Science.gov

Sample records for bone marrow endothelial

  1. [Origin of Hematopoietic Stem Cells in Bone Marrow--Endothelial to Hematopoietic Transition (EHT)?].

    PubMed

    Wang, Fen; Yuan, Yan; Chen, Tong

    2015-06-01

    In contrast to primitive hematopoiesis, during embryonic definitive hematopoiesis, it has been demonstrated that multilineage hematopoietic stem/progenitor cells (HSPCs) arise from hemogenic endothelium, and the endothelial to hematopoietic transition (EHT) exists within the yolk sac, placenta, AGM, mouse head vascular and extraembryonic vessels. However, whether hemogenic endothelial cells contribute to blood cell development at other sites of definitive hematopoiesis, including fetal liver and bone marrow, remains largely unknown. Recently, more and more researches showed that hematopoiesis within bone marrow had a close relationship with vascular endothelium development, too. This review summarizes the mechanism of EHT during embryo development, and discuss whether EHT exists in adult hematopoiesis. PMID:26117052

  2. Endothelial Barrier and Metabolism: New Kids on the Block Regulating Bone Marrow Vascular Niches.

    PubMed

    Harjes, Ulrike; Verfaillie, Catherine; Carmeliet, Peter

    2016-05-01

    The vasculature of the bone marrow remains poorly characterized, yet crucial to maintain hematopoiesis and retain stem cells in a quiescent state. A recent study by Itkin et al. (2016) in Nature reports how vascular barrier integrity and endothelial cell metabolism regulate hematopoietic stem cell quiescence and leukocyte trafficking. PMID:27165553

  3. Individual Rac GTPases Mediate Aspects of Prostate Cancer Cell and Bone Marrow Endothelial Cell Interactions

    PubMed Central

    Chatterjee, Moumita; Sequeira, Linda; Jenkins-Kabaila, Mashariki; Dubyk, Cara W.; Pathak, Surabhi; van Golen, Kenneth L.

    2011-01-01

    The Rho GTPases organize the actin cytoskeleton and are involved in cancer metastasis. Previously, we demonstrated that RhoC GTPase was required for PC-3 prostate cancer cell invasion. Targeted down-regulation of RhoC led to sustained activation of Rac1 GTPase and morphological, molecular and phenotypic changes reminiscent of epithelial to mesenchymal transition. We also reported that Rac1 is required for PC-3 cell diapedesis across a bone marrow endothelial cell layer. In the current study, we queried whether Rac3 and RhoG GTPases also have a role in prostate tumor cell diapedesis. Using specific siRNAs we demonstrate roles for each protein in PC-3 and C4-2 cell adhesion and diapedesis. We have shown that the chemokine CCL2 induces tumor cell diapedesis via Rac1 activation. Here we find that RhoG partially contributes to CCL2-induced tumor cell diapedesis. We also find that Rac1 GTPase mediates tight binding of prostate cancer cells to bone marrow endothelial cells and promotes retraction of endothelial cells required for tumor cell diapedesis. Finally, Rac1 leads to β1 integrin activation, suggesting a mechanism that Rac1 can mediate tight binding with endothelial cells. Together, our data suggest that Rac1 GTPase is key mediator of prostate cancer cell-bone marrow endothelial cell interactions. PMID:21776386

  4. Transfer of experimental allergic encephalomyelitis to bone marrow chimeras. Endothelial cells are not a restricting element

    SciTech Connect

    Hinrichs, D.J.; Wegmann, K.W.; Dietsch, G.N.

    1987-12-01

    The adoptive transfer of clinical and histopathologic signs of experimental allergic encephalomyelitis (EAE) requires MHC compatibility between cell donor and cell recipient. The results of adoptive transfer studies using F1 to parent bone marrow chimeras as recipients of parental-derived BP-sensitive spleen cells indicate that this restriction is not expressed at the level of the endothelial cell but is confined to the cells of bone marrow derivation. Furthermore, these results indicate that the development of EAE is not dependent on the activity of MHC-restricted cytotoxic cells.

  5. TNFα and Endothelial Cells Modulate Notch Signaling in the Bone Marrow Microenvironment during Inflammation

    PubMed Central

    Fernandez, Luis; Rodriguez, Sonia; Huang, Hui; Chora, Angelo; Mumaw, Christin; Cruz, Eugenia; Pollok, Karen; Cristina, Filipa; Price, Joanne E.; Ferkowicz, Michael J.; Scadden, David T.; Clauss, Matthias; Cardoso, Angelo A.; Carlesso, Nadia

    2009-01-01

    Objective Homeostasis of the hematopoietic compartment is challenged and maintained during conditions of stress by mechanisms that are poorly defined. To understand how the bone marrow (BM) microenvironment influences hematopoiesis, we explored the role of Notch signaling and bone marrow endothelial cells in providing microenvironmental cues to hematopoietic cells in the presence of inflammatory stimuli. Methods The human BM endothelial cell line BMEC and primary human BM endothelial cells were analyzed for expression of Notch ligands and the ability to expand hematopoietic progenitors in an in vitro co-culture system. In vivo experiments were carried out to identify modulation of Notch signaling in BM endothelial and hematopoietic cells in mice challenged with TNFα or LPS, or in Tie2-tmTNFα transgenic mice characterized by constitutive TNFα activation. Results BM endothelial cells were found to express Jagged ligands and to greatly support progenitor’s colony-forming ability. This effect was markedly decreased by Notch antagonists and augmented by increasing levels of Jagged2. Physiologic upregulation of Jagged2 expression on BMEC was observed upon TNFα activation. Injection of TNFα or LPS upregulated 3 to 4 fold Jagged2 expression on murine BM endothelial cells in vivo and resulted in increased Notch activation on murine hematopoietic stem/progenitor cells. Similarly, constitutive activation of endothelial cells in Tie2-tmTNFα mice was characterized by increased expression of Jagged2 and by augmented Notch activation on hematopoietic stem/progenitor cells. Conclusions Our results provide the first evidence that BM endothelial cells promote expansion of hematopoietic progenitor cells by a Notch-dependent mechanism and that TNFα and LPS can modulate the levels of Notch ligand expression and Notch activation in the bone marrow microenvironment in vivo. PMID:18439488

  6. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing

    PubMed Central

    Okuno, Yuji; Nakamura-Ishizu, Ayako; Kishi, Kazuo; Suda, Toshio

    2011-01-01

    Bone marrow-derived cells (BMDCs) contribute to postnatal vascular growth by differentiating into endothelial cells or secreting angiogenic factors. However, the extent of their endothelial differentiation highly varies according to the angiogenic models used. Wound healing is an intricate process in which the skin repairs itself after injury. As a process also observed in cancer progression, neoangiogenesis into wound tissues is profoundly involved in this healing process, suggesting the contribution of BMDCs. However, the extent of the differentiation of BMDCs to endothelial cells in wound healing is unclear. In this study, using the green fluorescent protein-bone marrow chim-eric experiment and high resolution confocal microscopy at a single cell level, we observed no endothelial differentiation of BMDCs in 2 acute wound healing models (dorsal excisional wound and ear punch) and a chronic wound healing model (decubitus ulcer). Instead, a major proportion of BMDCs were macrophages. Indeed, colony-stimulating factor 1 (CSF-1) inhibition depleted approximately 80% of the BMDCs at the wound healing site. CSF-1–mutant (CSF-1op/op) mice showed significantly reduced neoangiogenesis into the wound site, supporting the substantial role of BMDCs as macrophages. Our data show that the proangiogenic effects of macrophages, but not the endothelial differentiation, are the major contribution of BMDCs in wound healing. PMID:21411758

  7. Donor origin of circulating endothelial progenitors after allogeneic bone marrow transplantation.

    PubMed

    Ikpeazu, C; Davidson, M K; Halteman, D; Browning, P J; Brandt, S J

    2000-01-01

    Endothelial cell precursors circulate in blood and express antigens found on hematopoietic stem cells, suggesting that such precursors might be subject to transplantation. To investigate, we obtained adherence-depleted peripheral blood mononuclear cells from 3 individuals who had received a sex-mismatched allogeneic bone marrow transplant (BMT) and cultured the cells on fibronectin-coated plates with endothelial growth factors. The phenotype of the spindle-shaped cells that emerged in culture was characterized by immunofluorescent staining, and the origin of the cells was determined using a polymerase chain reaction (PCR)-based assay for polymorphic short tandem repeats (STRs). The cells manifested a number of endothelial characteristics-such as von Wlllebrand factor, CD31, and Flk-1/KDR expression; Bandeiraea simplicifolia lectin 1 binding; and acetylated low-density lipoprotein uptake-but lacked expression of certain markers of activation or differentiation, including intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and the epitope for the anti-endothelial cell antibody P1H12. For each patient and at all time points studied (ranging from 5 to 52 months after transplantation), STR-PCR analysis showed that cultured cells and nucleated blood cells came exclusively from the bone marrow donor. These results demonstrate that circulating endothelial progenitors are both transplantable and capable of long-term repopulation of human allogeneic BMT recipients. PMID:10905767

  8. CD34+ Cells Represent Highly Functional Endothelial Progenitor Cells in Murine Bone Marrow

    PubMed Central

    Yang, Junjie; Ii, Masaaki; Kamei, Naosuke; Alev, Cantas; Kwon, Sang-Mo; Kawamoto, Atsuhiko; Akimaru, Hiroshi; Masuda, Haruchika; Sawa, Yoshiki; Asahara, Takayuki

    2011-01-01

    Background Endothelial progenitor cells (EPCs) were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow. Methodology/Principal Findings CD34+ cells, c-Kit+/Sca-1+/Lin− (KSL) cells, c-Kit+/Lin− (KL) cells and Sca-1+/Lin− (SL) cells were isolated from mouse bone marrow mononuclear cells (BMMNCs) using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34+ cells showed the lowest EPC colony forming activity, CD34+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others. Conclusion These findings suggest that mouse CD34+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology. PMID:21655289

  9. Bone marrow-derived Kruppel-like Factor 10 Controls Re-endothelialization in Response to Arterial Injury

    PubMed Central

    Wara, Akm Khyrul; Manica, Andre; Marchini, Julio F.; Sun, Xinghui; Icli, Basak; Tesmenitsky, Yevgenia; Croce, Kevin; Feinberg, Mark W.

    2013-01-01

    Objective The objective of this study was to investigate the role of Kruppel-like factor (KLF) 10, a zinc-finger transcription factor, in bone marrow-derived cell responses to arterial endothelial injury. Accumulating evidence indicates that bone marrow-derived progenitors are recruited to sites of vascular injury and contribute to endothelial repair. Approach and Results In response to carotid artery endothelial denudation, KLF10 mRNA expression was markedlyincreased in both bone marrow and circulating lin− progenitor cells. To examine the specific role for KLF10 in arterial re-endothelialization, we used two models of endothelial denudation (wire- and thermal-induced injury) of the carotid artery in WT and KLF10−/− mice. WT mice displayed higher areas of re-endothelialization compared to KLF10−/− mice following endothelial injury using either method. Bone marrow (BM) transplant studies revealed that re-constitution of KLF10−/− mice with WT BM fully rescued the defect in re-endothelialization and increased lin−CD34+KDR+ progenitors in the blood and injured carotid arteries. Conversely, reconstitution of WT mice with KLF10−/−BM re-capitulated the defects in re-endothelialization and peripheral cell progenitors. The media from cultured KLF10−/− BM progenitors was markedly inefficient at promoting endothelial cell growth and migration compared to the media from WT progenitors, indicative of defective paracrine trophic effects from KLF10−/− BM progenitors. Finally, BM-derived KLF10−/− lin− progenitors from reconstituted mice had reduced CXCR4 expression and impaired migratory responses. Conclusions Collectively, these observations demonstrate a protective role for BM-derived KLF10 in paracrine and homing responses important to arterial endothelial injury and highlight KLF10 as a possible therapeutic target to promote endothelial repair in vascular disease states. PMID:23685559

  10. Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications.

    PubMed

    Ahmed, Furqan; Dutta, Naba K; Zannettino, Andrew; Vandyke, Kate; Choudhury, Namita Roy

    2014-04-14

    The aim of this investigation was to understand and engineer the interactions between endothelial cells and the electrospun (ES) polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofiber surfaces and evaluate their potential for endothelialization. Elastomeric PVDF-HFP samples were electrospun to evaluate their potential use as small diameter artificial vascular graft scaffold (SDAVG) and compared with solvent cast (SC) PVDF-HFP films. We examined the consequences of fibrinogen adsorption onto the ES and SC samples for endothelialisation. Bone marrow derived endothelial cells (BMEC) of human origin were incubated with the test and control samples and their attachment, proliferation, and viability were examined. The nature of interaction of fibrinogen with SC and ES samples was investigated in detail using ELISA, XPS, and FTIR techniques. The pristine SC and ES PVDF-HFP samples displayed hydrophobic and ultrahydrophobic behavior and accordingly, exhibited minimal BMEC growth. Fibrinogen adsorbed SC samples did not significantly enhance endothelial cell binding or proliferation. In contrast, the fibrinogen adsorbed electrospun surfaces showed a clear ability to modulate endothelial cell behavior. This system also represents an ideal model system that enables us to understand the natural interaction between cells and their extracellular environment. The research reported shows potential of ES surfaces for artificial vascular graft applications. PMID:24564790

  11. Response of endothelial cells to decellularized extracellular matrix deposited by bone marrow mesenchymal stem cells

    PubMed Central

    Xu, Yue; Yan, Mengdie; Gong, Yihong; Chen, Lei; Zhao, Feng; Zhang, Zhaoqiang

    2014-01-01

    Objective: Evaluate the behavior and function of human umbilical vein endothelial cells (HUVECs) on decellularized extracellular matrix (ECM) deposited by bone marrow mesenchymal stem cells (BMSCs). Methods: Prepared through chemical approach, decellularized ECM was characterized by use of immunofluorescence staining. The morphology, attachment, proliferation and migration of HUVECs cultured on six-well tissue culture plastic (TCP) and decellularized ECM were investigated. Results: Decellularized ECM was successfully prepared without three-dimensional architecture disruption. This biological scaffold is similar to nature vascular ECM, preserved various matrix proteins such as type I collagen, type III collagen and fibronection. HUVECs on decellularized ECM showed well attachment and regular arrangement. Decellularized ECM could also significantly enhance the migration and proliferation potential of HUVECs in contrast to TCP. Conclusion: Deposited by BMSCs, ECM can affect the behavior of endothelial cell and could be used as a promising material in tissue engineering. PMID:25663998

  12. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; ...

  13. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity, nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  14. Quercetin protects against high glucose-induced damage in bone marrow-derived endothelial progenitor cells.

    PubMed

    Zhao, Li-Rong; Du, Yu-Jun; Chen, Lei; Liu, Zhi-Gang; Pan, Yue-Hai; Liu, Jian-Feng; Liu, Bin

    2014-10-01

    Endothelial progenitor cells (EPCs), a group of bone marrow-derived pro-angiogenic cells, contribute to vascular repair after damage. EPC dysfunction exists in diabetes and results in poor wound healing in diabetic patients with trauma or surgery. The aim of the present study was to determine the effect of quercetin, a natural flavonoid on high glucose‑induced damage in EPCs. Treatment with high glucose (40 mM) decreased cell viability and migration, and increased oxidant stress, as was evidenced by the elevated levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase in bone marrow-derived EPCs. Moreover, high glucose reduced the levels of endothelial nitric oxide synthase (eNOS) phosphorylation, nitric oxide (NO) production and intracellular cyclic guanosine monophosphate (cGMP). Quercetin supplement protected against high glucose‑induced impairment in cell viability, migration, oxidant stress, eNOS phosphorylation, NO production and cGMP levels. Quercetin also increased Sirt1 expression in EPCs. Inhibition of Sirt1 by a chemical antagonist sirtinol abolished the protective effect of quercetin on eNOS phosphorylation, NO production and cGMP levels following high glucose stress. To the best of our knowledge, the results provide the first evidence that quercetin protects against high glucose‑induced damage by inducing Sirt1-dependent eNOS upregulation in EPCs, and suggest that quercetin is a promising therapeutic agent for diabetic patients undergoing surgery or other invasive procedures. PMID:25197782

  15. Vascular endothelial growth factor-A signaling in bone marrow-derived endothelial progenitor cells exposed to hypoxic stress.

    PubMed

    Hoffmann, Brian R; Wagner, Jordan R; Prisco, Anthony R; Janiak, Agnieszka; Greene, Andrew S

    2013-11-01

    Bone marrow-derived endothelial progenitor cells (BM-EPCs) are stimulated by vascular endothelial growth factor-A (VEGF-A) and other potent proangiogenic factors. During angiogenesis, an increase in VEGF-A expression stimulates BM-EPCs to enhance endothelial tube formation and contribute to an increase in microvessel density. Hypoxia is known to produce an enhanced angiogenic response and heightened levels of VEGF-A have been seen in oxygen deprived epithelial and endothelial cells, yet the pathways for VEGF-A signaling in BM-EPCs have not been described. This study explores the influence of hypoxia on VEGF-A signaling in rat BM-EPCs utilizing a novel proteomic strategy to directly identify interacting downstream components of the combined VEGF receptor(s) signaling pathways, gene expression analysis, and functional phenotyping. VEGF-A signaling network analysis following liquid chromatographic separation and tandem mass spectrometry revealed proteins related to inositol/calcium signaling, nitric oxide signaling, cell survival, cell migration, and inflammatory responses. Alterations in BM-EPC expression of common angiogenic genes and tube formation in response to VEGF-A during hypoxia were measured and combined with the proteomic analysis to enhance and support the signaling pathways detected. BM-EPC tube formation assays in response to VEGF-A exhibited little tube formation; however, a cell projection/migratory phenotype supported the signaling data. Additionally, a novel assay measuring BM-EPC incorporation into preformed endothelial cell tubes indicated a significant increase of incorporated BM-EPCs after pretreatment with VEGF-A during hypoxia. This study verifies known VEGF-A pathway components and reveals several unidentified mechanisms of VEGF-A signaling in BM-EPCs during hypoxia that may be important for migration to sites of vascular regeneration. PMID:24022223

  16. Vascular endothelial growth factor-A signaling in bone marrow-derived endothelial progenitor cells exposed to hypoxic stress

    PubMed Central

    Hoffmann, Brian R.; Wagner, Jordan R.; Prisco, Anthony R.; Janiak, Agnieszka

    2013-01-01

    Bone marrow-derived endothelial progenitor cells (BM-EPCs) are stimulated by vascular endothelial growth factor-A (VEGF-A) and other potent proangiogenic factors. During angiogenesis, an increase in VEGF-A expression stimulates BM-EPCs to enhance endothelial tube formation and contribute to an increase in microvessel density. Hypoxia is known to produce an enhanced angiogenic response and heightened levels of VEGF-A have been seen in oxygen deprived epithelial and endothelial cells, yet the pathways for VEGF-A signaling in BM-EPCs have not been described. This study explores the influence of hypoxia on VEGF-A signaling in rat BM-EPCs utilizing a novel proteomic strategy to directly identify interacting downstream components of the combined VEGF receptor(s) signaling pathways, gene expression analysis, and functional phenotyping. VEGF-A signaling network analysis following liquid chromatographic separation and tandem mass spectrometry revealed proteins related to inositol/calcium signaling, nitric oxide signaling, cell survival, cell migration, and inflammatory responses. Alterations in BM-EPC expression of common angiogenic genes and tube formation in response to VEGF-A during hypoxia were measured and combined with the proteomic analysis to enhance and support the signaling pathways detected. BM-EPC tube formation assays in response to VEGF-A exhibited little tube formation; however, a cell projection/migratory phenotype supported the signaling data. Additionally, a novel assay measuring BM-EPC incorporation into preformed endothelial cell tubes indicated a significant increase of incorporated BM-EPCs after pretreatment with VEGF-A during hypoxia. This study verifies known VEGF-A pathway components and reveals several unidentified mechanisms of VEGF-A signaling in BM-EPCs during hypoxia that may be important for migration to sites of vascular regeneration. PMID:24022223

  17. Characterization of the response of human bone marrow endothelial cells to in vitro irradiation.

    PubMed

    Gaugler, M H; Squiban, C; Claraz, M; Schweitzer, K; Weksler, B; Gourmelon, P; Van der Meeren, A

