by PGE2. From these results, it was suggested that hypercalcemia after Pb injection might be caused by biological bone resorption. PMID:7716786

  19. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies. PMID:23642054

  20. Humanized Culture of Periosteal Progenitors in Allogeneic Serum Enhances Osteogenic Differentiation and In Vivo Bone Formation

    PubMed Central

    Owen, Helen C.; Tam, Wai Long; Solie, Lien; Van Cromphaut, Sophie J.; Van den Berghe, Greet; Luyten, Frank P.

    2014-01-01

    The translation of stem cell-based regenerative solutions from the laboratory to the clinic is often hindered by the culture conditions used to expand cell populations. Although fetal bovine serum (FBS) is widely used, regulatory bodies and safety concerns encourage alternative, xeno-free culturing practices. In an attempt to apply this approach to a bone-forming combination product of human periosteal progenitors (human periosteum derived cells) on a clinically used calcium phosphate carrier, FBS was substituted for human allogeneic serum (hAS) during cell expansion. It was found that cell proliferation was increased in hAS along with an apparent commitment to the osteogenic lineage, indicated by enhanced Runx2 expression, as well as alkaline phosphatase activity and matrix mineralization. Following analysis of signaling pathways, it was found that interferon-mediated signaling was downregulated, whereas JAK-STAT signaling was upregulated. STAT3 phosphorylation was enhanced in hAS-cultured human periosteum derived cells, inhibition of which ablated the proliferative effect of hAS. Furthermore, following in vivo implantation of hAS-cultured cells on NuOss scaffolds, enhanced bone formation was observed compared with FBS (71% increase, p < .001). Interestingly, the de novo-formed bone appeared to have a higher ratio of immature regions to mature regions, indicating that after 8 weeks implantation, tissue-formation processes were continuing. Integration of the implant with the environment appeared to be altered, with a decrease in calcium phosphate grain size and surface area, indicative of accelerated resorption. This study highlights the advantages of using humanized culture conditions for the expansion of human periosteal progenitors intended for bone regeneration. PMID:24375540

  1. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    PubMed

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans. PMID:26011163

  2. Effects of flavonoid on calcium content in femoral tissue culture and parathyroid hormone-stimulated osteoclastogenesis in bone marrow culture in vitro.

    PubMed

    Yamaguchi, Masayoshi; Hamamoto, Reiko; Uchiyama, Satoshi; Ishiyama, Kaori

    2007-09-01

    The effect of various flavonoids, which are present in food and plants, on bone calcium content and osteoclastogenesis were investigated to compare action of flavonoid on bone formation and bone resorption in vitro. Rat femoral-diaphyseal (cortical bone) and -metaphyseal (trabecular bone) tissues were cultured for 48 h in Dulbecco's modified Eagle's medium (high glucose) supplemented with antibiotics and bovine serum albumin. Amoung quercetin, myricetin, kaempferol, isorhamnetin, curcumin, hesperidin, or astaxanthin in the range of 10(-7)-10(-5)M, culture with quercetin (10(-6) or 10(-5)M) caused a significant increase in diaphyseal calcium content. Such an effect was not seen in other compounds. Mouse bone marrow cells were cultured for 7 days in the presence of parathyroid hormone (PTH; 10(-7)M), a bone-resorbing factor, in vitro. Culture with PTH caused a significant increase in osteoclast-like cell formation. This increase was significantly inhibited in the presence of quercetin, myricetin, kaempferol, isorhamnetin, or curcumin in the range of 10(-8)-10(-6)M. Such an effect was not seen in the case of hesperidin or astaxanthin. In addition, culture with PTH (10(-7)M) caused a significant decrease in diaphyseal calcium content. This decrease was completely prevented in the presence of quercetin, myricetin, kaempferal, or isorhamnetin of 10(-6)M. This study demonstrates that various flavonoids have a potent inhibitory effect on osteoclastogenesis and bone resorption rather than bone formation in vitro. Among various flavonoids, quercetin had a stimulatory effect on bone formation and an inhibitory effect on bone resorption in vitro. PMID:17541507

  3. Reducing bone cancer cell functions using selenium nanocomposites.

    PubMed

    Stolzoff, Michelle; Webster, Thomas J

    2016-02-01

    Cancer recurrence at the site of tumor resection remains a major threat to patient survival despite modern cancer therapeutic advances. Osteosarcoma, in particular, is a very aggressive primary bone cancer that commonly recurs after surgical resection, radiation, and chemotherapeutic treatment. The objective of the present in vitro study was to develop a material that could decrease bone cancer cell recurrence while promoting healthy bone cell functions. Selenium is a natural part of our diet which has shown promise for reducing cancer cell functions, inhibiting bacteria, and promoting healthy cells functions, yet, it has not been widely explored for osteosarcoma applications. For this purpose, due to their increased surface area, selenium nanoparticles (SeNP) were precipitated on a very common orthopedic tissue engineering material, poly-l-lactic acid (or PLLA). Selenium-coated PLLA materials were shown to selectively decrease long-term osteosarcoma cell density while promoting healthy, noncancerous, osteoblast functions (for example, up to two times more alkaline phosphatase activity on selenium coated compared to osteoblasts grown on typical tissue culture plates), suggesting they should be further studied for replacing tumorous bone tissue with healthy bone tissue. Importantly, results of this study were achieved without the use of chemotherapeutics or pharmaceutical agents, which have negative side effects. 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 476-482, 2016. PMID:26454004

  4. Oestrogen binding proteins in bone cell cytosol.

    PubMed

    van Paassen, H C; Poortman, J; Borgart-Creutzburg, I H; Thijssen, J H; Duursma, S A

    1978-08-18

    Attempts were made to demonstrate the presence of specific oestrogen binding proteins ("receptors") in bone cells. High speed cytosol preparations of bone were incubated with several concentrations of radioactive oestradiol alone and with radioactive oestradiol in the presence of a specific antioestrogen, Nafoxidine. Separation of bound and free oestradiol was carried out by dextran coated charcoal treatment and by sucrose gradient ultracentrifugation. Several types of bones likely to be oestrogen-sensitive were investigated: human femoral heads, human phalanx, rat and rabbit calvaria, humeri and femora of female rats. In all experiments we were unable to demonstrate the presence of specific oestrogen receptors in bone cell cytosol indicating that the direct effect of oestrogens on bone, if present, is not mediated by specific oestrogen receptors. PMID:709407

  5. Bone marrow mesenchymal stem cells and TGF-? signaling in bone remodeling

    PubMed Central

    Crane, Janet L.; Cao, Xu

    2014-01-01

    During bone resorption, abundant factors previously buried in the bone matrix are released into the bone marrow microenvironment, which results in recruitment and differentiation of bone marrow mesenchymal stem cells (MSCs) for subsequent bone formation, temporally and spatially coupling bone remodeling. Parathyroid hormone (PTH) orchestrates the signaling of many pathways that direct MSC fate. The spatiotemporal release and activation of matrix TGF-? during osteoclast bone resorption recruits MSCs to bone-resorptive sites. Dysregulation of TGF-? alters MSC fate, uncoupling bone remodeling and causing skeletal disorders. Modulation of TGF-? or PTH signaling may reestablish coupled bone remodeling and be a potential therapy. PMID:24487640

  6. Stem Cells in Teeth and Craniofacial Bones.

    PubMed

    Zhao, H; Chai, Y

    2015-11-01

    Stem cells are remarkable, and stem cell-based tissue engineering is an emerging field of biomedical science aiming to restore damaged tissue or organs. In dentistry and reconstructive facial surgery, it is of great interest to restore lost teeth or craniofacial bone defects using stem cell-mediated therapy. In the craniofacial region, various stem cell populations have been identified with regeneration potential. In this review, we provide an overview of the current knowledge concerning the various types of tooth- and craniofacial bone-related stem cells and discuss their in vivo identities and regulating mechanisms. PMID:26350960

  7. Chronic granulomatous disease. Expression of the metabolic defect by in vitro culture of bone marrow progenitors.

    PubMed Central

    Newburger, P E; Kruskall, M S; Rappeport, J M; Robinson, S H; Chovaniec, M E; Cohen, H J

    1980-01-01

    Chronic granulomatous disease (CGD), an often fatal syndrome of recurrent infections results from the inability of patients' peripheral blood phagocytic leukocytes to generate superoxide despite otherwise normal phagocytic functions such as ingestion and degranulation. Circulating granulocytes and monocytes are the progeny of bone marrow progenitor cells, colony-forming units in culture. We compared the function of cells grown in two different in vitro cuture systems from the bone marrow of a CGD patient with those from normal subjects. The cells of normal colony-forming unit in culture colonies grown in semisolid medium reduced nitroblue tetrazolium dye when stimulated by phorbol myristate acetate; none of the cells from colonies derived from CGD marrow did so. Cells grown in liquid suspension culture from normal marrow generated superoxide nearly as well as normal peripheral blood granulocytes; those from CGD marrow produced no superoxide, similarly cultured cells from both normal and CGD marrow ingested opsonized bacteria at rates equal to peripheral blood granulocytes. CGD marrow-derived cells showed increased exocytic degranulation relative to both normal marrow-derived cells and normal peripheral blood granulocytes. These studies demonstrate that the basic functional characteristics of CGD are embedded in the genetic program of granulocyte progenitors. Images PMID:6249853

  8. Cadmium accelerates bone loss in ovariectomized mice and fetal rat limb bones in culture

    SciTech Connect

    Bhattacharyya, M.H.; Whelton, B.D.; Stern, P.H.; Peterson, D.P. )

    1988-11-01

    Loss of bone mineral after ovariectomy was studied in mice exposed to dietary cadmium at 0.25, 5, or 50 ppm. Results show that dietary cadmium at 50 ppm increased bone mineral loss to a significantly greater extent in ovariectomized mice than in sham-operated controls. These results were obtained from two studies, one in which skeletal calcium content was determined 6 months after ovariectomy and a second in which {sup 45}Ca release from {sup 45}Ca-prelabeled bones was measured immediately after the start of dietary cadmium exposure. Furthermore, experiments with {sup 45}Ca-prelabeled fetal rat limb bones in culture demonstrated that Cd at 10 nM in the medium, a concentration estimated to be in the plasma of mice exposed to 50 ppm dietary Cd, strikingly increased bone resorption. These in vitro results indicate that cadmium may enhance bone mineral loss by a direct action on bone. Results of the in vivo studies are consistent with a significant role of cadmium in the etiology of Itai-Itai disease among postmenopausal women in Japan and may in part explain the increased risk of postmenopausal osteoporosis among women who smoke.

  9. Interactions between breast cancer cells and bone marrow derived cells in vitro define a role for osteopontin in affecting breast cancer cell migration.

    PubMed

    Koro, Konstantin; Parkin, Stephen; Pohorelic, Brant; Yang, An-Dao; Narendran, Aru; Egan, Cay; Magliocco, Anthony

    2011-02-01

    The preferential metastasis of breast cancer cells to bone is a complex set of events including homing and preferential growth which may include unique factors produced by bone cells in the immediate microenvironment. In this study, we evaluated the suitability of bone cells derived from orthoplastic surgeries for use in an in vitro co-culture system representing a model of the bone microenvironment. Using a limiting dilution assay we determined the relative survival and proliferation potentials of breast cancer cell lines co-cultured on bone-derived cells or on Hs68 fibroblasts. The comparison of bone and skin fibroblastic substrata indicates that MCF-7 cells preferentially survive and grow in a bone microenvironment (P < 0.001). Overall, we show that bone-derived cells enhance survival, proliferation, and migration of breast cancer cells, where migration is in part mediated by bone cell-produced osteopontin. Our in vitro co-culture model system provides a robust cost-effective method to study the various factors that mediate cancer/bone-derived cell interactions. PMID:20401631

  10. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    PubMed Central

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020

  11. Stem cells and bone: a historical perspective.

    PubMed

    Bianco, Paolo

    2015-01-01

    Bone physiology and stem cells were tightly intertwined with one another, both conceptually and experimentally, long before the current explosion of interest in stem cells and so-called regenerative medicine. Bone is home to the two best known and best characterized systems of postnatal stem cells, and it is the only organ in which two stem cells and their dependent lineages coordinate the overall adaptive responses of two major physiological systems. All along, the nature and the evolutionary significance of the interplay of bone and hematopoiesis have remained a major scientific challenge, but also allowed for some of the most spectacular developments in cell biology-based medicine, such as hematopoietic stem cell transplantation. This question recurs in novel forms at multiple turning points over time: today, it finds in the biology of the "niche" its popular phrasing. Entirely new avenues of investigation emerge as a new view of bone in physiology and medicine is progressively established. Looking at bone and stem cells in a historical perspective provides a unique case study to highlight the general evolution of science in biomedicine since the end of World War II to the present day. A paradigm shift in science and in its relation to society and policies occurred in the second half of the XXth century, with major implications thereof for health, industry, drug development, market and society. Current interest in stem cells in bone as in other fields is intertwined with that shift. New opportunities and also new challenges arise. This article is part of a Special Issue entitled "Stem cells and bone". PMID:25171959

  12. Engineering bone tissue substitutes from human induced pluripotent stem cells

    PubMed Central

    de Peppo, Giuseppe Maria; Marcos-Campos, Ivn; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-01-01

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease. PMID:23653480

  13. Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation.

    PubMed

    Battula, Venkata Lokesh; Bareiss, Petra M; Treml, Sabrina; Conrad, Sabine; Albert, Ingrid; Hojak, Sigrid; Abele, Harald; Schewe, Bernhard; Just, Lothar; Skutella, Thomas; Bhring, Hans-Jrg

    2007-04-01

    Conventionally, mesenchymal stem cells (MSC) are generated by plating cells from bone marrow (BM) or other sources into culture flasks and selecting plastic-adherent cells with fibroblastoid morphology. These cells express CD9, CD10, CD13, CD73, CD105, CD166, and other markers but show only a weak or no expression of the embryonic markers stage-specific embryonic antigen-4 (SSEA-4), Oct-4 and nanog-3. Using a novel protocol we prepared MSC from BM and non-amniotic placenta (PL) by culture of Ficoll-selected cells in gelatin-coated flasks in the presence of a serum-free, basic fibroblast growth factor (b-FGF)-containing medium that was originally designed for the expansion of human embryonic stem cells (ESC). MSC generated in gelatin-coated flasks in the presence of ESC medium revealed a four-to fivefold higher proliferation rate than conventionally prepared MSC which were grown in uncoated flasks in serum-containing medium. In contrast, the colony forming unit fibroblast number was only 1.5- to twofold increased in PL-MSC and not affected in BM-MSC. PL-MSC grown in ESC medium showed an increased surface expression of SSEA-4 and frizzled-9 (FZD-9), an increased Oct-4 and nestin mRNA expression, and an induced expression of nanog-3. BM-MSC showed an induced expression of FZD-9, nanog-3, and Oct-4. In contrast to PL-MSC, only BM-MSC expressed the MSC-specific W8B2 antigen. When cultured under appropriate conditions, these MSC gave rise to functional adipocytes and osteoblast-like cells (mesoderm), glucagon and insulin expressing pancreatic-like cells (endoderm), as well as cells expressing the neuronal markers neuron-specific enolase, glutamic acid decarboxylase-67 (GAD), or class III beta-tubulin, and the astrocyte marker glial fibrillary acidic protein (ectoderm). In conclusion, using a novel protocol we demonstrate that adult BM-and neonatal PL-derived MSC can be induced to express high levels of FZD-9, Oct-4, nanog-3, and nestin and are able of multi-lineage differentiation. PMID:17288545

  14. HOW DO BONE CELLS SENSE MECHANICAL LOADING?

    PubMed Central

    Gusmão, Carlos Vinícius Buarque de; Belangero, William Dias

    2015-01-01

    Influenced by gravidity, bone tissue experiences stronger or lighter deformation according to the strength of the activities of daily life. Activities resulting in impact are particularly known to stimulate osteogenesis, thus reducing bone mass loss. Knowing how bone cells recognize the mechanical deformation imposed to the bone and trigger a series of biochemical chain reactions is of crucial importance for the development of therapeutic and preventive practices in orthopaedic activity. There is still a long way to run until we can understand the whole process, but current knowledge has shown a strong progression, with researches being conducted focused on therapies. For a mechanical sign to be transformed into a biological one (mechanotransduction), it must be amplified at cell level by the histological structure of bone tissue, producing tensions in cell membrane proteins (integrins) and changing their spatial structure. Such change activates bindings between these and the cytoskeleton, producing focal adhesions, where cytoplasmatic proteins are recruited to enable easier biochemical reactions. Focal adhesion kinase (FAK) is the most important one being self-activated when its structure is changed by integrins. Activated FAK triggers a cascade of reactions, resulting in the activation of ERK-1/2 and Akt, which are proteins that, together with FAK, regulate the production of bone mass. Osteocytes are believed to be the mechanosensor cells of the bone and to transmit the mechanical deformation to osteoblasts and osteoclasts. Ionic channels and gap junctions are considered as intercellular communication means for biochemical transmission of a mechanical stimulus. These events occur continuously on bone tissue and regulate bone remodeling.

  15. Netrin-4 derived from murine vascular endothelial cells inhibits osteoclast differentiation in vitro and prevents bone loss in vivo.

    PubMed

    Enoki, Yuichiro; Sato, Tsuyoshi; Tanaka, Shinya; Iwata, Takanori; Usui, Michihiko; Takeda, Shu; Kokabu, Shoichiro; Matsumoto, Masahito; Okubo, Masahiko; Nakashima, Keisuke; Yamato, Masayuki; Okano, Teruo; Fukuda, Toru; Chida, Dai; Imai, Yuuki; Yasuda, Hisataka; Nishihara, Tatsuji; Akita, Masumi; Oda, Hiromi; Okazaki, Yasushi; Suda, Tatsuo; Yoda, Tetsuya

    2014-06-27

    Bone is a highly vascularized organ, thus angiogenesis is a vital process during bone remodeling. However, the role of vascular systems in bone remodeling is not well recognized. Here we show that netrin-4 inhibits osteoclast differentiation in vitro and in vivo. Co-cultures of bone marrow macrophages with vascular endothelial cells markedly inhibited osteoclast differentiation. Adding a neutralizing antibody, or RNA interference against netrin-4, restored in vitro osteoclast differentiation. Administration of netrin-4 prevented bone loss in an osteoporosis mouse model by decreasing the osteoclast number. We propose that vascular endothelial cells interact with bone in suppressing bone through netrin-4. PMID:24846137

  16. Sharpin Controls Osteogenic Differentiation of Mesenchymal Bone Marrow Cells.

    PubMed

    Jeschke, Anke; Catala-Lehnen, Philip; Sieber, Sabrina; Bickert, Thomas; Schweizer, Michaela; Koehne, Till; Wintges, Kristofer; Marshall, Robert P; Mautner, Andrea; Duchstein, Lara; Otto, Benjamin; Horst, Andrea K; Amling, Michael; Kreienkamp, Hans-Juergen; Schinke, Thorsten

    2015-10-15

    The cytosolic protein Sharpin is a component of the linear ubiquitin chain assembly complex, which regulates NF-?B signaling in response to specific ligands, such as TNF-?. Its inactivating mutation in chronic proliferative dermatitis mutation (Cpdm) mice causes multiorgan inflammation, yet this phenotype is not transferable into wild-type mice by hematopoietic stem cell transfer. Recent evidence demonstrated that Cpdm mice additionally display low bone mass, and that this osteopenia is corrected by Tnf deletion. Because the cellular mechanism underlying this pathology, however, was still undefined, we performed a thorough skeletal phenotyping of Cpdm mice on the basis of nondecalcified histology and cellular and dynamic histomorphometry. We show that the trabecular and cortical osteopenia in Cpdm mice is solely explained by impaired bone formation, whereas osteoclastogenesis is unaffected. Consistently, Cpdm primary calvarial cells display reduced osteogenic capacity ex vivo, and the same was observed with CD11b(-) bone marrow cells. Unexpectedly, short-term treatment of these cultures with TNF-? did not reveal an impaired molecular response in the absence of Sharpin. Instead, genome-wide and gene-specific expression analyses revealed that Cpdm mesenchymal cells display increased responsiveness toward TNF-?-induced expression of specific cytokines, such as CXCL5, IL-1?, and IL-6. Therefore, our data not only demonstrate that the skeletal defects of Cpdm mice are specifically caused by impaired differentiation of osteoprogenitor cells, they also suggest that increased cytokine expression in mesenchymal bone marrow cells contributes to the inflammatory phenotype of Cpdm mice. PMID:26363054

  17. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    SciTech Connect

    Otsuru, Satoru; Tamai, Katsuto . E-mail: tamai@gts.med.osaka-u.ac.jp; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-03-09

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood.

  18. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    SciTech Connect

    Long, G.J.; Rosen, J.F.; Pounds, J.G. )

    1990-02-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state {sup 210}Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with {sup 210}Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of {sup 210}Pb from the cells over a {sup 210}-min period. The intracellular metabolism of {sup 210}Pb was characterized by three kinetic pools of {sup 210}Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of {sup 210}Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone.

  19. Huanglongbing and psyllid cell cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We successfully established cell cultures of the Asian citrus psyllid, Diaphorina citri (Psyllidae: Hemiptera), DcHH-1. The cell culture also supported growth of Candidatus Liberibacter asiaticus. This bacterial pathogen is associated with Huanglongbing, known as citrus greening disease. Research on...

  20. Dormancy and growth of metastatic breast cancer cells in a bone-like microenvironment.

    PubMed

    Sosnoski, Donna M; Norgard, Robert J; Grove, Cassidy D; Foster, Shelby J; Mastro, Andrea M

    2015-04-01

    Breast cancer can reoccur, often as bone metastasis, many years if not decades after the primary tumor has been treated. The factors that stimulate dormant metastases to grow are not known, but bone metastases are often associated with skeletal trauma. We used a dormancy model of MDA-MB-231BRMS1, a metastasis-suppressed human breast cancer cell line, co-cultured with MC3T3-E1 osteoblasts in a long term, three dimensional culture system to test the hypothesis that bone remodeling cytokines could stimulate dormant cells to grow. The cancer cells attached to the matrix produced by MC3T3-E1 osteoblasts but grew slowly or notat all until the addition of bone remodeling cytokines, TNF? and IL-?. Stimulation of cell proliferation by these cytokines was suppressed with indomethacin, an inhibitor of cyclooxygenase and of prostaglandin production, or a prostaglandin E2 (PGE2) receptor antagonist. Addition of PGE2 directly to the cultures also stimulated cell proliferation. MCF-7, non-metastatic breast cancer cells, remained dormant when co-cultured with normal human osteoblast and fibroblast growth factor. Similar to the MDA-MB-231BRMS1 cells, MCF-7 proliferation increased in response to TNF? and IL-?. These findings suggest that changes in the bone microenvironment due to inflammatory cytokines associated with bone repair or excess turnover may trigger the occurrence of latent bone metastasis. PMID:25749879

  1. Effect of prostaglandins E1, E2, and F2 alpha on osteoclast formation in mouse bone marrow cultures

    SciTech Connect

    Collins, D.A.; Chambers, T.J. )

    1991-02-01

    Prostaglandins (PG) act as direct inhibitors of mature osteoclasts, but although resorption-inhibition is also observed initially PG increase bone resorption in organ culture. This suggests that PG influence bone resorption in organ culture through actions on cell types other than mature osteoclasts. We have therefore tested the effects of PG E1, E2, and F2 alpha on the differentiation of osteoclastic phenotype in mouse bone marrow cultures using bone resorption and calcitonin receptors (CTR) as markers of osteoclastic differentiation. We found that PGE2 (10{sup {minus} 6}-10{sup {minus} 9} M) and PGE1 (10{sup {minus} 6} - 10{sup {minus} 7} M) induced a significant increase in CTR-positive cell numbers, to levels five to eight times those seen in controls and similar to the number induced by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Bone resorption was increased (10{sup {minus} 7} M PGE2 and 10{sup {minus} 6} M PGE1) in association with the increased CTR-positive cell numbers, suggesting that the PG also induced resorptive function. 1,25-(OH)2D3 increased both the number of CTR-positive cells and the extent of resorption per cell; the additional presence of PG did not affect the number of CTR-positive cells but did reduce bone resorption compared with 1,25-(OH)2D3 alone. PGF2 alpha had no significant effect on CTR-positive cell induction or bone resorption. The results suggest that PGE1 and E2 induce osteoclastic differentiation in mouse bone marrow cultures and inhibit the function of the osteoclasts thus formed.

  2. TGF-?1-induced Migration of Bone Mesenchymal Stem Cells Couples Bone Resorption and Formation

    PubMed Central

    Tang, Yi; Wu, Xiangwei; Lei, Weiqi; Pang, Lijuan; Wan, Chao; Shi, Zhenqi; Zhao, Ling; Nagy, Timothy R.; Peng, Xinyu; Hu, Junbo; Feng, Xu; Van Hul, Wim; Wan, Mei; Cao, Xu

    2009-01-01

    SUMMARY Bone remodeling depends on the precise coordination of bone resorption and subsequent bone formation. Disturbances of this process are associated with skeletal diseases, such as Camurati-Engelmann disease (CED). We show using in vitro and animal models that active TGF-?1 released during bone resorption coordinates bone formation by inducing migration of bone marrow stromal cells, also known as bone mesenchymal stem cells (BMSCs) to the bone resorptive sites and that this process is mediated through SMAD signaling pathway. Analysis of a mouse model carrying a CED-derived TGF-?1 mutation, which exhibits the typical progressive diaphyseal dysplasia with tibial fractures, we found high levels of active TGF-?1 in the bone marrow. Treatment with a TGF-? type I receptor inhibitor partially rescued the uncoupled bone remodeling and prevented the fractures. Thus, as TGF-?1 functions to couple bone resorption and formation, modulation of TGF-?1 activity could be an effective treatment for the bone remodeling diseases. PMID:19584867

  3. Hairy Cell Leukemia and Bone Pain.

    PubMed

    Streu, Erin

    2016-01-01

    Hairy cell leukemia is a relatively rare but distinct B-cell lympho-proliferative disorder of the blood, bone marrow, and spleen that accounts for only 2% of all adult leukemia cases. The median age at presentation is 50-55 years, with a 4:1 male to female predominance. Although considered uncommon, a number of unusual clinical presentations have been noted in the literature, including the presence of peripheral lymphadenopathy, lytic bone lesions, skin involvement, organ involvement, and central nervous system involvement. Unlike the clinical management of other hematologic malignancies, no current system is used to stage hairy cell leukemia. PMID:26679440

  4. eOSTEO: bone cell function in microgravity assessed in unmanned missions.

    NASA Astrophysics Data System (ADS)

    Cohen, L.; Johnson-Green, P.; Buckley, N.; Dufour, B.; Lefebvre, L.

    The Canadian OSTEO experiments on board the space shuttle in 1998 gave life scientists their first opportunity to examine bone cell cultures in space Results showed that isolated bone cells in space take longer to regenerate than on Earth This slower regeneration is aggravated by the hastened action of cells that cause bone deterioration The Canadian Space Agency CSA supported Millenium Biologix for the design of the OSTEO mini-lab which tested the growth of cells using a synthetic bone biomaterial Based on the success of the OSTEO mission an automated version of the OSTEO mini-lab eOSTEO has been designed by Millenium Biologix and will be used to perform experimental studies on board of a FOTON recoverable satellite on orbit for 12 days Several Canadian and European projects will allow to assess the influence of microgravity on bone cell survival differentiation metabolism intracellular organization and gene expression The function of various bone cell receptors in the space environment will be tested The automated mini-lab allows stimulating fixing and cooling of bone cells before satellite recovery and media samples can be stored for further analysis Two modules containing four eOSTEO trays will be integrated in the FOTON satellite along with other modules for scientific experiments in life and physical sciences This pioneering study using automated cell culture on board a satellite will provide new technological expertise for space life sciences and produce crucial information on bone cell behavior in the space environment

  5. Ex Vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain.

    PubMed

    David, Valentin; Guignandon, Alain; Martin, Aline; Malaval, Luc; Lafage-Proust, Marie-Hlne; Rattner, Aline; Mann, Val; Noble, Brendon; Jones, David B; Vico, Laurence

    2008-01-01

    Our aim was to test cell and trabecular responses to mechanical loading in vitro in a tissue bone explant culture model. We used a new three-dimensional culture model, the ZetOS system, which provides the ability to exert cyclic compression on cancellous bone cylinders (bovine sternum) cultured in forced flow circumfusion chambers, and allows to assess mechanical parameters of the cultivated samples. We evaluated bone cellular parameters through osteocyte viability test, gene and protein expression, and histomorphometric bone formation rate, in nonloaded versus loaded samples. The microarchitecture of bone cores was appraised by in vivo micro-CT imaging. After 3 weeks, the samples receiving daily cyclic compression exhibited increased osteoblast differentiation and activity associated with thicker, more plate-like-shaped trabeculae and higher Young's modulus and ultimate force as compared to unloaded samples. Osteoclast activity was not affected by mechanical strain, although it was responsive to drug treatments (retinoic acid and bisphosphonate) during the first 2 weeks of culture. Thus, in the ZetOS apparatus, we reproduce in vitro the osteogenic effects of mechanical strain known in vivo, making this system a unique and an essential laboratory aid for ex vivo testing of lamellar bone remodeling. PMID:18333810

  6. High density cell culture system

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1994-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  7. Dexamethasone Enhances Osteogenic Differentiation of Bone Marrow- and Muscle-Derived Stromal Cells and Augments Ectopic Bone Formation Induced by Bone Morphogenetic Protein-2

    PubMed Central

    Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Masaoka, Tomokazu; Xuetao, Wei; Yoshii, Toshitaka; Horie, Masaki; Yasuda, Hiroaki; Uemura, Toshimasa; Okawa, Atsushi; Sotome, Shinichi

    2015-01-01

    We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2. Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2. PMID:25659106

  8. T cells stimulate catabolic gene expression by the stromal cells from giant cell tumor of bone

    SciTech Connect

    Cowan, Robert W.; Juravinski Cancer Centre, 699 Concession St., Hamilton, ON, Canada L8V 5C2 ; Ghert, Michelle; Department of Surgery, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L8 ; Singh, Gurmit; Juravinski Cancer Centre, 699 Concession St., Hamilton, ON, Canada L8V 5C2

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Two T cell lines stimulate PTHrP, RANKL, MMP13 gene expression in GCT cell cultures. Black-Right-Pointing-Pointer CD40 expressed by stromal cells; CD40L detected in whole tumor but not cultures. Black-Right-Pointing-Pointer Effect of CD40L treatment on GCT cells increased PTHrP and MMP13 gene expression. Black-Right-Pointing-Pointer PTHrP treatment increased MMP13 expression, while inhibition decreased expression. Black-Right-Pointing-Pointer T cells may stimulate GCT stromal cells and promote the osteolysis of the tumor. -- Abstract: The factors that promote the localized bone resorption by giant cell tumor of bone (GCT) are not fully understood. We investigated whether T cells could contribute to bone resorption by stimulating expression of genes for parathyroid hormone-related protein (PTHrP), matrix metalloproteinase (MMP)-13, and the receptor activator of nuclear-factor {kappa}B ligand (RANKL). Two cell lines, Jurkat clone E6-1 and D1.1, were co-cultured with isolated GCT stromal cells. Real-time PCR analyses demonstrated a significant increase of all three genes following 48 h incubation, and PTHrP and MMP-13 gene expression was also increased at 24 h. Further, we examined the expression of CD40 ligand (CD40L), a protein expressed by activated T cells, and its receptor, CD40, in GCT. Immunohistochemistry results revealed expression of the CD40 receptor in both the stromal cells and giant cells of the tumor. RNA collected from whole GCT tissues showed expression of CD40LG, which was absent in cultured stromal cells, and suggests that CD40L is expressed within GCT. Stimulation of GCT stromal cells with CD40L significantly increased expression of the PTHrP and MMP-13 genes. Moreover, we show that inhibition of PTHrP with neutralizing antibodies significantly decreased MMP13 expression by the stromal cells compared to IgG-matched controls, whereas stimulation with PTHrP (1-34) increased MMP-13 gene expression. These results suggest that T cells may potentiate the catabolic effect of GCT.

  9. Bone regeneration using coculture of mesenchymal stem cells and angiogenic cells

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Ling; van den Beucken, Jeroen J. J. P.; Pan, Ju-Li; Cui, Fu-Zhai; Chen, Su

    2014-03-01

    Cellular strategies remain a crucial component in bone tissue engineering (BTE). So far, the outcome of cell-based strategies from initial clinical trials is far behind compared to animal studies, which is suggested to be related to insufficient nutrient and oxygen supply inside the tissue-engineered constructs. Cocultures, by introducing angiogenic cells into osteogenic cell cultures, might provide a solution for improving vascularization and hence increasing bone formation for cell-based constructs. So far, pre-clinical studies demonstrated that cocultures enhance vascularization and bone formation compared to monocultures. However, there has been no report on the application of cocultures in clinics. Therefore, this mini-review aims to provide an overview regarding (i) critical parameters in cocultures and the outcomes of cocultures compared to monocultures in the currently available pre-clinical studies using human mesenchymal stem cells implanted in orthotopic animal models; and (ii) the usage of monocultures in clinical application in BTE.

  10. Recent highlights on bone stem cells: a report from Bone Stem Cells 2009, and not only.

    PubMed

    Cenni, Elisabetta; Perut, Francesca; Baglo, Serena Rubina; Fiorentini, Elisa; Baldini, Nicola

    2010-11-01

    The use of stem cells has opened new prospects for the treatment of orthopaedic conditions characterized by large bone defects. However, many issues still exist to which answers are needed before routine, large-scale application becomes possible. Bone marrow stromal cells (MSC), which are clonogenic, multipotential precursors present in the bone marrow stroma, are generally employed for bone regeneration. Stem cells with multilineage differentiation similar to MSC have also been demonstrated in adipose tissue, peripheral blood, umbilical cord and amniotic fluid. Each source presents its own advantages and drawbacks. Unfortunately, no unique surface antigen is expressed by MSC, and this hampers simple MSC enrichment from heterogeneous populations. MSC are identified through a combination of physical, morphological and functional assays. Different in vitro and in vivo models have been described for the research on bone stem cells. These models should predict the in vivo bone healing capacity of MSC and if the induced osteogenesis is similar to the physiological one. Although stem cells offer an exciting possibility of a renewable source of cells and tissues for replacement, orthopaedic applications often represent case reports whereas controlled randomized trials are still lacking. Further biological aspects of bone stem cells should be elucidated and a general consensus on the best models, protocols and proper use of scaffolds and growth factors should be achieved. PMID:20874718

  11. Maintenance of hematopoiesis in serum-free bone marrow cultures involves sequential recruitment of quiescent progenitors.

    PubMed

    Lansdorp, P M; Dragowska, W

    1993-09-01

    We previously described that cells with a CD34+CD71lo phenotype from adult human bone marrow are maintained at constant numbers in long-term suspension cultures supplemented with interleukin-6 (IL-6), IL-3, mast growth factor (MGF) (a c-kit ligand), and erythropoietin (Epo). In view of the large increase in cell numbers in such cultures (for example, > 10(6)-fold per cell), this was an unexpected finding. The following models for the observed maintenance of CD34+CD71lo cells in our cultures were considered: (1) survival of non-dividing cells; (2) self-renewal balanced by loss of cells; (3) asymmetrical divisions; and (4) combinations of the above. Two experimental strategies were explored to discriminate between these models. In the first, sorted CD34+CD45RAloCD71lo cells were labeled with the flourescent tracking dye PKH26, followed by analysis of PKH26 fluorescence of CD34+CD71lo and other cells present in the cultures at various times (up to 11 weeks). In the second approach, single CD34+CD45RAloCD71lo cells were directly sorted into individual wells, and growing cells were then analyzed by flow cytometry. Results from these experiments indicated a considerable variability in (1) the number of surviving input cells (ranging from 30 to 80%); (2) the proportion of cells that contributed significantly to the total cell production measured at day 20 (ranging from 1 to 5%); and (3) the number of CD34+ cells present in individual clones. Taken together, the observed maintenance of primitive CD34+ cells in our cultures apparently involves a combination of survival of CD34+CD71lo cells with a vary low turnover together with a very limited production of CD34+ cells. Clonal heterogeneity, differences in cell cycle kinetics between CD34+ and CD34- cells, and observations that the majority of bone marrow-derived CD34+CD45RAloCD71lo cells do not show a rapid proliferative response to a mixture of IL-6, IL-3, MGF, and Epo will have to be taken into account in the development of experimental strategies aimed at clinically useful expansion of primitive hematopoietic cells ex vivo. PMID:7689481

  12. The cultivation of bone marrow mesenchymal stem cells derived from patients with high altitude polycythemia.

    PubMed

    Zheng, J; Guo, N; Xi, Y; Li, H-Q; Zhang, H; Ji, L-H; Cui, S; Li, Z-Q

    2015-01-01

    The aim of this study was to isolate and culture bone marrow mesenchymal stem cells (MSCs) from patients with high altitude polycythemia (HAPC) in order to provide a foundation for further exploration of their biological characteristics. MSCs were isolated and cultured from 10 HAPC patients and 10 healthy controls by using a density gradient centrifugation and an adherent screening method. The morphous of MSCs were observed under an inverted microscope, and its surface antigens were determined using flow cytometry. The growth of the MSCs was also detected to evaluate its proliferation. Bone marrow mononuclear cells were isolated from the bone marrow using a density gradient centrifugation, and they were cultured in vitro. The bone marrow MSCs were successfully isolated and cultured, which presented as fusiform and adherent cells. The MSCs in both groups expressed CD90,CD44,CD29,CD105, CD106, CD146, CD166,Stro1 and CD13, but they did not express CD45, CD4,CD8,CD19,CD20,CD80,CD14,CD3,CD34 or HLADR (P>0.05). The bone marrow MSCs from HAPC patients had a higher proliferation than the bone marrow MSCs from the healthy controls (P<0.01). The bone marrow MSCs from HAPC patients can be effectively cultured in vitro. PMID:25817341

  13. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds

    NASA Technical Reports Server (NTRS)

    Ishaug, S. L.; Crane, G. M.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Bone formation was investigated in vitro by culturing stromal osteoblasts in three-dimensional (3-D), biodegradable poly(DL-lactic-co-glycolic acid) foams. Three polymer foam pore sizes, ranging from 150-300, 300-500, and 500-710 microns, and two different cell seeding densities, 6.83 x 10(5) cells/cm2 and 22.1 x 10(5) cells/cm2, were examined over a 56-day culture period. The polymer foams supported the proliferation of seeded osteoblasts as well as their differentiated function, as demonstrated by high alkaline phosphatase activity and deposition of a mineralized matrix by the cells. Cell number, alkaline phosphatase activity, and mineral deposition increased significantly over time for all the polymer foams. Osteoblast foam constructs created by seeding 6.83 x 10(5) cells/cm2 on foams with 300-500 microns pores resulted in a cell density of 4.63 x 10(5) cells/cm2 after 1 day in culture; they had alkaline phosphatase activities of 4.28 x 10(-7) and 2.91 x 10(-6) mumol/cell/min on Days 7 and 28, respectively; and they had a cell density that increased to 18.7 x 10(5) cells/cm2 by Day 56. For the same constructs, the mineralized matrix reached a maximum penetration depth of 240 microns from the top surface of the foam and a value of 0.083 mm for mineralized tissue volume per unit of cross sectional area. Seeding density was an important parameter for the constructs, but pore size over the range tested did not affect cell proliferation or function. This study suggests the feasibility of using poly(alpha-hydroxy ester) foams as scaffolding materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  14. Cell culture purity issues and DFAT cells

    SciTech Connect

    Wei, Shengjuan; Department of Animal Sciences, Washington State University, Pullman, WA 99164 ; Bergen, Werner G.; Zan, Linsen; Dodson, Michael V.

    2013-04-12

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  15. Bone matrix constituents stimulate interleukin-1 release from human blood mononuclear cells.

    PubMed Central

    Pacifici, R; Carano, A; Santoro, S A; Rifas, L; Jeffrey, J J; Malone, J D; McCracken, R; Avioli, L V

    1991-01-01

    To test the hypothesis that mononuclear cells are stimulated to release interleukin 1 (IL-1) by bone fragments released in the bone microenvironment during the remodeling cycle, we have investigated the effects of bone matrix and some of its constituents on IL-1 secretin from peripheral blood mononuclear cells (PBMC). Increases in IL-1 activity were observed when either PBMC or adherent monocytes, but not lymphocytes depleted of monocytes, were co-cultured with either human or rat bone particles but not with latex particles of similar size. Co-culture of PBMC with bone particles in a transwell system where the cells were physically separated from the bone particles, or with osteoblast- or osteoclast-covered bone particles, did not stimulate IL-1 release, indicating that a physical contact between PBMC and the bone surface is required for eliciting IL-1 release. This was confirmed by the finding of a lower stimulatory effect of bone particles pretreated with etidronate, a bisphosphonate which decreases the bone binding capacity of PBMC. Constituents of bone matrix, such as collagen fragments, hydroxyproline, and, to a lesser extent, transforming growth factor-beta, but not osteocalcin, alpha 2HS glycoprotein, fragments of either bone sialoprotein or osteopontin, and fibronectin, stimulated PBMC IL-1 release in a dose-dependent fashion. Collagen-stimulated IL-1 release was partially and specifically inhibited by a monoclonal antibody directed against the alpha 2 beta 1-integrin cell surface collagen receptor. These data demonstrate that products of bone resorption, known to be chemotactic for mononuclear cells, stimulate PBMC IL-1 activity. These findings may help explain previous documentation of increased IL-1 secretion by circulating monocytes obtained from patients with high turnover osteoporosis. Images PMID:1845868

  16. Cell Biology of Thiazide Bone Effects

    NASA Astrophysics Data System (ADS)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  17. A compact, automated cell culture system for clinical scale cell expansion from primary tissues.

    PubMed

    Kato, Ryuji; Iejima, Daisuke; Agata, Hideki; Asahina, Izumi; Okada, Kunihiko; Ueda, Minoru; Honda, Hiroyuki; Kagami, Hideaki

    2010-10-01

    Despite the growing number of clinically practical automated cell culture systems, demand is also increasing for more compact platforms with greater capabilities to prepare primary cells directly from patient tissue. Here we report the development of an automated cell culture system that is also compact. The machinery consisted of a supply unit, an incubation unit, and a collection unit, which fit within a 70 cm x 60 cm x 86 cm space. The compact size was enabled by our concept of using a single culture vessel from the primary culture steps to final cell harvest instead of scaling up with multiple culture vessels. Human fibroblasts and bone marrow stromal cells (BMSCs) were successfully cultured with this system over 19 days without contamination. From three pieces of gingival tissue (2 mm x 2 mm) or from 10 mL of bone marrow aspirate, the system could produce more than 2.0x10(7) cells and up to 3.0x10(7) cells for fibroblasts and BMSCs, respectively. The BMSCs produced by this system were capable of ectopic bone formation after transplantation into the subcutaneous space of nude mice. Our prototype system will provide a foundation for minimizing automatic culture machinery with clinically relevant cell yields while also expanding the automation capabilities to include primary tissue culture. PMID:19958165

  18. The cell biology of bone growth.

    PubMed

    Price, J S; Oyajobi, B O; Russell, R G

    1994-02-01

    The field of bone cell biology is clearly of relevance to the problem of stunting in children, as in the final analysis the cells of the growing long bone are the ultimate 'regulators'. It is the alterations in the functions of these cells that manifests as a reduction in height. Normal longitudinal growth is achieved by the coordinated recruitment, proliferation, differentiation, maturation and eventual death of the cells of growth plate and bone. Cellular activity is closely regulated by endocrine factors acting directly or indirectly, with factors produced locally and stored within the bone and cartilage microenvironment having a critical role in intercellular communication. Disruption of any of these processes can lead to growth disturbances, since it only requires a defect in a single gene to have profound effects. Studies in recent years have shed light on the biochemical and molecular effects of cytokines and growth factors and have shown that these regulatory molecules may mediate the effects of certain hormones important in controlling growth. However, the complex interrelationship of these molecules is still not clear. Notwithstanding, understanding of the mechanisms involved in bone remodelling is increasing, as this area attracts much research because of the high incidence of metabolic bone disease in Western society. Although studies of adult bone remodelling are of relevance, there is a requirement for increased research directed specifically at the mechanisms of endochondral ossification and its regulation. Longitudinal bone growth is a challenge to the cell biologist, since it is an accelerated cycle of cellular division and differentiation, within which it is not easy to separate events temporally and spatially. In addition, different regulatory mechanisms are probably important at different stages of growth. Another difficulty impeding progress in this field is the lack of appropriate animal models for research. Much information has come from studies involving rodents, and species differences must always be taken into account. Larger mammals such as the growing piglet or the calf are probably more appropriate for the study of postnatal longitudinal growth in man. If the mechanisms of stunting are to be established at a cellular level, a number of approaches need to be considered. Studies need to be designed using more appropriate animal models, and conditions such as nutritional intake, immunological challenges, chronic intestinal diseases and mechanical loading need to be manipulated. Any effects on longitudinal growth may then be studied temporally and correlated with non-invasive measurements including assays of hormones, cytokines, growth factors and proteins known to regulate their activity.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7516288

  19. Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone

    PubMed Central

    Kim, Beom-Su; Kim, Jin Seong; Sung, Hark-Mo; You, Hyung-Keun; Lee, Jun

    2012-01-01

    The purpose of this study was to describe an approach that aims to provide fundamental information for the application of natural cuttlefish bone. Before applying cuttlefish bone as a bone defect filling material, we evaluated proliferation, adhesion, and cell viability of human mesenchymal stem cells (hMSCs) cultured on cuttlefish bone. Cuttlefish bone was separated into two parts (dorsal shield and lamellar region) and each part was used. Cell proliferation and viability were assessed using the MTS assay and live/dead fluorescence staining method. The morphology was observed using scanning electron microscopy (SEM). hMSCs were stimulated with osteogenic medium and osteoblast differentiation was evaluated. The fluorescence images showed that the seeded cells grew well and that cell distribution was in accordance with the surface morphology of the cuttlefish bone. Compared with the dorsal shield, cells penetrated deeper into the three-dimensional inner space of the lamellar part. Furthermore, under osteogenic differentiation conditions, alkaline phosphatase activity increased and the mRNA expression of ALP, runt-related transcription factor 2, and collagen type I ?1 was increased in hMSCs cultured on both the dorsal shield and lamellar block. These results indicate the potential of cuttlefish bone as an ideal scaffold for bone regenerative materials. 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012. PMID:22447716

  20. Scientists Find Stem Cells That Might Repair Skull, Face Bones

    MedlinePLUS

    ... gov/medlineplus/news/fullstory_157041.html Scientists Find Stem Cells That Might Repair Skull, Face Bones Discovery made ... they may be one step closer to using stem cells to replace damaged skull and facial bones in ...

  1. Native multipotential stromal cell colonization and graft expander potential of a bovine natural bone scaffold.

    PubMed

    Kouroupis, Dimitrios; Baboolal, Thomas G; Jones, Elena; Giannoudis, Peter V

    2013-12-01

    Graft expanders are bone scaffolds used, in combination with autografts, to fill large bone defects in trauma surgery. This study investigates the graft expander potential of a natural bone substitute Orthoss by studying its ability to support attachment, growth and osteogenic differentiation of neighboring multipotential stromal cells (MSCs). Material consisting of bone marrow (BM) aspirate and reamer-irrigator-aspirator (RIA)-harvested autograft bone was co-cultured with commercially available Orthoss granules. Native MSCs attached to Orthoss were expanded and phenotypically characterized. MSCs egress from neighboring cancelous bone was assessed in 3D Matrigel co-cultures. MSC differentiation was evaluated using scanning electron microscopy and measuring alkaline phosphatase (ALP) activity per cell. CD45(+) hematopoietic lineage cells and highly proliferative CD90(+) CD73(+) CD105(+) MSCs preferentially colonized Orthoss granules, over RIA bone chips. MSC colonization was followed by their intrinsic osteogenic differentiation, assessed as mineral deposition and gradual rise in ALP activity, even in the absence of osteogenic stimuli. When in contact with mixed cell populations and RIA chips, Orthoss granules support the attachment, growth and osteogenic differentiation of neighboring MSCs. Therefore, natural bone substitutes similar to Orthoss can be used as void fillers and graft expanders for repairing large bone defects in conjunction with autologous BM aspirates and autografts. PMID:23868185

  2. Co-cultured tissue-specific scaffolds for tendon/bone interface engineering

    PubMed Central

    Bumgardner, Joel D; Cole, Judith A; Smith, Richard A; Haggard, Warren O

    2014-01-01

    The tendon/ligament-to-bone interface has a complex organization to enable transfer of forces through the tendon/ligament to the bone. The purpose of this study is to create a co-culture environment enabling a tissue-specific tendon region and tissue-specific bone region on a degradable scaffold, using NIH 3T3 fibroblast–deposited extracellular matrix and MC 3T3 osteoblast–deposited extracellular matrix, respectively. Before full characterization of the deposited extracellular matrix coating can be analyzed, co-culture parameters including culture medium and seeding technique should be addressed. An appropriate medium formulation was developed to reduce fibroblast to osteoblast mineralization by adjusting beta-glycerophosphate concentrations. Standard growth medium with fetal bovine serum + 3 mM beta-glycerophosphate + 25 µg/mL ascorbic acid was found to be the most suitable formulation evaluated in these study conditions. Seeding and cell migration studies of co-cultured fibroblast- and osteoblast-specific scaffolds were performed to identify whether tissue regions could be created on the scaffold. Fibroblast and osteoblast regions were successfully seeded and little to no cell migration was observed up to 42 h after seeding. Finally, a preliminary analysis of basic extracellular matrix components was measured in the fibroblast, osteoblast, and transition regions. Tissue-specific DNA, glycosaminoglycan, and collagen were found in uniform amounts on the scaffolds and were not different significantly between scaffold regions. In conclusion, initial steps to create tissue-specific fibroblast and osteoblast regions on a degradable scaffold were successful in preparation for further characterization investigations as a tendon-to-bone interface scaffold. PMID:25383167

  3. Culture of haematopoietic cells in a 3-D bioreactor made of Al2O3 or apatite foam.

    PubMed

    Schubert, H; Garrn, I; Berthold, A; Knauf, W U; Reufi, B; Fietz, T; Gross, U M

    2004-04-01

    Foams of Al2O3 and apatite ceramics with interconnecting pores were produced using a new technique. The surfaces of the ceramics served as substrates for the culture of human peripheral and bone marrow derived stem cells. Up to 27 days the cells were kept in culture where they proliferated and developed into different morphologies consistent with bone marrow cell lines. PMID:15332595

  4. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    SciTech Connect

    Geng, Wenxin; Ma, Dongyang; Yan, Xingrong; Liu, Liangqi; Cui, Jihong; Xie, Xin; Li, Hongmin; Chen, Fulin

    2013-04-19

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.

  5. Human breast cancer bone metastasis in vitro and in vivo: a novel 3D model system for studies of tumour cell-bone cell interactions.

    PubMed

    Holen, I; Nutter, F; Wilkinson, J M; Evans, C A; Avgoustou, P; Ottewell, Penelope D

    2015-10-01

    Bone is established as the preferred site of breast cancer metastasis. However, the precise mechanisms responsible for this preference remain unidentified. In order to improve outcome for patients with advanced breast cancer and skeletal involvement, we need to better understand how this process is initiated and regulated. As bone metastasis cannot be easily studied in patients, researchers have to date mainly relied on in vivo xenograft models. A major limitation of these is that they do not contain a human bone microenvironment, increasingly considered to be an important component of metastases. In order to address this shortcoming, we have developed a novel humanised bone model, where 1 10(5) luciferase-expressing MDA-MB-231 or T47D human breast tumour cells are seeded on viable human subchaodral bone discs in vitro. These discs contain functional osteoclasts 2-weeks after in vitro culture and positive staining for calcine 1-week after culture demonstrating active bone resorption/formation. In vitro inoculation of MDA-MB-231 or T47D cells colonised human bone cores and remained viable for <4 weeks, however, use of matrigel to enhance adhesion or a moving platform to increase diffusion of nutrients provided no additional advantage. Following colonisation by the tumour cells, bone discs pre-seeded with MDA-MB-231 cells were implanted subcutaneously into NOD SCID mice, and tumour growth monitored using in vivo imaging for up to 6 weeks. Tumour growth progressed in human bone discs in 80 % of the animals mimicking the later stages of human bone metastasis. Immunohistochemical and PCR analysis revealed that growing MDA-MB-231 cells in human bone resulted in these cells acquiring a molecular phenotype previously associated with breast cancer bone metastases. MDA-MB-231 cells grown in human bone discs showed increased expression of IL-1B, HRAS and MMP9 and decreased expression of S100A4, whereas, DKK2 and FN1 were unaltered compared with the same cells grown in mammary fat pads of mice not implanted with human bone discs. PMID:26231669

  6. Prostaglandin E2 production by human bone marrow cells: a comparison with peripheral blood mononuclear cells.

    PubMed

    Nakayama, Y; Shindo, T; Akihama, T; Miura, A B

    1984-12-01

    The amount of prostaglandin E2 (PGE2) in the supernatant of human bone marrow cell cultures was measured by radioimmunoassay. Bone marrow cells were obtained from adult patients without hematological malignancies. Marrow mononuclear cells (BMMNC) (0.5 X 10(6)) and marrow nonadherent cells (BMNAC) (0.5 X 10(6)) were cultured at 37 degrees C in 5% CO2 in 0.5 ml RPMI 1640 supplemented with L-glutamine, 10% fetal calf serum and 10 mM Hepes buffer. The levels of PGE2 in the supernatant of BMMNC after 24 hr and 48 hr incubation were 3,000 +/- 2,320 pg/ml (n = 10, mean +/- S.D.) and 4,470 +/- 3,510 pg/ml (n = 12), respectively. The kinetics of PGE2 production by BMMNC was different from that of peripheral blood mononuclear cells. The level of PGE2 in the supernatant of BMNAC after 48 hr incubation was only 1/18 when compared to that of BMMNC. These data suggest that the major source of PGE2 in the supernatant of marrow cell cultures may be bone marrow mononuclear phagocytes and that admixed blood mononuclear cells in BMMNC may produce only a small amount of PGE2. PMID:6597654

  7. Localization of bone morphogenetic protein 13 in human intervertebral disc and its molecular and functional effects in vitro in 3D culture.

    PubMed

    Gulati, Twishi; Chung, Sylvia A; Wei, Ai-Qun; Diwan, Ashish D

    2015-12-01

    Our laboratory has demonstrated that bone morphogenetic protein 13 prevented the effects of annular injury in an ovine model, maintaining intervertebral disc height, cell numbers and increasing extracellular matrix production compared to degenerated controls. The present study sought to examine the molecular effects of bone morphogenetic protein 13 on human degenerated disc cells and localize its expression in both human degenerate and scoliotic disc tissue. Effect of bone morphogenetic protein 13 on human derived nucleus pulposus, annulus fibrosus and endplate cells cultured in alginate beads was evaluated by changes in proteoglycan and collagen content. Migratory potential of disc cells towards bone morphogenetic protein 13 was also examined. Bone morphogenetic protein 13 induced significant proteoglycan accumulation in nucleus (18%), annulus (21%) and endplate (23%) cells cultured in alginate beads (p<0.05) compared to controls. Further bone morphogenetic protein 13 increased collagen I and II protein expression in nucleus and endplate cells. Nucleus cells displayed a significant chemotactic response towards bone morphogenetic protein 13. The endogenous expression of bone morphogenetic protein 13 in degenerate disc tissue was not different to scoliotic disc. Bone morphogenetic protein 13 has the potential to enhance extracellular matrix accumulation and induce cell migration in certain disc cells. PMID:26134557

  8. Stromal cells and stem cells in clinical bone regeneration

    PubMed Central

    Grayson, Warren L.; Bunnell, Bruce A.; Martin, Elizabeth; Frazier, Trivia; Hung, Ben P.; Gimble, Jeffrey M.

    2015-01-01

    Stem-cell-mediated bone repair has been used in clinical trials for the regeneration of large craniomaxillofacial defects, to slow the process of bone degeneration in patients with osteonecrosis of the femoral head and for prophylactic treatment of distal tibial fractures. Successful regenerative outcomes in these investigations have provided a solid foundation for wider use of stromal cells in skeletal repair therapy. However, employing stromal cells to facilitate or enhance bone repair is far from being adopted into clinical practice. Scientific, technical, practical and regulatory obstacles prevent the widespread therapeutic use of stromal cells. Ironically, one of the major challenges lies in the limited understanding of the mechanisms via which transplanted cells mediate regeneration. Animal models have been used to provide insight, but these models largely fail to reproduce the nuances of human diseases and bone defects. Consequently, the development of targeted approaches to optimize cell-mediated outcomes is difficult. In this Review, we highlight the successes and challenges reported in several clinical trials that involved the use of bone-marrow-derived mesenchymal or adipose-tissue-derived stromal cells. We identify several obstacles blocking the mainstream use of stromal cells to enhance skeletal repair and highlight technological innovations or areas in which novel techniques might be particularly fruitful in continuing to advance the field of skeletal regenerative medicine. PMID:25560703

  9. The effects of simulated hypogravity on murine bone marrow cells

    NASA Technical Reports Server (NTRS)

    Lawless, Desales

    1989-01-01

    Mouse bone marrow cells grown in complete medium at unit gravity were compared with a similar population cultured in conditions that mimic some aspects of microgravity. After the cells adjusted to the conditions that simulated microgravity, they proliferated as fetal or oncogenic populations; their numbers doubled in twelve hour periods. Differentiated subpopulations were depleted from the heterogeneous mixture with time and the undifferentiated hematopoietic stem cells increased in numbers. The cells in the control groups in unit gravity and those in the bioreactors in conditions of microgravity were monitored under a number of parameters. Each were phenotyped as to cell surface antigens using a panel of monoclonal antibodies and flow cytometry. Other parameters compared included: pH, glucose uptake, oxygen consumption and carbon-dioxide production. Nuclear DNA was monitored by flow cytometry. Functional responses were studied by mitogenic stimulation by various lectins. The importance of these findings should have relevance to the space program. Cells should behave predictably in zero gravity; specific populations can be eliminated from diverse populations and other populations isolated. The availability of stem cell populations will enhance both bone marrow and gene transplant programs. Stem cells will permit developmental biologists study the paths of hematopoiesis.

  10. Cell sheet-engineered bones used for the reconstruction of mandibular defects in an animal model

    PubMed Central

    DU, CHUNHUA; YAO, CHAO; LI, NINGYI; WANG, SHUANGYI; FENG, YUANYONG; YANG, XUECAI

    2015-01-01

    The aim of the present study was to investigate the generation of cell sheet-engineered bones used for the reconstruction of mandibular defects. Bone marrow stem cells (BMSCs) were cultured and induced to generate osteoblasts. Poly(lactic-co-glycolic acid) (PLGA) scaffolds were wrapped with or without cell sheets and then implanted into dogs with mandibular defects in the right side (experimental group) or the left side (control group), respectively. Subsequently, X-ray analyses, and hematoxylin and eosin staining were performed at various time points (at 4, 8, 12 or 16 weeks post-implantation; n=4 at each time point). The osteogenesis in the experimental group was significantly improved compared with that in the control group. At 16 weeks after implantation, numerous Haversian systems and a few lamellar bones were observed at the periphery. In the control group, the engineered bone (without BMSC sheets) presented fewer Haversian systems and no lamellar bones. The optical density of the fresh bone in the experimental group was significantly higher compared with that in the control group (P<0.05). In conclusion, tissue-engineered bone with the structure of lamellar bones can be generated using BMSC sheets and implantation of these bones had an improved effects compared with the control group. Cell sheet transplantation was found to enhance bone formation at the reconstruction site of the mandibular defects. PMID:26668619

  11. Bone marrow stromal cell assays – in vitro and in vivo

    PubMed Central

    Robey, Pamela Gehron; Kuznetsov, Sergei A.; Riminucci, Mara; Bianco, Paolo

    2014-01-01

    Summary Populations of bone marrow stromal cells (BMSCs, also known as bone marrow-derived “mesenchymal stem cells”) contain a a subset of cells that are able to recapitulate the formation of a bone/marrow organ (skeletal stem cells, SSCs). The biological properties of BMSC cultures are assessed by a variety of assays, both in vitro and in vivo. Application of these assays in an appropriate fashion provide a great deal of information on the role of BMSCs, and the subset of SSCs, in health and in disease. PMID:24482181

  12. Evaluation of Toxicity in Mouse Bone Marrow Progenitor Cells.

    PubMed

    Ezeh, Peace C; Xu, Huan; Wang, Shu Chun; Medina, Sebastian; Burchiel, Scott W

    2016-01-01

    Development of blood cells through hematopoiesis occurs in the bone marrow (BM), and can be adversely impacted by various substances and/or conditions ranging from known therapeutic, intentionally administered xenobiotics to unintentional food additives and exposure to environmental chemicals. The principles underlying the techniques for evaluating toxicity to BM progenitors (erythroid, myeloid, and lymphoid) exploit changes in the normal hematopoietic process, biochemical cell surface and intracellular markers, as well as components of the BM microenvironment. Toxicological investigations following in vivo exposures of mice or in vitro exposures of mouse primary BM cell cultures allow the assessment of the developmental and functional integrity of BM cells, cell population shifts, and adverse biochemical effects due to toxicity. Colony forming unit (CFU) assays and flow cytometry are indispensable techniques in these toxicity studies. 2016 by John Wiley & Sons, Inc. PMID:26828331

  13. Dissecting the role of bone marrow stromal cells on bone metastases.

    PubMed

    Buenrostro, Denise; Park, Serk In; Sterling, Julie A

    2014-01-01

    Tumor-induced bone disease is a dynamic process that involves interactions with many cell types. Once metastatic cancer cells reach the bone, they are in contact with many different cell types that are present in the cell-rich bone marrow. These cells include the immune cells, myeloid cells, fibroblasts, osteoblasts, osteoclasts, and mesenchymal stem cells. Each of these cell populations can influence the behavior or gene expression of both the tumor cells and the bone microenvironment. Additionally, the tumor itself can alter the behavior of these bone marrow cells which further alters both the microenvironment and the tumor cells. While many groups focus on studying these interactions, much remains unknown. A better understanding of the interactions between the tumor cells and the bone microenvironment will improve our knowledge on how tumors establish in bone and may lead to improvements in diagnosing and treating bone metastases. This review details our current knowledge on the interactions between tumor cells that reside in bone and their microenvironment. PMID:25054153

  14. Dissecting the Role of Bone Marrow Stromal Cells on Bone Metastases

    PubMed Central

    Buenrostro, Denise; Park, Serk In; Sterling, Julie A.