    1998-12-01

    Endothelial cell dysfunction is a classic consequence of radiation damage. Bone marrow endothelial cells (BMEC) are a critical component of the stroma in the regulation of haemopoiesis. In animal models, radiation-induced injury of BMEC has been described and a role for BMEC in haemopoietic regeneration after irradiation has been suggested. However, functions of BMEC involved in the haemopoietic regeneration have not been assessed. Therefore we studied the functional response of human BMEC to irradiation using the transformed human BMEC line (TrHBMEC) irradiated with 2. 5 or 10Gy. Our results showed a time- and a dose-dependent increase in damage to irradiated TrHBMEC measured by a decreased number of adherent cells which correlated with increased apoptosis and augmented release of soluble ICAM-1 and von Willebrand factor. 2 Gy irradiated TrHBMEC expressed more ICAM-1 on their surface than non-irradiated cells, whereas no change in VCAM-1, E-selectin and PECAM-1 expression was observed. An increased production of G-CSF, GM-CSF, IL-8, IL-6, IL-1alpha, IL-11, MIP-1alpha and SCF and no production of LIF, TNF-alpha, TPO and IL-3 by 2 Gy irradiated TrHBMEC was observed. The haemopoietic supportive function of TrHBMEC was not altered after a 2 Gy exposure. These results suggest that although radiation induces endothelial cell damage, irradiated cells still support the proliferation and the differentiation of CD34+ haemopoietic cells. PMID:9886309

  18. Role of endothelial nitric oxide in bone marrow-derived progenitor cell mobilization.

    PubMed

    de Resende, M Monterio; Huw, L-Y; Qian, H-S; Kauser, K

    2007-01-01

    Mobilization and recruitment of bone marrow-derived progenitor cells (BMDPCs) play an important role in postischemic tissue repair. Patients with coronary artery disease (CAD) or peripheral vascular disease (PVD) exhibit endothelial dysfunction, and as a result are likely to have a reduced number of progenitor cells mobilized in their peripheral circulation following ischemic injury. Identification of eNOS independent pathways for BMDPC mobilization may have important therapeutic value in this patient population. To identify such mechanisms we investigated the effect of granulocyte-colony stimulating factor (GCSF) and stem cell factor (SCF) in eNOS-KO mice with and without surgical hind-limb ischemia. Our results suggest that BMDPC mobilization can be achieved via activation of NO-independent pathways. PMID:17554503

  19. Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus

    PubMed Central

    De Falco, Elena; Avitabile, Daniele; Totta, Pierangela; Straino, Stefania; Spallotta, Francesco; Cencioni, Chiara; Torella, Anna Rita; Rizzi, Roberto; Porcelli, Daniele; Zacheo, Antonella; Vito, Luca Di; Pompilio, Giulio; Napolitano, Monica; Melillo, Guido; Capogrossi, Maurizio C; Pesce, Maurizio

    2009-01-01

    In diabetic patients and animal models of diabetes mellitus (DM), circulating endothelial progenitor cell (EPC) number is lower than in normoglycaemic conditions and EPC angiogenic properties are inhibited. Stromal cell derived factor-1 (SDF-1) plays a key role in bone marrow (BM) c-kit+ stem cell mobilization into peripheral blood (PB), recruitment from PB into ischemic tissues and differentiation into endothelial cells. The aim of the present study was to examine the effect of DM in vivo and in vitro, on murine BM-derived c-kit+ cells and on their response to SDF-1. Acute hindlimb ischemia was induced in streptozotocin-treated DM and control mice; circulating c-kit+ cells exhibited a rapid increase followed by a return to control levels which was significantly faster in DM than in control mice. CXCR4 expression by BM c-kit+ cells as well as SDF-1 protein levels in the plasma and in the skeletal muscle, both before and after the induction of ischemia, were similar between normoglycaemic and DM mice. However, BM-derived c-kit+ cells from DM mice exhibited an impaired differentiation towards the endothelial phenotype in response to SDF-1; this effect was associated with diminished protein kinase phosphorylation. Interestingly, SDF-1 ability to induce differentiation of c-kit+ cells from DM mice was restored when cells were cultured under normoglycaemic conditions whereas c-kit+ cells from normoglycaemic mice failed to differentiate in response to SDF-1 when they were cultured in hyperglycaemic conditions. These results show that DM diminishes circulating c-kit+ cell number following hindlimb ischemia and inhibits SDF-1-mediated AKT phosphorylation and differentiation towards the endothelial phenotype of BM-derived c-kit+ cells. PMID:20196780

  20. Bone marrow-derived endothelial progenitor cells are involved in aneurysm repair in rabbits.

    PubMed

    Fang, Xinggen; Zhao, Rui; Wang, Kuizhong; Li, Zifu; Yang, Penfei; Huang, Qinghai; Xu, Yi; Hong, Bo; Liu, Jianmin

    2012-09-01

    Endothelial progenitor cells (EPC) are believed to be involved in aneurysmal repair and remodeling. The aim of this study was to test this hypothesis and, if true, explore how EPC contribute to aneurysm repair in a rabbit model of elastase-induced carotid aneurysm. Rabbits were divided randomly into an in situ carotid EPC transfusion group (ISCT group, n=5), and an intravenous EPC transfusion group (IVT group, n=5). Autologous EPC were double-labeled with Hoechst 33342 and 5,6-carboxyfluorescein diacetate succinimidyl ester before injection into the animals in either the carotid artery (ISCT group) or marginal ear veins (IVT group). Three weeks later, labeled cells in the aneurysms were observed with respect to location, adhesion, and growth to detect signs of aneurysm repair. Labeled EPC were detected within the neointima in all five aneurysms in the ISCT group and in three of the five aneurysms in the IVT group, but there was no endothelial growth in the aneurysmal neointima in either group. These results show that bone marrow-derived EPC are involved in the process of aneurysm repair in this rabbit model. PMID:22789632

  1. Bone marrow biopsy

    MedlinePlus

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may be taken from the pelvic or breast bone. Sometimes, other areas are used. Marrow is removed ...

  2. Bone marrow transplant - discharge

    MedlinePlus

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - ...

  3. Diabetes Causes Bone Marrow Endothelial Barrier Dysfunction by Activation of the RhoA–Rho-Associated Kinase Signaling Pathway

    PubMed Central

    Mangialardi, Giuseppe; Katare, Rajesh; Oikawa, Atsuhiko; Meloni, Marco; Reni, Carlotta; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Objective Diabetes mellitus causes bone marrow (BM) microangiopathy. This study aimed to investigate the mechanisms responsible for BM endothelial dysfunction in diabetes mellitus. Methods and Results The analysis of differentially expressed transcripts in BM endothelial cells (BMECs) from type-1 diabetic and nondiabetic mice showed an effect of diabetes mellitus on signaling pathways controlling cell death, migration, and cytoskeletal rearrangement. Type-1 diabetic-BMECs displayed high reactive oxygen species levels, increased expression and activity of RhoA and its associated protein kinases Rho-associated kinase 1/Rho-associated kinase 2, and reduced Akt phosphorylation/activity. Likewise, diabetes mellitus impaired Akt-related BMEC functions, such as migration, network formation, and angiocrine factor-releasing activity, and increased vascular permeability. Moreover, high glucose disrupted BMEC contacts through Src tyrosine kinase phosphorylation of vascular endothelial cadherin. These alterations were prevented by constitutively active Akt (myristoylated Akt), Rho-associated kinase inhibitor Y-27632, and Src inhibitors. Insulin replacement restored BMEC abundance, as assessed by flow cytometry analysis of the endothelial marker MECA32, and endothelial barrier function in BM of type-1 diabetic mice. Conclusion Redox-dependent activation of RhoA/Rho-associated kinase and Src/vascular endothelial cadherin signaling pathways, together with Akt inactivation, contribute to endothelial dysfunction in diabetic BM. Metabolic control is crucial for maintenance of endothelial cell homeostasis and endothelial barrier function in BM of diabetic mice. PMID:23307872

  4. Particle Radiation-Induced Nontargeted Effects in Bone-Marrow-Derived Endothelial Progenitor Cells.

    PubMed

    Sasi, Sharath P; Park, Daniel; Muralidharan, Sujatha; Wage, Justin; Kiladjian, Albert; Onufrak, Jillian; Enderling, Heiko; Yan, Xinhua; Goukassian, David A

    2015-01-01

    Bone-marrow- (BM-) derived endothelial progenitor cells (EPCs) are critical for endothelial cell maintenance and repair. During future space exploration missions astronauts will be exposed to space irradiation (IR) composed of a spectrum of low-fluence protons ((1)H) and high charge and energy (HZE) nuclei (e.g., iron-(56)Fe) for extended time. How the space-type IR affects BM-EPCs is limited. In media transfer experiments in vitro we studied nontargeted effects induced by (1)H- and (56)Fe-IR conditioned medium (CM), which showed significant increase in the number of p-H2AX foci in nonirradiated EPCs between 2 and 24 h. A 2-15-fold increase in the levels of various cytokines and chemokines was observed in both types of IR-CM at 24 h. Ex vivo analysis of BM-EPCs from single, low-dose, full-body (1)H- and (56)Fe-IR mice demonstrated a cyclical (early 5-24 h and delayed 28 days) increase in apoptosis. This early increase in BM-EPC apoptosis may be the effect of direct IR exposure, whereas late increase in apoptosis could be a result of nontargeted effects (NTE) in the cells that were not traversed by IR directly. Identifying the role of specific cytokines responsible for IR-induced NTE and inhibiting such NTE may prevent long-term and cyclical loss of stem and progenitors cells in the BM milieu. PMID:26074973

  5. Bone Marrow Stromal Cells Stimulate an Angiogenic Program that Requires Endothelial MT1-MMP

    PubMed Central

    Kachgal, Suraj; Carrion, Bita; Janson, Isaac A.; Putnam, Andrew J.

    2012-01-01

    Bone marrow-derived stromal/stem cells (BMSCs) have recently been characterized as mediators of tissue regeneration after injury. In addition to preventing fibrosis at the wound site, BMSCs elicit an angiogenic response within the fibrin matrix. The mechanistic interactions between BMSCs and invading endothelial cells (ECs) during this process are not fully understood. Using a three-dimensional, fibrin-based angiogenesis model, we sought to investigate the proteolytic mechanisms by which BMSCs promote vessel morphogenesis. We find that BMSC-mediated vessel formation depends on the proteolytic ability of membrane type 1-matrix metalloproteinase (MT1-MMP). Knockdown of the protease results in a small network of vessels with enlarged lumens. Contrastingly, vessel morphogenesis is unaffected by the knockdown of MMP-2 and MMP-9. Furthermore, we find that BMSC-mediated vessel morphogenesis in vivo follows mechanisms similar to what we observe in vitro. Subcutaneous, cellular fibrin implants in C.B-17/SCID mice form aberrant vasculature when MMPs are inhibited with a broad spectrum chemical inhibitor, and a very minimal amount of vessels when MT1-MMP proteolytic activity is interrupted in ECs. Other studies have debated the necessity of MT1-MMP in the context of vessel invasion in fibrin, but this study clearly demonstrates its requirement in BMSC-mediated angiogenesis. PMID:22262018

  6. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    PubMed Central

    Li, Dequan; Wang, Cong; Chi, Chuang; Wang, Yuanyuan; Zhao, Jing; Fang, Jun; Pan, Jingye

    2016-01-01

    Background. Systemic inflammatory response syndrome (SIRS) accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS) and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs), as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA) to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS) in human umbilical cord endothelial cells (HUVECs) and alveolar macrophages. Results. Our results demonstrated that LPS caused an inflammatory response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor (TLR) 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-α in both cells. Coculture with BMSCs attenuated all of these activities induced by LPS in the two tested cell types. Conclusions. Together, our results demonstrate that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS. PMID:27057093

  7. Bone Marrow Diseases

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem cells ...

  8. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a person's ...

  9. Soluble Vascular Endothelial Cadherin as a New Biomarker of Irradiation in Highly Irradiated Baboons with Bone Marrow Protection.

    PubMed

    Hérodin, Francis; Voir, Diane; Vilgrain, Isabelle; Courçon, Marie; Drouet, Michel; Boittin, François-Xavier

    2016-06-01

    Vascular endothelial cadherin is the main component of adherens junctions enabling cohesion of the endothelial monolayer in vessels. The extracellular part of vascular endothelial cadherin (VE-cadherin) can be cleaved, releasing soluble fragments in blood (sVE-cadherin). In some diseases with endothelial dysfunction, a correlation between increased blood sVE-cadherin levels and disease state has been proposed. Irradiation is known to induce endothelial damage, but new serum biomarkers are needed to evaluate endothelial damage after irradiation. Here, the authors investigated whether sVE-cadherin may be an interesting biomarker of irradiation in highly irradiated baboons with bone marrow protection. sVE-cadherin was detected in the plasma of young as well as old baboons. Plasma sVE-cadherin levels significantly decrease a few days after irradiation but recover in the late time after irradiation. Kinetic analysis of plasma sVE-cadherin levels suggests a correlation with white blood cell counts in both the acute phase of irradiation and during hematopoietic recovery, suggesting that plasma sVE-cadherin levels may be partly linked to the disappearance and recovery of white blood cells. Interestingly, after hematopoietic recovery was completed, sVE-cadherin levels were found to exceed control values, suggesting that plasma sVE-cadherin may represent a new biomarker of endothelial damage or neovascularization in the late time after irradiation. PMID:27115227

  10. Bone marrow aspiration

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  11. Bone marrow (stem cell) donation

    MedlinePlus

    Stem cell transplant; Allogeneic-donation ... There are two types of bone marrow donation: Autologous bone marrow transplant is when people donate their own bone marrow. "Auto" means self. Allogenic bone marrow transplant is when another person ...

  12. Effects of corneal stromal cell- and bone marrow-derived endothelial progenitor cell-conditioned media on the proliferation of corneal endothelial cells

    PubMed Central

    Zhu, Meng-Yu; Yao, Qin-Ke; Chen, Jun-Zhao; Shao, Chun-Yi; Yan, Chen-Xi; Ni, Ni; Fan, Xian-Qun; Gu, Ping; Fu, Yao

    2016-01-01

    AIM To explore the effects of conditioned media on the proliferation of corneal endothelial cells (CECs) and to compare the efficiency of different conditioned media (CM). METHODS Rat CECs, corneal stromal cells (CSCs), bone marrow-derived endothelial progenitor cells (BEPCs), and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro. CM was collected from CSCs, BEPCs, and BMSCs. CECs were cultivated in different culture media. Cell morphology was recorded, and gene and protein expression were analyzed. RESULTS After grown in CM for 5d, CECs in each experimental group remained polygonal, in a cobblestone-like monolayer arrangement. Immunocytofluorescence revealed positive expression of Na+/K+-ATP, aquaporin 1 (AQP1), and zonula occludens 1 (ZO-1). Based on quantitative polymerase chain reaction (qPCR) analysis, Na+/K+-ATP expression in CSC-CM was notably upregulated by 1.3-fold (±0.036) (P<0.05, n=3). The expression levels of ZO-1, neuron specific enolase (NSE), Vimentin, paired homebox 6 (PAX6), and procollagen type VIII (COL8A1) were notably upregulated in each experimental group. Each CM had a positive effect on CEC proliferation, and CSC-CM had the strongest effect on proliferation. CONCLUSION CSC-CM, BEPC-CM, and BMSC-CM not only stimulated the proliferation of CECs, but also maintained the characteristic differentiated phenotypes necessary for endothelial functions. CSC-CM had the most notable effect on CEC proliferation. PMID:27158599

  13. Bone marrow aspiration

    MedlinePlus

    ... creates suction. A small sample of bone marrow fluid flows into the tube. The needle is removed. Pressure and then a bandage are applied to the skin. The bone marrow fluid is sent to a laboratory and examined under ...

  14. Bone Marrow Diseases

    MedlinePlus

    ... that help with blood clotting. With bone marrow disease, there are problems with the stem cells or ... marrow makes too many white blood cells Other diseases, such as lymphoma, can spread into the bone ...

  15. In vivo hematopoietic Myc activation directs a transcriptional signature in endothelial cells within the bone marrow microenvironment.

    PubMed

    Franke, Katharina; Vilne, Baiba; Prazeres da Costa, Olivia; Rudelius, Martina; Peschel, Christian; Oostendorp, Robert A J; Keller, Ulrich

    2015-09-01

    Cancer pathogenesis involves tumor-intrinsic genomic aberrations and tumor-cell extrinsic mechanisms such as failure of immunosurveillance and structural and functional changes in the microenvironment. Using Myc as a model oncogene we established a conditional mouse bone marrow transduction/transplantation model where the conditional activation of the oncoprotein Myc expressed in the hematopoietic system could be assessed for influencing the host microenvironment. Constitutive ectopic expression of Myc resulted in rapid onset of a lethal myeloproliferative disorder with a median survival of 21 days. In contrast, brief 4-day Myc activation by means of the estrogen receptor (ER) agonist tamoxifen did not result in gross changes in the percentage/frequency of hematopoietic lineages or hematopoietic stem/ progenitor cell (HSPC) subsets, nor did Myc activation significantly change the composition of the non-hematopoietic microenvironment defined by phenotyping for CD31, ALCAM, and Sca-1 expression. Transcriptome analysis of endothelial CD45- Ter119- cells from tamoxifen-treated MycER bone marrow graft recipients revealed a gene expression signature characterized by specific changes in the Rho subfamily pathway members, in the transcription-translation-machinery and in angiogenesis. In conclusion, intra-hematopoietic Myc activation results in significant transcriptome alterations that can be attributed to oncogene-induced signals from hematopoietic cells towards the microenvironment, e. g. endothelial cells, supporting the idea that even pre-leukemic HSPC highjack components of the niche which then could protect and support the cancer-initiating population. PMID:26308666

  16. Bone marrow biopsy

    MedlinePlus

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may ... This captures a tiny sample, or core, of bone marrow within the needle. The sample and needle are ...

  17. Imaging of Bone Marrow.

    PubMed

    Lin, Sopo; Ouyang, Tao; Kanekar, Sangam

    2016-08-01

    Bone marrow is the essential for function of hematopoiesis, which is vital for the normal functioning of the body. Bone marrow disorders or dysfunctions may be evaluated by blood workup, peripheral smears, marrow biopsy, plain radiographs, computed tomography (CT), MRI and nuclear medicine scan. It is important to distinguish normal spinal marrow from pathology to avoid missing a pathology or misinterpreting normal changes, either of which may result in further testing and increased health care costs. This article focuses on the diffuse bone marrow pathologies, because the majority of the bone marrow pathologies related to hematologic disorders are diffuse. PMID:27444005

  18. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells.