    2014-01-01

    Tumor-induced bone disease is a dynamic process that involves interactions with many cell types. Once metastatic cancer cells reach the bone, they are in contact with many different cell types that are present in the cell-rich bone marrow. These cells include the immune cells, myeloid cells, fibroblasts, osteoblasts, osteoclasts, and mesenchymal stem cells. Each of these cell populations can influence the behavior or gene expression of both the tumor cells and the bone microenvironment. Additionally, the tumor itself can alter the behavior of these bone marrow cells which further alters both the microenvironment and the tumor cells. While many groups focus on studying these interactions, much remains unknown. A better understanding of the interactions between the tumor cells and the bone microenvironment will improve our knowledge on how tumors establish in bone and may lead to improvements in diagnosing and treating bone metastases. This review details our current knowledge on the interactions between tumor cells that reside in bone and their microenvironment. PMID:25054153

  15. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction.

    PubMed

    Oue, Erika; Lee, Ji-Won; Sakamoto, Kei; Iimura, Tadahiro; Aoki, Kazuhiro; Kayamori, Kou; Michi, Yasuyuki; Yamashiro, Masashi; Harada, Kiyoshi; Amagasa, Teruo; Yamaguchi, Akira

    2012-08-01

    To explore the mechanism of bone destruction associated with oral cancer, we identified factors that stimulate osteoclastic bone resorption in oral squamous cell carcinoma. Two clonal cell lines, HSC3-C13 and HSC3-C17, were isolated from the maternal oral cancer cell line, HSC3. The conditioned medium from HSC3-C13 cells showed the highest induction of Rankl expression in the mouse stromal cell lines ST2 and UAMS-32 as compared to that in maternal HSC3 cells and HSC3-C17 cells, which showed similar activity. The conditioned medium from HSC3-C13 cells significantly increased the number of osteoclasts in a co-culture with mouse bone marrow cells and UAMS-32 cells. Xenograft tumors generated from these clonal cell lines into the periosteal region of the parietal bone in athymic mice showed that HSC3-C13 cells caused extensive bone destruction and a significant increase in osteoclast numbers as compared to HSC3-C17 cells. Gene expression was compared between HSC3-C13 and HSC3-C17 cells by using microarray analysis, which showed that CXCL2 gene was highly expressed in HSC3-C13 cells as compared to HSC3-C17 cells. Immunohistochemical staining revealed the localization of CXCL2 in human oral squamous cell carcinomas. The increase in osteoclast numbers induced by the HSC3-C13-conditioned medium was dose-dependently inhibited by addition of anti-human CXCL2-neutralizing antibody in a co-culture system. Recombinant CXCL2 increased the expression of Rankl in UAMS-32 cells. These results indicate that CXCL2 is involved in bone destruction induced by oral cancer. This is the first report showing the role of CXCL2 in cancer-associated bone destruction. PMID:22771802

  16. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    SciTech Connect

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  17. Different effects on bone strength and cell differentiation in pre pubertal caloric restriction versus hypothalamic suppression?,??

    PubMed Central

    Joshi, R.N.; Safadi, F.F.; Barbe, M.F.; Carpio-Cano, Fe Del; Popoff, S.N.; Yingling, V.R.

    2013-01-01

    Hypothalamic amenorrhea and energy restriction during puberty affect peak bone mass accrual. One hypothesis suggests energy restriction alters hypothalamic function resulting in suppressed estradiol levels leading to bone loss. However, both positive and negative results have been reported regarding energy restriction and bone strength. Therefore, the purpose of this study was to investigate energy restriction and hypothalamic suppression during pubertal onset on bone mechanical strength and the osteogenic capacity of bone marrow-derived cells in two models: female rats treated with gonadotropin releasing hormone antagonists (GnRH-a) or 30% energy restriction. At 23 days of age, female Sprague Dawley rats were assigned to three groups: control group (C, n=10), GnRH-a group (n=10), and Energy Restriction (ER, n=12) group. GnRH-a animals received daily injections for 27 days. The animals in the ER group received 70% of the control animals intake. After sacrifice (50 days of age), body weight, uterine and muscle weights were measured. Bone marrow-derived stromal cells were cultured and assayed for proliferation and differentiation into osteoblasts. Outcome measures included bone strength, bone histomorphometry and architecture, serum IGF-1 and osteocalcin. GnRH-a suppressed uterine weight, decreased osteoblast proliferation, bone strength, trabecular bone volume and architecture compared to control. Elevated serum IGF-1 and osteocalcin levels and body weight were found. The ER model had an increase in osteoblast proliferation compared to the GnRH-a group, similar bone strength relative to body weight and increased trabecular bone volume in the lumbar spine compared to control. The ER animals were smaller but had developed bone strength sufficient for their size. In contrast, suppressed estradiol via hypothalamic suppression resulted in bone strength deficits and trabecular bone volume loss. In summary, our results support the hypothesis that during periods of nutritional stress the increased vertebral bone volume may be an adaptive mechanism to store mineral which differs from suppressed estradiol resulting from hypothalamic suppression. PMID:21807131

  18. Giant Cell Tumor of Bone - An Overview

    PubMed Central

    Sobti, Anshul; Agrawal, Pranshu; Agarwala, Sanjay; Agarwal, Manish

    2016-01-01

    Giant Cell tumors (GCT) are benign tumors with potential for aggressive behavior and capacity to metastasize. Although rarely lethal, benign bone tumors may be associated with a substantial disturbance of the local bony architecture that can be particularly troublesome in peri-articular locations. Its histogenesis remains unclear. It is characterized by a proliferation of mononuclear stromal cells and the presence of many multi- nucleated giant cells with homogenous distribution. There is no widely held consensus regarding the ideal treatment method selection. There are advocates of varying surgical techniques ranging from intra-lesional curettage to wide resection. As most giant cell tumors are benign and are located near a joint in young adults, several authors favor an intralesional approach that preserves anatomy of bone in lieu of resection. Although GCT is classified as a benign lesion, few patients develop progressive lung metastases with poor outcomes. Treatment is mainly surgical. Options of chemotherapy and radiotherapy are reserved for selected cases. Recent advances in the understanding of pathogenesis are essential to develop new treatments for this locally destructive primary bone tumor. PMID:26894211

  19. Silorane resin supports proliferation, differentiation, and mineralization of MLO-A5 bone cells in vitro and bone formation in vivo.

    PubMed

    Eick, J David; Barragan-Adjemian, Cielo; Rosser, Jennifer; Melander, Jennifer R; Dusevich, Vladimir; Weiler, Rachel A; Miller, Bradley D; Kilway, Kathleen V; Dallas, Mark R; Bi, Lianxing; Nalvarte, Elisabet L; Bonewald, Lynda F

    2012-04-01

    Methyl methacrylate used in bone cements has drawbacks of toxicity, high exotherm, and considerable shrinkage. A new resin, based on silorane/oxirane chemistry, has been shown to have little toxicity, low exotherm, and low shrinkage. We hypothesized that silorane-based resins may also be useful as components of bone cements as well as other bone applications and began testing on bone cell function in vitro and in vivo. MLO-A5, late osteoblast cells, were exposed to polymerized silorane (SilMix) resin (and a standard polymerized bisGMA/TEGDMA methacrylate (BT) resin and compared to culture wells without resins as control. A significant cytotoxic effect was observed with the BT resin resulting in no cell growth, whereas in contrast, SilMix resin had no toxic effects on MLO-A5 cell proliferation, differentiation, nor mineralization. The cells cultured with SilMix produced increasing amounts of alkaline phosphatase (1.8-fold) compared to control cultures. Compared to control cultures, an actual enhancement of mineralization was observed in the silorane resin-containing cultures at days 10 and 11 as determined by von Kossa (1.8-2.0 fold increase) and Alizarin red staining (1.8-fold increase). A normal bone calcium/phosphate atomic ratio was observed by elemental analysis along with normal collagen formation. When used in vivo to stabilize osteotomies, no inflammatory response was observed, and the bone continued to heal. In conclusion, the silorane resin, SilMix, was shown to not only be non cytototoxic, but actually supported bone cell function. Therefore, this resin has significant potential for the development of a nontoxic bone cement or bone stabilizer. PMID:22278990

  20. Silorane resin supports proliferation, differentiation, and mineralization of MLO-A5 bone cells in vitro and bone formation in vivo

    PubMed Central

    Eick, J. David; Barragan-Adjemian, Cielo; Rosser, Jennifer; Melander, Jennifer R.; Dusevich, Vladimir; Weiler, Rachel A.; Miller, Bradley D.; Kilway, Kathleen V.; Dallas, Mark R.; Bi, Lianxing; Nalvarte, Elisabet L.; Bonewald, Lynda F.

    2015-01-01

    Methyl methacrylate used in bone cements has drawbacks of toxicity, high exotherm, and considerable shrinkage. A new resin, based on silorane/oxirane chemistry, has been shown to have little toxicity, low exotherm, and low shrinkage. We hypothesized that silorane-based resins may also be useful as components of bone cements as well as other bone applications and began testing on bone cell function in vitro and in vivo. MLO-A5, late osteoblast cells, were exposed to polymerized silorane (SilMix) resin (and a standard polymerized bisGMA/TEGDMA methacrylate (BT) resin and compared to culture wells without resins as control. A significant cytotoxic effect was observed with the BT resin resulting in no cell growth, whereas in contrast, SilMix resin had no toxic effects on MLO-A5 cell proliferation, differentiation, nor mineralization. The cells cultured with SilMix produced increasing amounts of alkaline phosphatase (1.8-fold) compared to control cultures. Compared to control cultures, an actual enhancement of mineralization was observed in the silorane resin-containing cultures at days 10 and 11 as determined by von Kossa (1.82.0 fold increase) and Alizarin red staining (1.8-fold increase). A normal bone calcium/phosphate atomic ratio was observed by elemental analysis along with normal collagen formation. When used in vivo to stabilize osteotomies, no inflammatory response was observed, and the bone continued to heal. In conclusion, the silorane resin, SilMix, was shown to not only be non cytototoxic, but actually supported bone cell function. Therefore, this resin has significant potential for the development of a nontoxic bone cement or bone stabilizer. PMID:22278990

  1. Silorane resin supports proliferation, differentiation, and mineralization of MLO-A5 bone cells in vitro and bone formation in vivo.

    TOXLINE Toxicology Bibliographic Information

    Eick JD; Barragan-Adjemian C; Rosser J; Melander JR; Dusevich V; Weiler RA; Miller BD; Kilway KV; Dallas MR; Bi L; Nalvarte EL; Bonewald LF

    2012-04-01

    Methyl methacrylate used in bone cements has drawbacks of toxicity, high exotherm, and considerable shrinkage. A new resin, based on silorane/oxirane chemistry, has been shown to have little toxicity, low exotherm, and low shrinkage. We hypothesized that silorane-based resins may also be useful as components of bone cements as well as other bone applications and began testing on bone cell function in vitro and in vivo. MLO-A5, late osteoblast cells, were exposed to polymerized silorane (SilMix) resin (and a standard polymerized bisGMA/TEGDMA methacrylate (BT) resin and compared to culture wells without resins as control. A significant cytotoxic effect was observed with the BT resin resulting in no cell growth, whereas in contrast, SilMix resin had no toxic effects on MLO-A5 cell proliferation, differentiation, nor mineralization. The cells cultured with SilMix produced increasing amounts of alkaline phosphatase (1.8-fold) compared to control cultures. Compared to control cultures, an actual enhancement of mineralization was observed in the silorane resin-containing cultures at days 10 and 11 as determined by von Kossa (1.8-2.0 fold increase) and Alizarin red staining (1.8-fold increase). A normal bone calcium/phosphate atomic ratio was observed by elemental analysis along with normal collagen formation. When used in vivo to stabilize osteotomies, no inflammatory response was observed, and the bone continued to heal. In conclusion, the silorane resin, SilMix, was shown to not only be non cytototoxic, but actually supported bone cell function. Therefore, this resin has significant potential for the development of a nontoxic bone cement or bone stabilizer.

  2. In vitro osteoblastic differentiation of human bone marrow cells in the presence of metal ions.

    PubMed

    Morais, S; Dias, N; Sousa, J P; Fernandes, M H; Carvalho, G S

    1999-02-01

    For periods up to 21 days human bone marrow was cultured in control conditions that favor the proliferation and differentiation of osteoblastic cells. The effect of AISI 316L corrosion products and the corresponding major separate metal ions (Fe, Cr, and Ni) were studied in three different phases of the culture period in order to investigate the effects of metal ions in cell populations representative of osteoblastic cells in different stages of differentiation. Toxicity consequences of the presence of metal ions in bone marrow cultures were evaluated by biochemical parameters (enzymatic reduction of MTT, alkaline phosphatase activity, and total protein content), histochemical assays (identification of ALP-positive cells and Ca and phosphates deposits), and observation of the cultures by light and scanning electron microscopy. Culture media were analyzed for total and ionized Ca and P and also for metal ions (Fe, Cr, and Ni). The presence of AISI 316L corrosion products and Ni salt in bone marrow cultures during the first and second weeks of culture significantly disturbs the normal behavior of these cultures, interfering in the lag phase and exponential phase of cell growth and ALP expression. However, the presence of these species during the third week of culture, when expression of osteoblastic functions occurs (mineralization process), did not result in any detectable effect. Fe salt also disturbs the behavior of bone marrow cell cultures when present during the lag phase and proliferation phase, and a somewhat compromised response between the normal pattern (control cultures) and intense inhibition (AISI 316L corrosion products and Ni salt-added cultures) was observed. Fe did not affect the progression of the mineralization phase. Osteogenic cultures exposed to Cr salt (Cr3+) presented a pattern similar to the controls, indicating that this element does not interfere, in the concentration studied, in the osteoblastic differentiation of bone marrow cells. Quantification of metal ions in the culture media showed that Cr (originated from AISI 316L corrosion products but from not Cr3+ salt) and Ni (originated from AISI 316L corrosion products and Ni salt) appear to be retained by the bone marrow cultures. PMID:10397919

  3. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  4. Cell culture compositions

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  5. Principles of cancer cell culture.

    PubMed

    Cree, Ian A

    2011-01-01

    The basics of cell culture are now relatively common, though it was not always so. The pioneers of cell culture would envy our simple access to manufactured plastics, media and equipment for such studies. The prerequisites for cell culture are a well lit and suitably ventilated laboratory with a laminar flow hood (Class II), CO(2) incubator, benchtop centrifuge, microscope, plasticware (flasks and plates) and a supply of media with or without serum supplements. Not only can all of this be ordered easily over the internet, but large numbers of well-characterised cell lines are available from libraries maintained to a very high standard allowing the researcher to commence experiments rapidly and economically. Attention to safety and disposal is important, and maintenance of equipment remains essential. This chapter should enable researchers with little prior knowledge to set up a suitable laboratory to do basic cell culture, but there is still no substitute for experience within an existing well-run laboratory. PMID:21516394

  6. Recent advances in bone regeneration using adult stem cells.

    PubMed

    Zigdon-Giladi, Hadar; Rudich, Utai; Michaeli Geller, Gal; Evron, Ayelet

    2015-04-26

    Bone is a highly vascularized tissue reliant on the close spatial and temporal association between blood vessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells (mesenchymal stem cells, endothelial progenitor cells and CD34(+) blood progenitors) for bone regeneration. PMID:25914769

  7. Recent advances in bone regeneration using adult stem cells

    PubMed Central

    Zigdon-Giladi, Hadar; Rudich, Utai; Michaeli Geller, Gal; Evron, Ayelet

    2015-01-01

    Bone is a highly vascularized tissue reliant on the close spatial and temporal association between blood vessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells (mesenchymal stem cells, endothelial progenitor cells and CD34+ blood progenitors) for bone regeneration. PMID:25914769

  8. Nanostructured magnesium increases bone cell density

    NASA Astrophysics Data System (ADS)

    Weng, Lucy; Webster, Thomas J.

    2012-12-01

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH- which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  9. Three-Dimensional Microfluidic Tri-Culture Model of the Bone Marrow Microenvironment for Study of Acute Lymphoblastic Leukemia

    PubMed Central

    Bruce, Allison; Evans, Rebecca; Mezan, Ryan; Shi, Lin; Moses, Blake S.; Martin, Karen H.; Gibson, Laura F.; Yang, Yong

    2015-01-01

    Acute lymphoblastic leukemia (ALL) initiates and progresses in the bone marrow, and as such, the marrow microenvironment is a critical regulatory component in development of this cancer. However, ALL studies were conducted mainly on flat plastic substrates, which do not recapitulate the characteristics of marrow microenvironments. To study ALL in a model of in vivo relevance, we have engineered a 3-D microfluidic cell culture platform. Biologically relevant populations of primary human bone marrow stromal cells, osteoblasts and human leukemic cells representative of an aggressive phenotype were encapsulated in 3-D collagen matrix as the minimal constituents and cultured in a microfluidic platform. The matrix stiffness and fluidic shear stress were controlled in a physiological range. The 3-D microfluidic as well as 3-D static models demonstrated coordinated cell-cell interactions between these cell types compared to the compaction of the 2-D static model. Tumor cell viability in response to an antimetabolite chemotherapeutic agent, cytarabine in tumor cells alone and tri-culture models for 2-D static, 3-D static and 3-D microfluidic models were compared. The present study showed decreased chemotherapeutic drug sensitivity of leukemic cells in 3-D tri-culture models from the 2-D models. The results indicate that the bone marrow microenvironment plays a protective role in tumor cell survival during drug treatment. The engineered 3-D microfluidic tri-culture model enables systematic investigation of effects of cell-cell and cell-matrix interactions on cancer progression and therapeutic intervention in a controllable manner, thus improving our limited comprehension of the role of microenvironmental signals in cancer biology. PMID:26488876

  10. Participation of bone marrow derived cells in cutaneous wound healing.

    PubMed

    Badiavas, Evangelos V; Abedi, Mehrdad; Butmarc, Janet; Falanga, Vincent; Quesenberry, Peter

    2003-08-01

    Bone marrow has long been known to be a source of stem cells capable of regeneration of the hematopoeitic system. Recent reports, however, have indicated that bone marrow might also contain early stem cells that can differentiate into other organ tissues such as skin. While these studies have illustrated that bone marrow stem cells could find their way to the skin, they have not addressed the dynamics of how bone marrow stem cells might participate in the homeostatis and regeneration of skin. In this report we followed green fluorescent protein (GFP) labeled bone marrow transplanted into non-GFP mice in order to determine the participation of bone marrow stem cells in cutaneous wounds. Our results indicate that there are a significant number of bone marrow cells that traffic through both wounded and non-wounded skin. Wounding stimulated the engraftment of bone marrow cells to the skin and induced bone marrow derived cells to incorporate into and differentiate into non-hematopoietic skin structures. This report thus illustrates that bone marrow might be a valuable source of stem cells for the skin and possibly other organs. Wounding could be a stimulus for bone marrow derived stem cells to travel to organs and aid in the regeneration of damaged tissue. PMID:12811816

  11. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    PubMed Central

    Akahane, Manabu; Shimizu, Takamasa; Ueha, Tomoyuki; Morita, Yusuke; Nakasaki, Shintaro; Kura, Tomohiko; Tohma, Yasuaki; Kido, Akira; Kawate, Kenji; Tanaka, Yasuhito

    2015-01-01

    Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors. PMID:26064933

  12. In vitro growth of bone marrow-resident T cell precursors supported by mast cell growth factor and IL-3.

    PubMed

    Chervenak, R; Dempsey, D; Soloff, R S; Smithson, G

    1992-11-01

    The growth requirements of bone marrow-resident cells that are able to differentiate along the T cell lineage (pre-T cells) have not been well established. We recently have shown that the T cell-derived lymphokine IL-3 is able to maintain pre-T cells in vitro for at least 2 weeks. However, in our initial studies, we were not able to ascertain whether IL-3 induced pre-T cell growth during culture, or whether IL-3 simply maintained the viability of these progenitors. To address this issue, we used a multiple dose assay system to assess the level of pre-T cell activity (thymic repopulation) in a selected population of bone marrow cells (CD3-, Thy-1.2+) both before and after culture in IL-3. In addition, we tested the potential role of mast cell growth factor (MGF) in the growth and maintenance of pre-T cells in vitro. The results of these studies showed that IL-3 produced a modest, but consistent increase in the pre-T cell activity during culture. Culture of CD3-, Thy-1.2+ bone marrow cells in MGF also resulted in an increase in the total amount of detectable pre-T cell activity among the cultured cells. The most dramatic increases in pre-T cell activity, however, were induced by the culture of the selected marrow cells in both MGF and IL-3. Cultures supplemented with both cytokines produced net increases in pre-T cell activity of 40- to 75-fold after 10 days of culture. Because the increases in pre-T cell activity were not accompanied by observable increases in the size of thymic colonies produced by the pre-T cells, the increased levels of pre-T cell activity appeared to result from increases in pre-T cell numbers during culture. Thus, in addition to the other activities ascribed to MGF, this cytokine displays pre-T cell growth factor activity and can synergize with IL-3 in that capacity. The use of MGF in conjunction with IL-3 provides the best system described to date for the propagation of pre-T cells in primary bone marrow cell cultures. PMID:1383330

  13. Validation of an in vitro 3D bone culture model with perfused and mechanically stressed ceramic scaffold.

    PubMed

    Bouet, G; Cruel, M; Laurent, C; Vico, L; Malaval, L; Marchat, D

    2015-01-01

    An engineered three dimensional (3D) in vitro cell culture system was designed with the goal of inducing and controlling in vitro osteogenesis in a reproducible manner under conditions more similar to the in vivo bone microenvironment than traditional two-dimensional (2D) models. This bioreactor allows efficient mechanical loading and perfusion of an original cubic calcium phosphate bioceramic of highly controlled composition and structure. This bioceramic comprises an internal portion containing homogeneously interconnected macropores surrounded by a dense layer, which minimises fluid flow bypass around the scaffold. This dense and flat layer permits the application of a homogeneous loading on the bioceramic while also enhancing its mechanical strength. Numerical modelling of constraints shows that the system provides direct mechanical stimulation of cells within the scaffold. Experimental results establish that under perfusion at a steady flow of 2 L/min, corresponding to 3 ? Medium velocity ? 23 m/s, mouse calvarial cells grow and differentiate as osteoblasts in a reproducible manner, and lay down a mineralised matrix. Moreover, cells respond to mechanical loading by increasing C-fos expression, which demonstrates the effective mechanical stimulation of the culture within the scaffold. In summary, we provide a "proof-of-concept" for osteoblastic cell culture in a controlled 3D culture system under perfusion and mechanical loading. This model will be a tool to analyse bone cell functions in vivo, and will provide a bench testing system for the clinical assessment of bioactive bone-targeting molecules under load. PMID:25978114

  14. In Vitro Osteogenic Differentiation and In Vivo Bone-Forming Capacity of Human Isogenic Jaw Periosteal Cells and Bone Marrow Stromal Cells

    PubMed Central

    Jaquiry, Claude; Schaeren, Stefan; Farhadi, Jian; Mainil-Varlet, Pierre; Kunz, Christoph; Zeilhofer, Hans-Florian; Heberer, Michael; Martin, Ivan

    2005-01-01

    Objective: To compare the in vitro osteogenic differentiation and in vivo ectopic bone forming capacity of human bone marrow stromal cells (BMSCs) and jaw periosteal cells (JPCs), and to identify molecular predictors of their osteogenic capacity. Summary Background Data: JPC could be an appealing alternative to BMSC for the engineering of cell-based osteoinductive grafts because of the relatively easy access to tissue with minimal morbidity. However, the extent of osteogenic capacity of JPC has not yet been established or compared with that of BMSC. Methods: BMSCs and JPCs from the same donors (N = 9), expanded for 2 passages, were cultured for 3 weeks in osteogenic medium either in monolayers (Model I) or within 3-dimensional porous ceramic scaffolds, following embedding in fibrin gel (Model II). Cell-fibrin-ceramic constructs were also implanted ectopically in nude mice for 8 weeks (Model III). Cell differentiation in vitro was assessed biochemically and by real-time RT-PCR. Bone formation in vivo was quantified by computerized histomorphometry. Results: JPCs had lower alkaline phosphatase activity, deposited smaller amounts of calcium (Model I), and expressed lower mRNA levels of bone sialoprotein, osteopontin, and osterix (Models I and II) than BMSCs. JPCs produced ectopic bone tissue at lower frequency and amounts (Model III) than BMSCs. Bone sialoprotein, osteopontin, and osterix mRNA levels by BMSCs or JPCs in Model II were markedly higher than in Model I and significantly more expressed by cells that generated bone tissue in Model III. Conclusions: Our data indicate that JPCs, although displaying features of osteogenic cells, would not be as reliable as BMSCs for cell-based bone tissue engineering, and suggest that expression of osteoblast-related markers in vitro could be used to predict whether cells would be osteoinductive in vivo. PMID:16327496

  15. Transforming growth factor-? synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma.

    PubMed

    Nakamura, Ryosuke; Kayamori, Kou; Oue, Erika; Sakamoto, Kei; Harada, Kiyoshi; Yamaguchi, Akira

    2015-03-20

    Transforming growth factor beta (TGF-?) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-? in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-? and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-? and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-? in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p?Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-?. Culture media derived from HSC3 cells could stimulate Tgf-?1 mRNA expression in ST2 cells. Recombinant TGF-?1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-?1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-? or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-? and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-? synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. PMID:25681764

  16. [Mesenchymal stem cells exist in the compact bones from four species of mammals].

    PubMed

    Bian, Su-Yan; Guo, Zi-Kuan; Ye, Ping; Sheng, Li; Xiao, Tie-Hui; Qi, Li-Ping

    2010-02-01

    The biological properties of cultured mesenchymal stem cells (MSC) have been intensively investigated, while there is still a paucity of information about the definite in vivo sites that harbor these stem cells due to the lack of specific surface markers. Previous data have demonstrated that human and murine MSC can be isolated from the compact bones. To investigate if it is the case for other species, the femurs from Wistar rats, Beagles, C57 mice and New Zealand rabbits were collected, minced and digested with collagenase type I. The digested bone fragments were seeded into the medium for human bone marrow culture after removal of the suspended cells in the digestion. The results showed that the fibroblast-like cells were observed to migrate from the bone fragments after several days of culture, and they gradually formed an adherent confluent layer. The adherent cells could be passaged and expressed homogenously the mesenchymal cell marker vimentin. Differentiation assays showed that these cells had the capacity to differentiate into osteoblasts and adipocytes. In conclusion, the results here provide new information for the further investigations on the in vivo biological features of MSC in the context of the simplicity of the compact bone structure. PMID:20137137

  17. Connecting Mechanics and Bone Cell Activities in the Bone Remodeling Process: An Integrated Finite Element Modeling

    PubMed Central

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain–damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.’s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone adaptation. The proposed FEM model gives insight into how bone cells adapt their architecture to the mechanical and biological environment. PMID:25152881

  18. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    PubMed

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone adaptation. The proposed FEM model gives insight into how bone cells adapt their architecture to the mechanical and biological environment. PMID:25152881

  19. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.

    PubMed

    Rodrigues, Mrcia T; Martins, Albino; Dias, Isabel R; Viegas, Carlos A; Neves, Nuno M; Gomes, Manuela E; Reis, Rui L

    2012-11-01

    Bone extracellular matrix (ECM) is composed of mineralized collagen fibrils which support biological apatite nucleation that participates in bone outstanding properties. Understanding and mimicking bone morphological and physiological parameters at a biological scale is a major challenge in tissue engineering scaffolding. Using emergent (nano)technologies scaffold designing may be critically improved, enabling highly functional tissue substitutes for bone applications. This study aims to develop novel biodegradable composite scaffolds of tricalcium phosphate (TCPs) and electrospun nanofibers of poly(?-caprolactone) (PCL), combining TCPs osteoconductivity with PCL biocompatibility and elasticity, mimicking bone structure and composition. We hypothesized that scaffolds with such structure/composition would stimulate the proliferation and differentiation of bone marrow stromal cells (BMSCs) towards the osteogenic phenotype. Composite scaffolds, developed by electrospining using consecutive stacked layers of PCL and TCPs, were characterized by FTIR spectroscopy, X-Ray diffraction and scanning electronic microscopy. Cellular behavior was assessed in goat BMSCs seeded onto composite scaffolds and cultured in static or dynamic conditions, using basal or osteogenic media during 7, 14 or 21 days. Cellular proliferation was quantified and osteogenic differentiation confirmed by alkaline phosphatase activity, alizarin red staining and immunocytochemistry for osteocalcin and collagen I. Results suggest that PCL-TCP scaffolds provide a 3D support for gBMSCs proliferation and osteogenic differentiation with production of ECM. TCPs positively stimulate the osteogenic process, especially under dynamic conditions, where PCL-TCP scaffolds are sufficient to promote osteogenic differentiation even in basal medium conditions. The enhancement of the osteogenic potential in dynamic conditions evidences the synergistic effect of scaffold composition and dynamic stimulation in gBMSCs osteogenic differentiation. PMID:22451140

  20. Identification of Rorβ targets in cultured osteoblasts and in human bone

    SciTech Connect

    Roforth, Matthew M. Khosla, Sundeep Monroe, David G.

    2013-11-01

    Highlights: •We examine the gene expression patterns controlled by Rorβ in osteoblasts. •Genes involved in extracellular matrix regulation and proliferation are affected. •Rorβ mRNA levels increase in aged, human bone biopsies. •Rorβ may affect osteoblast activity by modulation of these pathways. -- Abstract: Control of osteoblastic bone formation involves the cumulative action of numerous transcription factors, including both activating and repressive functions that are important during specific stages of differentiation. The nuclear receptor retinoic acid receptor-related orphan receptor β (Rorβ) has been recently shown to suppress the osteogenic phenotype in cultured osteoblasts, and is highly upregulated in bone marrow-derived osteogenic precursors isolated from aged osteoporotic mice, suggesting Rorβ is an important regulator of osteoblast function. However the specific gene expression patterns elicited by Rorβ are unknown. Using microarray analysis, we identified 281 genes regulated by Rorβ in an MC3T3-E1 mouse osteoblast cell model (MC3T3-Rorβ-GFP). Pathway analysis revealed alterations in genes involved in MAPK signaling, genes involved in extracellular matrix (ECM) regulation, and cytokine-receptor interactions. Whereas the identified Rorβ-regulated ECM genes normally decline during osteoblastic differentiation, they were highly upregulated in this non-mineralizing MC3T3-Rorβ-GFP model system, suggesting that Rorβ may exert its anti-osteogenic effects through ECM disruption. Consistent with these in vitro findings, the expression of both RORβ and a subset of RORβ-regulated genes were increased in bone biopsies from postmenopausal women (73 ± 7 years old) compared to premenopausal women (30 ± 5 years old), suggesting a role for RORβ in human age-related bone loss. Collectively, these data demonstrate that Rorβ regulates known osteogenic pathways, and may represent a novel therapeutic target for age-associated bone loss.

  1. Adipose-Derived Stem Cells in Functional Bone Tissue Engineering: Lessons from Bone Mechanobiology

    PubMed Central

    Bodle, Josephine C.; Hanson, Ariel D.

    2011-01-01

    This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application. PMID:21338267

  2. Injectable Bone Tissue Engineering Using Expanded Mesenchymal Stem Cells

    PubMed Central

    Yamada, Yoichi; Nakamura, Sayaka; Ito, Kenji; Umemura, Eri; Hara, Kenji; Nagasaka, Tetsuro; Abe, Akihiro; Baba, Shunsuke; Furuichi, Yasushi; Izumi, Yuichi; Klein, Ophir D.; Wakabayashi, Toshihiko

    2014-01-01

    Patients suffering from bone defects are often treated with autologous bone transplants, but this therapy can cause many complications. New approaches are therefore needed to improve treatment for bone defects, and stem cell therapy presents an exciting alternative approach. Although extensive evidence from basic studies using stem cells has been reported, very few clinical applications using stem cells for bone tissue engineering have been developed. We investigated whether injectable tissue-engineered bone composed of mesenchymal stem cells (MSCs) and platelet rich plasma was able to regenerate functional bone in alveolar deficiencies. We performed these studies in animals and subsequently carried out pilot trial cases in patients with long-term follow up; these showed good bone formation using minimally invasive MSC transplantation. All patients exhibited significantly improved bone volume with no side effects. Newly formed bone areas at 3 months was significantly higher than the pre-operation baseline (P <0.001) and reached levels equivalent to that of native bone. No significant bone resorption occurred during long term follow-up. Injectable tissue-engineered bone restored masticatory function in patients. This novel clinical approach represents an effective therapeutic utilization of bone tissue engineering. PMID:23225744

  3. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease

    PubMed Central

    Garcia-Gomez, Antonio; Las Rivas, Javier De; Ocio, Enrique M.; Díaz-Rodríguez, Elena; Montero, Juan C.; Martín, Montserrat; Blanco, Juan F.; Sanchez-Guijo, Fermín M.; Pandiella, Atanasio; San Miguel, Jesús F.; Garayoa, Mercedes

    2014-01-01

    Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease. PMID:25268740

  4. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease.

    PubMed

    Garcia-Gomez, Antonio; De Las Rivas, Javier; Ocio, Enrique M; Daz-Rodrguez, Elena; Montero, Juan C; Martn, Montserrat; Blanco, Juan F; Sanchez-Guijo, Fermn M; Pandiella, Atanasio; San Miguel, Jess F; Garayoa, Mercedes

    2014-09-30

    Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease. PMID:25268740

  5. Stem cell derived endochondral cartilage stimulates bone healing by tissue transformation

    PubMed Central

    Bahney, Chelsea S; Hu, Diane P; Taylor, Aaron J; Ferro, Federico; Britz, Hayley M; Hallgrimsson, Benedikt; Johnstone, Brian; Miclau, Theodore; Marcucio, Ralph S

    2016-01-01

    Although bone has great capacity for repair, there are a number of clinical situations (fracture non-unions, spinal fusions, revision arthroplasty, segmental defects) in which auto- or allografts augment bone regeneration. Critical failures associated with current grafting treatments include osteonecrosis and limited integration between graft and host tissue. We speculated that the underlying problem with current bone grafting techniques is that they promote bone regeneration through direct osteogenesis. We hypothesized that using cartilage to promote endochondral bone regeneration would leverage normal developmental and repair sequences to produce a well-vascularized regenerate that integrates with the host tissue. In this study we use a translational murine model of a segmental tibia defect to test the clinical utility of bone regeneration from a cartilage graft. We further test the mechanism by which cartilage promotes bone regeneration using in vivo lineage tracing and in vitro culture experiments. Our data show that cartilage grafts support regeneration of a vascularized and integrated bone tissue in vivo, and subsequently propose a translational tissue engineering platform using chondrogenesis of MSCs. Interestingly, lineage tracing experiments show the regenerate was graft derived, suggesting transformation of the chondrocytes into bone. In vitro culture data shows that cartilage explants mineralize with the addition of BMP or by exposure to HUVEC conditioned medium, indicating that endothelial cells directly promote ossification. This study provides pre-clinical data for endochondral bone repair that has potential to significantly improve patient outcomes in a variety of musculoskeletal diseases and injuries. Further, in contrast to the dogmatic view that hypertrophic chondrocytes undergo apoptosis prior to bone formation, our data suggest cartilage can transform into bone by activating the pluripotent transcription factor Oct4A. Together these data represent a paradigm shift describing the mechanism of endochondral bone repair and open the door for novel regenerative strategies based on improved biology. PMID:24259230

  6. Stromal cell-derived factor-1 mediates changes of bone marrow stem cells during the bone repair process.

    PubMed

    Okada, Kiyotaka; Kawao, Naoyuki; Yano, Masato; Tamura, Yukinori; Kurashimo, Shinzi; Okumoto, Katsumi; Kojima, Kotarou; Kaji, Hiroshi

    2016-01-01

    Osteoblasts, osteoclasts, chondrocytes, and macrophages that participate in the bone repair process are derived from hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). However, the roles of these stem cells during the repair of injured bone tissue are still unclear. In the present study, we examined the effects of bone defect on HSCs and MSCs in bone marrow and spleen in 75 mice and its mechanism. We analyzed the HSC and MSC populations in these tissues of a mouse with femoral bone damage by using flow cytometry. The number of HSCs in the bone marrow of mice with damaged femurs was significantly lower than the number of these cells in the bone marrow of the contralateral intact femurs on day 2 after injury. Meanwhile, the number of MSCs in the bone marrow of mice with damaged femurs was significantly higher than that of the contralateral femurs. Both intraperitoneal administration of AMD3100, a C-X-C chemokine receptor 4 (CXCR4) antagonist, and local treatment with an anti-stromal cell-derived factor-1 (SDF-1) antibody blunted the observed decrease in HSC and increase in MSC populations within the bone marrow of injured femurs. In conclusion, the present study revealed that there is a concurrent decrease and increase in the numbers of HSCs and MSCs, respectively, in the bone marrow during repair of mouse femoral bone damage. Furthermore, the SDF-1/CXCR4 system was implicated as contributing to the changes in these stem cell populations upon bone injury. PMID:26530150

  7. 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy.

    PubMed

    Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei

    2015-01-01

    Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects. PMID:25825603

  8. Unique cell culture systems for ground based research

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.

    1990-01-01

    The horizontally rotating fluid-filled, membrane oxygenated bioreactors developed at NASA Johnson for spacecraft applications provide a powerful tool for ground-based research. Three-dimensional aggregates formed by cells cultured on microcarrier beads are useful for study of cell-cell interactions and tissue development. By comparing electron micrographs of plant seedlings germinated during Shuttle flight 61-C and in an earth-based rotating bioreactor it is shown that some effects of microgravity are mimicked. Bioreactors used in the UAH Bioreactor Laboratory will make it possible to determine some of the effects of altered gravity at the cellular level. Bioreactors can be valuable for performing critical, preliminary-to-spaceflight experiments as well as medical investigations such as in vitro tumor cell growth and chemotherapeutic drug response; the enrichment of stem cells from bone marrow; and the effect of altered gravity on bone and muscle cell growth and function and immune response depression.

  9. Modeling of bone adaptative behavior based on cells activities.

    PubMed

    Bonfoh, Napo; Novinyo, Edem; Lipinski, Paul

    2011-10-01

    Bone remodeling occurs in an adult's skeleton to adapt its architecture to external loadings. This involves bone resorption by osteoclasts cells followed by formation of new bone by osteoblasts cells. During bone remodeling, osteoclasts and osteoblasts interact with each other by expressing autocrine and paracrine factors that regulate cells' population. Therefore, changes in bone density depend on the amount of each acting cell population. The aim of this paper is to propose a model for the bone remodeling process, which takes into account the opposite activity of both types of cells. For this purpose, a system of differential equations, proposed by Komarova etal. (Bone 33:206-215, 2003), is introduced to describe bone cell interactions using parameters which characterize the autocrine and paracrine factors. Such equations allow us to determine how the autocrine and paracrine factors vary in response to an external stimulus. It is assumed that an equilibrium state can be obtained for values of stimulus near to some reference quantity. Far from this value, unbalanced activity of osteoblasts and osteoclasts is observed, which leads to bone apposition or resorption. The proposed model has been implemented into the finite element software ABAQUS to analyze the qualitative response of a bone structure when subjected to certain mechanical loadings. Obtained results are satisfactory and in accordance with the expected bone remodeling behavior. PMID:21136134

  10. Proliferative activity of vervet monkey bone marrow-derived adherent cells

    SciTech Connect

    Kramvis, A.; Garnett, H.M.

    1987-11-01

    Vervet monkey bone marrow-derived adherent cell population cultured in Fischer's medium supplemented with 12.5% fetal calf serum and 12.5% horse serum consists of two cell shapes: fusiform (type I) and polygonal (type II). Limiting-dilution cloning of the cells suggested that the two morphologically distinct cell types belong to the same cellular system even though they differ in their proliferative capabilities. The labeling index of type II cells, as measured by autoradiography, was found to be consistently lower than that of type I cells. It is probable that these two phenotypes represent different stages of differentiation, where progenitor type I gives rise to type II cells. The bone marrow-derived adherent cells were found to be cytokinetically at rest in vivo, using the thymidine suicide test, and relatively radioresistant with a D0 = 2.1 Gy and n = 2.36 at the time of explantation from the bone. Furthermore, in culture these cells are characterized by a relatively long cell cycle of 60 h, where the length of the S phase is 30 h, G2 is 12 h, M is 6 h, and G1 is 12 h. Thus, the vervet monkey bone marrow-derived adherent cells represent a cell population with a low turnover rate both in vivo and in vitro.

  11. Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease.

    PubMed

    Veronesi, Francesca; Giavaresi, Gianluca; Tschon, Matilde; Borsari, Veronica; Nicoli Aldini, Nicol; Fini, Milena

    2013-01-15

    Mesenchymal stem cells (MSCs) from bone marrow (BM) are widely used for bone and less for cartilage tissue regeneration due to their self-renewal and differentiating properties into osteogenic or chondrogenic lineages. This review considers the last decade of clinical trials involving a two-step procedure, by expanding in vitro MSCs from BM, or the so called "one-step" procedure, using BM in toto or BM concentrate, for the regeneration of cartilage and osteochondral tissue defects. The following conclusions were drawn: (1) Cartilage defects that can be repaired by the two-step technique are about twice the size as those where the one-step method is used; (2) the two-step procedure is especially used for the treatment of osteoarthritic lesions, whereas the one-step procedure is used for osteochondral defects; (3) the number of transplanted cells ranges between 3.810(6) and 11.210(6) cells/mL, and the period of cell culture expansion of implanted MSCs varies widely with regard to the two-step procedure; (4) hyaluronic or collagenic scaffolds are used in all the clinical studies analyzed for both techniques; (5) the follow-up of the two-step procedure is longer than that of the one-step method, despite having a lower number of patients; and, finally, (6) the mean age of the patients (about 39 years old) is similar in both procedures. Clinical results underline the safety and good and encouraging outcomes for the use of MSCs in clinics. Although more standardized procedures are required, the length of follow-up and the number of patients observed should be augmented, and the design of trials should be implemented to achieve evidence-based results. PMID:23030230

  12. Fibromodulin reprogrammed cells: A novel cell source for bone regeneration.

    PubMed

    Li, Chen-Shuang; Yang, Pu; Ting, Kang; Aghaloo, Tara; Lee, Soonchul; Zhang, Yulong; Khalilinejad, Kambiz; Murphy, Maxwell C; Pan, Hsin Chuan; Zhang, Xinli; Wu, Benjamin; Zhou, Yan-Heng; Zhao, Zhihe; Zheng, Zhong; Soo, Chia

    2016-03-01

    Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However, currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability, painful and invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario invivo. The persistence, engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis invivo were confirmed by histological and immunohistochemical staining. Taken together, we have provided an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. Therefore, FReP cells present a high potential for cellular and gene therapy products for bone regeneration. PMID:26774565

  13. Cell-tethered ligands modulate bone remodeling by osteoblasts and osteoclasts

    PubMed Central

    Hayden, Rebecca S.; Fortin, Jean-Philippe; Harwood, Benjamin; Subramanian, Balajikarthick; Quinn, Kyle P.; Georgakoudi, Irene; Kopin, Alan S.

    2014-01-01

    The goals of the present study are to establish an in vitro co-culture model of osteoblast and osteoclast function and to quantify the resulting bone remodeling. The bone is tissue engineered using well-defined silk protein biomaterials in 2D and 3D formats in combination with human cells expressing tethered agonists for selected G protein-coupled receptors (GPCRs). The tethered constructs are introduced with the objective of triggering sustained and localized GPCR signaling. The cell-modified biomaterial surfaces are reconstructed from SEM images into 3D models using image processing for quantitative measurement of surface characteristics. Parathyroid hormone (PTH) and glucose-dependent insulinotropic peptide (GIP) are selected because of their roles in bone remodeling for expression in tethered format on bone marrow derived human mesenchymal stem cells (hMSCs). Increased calcium deposition and increased surface roughness are found in 3D digital surface models constructed from SEM images of silk protein films remodeled by the co-cultures containing the tethered PTH, and decreased surface roughness is found for the films remodeled by the tethered GIP co-cultures. Increased surface roughness is not found in monocultures of hMSCs expressing tethered PTH, suggesting that osteoclast-osteoblast interactions in the presence of PTH signaling are responsible for the increased mineralization. These data point towards the design of in vitro bone models in which osteoblast-osteoclast interactions are mimicked for a better understanding of bone remodeling. PMID:25419210

  14. Immunosuppressive properties of cloned bone marrow mesenchymal stem cells.

    PubMed

    Xu, Guangwu; Zhang, Liying; Ren, Guangwen; Yuan, Zengrong; Zhang, Yingyu; Zhao, Robert C; Shi, Yufang

    2007-03-01

    Mesenchymal stem cells (MSCs), derived from adult tissues, are multipotent progenitor cells, which hold great promise for regenerative medicine. Recent studies have shown that MSCs are immunosuppressive in vivo and in vitro in both animals and humans. However, the mechanisms that govern these immune modulatory functions of MSCs remain largely elusive. Some studies with bulk populations of MSCs indicated that soluble factors such as PGE2 and TGFbeta are important, while others support a role for cell-cell contact. In this study, we intended to clarify these issues by examining immunosuppressive effects of cloned MSCs. We derived MSC clones from mouse bone marrow and showed that the majority of these clones were able to differentiate into adipocytes and osteoblast-like cells. Importantly, cells from these clones exhibited strong inhibitory effects on TCR activation-induced T cell proliferation in vitro, and injection of a small number of these cells promoted the survival of allogeneic skin grafts in mice. Conditioned medium from MSC cultures showed some inhibitory effect on anti-CD3 induced lymphocyte proliferation independent of PGE2 and TGFbeta. In comparison, direct co-culture of MSCs with stimulated lymphocytes resulted in much stronger immunosuppressive effect. Interestingly, the suppression was bi-directional, as MSC proliferation was also reduced in the presence of lymphocytes. Taking together, our findings with cloned MSCs demonstrate that these cells exert their immunosuppressive effects through both soluble factor(s) and cell-cell contact, and that lymphocytes and MSCs are mutually inhibitory on their respective proliferation. PMID:17325691

  15. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow

    PubMed Central

    Yu, Vionnie W.C.; Saez, Borja; Cook, Colleen; Lotinun, Sutada; Pardo-Saganta, Ana; Wang, Ying-Hua; Lymperi, Stefania; Ferraro, Francesca; Raaijmakers, Marc H.G.P.; Wu, Joy Y.; Zhou, Lan; Rajagopal, Jayaraj; Kronenberg, Henry M.; Baron, Roland

    2015-01-01

    Production of the cells that ultimately populate the thymus to generate α/β T cells has been controversial, and their molecular drivers remain undefined. Here, we report that specific deletion of bone-producing osteocalcin (Ocn)-expressing cells in vivo markedly reduces T-competent progenitors and thymus-homing receptor expression among bone marrow hematopoietic cells. Decreased intrathymic T cell precursors and decreased generation of mature T cells occurred despite normal thymic function. The Notch ligand DLL4 is abundantly expressed on bone marrow Ocn+ cells, and selective depletion of DLL4 from these cells recapitulated the thymopoietic abnormality. These data indicate that specific mesenchymal cells in bone marrow provide key molecular drivers enforcing thymus-seeding progenitor generation and thereby directly link skeletal biology to the production of T cell–based adaptive immunity. PMID:25918341

  16. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche1

    PubMed Central

    Templeton, Zach S.; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V.; Tamaresis, John S.; Bachmann, Michael H.; Lee, Kitty; Maloney, William J.; Contag, Christopher H.; King, Bonnie L.

    2015-01-01

    BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. PMID:26696367

  17. Placental-derived stem cells: Culture, differentiation and challenges

    PubMed Central

    Oliveira, Maira S; Barreto-Filho, Joo B

    2015-01-01

    Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice. PMID:26029347

  18. Cell seeding density is a critical determinant for copolymer scaffolds-induced bone regeneration.

    PubMed

    Yassin, Mohammed A; Leknes, Knut N; Pedersen, Torbjorn O; Xing, Zhe; Sun, Yang; Lie, Stein A; Finne-Wistrand, Anna; Mustafa, Kamal

    2015-11-01

    Constructs intended for bone tissue engineering (TE) are influenced by the initial cell seeding density. Therefore, the objective of this study was to determine the effect of bone marrow stromal stem cells (BMSCs) density loaded onto copolymer scaffolds on bone regeneration. BMSCs were harvested from rat's bone marrow and cultured in media with or without osteogenic supplements. Cells were seeded onto poly(l-lactide-co-?-caprolactone) [poly(LLA-co-CL)] scaffolds at two different densities: low density (1 10(6) cells/scaffold) or high density (2 10(6) cells/scaffold) using spinner modified flasks and examined after 1 and 3 weeks. Initial attachment and spread of BMSC onto the scaffolds was recorded by scanning electron microscopy. Cell proliferation was assessed by DNA quantification and cell differentiation by quantitative real-time reverse transcriptase-polymerized chain reaction analysis (qRT-PCR). Five-millimeter rat calvarial defects (24 defects in 12 rats) were implanted with scaffolds seeded with either low or high density expanded with or without osteogenic supplements. Osteogenic supplements significantly increased cell proliferation (p < 0.001). Scaffolds seeded at high cell density exhibited higher mRNA expressions of Runx2 p?=?0.001, Col1 p?=?0.001, BMP2 p?bone was formed in response to high cell seeding density (p?=?0.023) and high seeding density with osteogenic medium (p?=?0.038). Poly (LLA-co-CL) scaffolds could be appropriate candidates for bone TE. The optimal number of cells to be loaded onto scaffolds is critical for promoting Extracellular matrix synthesis and bone formation. Cell seeding density and osteogenic supplements may have a synergistic effect on the induction of new bone. PMID:26013960

  19. The Alliance of Mesenchymal Stem Cells, Bone, and Diabetes

    PubMed Central

    Napoli, Nicola; Paladini, Angela; Briganti, Silvia I.; Pozzilli, Paolo; Epstein, Sol

    2014-01-01

    Bone fragility has emerged as a new complication of diabetes. Several mechanisms in diabetes may influence bone homeostasis by impairing the action between osteoblasts, osteoclasts, and osteocytes and/or changing the structural properties of the bone tissue. Some of these mechanisms can potentially alter the fate of mesenchymal stem cells, the initial precursor of the osteoblast. In this review, we describe the main factors that impair bone health in diabetic patients and their clinical impact. PMID:25140176

  20. Communication of bone cells with hematopoiesis, immunity and energy metabolism.

    PubMed

    Asada, Noboru; Sato, Mari; Katayama, Yoshio

    2015-01-01

    The bone contains the bone marrow. The functional communication between bone cells and hematopoiesis has been extensively studied in the past decade or so. Osteolineage cells and their modulators, such as the sympathetic nervous system, macrophages and osteoclasts, form a complex unit to maintain the homeostasis of hematopoiesis, called the 'microenvironment'. Recently, bone-embedded osteocytes, the sensors of gravity and mechanical stress, have joined the microenvironment, and they are demonstrated to contribute to whole body homeostasis through the control of immunity and energy metabolism. The inter-organ communication orchestrated by the bone is summarized in this article. PMID:26512322

  1. Chromosome preparation from cultured cells.

    PubMed

    Howe, Bradley; Umrigar, Ayesha; Tsien, Fern

    2014-01-01

    Chromosome (cytogenetic) analysis is widely used for the detection of chromosome instability. When followed by G-banding and molecular techniques such as fluorescence in situ hybridization (FISH), this assay has the powerful ability to analyze individual cells for aberrations that involve gains or losses of portions of the genome and rearrangements involving one or more chromosomes. In humans, chromosome abnormalities occur in approximately 1 per 160 live births(1,2), 60-80% of all miscarriages(3,4), 10% of stillbirths(2,5), 13% of individuals with congenital heart disease(6), 3-6% of infertility cases(2), and in many patients with developmental delay and birth defects(7). Cytogenetic analysis of malignancy is routinely used by researchers and clinicians, as observations of clonal chromosomal abnormalities have been shown to have both diagnostic and prognostic significance(8,9). Chromosome isolation is invaluable for gene therapy and stem cell research of organisms including nonhuman primates and rodents(10-13). Chromosomes can be isolated from cells of live tissues, including blood lymphocytes, skin fibroblasts, amniocytes, placenta, bone marrow, and tumor specimens. Chromosomes are analyzed at the metaphase stage of mitosis, when they are most condensed and therefore more clearly visible. The first step of the chromosome isolation technique involves the disruption of the spindle fibers by incubation with Colcemid, to prevent the cells from proceeding to the subsequent anaphase stage. The cells are then treated with a hypotonic solution and preserved in their swollen state with Carnoy's fixative. The cells are then dropped on to slides and can then be utilized for a variety of procedures. G-banding involves trypsin treatment followed by staining with Giemsa to create characteristic light and dark bands. The same procedure to isolate chromosomes can be used for the preparation of cells for procedures such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and spectral karyotyping (SKY)(14,15). PMID:24513647

  2. Chromosome Preparation From Cultured Cells

    PubMed Central

    Howe, Bradley; Umrigar, Ayesha; Tsien, Fern

    2014-01-01

    Chromosome (cytogenetic) analysis is widely used for the detection of chromosome instability. When followed by G-banding and molecular techniques such as fluorescence in situ hybridization (FISH), this assay has the powerful ability to analyze individual cells for aberrations that involve gains or losses of portions of the genomeand rearrangements involving one or more chromosomes. In humans, chromosome abnormalities occur in approximately 1 per 160 live births1,2, 60-80% of all miscarriages3,4, 10% of stillbirths2,5, 13% of individuals with congenital heart disease6, 3-6% of infertility cases2, and in many patients with developmental delayand birth defects7. Cytogenetic analysis of malignancy is routinely used by researchers and clinicians, as observations of clonal chromosomal abnormalities have been shown to have both diagnostic and prognostic significance8,9. Chromosome isolation is invaluable for gene therapy and stem cell research of organisms including nonhuman primates and rodents10-13. Chromosomes can be isolated from cells of live tissues, including blood lymphocytes, skin fibroblasts, amniocytes, placenta, bone marrow, and tumor specimens. Chromosomes are analyzed at the metaphase stage of mitosis, when they are most condensed and therefore more clearly visible. The first step of the chromosome isolation technique involves the disruption of the spindle fibers by incubation with Colcemid, to prevent the cells from proceeding to the subsequent anaphase stage. The cells are then treated with a hypotonic solution and preserved in their swollen state with Carnoy's fixative. The cells are then dropped on to slides and can then be utilized for a variety of procedures. G-banding involves trypsin treatment followed by staining with Giemsa to create characteristic light and dark bands. The same procedure to isolate chromosomes can be used for the preparation of cells for procedures such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and spectral karyotyping (SKY)14,15. PMID:24513647

  3. Response and adaptation of bone cells to simulated microgravity

    NASA Astrophysics Data System (ADS)

    Hu, Lifang; Li, Runzhi; Su, Peihong; Arfat, Yasir; Zhang, Ge; Shang, Peng; Qian, Airong

    2014-11-01

    Bone loss induced by microgravity during space flight is one of the most deleterious factors on astronaut's health and is mainly attributed to an unbalance in the process of bone remodeling. Studies from the space microgravity have demonstrated that the disruption of bone remodeling is associated with the changes of four main functional bone cells, including osteoblast, osteoclast, osteocyte, and mesenchymal stem cells. For the limited availability, expensive costs and confined experiment conditions for conducting space microgravity studies, the mechanism of bone cells response and adaptation to microgravity is still unclear. Therefore, some ground-based simulated microgravity methods have been developed to investigate the bioeffects of microgravity and the mechanisms. Here, based on our studies and others, we review how bone cells (osteoblasts, osteoclasts, osteocytes and mesenchymal stem cells) respond and adapt to simulated microgravity.

  4. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  5. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  6. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  7. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  8. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-05-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18265370

  9. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2007-01-01

    This unit opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18428653

  10. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-05-01

    This unit opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18770828

  11. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2007-08-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:20972966

  12. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-12-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18429293

  13. Techniques for mammalian cell tissue culture.

    PubMed

    Phelan, Mary C

    2006-11-01

    This appendix opens with detailed discussions on the latest principles of sterile technique and preparation of culture media. Step-by-step protocols describe trypsinizing and subculturing monolayer cultures, passaging suspension cultures, freezing and thawing cells, counting cells using a hemacytometer, and preparing cells for transport. PMID:18428384

  14. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  15. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication

    SciTech Connect

    Hock, J.M.; Centrella, M.; Canalis, E.

    1988-01-01

    The effects of insulin-like growth factor-I (IGF-I) and insulin on bone matrix synthesis and bone cell replication were studied in cultured 21-day-old fetal rat calvariae. Histomorphometry techniques were developed to measure the incorporation of (2,3-/sup 3/H)proline and (methyl-/sup 3/H)thymidine into bone matrix and bone cell nuclei, respectively, using autoradiographs of sagittal sections of calvariae cultured with IGF-I, insulin, or vehicle for up to 96 h. To confirm an effect on bone formation, IGF-I was also studied for its effects on (/sup 3/H)proline incorporation into collagenase-digestible protein (CDP) and noncollagen protein and on (/sup 3/H)thymidine incorporation into acid-precipitable material (DNA). IGF-I at 10(-9)-10(-7) M significantly increased the rate of bone matrix apposition and CDP after 24 h by 45-50% and increased cell labeling by 8-fold in the osteoprogenitor cell zone, by 4-fold in the osteoblast cell zone, and by 2-fold in the periosteal fibroblast zone. Insulin at 10(-9)-10(-6) M also increased matrix apposition rate and CDP by 40-50%, but increased cell labeling by 2-fold only at a concentration of 10(-7) M or higher and then only in the osteoprogenitor cell zone. When hydroxyurea was added to IGF-I-treated bones, the effects of IGF-I on DNA synthesis were abolished, but the increase in bone matrix apposition induced by IGF-I was only partly diminished. In conclusion, IGF-I stimulates matrix synthesis in calvariae, an effect that is partly, although not completely, dependent on its stimulatory effect on DNA synthesis.

  16. Investigation of In Vitro Bone Cell Adhesion and Proliferation on Ti Using Direct Current Stimulation

    PubMed Central

    Bodhak, Subhadip; Bose, Susmita; Kinsel, William C.; Bandyopadhyay, Amit

    2012-01-01

    Our objective was to establish an in vitro cell culture protocol to improve bone cell attachment and proliferation on Ti substrate using direct current stimulation. For this purpose, a custom made electrical stimulator was developed and a varying range of direct currents, from 5 to 25 µA, were used to study the current stimulation effect on bone cells cultured on conducting Ti samples in vitro. Cell–materials interaction was studied for a maximum of 5 days by culturing with human fetal osteoblast cells (hFOB). The direct current was applied in every 8 h time interval and the duration of electrical stimulation was kept constant at 15 min for all cases. In vitro results showed that direct current stimulation significantly favored bone cell attachment and proliferation in comparison to nonstimulated Ti surface. Immunochemistry and confocal microscopy results confirmed that the cell adhesion was most pronounced on 25 µA direct current stimulated Ti surfaces as hFOB cells expressed higher vinculin protein with increasing amount of direct current. Furthermore, MTT assay results established that cells grew 30% higher in number under 25 µA electrical stimulation as compared to nonstimulated Ti surface after 5 days of culture period. In this work we have successfully established a simple and cost effective in vitro protocol offering easy and rapid analysis of bone cell-materials interaction which can be used in promotion of bone cell attachment and growth on Ti substrate using direct current electrical stimulation in an in vitro model. PMID:23144532

  17. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells.

    PubMed

    Ono, Makiko; Kosaka, Nobuyoshi; Tominaga, Naoomi; Yoshioka, Yusuke; Takeshita, Fumitaka; Takahashi, Ryou-u; Yoshida, Masayuki; Tsuda, Hitoshi; Tamura, Kenji; Ochiya, Takahiro

    2014-07-01

    Breast cancer patients often develop metastatic disease years after resection of the primary tumor. The patients are asymptomatic because the disseminated cells appear to become dormant and are undetectable. Because the proliferation of these cells is slowed, dormant cells are often unresponsive to traditional chemotherapies that exploit the rapid cell cycling of most cancer cells. We generated a bone marrow-metastatic human breast cancer cell line (BM2) by tracking and isolating fluorescent-labeled MDA-MB-231 cells that disseminated to the bone marrow in mice. Coculturing BM2 cells with bone marrow mesenchymal stem cells (BM-MSCs) isolated from human donors revealed that BM-MSCs suppressed the proliferation of BM2 cells, decreased the abundance of stem cell-like surface markers, inhibited their invasion through Matrigel Transwells, and decreased their sensitivity to docetaxel, a common chemotherapy agent. Acquisition of these dormant phenotypes in BM2 cells was also observed by culturing the cells in BM-MSC-conditioned medium or with exosomes isolated from BM-MSC cultures, which were taken up by BM2 cells. Among various microRNAs (miRNAs) increased in BM-MSC-derived exosomes compared with those from adult fibroblasts, overexpression of miR-23b in BM2 cells induced dormant phenotypes through the suppression of a target gene, MARCKS, which encodes a protein that promotes cell cycling and motility. Metastatic breast cancer cells in patient bone marrow had increased miR-23b and decreased MARCKS expression. Together, these findings suggest that exosomal transfer of miRNAs from the bone marrow may promote breast cancer cell dormancy in a metastatic niche. PMID:24985346

  18. Characterization of Bone Resorption in Novel In Vitro and In Vivo Models of Oral Squamous Cell Carcinoma

    PubMed Central

    Martin, Chelsea K.; Dirksen, Wessel P.; Shu, Sherry T.; Werbeck, Jillian L.; Thudi, Nanda K.; Yamaguchi, Mamoru; Wolfe, Tobie D.; Heller, Kristin N.; Rosol, Thomas J.