    PubMed

    Ikhapoh, Izuagie Attairu; Pelham, Christopher J; Agrawal, Devendra K

    2015-01-01

    Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs) differentiate into endothelial cells (ECs) in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II) on EC differentiation and function. MSCs (CD44(+), CD73(+), CD90(+), CD14(-), and CD45(-)) were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL) demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin), VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention. PMID:26106428

  19. Endothelial Progenitor Cell Fraction Contained in Bone Marrow-Derived Mesenchymal Stem Cell Populations Impairs Osteogenic Differentiation

    PubMed Central

    Duttenhoefer, Fabian; Lara de Freitas, Rafael; Loibl, Markus; Bittermann, Gido; Geoff Richards, R.; Alini, Mauro; Verrier, Sophie

    2015-01-01

    In bone tissue engineering (TE) endothelial cell-osteoblast cocultures are known to induce synergies of cell differentiation and activity. Bone marrow mononucleated cells (BMCs) are a rich source of mesenchymal stem cells (MSCs) able to develop an osteogenic phenotype. Endothelial progenitor cells (EPCs) are also present within BMC. In this study we investigate the effect of EPCs present in the BMC population on MSCs osteogenic differentiation. Human BMCs were isolated and separated into two populations. The MSC population was selected through plastic adhesion capacity. EPCs (CD34+ and CD133+) were removed from the BMC population and the resulting population was named depleted MSCs. Both populations were cultured over 28 days in osteogenic medium (Dex+) or medium containing platelet lysate (PL). MSC population grew faster than depleted MSCs in both media, and PL containing medium accelerated the proliferation for both populations. Cell differentiation was much higher in Dex+ medium in both cases. Real-time RT-PCR revealed upregulation of osteogenic marker genes in depleted MSCs. Higher values of ALP activity and matrix mineralization analyses confirmed these results. Our study advocates that absence of EPCs in the MSC population enables higher osteogenic gene expression and matrix mineralization and therefore may lead to advanced bone neoformation necessary for TE constructs. PMID:26491682

  20. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  1. The New Role of CD163 in the Differentiation of Bone Marrow Stromal Cells into Vascular Endothelial-Like Cells

    PubMed Central

    Lu, Wei; Su, Le; Yu, Zhezheng; Zhang, Shangli; Miao, Junying

    2016-01-01

    Bone marrow stromal cells (BMSCs) can differentiate into vascular endothelial cells (VECs). It is regarded as an important solution to cure many diseases, such as ischemic diseases and diabetes. However, the mechanisms underlying BMSC differentiation into VECs are not well understood. Recent reports showed that CD163 expression was associated with angiogenesis. In this study, overexpression of CD163 in BMSCs elevated the protein level of the endothelial-associated markers CD31, Flk-1, eNOS, and VE-cadherin, significantly increased the proportion of Alexa Fluor 488-acetylated-LDL-positive VECs, and promoted angiogenesis on Matrigel. Furthermore, we demonstrated that CD163 acted downstream homeobox containing 1 (Hmbox1) and upstream fibroblast growth factor 2 (FGF-2). These data suggested that CD163 was involved in Hmbox1/CD163/FGF-2 signal pathway in BMSC differentiation into vascular endothelial-like cells. We found a new signal pathway and a novel target for further investigating the gene control of BMSC differentiation into a VEC lineage. PMID:26880943

  2. The New Role of CD163 in the Differentiation of Bone Marrow Stromal Cells into Vascular Endothelial-Like Cells.

    PubMed

    Lu, Wei; Su, Le; Yu, Zhezheng; Zhang, Shangli; Miao, Junying

    2016-01-01

    Bone marrow stromal cells (BMSCs) can differentiate into vascular endothelial cells (VECs). It is regarded as an important solution to cure many diseases, such as ischemic diseases and diabetes. However, the mechanisms underlying BMSC differentiation into VECs are not well understood. Recent reports showed that CD163 expression was associated with angiogenesis. In this study, overexpression of CD163 in BMSCs elevated the protein level of the endothelial-associated markers CD31, Flk-1, eNOS, and VE-cadherin, significantly increased the proportion of Alexa Fluor 488-acetylated-LDL-positive VECs, and promoted angiogenesis on Matrigel. Furthermore, we demonstrated that CD163 acted downstream homeobox containing 1 (Hmbox1) and upstream fibroblast growth factor 2 (FGF-2). These data suggested that CD163 was involved in Hmbox1/CD163/FGF-2 signal pathway in BMSC differentiation into vascular endothelial-like cells. We found a new signal pathway and a novel target for further investigating the gene control of BMSC differentiation into a VEC lineage. PMID:26880943

  3. Exposure to Inhaled Nickel Nanoparticles Causes a Reduction in Number and Function of Bone Marrow Endothelial Progenitor Cells

    PubMed Central

    Liberda, Eric N; Cuevas, Azita K; Gillespie, Patricia A; Grunig, Gabriele; Qu, Qingshan; Chen, Lung Chi

    2016-01-01

    Introduction Particulate matter (PM), specifically nickel (Ni) found on or in PM, has been associated with an increased risk of mortality in human population studies and significant increases in vascular inflammation, generation of reactive oxygen species, altered vasomotor tone, and potentiated atherosclerosis in murine exposures. Recently, murine inhalation of Ni nanoparticles have been shown to cause pulmonary inflammation which affects cardiovascular tissue and potentiates atherosclerosis. These adverse cardiovascular outcomes may be due to the effects of Ni on endothelial progenitor cells (EPCs), endogenous semi-pluripotent stem cells that aid in endothelial repair. Thus, we hypothesize that Ni nanoparticle exposures decrease cell count and cause impairments in function which may ultimately have significant effects on various cardiovascular diseases such as atherosclerosis. Methods Experiments involving inhaled Ni nanoparticle exposures(2 days/5 hrs/day at ~1000 μg/m3, 3 days/5 hrs/day at ~1000 μg/m3, and 5days/5 hrs/day at ~100 μg/m3), were performed in order to quantify bone marrow resident EPCs using flow cytometry in C57BL/6 mice. Plasma levels of SDF-1α and VEGF were assessed by ELISA and in vitro functional assessments of cultured EPCs were conducted. Results and Conclusions Significant EPC count differences between exposure and control groups for Ni nanoparticle exposures were observed. Differences in EPC tube formation and chemotaxis were also observed for the Ni nanoparticle exposed group. Plasma VEGF and SDF-1α differences were not statistically significant. In conclusion, this study shows that inhalation of Ni nanoparticles results in functionally impaired EPCs and reduced number in the bone marrow, which may lead to enhanced progression of atherosclerosis. PMID:20936915

  4. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism.

    PubMed

    Yang, Nianlan; Baban, Babak; Isales, Carlos M; Shi, Xing-Ming

    2015-09-01

    Bone marrow is a reservoir for regulatory T (T(reg)) cells, but how T(reg) cells are regulated in that environment remains poorly understood. We show that expression of glucocorticoid (GC)-induced leucine zipper (GILZ) in bone marrow mesenchymal lineage cells or bone marrow-derived mesenchymal stem cells (BMSCs) increases the production of T(reg) cells via a mechanism involving the up-regulation of developmental endothelial locus-1 (Del-1), an endogenous leukocyte-endothelial adhesion inhibitor. We found that the expression of Del-1 is increased ∼4-fold in the bone tissues of GILZ transgenic (Tg) mice, and this increase is coupled with a significant increase in the production of IL-10 (2.80 vs. 0.83) and decrease in the production of IL-6 (0.80 vs. 2.33) and IL-12 (0.25 vs. 1.67). We also show that GILZ-expressing BMSCs present antigen in a way that favors T(reg) cells. These results indicate that GILZ plays a critical role mediating the crosstalk between BMSCs and T(reg) in the bone marrow microenvironment. These data, together with our previous findings that overexpression of GILZ in BMSCs antagonizes TNF-α-elicited inflammatory responses, suggest that GILZ plays important roles in bone-immune cell communication and BMSC immune suppressive functions. PMID:26038125

  5. Bone Marrow-Derived Endothelial Progenitor Cells Protect Against Scopolamine-Induced Alzheimer-Like Pathological Aberrations.

    PubMed

    Safar, Marwa M; Arab, Hany H; Rizk, Sherine M; El-Maraghy, Shohda A

    2016-04-01

    Vascular endothelial dysfunction plays a key role in the pathogenesis of Alzheimer's disease (AD). Patients with AD have displayed decreased circulating endothelial progenitor cells (EPCs) which repair and maintain the endothelial function. Transplantation of EPCs has emerged as a promising approach for the management of cerebrovascular diseases including ischemic stroke, however, its impact on AD has been poorly described. Thus, the current study aimed at investigating the effects of bone marrow-derived (BM) EPCs transplantation in repeated scopolamine-induced cognitive impairment, an experimental model that replicates biomarkers of AD. Intravenously transplanted BM-EPCs migrated into the brain of rats and improved the learning and memory deficits. Meanwhile, they mitigated the deposition of amyloid plaques and associated histopathological alterations. At the molecular levels, BM-EPCs blunted the increase of hippocampal amyloid beta protein (Aβ), amyloid precursor protein (APP) and reinstated the Aβ-degrading neprilysin together with downregulation of p-tau and its upstream glycogen synthase kinase-3β (GSK-3β). They also corrected the perturbations of neurotransmitter levels including restoration of acetylcholine and associated esterase along with dopamine, GABA, and the neuroexitatory glutamate. Furthermore, BM-EPCs induced behavioral recovery via boosting of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and its upstream cAMP response element binding (CREB), suppression of the proinflammatory tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and upregulation of interleukin-10 (IL-10). BM-EPCs also augmented Nrf2 and seladin-1. Generally, these actions were analogous to those exerted by adipose tissue-derived mesenchymal stem cells (AT-MSCs) and the reference anti-Alzheimer donepezil. For the first time, these findings highlight the beneficial actions of BM-EPCs against the memory

  6. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head

    PubMed Central

    Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei

    2015-01-01

    Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head. PMID:26629044

  7. Role of erythropoietin in the angiogenic activity of bone marrow endothelial cells of MGUS and multiple myeloma patients

    PubMed Central

    Ferrucci, Arianna; Ria, Roberto; Ruggieri, Simona; Racanelli, Vito; Rao, Luigia; Annese, Tiziana; Nico, Beatrice; Vacca, Angelo; Ribatti, Domenico

    2016-01-01

    Increasing evidences suggest several biological roles for erythropoietin and its receptor (Epo and EpoR), unrelated to erythropoiesis, including angiogenesis. Here, we detected the expression of EpoR in bone marrow-derived endothelial cells from monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patients (MGECs and MMECs, respectively) and assessed whether Epo plays a role in MGECs- and MMECs-mediated angiogenesis. We show that EpoR is expressed by both MGECs and MMECs even though at a higher level in the first ones. Both EC types respond to rHuEpo in terms of cell proliferation, whereas other responses, including activation of JAK2/STAT5 and PI3K/Akt pathways, cell migration and capillarogenesis are enhanced by Epo in MGECs, but not in MMECs. In addition, the conditioned media of both Epo-treated cells induce a strong angiogenic response in vivo in the chorioallantoic membrane assay, comparable to that of vascular endothelial growth factor (VEGF). Overall, these data highlight the effect of Epo on MGECs- and MMECs-mediated angiogenesis: MGECs are more responsive to Epo treatment than MMECs, probably because over-angiogenic phenotype of MMECs is already activated by their autocrine/paracrine loops occurring in the “angiogenic switch” from MGUS. PMID:26919105

  8. Role of erythropoietin in the angiogenic activity of bone marrow endothelial cells of MGUS and multiple myeloma patients.

    PubMed

    Lamanuzzi, Aurelia; Saltarella, Ilaria; Ferrucci, Arianna; Ria, Roberto; Ruggieri, Simona; Racanelli, Vito; Rao, Luigia; Annese, Tiziana; Nico, Beatrice; Vacca, Angelo; Ribatti, Domenico

    2016-03-22

    Increasing evidences suggest several biological roles for erythropoietin and its receptor (Epo and EpoR), unrelated to erythropoiesis, including angiogenesis. Here, we detected the expression of EpoR in bone marrow-derived endothelial cells from monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patients (MGECs and MMECs, respectively) and assessed whether Epo plays a role in MGECs- and MMECs-mediated angiogenesis. We show that EpoR is expressed by both MGECs and MMECs even though at a higher level in the first ones. Both EC types respond to rHuEpo in terms of cell proliferation, whereas other responses, including activation of JAK2/STAT5 and PI3K/Akt pathways, cell migration and capillarogenesis are enhanced by Epo in MGECs, but not in MMECs. In addition, the conditioned media of both Epo-treated cells induce a strong angiogenic response in vivo in the chorioallantoic membrane assay, comparable to that of vascular endothelial growth factor (VEGF). Overall, these data highlight the effect of Epo on MGECs- and MMECs-mediated angiogenesis: MGECs are more responsive to Epo treatment than MMECs, probably because over-angiogenic phenotype of MMECs is already activated by their autocrine/paracrine loops occurring in the "angiogenic switch" from MGUS. PMID:26919105

  9. Bone marrow fat.

    PubMed

    Hardouin, Pierre; Pansini, Vittorio; Cortet, Bernard

    2014-07-01

    Bone marrow fat (BMF) results from an accumulation of fat cells within the bone marrow. Fat is not a simple filling tissue but is now considered as an actor within bone microenvironment. BMF is not comparable to other fat depots, as in subcutaneous or visceral tissues. Recent studies on bone marrow adipocytes have shown that they do not appear only as storage cells, but also as cells secreting adipokines, like leptin and adiponectin. Moreover bone marrow adipocytes share the same precursor with osteoblasts, the mesenchymal stem cell. It is now well established that high BMF is associated with weak bone mass in osteoporosis, especially during aging and anorexia nervosa. But numerous questions remain discussed: what is the precise phenotype of bone marrow adipocytes? What is the real function of BMF, and how does bone marrow adipocyte act on its environment? Is the increase of BMF during osteoporosis responsible for bone loss? Is BMF involved in other diseases? How to measure BMF in humans? A better understanding of BMF could allow to obtain new diagnostic tools for osteoporosis management, and could open major therapeutic perspectives. PMID:24703396

  10. Exogenous hTERT gene transfected endothelial progenitor cells from bone marrow promoted angiogenesis in ischemic myocardium of rats

    PubMed Central

    Li, Shang-Hai; Wang, Dan-Dan; Xu, Yun-Jun; Ma, Guo-Dong; Li, Xing-Yue; Liang, Wei-Jun

    2015-01-01

    Objective: To explore the biological behavior and the revascularizative ability of endothelial progenitor cells (EPCs) transfected with human telomerase reverse transcriptase (hTERT) gene. Methods: EPCs were isolated from mononuclear cells in bone marrow by using the method of density gradient centrifugation, then cultured with differential velocity adherent method, EPCs were transfected by recombinant plasmid carrying GFP report gene EGFP-hTERT. The EPCs secretion and proliferation ability were detected before and after transfection. The expression of EPCs mRNA were detected by RT-PCR before and after transfection. The new capillaries of infarct area were observed. Results: After transgenesis, the proliferation of EPCs were increased, and the secretion of NO, LDH, iNOS by EPCs were significantly increased compared to the non-transgenesis group. After transplanted the transfected EPCs into the ischemic myocardial of rats, revascularization were increased obviously. Conclusion: EPCs maintained the original biological characteristics after transfecting exogenous hTER gene, the proliferation and survival rate were up-regulated significantly, and the revascularization ability of EPCs were significantly strengthen. PMID:26550433

  11. Bone marrow culture

    MedlinePlus

    ... 2015 Updated by: Yi-Bin Chen, MD, Leukemia/Bone Marrow Transplant Program, Massachusetts General Hospital, Boston, MA. Also reviewed ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  12. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... Help a Friend Who Cuts? Aspiration and Biopsy: Bone Marrow KidsHealth > For Teens > Aspiration and Biopsy: Bone Marrow Print A A A Text Size What's in ... Risks If You Have Questions What It Is Bone marrow aspirations and biopsies are performed to examine bone ...

  13. Hematopoietic bone marrow cells participate in endothelial, but not epithelial or mesenchymal cell renewal in adult rats

    PubMed Central

    Odörfer, Kathrin I; Egerbacher, Monika; Unger, Nina J; Weber, Karin; Jamnig, Angelika; Lepperdinger, Günter; Kleiter, Miriam; Sandgren, Eric P; Erben, Reinhold G

    2011-01-01

    The extent to which bone marrow (BM) contributes to physiological cell renewal is still controversial. Using the marker human placental alkaline phosphatase (ALPP) which can readily be detected in paraffin and plastic sections by histochemistry or immunohistochemistry, and in ultrathin sections by electron microscopy after pre-embedding staining, we examined the role of endogenous BM in physiological cell renewal by analysing tissues from lethally irradiated wild-type inbred Fischer 344 (F344) rats transplanted (BMT) with unfractionated BM from ALPP-transgenic F344 rats ubiquitously expressing the marker. Histochemical, immunohistochemical and immunoelectron microscopic analysis showed that the proportion of ALPP+ capillary endothelial cells (EC) profoundly increased from 1 until 6 months after BMT in all organs except brain and adrenal medulla. In contrast, pericytes and EC in large blood vessels were ALPP–. Epithelial cells in kidney, liver, pancreas, intestine and brain were recipient-derived at all time-points. Similarly, osteoblasts, chondrocytes, striated muscle and smooth muscle cells were exclusively of recipient origin. The lack of mesenchymal BM-derived cells in peripheral tissues prompted us to examine whether BMT resulted in engraftment of mesenchymal precursors. Four weeks after BMT, all haematopoietic BM cells were of donor origin by flow cytometric analysis, whereas isolation of BM mesenchymal stem cells (MSC) failed to show engraftment of donor MSC. In conclusion, our data show that BM is an important source of physiological renewal of EC in adult rats, but raise doubt whether reconstituted irradiated rats are an apt model for BM-derived regeneration of mesenchymal cells in peripheral tissues. PMID:21091631

  14. Bone marrow aspiration

    PubMed Central

    Bain, B

    2001-01-01

    Bone marrow aspiration biopsies are carried out principally to permit cytological assessment but also for immunophenotypic, cytogenetic, molecular genetic, and other specialised investigations. Often, a trephine biopsy is carried out as part of the same procedure. Bone marrow aspirations should be carried out by trained individuals who are aware of the indications, contraindications, and hazards of the procedure. They should follow a standard operating procedure. The operator should have made an adequate assessment of clinical and haematological features to ensure both that appropriate indications exist and that all relevant tests are performed. For the patient's comfort and safety, the posterior iliac crest is generally the preferred site of aspiration. Films of aspirated marrow and, when appropriate, films of crushed particles should be made and labelled. Once thoroughly dry, films should be fixed and stained. As a minimum, a Romanowsky stain and a Perls' stain are required. A cover slip should be applied. The bone marrow films should be assessed and reported in a systematic manner so that nothing of importance is overlooked, using a low power, then intermediate, then high power objective. A differential count should be performed. An interpretation of the findings, in the light of the clinical and haematological features, should be given. The report should be signed or computer authorised, using a secure password, and issued in a timely manner. Key Words: bone marrow aspirate • haematological diagnosis PMID:11533068

  15. Bone Marrow Aspiration and Biopsy

    MedlinePlus

    ... the bone marrow and capability for blood cell production, including red blood cells (RBCs), white blood cells ( ... can affect the bone marrow and blood cell production. A specialist who has expertise in the diagnosis ...

  16. Bone-marrow transplant - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100112.htm Bone-marrow transplant - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Bone-marrow is a soft, fatty tissue found inside of ...

  17. tPA-MMP-9 Axis Plays a Pivotal Role in Mobilization of Endothelial Progenitor Cells from Bone Marrow to Circulation and Ischemic Region for Angiogenesis

    PubMed Central

    Day, Yuan-Ji

    2016-01-01

    We examined the role of tissue plasminogen activator- (tPA-) matrix metalloproteinase- (MMP-) 9 in mobilizing endothelial progenitor cells (EPCs) from bone marrow to circulation and critical limb ischemia (CLI) region. Male C57BL/6J mice having been irradiated were categorized into wild-type mice (WT) receiving WT bone marrow cell (BMC) transfusion (group 1), WT mice receiving MMP-9 knockout (MMP-9−/−) BMC (group 2), MMP-9−/− receiving MMP-9−/− BMC (group 3), and MMP-9−/− receiving WT BMC (group 4), each of which was subdivided into sham control (SC), CLI, SC-tPA, and CLI-tPA. In groups 1 and 4, by post-CLI 18 h and day 14, circulating EPC (C-kit+/CD31+, Sca-1+/KDR+) levels were highest in CLI-tPA subgroup. In groups 2 and 3, EPC levels did not differ among all subgroups. The EPC levels in bone marrow were higher in groups 2 and 3 than those in groups 1 and 4. By day 14, in animals with CLI, expression levels of proangiogenic factors (CXCR4, SDF-1α, and VEGF) showed similar trends as circulating EPC levels. Moreover, the number of infiltrated neutrophils and macrophages in quadriceps was higher in groups 1 and 4 than groups in 2 and 3. In conclusion, tPA-MMP-9 axis plays a crucial role in EPC mobilization and angiogenesis in experimental CLI. PMID:27610138

  18. tPA-MMP-9 Axis Plays a Pivotal Role in Mobilization of Endothelial Progenitor Cells from Bone Marrow to Circulation and Ischemic Region for Angiogenesis.