    2012-01-01

    Objectives Oral squamous cell carcinoma (OSCC) is the most commonly diagnosed oral malignancy in humans and cats and frequently invades bone. The objective of this study was to determine if feline OSCC serves as a relevant model of human OSCC in terms of osteolytic behavior and expression of bone resorption agonists. Materials and Methods Novel feline OSCC cell lines (SCCF2 and SCCF3) were derived from spontaneous carcinomas. Gene expression and osteolytic behavior were compared to an established feline OSCC cell line (SCCF1) and three human OSCC cell lines (UMSCC-12, A253 and SCC25). Interaction of OSCC with bone and murine pre-osteoblasts (MC3T3) was investigated using in vitro co-culture techniques. In vivo bioluminescent imaging, faxitron radiography and microscopy were used to measure xenograft growth and bone invasion in nude mice. Results Human and feline OSCC expressing the highest levels of parathyroid hormone-related protein (PTHrP) were associated with in vitro and in vivo bone resorption and osteoclastogenesis. MC3T3 cells had increased receptor activator of nuclear factor ?B ligand (RANKL) expression and reduced osteoprotegerin (OPG) expression in conditioned medium from bone-invasive SCCF2 cells compared to minimally bone invasive SCCF3 cells, which was partially reversed with a neutralizing anti-PTHrP antibody. Human and feline OSCC cells cultured in bone-conditioned medium had increased PTHrP secretion and proliferation. Conclusion Feline OSCC-induced bone resorption was associated with tumor cell secretion of PTHrP and with increased RANKL : OPG expression ratio in mouse preosteoblasts. Bone-CM increased OSCC proliferation and secretion of PTHrP. The preclinical models of feline OSCC recapitulated the bone-invasive phenotype characteristic of spontaneous OSCC and will be useful to future preclinical and mechanistic studies of bone invasive behavior. PMID:22265717

  19. Bone Marrow-Derived Mesenchymal Stromal Cells Promote Survival and Drug Resistance in Tumor Cells

    PubMed Central

    Bergfeld, Scott A.; Blavier, Laurence; DeClerck, Yves A.

    2014-01-01

    Bone marrow mesenchymal stromal cells (BMMSC) have anti-tumorigenic activities. Here we hypothesized that circulating BMMSC are incorporated into tumors and protect tumor cells from therapy-induced apoptosis. Adherent cells harvested from murine bone marrow and expressing phenotypic and functional characteristics of BMMSC were tested for their anti-tumor activity against murine 4T1 mammary adenocarcinoma and LL/2 Lewis lung carcinoma cells. BMMSC but not NIH3T3 or murine skin fibroblasts stimulated the expansion of 4T1 cells in 3D co-cultures, and conditioned medium from these cells increased the viability of 4T1 and LL/2 cells in 2D cultures. 4T1 cells exposed to BMMSC conditioned medium exhibited a 2-fold reduction in apoptosis under low serum concentrations (0.5 to 1%). Furthermore, exposure of 4T1 and LL/2 cells to BMMSC conditioned medium increased their viability in the presence of paclitaxel or doxorubicin at therapeutic concentrations. This effect was accompanied by reductions in caspase-3 activity and Annexin V expression. When co-injected with 4T1 cells in the mammary fat pad of mice subsequently treated with doxorubicin, BMMSC (and not fibroblasts) also inhibited drug-induced apoptosis in tumor cells by 44 percent. We demonstrated that BMMSC were attracted by 4T1 and LL/2 cells but not by NIH3T3 cells in vitro and that when injected intravenously in 4T1 tumor bearing mice, these cells (and not NIH 3T3) were specifically detected in tumors within 12 to 18 days where they preferentially localized at the invasive front. Overall, our data identify BMMSC as an important mediator of tumor cell survival and treatment resistance in primary tumors. PMID:24502925

  20. Growth of human mast cells from bone marrow and peripheral blood-derived CD34(+) pluripotent hematopoietic cells.

    PubMed

    Bandara, Geethani; Metcalfe, Dean D; Kirshenbaum, Arnold S

    2015-01-01

    Human mast cells (HuMCs) are derived from CD34(+) pluripotent hematopoietic cells which are KIT (CD117)(+) and Fc?RI(-), and lack lineage-specific surface markers. Bone marrow and peripheral blood are the two readily available sources for obtaining CD34(+) cells from which HuMCs can be cultured. CD34(+) cells are isolated and enriched by magnetic separation columns and stored under specific conditions until ready for use. Alternatively, enriched CD34(+) cells may be immediately cultured in serum-free culture media containing recombinant human (rh) stem cell factor (SCF), rhIL-6, and rhIL-3 (added only during the first week). Weekly hemidepletions and removal of adherent cells and/or debris enables the investigator to obtain HuMC cultures, identified by Wright-Giemsa and acidic toluidine blue stains, by 8-10 weeks. PMID:25388250

  1. Intramuscular injection of bone marrow mononuclear cells contributes to bone repair following midpalatal expansion in rats.

    PubMed

    Che, Xiaoxia; Guo, Jie; Li, Xiangdong; Wang, Lve; Wei, Silong

    2016-01-01

    Healing from injury requires the activation and proliferation of stem cells for tissue repair. Previous studies have demonstrated that bone marrow is a central pool of stem cells. The present study aimed to investigate the route undertaken by bone marrow mononuclear cells (BMMCs) following BMMC transplantation by masseter injection in a rat model of midpalatal expansion. The rats were divided into five groups according to the types of midpalatal expansion, incision and BMMC transplantation. Samples of midpalatal bone from the rats in each group were used for histological and immunohistochemical assessments to track and evaluate the differential potentials of the transplanted BMMCs in the masseter muscle and midpalatal bone. Bromodeoxyuridine was used as a BMMC tracing label, and M?cadherin was used to detect muscle satellite cells. The BMMCs injected into the masseter were observed, not only in the masseter, but also in the blood vessels and oral mucosa, and enveloped the midpalatal bone. A number of the BMMCs transformed into osteoblasts at the boundary of the neuromuscular bundle, and were embedded in the newly formed bone during midpalatal bone regeneration. The results of the present study suggested that BMMCs entered the circulation and migrated from muscle to the bone tissue, where they were involved in bone repair. Therefore, BMMCs may prove useful in the treatment of various types of cancer. PMID:26648442

  2. Intramuscular injection of bone marrow mononuclear cells contributes to bone repair following midpalatal expansion in rats

    PubMed Central

    CHE, XIAOXIA; GUO, JIE; LI, XIANGDONG; WANG, LVE; WEI, SILONG

    2016-01-01

    Healing from injury requires the activation and proliferation of stem cells for tissue repair. Previous studies have demonstrated that bone marrow is a central pool of stem cells. The present study aimed to investigate the route undertaken by bone marrow mononuclear cells (BMMCs) following BMMC transplantation by masseter injection in a rat model of midpalatal expansion. The rats were divided into five groups according to the types of midpalatal expansion, incision and BMMC transplantation. Samples of midpalatal bone from the rats in each group were used for histological and immunohistochemical assessments to track and evaluate the differential potentials of the transplanted BMMCs in the masseter muscle and midpalatal bone. Bromodeoxyuridine was used as a BMMC tracing label, and M-cadherin was used to detect muscle satellite cells. The BMMCs injected into the masseter were observed, not only in the masseter, but also in the blood vessels and oral mucosa, and enveloped the midpalatal bone. A number of the BMMCs transformed into osteoblasts at the boundary of the neuromuscular bundle, and were embedded in the newly formed bone during midpalatal bone regeneration. The results of the present study suggested that BMMCs entered the circulation and migrated from muscle to the bone tissue, where they were involved in bone repair. Therefore, BMMCs may prove useful in the treatment of various types of cancer. PMID:26648442

  3. In vitro osteogenic induction of bone marrow stromal cells with encapsulated gene-modified bone marrow stromal cells and in vivo implantation for orbital bone repair.

    PubMed

    Deng, Yuan; Zhou, Huifang; Yan, Chenxi; Wang, Yefei; Xiao, Caiwen; Gu, Ping; Fan, Xianqun

    2014-07-01

    Osteogenic induction with either growth factors or genetic modification has limitations due to the short half-life and cost of the former, or safety concerns regarding the latter. The objective of this study was to employ a microcapsulation technique to separate genetically modified and nonmodified bone marrow stromal cells (BMSCs) to establish a cost-effective and biosafe osteogenic induction methodology with functional evaluation in vitro and in vivo in a canine model. Autologous BMSCs were isolated and transduced with adenoviral vectors containing either BMP-2 or vascular endothelial growth factor (VEGF) or were dual transduced followed by encapsulation in alginate microcapsules using an electrostatic bead generator. After cocultured with encapsulated cells, normal autologous BMSCs were analyzed for osteogenic differentiation and seeded onto tricalcium phosphate (TCP) scaffolds for in vivo implantation to repair orbital wall bone defects (12 mm in diameter) in a canine model. In vitro assays showed that the expression of the transduced genes was significantly upregulated, with significantly more transduced proteins released from the transduced cells compared with control cells. Importantly, examination of the BMSCs induced by soluble factors released from the encapsulated cells revealed a significant upregulation of expression of osteogenic markers Runx2, BSP, OPN, and OCN in dual-transduction or induction groups. In addition, dual transduction and induction resulted in the highest increase of alkaline phosphatase activity and mineralization compared with other experimental groups. In vivo assays using CT, micro-CT, and histology further supported the qPCR and western blot findings. In conclusion, encapsulation of genetically modified BMSCs was able to release a sufficient amount of BMP-2 and VEGF, which effectively induced osteogenic differentiation of normal-cultured BMSCs and demonstrated bone repair of the orbital wall defect after implantation with β-TCP in vivo. PMID:24498882

  4. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction

    SciTech Connect

    Oue, Erika; Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo ; Lee, Ji-Won; Sakamoto, Kei; Iimura, Tadahiro; Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo ; Aoki, Kazuhiro; Kayamori, Kou; Department of Pathology, Ome Municipal General Hospital, Ome, Tokyo ; Michi, Yasuyuki; Yamashiro, Masashi; Harada, Kiyoshi; Amagasa, Teruo; Yamaguchi, Akira; Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Oral cancer cells synthesize CXCL2. Black-Right-Pointing-Pointer CXCL2 synthesized by oral cancer is involved in osteoclastogenesis. Black-Right-Pointing-Pointer CXCL2-neutralizing antibody inhibited osteoclastogenesis induced by oral cancer cells. Black-Right-Pointing-Pointer We first report the role of CXCL2 in cancer-associated bone destruction. -- Abstract: To explore the mechanism of bone destruction associated with oral cancer, we identified factors that stimulate osteoclastic bone resorption in oral squamous cell carcinoma. Two clonal cell lines, HSC3-C13 and HSC3-C17, were isolated from the maternal oral cancer cell line, HSC3. The conditioned medium from HSC3-C13 cells showed the highest induction of Rankl expression in the mouse stromal cell lines ST2 and UAMS-32 as compared to that in maternal HSC3 cells and HSC3-C17 cells, which showed similar activity. The conditioned medium from HSC3-C13 cells significantly increased the number of osteoclasts in a co-culture with mouse bone marrow cells and UAMS-32 cells. Xenograft tumors generated from these clonal cell lines into the periosteal region of the parietal bone in athymic mice showed that HSC3-C13 cells caused extensive bone destruction and a significant increase in osteoclast numbers as compared to HSC3-C17 cells. Gene expression was compared between HSC3-C13 and HSC3-C17 cells by using microarray analysis, which showed that CXCL2 gene was highly expressed in HSC3-C13 cells as compared to HSC3-C17 cells. Immunohistochemical staining revealed the localization of CXCL2 in human oral squamous cell carcinomas. The increase in osteoclast numbers induced by the HSC3-C13-conditioned medium was dose-dependently inhibited by addition of anti-human CXCL2-neutralizing antibody in a co-culture system. Recombinant CXCL2 increased the expression of Rankl in UAMS-32 cells. These results indicate that CXCL2 is involved in bone destruction induced by oral cancer. This is the first report showing the role of CXCL2 in cancer-associated bone destruction.

  5. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    SciTech Connect

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-10-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods.

  6. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    SciTech Connect

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-10-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods.

  7. Basic techniques in Mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-01-01

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. 2015 by John Wiley & Sons, Inc. PMID:25727327

  8. Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells

    SciTech Connect

    Tu Qisheng; Valverde, Paloma . E-mail: paloma.valverde@tufts.edu; Chen, Jake

    2006-03-24

    Osterix (Osx) is a zinc-finger-containing transcription factor that is expressed in osteoblasts of all endochondral and membranous bones. In Osx null mice osteoblast differentiation is impaired and bone formation is absent. In this study, we hypothesized that overexpression of Osx in murine bone marrow stromal cells (BMSC) would be able to enhance their osteoblastic differentiation and mineralization in vitro. Retroviral transduction of Osx in BMSC cultured in non-differentiating medium did not affect expression of Runx2/Cbfa1, another key transcription factor of osteoblast differentiation, but induced an increase in the expression of other markers associated with the osteoblastic lineage including alkaline phosphatase, bone sialoprotein, osteocalcin, and osteopontin. Retroviral transduction of Osx in BMSC also increased their proliferation, alkaline phosphatase activity, and ability to form bone nodules. These events occurred without significant changes in the expression of {alpha}1(II) procollagen or lipoprotein lipase, which are markers of chondrogenic and adipogenic differentiation, respectively.

  9. Neural Crest Cells Isolated from the Bone Marrow of Transgenic Mice Express JCV T-Antigen

    PubMed Central

    Gordon, Jennifer; Sariyer, Ilker K.; De La Fuente-Granada, Marisol; Augelli, Brian J.; Otte, Jessica; Azizi, S. Ausim; Amini, Shohreh; Khalili, Kamel; Krynska, Barbara

    2013-01-01

    JC virus (JCV), a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML). In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs) isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases and the opportunities for the use of this model in development of therapeutic strategies. PMID:23805194

  10. 3D environment on human mesenchymal stem cells differentiation for bone tissue engineering.

    PubMed

    Cordonnier, T; Layrolle, P; Gaillard, Julien; Langonn, Alain; Senseb, L; Rosset, P; Sohier, J

    2010-03-01

    In this work a novel method was developed to create a three dimensional environment at a cellular level for bone tissue engineering. Biphasic calcium phosphate (BCP) particles of 140-200 microm were used in association with human mesenchymal stem cells (hMSCs). The cells seeded on these particles adhered and proliferated more rapidly in the first day of culture compared to culture on plastic. Analyses of hMSCs cultured without osteogenic factors on BCP particles revealed an abundant extracellular matrix production forming 3-dimensional (3D) hMSCs/BCP particles constructs after few days. Bone morphogenetic 2 (BMP-2), bone sialoprotein (BSP) and ALP gene expression using real time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) confirmed that expression profiles were modified by the culture substrate while the addition of osteogenic medium enhanced bone markers expression. These results indicate that BCP particles alone are able to induce an osteoblastic differentiation of hMSCs that might be of interest for bone tissue engineering. PMID:19856200

  11. Dynamized Preparations in Cell Culture

    PubMed Central

    Sunila, Ellanzhiyil Surendran; Preethi, Korengath Chandran; Kuttan, Girija

    2009-01-01

    Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929) and Chinese Hamster Ovary (CHO) cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties. PMID:18955237

  12. Dynamized preparations in cell culture.

    PubMed

    Sunila, Ellanzhiyil Surendran; Kuttan, Ramadasan; Preethi, Korengath Chandran; Kuttan, Girija

    2009-06-01

    Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929) and Chinese Hamster Ovary (CHO) cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties. PMID:18955237

  13. Kinetics of amino acid transport across bone marrow cell membranes

    PubMed Central

    Lin, Max S.; Winchell, H. Saul

    1970-01-01

    Dog bone marrow nucleated cells were incubated in media containing labeled L-amino acids, and the cellular accumulation of radioactivity as a function of time was measured and analyzed according to a three-compartment model. (a) The turnover half-time of intracellular histidine arising from extracellular sources was 6.0 0.7 (SEM) min. Similar turnover half-time for serine was 10 2 (SEM) min; for tryptophan, 6.5 1.2 (SEM) min; and for methionine, 4.4 0.6 (SEM) min. Loss of the intracellular amino acids to the extracellular space accounted for the major portion of their turnover. (b) Each of the four amino acids noted above appeared to be actively transported into the cell. (c) At physiologic extracellular histidine concentrations, histidine entered the cell predominantly by a facilitated process with an apparent Michaelis constant of 0.28 mmole/liter and a limiting flux of 14 10-8 m?mole/min per cell. Loss of histidine from the cell appeared to be substantially facilitated with an apparent Michaelis constant greater than that for histidine entry. (d) Insulin and glucagon had no measurable effect on histidine transport across the bone marrow cell membrane. (e) Methionine depressed the influx and the fractional turnover rate of the intracellular pool of both histidine and serine. (f) The extent of cellular accumulation of ?-N-formiminoglutamate and ?-N-formylglutamate was about 1/100 that of histidine. ?-N-formiminoglutamate added to the culture was about as effective as histidine in providing monocarbon fragments for DNA thymine synthesis. PMID:5443176

  14. Cell-Based Approaches to the Engineering of Vascularized Bone Tissue

    PubMed Central

    Rao, Rameshwar R.; Stegemann, Jan P.

    2013-01-01

    This review summarizes recent efforts to create vascularized bone tissue in vitro and in vivo using cell-based therapy approaches. The treatment of large and recalcitrant bone wounds is a serious clinical problem, and in the United States approximately 10% of all fractures are complicated by delayed or non-union. Treatment approaches using growth factor and gene delivery have shown some promise, but results are variable and clinical complications have arisen. Cell-based therapies offer the potential to recapitulate key components of the bone healing cascade, which involves concomitant regeneration of vasculature and new bone tissue. For this reason, osteogenic and vasculogenic cell types have been combined in co-cultures to capitalize on the function of each cell type, and to promote heterotypic interactions. Experiments in both 2D and 3D systems have provided insight into the mechanisms by which osteogenic and vasculogenic cells interact to form vascularized bone, and these approaches have been translated to ectopic and orthotopic models in small animal studies. The knowledge generated by these studies will inform and facilitate the next generation of pre-clinical studies, which are needed to move cell-based orthopaedic repair strategies into the clinic. The science and application of cytotherapy for repair of large and ischemic bone defects is developing rapidly, and promises to provide new treatment methods for these challenging clinical problems. PMID:23999157

  15. Preclinical models for in vitro mechanical loading of bone-derived cells.

    PubMed

    Michael Delaine-Smith, Robin; Javaheri, Behzad; Helen Edwards, Jennifer; Vazquez, Marisol; Rumney, Robin Mark Howard

    2015-01-01

    It is well established that bone responds to mechanical stimuli whereby physical forces are translated into chemical signals between cells, via mechanotransduction. It is difficult however to study the precise cellular and molecular responses using in vivo systems. In vitro loading models, which aim to replicate forces found within the bone microenvironment, make the underlying processes of mechanotransduction accessible to the researcher. Direct measurements in vivo and predictive modeling have been used to define these forces in normal physiological and pathological states. The types of mechanical stimuli present in the bone include vibration, fluid shear, substrate deformation and compressive loading, which can all be applied in vitro to monolayer and three-dimensional (3D) cultures. In monolayer, vibration can be readily applied to cultures via a low-magnitude, high-frequency loading rig. Fluid shear can be applied to cultures in multiwell plates via a simple rocking platform to engender gravitational fluid movement or via a pump to cells attached to a slide within a parallel-plate flow chamber, which may be micropatterned for use with osteocytes. Substrate strain can be applied via the vacuum-driven FlexCell system or via a four-point loading jig. 3D cultures better replicate the bone microenvironment and can also be subjected to the same forms of mechanical stimuli as monolayer, including vibration, fluid shear via perfusion flow, strain or compression. 3D cocultures that more closely replicate the bone microenvironment can be used to study the collective response of several cell types to loading. This technical review summarizes the methods for applying mechanical stimuli to bone cells in vitro. PMID:26331007

  16. Cell kinetics and longitudinal bone growth in birds.

    PubMed

    Kember, N F; Kirkwood, J K

    1987-11-01

    The theory that links cell division in epiphyseal cartilage plates to overall growth of long bones has been extended from linear growth systems to those in which proliferating and hypertrophied cells are not arranged in columns. Consideration has also been given to the analysis of non-parallel growth systems. The theory is illustrated by examples from the growth of chicken bones. PMID:3502931

  17. [Nonadhesive populations in cultures of mesenchymal stromal cells from hematopoietic organs in mouse and rat].

    PubMed

    Byeverova, E I; Bragina, E V; Molchanova, E A

    2008-01-01

    The study of adhesive properties of multipotent mesenchymal stromal cells evaluated from fibroblast colony-forming units in the bone marrow of adult mice and rats in populations of cells attached and unattached to plastic substrate after 2 h to 7 days in culture demonstrated both similarities and differences. The increase in the fibroblast colony-forming units in the adhesive population peaked on day 7 of in vitro culture in both cases; however, nearly no fibroblast colony-forming units were observed in the nonadhesive population from the mouse bone marrow in this period. Conversely, the number of colonies from the rat bone marrow nonadhesive population on day 7 of culture considerably increased, and this nonadhesive population in long-term culture became the source for subsequent nonadhesive subpopulations containing fibroblast colony-forming units. After 7 days of in vitro culture, the suspension of cells isolated from the liver of 17-day-old rat fetuses also contained a fraction of unattached fibroblast colony-forming units. In the nonadhesive subpopulations from the bone marrow and fetal liver, fibroblast colony-forming units were observed up to day 48 and 30, respectively. Stromal cell precursors of nonadhesive subpopulations from the rat bone marrow featured a period of colony formation reduced to 7 days (i.e., they were formed 1.5-2 times faster compared to the primary culture). The total number of fibroblast colony-forming units from all nonadhesive subpopulations was roughly 6 and 7.4 times that of the adhesive population of the primary culture from the bone marrow and fetal liver, respectively. Considering that the mammalian bone marrow remains the preferred source of mesenchymal stromal cells, using nonadhesive subpopulations in the presented culture system can considerably increase the yield of stromal precursor cells. PMID:19137707

  18. Integrins and bone metastasis: Integrating tumor cell and stromal cell interactions

    PubMed Central

    Schneider, Jochen G.; Amend, Sarah H.; Weilbaecher, Katherine N.

    2010-01-01

    Integrins on both tumor cells and the supporting host stromal cells in bone (osteoclasts, new blood vessels, inflammatory cells, platelets and bone marrow stromal cells) play key roles in enhancing bone metastasis. Tumor cells localize to specific tissues through integrin-mediated contacts with extracellular matrix and stromal cells. Integrin expression and signaling are perturbed in cancer cells, allowing them to escape from cell-cell and cell matrix tethers, invade, migrate and colonize within new tissues and matrices. Integrin signaling through ?v?3 and VLA-4 on tumor cells can promote tumor metastasis to and proliferation in the bone microenvironment. Osteoclast (OC) mediated bone resorption is a critical component of bone metastasis and can promote tumor growth in bone and ?v?3 integrins are critical to osteoclast function and development. Tumors in the bone microenvironment can recruit new blood vessel formation, platelets, pro-tumor immune cells and bone marrow stromal cells that promote tumor growth and invasion in bone. Integrins play critical roles in platelet aggregation (?v?3 and ?IIb?3), hematopoietic cell mobilization (VLA-4, osteopontin), neoangiogenesis (?v?3,?v?5, ?6?4, ?1 integrin) and stromal function (osteopontin, VLA-4). Integrins are involved in the pathogenesis of bone metastasis at many levels and further study to define integrin dysregulation by cancer will yield new therapeutic targets for the prevention and treatment of bone metastasis. PMID:20850578

  19. Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems.

    PubMed

    Unger, Ronald E; Dohle, Eva; Kirkpatrick, C James

    2015-11-01

    One of the major problems with bone tissue engineering is the development of a rapid vascularization after implantation to supply the growing osteoblast cells with the nutrients to grow and survive as well as to remove waste products. It has been demonstrated that capillary-like structures produced in vitro will anastomose rapidly after implantation and become functioning blood vessels. For this reason, in recent years many studies have examined a variety of human osteoblast and endothelial cell co-culture systems in order to distribute osteoblasts on all parts of the bone scaffold and at the same time provide conditions for the endothelial cells to migrate to form a network of capillary-like structures throughout the osteoblast-colonized scaffold. The movement and proliferation of endothelial cells to form capillary-like structures is known as angiogenesis and is dependent on a variety of pro-angiogenic factors. This review summarizes human 2- and 3-D co-culture models to date, the types and origins of cells used in the co-cultures and the proangiogenic factors that have been identified in the co-culture models. PMID:25817732

  20. Bioreactor Strategy in Bone Tissue Engineering: Pre-Culture and Osteogenic Differentiation Under Two Flow Configurations

    PubMed Central

    Kim, Junho

    2012-01-01

    Since robust osteogenic differentiation and mineralization are integral to the engineering of bone constructs, understanding the impact of the cellular microenvironments on human mesenchymal stem cell (hMSCs) osteogenic differentiation is crucial to optimize bioreactor strategy. Two perfusion flow conditions were utilized in order to understand the impact of the flow configuration on hMSC construct development during both pre-culture (PC) in growth media and its subsequent osteogenic induction (OI). The media in the in-house perfusion bioreactor was controlled to perfuse either around (termed parallel flow [PF]) the construct surfaces or penetrate through the construct (termed transverse flow [TF]) for 7 days of the PC followed by 7 days of the OI. The flow configuration during the PC not only changed growth kinetics but also influenced cell distribution and potency of osteogenic differentiation and mineralization during the subsequent OI. While shear stress resulted from the TF stimulated cell proliferation during PC, the convective removal of de novo extracellular matrix (ECM) proteins and growth factors (GFs) reduced cell proliferation on OI. In contrast, the effective retention of de novo ECM proteins and GFs in the PC constructs under the PF maintained cell proliferation under the OI but resulted in localized cell aggregations, which influenced their osteogenic differentiation. The results revealed the contrasting roles of the convective flow as a mechanical stimulus, the redistribution of the cells and macromolecules in 3D constructs, and their divergent impacts on cellular events, leading to bone construct formation. The results suggest that the modulation of the flow configuration in the perfusion bioreactor is an effective strategy that regulates the construct properties and maximizes the functional outcome. PMID:22690750

  1. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in diseases of the skeleton

    PubMed Central

    Chanda, Diptiman; Kumar, Sanjay; Ponnazhagan, Selvarangan

    2010-01-01

    Mesenchymal stem cells (MSCs) are the most popular among the adult stem cells in tissue engineering and regenerative medicine. Since their discovery and functional characterization in the late sixties and early seventies, MSCs or MSC-like cells have been obtained from various mesodermal and non-mesodermal tissues, although majority of the therapeutic applications involved bone marrow derived MSCs. Based on its mesenchymal origin, it was predicted earlier that MSCs only can differentiate into mesengenic lineages like bone, cartilage, fat or muscle. However, varied isolation and cell culturing methods identified subsets of MSCs in the bone marrow which not only differentiated into mesenchymal lineages, but also into ectodermal and endodermal derivatives. Although, true pluripotent status is yet to be established, MSCs have been successfully used in bone and cartilage regeneration in osteoporotic fracture and arthritis respectively and in the repair of cardiac tissue following myocardial infarction. Immunosuppressive properties of MSCs extend utility of MSCs to reduce complications of graft versus host disease and rheumatoid arthritis. Homing of MSCs to sites of tissue injury, including tumor, is well established. In addition to their ability in tissue regeneration, MSCs can be genetically engineered ex vivo for delivery of therapeutic molecule(s) to the sites of injury or tumorigenesis as cell therapy vehicles. MSCs tend to lose surface receptors for trafficking and have been reported to develop sarcoma in long-term culture. In this article, we reviewed the current status of MSCs with special emphasis to therapeutic application in bone-related diseases. PMID:20506559

  2. [The application progress of human urine derived stem cells in bone tissue engineering].