    PubMed

    Leu, Steve; Day, Yuan-Ji; Sun, Cheuk-Kwan; Yip, Hon-Kan

    2016-01-01

    We examined the role of tissue plasminogen activator- (tPA-) matrix metalloproteinase- (MMP-) 9 in mobilizing endothelial progenitor cells (EPCs) from bone marrow to circulation and critical limb ischemia (CLI) region. Male C57BL/6J mice having been irradiated were categorized into wild-type mice (WT) receiving WT bone marrow cell (BMC) transfusion (group 1), WT mice receiving MMP-9 knockout (MMP-9(-/-)) BMC (group 2), MMP-9(-/-) receiving MMP-9(-/-) BMC (group 3), and MMP-9(-/-) receiving WT BMC (group 4), each of which was subdivided into sham control (SC), CLI, SC-tPA, and CLI-tPA. In groups 1 and 4, by post-CLI 18 h and day 14, circulating EPC (C-kit+/CD31+, Sca-1+/KDR+) levels were highest in CLI-tPA subgroup. In groups 2 and 3, EPC levels did not differ among all subgroups. The EPC levels in bone marrow were higher in groups 2 and 3 than those in groups 1 and 4. By day 14, in animals with CLI, expression levels of proangiogenic factors (CXCR4, SDF-1α, and VEGF) showed similar trends as circulating EPC levels. Moreover, the number of infiltrated neutrophils and macrophages in quadriceps was higher in groups 1 and 4 than groups in 2 and 3. In conclusion, tPA-MMP-9 axis plays a crucial role in EPC mobilization and angiogenesis in experimental CLI. PMID:27610138

  19. The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

    NASA Astrophysics Data System (ADS)

    Wu, Qinghua; Meng, Ning; Zhang, Yanru; Han, Lei; Su, Le; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying

    2014-09-01

    Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.

  20. Starvation marrow - gelatinous transformation of bone marrow.

    PubMed

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  1. Endothelial cells and hematopoiesis: a light microscopic study of fetal, normal, and pathologic human bone marrow in plastic-embedded sections.

    PubMed

    Islam, A; Glomski, C; Henderson, E S

    1992-07-01

    The origin and morphological identity of hematopoietic progenitor cells, as well as their precursor, the pleuripotential hematopoietic stem cell (HSC), has not been established. Our studies of 2 microns sectioned undecalcified plastic-embedded bone marrow (BM) from healthy human fetuses; normal adults; patients with acute myeloblastic leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic granulocytic leukemia (CGL) in various stages (chronic, accelerated, acute blastic phase, and after autografting); and patients recovering from therapy-induced marrow hypoplasia suggest that proliferative hematopoietic zones exist near the endosteum (endosteal marrow) and the vascular endothelium (capillary and sinus-lining endothelium) and a maturational zone distal to these regions. In some of these areas, morphologically recognizable hematopoietic cells were seen and interpreted as emerging and maturing in a sequential progression, suggesting an origin from the endosteal or endothelial progenitors. In other loci, early hematopoietic cells were seen in close contact with the endosteal or vascular endothelial (VE) cells. This latter relationship suggested that these areas of cellular contact were important and represented sites of cell to cell interaction that may be associated with the liberation of growth factors by endosteal and endothelial cells and their action on hematopoietic progenitor cells. Following treatment-induced hypoplasia, the endosteal and VE cells were seen to modulate, transform, and migrate into the surrounding empty and edematous marrow space as fibroblasts. Later, as hemopoietic regeneration began, clusters of regenerating hematopoietic cells were seen adjacent to bone trabecule (BT) and near the vascular endothelium. We postulate that endosteal and VE cells are the equivalent of embryonal-stage, undifferentiated mesenchyme and, under the appropriate regulatory influence, are capable of modulation and transformation (differentiation) into stromal

  2. Bone marrow trephine biopsy

    PubMed Central

    Bain, B

    2001-01-01

    Trephine biopsies of the bone marrow should be carried out, when clinically indicated, by trained individuals following a standard operating procedure. A bone marrow aspiration should be performed as part of the same procedure. For patient safety and convenience, biopsies are usually performed on the posterior iliac crest. The biopsy specimen should measure at least 1.6 cm and, if it does not, consideration should be given to repeating the procedure, possibly on the contralateral iliac crest. If bone marrow aspiration is found to be impossible, imprints from the biopsy specimen should be obtained. Otherwise, the specimen is placed immediately into fixative and after fixation is embedded in a resin or, more usually, decalcified and embedded in paraffin wax. Thin sections are cut and are stained, as a minimum, with haematoxylin and eosin and with a reticulin stain. A Giemsa stain is also desirable. A Perls' stain does not often give useful information and is not essential in every patient. The need for other histochemical or immunohistochemical stains is determined by the clinical circumstances and the preliminary findings. Trephine biopsy sections should be examined and reported in a systematic manner, assessment being made of the bones, the vessels and stroma, and the haemopoietic and any lymphoid or other tissue. Assessment should begin with a very low power objective, the entire section being examined. Further examination is then done with an intermediate and high power objective. Ideally, reporting of trephine biopsy sections should be done by an individual who is competent in both histopathology and haematology, and who is able to make an appropriate assessment of both the bone marrow aspirate and the trephine biopsy sections. When this is not possible, there should be close consultation between a haematologist and a histopathologist. The report should both describe the histological findings and give an interpretation of their importance. A signed or computer

  3. Correlation of ionizing irradiation-induced late pulmonary fibrosis with long-term bone marrow culture fibroblast progenitor cell biology in mice homozygous deletion recombinant negative for endothelial cell adhesion molecules.

    PubMed

    Epperly, Michael W; Guo, Hongliang; Shields, Donna; Zhang, Xichen; Greenberger, Joel S

    2004-01-01

    Ionizing irradiation damage to the lung is associated with an acute inflammatory reaction, followed by a latent period and then late effects including predominantly pulmonary fibrosis. The cells mediating fibrosis have recently been shown to derive from the bone marrow hematopoietic microenvironment. Initiation of late pulmonary irradiation lung damage has been correlated with up-regulation of VCAM-1 and ICAM-1 in pulmonary endothelial cells, followed by infiltration of macrophages and bone marrow-derived fibroblasts forming the fibrotic lesions of organizing alveolitis/fibrosis. To determine whether the absence of expression of VCAM-1, ICAM-1, or other adhesion molecules known to be relevant to inflammatory cell attachment to lung endothelial cells was associated with a decrease in irradiation-induced lung fibrosis, homozygous deletion recombinant knockout mice lacking each of several adhesion molecules were tested compared to littermates for survival and development of organizing alveolitis following 20 Gy irradiation to both lungs. Bone marrow culture longevity has been shown to be a parameter, which correlates with both hematopoietic stem cell reserve and the integrity of fibroblast progenitors of the supportive hematopoietic microenvironment; radiation lung survival data were correlated to longevity of hematopoiesis in long-term bone marrow cultures established from tibia and femur bone marrow of the same mice. Homozygous deletion recombinant negative mice including VCAM-1-/-, ICAM-1-/-, E-Selectin-/-, or L-Selectin-/- were irradiated to 20 Gy to both lungs and followed for survival and percent organizing alveolitis at time of death compared to each normal littermate. A significant increase in survival (median 190 days) was detected with L-Selectin-/- compared to littermate control mice (median 140 days) or other groups. Long-term bone marrow cultures from L-Selectin-/- mice showed no detectable difference in marrow fibroblasts or hematopoietic cell biology

  4. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

    SciTech Connect

    Aguirre, A.; Planell, J.A.; Engel, E.

    2010-09-17

    Research highlights: {yields} BM-EPCs and MSCs establish complex, self-organizing structures in co-culture. {yields} Co-culture decreases proliferation by cellular self-regulatory mechanisms. {yields} Co-cultured cells present an activated proangiogenic phenotype. {yields} qRT-PCR and cluster analysis identify new target genes playing important roles. -- Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

  5. The Role of Vascular Actors in Two Dimensional Dialogue of Human Bone Marrow Stromal Cell and Endothelial Cell for Inducing Self-Assembled Network

    PubMed Central

    Li, Haiyan; Daculsi, Richard; Grellier, Maritie; Bareille, Reine; Bourget, Chantal; Remy, Murielle; Amedee, Joëlle

    2011-01-01

    Angiogenesis is very important for vascularized tissue engineering. In this study, we found that a two-dimensional co-culture of human bone marrow stromal cell (HBMSC) and human umbical vein endothelial cell (HUVEC) is able to stimulate the migration of co-cultured HUVEC and induce self-assembled network formation. During this process, expression of vascular endothelial growth factor (VEGF165) was upregulated in co-cultured HBMSC. Meanwhile, VEGF165-receptor2 (KDR) and urokinase-type plasminogen activator (uPA) were upregulated in co-cultured HUVEC. Functional studies show that neutralization of VEGF165 blocked the migration and the rearrangement of the cells and downregulated the expression of uPA and its receptor. Blocking of vascular endothelial-cadherin (VE-cad) did not affect the migration of co-cultured HUVEC but suppressed the self-assembled network formation. In conclusion, co-cultures upregulated the expression of VEGF165 in co-cultured HBMSC; VEGF165 then activated uPA in co-cultured HUVEC, which might be responsible for initiating the migration and the self-assembled network formation with the participation of VE-cad. All of these results indicated that only the direct contact of HBMSC and HUVEC and their respective dialogue are sufficient to stimulate secretion of soluble factors and to activate molecules that are critical for self-assembled network formation which show a great application potential for vascularization in tissue engineering. PMID:21304816

  6. Bone Marrow Derived Eosinophil Cultures

    PubMed Central

    Lu, Thomas X.; Rothenberg, Marc E.

    2016-01-01

    Eosinophils are multifunctional effector cells implicated in the pathogenesis of a variety of diseases including asthma, eosinophil gastrointestinal disorders and helminth infection. Mouse bone marrow derived progenitor cells can be differentiated into eosinophils following IL-5 exposure. These bone marrow derived eosinophils are fully differentiated at the end of a 14 day culture based on morphology and expression of molecular markers.

  7. Hypoxia pretreatment of bone marrow mesenchymal stem cells facilitates angiogenesis by improving the function of endothelial cells in diabetic rats with lower ischemia.

    PubMed

    Liu, Jiejie; Hao, Haojie; Xia, Lei; Ti, Dongdong; Huang, Hong; Dong, Liang; Tong, Chuan; Hou, Qian; Zhao, Yali; Liu, Huiling; Fu, Xiaobing; Han, Weidong

    2015-01-01

    Endothelial dysfunction induced by unordered metabolism results in vascular reconstruction challenges in diabetic lower limb ischemia (DLLI). Mesenchymal stem cells (MSCs) are multipotent secretory cells that are suitable for clinical DLLI treatment, but their use has been hampered by poor survival after injection. Hypoxia can significantly enhance the capacity of MSCs to secrete angiogenic factors. We investigated transient hypoxia pretreatment of MSCs to facilitate revascularization in DLLI. Rat bone marrow MSCs (BM-MSCs) were cultured at different oxygen concentrations for varying time periods. The results indicated that transient pretreatment (5% O2, 48 h) not only increased the expression of VEGF-1α, ANG, HIF-1α and MMP-9 in BM-MSCs as assessed by real-time RT-PCR, but also increased the expression of Bcl-2 as determined by western blotting. The transplantation of pretreated BM-MSCs into rats with DLLI demonstrated accelerated vascular reconstruction when assayed by angiography and immunohistochemistry. CM-Dil-labeled tracer experiments indicated that the survival of BM-MSCs was significantly improved, with approximately 5% of the injected cells remaining alive at 14 days. The expression levels of VEGF-1α, MMP-9 and VEGF-R were significantly increased, and the expression of pAKT was up-regulated in ischemic muscle. Double immunofluorescence studies confirmed that the pretreated BM-MSCs promoted the proliferation and inhibited the apoptosis of endothelial cells. In vitro, pretreated BM-MSCs increased the migratory and tube forming capacity of endothelial cells (ECs). Hypoxia pretreatment of BM-MSCs significantly improved angiogenesis in response to tissue ischemia by ameliorating endothelial cell dysfunction and is a promising therapeutic treatment for DLLI. PMID:25996677

  8. Surface Phosphatidylserine Is Responsible for the Internalization on Microvesicles Derived from Hypoxia-Induced Human Bone Marrow Mesenchymal Stem Cells into Human Endothelial Cells

    PubMed Central

    Liu, Chaozhong; Wang, Lisheng; Xiao, Fengjun; Zhang, Hongchao

    2016-01-01

    Background Previous data have proven that microvesicles derived from hypoxia-induced mesenchymal stem cells (MSC-MVs) can be internalized into endothelial cells, enhancing their proliferation and vessel structure formation and promoting in vivo angiogenesis. However, there is a paucity of information about how the MSC-MVs are up-taken by endothelial cells. Methods MVs were prepared from the supernatants of human bone marrow MSCs that had been exposed to a hypoxic and/or serum-deprivation condition. The incorporation of hypoxia-induced MSC-MVs into human umbilical cord endothelial cells (HUVECs) was observed by flow cytometry and confocal microscopy in the presence or absence of recombinant human Annexin-V (Anx-V) and antibodies against human CD29 and CD44. Further, small interfering RNA (siRNA) targeted at Anx-V and PSR was delivered into HUVECs, or HUVECs were treated with a monoclonal antibody against phosphatidylserine receptor (PSR) and the cellular internalization of MVs was re-assessed. Results The addition of exogenous Anx-V could inhibit the uptake of MVs isolated from hypoxia-induced stem cells by HUVECs in a dose- and time-dependent manner, while the anti-CD29 and CD44 antibodies had no effect on the internalization process. The suppression was neither observed in Anx-V siRNA-transfected HUVECs, however, addition of anti-PSR antibody and PSR siRNA-transfected HUVECs greatly blocked the incorporation of MVs isolated from hypoxia-induced stem cells into HUVECs. Conclusion PS on the MVs isolated from hypoxia-induced stem cells is the critical molecule in the uptake by HUVECs. PMID:26808539

  9. TNF-TNFR2/p75 Signaling Inhibits Early and Increases Delayed Nontargeted Effects in Bone Marrow-derived Endothelial Progenitor Cells*

    PubMed Central

    Sasi, Sharath P.; Song, Jin; Park, Daniel; Enderling, Heiko; McDonald, J. Tyson; Gee, Hannah; Garrity, Brittany; Shtifman, Alexander; Yan, Xinhua; Walsh, Kenneth; Natarajan, Mohan; Kishore, Raj; Goukassian, David A.

    2014-01-01

    TNF-α, a pro-inflammatory cytokine, is highly expressed after being irradiated (IR) and is implicated in mediating radiobiological bystander responses (RBRs). Little is known about specific TNF receptors in regulating TNF-induced RBR in bone marrow-derived endothelial progenitor cells (BM-EPCs). Full body γ-IR WT BM-EPCs showed a biphasic response: slow decay of p-H2AX foci during the initial 24 h and increase between 24 h and 7 days post-IR, indicating a significant RBR in BM-EPCs in vivo. Individual TNF receptor (TNFR) signaling in RBR was evaluated in BM-EPCs from WT, TNFR1/p55KO, and TNFR2/p75KO mice, in vitro. Compared with WT, early RBR (1–5 h) were inhibited in p55KO and p75KO EPCs, whereas delayed RBR (3–5 days) were amplified in p55KO EPCs, suggesting a possible role for TNFR2/p75 signaling in delayed RBR. Neutralizing TNF in γ-IR conditioned media (CM) of WT and p55KO BM-EPCs largely abolished RBR in both cell types. ELISA protein profiling of WT and p55KO EPC γ-IR-CM over 5 days showed significant increases in several pro-inflammatory cytokines, including TNF-α, IL-1α (Interleukin-1 alpha), RANTES (regulated on activation, normal T cell expressed and secreted), and MCP-1. In vitro treatments with murine recombinant (rm) TNF-α and rmIL-1α, but not rmMCP-1 or rmRANTES, increased the formation of p-H2AX foci in nonirradiated p55KO EPCs. We conclude that TNF-TNFR2 signaling may induce RBR in naïve BM-EPCs and that blocking TNF-TNFR2 signaling may prevent delayed RBR in BM-EPCs, conceivably, in bone marrow milieu in general. PMID:24711449

  10. In Vivo Vascularization of Endothelial Cells Derived from Bone Marrow Mesenchymal Stem Cells in SCID Mouse Model

    PubMed Central

    Allameh, Abdolamir; Jazayeri, Maryam; Adelipour, Maryam

    2016-01-01

    Objective In vivo and in vitro stem cell differentiation into endothelial cells is a promising area of research for tissue engineering and cell therapy. Materials and Methods We induced human mesenchymal stem cells (MSCs) to differentiate to endothelial cells that had the ability to form capillaries on an extracellular matrix (ECM) gel. Thereafter, the differentiated endothelial cells at early stage were characterized by expression of specific markers such as von Willebrand factor (vWF), vascular endothelial growth factor (VEGF) receptor 2, and CD31. In this experimental model, the endothelial cells were transplanted into the groins of severe combined immunodeficiency (SCID) mice. After 30 days, we obtained tissue biopsies from the transplantation sites. Biopsies were processed for histopathological and double immunohistochemistry (DIHC) staining. Results Endothelial cells at the early stage of differentiation expressed endothelial markers. Hematoxylin and eosin (H&E) staining, in addition to DIHC demonstrated homing of the endothelial cells that underwent vascularization in the injected site. Conclusion The data clearly showed that endothelial cells at the early stage of differentiation underwent neovascularization in vivo in SCID mice. Endothelial cells at their early stage of differentiation have been proven to be efficient for treatment of diseases with impaired vasculogenesis. PMID:27540522

  11. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... A Recipes En Español Teachers - Looking for Health Lessons? Visit KidsHealth in the Classroom What Other Parents ... bone marrow sample for procedures (such as a stem cell transplant ) or other testing (such as chromosomal ...

  12. In vitro interactions between rat bone marrow-derived endothelial progenitor cells and hepatic stellate cells: interaction between EPCs and HSCs.

    PubMed

    Liu, Feng; Liu, Zhi-da; Wu, Nan; Wang, Jiang-Hua; Zhang, Heng-Hui; Fei, Ran; Cong, Xu; Chen, Hong-song; Wei, Lai

    2013-08-01

    Transplantation of bone marrow (BM)-derived endothelial progenitor cells (EPCs) has been reported to improve liver fibrosis, but there is no direct evidence for the mechanism of improvement. We investigated the mechanism in vitro by coculturing BM-derived EPCs with activated hepatic stellate cells (HSCs) to mimic the hepatic environment. EPCs and HSCs were cultured alone and indirectly cocultured at a 1:1 ratio in a Transwell system. The characteristics of HSCs and EPCs were examined at different time points. An invasion assay showed the time-dependent effect on degradation of the extracellular matrix (ECM) layer in EPCs cultured alone. Real-time PCR and enzyme-linked immunosorbent assay analysis revealed that EPCs served as a source of matrix metalloproteinase-9 (MMP-9), and MMP-9 expression levels significantly increased during the 2 d of coculture. CFSE labeling showed that EPCs inhibited proliferation of HSCs. Annexin-V/PI staining, erminal deoxynucleotidyl transferase X-dUTP nick end labeling analysis, and (cleaved) caspase-3 activity revealed that EPCs promoted HSC apoptosis. However, the proliferation and apoptosis of EPCs were unaffected by cocultured HSCs. Coculturing increased the expression of inducible nitric oxide synthase, vascular endothelial growth factor, and hepatocyte growth factor (HGF) in EPCs, promoted differentiation of EPCs, and reduced the expression of types I and III collagens and transforming growth factor beta 1. Knockdown of HGF expression attenuated EPC-induced activation of HSC apoptosis and profibrotic ability. These findings demonstrated that BM-derived EPCs could degrade ECM, promoting activated HSC apoptosis, suppressing proliferation and profibrotic ability of activated HSCs. HGF secretion by EPCs plays a key role in inducing activated HSC apoptosis and HSC profibrotic ability. PMID:23722413

  13. The transcription factor E74-like factor controls quiescence of endothelial cells and their resistance to myeloablative treatments in bone marrow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regeneration of the hematopoietic system in bone marrow after chemotherapy depends on a balance between the quiescence and proliferation of lineage-specific progenitor cells. Even though the vascular network in bone is damaged by cytoablation, the transcriptional control of quiescence in endothe...

  14. Whole genome expression profiling and screening for differentially expressed cytokine genes in human bone marrow endothelial cells treated with humoral inhibitors in liver cirrhosis.