    PubMed

    Gao, P; Jiang, D P; Li, Z Z

    2016-04-01

    The research of bone tissue engineering bases on three basic directions of seed cells, scaffold materials and growth information. Stem cells have been widely studied as seed cells. Human urine-derived stem cell(hUSC) is extracted from urine and described to be adhesion growth, cloning, expression of the majority of mesenchymal stem cell markers and peripheral cell markers, multi-potential and no tumor but stable karyotype with passaging many times. Some researches proposed that hUSC might be a new source of seed cells in tissue engineering because of their invasive and convenient obtention, stable culture and multiple differentiation potential. PMID:27029208

  3. In vivo bone formation by progeny of human embryonic stem cells.

    PubMed

    Kuznetsov, Sergei A; Cherman, Natasha; Robey, Pamela Gehron

    2011-02-01

    The derivation of osteogenic cells from human embryonic stem cells (hESCs) or from induced pluripotent stem cells for bone regeneration would be a welcome alternative to the use of adult stem cells. In an attempt to promote hESC osteogenic differentiation, cells of the HSF-6 line were cultured in differentiating conditions in vitro for prolonged periods of time ranging from 7 to 14.5 weeks, followed by in vivo transplantation into immunocompromised mice in conjunction with hydroxyapatite/tricalcium phosphate ceramic powder. Twelve different medium compositions were tested, along with a number of other variables in culture parameters. In differentiating conditions, HSF-6-derived cells demonstrated an array of diverse phenotypes reminiscent of multiple tissues, but after a few passages, acquired a more uniform, fibroblast-like morphology. Eight to 16 weeks post-transplantation, a group of transplants revealed the formation of histologically proven bone of human origin, including broad areas of multiple intertwining trabeculae, which represents by far the most extensive in vivo bone formation by the hESC-derived cells described to date. Knockout-Dulbecco's modified Eagle's medium-based media with fetal bovine serum, dexamethasone, and ascorbate promoted more frequent bone formation, while media based on ?-modified minimum essential medium promoted teratoma formation in 12- to 20-week-old transplants. Transcription levels of pluripotency-related (octamer binding protein 4, Nanog), osteogenesis-related (collagen type I, Runx2, alkaline phosphatase, and bone sialoprotein), and chondrogenesis-related (collagen types II and X, and aggrecan) genes were not predictive of either bone or teratoma formation. The most extensive bone was formed by the strains that, following 4 passages in monolayer conditions, were cultured for 23 to 25 extra days on the surface of hydroxyapatite/tricalcium phosphate particles, suggesting that coculturing of hESC-derived cells with osteoconductive material may increase their osteogenic potential. While none of the conditions tested in this study, and elsewhere, ensured consistent bone formation by hESC-derived cells, our results may elucidate further directions toward the construction of bone on the basis of hESCs or an individual's own induced pluripotent stem cells. PMID:20590404

  4. Mesenchymal stem cells: mechanisms and role in bone regeneration

    PubMed Central

    Qin, Yunhao; Guan, Junjie; Zhang, Changqing

    2014-01-01

    Stimulating bone growth and regeneration, especially in patients with delayed union or non-union of bone, is a challenge for orthopaedic surgeons. Treatments employed for bone regeneration are based on the use of cells, biomaterials and factors. Among these therapies, cell treatment with mesenchymal stem cells (MSCs) has a number of advantages as MSCs: (1) are multipotent cells that can migrate to sites of injury; (2) are capable of suppressing the local immune response; and (3) are available in large quantities from the patients themselves. MSC therapies have been used for stimulating bone regeneration in animal models and in patients. Methods of application range from direct MSC injection, seeding MSCs on synthetic scaffolds, the use of gene-modified MSCs, and hetero-MSCs application. However, only a small number of these cell-based strategies are in clinical use, and none of these treatments has become the gold standard treatment for delayed or non-union of bone. PMID:25335795

  5. Mesenchymal stem cells: mechanisms and role in bone regeneration.

    PubMed

    Qin, Yunhao; Guan, Junjie; Zhang, Changqing

    2014-11-01

    Stimulating bone growth and regeneration, especially in patients with delayed union or non-union of bone, is a challenge for orthopaedic surgeons. Treatments employed for bone regeneration are based on the use of cells, biomaterials and factors. Among these therapies, cell treatment with mesenchymal stem cells (MSCs) has a number of advantages as MSCs: (1) are multipotent cells that can migrate to sites of injury; (2) are capable of suppressing the local immune response; and (3) are available in large quantities from the patients themselves. MSC therapies have been used for stimulating bone regeneration in animal models and in patients. Methods of application range from direct MSC injection, seeding MSCs on synthetic scaffolds, the use of gene-modified MSCs, and hetero-MSCs application. However, only a small number of these cell-based strategies are in clinical use, and none of these treatments has become the gold standard treatment for delayed or non-union of bone. PMID:25335795

  6. Response of endothelial cells to decellularized extracellular matrix deposited by bone marrow mesenchymal stem cells

    PubMed Central

    Xu, Yue; Yan, Mengdie; Gong, Yihong; Chen, Lei; Zhao, Feng; Zhang, Zhaoqiang

    2014-01-01

    Objective: Evaluate the behavior and function of human umbilical vein endothelial cells (HUVECs) on decellularized extracellular matrix (ECM) deposited by bone marrow mesenchymal stem cells (BMSCs). Methods: Prepared through chemical approach, decellularized ECM was characterized by use of immunofluorescence staining. The morphology, attachment, proliferation and migration of HUVECs cultured on six-well tissue culture plastic (TCP) and decellularized ECM were investigated. Results: Decellularized ECM was successfully prepared without three-dimensional architecture disruption. This biological scaffold is similar to nature vascular ECM, preserved various matrix proteins such as type I collagen, type III collagen and fibronection. HUVECs on decellularized ECM showed well attachment and regular arrangement. Decellularized ECM could also significantly enhance the migration and proliferation potential of HUVECs in contrast to TCP. Conclusion: Deposited by BMSCs, ECM can affect the behavior of endothelial cell and could be used as a promising material in tissue engineering. PMID:25663998

  7. Cultivation of Human Bone-Like Tissue from Pluripotent Stem Cell-Derived Osteogenic Progenitors in Perfusion Bioreactors

    PubMed Central

    de Peppo, Giuseppe Maria; Vunjak-Novakovic, Gordana; Marolt, Darja

    2014-01-01

    Human pluripotent stem cells represent an unlimited source of skeletal tissue progenitors for studies of bone biology, pathogenesis, and the development of new approaches for bone reconstruction and therapies. In order to construct in vitro models of bone tissue development and to grow functional, clinical-size bone substitutes for transplantation, cell cultivation in three-dimensional environments composed of porous osteoconductive scaffolds and dynamic culture systemsbioreactorshas been studied. Here, we describe a stepwise procedure for the induction of human embryonic and induced pluripotent stem cells (collectively termed PSCs) into mesenchymal-like progenitors, and their subsequent cultivation on decellularized bovine bone scaffolds in perfusion bioreactors, to support the development of viable, stable bone-like tissue in defined geometries. PMID:24281874

  8. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts

    PubMed Central

    ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I.; Davison, Noel L.; de Vries, Teun J.; Everts, Vincent

    2015-01-01

    Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zonescytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K. PMID:26426806

  9. Bone marrow cells from allogeneic bone marrow chimeras inhibit the generation of cytotoxic lymphocyte responses against both donor and recipient cells

    SciTech Connect

    Ogasawara, M.; Iwabuchi, K.; Good, R.A.; Onoe, K.

    1988-11-15

    When added to a mixed lymphocyte culture, bone marrow cells suppress the generation of CTL activity against H-2 Ag shared by the BM cells and the stimulator cells. These cells have been referred to as veto cells and are thought to play a role in maintaining self-tolerance. We analyzed the H-2 specificity of the suppression expressed by the veto cells from H-2 incompatible bone marrow chimeras, because lymphocytes of such chimeras had been shown to be tolerant to both donor and recipient Ag when tested by CTL responses. We found that the bone marrow cells of such chimeras which were featured by non-T and non-B cell characteristics inhibited the generation of CTL directed against either donor or recipient Ag, but not against third-party Ag. These observations suggest that in allogeneic chimeras the veto or veto-like cells alter the inhibitory specificity exhibited in the recipient microenvironment and indicate that these cells are directly involved in the induction and maintenance of self-tolerance.

  10. Connexin 43 hemichannels and intracellular signaling in bone cells

    PubMed Central

    Plotkin, Lilian I.

    2014-01-01

    Cell function and survival are controlled by intracellular signals, and modulated by surrounding cells and the extracellular environment. Connexin channels participate in these processes by mediating cell-to-cell communication. In bone cells, gap junction channels were detected in the early 1970s, and are present among bone resorbing osteoclasts, bone forming osteoblasts, and osteocytes - mature osteoblasts embedded in the mineralized matrix. These channels are composed mainly by Cx43, although the expression of other connexins (45, 46, and 37) has also been reported. It is now believed that undocked Cx43 hemichannels (connexons) formed in unopposed cell membranes facing the extracellular environment participate in the interaction of bone cells with the extracellular environment, and in their communication with neighboring cells. Thus, we and others demonstrated the presence of active hemichannels in osteoblastic and osteocytic cells. These hemichannels open in response to pharmacological and mechanical stimulation. In particular, preservation of the viability of osteoblasts and osteocytes by the anti-osteoporotic drugs bisphosphonates depends on Cx43 expression in vitro and in vivo, and is mediated by undocked hemichannels. Cx43 hemichannels are also required for the release of prostaglandins and ATP by osteocytes, and for cell survival induced by mechanical stimulation in vitro. Moreover, they are required for the anti-apoptotic effect of parathyroid hormone in osteoblastic cells. This review summarizes the current knowledge on the presence and function of undocked connexons, and the role of hemichannel regulation for the maintenance of bone cell viability and, potentially, bone health. PMID:24772090

  11. Resveratrol increases the bone marrow hematopoietic stem and progenitor cell capacity.

    PubMed

    Rimmel, Pauline; Lofek-Czubek, Sbastien; Ghaffari, Saghi

    2014-12-01

    Resveratrol is a plant-derived polyphenol that has shown protective effects against many disorders including, several types of cancers and other age-associated diseases as well as blood disorders in cultured cells and/or animal models. However, whether resveratrol has any impact specifically on normal blood stem cells remains unknown. Here, we show that a 3-week treatment of resveratrol increases the frequency and total numbers of normal bone marrow hematopoietic stem cells (HSC) without any impact on their competitive repopulation capacity. In addition, we show that resveratrol enhances the bone marrow multipotent progenitor capacity in vivo. These results have therapeutic value for disorders of hematopoietic stem and progenitor cells (HSPC) as well as for bone marrow transplantation settings. PMID:25163926

  12. Artificial Niche Combining Elastomeric Substrate and Platelets Guides Vascular Differentiation of Bone Marrow Mononuclear Cells

    PubMed Central

    Wu, Wei; Allen, Robert; Gao, Jin

    2011-01-01

    Bone marrow-derived progenitor cells are promising cell sources for vascular tissue engineering. However, conventional bone marrow mesenchymal stem cell expansion and induction strategies require plating on tissue culture plastic, a stiff substrate that may itself influence cell differentiation. Direct scaffold seeding avoids plating on plastic; to the best of our knowledge, there is no report of any scaffold that induces the differentiation of bone marrow mononuclear cells (BMNCs) to vascular cells in vitro. In this study, we hypothesize that an elastomeric scaffold with adsorbed plasma proteins and platelets will induce differentiation of BMNCs to vascular cells and promote vascular tissue formation by combining soft tissue mechanical properties with platelet-mediated tissue repairing signals. To test our hypothesis, we directly seeded rat primary BMNCs in four types of scaffolds: poly(lactide-co-glycolide), elastomeric poly(glycerol sebacate) (PGS), platelet-poor plasma-coated PGS, and PGS coated by plasma supplemented with platelets. After 21 days of culture, osteochondral differentiation of cells in poly(lactide-co-glycolide) was detected, but most of the adhered cells on the surface of all PGS scaffolds expressed calponin-I and α-smooth muscle actin, suggesting smooth muscle differentiation. Cells in PGS scaffolds also produced significant amount of collagen and elastin. Further, plasma coating improves seeding efficiency, and platelet increases proliferation, the number of differentiated cells, and extracellular matrix content. Thus, the artificial niche composed of platelets, plasma, and PGS is promising for artery tissue engineering using BMNCs. PMID:21449713

  13. Ectopic bone formation in collagen sponge self-assembled peptide-amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor.

    PubMed

    Hosseinkhani, Hossein; Hosseinkhani, Mohsen; Tian, Furong; Kobayashi, Hisatoshi; Tabata, Yasuhiko

    2006-10-01

    The objective of this study was to enhance ectopic bone formation in a three-dimensional (3-D) hybrid scaffold in combination with bioreactor perfusion culture system. The hybrid scaffold consists of two biomaterials, a hydrogel formed through self-assembly of peptide-amphiphile (PA) with cell suspensions in media, and a collagen sponge reinforced with poly(glycolic acid) (PGA) fiber incorporation. PA was synthesized by standard solid-phase chemistry that ends with the alkylation of the NH2 terminus of the peptide. A 3-D network of nanofibers was formed by mixing cell suspensions in media with dilute aqueous solution of PA. Scanning electron microscopy (SEM) observation revealed the formation of fibrous assemblies with an extremely high aspect ratio and high surface areas. Osteogenic differentiation of mesenchymal stem cells (MSC) in the hybrid scaffold was greatly influenced by the perfusion culture method compared with static culture method. When the osteoinduction activity of hybrid scaffold was studied following the implantation into the back subcutis of rats in terms of histological and biochemical examinations, significantly homogeneous bone formation was histologically observed throughout the hybrid scaffolds when perfusion culture was used compared with static culture method. The level of alkaline phosphatase activity and osteocalcin content at the implanted sites of hybrid scaffolds were significantly high for the perfusion group compared with those in static culture method. We conclude that combination of MSC-seeded hybrid scaffold and the perfusion method was promising to enhance in vitro osteogenic differentiation of MSC and in vivo ectopic bone formation. PMID:16782187

  14. Interaction between neural stem cells and bone marrow derived-mesenchymal stem cells during differentiation

    PubMed Central

    RONG, JU; WEN, ZENG; RONG, WU; ZHICHUN, FENG

    2015-01-01

    Due to their capacity to self-replicate or produce specific differentiated cell types, neural stem cells (NSCs) and bone marrow derived-mesenchymal stem cells (BMSCs) are potential sources for cell transplantation therapies, particularly for neural injury. However, the interaction between NSCs and BMSCs during differentiation has not yet been defined. The interaction is believed to improve the effectiveness and efficiency of cell therapy. In the present study, human NSCs and BMSCs were cultured and the Transwell co-culture system was used to observe the interplay between NSCs and BMSCs during differentiation. The results revealed that NSCs promoted BMSCs to differentiate into neurons and NSCs; whereas, BMSCs did not affect the differentiation of NSCs. Simultaneously, co-culture increased the concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are secreted by NSCs and BMSCs. The present findings suggest that co-culture of NSCs and BMSCs can promote the differentiation and this process may be modulated by BDNF and NGF. PMID:25798249

  15. EpCAM expression in breast cancer cells is associated with enhanced bone metastasis formation.

    PubMed

    Hiraga, Toru; Ito, Susumu; Nakamura, Hiroaki

    2016-04-01

    Epithelial cell adhesion molecule (EpCAM) has been implicated in multiple cellular functions including cell adhesion. EpCAM has also recently been identified as a marker for cancer stem cells (CSCs). Here, we examined the roles of EpCAM in the development of bone metastasis of breast cancer by using well-characterized animal models. Morphological and real-time reverse transcriptase-polymerase chain reaction data showed that the EpCAM-negative and -positive (EpCAM(neg) and EpCAM(pos) ) cell populations isolated from breast cancer cell lines exhibited mesenchymal and epithelial phenotypes, respectively. Flow cytometric analysis revealed that EpCAM(pos) , but not EpCAM(neg) , cells possessed self-renewal and differentiation potentials. Tumorsphere formation in suspension cultures and tumorigenicity in the orthotopic mammary fat pad of mice were significantly greater in EpCAM(pos) cells than in EpCAM(neg) cells. The development of bone metastases induced by an intracardiac injection was markedly increased in mice inoculated with EpCAM(pos) cells. Furthermore, intracardiac inoculations of parental cells demonstrated that the EpCAM(pos) population in cancer cells that colonized in bone was significantly higher than that in parental cells. However, stable transduction of EpCAM into EpCAM(neg) cells failed to reproduce the phenotypes of EpCAM(pos) cells. These results suggest that the expression of EpCAM in breast cancer cells is associated with CSC-like phenotypes, which contribute to the promotion of bone metastases by enhancing tumorigenicity. Our results also support the possibility that the epithelial phenotypes of EpCAM-expressing cells confer advantageous properties for the development of bone metastases, at least after entering the circulation, while EpCAM is likely not solely responsible for the phenotypes of EpCAM(pos) cells. PMID:26576938

  16. Analysis of human primary bone cells by fluorescence activated cell scanning: methodological problems and preliminary results.

    PubMed

    Siggelkow, H; Hilmes, D; Robenstorff, K; Kurre, W; Engel, I; Hüfner, M

    1998-04-27

    We describe the development of flowcytometrical methods to analyse human primary osteoblast-like cultures obtained from trabecular bone explants in comparison to the human osteosarcoma cell line HOS 58. Two antigens typical of osteoblasts were studied: bone alkaline phosphatase and collagen/procollagen I; the non-specific attachment protein fibronectin served as control. The morphology of all different antigens is shown by immunocytochemistry before flowcytometrical analysis. The establishment of flowcytometry is described in detail. While all antigens tested were nearly 100% positive in the HOS 58 cells in immunocytochemistry and flowcytometry, in primary osteoblast-like cells results varied widely between both methods. Cell permeabilisation before flowcytometry improved the homogeneity of results, probably by increasing the accessibility of the specific antibody to intracellular compartments. Though up to 80% of cells were lost during preparation the ratio of positive versus negative cells in specific experiment was not dependent on the cell recovery. Therefore, the cells finally analysed seemed to be representative of the total population. PMID:9641353

  17. Development of silk-based scaffolds for tissue engineering of bone from human adipose derived stem cells

    PubMed Central

    Correia, Cristina; Bhumiratana, Sarindr; Yan, Le-Ping; Oliveira, Ana L.; Gimble, Jeffrey M.; Rockwood, Danielle; Kaplan, David L.; Sousa, Rui A.; Reis, Rui L.; Vunjak-Novakovic, Gordana

    2012-01-01

    Silk fibroin is a potent alternative to other biodegradable biopolymers for bone tissue engineering (TE), because of its tunable architecture and mechanical properties, and demonstrated ability to support bone formation, in vitro and in vivo. In this study, we investigated a range of silk scaffolds for bone TE using human adipose-derived stem cells (hASC), an attractive cell source for engineering autologous bone grafts. Our goal was to understand the effects of scaffold architecture and biomechanics and use this information to optimize silk scaffolds for bone TE applications. Silk scaffolds were fabricated using different solvents (aqueous vs. hexafluoro-2-propanol - HFIP), pore sizes (250–500μm vs. 500–1000μm) and structures (lamellar vs. spherical pores). Four types of silk scaffolds combining the properties of interest were systematically compared with respect to bone tissue outcomes with decellularized trabecular bone (DCB) included as a “gold standard”. The scaffolds were seeded with hASC and cultured for 7 weeks in osteogenic media. Bone formation was evaluated by cell proliferation and differentiation, matrix production, calcification and mechanical properties. We observed that 400–600μm porous HFIP-derived silk fibroin scaffold demonstrated the best bone tissue formation outcomes as evidenced by increased bone protein production (osteopontin, collagen type I, bone sialoprotein), enhanced calcium deposition and total bone volume. On a direct comparison basis, alkaline phosphatase activity (AP) at week 2, and new calcium deposition at week 7 were comparable to the cells cultured in DCB. Yet, among the aqueous-based structures, the lamellar architecture induced increased AP activity and demonstrated higher equilibrium modulus than the spherical-pore scaffolds. Based on the collected data, we propose a conceptual model describing the effects of silk scaffold design on bone tissue formation. PMID:22421311

  18. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration

    PubMed Central

    Robey, Pamela G.; Kuznetsov, Sergei A.; Ren, Jiaqiang; Klein, Harvey G.; Sabatino, Marianna; Stroncek, David F.

    2014-01-01

    In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. PMID:25064527

  19. Clonal analysis of bone marrow and macrophage cultures

    SciTech Connect

    Stewart, C.C.; Walker, E.B.; Johnson, C.; Little, R.

    1984-01-01

    To establish lineages that can be used to study their functional heterogeneity, the proliferation and differentiation of bone marrow derived mononuclear phagocytes and the lineages derived from them were studied. 28 references, 7 figures, 5 tables. (ACR)

  20. In vitro three-dimensional bone tissue models: from cells to controlled and dynamic environment.

    PubMed

    Bouet, Guenaelle; Marchat, David; Cruel, Magali; Malaval, Luc; Vico, Laurence

    2015-02-01

    Most of our knowledge of bone cell physiology is derived from experiments carried out in vitro on polystyrene substrates. However, these traditional monolayer cell cultures do not reproduce the complex and dynamic three-dimensional (3D) environment experienced by cells in vivo. Thus, there is a growing interest in the use of 3D culture systems as tools for understanding bone biology. These in-vitro-engineered systems, less complex than in vivo models, should ultimately recapitulate and control the main biophysical, biochemical, and biomechanical cues that define the in vivo bone environment, while allowing their monitoring. This review focuses on state-of-the-art and the current advances in the development of 3D culture systems for bone biology research. It describes more specifically advantages related to the use of such systems, and details main characteristics and challenges associated with its three main components, that is, scaffold, cells, and perfusion bioreactor systems. Finally, future challenges for noninvasive imaging technologies are addressed. PMID:25116032

  1. Anabolic-androgenic steroids: in cell culture.

    PubMed

    Kochakian, C D; Welder, A A

    1993-06-01

    Testosterone and related steroids at physiological concentrations positively stimulate in cell culture a number of reactions in a variety of tissues from different species of animals. Cells maintained in cell culture provide a means to study toxic effects in target organs and also the mechanism of action of these steroids. PMID:8331026

  2. Cell culture techniques in honey bee research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell culture techniques are indispensable in most if not all life science disciplines to date. Wherever cell culture models are lacking scientific development is hampered. Unfortunately this has been and still is the case in honey bee research because permanent honey bee cell lines have not yet been...

  3. Cell Culture as an Alternative in Education.

    ERIC Educational Resources Information Center

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  4. Bone pulsating metastasis due to renal cell carcinoma.

    PubMed

    Cınar, Murat; Derincek, Alihan; Karan, Belgin; Akpınar, Sercan; Tuncay, Cengiz

    2010-11-01

    Pulsation on the bone cortex surface is a rare condition. Pulsative palpation of the superficial-located bone tumors can be misperceived as an aneurysm. Fifty-eight-year-old man is presented with pulsating bone mass in his proximal tibia. During angiographic examination, hypervascular masses were diagnosed both at right kidney and at right proximal tibia. Renal cell carcinoma was diagnosed after abdominal CT scan. Proximal tibia biopsy was complicated with projectile bleeding. PMID:20376589

  5. Photosensitization of cultured cells and viruses by pyrene lipids.

    PubMed

    Gatt, S; Dinur, T; Abou-Rabia, S; Kotler, M; Fibach, E

    1990-12-01

    Administration of pyrene-linked fatty acids and lipids to cultured cells or an enveloped (vesicular stomatitis) virus induced photosensitization which, following irradiation with a long ultra-violet light (LUV), resulted in killing of the cells and loss of the infectivity of the virus with the following specific effects. (i) LUV illumination of the pyrene-sphingomyelin administered cultured skin fibroblasts derived from normal individuals and patients with Niemann-Pick disease permitted selective killing of the latter. (ii) Similarly LUV illumination of pyrenedodecanoic acid (P12) incubates of leukemic cell lines mixed with human bone marrow cells permitted selective killing of the former. (iii) LUV illumination of P12 incubates of vesicular stomatitis virus decreased the infectivity of the virus by up to 12 logs. PMID:1966337

  6. Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure.

    PubMed

    Monticone, Massimiliano; Liu, Yi; Pujic, Natalija; Cancedda, Ranieri

    2010-10-01

    Stalled cell division in precursor bone cells and reduced osteoblast function are considered responsible for the microgravity-induced bone loss observed during spaceflight. However, underlying molecular mechanisms remain unraveled. Having overcome technological difficulties associated with flying cells in a space mission, we present the first report on the behavior of the potentially osteogenic murine bone marrow stromal cells (BMSC) in a 3D culture system, flown inside the KUBIK aboard space mission ISS 12S (Soyuz TMA-8 + Increment 13) from March 30 to April 8, 2006 (experiment "Stroma-2"). Flight 1g control cultures were performed in a centrifuge located within the payload. Ground controls were maintained on Earth in another KUBIK payload and in Petri dishes. Half of the cultures were stimulated with osteo-inductive medium. Differences in total RNA extracted suggested that cell proliferation was inhibited in flight samples. Affymetrix technology revealed that 1,599 genes changed expression after spaceflight exposure. A decreased expression of cell-cycle genes confirmed the inhibition of cell proliferation in space. Unexpectedly, most of the modulated expression was found in genes related to various processes of neural development, neuron morphogenesis, transmission of nerve impulse and synapse, raising the question on the lineage restriction in BMSC. PMID:20658479

  7. Human Perivascular Stem Cell-Based Bone Graft Substitute Induces Rat Spinal Fusion

    PubMed Central

    Chung, Choon G.; James, Aaron W.; Asatrian, Greg; Chang, Le; Nguyen, Alan; Le, Khoi; Bayani, Georgina; Lee, Robert; Stoker, David; Zhang, Xinli

    2014-01-01

    Adipose tissue is an attractive source of mesenchymal stem cells (MSCs) because of its abundance and accessibility. We have previously defined a population of native MSCs termed perivascular stem cells (PSCs), purified from diverse human tissues, including adipose tissue. Human PSCs (hPSCs) are a bipartite cell population composed of pericytes (CD146+CD34?CD45?) and adventitial cells (CD146?CD34+CD45?), isolated by fluorescence-activated cell sorting and with properties identical to those of culture identified MSCs. Our previous studies showed that hPSCs exhibit improved bone formation compared with a sample-matched unpurified population (termed stromal vascular fraction); however, it is not known whether hPSCs would be efficacious in a spinal fusion model. To investigate, we evaluated the osteogenic potential of freshly sorted hPSCs without culture expansion and differentiation in a rat model of posterolateral lumbar spinal fusion. We compared increasing dosages of implanted hPSCs to assess for dose-dependent efficacy. All hPSC treatment groups induced successful spinal fusion, assessed by manual palpation and microcomputed tomography. Computerized biomechanical simulation (finite element analysis) further demonstrated bone fusion with hPSC treatment. Histological analyses showed robust endochondral ossification in hPSC-treated samples. Finally, we confirmed that implanted hPSCs indeed differentiated into osteoblasts and osteocytes; however, the majority of the new bone formation was of host origin. These results suggest that implanted hPSCs positively regulate bone formation via direct and paracrine mechanisms. In summary, hPSCs are a readily available MSC population that effectively forms bone without requirements for culture or predifferentiation. Thus, hPSC-based products show promise for future efforts in clinical bone regeneration and repair. PMID:25154782

  8. Mechanical characterization of adult stem cells from bone marrow and perivascular niches

    PubMed Central

    Ribeiro, Alexandre J.S.; Tottey, Steven; Taylor, Richard W. E.; Bise, Ryoma; Kanade, Takeo; Badylak, Stephen F.; Dahl, Kris Noel

    2012-01-01

    Therapies using adult stem cells often require mechanical manipulation such as injection or incorporation into scaffolds. However, force-induced rupture and mechanosensitivity of cells during manipulation is largely ignored. Here, we image cell mechanical structures and perform a biophysical characterization of three different types of human adult stem cells: bone marrow CD34+ hematopoietic, bone marrow mesenchymal and perivascular mesenchymal stem cells. We use micropipette aspiration to characterize cell mechanics and quantify deformation of subcellular structures under force and its contribution to global cell deformation. Our results suggest that CD34+ cells are mechanically suitable for injection systems since cells transition from solid- to fluid-like at constant aspiration pressure, probably due to a poorly developed actin cytoskeleton. Conversely, mesenchymal stem cells from the bone marrow and perivascular niches are more suitable for seeding into biomaterial scaffolds since they are mechanically robust and have developed cytoskeletal structures that may allow cellular stable attachment and motility through solid porous environments. Among these, perivascular stem cells cultured in 6% oxygen show a developed cytoskeleton but a more compliant nucleus, which can facilitate the penetration into pores of tissues or scaffolds. We confirm the relevance of our measurements using cell motility and migration assays and measure survival of injected cells. Since different types of adult stem cells can be used for similar applications, we suggest considering mechanical properties of stem cells to match optimal mechanical characteristics of therapies. PMID:22349118

  9. A Novel Single Pulsed Electromagnetic Field Stimulates Osteogenesis of Bone Marrow Mesenchymal Stem Cells and Bone Repair

    PubMed Central

    Chang, Je-Ken; Chen, Chung-Hwan; Tai, I-Chun; Wang, Gwo-Jaw; Ho, Mei-Ling

    2014-01-01

    Pulsed electromagnetic field (PEMF) has been successfully applied to accelerate fracture repair since 1979. Recent studies suggest that PEMF might be used as a nonoperative treatment for the early stages of osteonecrosis. However, PEMF treatment requires a minimum of ten hours per day for the duration of the treatment. In this study, we modified the protocol of the single-pulsed electromagnetic field (SPEMF) that only requires a 3-minute daily treatment. In the in vitro study, cell proliferation and osteogenic differentiation was evaluated in the hBMSCs. In the in vivo study, new bone formation and revascularization were evaluated in the necrotic bone graft. Results from the in vitro study showed no significant cytotoxic effects on the hBMSCs after 5 days of SPEMF treatment (1 Tesla, 30 pulses per day). hBMSC proliferation was enhanced in the SPEMF-treated groups after 2 and 4 days of treatment. The osteogenic differentiation of hBMSCs was significantly increased in the SPEMF-treated groups after 3–7 days of treatment. Mineralization also increased after 10, 15, 20, and 25 days of treatment in SPEMF-treated groups compared to the control group. The 7-day short-course treatment achieved similar effects on proliferation and osteogenesis as the 25-day treatment. Results from the in vivo study also demonstrated that both the 7-day and 25-day treatments of SPEMF increased callus formation around the necrotic bone and also increased new vessel formation and osteocyte numbers in the grafted necrotic bone at the 2nd and 4th weeks after surgery. In conclusion, the newly developed SPEMF accelerates osteogenic differentiation of cultured hBMSCs and enhances bone repair, neo-vascularization, and cell growth in necrotic bone in mice. The potential clinical advantage of the SPEMF is the short daily application and the shorter treatment course. We suggest that SPEMF may be used to treat fractures and the early stages of osteonecrosis. PMID:24632682

  10. A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair.

    PubMed

    Fu, Yin-Chih; Lin, Chih-Chun; Chang, Je-Ken; Chen, Chung-Hwan; Tai, I-Chun; Wang, Gwo-Jaw; Ho, Mei-Ling

    2014-01-01

    Pulsed electromagnetic field (PEMF) has been successfully applied to accelerate fracture repair since 1979. Recent studies suggest that PEMF might be used as a nonoperative treatment for the early stages of osteonecrosis. However, PEMF treatment requires a minimum of ten hours per day for the duration of the treatment. In this study, we modified the protocol of the single-pulsed electromagnetic field (SPEMF) that only requires a 3-minute daily treatment. In the in vitro study, cell proliferation and osteogenic differentiation was evaluated in the hBMSCs. In the in vivo study, new bone formation and revascularization were evaluated in the necrotic bone graft. Results from the in vitro study showed no significant cytotoxic effects on the hBMSCs after 5 days of SPEMF treatment (1 Tesla, 30 pulses per day). hBMSC proliferation was enhanced in the SPEMF-treated groups after 2 and 4 days of treatment. The osteogenic differentiation of hBMSCs was significantly increased in the SPEMF-treated groups after 3-7 days of treatment. Mineralization also increased after 10, 15, 20, and 25 days of treatment in SPEMF-treated groups compared to the control group. The 7-day short-course treatment achieved similar effects on proliferation and osteogenesis as the 25-day treatment. Results from the in vivo study also demonstrated that both the 7-day and 25-day treatments of SPEMF increased callus formation around the necrotic bone and also increased new vessel formation and osteocyte numbers in the grafted necrotic bone at the 2nd and 4th weeks after surgery. In conclusion, the newly developed SPEMF accelerates osteogenic differentiation of cultured hBMSCs and enhances bone repair, neo-vascularization, and cell growth in necrotic bone in mice. The potential clinical advantage of the SPEMF is the short daily application and the shorter treatment course. We suggest that SPEMF may be used to treat fractures and the early stages of osteonecrosis. PMID:24632682

  11. Ex vivo 3D osteocyte network construction with primary murine bone cells

    PubMed Central

    Sun, Qiaoling; Gu, Yexin; Zhang, Wenting; Dziopa, Leah; Zilberberg, Jenny; Lee, Woo

    2015-01-01

    Osteocytes reside as three-dimensionally (3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of osteocytes have been challenging because: (1) current cell lines do not sufficiently represent the phenotypic features of mature osteocytes and (2) primary cells rapidly differentiate to osteoblasts upon isolation. In this study, we used a 3D perfusion culture approach to: (1) construct the 3D cellular network of primary murine osteocytes by biomimetic assembly with microbeads and (2) reproduce ex vivo the phenotype of primary murine osteocytes, for the first time to our best knowledge. In order to enable 3D construction with a sufficient number of viable cells, we used a proliferated osteoblastic population of healthy cells outgrown from digested bone chips. The diameter of microbeads was controlled to: (1) distribute and entrap cells within the interstitial spaces between the microbeads and (2) maintain average cell-to-cell distance to be about 19 m. The entrapped cells formed a 3D cellular network by extending and connecting their processes through openings between the microbeads. Also, with increasing culture time, the entrapped cells exhibited the characteristic gene expressions (SOST and FGF23) and nonproliferative behavior of mature osteocytes. In contrast, 2D-cultured cells continued their osteoblastic differentiation and proliferation. This 3D biomimetic approach is expected to provide a new means of: (1) studying flow-induced shear stress on the mechanotransduction function of primary osteocytes, (2) studying physiological functions of 3D-networked osteocytes with in vitro convenience, and (3) developing clinically relevant human bone disease models. PMID:26421212

  12. ?-Cell regeneration mediated by human bone marrow mesenchymal stem cells.

    PubMed

    Milanesi, Anna; Lee, Jang-Won; Li, Zhenhua; Da Sacco, Stefano; Villani, Valentina; Cervantes, Vanessa; Perin, Laura; Yu, John S

    2012-01-01

    Bone marrow mesenchymal stem cells (BMSCs) have been shown to ameliorate diabetes in animal models. The mechanism, however, remains largely unknown. An unanswered question is whether BMSCs are able to differentiate into ?-cells in vivo, or whether BMSCs are able to mediate recovery and/or regeneration of endogenous ?-cells. Here we examined these questions by testing the ability of hBMSCs genetically modified to transiently express vascular endothelial growth factor (VEGF) or pancreatic-duodenal homeobox 1 (PDX1) to reverse diabetes and whether these cells were differentiated into ?-cells or mediated recovery through alternative mechanisms. Human BMSCs expressing VEGF and PDX1 reversed hyperglycemia in more than half of the diabetic mice and induced overall improved survival and weight maintenance in all mice. Recovery was sustained only in the mice treated with hBMSCs-VEGF. However, de novo ?-cell differentiation from human cells was observed in mice in both cases, treated with either hBMSCs-VEGF or hBMSCs- PDX1, confirmed by detectable level of serum human insulin. Sustained reversion of diabetes mediated by hBMSCs-VEGF was secondary to endogenous ?-cell regeneration and correlated with activation of the insulin/IGF receptor signaling pathway involved in maintaining ?-cell mass and function. Our study demonstrated the possible benefit of hBMSCs for the treatment of insulin-dependent diabetes and gives new insight into the mechanism of ?-cell recovery after injury mediated by hBMSC therapy. PMID:22879915

  13. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    SciTech Connect

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T.; Jhaveri, Hiral M.; Mishra, Gyan C.; Wani, Mohan R.

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  14. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    PubMed Central

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. PMID:25374587

  15. Culture Conditions for Mouse Pancreatic Stem Cells

    PubMed Central

    Noguchi, Hirofumi; Saitoh, Issei; Kataoka, Hitomi Usui; Watanabe, Masami; Noguchi, Yasufumi; Fujiwara, Toshiyoshi

    2013-01-01

    Recently, mouse pancreatic stem cells have been isolated from adult mouse pancreata. However, these pancreatic stem cells could be maintained only under specific culture conditions with lot-limited fetal bovine serum (FBS). For the efficient isolation and maintenance of mouse pancreatic stem cells, it is important to identify culture conditions that can be used independent of the FBS lot. In this study, we evaluated the culture conditions required to maintain mouse pancreatic stem cells. The mouse pancreatic stem cells derived from the pancreas of a newborn mouse, HN#101, were cultured under the following conditions: 1) Dulbeccos modified Eagles medium (DMEM) with 20% lot-limited FBS, in which mouse pancreatic stem cells could be cultured without changes in morphology and growth activity; 2) complete embryonic stem (ES) cell media; and 3) complete ES cell media on feeder layers of mitomycin C-treated STO cells, which were the same culture conditions used for mouse ES cells. Under culture conditions #1 and #3, the HN#101 cells continued to form a flat cobblestone monolayer and continued to divide actively beyond the population doubling level (PDL) 100 without growth inhibition, but this did not occur under culture condition #2. The gene expression profile and differentiated capacity of the HN#101 cells cultured for 2 months under culture condition #3 were similar to those of HN#101 cells at PDL 50. These data suggest that complete ES cell media on feeder layers could be useful for maintaining the undifferentiated state of pancreatic stem cells.

  16. Presentation of a novel model of chitosan- polyethylene oxide-nanohydroxyapatite nanofibers together with bone marrow stromal cells to repair and improve minor bone defects

    PubMed Central

    Emamgholi, Asgar; Rahimi, Mohsen; Kaka, Gholamreza; Sadraie, Seyed Homayoon; Najafi, Saleh

    2015-01-01

    Objective(s): Various methods for repairing bone defects are presented. Cell therapy is one of these methods. Bone marrow stromal cells (BMSCs) seem to be suitable for this purpose. On the other hand, lots of biomaterials are used to improve and repair the defect in the body, so in this study we tried to produce a similar structure to the bone by the chitosan and hydroxyapatite. Materials and Methods: In this study, the solution of chitosan-nanohydroxyapatite-polyethylene oxide (PEO) Nanofibers was produced by electrospinning method, and then the BMSCs were cultured on this solution. A piece of chitosan-nanohydroxyapatite Nanofibers with BMSCs was placed in a hole with the diameter of 1 mm at the distal epiphysis of the rat femur. Then the biomechanical and radiographic studies were performed. Results: Biomechanical testing results showed that bone strength was significantly higher in the Nanofiber/BMSCs group in comparison with control group. Also the bone strength in nanofiber/BMSCs group was significant, but in nanofiber group was nearly significant. Radiographic studies also showed that the average amount of callus formation (radio opacity) in nanofiber and control group was not significantly different. The callus formation in nanofiber/BMSCs group was increased compared to the control group, and it was not significant in the nanofiber group. Conclusion: Since chitosan-nanohydroxyapatite nanofibers with BMSCs increases the rate of bone repair, the obtained cell-nanoscaffold shell can be used in tissue engineering and cell therapy, especially for bone defects. PMID:26523221

  17. Clinical Application of Human Mesenchymal Stromal Cells for Bone Tissue Engineering

    PubMed Central

    Chatterjea, Anindita; Meijer, Gert; van Blitterswijk, Clemens; de Boer, Jan

    2010-01-01

    The gold standard in the repair of bony defects is autologous bone grafting, even though it has drawbacks in terms of availability and morbidity at the harvesting site. Bone-tissue engineering, in which osteogenic cells and scaffolds are combined, is considered as a potential bone graft substitute strategy. Proof-of-principle for bone tissue engineering using mesenchymal stromal cells (MSCs) has been demonstrated in various animal models. In addition, 7 human clinical studies have so far been conducted. Because the experimental design and evaluation parameters of the studies are rather heterogeneous, it is difficult to draw conclusive evidence on the performance of one approach over the other. However, it seems that bone apposition by the grafted MSCs in these studies is observed but not sufficient to bridge large bone defects. In this paper, we discuss the published human clinical studies performed so far for bone-tissue regeneration, using culture-expanded, nongenetically modified MSCs from various sources and extract from it points of consideration for future clinical studies. PMID:21113294

  18. Alterations in bone forming cells due to reduced weight bearing

    NASA Technical Reports Server (NTRS)

    Doty, S. B.; Morey-Holton, E.

    1984-01-01

    A reduction in new bone formation occurred as a result of space flight (Cosmos 1129) and in the suspended animal model of Morey-Holton (1979, 1980). The results indicate that alkaline phosphatase activity of the bone-forming cells is also reduced under these conditions, and the cells in the diaphysis are more affected than those in the metaphyseal region. In addition, these cells show (1) reduced proline incorporation into bone matrix, and (2) increased intracellular lysosomal activity. A change in the cytoskeleton could be the common factor in explaining these results. This suggestion is futher supported by the previous observations that colchicine injections result in decreased osteoblastic function.

  19. Multiple melanocortin receptors are expressed in bone cells

    NASA Technical Reports Server (NTRS)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  20. Cell-secreted matrices perpetuate the bone-forming phenotype of differentiated mesenchymal stem cells.

    PubMed

    Hoch, Allison I; Mittal, Vaishali; Mitra, Debika; Vollmer, Nina; Zikry, Christopher A; Leach, J Kent

    2016-01-01

    Prior to transplantation, mesenchymal stem/stromal cells (MSCs) can be induced toward the osteoblastic phenotype using a cocktail of soluble supplements. However, there is little evidence of differentiated MSCs directly participating in bone formation, suggesting that MSCs may either die or revert in phenotype upon transplantation. Cell-secreted decellularized extracellular matrices (DMs) are a promising platform to confer bioactivity and direct cell fate through the presentation of a complex and physiologically relevant milieu. Therefore, we examined the capacity of biomimetic DMs to preserve the mineral-producing phenotype upon withdrawal of the induction stimulus. Regardless of induction duration, ranging up to 6 weeks, MSCs exhibited up to a 5-fold reduction in osteogenic markers within 24 h following stimulus withdrawal. We show that seeding osteogenically induced MSCs on DMs yields up to 2-fold more calcium deposition than tissue culture plastic, and this improvement is at least partially mediated by increasing actin cytoskeletal tension via the ROCK II pathway. MSCs on DMs also secreted 25% more vascular endothelial growth factor (VEGF), a crucial endogenous proangiogenic factor that is abrogated during MSC osteogenic differentiation. The deployment of DMs into a subcutaneous ectopic site enhanced the persistence of MSCs 5-fold, vessel density 3-fold, and bone formation 2-fold more than MSCs delivered without DMs. These results underscore the need for deploying MSCs using biomaterial platforms such as DMs to preserve the in vitro-acquired mineral-producing phenotype and accelerate the process of bone repair. PMID:26457835

  1. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment.

    PubMed

    Snyder, Robert

    2014-03-01

    Detection, treatment, and prevention of bone marrow diseases have long been the aims of experimental and clinical hematologists and mechanistically oriented toxicologists. Among these diseases is aplastic anemia, which manifests as the cessation of normal blood cell production; the leukemias, in contrast, feature the production of excessive hematologic cancer cells. Both diseases are associated with exposure to either industrial chemicals or cancer chemotherapeutic agents. Studies of hematopoietic bone marrow cells in culture have shown that the generation of circulating blood cells requires the interaction of hematopoietic stem cells (HSCs) with supporting marrow stromal cells; yet, isolation of HSCs from bone destroys the unique morphology of the marrow stroma in which the HSCs reside. Imaging techniques and related studies have made it possible to examine specific niches where HSCs may either initiate differentiation toward mature blood cells or reside in a dormant state awaiting a signal to begin differentiation. HSCs and related cells may be highly vulnerable to the mutagenic or toxic effects of drugs or other chemicals early in these processes. Additional studies are required to determine the mechanisms by which drug or chemical exposure may affect these cells and lead to either depression of bone marrow function or to leukemia. PMID:24495003

  2. Effects of Polymer Surfaces on Proliferation and Differentiation of Embryonic Stem Cells and Bone Marrow Stem Cells

    NASA Astrophysics Data System (ADS)

    Qin, Sisi; Liao, Wenbin; Ma, Yupo; Simon, Marcia; Rafailovich, Miriam; Stony Brook Medical Center Collaboration; Stony Brook Dental Schoo Collaboration

    2013-03-01

    Currently, proliferation and differentiation of stem cell is usually accomplished either in vivo, or on chemical coated tissue culture petri dish with the presence of feeder cells. Here we investigated whether they can be directly cultured on polymeric substrates, in the absence of additional factors. We found that mouse embryonic stem cells did not require gelatin and could remain in the undifferentiated state without feeder cells at least for four passages on partially sulfonated polystyrene. The modulii of cells was measured and found to be higher for cells plated directly on the polymer surface than for those on the same surface covered with gelatin and feeder cells. When plated with feeder cells, the modulii was not sensitive to gelatin. Whereas the differentiation properties of human bone marrow stem cells, which are not adherent, are less dependent on either chemical or mechanical properties of the substrate. However, they behave differently on different toughness hydrogels as oppose to on polymer coated thin films.

  3. Sex and Genetic Factors Determine Osteoblastic Differentiation Potential of Murine Bone Marrow Stromal Cells

    PubMed Central

    Zanotti, Stefano; Kalajzic, Ivo; Aguila, Hector Leonardo; Canalis, Ernesto

    2014-01-01

    Sex and genetic factors determine skeletal mass, and we tested whether bone histomorphometric parameters were sexually dimorphic in femurs from 1 to 6 month old C57BL/6 mice. Trabecular bone volume declined more rapidly in female mice than in male littermates because of enhanced bone resorption. Although bone formation was not different between sexes, female mice exhibited a higher number of osteoblasts than male littermates, suggesting that osteoblasts from female mice may have a reduced ability to form bone. To determine the impact of sex on osteoblastogenesis, we investigated the potential for osteoblastic differentiation of bone marrow stromal cells from C57BL/6, Friend leukemia virus-B (FVB), C3H/HeJ and BALB/c mice of both sexes. Bone marrow stromal cells from female FVB, C57BL/6 and C3H/HeJ mice exhibited lower Alpl and Osteocalcin expression and alkaline phosphatase activity, and formed fewer mineralized nodules than cells from male littermates. Proliferative capacity was greater in cells from male than female C57BL/6, but not FVB, mice. Sorting of bone marrow stromal cells from mice expressing an ?-Smooth muscle actin-green fluorescent protein transgene, revealed a higher yield of mesenchymal stem cells in cultures from male mice than in those from female littermates. Sex had a modest impact on osteoblastic differentiation of mesenchymal stem cells. To determine the influence of sex and genetic factors on osteoblast function, calvarial osteoblasts were harvested from C57BL/6, FVB, C3H/HeJ and BALB/c mice. Alpl expression and activity were lower in osteoblasts from C57BL/6 and C3H/HeJ, but not FVB or BALB/c, female mice than in cells from littermates. Sex had no effect on osteoclastogenesis of bone marrow cultures of C57BL/6 mice, but osteoblasts from female mice exhibited higher Rankl and lower Opg expression than cells from male littermates. In conclusion, osteoblastogenesis is sexually dimorphic and influenced by genetic factors. PMID:24489784

  4. Bone cells, sclerostin, and FGF23: what's bred in the bone will come out in the flesh.

    PubMed

    Ott, Susan M

    2015-03-01

    Bone metabolism is linked to systemic diseases, and new research shows that the bone cells have endocrine functions that affect multiple organs. They secrete sclerostin, FGF23, prostaglandins, and osteocalcin. Pereira et al. examined gene expression of cells grown from bone biopsies of adolescents with renal osteodystrophy, as a first step to understanding how the bone-cell abnormalities contribute to cardiovascular and metabolic problems in these patients. PMID:25723633

  5. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy bone tissue. The macrophages are incorporated into resorption lacunaes and utilize the organic matrix and cellular detritus. The products are secreted to remodeling zones and act as haemoattractants for recruiting and subsequent differentiation here of the osteogenic precursor cells. However, as shown by our results with 3H-glycine, in absence of mechanical stimulus the activization of osteoblastogenesis either doesn't occur, or takes place on a smaller scale. According to our electron-microscopic data a load deficit leads to an adaptive differentiation of fibroblasts and adipocytes in this remodeling zones. This sequence of events is considered as a mechanism of bone tissue loss which underlies the development of osteopenia and osteoporosis under space flight condition.

  6. High abundance of CD271+ multipotential stromal cells (MSCs) in intramedullary cavities of long bones

    PubMed Central

    Cox, George; Boxall, Sally A.; Giannoudis, Peter V.; Buckley, Conor T.; Roshdy, Tarek; Churchman, Sarah M.; McGonagle, Dennis; Jones, Elena

    2012-01-01

    Aspiration of iliac crest bone marrow (ICBM) remains the most frequent technique used in harvesting multipotential stromal cells (MSCs) for bone regeneration. Although this tissue type is easily accessed by a surgeon, it has a low frequency of MSCs, which is significant given the high cell numbers required for bone regeneration strategies. Lipoaspirates possess higher MSC frequencies, albeit cells with a differentiation profile less suited to orthopaedic interventions. Intra-medullary cavities of long bones have previously been shown to harbour MSCs in animals, however evaluation of their frequency, differentiation capacity and phenotype in humans had not previously been performed. Long bone fatty bone marrow (LBFBM) was collected prior to harvesting bone graft. Basic cellular compositions of donor-matched LBFBM and ICBM aspirates, including the numbers of CD34+ hematopoietic stem cells and CD31+ endothelial cells, were similar. MSCs were enumerated using colony-forming-unit-fibroblast assays and flow cytometry for the presence of a resident LBFBM CD45?/low CD271+ MSC population and revealed a trend for higher MSC numbers (average 5 fold, n=6) per millilitre of LBFBM compared to donor-matched ICBM. Functional characteristics of resident MSCs, including their growth rates, differentiation potentials and surface phenotypes (CD73+CD105+CD90+) before and after culture-amplification, were similar. Enhanced numbers of MSCs could be recovered following brief enzymatic treatment of solid fragments of LBFBM. Our findings therefore reveal that the intramedullary cavity of the human femur is a depot of MSCs, which, although closely associated with fat, have a differentiation profile equivalent to ICBM. This anatomical site is frequently accessed by the orthopaedic/trauma surgeon and aspiration of the intramedullary cavity represents a low-tech method of harvesting potentially large numbers of MSCs for regenerative therapies and research. This article is part of a Special Issue entitled: Interactions Between Bone, Adipose Tissue and Metabolism. PMID:21807134

  7. Culture of Cells from Amphibian Embryos.

    ERIC Educational Resources Information Center

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  8. Bone marrow and bone marrow derived mononuclear stem cells therapy for the chronically ischemic myocardium

    SciTech Connect

    Waksman, Ron; Baffour, Richard

    2003-09-01

    Bone marrow stem cells have been shown to differentiate into various phenotypes including cardiomyocytes, vascular endothelial cells and smooth muscle. Bone marrow stem cells are mobilized and home in to areas of injured myocardium where they are involved in tissue repair. In addition, bone marrow secretes multiple growth factors, which are essential for angiogenesis and arteriogenesis. In some patients, these processes are not enough to avert clinical symptoms of ischemic disease. Therefore, in vivo administration of an adequate number of stem cells would be a significant therapeutic advance. Unfractionated bone marrow derived mononuclear stem cells, which contain both hematopoietic and nonhematopoietic cells may be more appropriate for cell therapy. Studies in animal models suggest that implantation of different types of stem cells improve angiogenesis and arteriogenesis, tissue perfusion as well as left ventricular function. Several unanswered questions remain. For example, the optimal delivery approach, dosage and timing of the administration of cell therapy as well as durability of improvements need to be studied. Early clinical studies have demonstrated safety and feasibility of various cell therapies in ischemic disease. Randomized, double blind and placebo-controlled clinical trials need to be completed to determine the effectiveness of stem cell.

  9. Osteoanagenesis after transplantation of bone marrow-derived mesenchymal stem cells using polyvinylidene chloride film as a scaffold.

    PubMed

    Hamajima, Soichiro; Hayashi, Tatsuhide; Sato, Yamato; Sasaki, Keisuke; Kawai, Tatsushi

    2011-01-01

    The aim of this study was to develop a new cell transplantation technique for osteoanagenesis at bone defect sites. Polyvinylidene chloride (PVDC) film was evaluated because of its good biocompatibility and flexibility. We used this film as both a cell scaffold and a barrier membrane. Initially, the cell compatibility of the PVDC film for fibroblast-like cells and osteoblast-like cells was confirmed. Subsequently, bone marrow cells were obtained from rats and cultured on PVDC films in two kinds of medium. The PVDC films with bone marrow-derived mesenchymal stem cells (MSCs) were then applied to critical-sized bone defects in the calvarial bone of rats. After the transplantation, the surgical sites were dissected out and evaluated by soft X-ray radiography, micro-CT analysis and histological examinations. The bone marrow-derived MSC-transplanted rats showed greater bone regeneration than the control rats. Therefore, PVDC film is considered to be useful as a scaffold for bone regeneration. PMID:21946492

  10. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    PubMed Central

    Mindaye, Samuel T.; Lo Surdo, Jessica; Bauer, Steven R.; Alterman, Michail A.

    2015-01-01

    Bone-marrow derived mesenchymal stromal cells (BMSCs) have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5], [6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results. PMID:26702413

  11. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells.

    PubMed

    Ulbrich, Claudia; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Magnusson, Nils; Infanger, Manfred; Grosse, Jirka; Eilles, Christoph; Sundaresan, Alamelu; Grimm, Daniela

    2014-01-01

    How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-g) is currently a hot topic in biomedicine. In r- and s-g, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-g devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-g, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of g on the aforementioned cells and an outlook for future perspectives in tissue engineering. PMID:25110709

  12. The Impact of Simulated and Real Microgravity on Bone Cells and Mesenchymal Stem Cells

    PubMed Central

    Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Magnusson, Nils; Infanger, Manfred; Grosse, Jirka; Eilles, Christoph

    2014-01-01

    How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s-µg) is currently a hot topic in biomedicine. In r- and s-µg, various cell types were found to form 3D structures. This review will focus on the current knowledge of tissue engineering in space and on Earth using systems such as the random positioning machine (RPM), the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV) to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS), formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering. PMID:25110709

  13. Bone Impairment in Phenylketonuria Is Characterized by Circulating Osteoclast Precursors and Activated T Cell Increase

    PubMed Central

    Mussa, Alessandro; D'Amico, Lucia; Fiore, Ludovica; Garelli, Davide; Spada, Marco; Ferracini, Riccardo

    2010-01-01

    Background Phenylketonuria (PKU) is a rare inborn error of metabolism often complicated by a progressive bone impairment of uncertain etiology, as documented by both ionizing and non- ionizing techniques. Methodology Peripheral blood mononuclear cell (PBMC) cultures were performed to study osteoclastogenesis, in the presence or absence of recombinant human monocyte-colony stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL). Flow cytometry was utilized to analyze osteoclast precursors (OCPs) and T cell phenotype. Tumour necrosis factor α (TNF-α), RANKL and osteoprotegerin (OPG) were quantified in cell culture supernatants by ELISA. The effects of RANKFc and anti-TNF-α antibodies were also investigated to determine their ability to inhibit osteoclastogenesis. In addition, bone conditions and phenylalanine levels in PKU patients were clinically evaluated. Principal Findings Several in vitro studies in PKU patients' cells identified a potential mechanism of bone formation inhibition commonly associated with this disorder. First, PKU patients disclosed an increased osteoclastogenesis compared to healthy controls, both in unstimulated and M-CSF/RANKL stimulated PBMC cultures. OCPs and the measured RANKL/OPG ratio were higher in PKU patients compared to healthy controls. The addition of specific antagonist RANKFc caused osteoclastogenesis inhibition, whereas anti-TNF-α failed to have this effect. Among PBMCs isolated from PKU patients, activated T cells, expressing CD69, CD25 and RANKL were identified. Confirmatory in vivo studies support this proposed model. These in vivo studies included the analysis of osteoclastogenesis in PKU patients, which demonstrated an inverse relation to bone condition assessed by phalangeal Quantitative Ultrasound (QUS). This was also directly related to non-compliance to therapeutic diet reflected by hyperphenylalaninemia. Conclusions Our results indicate that PKU spontaneous osteoclastogenesis depends on the circulating OCP increase and the activation of T cells. Osteoclastogenesis correlates with clinical parameters, suggesting its value as a diagnostic tool for an early assessment of an increased bone resorption in PKU patients. PMID:21152388

  14. Bone Regeneration of Blood-derived Stem Cells within Dental Implants.

    PubMed

    Zheng, R C; Park, Y K; Kim, S K; Cho, J; Heo, S J; Koak, J Y; Lee, S J; Park, J M; Lee, J H; Kim, J H

    2015-09-01

    Peripheral blood (PB) is known as a source of mesenchymal stem cells (MSCs), as is bone marrow (BM), and is acquired easily. However, it is difficult to have enough MSCs, and their osteogenic capacity with dental implantations is scarce. Therefore, we characterized peripheral blood mesenchymal stem cells (PBMSCs) cultured on a bone marrow-derived mesenchymal stem cell (BMMSC) natural extracellular matrix (ECM) and demonstrated the osteogenic capability in an experimental chamber implant surgery model in rabbits. We isolated PBMSCs from rabbits by culturing on a natural ECM-coated plate during primary culture. We characterized the PBMSCs using a fluorescence-activated cell scanner, cell proliferation assay, and multiple differentiation assay and compared them with BMMSCs. We also analyzed the osteogenic potential of PBMSCs mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) by transplanting them into immunocompromised mice. Then, the mixture was applied to the canals. After 3 and 6 wk, we analyzed new bone (NB) formation inside the chambers using histological and histomorphometric analyses. The PBMSCs had a similar rate of BrdU-positive cells to BMMSCs, positively expressing CD90 but negative for CD14. The PBMSCs also showed osteogenic, adipogenic, and chondrogenic ability in vitro and osteogenic ability in vivo. Histological and histomorphometric results illustrated that the PBMSC and BMMSC groups showed higher NB than the HA/TCP and defect groups in the upper and lower chambers at 6 wk and in the upper canal at 3 wk; however, there was no difference in NB among all groups in the lower canal at 3 wk. The PBMSCs have characteristics and bone regeneration ability similar to BMMSCs both in vitro and in vivo. ECM was effective for obtaining PBMSCs. Therefore, PBMSCs are a promising source for bone regeneration for clinical use. PMID:26078421

  15. Osteoblasts subjected to mechanical strain inhibit osteoclastic differentiation and bone resorption in a co-culture system.

    PubMed

    Li, Jianyu; Wan, Zongming; Liu, Hui; Li, Hao; Liu, Lu; Li, Ruixin; Guo, Yong; Chen, Wei; Zhang, Xinchang; Zhang, Xizheng

    2013-10-01

    Bone remodeling is strictly mediated by the coupled activities of osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively. Although many papers have been published on the mechanical responses of osteoblasts and osteoclasts, little is known about their communication during mechanical loading. In this study, a novel co-culture system was first established using Transwell culture inserts; MC3T3-E1 cells were embedded in the lower compartment of the inserts, and RAW264.7 cells were co-cultured in the upper compartment. The MC3T3-E1 cells were subjected to a mechanical strain of 2500?? at 0.5Hz to investigate the effect of strain-loaded osteoblasts on co-cultured osteoclasts. The results showed that osteoblast-like cells were activated with an increase of alkaline phosphatase (ALP) activities. The strain-conditioned medium caused decreased activity of tartrate-resistant acid phosphatase and reduced the number of mature multinucleated osteoclasts, which subsequently resulted in the suppressed formation of resorption pits. The expression levels of cathepsin-K and matrix metalloproteinase-9 were also depressed by the strain-conditioned medium. In addition, we found that the expression ratio between osteoprotegerin (OPG) and receptor activator of NF-kB ligand in osteoblasts was significantly up-regulated due to the enhanced levels of OPG. In summary, we conclude that the strain-stimulated osteoblasts inhibited the differentiation and bone resorption of osteoclasts and that the mechanism was associated with the increased secretion of OPG in osteoblasts. PMID:23609024

  16. Fabrication of Biomimetic Bone Tissue Using Mesenchymal Stem Cell-Derived Three-Dimensional Constructs Incorporating Endothelial Cells

    PubMed Central

    Sasaki, Jun-Ichi; Hashimoto, Masanori; Yamaguchi, Satoshi; Itoh, Yoshihiro; Yoshimoto, Itsumi; Matsumoto, Takuya; Imazato, Satoshi

    2015-01-01

    The development of technologies to promote vascularization of engineered tissue would drive major developments in tissue engineering and regenerative medicine. Recently, we succeeded in fabricating three-dimensional (3D) cell constructs composed of mesenchymal stem cells (MSCs). However, the majority of cells within the constructs underwent necrosis due to a lack of nutrients and oxygen. We hypothesized that incorporation of vascular endothelial cells would improve the cell survival rate and aid in the fabrication of biomimetic bone tissues in vitro. The purpose of this study was to assess the impact of endothelial cells combined with the MSC constructs (MSC/HUVEC constructs) during short- and long-term culture. When human umbilical vein endothelial cells (HUVECs) were incorporated into the cell constructs, cell viability and growth factor production were increased after 7 days. Furthermore, HUVECs were observed to proliferate and self-organize into reticulate porous structures by interacting with the MSCs. After long-term culture, MSC/HUVEC constructs formed abundant mineralized matrices compared with those composed of MSCs alone. Transmission electron microscopy and qualitative analysis revealed that the mineralized matrices comprised porous cancellous bone-like tissues. These results demonstrate that highly biomimetic bone tissue can be fabricated in vitro by 3D MSC constructs incorporated with HUVECs. PMID:26047122

  17. Dimethyloxaloylglycine Improves Angiogenic Activity of Bone Marrow Stromal Cells in the Tissue-Engineered Bone

    PubMed Central

    Ding, Hao; Chen, Song; Song, Wen-Qi; Gao, You-Shui; Guan, Jun-Jie; Wang, Yang; Sun, Yuan; Zhang, Chang-Qing

    2014-01-01

    One of the big challenges in tissue engineering for treating large bone defects is to promote the angiogenesis of the tissue-engineered bone. Hypoxia inducible factor-1? (HIF-1?) plays an important role in angiogenesis-osteogenesis coupling during bone regeneration, and can activate a broad array of angiogenic factors. Dimethyloxaloylglycine (DMOG) can activate HIF-1? expression in cells at normal oxygen tension. In this study, we explored the effect of DMOG on the angiogenic activity of bone mesenchymal stem cells (BMSCs) in the tissue-engineered bone. The effect of different concentrations of DMOG on HIF-1a expression in BMSCs was detected with western blotting, and the mRNA expression and secretion of related angiogenic factors in DMOG-treated BMSCs were respectively analyzed using qRT-PCR and enzyme linked immunosorbent assay. The tissue-engineered bone constructed with ?-tricalcium phosphate (?-TCP) and DMOG-treated BMSCs were implanted into the critical-sized calvarial defects to test the effectiveness of DMOG in improving the angiogenic activity of BMSCs in the tissue-engineered bone. The results showed DMOG significantly enhanced the mRNA expression and secretion of related angiogenic factors in BMSCs by activating the expression of HIF-1?. More newly formed blood vessels were observed in the group treated with ?-TCP and DMOG-treated BMSCs than in other groups. And there were also more bone regeneration in the group treated with ?-TCP and DMOG-treated BMSCs. Therefore, we believed DMOG could enhance the angiogenic activity of BMSCs by activating the expression of HIF-1?, thereby improve the angiogenesis of the tissue-engineered bone and its bone healing capacity. PMID:25013382

  18. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    NASA Technical Reports Server (NTRS)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  19. Characterization of Distinct Classes of Differential Gene Expression in Osteoblast Cultures from Non-Syndromic Craniosynostosis Bone

    PubMed Central

    Rojas-Pea, Monica L.; Olivares-Navarrete, Rene; Hyzy, Sharon; Arafat, Dalia; Schwartz, Zvi; Boyan, Barbara D.; Williams, Joseph; Gibson, Greg

    2014-01-01

    Craniosynostosis, the premature fusion of one or more skull sutures, occurs in approximately 1 in 2500 infants, with the majority of cases non-syndromic and of unknown etiology. Two common reasons proposed for premature suture fusion are abnormal compression forces on the skull and rare genetic abnormalities. Our goal was to evaluate whether different sub-classes of disease can be identified based on total gene expression profiles. RNA-Seq data were obtained from 31 human osteoblast cultures derived from bone biopsy samples collected between 2009 and 2011, representing 23 craniosynostosis fusions and 8 normal cranial bones or long bones. No differentiation between regions of the skull was detected, but variance component analysis of gene expression patterns nevertheless supports transcriptome-based classification of craniosynostosis. Cluster analysis showed 4 distinct groups of samples; 1 predominantly normal and 3 craniosynostosis subtypes. Similar constellations of sub-types were also observed upon re-analysis of a similar dataset of 199 calvarial osteoblast cultures. Annotation of gene function of differentially expressed transcripts strongly implicates physiological differences with respect to cell cycle and cell death, stromal cell differentiation, extracellular matrix (ECM) components, and ribosomal activity. Based on these results, we propose non-syndromic craniosynostosis cases can be classified by differences in their gene expression patterns and that these may provide targets for future clinical intervention. PMID:25184005

  20. Connective Tissue Growth Factor Reporter Mice Label a Subpopulation of Mesenchymal Progenitor Cells that Reside in the Trabecular Bone Region

    PubMed Central

    Wang, Wen; Strecker, Sara; Liu, Yaling; Wang, Liping; Assanah, Fayekah; Smith, Spenser; Maye, Peter

    2014-01-01

    Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously has been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region. PMID:25464947

  1. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D.