    PubMed

    Gao, Bo; Sun, Wang; Wang, Xianqi; Jia, Xu; Ma, Biao; Chang, Yu; Zhang, Weihui; Xue, Dongbo

    2013-11-01

    Bone marrow endothelial cells (BMECs) are important components of the hematopoietic microenvironment in bone marrow, and they can secrete several types of cytokines to regulate the functions of hematopoietic stem/progenitor cells. To date, it is unknown whether BMECs undergo functional changes and lead to hematopoietic abnormalities in cases of liver cirrhosis (LC). In the present study, whole genome microarray analysis was carried out to detect differentially expressed genes in human BMECs treated for 48 h with medium supplemented with 20% pooled sera from 26 patients with LC or 10 healthy volunteers as the control group. A total of 1,106 upregulated genes and 766 downregulated genes were identified. In Gene Ontology analysis, the most significant categories of genes were revealed. A large number of the upregulated genes were involved in processes, such as cell-cell adhesion, apoptosis and cellular response to stimuli and the downregulated genes were involved in the negative regulation of secretion, angiogenesis, blood vessel development and cell growth. Pathway analysis revealed that the upregulated genes were either cell adhesion molecules or parts of the apoptotic signaling pathway and the downregulated genes were involved in the Wnt signaling pathway and MAPK signaling pathway. These were the pathways with the highest enrichment scores. The results of apoptosis assays revealed that the humoral inhibitors in the sera of patients with LC induced the apoptosis of BMECs, which confirmed the accuracy of bioinformatic analysis. Moreover, we screened and verified 21 differentially expressed cytokine genes [transforming growth factor (TGF)B1, tumor necrosis factor (TNF)B, TNF receptor superfamily, member 11b (TNFRSF11B), TNF (ligand) superfamily, member 13b (TNFSF13B), interleukin (IL)1A, IL6, IL11, IL17C, IL24, family with sequence similarity 3, member B (FAM3B), Fas ligand (FASLG), matrix metallopeptidase (MMP)3, MMP15, vitronectin (VTN), insulin-like growth factor

  15. [Inherited bone marrow failure syndromes].

    PubMed

    Okuno, Yusuke

    2016-02-01

    Inherited bone marrow failure syndromes comprise a series of disorders caused by various gene mutations. Genetic tests were formerly difficult to perform because of the large size and number of causative genes. However, recent advances in next-generation sequencing has enabled simultaneous testing of all causative genes to be performed at an acceptable cost. We collaboratively conducted a series of whole-exome sequencing studies of patients with inherited bone marrow failure syndromes and discovered RPS27/RPL27 and FANCT as causative genes of Diamond-Blackfan anemia and Fanconi anemia, respectively. Furthermore, we established a target gene sequencing system to cover 189 genes associated with pediatric blood diseases to assist genetic diagnoses in clinical practice. In this review, discovery of new causative genes and possible roles of next-generation sequencing in the genetic diagnosis of inherited bone marrow failure syndromes are discussed. PMID:26935625

  16. Mechanics of intact bone marrow.

    PubMed

    Jansen, Lauren E; Birch, Nathan P; Schiffman, Jessica D; Crosby, Alfred J; Peyton, Shelly R

    2015-10-01

    The current knowledge of bone marrow mechanics is limited to its viscous properties, neglecting the elastic contribution of the extracellular matrix. To get a more complete view of the mechanics of marrow, we characterized intact yellow porcine bone marrow using three different, but complementary techniques: rheology, indentation, and cavitation. Our analysis shows that bone marrow is elastic, and has a large amount of intra- and inter-sample heterogeneity, with an effective Young׳s modulus ranging from 0.25 to 24.7 kPa at physiological temperature. Each testing method was consistent across matched tissue samples, and each provided unique benefits depending on user needs. We recommend bulk rheology to capture the effects of temperature on tissue elasticity and moduli, indentation for quantifying local tissue heterogeneity, and cavitation rheology for mitigating destructive sample preparation. We anticipate the knowledge of bone marrow elastic properties for building in vitro models will elucidate mechanisms involved in disease progression and regenerative medicine. PMID:26189198

  17. Bone-marrow transplant - series (image)

    MedlinePlus

    Bone-marrow transplants are performed for: deficiencies in red blood cells (aplastic anemia) and white blood cells (leukemia or ... Bone-marrow transplants prolong the life of patients who might otherwise die. As with all major organ transplants, however, ...

  18. Bone Marrow Transplants: "Another Possibility at Life"

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Bone Marrow Transplants “Another Possibility at Life” Past Issues / Summer ... year, and, for 16,000 of them, a bone marrow transplant is the best treatment option, notes Susan ...

  19. Planning for a Bone Marrow Transplant (BMT)

    MedlinePlus

    ... us Digg Facebook Google Bookmarks Planning for a Bone Marrow Transplant (BMT) If you're going to have ... to a friend or family member undergoing a bone marrow or cord blood transplant. Help Your Loved One ...

  20. Transplant Outcomes (Bone Marrow and Cord Blood)

    MedlinePlus

    ... reports show patient survival and transplant data of bone marrow and umbilical cord blood transplants in the transplant ... Data by Center Report —View the number of bone marrow and cord blood transplants performed at a specific ...

  1. Bone scan appearances following bone and bone marrow biopsy

    SciTech Connect

    McKillop, J.H.; Maharaj, D.; Boyce, B.F.; Fogelman, I.

    1984-01-01

    Bone marrow and bone biopsies are performed not infrequently in patients referred for bone scans and represent a potential cause of a ''false positive'' focal abnormality on the bone scan. The authors have therefore examined the scan appearances in a series of patients who had undergone either sternal marrow biopsy, (Salah needle, diameter 1.2 mm) trephine iliac crest marrow biopsy (Jamshidi 11 gauge needle, diameter 3.5 mm) or a transiliac bone biopsy (needle diameter 8 mm). Of 18 patients studied 1 to 45 days after sternal marrow 17 had normal scan appearances at the biopsy site and 1 had a possible abnormality. None of 9 patients studied 4 to 19 days after trephine iliac crest marrow biopsy had a hot spot at the biopsy site. A focal scan abnormality was present at the biopsy site in 9/11 patients studied 5 to 59 days after a trans iliac bone biopsy. No resultant scan abnormality was seen in 4 patients imaged within 3 days of the bone biopsy or in 3 patients imaged 79 to 138 days after the procedure. Bone marrow biopsy of the sternum or iliac crest does not usually cause bone scan abnormalities. A focal abnormality at the biopsy site is common in patients imaged 5 days to 2 months after bone biopsy. The gauge of the needle employed in the biopsy and thus the degree of bone trauma inflicted, is likely to be main factor determining the appearance of bone scan abnormalities at the biopsy site.

  2. Bone scan appearances following biopsy of bone and bone marrow

    SciTech Connect

    McKillop, J.H.; Maharaj, D.; Boyce, B.F.; Fogelman, I.

    1984-10-01

    The influence of sternal marrow aspiration, iliac crest marrow aspiration, and iliac crest bone biopsy on bone scan appearances was examined. Eighteen patients were scanned a mean of 9.9 days after sternal marrow aspiration with a Salah needle. Bone scans obtained in 9 patients a mean of 10 days aftr iliac crest trephine marrow biopsy with a Jamshidi needle showed no abnormality at the biopsy site. In 18 patients with metabolic bone disease who had undergone iliac crest bone biopsy with an 8 mm needle, a scan abnormality due to the biopsy was usually present when the interval between the biopsy and the scan was 5 days to 2 months. Patients who were scanned within 3 days of iliac crest bone biopsy or more than 2 months after biopsy had normal scan appearance at the biopsy site.

  3. Involvement of marrow-derived endothelial cells in vascularization.

    PubMed

    Larrivée, B; Karsan, A

    2007-01-01

    Until recently, the adult neovasculature was thought to arise only through angiogenesis, the mechanism by which new blood vessels form from preexisting vessels through endothelial cell migration and proliferation. However, recent studies have provided evidence that postnatal neovasculature can also arise though vasculogenesis, a process by which endothelial progenitor cells are recruited and differentiate into mature endothelial cells to form new blood vessels. Evidence for the existence of endothelial progenitors has come from studies demonstrating the ability of bone marrow-derived cells to incorporate into adult vasculature. However, the exact nature of endothelial progenitor cells remains controversial. Because of the lack of definitive markers of endothelial progenitors, the in vivo contribution of progenitor cells to physiological and pathological neovascularization remains unclear. Early studies reported that endothelial progenitor cells actively integrate into the adult vasculature and are critical in the development of many types of vascular-dependent disorders such as neoplastic progression. Moreover, it has been suggested that endothelial progenitor cells can be used as a therapeutic strategy aimed at promoting vascular growth in a variety of ischemic diseases. However, increasing numbers of studies have reported no clear contribution of endothelial progenitors in physiological or pathological angiogenesis. In this chapter, we discuss the origin of the endothelial progenitor cell in the embryo and adult, and we discuss the cell's link to the primitive hematopoietic stem cell. We also review the potential significance of endothelial progenitor cells in the formation of a postnatal vascular network and discuss the factors that may account for the current lack of consensus of the scientific community on this important issue. PMID:17554506

  4. Distinct bone marrow blood vessels differentially regulate haematopoiesis.

    PubMed

    Itkin, Tomer; Gur-Cohen, Shiri; Spencer, Joel A; Schajnovitz, Amir; Ramasamy, Saravana K; Kusumbe, Anjali P; Ledergor, Guy; Jung, Yookyung; Milo, Idan; Poulos, Michael G; Kalinkovich, Alexander; Ludin, Aya; Kollet, Orit; Shakhar, Guy; Butler, Jason M; Rafii, Shahin; Adams, Ralf H; Scadden, David T; Lin, Charles P; Lapidot, Tsvee

    2016-04-21

    Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols. PMID:27074509

  5. Bone marrow and bone marrow derived mononuclear stem cells therapy for the chronically ischemic myocardium

    SciTech Connect

    Waksman, Ron; Baffour, Richard

    2003-09-01

    Bone marrow stem cells have been shown to differentiate into various phenotypes including cardiomyocytes, vascular endothelial cells and smooth muscle. Bone marrow stem cells are mobilized and home in to areas of injured myocardium where they are involved in tissue repair. In addition, bone marrow secretes multiple growth factors, which are essential for angiogenesis and arteriogenesis. In some patients, these processes are not enough to avert clinical symptoms of ischemic disease. Therefore, in vivo administration of an adequate number of stem cells would be a significant therapeutic advance. Unfractionated bone marrow derived mononuclear stem cells, which contain both hematopoietic and nonhematopoietic cells may be more appropriate for cell therapy. Studies in animal models suggest that implantation of different types of stem cells improve angiogenesis and arteriogenesis, tissue perfusion as well as left ventricular function. Several unanswered questions remain. For example, the optimal delivery approach, dosage and timing of the administration of cell therapy as well as durability of improvements need to be studied. Early clinical studies have demonstrated safety and feasibility of various cell therapies in ischemic disease. Randomized, double blind and placebo-controlled clinical trials need to be completed to determine the effectiveness of stem cell.

  6. Bone Marrow Matters

    ERIC Educational Resources Information Center

    Dunne, Mark; Maklad, Rania; Heaney, Emma

    2014-01-01

    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  7. Gillick, bone marrow and teenagers.

    PubMed

    Cherkassky, Lisa

    2015-09-01

    The Human Tissue Authority can authorise a bone marrow harvest on a child of any age if a person with parental responsibility consents to the procedure. Older children have the legal capacity to consent to medical procedures under Gillick, but it is unclear if Gillick can be applied to non-therapeutic medical procedures. The relevant donation guidelines state that the High Court shall be consulted in the event of a disagreement, but what is in the best interests of the teenage donor under s.1 of the Children Act 1989? There are no legal authorities on child bone marrow harvests in the United Kingdom. This article considers the best interests of the older saviour sibling and questions whether, for the purposes of welfare, the speculative benefits could outweigh the physical burdens. PMID:25911618

  8. Primary bone marrow oedema syndromes.

    PubMed

    Patel, Sanjeev

    2014-05-01

    MRI scanning in patients with rheumatological conditions often shows bone marrow oedema, which can be secondary to inflammatory, degenerative, infective or malignant conditions but can also be primary. The latter condition is of uncertain aetiology and it is also uncertain whether it represents a stage in the progression to osteonecrosis in some patients. Patients with primary bone marrow oedema usually have lower limb pain, commonly the hip, knee, ankle or feet. The diagnosis is one of exclusion with the presence of typical MRI findings. Treatment is usually conservative and includes analgesics and staying off the affected limb. The natural history is that of gradual resolution of symptoms over a number of months. Evidence for medical treatment is limited, but open-label studies suggest bisphosphonates may help in the resolution of pain and improve radiological findings. Surgical decompression is usually used as a last resort. PMID:24080251

  9. Endothelial Cell-Selective Adhesion Molecule Expression in Hematopoietic Stem/Progenitor Cells Is Essential for Erythropoiesis Recovery after Bone Marrow Injury

    PubMed Central

    Sudo, Takao; Yokota, Takafumi; Okuzaki, Daisuke; Ueda, Tomoaki; Ichii, Michiko; Ishibashi, Tomohiko; Isono, Tomomi; Habuchi, Yoko; Oritani, Kenji; Kanakura, Yuzuru

    2016-01-01

    Numerous red blood cells are generated every second from proliferative progenitor cells under a homeostatic state. Increased erythropoietic activity is required after myelo-suppression as a result of chemo-radio therapies. Our previous study revealed that the endothelial cell-selective adhesion molecule (ESAM), an authentic hematopoietic stem cell marker, plays essential roles in stress-induced hematopoiesis. To determine the physiological importance of ESAM in erythroid recovery, ESAM-knockout (KO) mice were treated with the anti-cancer drug, 5-fluorouracil (5-FU). ESAM-KO mice experienced severe and prolonged anemia after 5-FU treatment compared to wild-type (WT) mice. Eight days after the 5-FU injection, compared to WT mice, ESAM-KO mice showed reduced numbers of erythroid progenitors in bone marrow (BM) and spleen, and reticulocytes in peripheral blood. Megakaryocyte-erythrocyte progenitors (MEPs) from the BM of 5-FU-treated ESAM-KO mice showed reduced burst forming unit-erythrocyte (BFU-E) capacities than those from WT mice. BM transplantation revealed that hematopoietic stem/progenitor cells from ESAM-KO donors were more sensitive to 5-FU treatment than that from WT donors in the WT host mice. However, hematopoietic cells from WT donors transplanted into ESAM-KO host mice could normally reconstitute the erythroid lineage after a BM injury. These results suggested that ESAM expression in hematopoietic cells, but not environmental cells, is critical for hematopoietic recovery. We also found that 5-FU treatment induces the up-regulation of ESAM in primitive erythroid progenitors and macrophages that do not express ESAM under homeostatic conditions. The phenotypic change seen in macrophages might be functionally involved in the interaction between erythroid progenitors and their niche components during stress-induced acute erythropoiesis. Microarray analyses of primitive erythroid progenitors from 5-FU-treated WT and ESAM-KO mice revealed that various signaling

  10. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice

    SciTech Connect

    Colnot, C. . E-mail: colnotc@orthosurg.ucsf.edu; Huang, S.; Helms, J.

    2006-11-24

    The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.

  11. Starvation marrow – gelatinous transformation of bone marrow

    PubMed Central

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  12. Nasopharyngeal carcinoma with bone marrow metastasis.

    PubMed

    Zen, H G; Jame, J M; Chang, A Y; Li, W Y; Law, C K; Chen, K Y; Lin, C Z

    1991-02-01

    Five of 23 patients with recurrent nasopharyngeal carcinoma (NPC) were diagnosed to have bone marrow metastasis. They all had advanced local-regional disease, and were treated with neoadjuvant chemotherapy and definitive radiotherapy after the initial diagnosis. Bone marrow metastasis developed 4-24 months later. The clinical features were anemia (5 of 5), leukopenia (3 of 5), thrombocytopenia (4 of 5), sepsis (3 of 5), tenderness of the sternum (3 of 5), and fever (4 of 5). Patients frequently had elevation of serum lactic dehydrogenase (LDH), alkaline phosphatase (ALK-P), and IgG and IgA antibody titers to Epstein-Barr viral capsid antigen when bone marrow involvement was diagnosed. However, clinical manifestations and laboratory tests were not specific. It is important that three patients had normal bone scans. All five patients had a rapid downhill course; four patients died within 23 days, and the fifth 3 months after the diagnosis of bone marrow metastasis. We concluded that bone marrow was a common metastatic site in NPC patients. Bone marrow metastasis adversely affected patients' survival and required a high index of suspicion for diagnosis. We suggested that bone marrow biopsy should be considered as a routine staging procedure in NPC patients and indicated especially when patients presented with abnormal blood counts, sepsis, bone pain, or tenderness of the sternum. It may be positive in the face of a normal bone scan. PMID:1987743

  13. Inherited Bone Marrow Failure Syndromes (IBMFS)

    Cancer.gov

    The NCI IBMFS Cohort Study consists of affected individuals and their immediate families in North America who have an inherited bone marrow failure syndrome (IBMFS)-either one that has been specifically identified and defined, or bone marrow failure that appears to be inherited but has not yet been clearly identified as having a genetic basis.

  14. Bone marrow-derived stem cells and respiratory disease.

    PubMed

    Jones, Carla P; Rankin, Sara M

    2011-07-01

    Adult bone marrow contains a number of discrete populations of progenitor cells, including endothelial, mesenchymal, and epithelial progenitor cells and fibrocytes. In the context of a range of diseases, endothelial progenitor cells have been reported to promote angiogenesis, mesenchymal stem cells are potent immunosuppressors but can also contribute directly to tissue regeneration, and fibrocytes have been shown to induce tissue fibrosis. This article provides an overview of the basic biology of these different subsets of progenitor cells, reporting their distinct phenotypes and functional activities. The differences in their secretomes are highlighted, and the relative role of cellular differentiation vs paracrine effects of progenitor cells is considered. The article reviews the literature examining the contribution of progenitor cells to the pathogenesis of respiratory disease, and discusses recent studies using bone marrow progenitor cells as stem cell therapies in the context of pulmonary hypertension, COPD, and asthma. PMID:21729891

  15. Maintenance and Repair of the Lung Endothelium Does Not Involve Contributions from Marrow-Derived Endothelial Precursor Cells

    PubMed Central

    Ohle, Sarah J.; Anandaiah, Asha; Fabian, Attila J.; Fine, Alan

    2012-01-01

    Lung endothelium is believed to be a quiescent tissue with the potential to exhibit rapid and effective repair after injury. Endothelial progenitor cells derived from the bone marrow have been proposed as one source of new endothelial cells that may directly contribute to pulmonary endothelial cell homeostasis and repair. Here we use bone marrow transplantation models, using purified hematopoietic stem cells (HSCs) or unfractionated whole marrow, to assess engraftment of cells in the endothelium of a variety of tissues. We find scant evidence for any contribution of bone marrow–derived cells to the pulmonary endothelium in the steady state or after recovery from hyperoxia-induced endothelial injury. Although a rare population of CD45−/CD31+/VECadherin+ bone marrow–derived cells, originating from HSCs, can be found in lung tissue after transplantation, these cells are not readily found in anatomic locations that define the pulmonary endothelium. Moreover, by tracking transplanted bone marrow cells obtained from donor transgenic mice containing endothelial lineage–selective reporters (Tie2-GFP), no contribution of bone marrow–derived cells to the adult lung, liver, pancreas, heart, and kidney endothelium can be detected, even after prolonged follow-up periods of 11 months or after recovery from hyperoxic pulmonary endothelial injury. Our findings argue against any significant engraftment of bone marrow–derived cells in the pulmonary vascular endothelium. PMID:22323363

  16. Bone Marrow Stress Decreases Osteogenic Progenitors.

    PubMed

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential. PMID:26220824

  17. Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation.

    PubMed

    Amend, Sarah R; Valkenburg, Kenneth C; Pienta, Kenneth J

    2016-01-01

    Investigation of the bone and the bone marrow is critical in many research fields including basic bone biology, immunology, hematology, cancer metastasis, biomechanics, and stem cell biology. Despite the importance of the bone in healthy and pathologic states, however, it is a largely under-researched organ due to lack of specialized knowledge of bone dissection and bone marrow isolation. Mice are a common model organism to study effects on bone and bone marrow, necessitating a standardized and efficient method for long bone dissection and bone marrow isolation for processing of large experimental cohorts. We describe a straightforward dissection procedure for the removal of the femur and tibia that is suitable for downstream applications, including but not limited to histomorphologic analysis and strength testing. In addition, we outline a rapid procedure for isolation of bone marrow from the long bones via centrifugation with limited handling time, ideal for cell sorting, primary cell culture, or DNA, RNA, and protein extraction. The protocol is streamlined for rapid processing of samples to limit experimental error, and is standardized to minimize user-to-user variability. PMID:27168390

  18. Bone marrow lesions: A systematic diagnostic approach

    PubMed Central

    Grande, Filippo Del; Farahani, Sahar J; Carrino, John A; Chhabra, Avneesh

    2014-01-01

    Bone marrow lesions on magnetic resonance (MR) imaging are common and may be seen with various pathologies. The authors outline a systematic diagnostic approach with proposed categorization of various etiologies of bone marrow lesions. Utilization of typical imaging features on conventional MR imaging techniques and other problem-solving techniques, such as chemical shift imaging and diffusion-weighted imaging (DWI), to achieve accurate final diagnosis has been highlighted. PMID:25114392

  19. Fat embolism syndrome following bone marrow harvesting.

    PubMed

    Baselga, J; Reich, L; Doherty, M; Gulati, S

    1991-06-01

    A case of fat embolism syndrome is reported following an uncomplicated bone marrow harvest. The presenting symptoms were restlessness, shortness of breath and arterial hypoxemia. A lung perfusion scan ruled out the presence of a lung thromboembolism. The patient received supportive therapy and recovered within a few hours. We speculate that the larger gauge needle (13 vs 15) used to aspirate the bone marrow may have represented increased trauma to the iliac crest leading to fat embolism. PMID:1873595

  20. The bone marrow niche for haematopoietic stem cells

    PubMed Central

    Morrison, Sean J.; Scadden, David T.