    PubMed

    Kleinhans, C; Schmid, F F; Schmid, F V; Kluger, P J

    2015-07-10

    Bone homeostasis is maintained by osteoblasts (bone formation) and osteoclasts (bone resorption). While there have been numerous studies investigating mesenchymal stem cells and their potential to differentiate into osteoblasts as well as their interaction with different bone substitute materials, there is only limited knowledge concerning in vitro generated osteoclasts. Due to the increasing development of degradable bone-grafting materials and the need of sophisticated in vitro test methods, it is essential to gain deeper insight into the process of osteoclastogenesis and the resorption functionality of human osteoclasts. Therefore, we focused on the comparison of osteoclastogenesis and resorption activity on tissue culture polystyrene (TCPS) and bovine extracellular bone matrices (BMs). Cortical bone slices were used as two-dimensional (2D) substrates, whereas a thermally treated cancellous bone matrix was used for three-dimensional (3D) experiments. We isolated primary human monocytes and induced osteoclastogenesis by medium supplementation. Subsequently, the expression of the vitronectin receptor (αVβ3) and cathepsin K as well as the characteristic actin formation on TCPS and the two BMs were examined. The cell area of human osteoclasts was analyzed on TCPS and on BMs, whereas significantly larger osteoclasts could be detected on BMs. Additionally, we compared the diameter of the sealing zones with the measured diameter of the resorption pits on the BMs and revealed similar diameters of the sealing zones and the resorption pits. We conclude that using TCPS as culture substrate does not affect the expression of osteoclast-specific markers. The analysis of resorption activity can successfully be conducted on cortical as well as on cancellous bone matrices. For new in vitro test systems concerning bone resorption, we suggest the establishment of a 2D assay for high throughput screening of new degradable bone substitute materials with osteoclasts. PMID:25562421

  2. AMMONIA REMOVAL FROM MAMMALIAN CELL CULTURE MEDIUM

    EPA Science Inventory

    Metabolites such as ammonia and lactic formed during mammalian cell culture can frequently be toxic to the cells themselves beyond a threshold concentration of the metabolites. ell culture conducted in the presence of such accumulated metabolites is therefore limited in productiv...

  3. Stem cell origin differently affects bone tissue engineering strategies.

    PubMed

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  4. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  5. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone.

    PubMed

    Addison, W N; Nelea, V; Chicatun, F; Chien, Y-C; Tran-Khanh, N; Buschmann, M D; Nazhat, S N; Kaartinen, M T; Vali, H; Tecklenburg, M M; Franceschi, R T; McKee, M D

    2015-02-01

    Bone cell culture systems are essential tools for the study of the molecular mechanisms regulating extracellular matrix mineralization. MC3T3-E1 osteoblast cell cultures are the most commonly used in vitro model of bone matrix mineralization. Despite the widespread use of this cell line to study biomineralization, there is as yet no systematic characterization of the mineral phase produced in these cultures. Here we provide a comprehensive, multi-technique biophysical characterization of this cell culture mineral and extracellular matrix, and compare it to mouse bone and synthetic apatite mineral standards, to determine the suitability of MC3T3-E1 cultures for biomineralization studies. Elemental compositional analysis by energy-dispersive X-ray spectroscopy (EDS) showed calcium and phosphorus, and trace amounts of sodium and magnesium, in both biological samples. X-ray diffraction (XRD) on resin-embedded intact cultures demonstrated that similar to 1-month-old mouse bone, apatite crystals grew with preferential orientations along the (100), (101) and (111) mineral planes indicative of guided biogenic growth as opposed to dystrophic calcification. XRD of crystals isolated from the cultures revealed that the mineral phase was poorly crystalline hydroxyapatite with 10 to 20nm-sized nanocrystallites. Consistent with the XRD observations, electron diffraction patterns indicated that culture mineral had low crystallinity typical of biological apatites. Fourier-transform infrared spectroscopy (FTIR) confirmed apatitic carbonate and phosphate within the biological samples. With all techniques utilized, cell culture mineral and mouse bone mineral were remarkably similar. Scanning (SEM) and transmission (TEM) electron microscopy showed that the cultures had a dense fibrillar collagen matrix with small, 100nm-sized, collagen fibril-associated mineralization foci which coalesced to form larger mineral aggregates, and where mineralized sites showed the accumulation of the mineral-binding protein osteopontin. Light microscopy, confocal microscopy and three-dimensional reconstructions showed that some cells had dendritic processes and became embedded within the mineral in an osteocyte-like manner. In conclusion, we have documented characteristics of the mineral and matrix phases of MC3T3-E1 osteoblast cultures, and have determined that the structural and compositional properties of the mineral are highly similar to that of mouse bone. PMID:25460184

  6. Bone marrow regeneration promoted by biophysically sorted osteoprogenitors from mesenchymal stromal cells.

    PubMed

    Poon, Zhiyong; Lee, Wong Cheng; Guan, Guofeng; Nyan, Lin Myint; Lim, Chwee Teck; Han, Jongyoon; Van Vliet, Krystyn J

    2015-01-01

    Human tissue repair deficiencies can be supplemented through strategies to isolate, expand in vitro, and reimplant regenerative cells that supplant damaged cells or stimulate endogenous repair mechanisms. Bone marrow-derived mesenchymal stromal cells (MSCs), a subset of which is described as mesenchymal stem cells, are leading candidates for cell-mediated bone repair and wound healing, with hundreds of ongoing clinical trials worldwide. An outstanding key challenge for successful clinical translation of MSCs is the capacity to produce large quantities of cells in vitro with uniform and relevant therapeutic properties. By leveraging biophysical traits of MSC subpopulations and label-free microfluidic cell sorting, we hypothesized and experimentally verified that MSCs of large diameter within expanded MSC cultures were osteoprogenitors that exhibited significantly greater efficacy over other MSC subpopulations in bone marrow repair. Systemic administration of osteoprogenitor MSCs significantly improved survival rates (>80%) as compared with other MSC subpopulations (0%) for preclinical murine bone marrow injury models. Osteoprogenitor MSCs also exerted potent therapeutic effects as "cell factories" that secreted high levels of regenerative factors such as interleukin-6 (IL-6), interleukin-8 (IL-8), vascular endothelial growth factor A, bone morphogenetic protein 2, epidermal growth factor, fibroblast growth factor 1, and angiopoietin-1; this resulted in increased cell proliferation, vessel formation, and reduced apoptosis in bone marrow. This MSC subpopulation mediated rescue of damaged marrow tissue via restoration of the hematopoiesis-supporting stroma, as well as subsequent hematopoiesis. Together, the capabilities described herein for label-freeisolation of regenerative osteoprogenitor MSCs can markedly improve the efficacy of MSC-based therapies. PMID:25411477

  7. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.

    PubMed

    Wittenburg, Gretel; Flade, Viktoria; Garbe, Annette I; Lauer, Günter; Labudde, Dirk

    2014-05-01

    We have analysed the growth and differentiation of mesenchymal stromal cells (MSC) from bone marrow, and of adipose derived stem cells (ASC) from murine abdominal fat tissue, of green fluorescent protein (GFP) transgenic animals grown directly on two types of hydroxyapatite ceramic bone substitutes. BONITmatrix® and NanoBone® have specific mechanical and physiochemical properties such as porosity and an inner surface that influence cellular growth. Both MSC and ASC were separately seeded on 200mg of each biomaterial and cultured for 3 weeks under osteogenic differentiation conditions. The degree of mineralisation was assessed by alizarin red dye and the specific alkaline phosphatase activity of the differentiated cells. The morphology of the cells was examined by scanning electron microscopy and confocal microscopy. The osteoblastic phenotype of the cells was confirmed by analysing the expression of bone-specific genes (Runx2, osteocalcin, osteopontin, and osteonectin) by semiquantitative reverse transcriptase polymerase chain reaction (PCR). Comparison of BONITmatrix® and NanoBone® showed cell type-specific preferences in terms of osteogenic differentiation. MSC-derived osteoblast-like cells spread optimally on the surface of NanoBone® but not BONITmatrix® granules. In contrast BONITmatrix® granules conditioned the growth of osteoblast-like cells derived from ASC. The osteoblastic phenotype of the cultured cells on all matrices was confirmed by specific gene expression. Our results show that the in vitro growth and osteogenic differentiation of murine MSC or ASC of GFP transgenic mice are distinctly influenced by the ceramic substratum. While NanoBone® granules support the proliferation and differentiation of murine MSC isolated from bone marrow, the growth of murine ASC is supported by BONITmatrix® granules. NanoBone® is therefore recommended for use as scaffold in tissue engineering that requires MSC, whereas ASC can be combined with BONITmatrix® for in vitro bone engineering. PMID:24685477

  8. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    PubMed

    Xia, Jing; Luo, Min; Ni, Ni; Chen, Junzhao; Hu, Yamin; Deng, Yuan; Ji, Jing; Zhou, Jibo; Fan, Xianqun; Gu, Ping

    2013-01-01

    During retina development, retinal progenitor cell (RPC) proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs) are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM) which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC) self-renewal, as well as betacellulin (BTC), an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs) and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro. PMID:24098776

  9. The bone marrow niche for haematopoietic stem cells

    PubMed Central

    Morrison, Sean J.; Scadden, David T.

    2015-01-01

    Preface Niches are local tissue microenvironments that maintain and regulate stem cells. Haematopoiesis provides a paradigm for understanding mammalian stem cells and their niches, yet the haematopoietic stem cell (HSC) niche remains incompletely defined and beset by competing models. Here we review progress in elucidating the location and cellular components of the HSC niche in the bone marrow. The niche is perivascular, created partly by mesenchymal stromal cells and endothelial cells and often, but not always, located near trabecular bone. Outstanding questions concern the cellular complexity of the niche, the role of the endosteum, and functional heterogeneity among perivascular microenvironments. PMID:24429631

  10. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation.

    PubMed

    Brady, Robert T; O'Brien, Fergal J; Hoey, David A

    2015-03-27

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24 hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferation and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. PMID:25721667

  11. Dendritic Cell-Mediated In Vivo Bone Resorption

    PubMed Central

    Maitra, Radhashree; Follenzi, Antonia; Yaghoobian, Arash; Montagna, Cristina; Merlin, Simone; Cannizzo, Elvira S.; Hardin, John A.; Cobelli, Neil; Stanley, E. Richard; Santambrogio, Laura

    2013-01-01

    Osteoclasts are resident cells of the bone that are primarily involved in the physiological and pathological remodeling of this tissue. Mature osteoclasts are multinucleated giant cells that are generated from the fusion of circulating precursors originating from the monocyte/macrophage lineage. During inflammatory bone conditions in vivo, de novo osteoclastogenesis is observed but it is currently unknown whether, besides increased osteoclast differentiation from undifferentiated precursors, other cell types can generate a multinucleated giant cell phenotype with bone resorbing activity. In this study, an animal model of calvaria-induced aseptic osteolysis was used to analyze possible bone resorption capabilities of dendritic cells (DCs). We determined by FACS analysis and confocal microscopy that injected GFP-labeled immature DCs were readily recruited to the site of osteolysis. Upon recruitment, the cathepsin K-positive DCs were observed in bone-resorbing pits. Additionally, chromosomal painting identified nuclei from female DCs, previously injected into a male recipient, among the nuclei of giant cells at sites of osteolysis. Finally, osteolysis was also observed upon recruitment of CD11c-GFP conventional DCs in Csf1r–/– mice, which exhibit a severe depletion of resident osteoclasts and tissue macrophages. Altogether, our analysis indicates that DCs may have an important role in bone resorption associated with various inflammatory diseases. PMID:20581147

  12. Treatment with at Homeopathic Complex Medication Modulates Mononuclear Bone Marrow Cell Differentiation

    PubMed Central

    Cesar, Beatriz; Abud, Ana Paula R.; de Oliveira, Carolina C.; Cardoso, Francolino; Bernardi, Raffaello Popa Di; Guimares, Fernando S. F.; Gabardo, Juarez; de Freitas Buchi, Dorly

    2011-01-01

    A homeopathic complex medication (HCM), with immunomodulatory properties, is recommended for patients with depressed immune systems. Previous studies demonstrated that the medication induces an increase in leukocyte number. The bone marrow microenvironment is composed of growth factors, stromal cells, an extracellular matrix and progenitor cells that differentiate into mature blood cells. Mice were our biological model used in this research. We now report in vivo immunophenotyping of total bone marrow cells and ex vivo effects of the medication on mononuclear cell differentiation at different times. Cells were examined by light microscopy and cytokine levels were measured in vitro. After in vivo treatment with HCM, a pool of cells from the new marrow microenvironment was analyzed by flow cytometry to detect any trend in cell alteration. The results showed decreases, mainly, in CD11b and TER-119 markers compared with controls. Mononuclear cells were used to analyze the effects of ex vivo HCM treatment and the number of cells showing ring nuclei, niche cells and activated macrophages increased in culture, even in the absence of macrophage colony-stimulating factor. Cytokines favoring stromal cell survival and differentiation in culture were induced in vitro. Thus, we observe that HCM is immunomodulatory, either alone or in association with other products. PMID:19736221

  13. Mammalian cell cultures for biologics manufacturing.

    PubMed

    Kantardjieff, Anne; Zhou, Weichang

    2014-01-01

    Biopharmaceuticals represent a growing sector of the pharmaceutical industry, and are used for a wide range of indications, including oncology and rheumatology. Cultured mammalian cells have become the predominant expression system for their production, partly due to their ability to complete the posttranslational modifications required for drug safety and efficacy. Over the past decade, the productivity of mammalian cell culture production processes has growth dramatically through improvements in both volumetric and specific productivities. This article presents an overview of the biologics market, including analysis of sales and approvals; as well as a review of industrial production cell lines and cell culture operations. PMID:24258145

  14. Replication of cultured lung epithelial cells

    SciTech Connect

    Guzowski, D.; Bienkowski, R.

    1986-03-05

    The authors have investigated the conditions necessary to support replication of lung type 2 epithelial cells in culture. Cells were isolated from mature fetal rabbit lungs (29d gestation) and cultured on feeder layers of mitotically inactivated 3T3 fibroblasts. The epithelial nature of the cells was demonstrated by indirect immunofluorescent staining for keratin and by polyacid dichrome stain. Ultrastructural examination during the first week showed that the cells contained myofilaments, microvilli and lamellar bodies (markers for type 2 cells). The following changes were observed after the first week: increase in cell size; loss of lamellar bodies and appearance of multivesicular bodies; increase in rough endoplasmic reticulum and golgi; increase in tonafilaments and well-defined junctions. General cell morphology was good for up to 10 wk. Cells cultured on plastic surface degenerated after 1 wk. Cell replication was assayed by autoradiography of cultures exposed to (/sup 3/H)-thymidine and by direct cell counts. The cells did not replicate during the first week; however, between 2-10 wk the cells incorporated the label and went through approximately 6 population doublings. They have demonstrated that lung alveolar epithelial cells can replicate in culture if they are maintained on an appropriate substrate. The coincidence of ability to replicate and loss of markers for differentiation may reflect the dichotomy between growth and differentiation commonly observed in developing systems.

  15. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.

    PubMed

    Shimizu, Kazunori; Ito, Akira; Yoshida, Tatsuro; Yamada, Yoichi; Ueda, Minoru; Honda, Hiroyuki

    2007-08-01

    An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering. PMID:17279563

  16. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.

    TOXLINE Toxicology Bibliographic Information

    Shimizu K; Ito A; Yoshida T; Yamada Y; Ueda M; Honda H

    2007-08-01

    An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering.

  17. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis.

    PubMed

    Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R

    2014-07-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816

  18. Effects of Ulmus davidiana planch on mineralization, bone morphogenetic protein-2, alkaline phosphatase, type I collagen, and collagenase-1 in bone cells.

    PubMed

    Kang, Sung-Koo; Kim, Kap-Sung; Byun, Yu-Seok; Suh, Seok-Jong; Jim, Un-Ho; Kim, Kyung-Ho; Lee, In-Seon; Kim, Cheorl-Ho

    2006-01-01

    Ulmus davidiana Planch (Ulmaceae) (UD) long has been known to have anti-inflammatory and protective effects on damaged tissue, inflammation, and bone among other functions. The herbal medicine also is being used in Oriental medicine to treat osteoporosis. In a preliminary study, treatment of osteoclasts containing long bone cells with the water extract of UD bark prevented the intracellular maturation of cathepsin K (cat K), and thus, it was considered that UD is a pro-drug of a potent bone-resorption inhibitor. To further clarify the role of UD in ossification, we investigated the effects of UD on the proliferation and differentiation of osteoblastic cell lines in vitro. In this study, we assessed the effects of UD on osteoblastic differentiation in nontransformed osteoblastic cells (MC3T3-E1) and rat bone marrow cells. UD enhanced alkaline phosphatase (ALP) activity and mineralization in a dose- and time-dependent fashion. This stimulatory effect of the UD was observed at relatively low doses (significant at 5-50 microg/ml and maximal at 50 microg/ml). Northern blot analysis showed that UD (100 microg/ml) increases in bone morphogenic protein-2 as well as ALP mRNA concentrations in MC3T3-E1 cells. UD slightly increased in type I collagen mRNA abundance throughout the culture period, whereas it markedly inhibited the gene expression of collagenase-1 between days 15 and 20 of culture. These results indicate that UD has anabolic effects on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases such as osteoporosis. PMID:16948504

  19. Good Caco-2 cell culture practices.

    PubMed

    Natoli, Manuela; Leoni, Bruno D; D'Agnano, Igea; Zucco, Flavia; Felsani, Armando

    2012-12-01

    The human Caco-2 cells differentiate spontaneously in culture forming monolayers of mature intestinal enterocytes which have been used as a model of the intestinal barrier for in vitro toxicology studies. Reproducibility problems often reported in literature have been generally ascribed to different culture-related conditions, such as the type of animal serum used, the supplements added to the culture media, the passage number and the source of cell clones. The Caco-2 cell culture protocol here described has been recently optimized in our laboratory, producing a homogeneous and highly polarized monolayer of cells which display many of the characteristics of the intestinal enterocytes. This protocol differs from standard protocols mainly because Caco-2 cells are subcultured when they reach just 50% of confluence, instead of 80%, retaining a high proliferation potential. When this cell population is seeded at high density on filter inserts differentiates almost synchronously and much more homogenously. PMID:22465559

  20. Good Caco-2 cell culture practices.

    TOXLINE Toxicology Bibliographic Information

    Natoli M; Leoni BD; D'Agnano I; Zucco F; Felsani A

    2012-12-01

    The human Caco-2 cells differentiate spontaneously in culture forming monolayers of mature intestinal enterocytes which have been used as a model of the intestinal barrier for in vitro toxicology studies. Reproducibility problems often reported in literature have been generally ascribed to different culture-related conditions, such as the type of animal serum used, the supplements added to the culture media, the passage number and the source of cell clones. The Caco-2 cell culture protocol here described has been recently optimized in our laboratory, producing a homogeneous and highly polarized monolayer of cells which display many of the characteristics of the intestinal enterocytes. This protocol differs from standard protocols mainly because Caco-2 cells are subcultured when they reach just 50% of confluence, instead of 80%, retaining a high proliferation potential. When this cell population is seeded at high density on filter inserts differentiates almost synchronously and much more homogenously.

  1. Ethanol inhibits human bone cell proliferation and function in vitro

    SciTech Connect

    Friday, K.E.; Howard, G.A. )

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.

  2. Multilineage differentiation of human bone marrow mesenchymal stem cells in vitro and in vivo.

    PubMed

    Zheng, You-Hua; Xiong, Wei; Su, Kai; Kuang, Shi-Jun; Zhang, Zhi-Guang

    2013-06-01

    The aim of the present study was to investigate the ability of human bone marrow-derived mesenchymal stem cells (BMSCs) to undergo multilineage differentiation. Human BMSCs were isolated from the ilia of donors by density gradient centrifugation, then purified by adherent separation and cultured in vitro. P3 or P4 BMSC populations were collected and induced for multilineage differentiation into osteoblasts, adipocytes and neuroblasts using an inductive medium in vitro. The BMSCs were cultured in either an osteoblast or chondroblast induction medium, seeded onto porous coral scaffolds and implanted into mice in vivo. The mice were sacrificed by anesthesia overdose at 6 or 9 weeks post-surgery. The scaffolds were then removed for analysis. Lipid vacuoles were observed subsequent to being cultured in an adipogenic medium. These accumulated lipid vacuoles were detected using Sudan Black B and Oil Red O (positive) staining. Deposited calcium was detected using von Kossa and Alizarin Red S (positive) staining subsequent to being cultured in an osteogenic medium. The BMSCs retracted to form neuron-like cells with axon- and dendrite-like processes following induction by ?-mercaptoethanol. The cells were positively stained by toluidine blue and glial fibrillary acidic protein (GFAP) immunohistochemistry. Newly formed bone tissues were observed and islands of cartilage tissue were also formed at 9 weeks post-implantation in vivo. The present study demonstrated that human BMSCs were homogeneous and differentiated with high fidelity to osteogenic, adipogenic, neurogenic or chondrogenic lineages. These cells also form bone and cartilage tissues when implanted in vivo and may therefore be used as seed cells in bone tissue engineering. PMID:23837034

  3. Long Term Maintenance of Myeloid Leukemic Stem Cells Cultured with Unrelated Human Mesenchymal Stromal Cells

    PubMed Central

    Ito, Sawa; Barrett, A. John; Dutra, Amalia; Pak, Evgenia; Miner, Samantha; Keyvanfar, Keyvan; Hensel, Nancy F.; Rezvani, Katayoun; Muranski, Pawel; Liu, Paul

    2015-01-01

    Mesenchymal stromal cells (MSCs) support the growth and differentiation of normal hematopoietic stem cells (HSCs). Here we studied the ability of MSCs to support the growth and survival of leukemic stem cells (LSCs) in vitro. Primary leukemic blasts isolated from the peripheral blood of 8 patients with acute myeloid leukemia (AML) were co-cultured with equal numbers of irradiated MSCs derived from unrelated donor bone marrow, with or without cytokines for up to 6 weeks. Four samples showed CD34+CD38− predominance, and four were predominantly CD34+CD38+. CD34+ CD38− predominant leukemia cells maintained the CD34+ CD38− phenotype and were viable for 6 weeks when co-cultured with MSCs compared to co-cultures with cytokines or medium only, which showed rapid differentiation and loss of the LSC phenotype. In contrast, CD34+ CD38+ predominant leukemic cells maintained the CD34+CD38+ phenotype when co-cultured with MSCs alone, but no culture conditions supported survival beyond 4 weeks. Cell cycle analysis showed that MSCs maintained a higher proportion of CD34+ blasts in G0 than leukemic cells cultured with cytokines. AML blasts maintained in culture with MSCs for up to 6 weeks engrafted NSG mice with the same efficiency as their non-cultured counterparts, and the original karyotype persisted after co-culture. Chemosensitivity and transwell assays suggest MSCs provide pro-survival benefits to leukemic blasts through cell-cell contact. We conclude that MSCs support long-term maintenance of LSCs in vitro. This simple and inexpensive approach will facilitate basic investigation of LSCs and enable screening of novel therapeutic agents targeting LSCs. PMID:25535865

  4. Reconstitution activity of hypoxic cultured human cord blood CD34-positive cells in NOG mice

    SciTech Connect

    Shima, Haruko; Takubo, Keiyo; Iwasaki, Hiroko; Yoshihara, Hiroki; Gomei, Yumiko; Hosokawa, Kentaro; Arai, Fumio; Takahashi, Takao; Suda, Toshio

    2009-01-16

    Hematopoietic stem cells (HSCs) reside in hypoxic areas of the bone marrow. However, the role of hypoxia in the maintenance of HSCs has not been fully characterized. We performed xenotransplantation of human cord blood cells cultured in hypoxic or normoxic conditions into adult NOD/SCID/IL-2R{gamma}{sup null} (NOG) mice. Hypoxic culture (1% O{sub 2}) for 6 days efficiently supported the maintenance of HSCs, although cell proliferation was suppressed compared to the normoxic culture. In contrast, hypoxia did not affect in vitro colony-forming ability. Upregulation of a cell cycle inhibitor, p21, was observed in hypoxic culture. Immunohistochemical analysis of recipient bone marrow revealed that engrafted CD34{sup +}CD38{sup -} cord blood HSCs were hypoxic. Taken together, these results demonstrate the significance of hypoxia in the maintenance of quiescent human cord blood HSCs.

  5. Emulsions Containing Perfluorocarbon Support Cell Cultures

    NASA Technical Reports Server (NTRS)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  6. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells

    PubMed Central

    Schwartz, Robert E.; Reyes, Morayma; Koodie, Lisa; Jiang, Yuehua; Blackstad, Mark; Lund, Troy; Lenvik, Todd; Johnson, Sandra; Hu, Wei-Shou; Verfaillie, Catherine M.

    2002-01-01

    We have derived from normal human, mouse, and rat postnatal bone marrow primitive, multipotent adult progenitor cells (MAPCs) that can differentiate into most mesodermal cells and neuroectodermal cells in vitro and into all embryonic lineages in vivo. Here, we show that MAPCs can also differentiate into hepatocyte-like cells in vitro. Human, mouse, and rat MAPCs, cultured on Matrigel with FGF-4 and HGF, differentiated into epithelioid cells that expressed hepatocyte nuclear factor-3? (HNF-3?), GATA4, cytokeratin 19 (CK19), transthyretin, and ?-fetoprotein by day 7, and expressed CK18, HNF-4, and HNF-1? on days 1428. Virtually all human, as well as a majority of rodent cells stained positive for albumin and CK18 on day 21; 5% (rodent) to 25% (human) cells were binucleated by day 21. These cells also acquired functional characteristics of hepatocytes: they secreted urea and albumin, had phenobarbital-inducible cytochrome p450, could take up LDL, and stored glycogen. MAPCs, which can be expanded in vitro and maintained in an undifferentiated state for more than 100 population doublings, can thus differentiate into cells with morphological, phenotypic, and functional characteristics of hepatocytes. MAPCs may therefore be an ideal cell for in vivo therapies for liver disorders or for use in bioartificial liver devices. PMID:12021244

  7. [The effect of prodigiozan on the postradiational recovery of hemopoiesis in long-term bone morrow cultures of mice of different genotypes].

    PubMed

    Lebedev, V G; Moroz, V V; Deshevo?, Iu B; Lirshchikov, A V

    2005-01-01

    The influence of prodigiozan on the processes of postirradiation recovery of hemopoiesis in long-term bone morrow cultures of two strain mice, having genetic distinctions in the condition of systems of the reparation DNA was investigated. It was showh, that the irradiation of long-term bone morrow cultures of mice reparation-defective strain 101/H resulted in the greater degree damage of early haemopoietic precursors (GM-CFC), reduction of the amount of the immature and of the mature granulocytes and of the decrease of the number of stromall cells in the comparison with the bone morrow of reparation-capable mice (CBA x C57B1)F1. Under the introduction in cultures of prodigiozan for 24 hours prior to an radiation the distinctions of the speed of postirradiation recovery of hemopoiesis substantially smoothed out, and the protective effect of the drag in bone morrow cultures of mice 101/H was comparable to those, marked in bone morrow cultures of reparation-capable strain mice (CBA x C57B1)F1. It is supposed, that this effect can be caused by the activation of the hematopoietic microenvironment cellular elements and inclusion of the mechanisms of intercellular of interactions, which provide stimulation of the regenerative processes at action radioprotective drags and can in the certain degree to compensate the defect of the systems of the reparation DNA. PMID:16454340

  8. Constructing a High Density Cell Culture System

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1996-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  9. Inhibition of hepatic stellate cells by bone marrow-derived mesenchymal stem cells in hepatic fibrosis

    PubMed Central

    Jang, Yoon Ok; Jun, Baek Gyu; Kim, Moon Young; Kwon, Sang Ok

    2015-01-01

    Background/Aims Therapies involving bone-marrow-derived mesenchymal stem cells (BM-MSCs) have considerable potential in the management of hepatic disease. BM-MSCs have been investigated in regenerative medicine due to their ability to secrete various growth factors and cytokines that regress hepatic fibrosis and enhance hepatocyte functionality. The aim of this study was to determine the antifibrosis effect of BM-MSCs on activated hepatic stellate cells (HSCs) and the mechanism underlying how BM-MSCs modulate the function of activated HSCs. Methods We used HSCs in both direct and indirect co-culture systems with BM-MSCs to evaluate the antifibrosis effect of BM-MSCs. The cell viability and apoptosis were evaluated by a direct co-culture system of activated HSCs with BM-MSCs. The activations of both HSCs alone and HSCs with BM-MSCs in the direct co-culture system were observed by immunocytochemistry for alpha-smooth muscle actin (?-SMA). The levels of growth factors and cytokines were evaluated by an indirect co-culture system of activated HSCs with BM-MSCs. Results The BM-MSCs in the direct co-culture system significantly decreased the production of ?-SMA and the viability of activated HSCs, whereas they induced the apoptosis of activated HSCs. The BM-MSCs in the indirect co-culture system decreased the production of transforming growth factor-?1 and interleukin (IL)-6, whereas they increased the production of hepatocyte growth factor and IL-10. These results confirmed that the juxtacrine and paracrine effects of BM-MSCs can inhibit the proliferative, fibrogenic function of activated HSCs and have the potential to reverse the fibrotic process by inhibiting the production of ?-SMA and inducing the apoptosis of HSCs. Conclusions These results have demonstrated that BM-MSCs may exert an antifibrosis effect by modulating the function of activated HSCs. PMID:26157751

  10. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    SciTech Connect

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from