    2015-01-01

    Preface Niches are local tissue microenvironments that maintain and regulate stem cells. Haematopoiesis provides a paradigm for understanding mammalian stem cells and their niches, yet the haematopoietic stem cell (HSC) niche remains incompletely defined and beset by competing models. Here we review progress in elucidating the location and cellular components of the HSC niche in the bone marrow. The niche is perivascular, created partly by mesenchymal stromal cells and endothelial cells and often, but not always, located near trabecular bone. Outstanding questions concern the cellular complexity of the niche, the role of the endosteum, and functional heterogeneity among perivascular microenvironments. PMID:24429631

  1. Osteosarcoma after bone marrow transplantation.

    PubMed

    Ueki, Hideaki; Maeda, Naoko; Sekimizu, Masahiro; Tsukushi, Satoshi; Nishida, Yoshihiro; Horibe, Keizo

    2013-03-01

    Three children treated with bone marrow transplantation for acute lymphoblastic leukemia, Diamond-Blackfan anemia, and congenital amegakaryocytic thrombocytopenia developed secondary osteosarcoma in the left tibia at the age of 13, 13, and 9 years, respectively, at 51, 117, and 106 months after transplantation, respectively. Through treatment with chemotherapy and surgery, all 3 patients are alive without disease. We surveyed the literature and reviewed 10 cases of osteosarcoma after hematopoietic stem cell transplantation (SCT), including our 3 cases. Eight of the patients had received myeloablative total body irradiation before SCT. The mean interval from SCT to the onset of osteosarcoma was 6 years and 4 months, and the mean age at the onset of osteosarcoma was 14 years and 5 months. The primary site of the post-SCT osteosarcoma was the tibia in 6 of 10 cases, in contrast to de novo osteosarcoma, in which the most common site is the femur. At least 7 of the 10 patients are alive without disease. Osteosarcoma should be one of the items for surveillance in the follow-up of patients who undergo SCT. PMID:22995925

  2. Post-bone marrow transplant thrombotic microangiopathy.

    PubMed

    Obut, F; Kasinath, V; Abdi, R

    2016-07-01

    Thrombotic microangiopathy (TMA) is a systemic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia and organ failure. Post-bone marrow transplant TMA (post-BMT TMA) is a life-threatening condition that has been reported to afflict between 0.5 and 63.6% of BMT patients. The incidence of post-BMT TMA is affected by evolving therapies such as conditioning regimens. The etiology of post-BMT TMA is thought to be multifactorial, including the effects of immunosuppressive agents, viral infections, TBI and GvHD. A growing body of evidence highlights the importance of complement system activation and endothelial damage in post-BMT TMA. Although plasmapheresis has commonly been used, its therapeutic rationale for the majority of post-BMT TMA cases is unclear in the absence of circulatory inhibitors. It has become possible to target complement activation with eculizumab, a drug that blocks the terminal complement pathway. Early studies have highlighted the importance of anti-complement therapies in treating post-BMT TMA. Moreover, finding complement gene mutations may identify patients at risk, but whether such patients benefit from prophylactic anti-complement therapies before BMT remains to be studied. This review focuses on diagnostic criteria, pathophysiology, treatment and renal outcomes of post-BMT TMA. PMID:26974272

  3. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow

    PubMed Central

    Eash, Kyle J.; Greenbaum, Adam M.; Gopalan, Priya K.; Link, Daniel C.

    2010-01-01

    Neutrophils are a major component of the innate immune response. Their homeostasis is maintained, in part, by the regulated release of neutrophils from the bone marrow. Constitutive expression of the chemokine CXCL12 by bone marrow stromal cells provides a key retention signal for neutrophils in the bone marrow through activation of its receptor, CXCR4. Attenuation of CXCR4 signaling leads to entry of neutrophils into the circulation through unknown mechanisms. We investigated the role of CXCR2-binding ELR+ chemokines in neutrophil trafficking using mouse mixed bone marrow chimeras reconstituted with Cxcr2–/– and WT cells. In this context, neutrophils lacking CXCR2 were preferentially retained in the bone marrow, a phenotype resembling the congenital disorder myelokathexis, which is characterized by chronic neutropenia. Additionally, transient disruption of CXCR4 failed to mobilize Cxcr2–/– neutrophils. However, neutrophils lacking both CXCR2 and CXCR4 displayed constitutive mobilization, showing that CXCR4 plays a dominant role in neutrophil trafficking. With regard to CXCR2 ligands, bone marrow endothelial cells and osteoblasts constitutively expressed the ELR+ chemokines CXCL1 and CXCL2, and CXCL2 expression was induced in endothelial cells during G-CSF–induced neutrophil mobilization. Collectively, these data suggest that CXCR2 signaling is a second chemokine axis that interacts antagonistically with CXCR4 to regulate neutrophil release from the bone marrow. PMID:20516641

  4. Combination therapies prevent the neuropathic, proinflammatory characteristics of bone marrow in streptozotocin-induced diabetic rats.

    PubMed

    Dominguez, James M; Yorek, Mark A; Grant, Maria B

    2015-02-01

    We previously showed that peripheral neuropathy of the bone marrow was associated with loss of circadian rhythmicity of stem/progenitor cell release into the circulation. Bone marrow neuropathy results in dramatic changes in hematopoiesis that lead to microvascular complications, inflammation, and reduced endothelial repair. This series of events represents early pathogenesis before development of diabetic retinopathy. In this study we characterized early alterations within the bone marrow of streptozotocin (STZ)-induced diabetic rats following treatments that prevent experimental peripheral neuropathy. We asked whether bone marrow neuropathy and the associated bone marrow pathology were reversed with treatments that prevent peripheral neuropathy. Three strategies were tested: inhibition of neutral endopeptidase, inhibition of aldose reductase plus lipoic acid supplementation, and insulin therapy with antioxidants. All strategies prevented loss of nerve conduction velocity resulting from STZ-induced diabetes and corrected the STZ-induced diabetes-associated increase of immunoreactivity of neuropeptide Y, tyrosine hydroxylase, and somatostatin. The treatments also reduced concentrations of interleukin-1β, granulocyte colony-stimulating factor, and matrix metalloproteinase 2 in STZ-induced diabetic bone marrow supernatant and decreased the expression of NADPH oxidase 2, nitric oxide synthase 2, and nuclear factor-κB1 mRNA in bone marrow progenitor cells. These therapies represent novel approaches to attenuate the diabetic phenotype within the bone marrow and may constitute an important therapeutic strategy for diabetic microvascular complications. PMID:25204979

  5. Bone Marrow Immunity and Myelodysplasia

    PubMed Central

    Lambert, Claude; Wu, Yuenv; Aanei, Carmen

    2016-01-01

    Myelodysplastic syndrome (MDS) is characterized by an ineffective hematopoiesis with production of aberrant clones and a high cell apoptosis rate in bone marrow (BM). Macrophages are in charge of phagocytosis. Innate Immune cells and specific T cells are in charge of immunosurveillance. Little is known on BM cell recruitment and activity as BM aspirate is frequently contaminated with peripheral blood. But evidences suggest an active role of immune cells in protection against MDS and secondary leukemia. BM CD8+ CD28− CD57+ T cells are directly cytotoxic and have a distinct cytokine signature in MDS, producing TNF-α, IL-6, CCL3, CCL4, IL-1RA, TNFα, FAS-L, TRAIL, and so on. These tools promote apoptosis of aberrant cells. On the other hand, they also increase MDS-related cytopenia and myelofibrosis together with TGFβ. IL-32 produced by stromal cells amplifies NK cytotoxicity but also the vicious circle of TNFα production. Myeloid-derived suppressing cells (MDSC) are increased in MDS and have ambiguous role in protection/progression of the diseases. CD33 is expressed on hematopoietic stem cells on MDS and might be a potential target for biotherapy. MDS also has impact on immunity and can favor chronic inflammation and emergence of autoimmune disorders. BM is the site of hematopoiesis and thus contains a complex population of cells at different stages of differentiation from stem cells and early engaged precursors up to almost mature cells of each lineage including erythrocytes, megakaryocytes, myelo-monocytic cells (monocyte/macrophage and granulocytes), NK cells, and B cells. Monocytes and B cell finalize their maturation in peripheral tissues or lymph nodes after migration through the blood. On the other hand, T cells develop in thymus and are present in BM only as mature cells, just like other well vascularized tissues. BM precursors have a strong proliferative capacity, which is usually associated with a high risk for genetic errors, cell dysfunction, and

  6. Impact of bone marrow on respiratory disease.

    PubMed

    Rankin, Sara M

    2008-06-01

    The bone marrow is not only a site of haematopoiesis but also serves as an important reservoir for mature granulocytes and stem cells, including haematopoietic stem cells, mesenchymal stem cells and fibrocytes. In respiratory diseases, such as asthma and idiopathic pulmonary fibrosis these cells are mobilised from the bone marrow in response to blood-borne mediators and subsequently recruited to the lungs. Although the granulocytes contribute to the inflammatory reaction, stem cells may promote tissue repair or remodelling. Understanding the factors and molecular mechanisms that regulate the mobilisation of granulocytes and stem cells from the bone marrow may lead to the identification of novel therapeutic targets for the treatment of a wide range of respiratory disorders. PMID:18372214

  7. Comparison of bone marrow aspiration and bone marrow biopsy in neoplastic diseases.

    PubMed

    Hamid, G A; Hanbala, N

    2009-07-01

    Naturally trephine biopsies have definitive advantages over aspirates in case of dry tap bone marrow aspirates as a result of fibrosis or densely packed bone marrow by tumour cells and may be informative independent of cytology especially in bone marrow involvement by lymphomas and carcinomas. In this prospective descriptive study we aimed to compare between the bone marrow trephine biopsy (BMTB) and bone marrow aspirates (BMAs) regarding the detection rate of solid tumours, lymphoma and myeloma involvement of the bone marrow. The study was carried out in the department of pathology and Haematology-Oncology of Al-Gamhouria Teaching Hospital/Aden during the period between Jan 2005 to Dec 2005. A total of 32 patients with suspected or confirmed malignancy undergone both BMTB and BMA from the posterior superior iliac crest and both results were compared. We divided them into three groups: those with solid tumours (21) patients, lymphoma (7) patients and with MM (4) patients. Our results showed that BMA had a 47.6% sensitivity, 100.0% specificity, with positive predictive value (100%), and negative predictive value (50.0%). In solid tumours alone it had a sensitivity of (40.0%), 100% specificity, with positive predictive value (100%), and negative predictive value (64.7%). This gives the BMA a lower sensitivity in detecting solid tumour metastasis and lymphoma involvement in comparison to BMTB. In conclusion, any patient with suspected or confirmed cancer should undergo BMTB because of its high sensitivity compared to BMA. PMID:20194084

  8. Shifts in bone marrow cell phenotypes caused by spaceflight.

    PubMed

    Ortega, M Teresa; Pecaut, Michael J; Gridley, Daila S; Stodieck, Louis S; Ferguson, Virginia; Chapes, Stephen K

    2009-02-01

    Bone marrow cells were isolated from the humeri of C57BL/6 mice after a 13-day flight on the space shuttle Space Transportation System (STS)-118 to determine how spaceflight affects differentiation of cells in the granulocytic lineage. We used flow cytometry to assess the expression of molecules that define the maturation/activation state of cells in the granulocytic lineage on three bone marrow cell subpopulations. These molecules included Ly6C, CD11b, CD31 (platelet endothelial cell adhesion molecule-1), Ly6G (Gr-1), F4/80, CD44, and c-Fos. The three subpopulations were small agranular cells [region (R)1], larger granular cells (R2), which were mostly neutrophils, and very large, very granular cells (R3), which had properties of macrophages. Although there were no composite phenotypic differences between total bone marrow cells isolated from spaceflight and ground-control mice, there were subpopulation differences in Ly6C (R1 and R3), CD11b (R2), CD31 (R1, R2, and R3), Ly6G (R3), F4/80 (R3), CD44(high) (R3), and c-Fos (R1, R2, and R3). In particular, the elevation of CD11b in the R2 subpopulation suggests neutrophil activation in response to landing. In addition, decreases in Ly6C, c-Fos, CD44(high), and Ly6G and an increase in F4/80 suggest that the cells in the bone marrow R3 subpopulation of spaceflight mice were more differentiated compared with ground-control mice. The presence of more differentiated cells may not pose an immediate risk to immune resistance. However, the reduction in less differentiated cells may forebode future consequences for macrophage production and host defenses. This is of particular importance to considerations of future long-term spaceflights. PMID:19056998

  9. MR imaging of therapy-induced changes of bone marrow

    PubMed Central

    Henning, Tobias; Link, Thomas M.

    2006-01-01

    MR imaging of bone marrow infiltration by hematologic malignancies provides non-invasive assays of bone marrow cellularity and vascularity to supplement the information provided by bone marrow biopsies. This article will review the MR imaging findings of bone marrow infiltration by hematologic malignancies with special focus on treatment effects. MR imaging findings of the bone marrow after radiation therapy and chemotherapy will be described. In addition, changes in bone marrow microcirculation and metabolism after anti-angiogenesis treatment will be reviewed. Finally, new specific imaging techniques for the depiction of regulatory events that control blood vessel growth and cell proliferation will be discussed. Future developments are directed to yield comprehensive information about bone marrow structure, function and microenvironment. PMID:17021706

  10. [Allogenic bone marrow transplantation complications. Part II].

    PubMed

    Saloua, L; Tarek, B O; Abderrahman, A; Abdeladhim, B A

    2000-03-01

    Bone marrow transplantation increase the chances of cure of many hematology and also neoplasms cancers. The procedure is however a cause of expected mortality and morbidity. The complications are represented by mucocutaneous, toxicity graft versus host disease, veno-occlusive disease and most importantly injections consequences all this complications needs to be prevented and treated considering the risk associated to the moderling immunosuppression. PMID:11026816

  11. Liver disease after bone marrow transplantation.

    PubMed Central

    Farthing, M J; Clark, M L; Sloane, J P; Powles, R L; McElwain, T J

    1982-01-01

    Liver dysfunction occurs after bone marrow transplantation but the relative importance of graft versus host disease and other factors, such as infection, radiation, and drugs, has not been clearly established. We have studied liver status before and after bone marrow transplantation in 43 consecutive patients and have related this to survival and factors that are recognised to cause liver injury. Minor abnormalities of liver tests occurred in 21% of patients before grafting but this did not influence survival or the development of liver disease after transplantation. During the first 50 days after grafting, 83% of patients had abnormal liver tests which were more severe in patients who subsequently died. Alanine transaminase was significantly higher in non-survivors and appeared to predict survival early after transplantation. Only non-survivors developed clinical signs of liver disease. Severe liver disease was always associated with graft versus host disease and atypia of the small bile ducts was the most useful histological marker of hepatic involvement with this disease. Two of the patients with hepatic graft versus host disease also has hepatic veno-occlusive disease and three fatalities had opportunistic infection of the liver, although, in the latter, death was not due primarily to liver dysfunction. Previous hepatitis and androgen therapy could not be implicated as important causes of hepatic damage but chemotherapy for acute leukaemia and conditioning regimens for bone marrow transplantation appear to be the most important factors in the development of hepatic veno-occlusive disease. Images Fig. 3 Fig. 4 PMID:7042484

  12. Bone marrow manifestations in multicentric Castleman disease.

    PubMed

    Ibrahim, Hazem A H; Balachandran, Kirsty; Bower, Mark; Naresh, Kikkeri N

    2016-03-01

    This study aimed to document the morphological and immunophenotypic features, and describe the diagnostic features of bone marrow (BM) involvement in human herpes virus 8 Multicentric Castleman disease (HHV8-MCD). BM trephine biopsy (BMTB) specimens from 28 patients were revisited. Samples were evaluated for expression of CD3, CD20, CD138, CD68R, glycophorin C, CD42b, HHV8-latency-associated nuclear antigen (LANA1), Epstein-Barr virus-encoded small RNA and light chains. Presence of significant numbers of HHV8-LANA1(+) lymphoid/plasmacytic cells, noted in 10/28 cases, was indicative of BM involvement and was associated with low CD4 and CD8 counts in peripheral blood. The characteristic morphological appearance of MCD seen in lymph nodes is a rare finding in BMTB. 4/5 cases with lymphoid aggregates were involved by MCD, whereas 6/23 cases without lymphoid aggregates were involved by MCD (P = 0·023). 9/18 cases with hypercellular marrow were involved by MCD, whilst only 1/8 cases with normo/hypocellular marrow showed involvement by MCD (P = 0·070). While 9/21 cases with increased marrow reticulin were involved by MCD, none of the cases with no increase in reticulin were involved by MCD (P = 0·080). Reactive plasmacytosis is a frequent finding. We conclude that bone marrow is involved in a significant proportion of patients with MCD (36%), and involvement can be identified by HHV8-LANA1 immunohistochemistry. PMID:26817834

  13. Post-bone marrow transplant patient management.

    PubMed Central

    Poliquin, C. M.

    1990-01-01

    Increasingly, bone marrow transplant (BMT) is the treatment of choice for certain hematologic diseases. BMT is, however, a risky procedure with many potentially serious complications. Some complications are the result of the conditioning regimen, a stage of transplantation that includes large doses of chemotherapy and/or radiation therapy. Conditioning-induced neutropenia and thrombocytopenia often result in infection, bleeding, and mucositis. Veno-occlusive disease (VOD), a chemotherapy-induced hepatotoxicity, can cause a mild to severe form of liver disease. Other complications are directly attributable to the engrafted new marrow. Graft-versus-host disease, a rejection process initiated by immunocompetent donor T lymphocytes, is a complication frequently observed in allogeneic BMT. Approximately 14-28 days after the day of transplant, signs of engraftment begin to appear. When specific discharge criteria are met, the BMT patient is discharged from the hospital. Specific follow-up medical care is ongoing for about one year after BMT. PMID:2293508

  14. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies

    PubMed Central

    Zahr, Abdallah Abou; Salama, Mohamed E.; Carreau, Nicole; Tremblay, Douglas; Verstovsek, Srdan; Mesa, Ruben; Hoffman, Ronald; Mascarenhas, John

    2016-01-01

    Bone marrow fibrosis is a central pathological feature and World Health Organization major diagnostic criterion of myelofibrosis. Although bone marrow fibrosis is seen in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the myelofibrosis hematopoietic stem/progenitor cell, contributing to an impaired microenvironment favoring malignant over normal hematopoiesis. Increased expression of inflammatory cytokines, lysyl oxidase, transforming growth factor-β, impaired megakaryocyte function, and aberrant JAK-STAT signaling have all been implicated in the pathogenesis of bone marrow fibrosis. A number of studies indicate that bone marrow fibrosis is an adverse prognostic variable in myeloproliferative neoplasms. However, modern myelofibrosis prognostication systems utilized in risk-adapted treatment approaches do not include bone marrow fibrosis as a prognostic variable. The specific effect on bone marrow fibrosis of JAK2 inhibition, and other rationally based therapies currently being evaluated in myelofibrosis, has yet to be fully elucidated. Hematopoietic stem cell transplantation remains the only curative therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with myelofibrosis. Here we review the pathogenesis, biological consequences, and prognostic impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting the clonal hematopoietic stem/progenitor cell, aberrant signaling pathways, fibrogenic cytokines, and the tumor microenvironment. PMID:27252511

  15. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies.

    PubMed

    Zahr, Abdallah Abou; Salama, Mohamed E; Carreau, Nicole; Tremblay, Douglas; Verstovsek, Srdan; Mesa, Ruben; Hoffman, Ronald; Mascarenhas, John

    2016-06-01

    Bone marrow fibrosis is a central pathological feature and World Health Organization major diagnostic criterion of myelofibrosis. Although bone marrow fibrosis is seen in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the myelofibrosis hematopoietic stem/progenitor cell, contributing to an impaired microenvironment favoring malignant over normal hematopoiesis. Increased expression of inflammatory cytokines, lysyl oxidase, transforming growth factor-β, impaired megakaryocyte function, and aberrant JAK-STAT signaling have all been implicated in the pathogenesis of bone marrow fibrosis. A number of studies indicate that bone marrow fibrosis is an adverse prognostic variable in myeloproliferative neoplasms. However, modern myelofibrosis prognostication systems utilized in risk-adapted treatment approaches do not include bone marrow fibrosis as a prognostic variable. The specific effect on bone marrow fibrosis of JAK2 inhibition, and other rationally based therapies currently being evaluated in myelofibrosis, has yet to be fully elucidated. Hematopoietic stem cell transplantation remains the only curative therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with myelofibrosis. Here we review the pathogenesis, biological consequences, and prognostic impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting the clonal hematopoietic stem/progenitor cell, aberrant signaling pathways, fibrogenic cytokines, and the tumor microenvironment. PMID:27252511

  16. Metastatic thymoma involving the bone marrow

    PubMed Central

    Wenceslao, Stella; Krause, John R.

    2016-01-01

    Although relatively rare, thymomas can be involved in a considerable variety of clinical presentations. Clinicians should be mindful of the breadth of associations with other diseases, including autoimmune disorders and many secondary nonthymic malignancies. For the pathologist, knowledge of the extremely varied histopathologic presentation of thymoma is vital to formulate a proper differential, workup, and diagnosis. The presented case illustrates the finding of very rare metastatic thymoma involvement of bone marrow, identified during evaluation for pancytopenia. The history of prior prostate cancer and an uncharacterized pancreatic lesion, as well as the familial presentation, also suggests a possible underlying hereditary syndrome. PMID:26722174

  17. The inherited bone marrow failure syndromes.

    PubMed

    Chirnomas, S Deborah; Kupfer, Gary M

    2013-12-01

    Molecular pathogenesis may be elucidated for inherited bone marrow failure syndromes (IBMFS). The study and presentation of the details of their molecular biology and biochemistry is warranted for appropriate diagnosis and management of afflicted patients and to identify the physiology of the normal hematopoiesis and mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies, which include ribosome assembly and ribosomal RNA processing. The Fanconi anemia pathway has become interdigitated with the familial breast cancer syndromes. In this article, the diseases that account for most IBMFS diagnoses are analyzed. PMID:24237972

  18. Autologous bone marrow transplantation by photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.

    1992-06-01

    Simultaneous exposure of Merocyanine 540 dye containing cultured tumor cells to 514-nm laser light (93.6 J/cm2) results in virtually complete cell destruction. Under identical conditions, 40% of the normal progenitor (CFU-GM) cells survive the treatment. Laser- photoradiation treated, cultured breast cancer cells also were killed, and living tumor cells could not be detected by clonogenic assays or by anti-cytokeratin monoclonal antibody method. Thus, laser photoradiation therapy could be useful for purging of contaminating tumor cells from autologous bone marrow.

  19. Marrow Fat and Bone: Review of Clinical Findings

    PubMed Central

    Schwartz, Ann V.

    2015-01-01

    With growing interest in the connection between fat and bone, there has been increased investigation of the relationship with marrow fat in particular. Clinical research has been facilitated by the development of non-invasive methods to measure bone marrow fat content and composition. Studies in different populations using different measurement techniques have established that higher marrow fat is associated with lower bone density and prevalent vertebral fracture. The degree of unsaturation in marrow fat may also affect bone health. Although other fat depots tend to be strongly correlated, marrow fat has a distinct pattern, suggesting separate mechanisms of control. Longitudinal studies are limited, but are crucial to understand the direct and indirect roles of marrow fat as an influence on skeletal health. With greater appreciation of the links between bone and energy metabolism, there has been growing interest in understanding the relationship between marrow fat and bone. It is well established that levels of marrow fat are higher in older adults with osteoporosis, defined by either low bone density or vertebral fracture. However, the reasons for and implications of this association are not clear. This review focuses on clinical studies of marrow fat and its relationship to bone. PMID:25870585

  20. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy

    NASA Astrophysics Data System (ADS)

    Wilderman, S. J.; Roberson, P. L.; Bolch, W. E.; Dewaraja, Y. K.

    2013-07-01

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  1. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation.

    PubMed

    Zhang, W; Zhu, C; Wu, Y; Ye, D; Wang, S; Zou, D; Zhang, X; Kaplan, D L; Jiang, X

    2014-01-01

    Vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) have been widely used in the fields of tissue engineering and regenerative medicine to stimulate angiogenesis and bone formation. The goal of this study was to determine whether VEGF and BMP-2 are involved in the homing of bone marrow stem cells (BMSCs) for bone regeneration and to provide insights into their mechanism of action. The chemoattraction of BMSCs to VEGF and BMP-2 was analysed in vitro using a checkerboard assay. VEGF and BMP-2 stimulated the chemotaxis of BMSCs but not chemokinesis. In vivo, both VEGF and BMP-2 also have been confirmed to induce the homing of tail vein injected BMSCs to the site of silk scaffold subcutaneous implantation in nude mice. When the scaffolds were implanted in the rabbit skull defects, more SSEA+ mesenchymal stem cells were mobilised and homed to silk scaffolds containing VEGF and/or BMP-2. More importantly, autogenic BMSCs were reinjected via the ear vein after labelling with lenti-GFP, and the cells were detected to home to the defects and differentiate into endothelial cells and osteogenic cells induced by VEGF and BMP-2. Finally, perfusion with Microfil showed that initial angiogenesis was enhanced in tissue-engineered complexes containing VEGF. Observations based on µCT assay and histological study revealed that bone formation was accelerated on BMP-2-containing scaffolds. These findings support our hypothesis that the localised release of VEGF and BMP-2 promote bone regeneration, in part by facilitating the mobilisation of endogenous stem cells and directing the differentiation of these cells into endothelial and osteogenic lineages. PMID:24425156

  2. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration.

    PubMed

    Colnot, Céline

    2009-02-01

    Bone repair requires the mobilization of adult skeletal stem cells/progenitors to allow deposition of cartilage and bone at the injury site. These stem cells/progenitors are believed to come from multiple sources including the bone marrow and the periosteum. The goal of this study was to establish the cellular contributions of bone marrow and periosteum to bone healing in vivo and to assess the effect of the tissue environment on cell differentiation within bone marrow and periosteum. Results show that periosteal injuries heal by endochondral ossification, whereas bone marrow injuries heal by intramembranous ossification, indicating that distinct cellular responses occur within these tissues during repair. [corrected] Next, lineage analyses were used to track the fate of cells derived from periosteum, bone marrow, and endosteum, a subcompartment of the bone marrow. Skeletal progenitor cells were found to be recruited locally and concurrently from periosteum and/or bone marrow/endosteum during bone repair. Periosteum and bone marrow/endosteum both gave rise to osteoblasts, whereas the periosteum was the major source of chondrocytes. Finally, results show that intrinsic and environmental signals modulate cell fate decisions within these tissues. In conclusion, this study sheds light into the origins of skeletal stem cells/progenitors during bone regeneration and indicates that periosteum, endosteum, and bone marrow contain pools of stem cells/progenitors with distinct osteogenic and chondrogenic potentials that vary with the tissue environment. PMID:18847330

  3. Vertebral hyperemia associated with bone marrow insult and recovery

    SciTech Connect

    Klein, H.A.; Bolden, R.O.; Simone, F.J.

    1984-06-01

    A 15-year-old boy with rhabdoid sarcoma received chemotherapy, which was followed by bone marrow depression, massive nosebleeds and, finally, hematologic recovery. On both hepatobiliary and renal scintigraphy, prominent vertebral activity was present in early images. Correlation with his clinical course suggests that the findings reflect hyperemia due to marrow insult and recovery. Radionuclide imaging to detect hyperemia may be a useful probe for drug effects on hematopoietic bone marrow.

  4. Bone marrow lesions and subchondral bone pathology of the knee.

    PubMed

    Kon, Elizaveta; Ronga, Mario; Filardo, Giuseppe; Farr, Jack; Madry, Henning; Milano, Giuseppe; Andriolo, Luca; Shabshin, Nogah

    2016-06-01

    Bone marrow lesions (BMLs) around the knee are a common magnetic resonance imaging (MRI) finding. However, despite the growing interest on BMLs in multiple pathological conditions, they remain controversial not only for the still unknown role in the etiopathological processes, but also in terms of clinical impact and treatment. The differential diagnosis includes a wide range of conditions: traumatic contusion and fractures, cyst formation and erosions, hematopoietic and infiltrated marrow, developmental chondroses, disuse and overuse, transient bone marrow oedema syndrome and, lastly, subchondral insufficiency fractures and true osteonecrosis. Regardless the heterogeneous spectrum of these pathologies, a key factor for patient management is the distinction between reversible and irreversible conditions. To this regard, MRI plays a major role, leading to the correct diagnosis based on recognizable typical patterns that have to be considered together with coexistent abnormalities, age, and clinical history. Several treatment options have been proposed, from conservative to surgical approaches. In this manuscript the main lesion patterns and their management have been analysed to provide the most updated evidence for the differential diagnosis and the most effective treatment. PMID:27075892

  5. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis. PMID:18173180

  6. Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications

    PubMed Central

    Piccinin, Meghan A; Khan, Zia A

    2014-01-01

    Diabetes leads to complications in select organ systems primarily by disrupting the vasculature of the target organs. These complications include both micro- (cardiomyopathy, retinopathy, nephropathy, and neuropathy) and macro-(atherosclerosis) angiopathies. Bone marrow angiopathy is also evident in both experimental models of the disease as well as in human diabetes. In addition to vascular disruption, bone loss and increased marrow adiposity have become hallmarks of the diabetic bone phenotype. Emerging evidence now implicates enhanced marrow adipogenesis and changes to cellular makeup of the marrow in a novel mechanistic link between various secondary complications of diabetes. In this review, we explore the mechanisms of enhanced marrow adipogenesis in diabetes and the link between changes to marrow cellular composition, and disruption and depletion of reparative stem cells. PMID:26317050

  7. The Inherited Bone Marrow Failure Syndromes

    PubMed Central

    Chirnomas, S. Deborah; Kupfer, Gary M

    2013-01-01

    In spite of the rarity of inherited bone marrow failure syndromes (IBMFS), they represent diseases for which the molecular pathogenesis may be elucidated. Their study and presentation of the details of their molecular biology and biochemistry is warranted not only for appropriate diagnosis and management of afflicted patients but also because they lend clues to the normal physiology of the normal hematopoiesis and, in many cases, mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies that entail both ribosome assembly as well as ribosomal RNA processing. The Fanconi anemia (FA) pathway itself has become interdigitated with the familial breast cancer syndromes. The sections that follow present a more detailed analysis of the diseases that account for the majority of IBMFS diagnoses. PMID:24237972

  8. Lung function after bone marrow grafting

    SciTech Connect

    Depledge, M.H.; Barrett, A.; Powles, R.L.

    1983-02-01

    Results of a prospective lung function study are presented for 48 patients with acute myeloid leukemia (AML) treated with total body irradiation (TBI) and bone marrow transplantation (BMT) at the Royal Marsden Hospital between 1978 and 1980. Patients with active disease or who were in remission following cytoreductive chemotherapy had mildly impaired gas exchange prior to grafting. After TBI and BMT all patients studied developed progressive deterioration of lung function during the first 100 days, although these changes were subclinical. Infection and graft-versus-host disease (GvHD) were associated with further worsening of restrictive ventilatory defects and diffusing capacity (D/sub L/CO). Beyond 100 days, ventilatory ability returned to normal and gas transfer improved, although it failed to reach pre-transplant levels. There was no evidence of progressive pulmonary fibrosis during the first year after grafting.

  9. [Current problems in pediatric bone marrow transplantation].

    PubMed

    Kato, S

    1993-05-01

    Bone marrow transplantation (BMT) has been increasingly applied to a variety of potentially fatal diseases in childhood. However, trends of indication of BMT are changing because chemotherapy in leukemia and immunosuppressive therapy with/without colony stimulating factor in aplastic anemia are improving. Several progresses have been noted in matched unrelated BMT and peripheral blood stem cell transplantation as well as in sibling BMT or autologous BMT. Many efforts are being made to decrease rejection rate or leukemia relapse and to improve quality of life by new conditioning regimens. Attempts to induce GVL effects or syngeneic GVHD are currently under progress. The quality of life in long term surviving children are generally good and acceptable, although delay in growth, infertility, cataract and obstructive lung disease are seen in a few patients. PMID:8315825

  10. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling

    PubMed Central

    Crane, Janet L.; Cao, Xu

    2014-01-01

    During bone resorption, abundant factors previously buried in the bone matrix are released into the bone marrow microenvironment, which results in recruitment and differentiation of bone marrow mesenchymal stem cells (MSCs) for subsequent bone formation, temporally and spatially coupling bone remodeling. Parathyroid hormone (PTH) orchestrates the signaling of many pathways that direct MSC fate. The spatiotemporal release and activation of matrix TGF-β during osteoclast bone resorption recruits MSCs to bone-resorptive sites. Dysregulation of TGF-β alters MSC fate, uncoupling bone remodeling and causing skeletal disorders. Modulation of TGF-β or PTH signaling may reestablish coupled bone remodeling and be a potential therapy. PMID:24487640

  11. A Method for Generation of Bone Marrow-Derived Macrophages from Cryopreserved Mouse Bone Marrow Cells

    PubMed Central

    Lima, Djalma S.; Zamboni, Dario S.

    2010-01-01

    The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells. PMID:21179419

  12. Orchiectomy increases bone marrow interleukin-6 levels in mice.

    PubMed

    Zhang, J; Pugh, T D; Stebler, B; Ershler, W B; Keller, E T

    1998-03-01

    Interleukin-6 (IL-6) appears to be an important factor in disease states associated with bone resorption. There is both in vitro and in vivo evidence supporting the fact that androgens down-regulate interleukin-6 production. These observations, in combination with the fact that osteoblasts and bone marrow stromal cells produce IL-6, led us to hypothesize that orchiectomy-induced androgen loss will result in increased IL-6 expression in the bone microenvironment. To prove our hypothesis we assessed the effect of orchiectomy on IL-6 protein and mRNA expression in bone marrow and spleen. We found that orchiectomy was associated with increased serum IL-6 levels at 3 and 28 days postsurgery. Phorbol ester-stimulated IL-6 levels were also higher in supernatants from bone marrow and spleen cell cultures from orchiectomized mice compared with unoperated or sham-operated mice. Additionally, we found that steady state IL-6 mRNA levels were increased in bone marrow but not spleen cells. Finally, we found that orchiectomized mice had splenomegaly and increased bone marrow cellularity. Histopathology of the spleen revealed lymphoid hyperplasia accompanied by a marked mononuclear cell infiltration of the red pulp. We conclude that orchiectomy induces IL-6 expression in the bone marrow. These findings suggest that endocrine and cytokine interactions contribute to bone pathophysiology. PMID:9501955

  13. Bone and bone-marrow blood flow in chronic granulocytic leukemia and primary myelofibrosis

    SciTech Connect

    Lahtinen, R.; Lahtinen, T.; Romppanen, T.

    1982-03-01

    Blood flow in hematopoietic bone marrow and in nonhematopoietic bone has been measured with a Xe-133 washout method in 20 patients with chronic granulocytic leukemia (CGL) and in seven with primary myelofibrosis. Age-matched healthy persons served as controls. Bone-marrow blood flow in CGL was dependent upon the phase of the disease. In the metamorphosis phase, bone-marrow blood flow was high compared with that in the well-controlled phase. Apart from the initial phase, the mean values for bone blood flow in CGL were increased compared with the values of the healthy controls. In myelofibrosis the bone blood flow was also increased. Bone-marrow blood flow in these diseases was dependent upon the cellularity of bone marrow as measured morphometrically.

  14. Bone Marrow Adipose Tissue: A New Player in Cancer Metastasis to Bone

    PubMed Central

    Morris, Emma V.; Edwards, Claire M.

    2016-01-01

    The bone marrow is a favored site for a number of cancers, including the hematological malignancy multiple myeloma, and metastasis of breast and prostate cancer. This specialized microenvironment is highly supportive, not only for tumor growth and survival but also for the development of an associated destructive cancer-induced bone disease. The interactions between tumor cells, osteoclasts and osteoblasts are well documented. By contrast, despite occupying a significant proportion of the bone marrow, the importance of bone marrow adipose tissue is only just emerging. The ability of bone marrow adipocytes to regulate skeletal biology and hematopoiesis, combined with their metabolic activity, endocrine functions, and proximity to tumor cells means that they are ideally placed to impact both tumor growth and bone disease. This review discusses the recent advances in our understanding of how marrow adipose tissue contributes to bone metastasis and cancer-induced bone disease. PMID:27471491

  15. Endocrine complications following pediatric bone marrow transplantation.

    PubMed

    Ho, Josephine; Lewis, Victor; Guilcher, Gregory M T; Stephure, David K; Pacaud, Danièle

    2011-01-01

    Pediatric bone marrow transplantation (BMT) for various diseases can lead to endocrine system dysfunction owing to preparative regimens involving chemotherapy and radiation therapy. We assessed the prevalence of post-BMT endocrine complications in children treated at the Alberta Children's Hospital (ACH) from 1991 to 2001. Time of onset of endocrine dysfunction, underlying disease processes, chemotherapy, radiation therapy and age at BMT were characterized. Subjects of <18 years of age at the time of allogeneic or autologous BMT for whom 1-year follow-up through the ACH and a chart were available for review were included in the study. Subjects with a pre-existing endocrine condition were excluded. Of the 194 pediatric BMT procedures performed at the ACH between January 1, 1991 and December 31, 2001, 150 complete charts were available for review. Sixty five subjects received follow-up care at other centers and were excluded. Therefore, a total of 85 subjects were included in the review. The prevalence of endocrine complications identified was: primary hypothyroidism 1.2%, compensated hypothyroidism 7.0%, hyperthyroidism 2.4%, hypergonadotrophic hypogonadism 22.4%, abnormal bone density 2.4%, and secondary diabetes mellitus 1.2%. These findings emphasize the need to screen for endocrine system dysfunction, particularly hypergonadotrophic hypogonadism, in children who have undergone BMT. Children need long-term follow-up so that endocrine complications can be diagnosed and treated promptly. PMID:21823531

  16. Marrow-tumor interactions: the role of the bone marrow in controlling chemically induced tumors

    SciTech Connect

    Rosse, C

    1980-01-01

    This report summarizes work done to evaluate the role of the bone marrow in tumor growth regulation. Work done with the MCA tumor showed that several subclasses of mononuclear bone marrow cells (e.g. natural regulatory cell, NRC) play a major role in the regulation of tumor growth. Experiments with the spontaneous CE mammary carcinoma system illustrate that a rapid growth of certain neoplasms may be due to the fact that through some as yet undefined mechanism the tumor eliminates mononuclear cells in the bone marrow of the host and stops their production. (KRM)

  17. Jaw bone marrow-derived osteoclast precursors internalize more bisphosphonate than long-bone marrow precursors.

    PubMed

    Vermeer, Jenny A F; Jansen, Ineke D C; Marthi, Matangi; Coxon, Fraser P; McKenna, Charles E; Sun, Shuting; de Vries, Teun J; Everts, Vincent

    2013-11-01

    Bisphosphonates (BPs) are widely used in the treatment of several bone diseases, such as osteoporosis and cancers that have metastasized to bone, by virtue of their ability to inhibit osteoclastic bone resorption. Previously, it was shown that osteoclasts present at different bone sites have different characteristics. We hypothesized that BPs could have distinct effects on different populations of osteoclasts and their precursors, for example as a result of a different capacity to endocytose the drugs. To investigate this, bone marrow cells were isolated from jaw and long bone from mice and the cells were primed to differentiate into osteoclasts with the cytokines M-CSF and RANKL. Before fusion occurred, cells were incubated with fluorescein-risedronate (FAM-RIS) for 4 or 24h and uptake was determined by flow cytometry. We found that cultures obtained from the jaw internalized 1.7 to 2.5 times more FAM-RIS than long-bone cultures, both after 4 and 24h, and accordingly jaw osteoclasts were more susceptible to inhibition of prenylation of Rap1a after treatment with BPs for 24h. Surprisingly, differences in BP uptake did not differentially affect osteoclastogenesis. This suggests that jaw osteoclast precursors are less sensitive to bisphosphonates after internalization. This was supported by the finding that gene expression of the anti-apoptotic genes Bcl-2 and Bcl-xL was higher in jaw cells than long bone cells, suggesting that the jaw cells might be more resistant to BP-induced apoptosis. Our findings suggest that bisphosphonates have distinct effects on both populations of osteoclast precursors and support previous findings that osteoclasts and precursors are bone-site specific. This study may help to provide more insights into bone-site-specific responses to bisphosphonates. PMID:23962725

  18. Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells

    PubMed Central

    Xie, Liang; Zeng, Xin; Hu, Jing; Chen, Qianming

    2015-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into multiple cell lineages and contributing to tissue repair and regeneration. Characterization of the physiological function of MSCs has been largely hampered by lack of unique markers. Nestin, originally found in neuroepithelial stem cells, is an intermediate filament protein expressed in the early stages of development. Increasing studies have shown a particular association between Nestin and MSCs. Nestin could characterize a subset of bone marrow perivascular MSCs which contributed to bone development and closely contacted with hematopoietic stem cells (HSCs). Nestin expressing (Nes+) MSCs also play a role in the progression of various diseases. However, Nes+ cells were reported to participate in angiogenesis as MSCs or endothelial progenitor cells (EPCs) in several tissues and be a heterogeneous population comprising mesenchymal cells and endothelial cells in the developing bone marrow. In this review article, we will summarize the progress of the research on Nestin, particularly the function of Nes+ cells in bone marrow, and discuss the feasibility of using Nestin as a specific marker for MSCs. PMID:26236348

  19. Bone marrow invasion in multiple myeloma and metastatic disease.

    PubMed

    Vilanova, J C; Luna, A

    2016-04-01

    Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases. PMID:26767542

  20. [Bone marrow involvement in ovarian cancer determined by immunohistochemical methods].

    PubMed

    Gabriel, M; Obrebowska, A; Spaczyński, M

    2000-01-01

    Atypical epithelial cells in the bone marrow of patients with ovarian cancer were evaluated using immunohistochemical techniques. We investigated cytospin preparations of bone marrow taken from 9 women with benign ovarian tumors and 59 women with malignant ovarian tumors. Two monoclonal antibodies (NCL-C11 and NCL-CA 125) were used. With both antibodies we were able to detect keratin and CA 125 antigen expression in the bone marrow of 9 (18.4%) of the patients with ovarian cancer. With regard to the wide histological differentiation of ovarian carcinomas, the presence of atypical epithelial cells in the bone marrow was required as a prognostic factor for survival and relapses. This should be investigated in a larger study group. PMID:11326158

  1. Understanding Bone Marrow Transplantation as a Treatment Option

    MedlinePlus

    ... you have had, and your overall health. Transplant Process A bone marrow or cord blood transplant is ... The Transplant Process . For more about the search process, HLA matching, and steps of a transplant, such ...

  2. Technetium-99m antimony colloid for bone-marrow imaging

    SciTech Connect

    Martindale, A.A.; Papadimitriou, J.M.; Turner, J.H.

    1980-11-01

    Technetium-99m antimony colloid was prepared in our laboratory for bone-marrow imaging. Optimal production of colloid particles of size range 1 to 13 nm was achieved by the use of polyvinylpyrrolidone of mol. wt. 44,000. Electron microscopy was used to size the particles. Studies in rabbits showed exclusive concentration in the subendothelial dendritic phagocytes of the bone marrow. Pseudopods from these cells were found to traverse interendothelial junctions and concentrate colloid from the sinusoids. Imaging studies of bone marrow in rabbits showed the superiority of the Tc-99m antimony colloid over the much larger colloidal particle of Tc-99m sulfur colloid. Tissue distribution studies in the rat confirmed that bone-marrow uptake of Tc-99m antimony colloid was greater than that of Tc-99m sulfur colloid, although blood clearance was much slower.

  3. Bone Marrow Diseases - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bone Marrow Diseases URL of this page: https://medlineplus.gov/languages/bonemarrowdiseases.html Other topics A-Z A B ...

  4. Bone Marrow Diseases - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bone Marrow Diseases URL of this page: https://www.nlm.nih.gov/medlineplus/languages/bonemarrowdiseases.html Other topics A-Z A B ...

  5. Memory T-cell competition for bone marrow seeding.

    PubMed

    Di Rosa, Francesca; Santoni, Angela

    2003-03-01

    The presence in the bone marrow of memory CD8 T cells is well recognized. However, it is still largely unclear how T-cell migration from the lymphoid periphery to the bone marrow is regulated. In the present report, we show that antigen-specific CD4 T cells, as well as antigen-specific CD8 T cells, localize to the bone marrow of immunized mice, and are sustained there over long periods of time. To investigate the rules governing T-cell migration to the bone marrow, we generated chimeric mice in which the lymphoid periphery contained two genetically or phenotypically distinct groups of T cells, one of which was identical to the host. We then examined whether a distinct type of T cell had an advantage over the others in the colonization of bone marrow. Our results show that whereas ICAM1 and CD18 molecules are both involved in homing to lymph nodes, neither is crucial for T-cell bone marrow colonization. We also observed that memory-phenotype CD44high T cells, but not virgin-type CD44-/low T cells, preferentially home to the bone marrow upon adoptive transfer to normal young mice, but not to thymectomized old recipients where an existing memory T-cell pool precludes their free access. Thus, T-cell colonization of the bone marrow uses distinct molecules from those implicated in lymph node homing, and is regulated both by the properties of the T cell and by the competitive efficacy of other T cells inhabiting the same, saturable niche. This implies that the homing potential of an individual lymphocyte is not merely an intrinsic property of the cell, but rather a property of the lymphoid system taken as a whole. PMID:12603595

  6. A marker chromosome in post-transplant bone marrow.

    PubMed

    Morsberger, Laura; Powell, Kerry; Ning, Yi

    2016-01-01

    Detection of small supernumerary marker chromosomes in karyotype analysis represents a diagnostic challenge. While such markers are usually detected during cytogenetic studies of constitutional chromosome abnormalities, they have also been found in specimens submitted from patients with acquired malignancies. We report here the detection of a marker chromosome in a bone marrow specimen from a patient who received a bone marrow transplantation. We discuss the importance of proper characterization and interpretation of marker chromosomes in clinical practice. PMID:27252781

  7. Bone Marrow Negative Visceral Leishmaniasis in an Adolescent Male

    PubMed Central

    Jetley, S; Rana, S; Khan, S; Zeeba, JS; Hassan, MJ; Kapoor, P

    2013-01-01

    Visceral Leishmaniasis or Kala Azar is endemic in certain regions of India. In endemic areas, the constellation of fever, progressive weight loss, weakness, pronounced splenomegaly, anemia, leukopenia, and hypergammaglobulinemia is highly suggestive of visceral leishmaniasis. Demonstration of the parasite in liver, splenic or bone marrow aspirates is confirmatory. We present a case in which Leishmania donovani (LD) bodies were demonstrated on splenic aspirate. We were unable to demonstrate LD bodies on bone marrow aspiration. PMID:23682278

  8. Activation of bone marrow phagocytes following benzene treatment of mice.

    PubMed Central

    Laskin, D L; MacEachern, L; Snyder, R

    1989-01-01

    Techniques in flow cytometry/cell sorting were used to characterize the effects of benzene and its metabolites on subpopulations of bone marrow cells. Treatment of male Balb/c mice with benzene (880 mg/kg) or a combination of its metabolites, hydroquinone and phenol (50 mg/kg), resulted in a 30 to 40% decrease in bone marrow cellularity. Flow cytometric analysis revealed two subpopulations of bone marrow cells that could be distinguished by their size and density or granularity. The larger, more dense subpopulation was found to consist predominantly of macrophages and granulocytes as determined by monoclonal antibody binding and by cell sorting. Benzene treatment had no selective cytotoxic effects on subpopulations of bone marrow cells. To determine if benzene treatment activated bone marrow phagocytes, we quantified production of hydrogen peroxide by these cells using the fluorescent indicator dye, 2',7'-dichlorofluorescein diacetate. We found that macrophages and granulocytes from bone marrow of treated mice produced 50% more hydrogen peroxide in response to the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate than did cells from control animals. It is hypothesized that phagocyte activation and production of cytotoxic reactive oxygen intermediates may contribute to hematotoxicity induced by benzene. PMID:2676504

  9. Pulmonary fat and bone marrow embolism in aircraft accident victims.

    PubMed

    Bierre, A R; Koelmeyer, T D

    1983-04-01

    On 28 November 1979, an Air New Zealand DC10 aircraft crashed into Mt Erebus, Antarctica with the loss of 257 passengers and crew. Postmortem examinations were carried out on 231 victims in Auckland, 4641 kilometres north of the crash site, and lung tissue was present in 205 cases. Pulmonary fat emboli were present in 134 cases (65%), pulmonary bone marrow emboli in 60 (29%) and pulmonary edema in 76 cases (37%). Clear relationships were demonstrated, firstly between the extent of fat and bone marrow embolism, secondly between the extent of fat and bone marrow embolism and the presence of pulmonary edema, and thirdly between the extent of fat and bone marrow embolism and the extent of cardiovascular damage. It was apparent that death had occurred immediately following impact, and the extent of fat and bone marrow embolism varied inversely with the severity of the injuries found. The most severely injured victims were those seated in the rear cabin of the aircraft suggesting that this was the site of impact with the ground. Our studies show that pulmonary fat embolism occurs very rapidly after severe injury and is followed by increasing numbers of fat and bone marrow emboli depending on the nature of the mortal injuries. PMID:6888959

  10. Transplantation immunology: Solid Organ and bone marrow

    PubMed Central

    Chinen, Javier; Buckley, Rebecca H.

    2010-01-01

    Development of the field of organ and tissue transplantation has accelerated remarkably since the human major histocompatibility complex (MHC) was discovered in 1967. Matching of donor and recipient for MHC antigens has been shown to have a significant positive effect on graft acceptance. The roles of the different components of the immune system involved in the tolerance or rejection of grafts and in graft-versus-host disease have been clarified. These components include: antibodies, antigen presenting cells, helper and cytotoxic T cell subsets, immune cell surface molecules, signaling mechanisms and cytokines that they release. The development of pharmacologic and biological agents that interfere with the alloimmune response and graft rejection has had a crucial role in the success of organ transplantation. Combinations of these agents work synergistically, leading to lower doses of immunosuppressive drugs and reduced toxicity. Reports of significant numbers of successful solid organ transplants include those of the kidneys, liver, heart and lung. The use of bone marrow transplantation for hematological diseases, particularly hematological malignancies and primary immunodeficiencies, has become the treatment of choice in many of these conditions. Other sources of hematopoietic stem cells are also being used, and diverse immunosuppressive drug regimens of reduced intensity are being proposed to circumvent the mortality associated with the toxicity of these drugs. Gene therapy to correct inherited diseases by infusion of gene-modified autologous hematopoietic stem cells has shown efficacy in two forms of severe combined immunodeficiency, providing an alternative to allogeneic tissue transplantation. PMID:20176267

  11. Bone marrow fibrosis in childhood acute lymphoblastic leukaemia.

    PubMed Central

    Wallis, J P; Reid, M M

    1989-01-01

    Bone marrow trephine biopsy specimens were obtained at diagnosis from 63 of 76 consecutively presenting children with acute lymphoblastic leukaemia (ALL). The association between marrow fibrosis and presenting features, including immunophenotype, was analysed. Reticulin was increased in 45 of 56 cases in which blasts expressed B lineage markers, but in only one of seven with T-ALL. A weak association was also found between marrow fibrosis and splenomegaly in those with common ALL. Marrow fibrosis is apparently associated with some examples of ALL of B cell lineage, but precisely which subtypes and whether the phenomenon is clinically important remain to be determined. PMID:2613918

  12. Genetic tracing of arterial graft flow surface endothelialization in allogeneic marrow transplanted dogs.

    PubMed

    Shi, Q; Wu, M H; Fujita, Y; Ishida, A; Wijelath, E S; Hammond, W P; Wechezak, A R; Yu, C; Storb, R F; Sauvage, L R

    1999-01-01

    In order to trace genetically the source of fallout endothelialization on arterial grafts, six beagle dogs with successful autologous bone marrow transplantation received composite tandem aortic grafts with an isolated, totally impervious Dacron graft and a porous Dacron graft for 12 weeks. For impervious segments, five of 12 fresh tissue samples were Factor VIII/von Willebrand factor + (FVIII/vWF) and seven had faint or negative signals; three of the FVIII/vWF + samples had alpha-actin + smooth muscle cells. Polymerase chain reaction (PCR) study showed eight had a pure donor DNA genotype and four had donor/host mixed, with the donor predominant. Of 12 AgNO3-stained samples, 11 showed pure donor type and one had donor/host mixed, with the donor predominant. For porous segments, all 12 fresh samples had positive flow surface FVIII/vWF and alpha-actin cells. PCR showed all these samples and all 12 AgNO3-stained samples had donor/host mixed type, but the host pattern was predominant. Porous graft healing appears to involve both cellular fallout and tissue ingrowth, and bone-marrow-derived cells may be a source for fallout. PMID:10073768

  13. Bone marrow atrophy induced by murine cytomegalovirus infection.

    PubMed Central

    Gibbons, A E; Price, P; Shellam, G R

    1994-01-01

    Acute, sublethal infection of mice with murine cytomegalovirus (MCMV) resulted in up to 80% decreases in the number of cells recoverable from the bone marrow, and a decrease in peripheral blood leucocyte counts during the first week of infection. Depopulation of the leucopoietic areas of the marrow was evident from examination of histological sections. The severity of bone marrow atrophy in MCMV-infected mice of different strains correlated with previously described genetically determined sensitivity to MCMV disease. Although the phenomenon only occurred when mice were inoculated with infectious virus preparations, fewer than one in 10(5) marrow cells were productively infected, suggesting that atrophy was not due to lytic infection of large numbers of bone marrow cells. Interestingly, increases in serum colony-stimulating activity were observed and these were proportional to the severity of bone marrow atrophy. After MCMV infection, we observed increases in the proportions of cells expressing some B-cell and myeloid cell markers and a decrease in the proportion of cells expressing an erythroid cell marker. There was no change in the frequency of marrow cells expressing mature T-cell markers. The numbers of myeloid lineage-committed progenitor cells (GM-CFU) in the marrow decreased 10- to 20-fold in BALB/c nu/+ mice, while there was a threefold decrease in their numbers in BALB/c nu/nu mice. In addition, increases in serum colony-stimulating activity were greater in BALB/c nu/+ mice than in BALB/c nu/nu mice. Our results suggest that growth factors produced after MCMV infection may accelerate the maturation and migration of cells from the marrow to sites of virus replication and inflammation, thus accounting for the depletion in numbers of marrow cells observed soon after MCMV infection. Images Figure 3 Figure 4 PMID:7959876

  14. Bone Marrow Regeneration Promoted by Biophysically Sorted Osteoprogenitors From Mesenchymal Stromal Cells

    PubMed Central

    Poon, Zhiyong; Lee, Wong Cheng; Guan, Guofeng; Nyan, Lin Myint; Lim, Chwee Teck; Han, Jongyoon

    2015-01-01

    Human tissue repair deficiencies can be supplemented through strategies to isolate, expand in vitro, and reimplant regenerative cells that supplant damaged cells or stimulate endogenous repair mechanisms. Bone marrow-derived mesenchymal stromal cells (MSCs), a subset of which is described as mesenchymal stem cells, are leading candidates for cell-mediated bone repair and wound healing, with hundreds of ongoing clinical trials worldwide. An outstanding key challenge for successful clinical translation of MSCs is the capacity to produce large quantities of cells in vitro with uniform and relevant therapeutic properties. By leveraging biophysical traits of MSC subpopulations and label-free microfluidic cell sorting, we hypothesized and experimentally verified that MSCs of large diameter within expanded MSC cultures were osteoprogenitors that exhibited significantly greater efficacy over other MSC subpopulations in bone marrow repair. Systemic administration of osteoprogenitor MSCs significantly improved survival rates (>80%) as compared with other MSC subpopulations (0%) for preclinical murine bone marrow injury models. Osteoprogenitor MSCs also exerted potent therapeutic effects as “cell factories” that secreted high levels of regenerative factors such as interleukin-6 (IL-6), interleukin-8 (IL-8), vascular endothelial growth factor A, bone morphogenetic protein 2, epidermal growth factor, fibroblast growth factor 1, and angiopoietin-1; this resulted in increased cell proliferation, vessel formation, and reduced apoptosis in bone marrow. This MSC subpopulation mediated rescue of damaged marrow tissue via restoration of the hematopoiesis-supporting stroma, as well as subsequent hematopoiesis. Together, the capabilities described herein for label-freeisolation of regenerative osteoprogenitor MSCs can markedly improve the efficacy of MSC-based therapies. PMID:25411477

  15. Spinal nociceptive transmission by mechanical stimulation of bone marrow

    PubMed Central

    Tanaka, Satoshi; Sekiguchi, Takemi; Sugiyama, Daisuke; Kawamata, Mikito

    2016-01-01

    Background Since bone marrow receives innervation from A-delta and C-fibers and since an increase in intramedullary pressure in bone marrow may induce acute pain in orthopedic patients during surgery and chronic pain in patients with bone marrow edema, skeletal pain may partly originate from bone marrow. Intraosseous lesions, such as osteomyelitis and bone cancer, are also known to produce cutaneous hypersensitivity, which might be referred pain from bone. However, little is known about pain perception in bone marrow and referred pain induced by bone disease. Thus, we carried out an in vivo electrophysiological study and behavioral study to determine whether increased intraosseous pressure of the femur induces acute pain and whether increased intraosseous pressure induces referred pain in the corresponding receptive fields of the skin. Results Intraosseous balloon inflation caused spontaneous pain-related behavior and mechanical hyperalgesia and allodynia in the lumbosacral region. Single neuronal activities of spinal dorsal horn neurons were extracellularly isolated, and then evoked responses to non-noxious and noxious cutaneous stimuli and intraosseous balloon inflation were recorded. Ninety-four spinal dorsal horn neurons, which had somatic receptive fields at the lower back and thigh, were obtained. Sixty-two percent of the wide-dynamic-range neurons (24/39) and 86% of the high-threshold neurons (12/14) responded to intraosseous balloon inflation, while none of the low-threshold neurons (0/41) responded to intraosseous balloon inflation. Spinally administered morphine (1 µg) abolished balloon inflation-induced spontaneous pain-related behavior and mechanical hyperalgesia in awake rats and also suppressed evoked activities of wide-dynamic-range neurons to noxious cutaneous stimulation and intraosseous balloon inflation. Conclusions The results suggest that mechanical stimulation to bone marrow produces nociception, concomitantly producing its referred pain

  16. Urothelial Cancer With Occult Bone Marrow Metastases and Isolated Thrombocytopenia

    PubMed Central

    Alva, Ajjai; Davis, Elizabeth; Chinnaiyan, Arul M.; Dhanasekaran, Saravana; Mehra, Rohit

    2015-01-01

    Bladder cancer rarely presents clinically with a myelophthisic picture from diffuse bone marrow infiltration especially in the absence of detectable skeletal metastases. A 75-year old man presented with newly diagnosed urothelial cell carcinoma of the bladder. Pathology from transurethral resection of bladder tumor demonstrated muscle-invasive disease. Pre-therapy imaging including CT abdomen/pelvis, CXR and bone scan demonstrated liver lesions concerning for metastatic disease but no skeletal metastases. Labs were notable for isolated thrombocytopenia, hypercalcemia and acute kidney injury prompting hospitalization. Hematologic work-up including bone marrow aspiration and biopsy revealed diffuse infiltration of the bone marrow by urothelial cancer. The case illustrates the importance of fully investigating otherwise unexplained clinical findings in patients with clinically localized urothelial cancer prior to curative intent surgery. PMID:26793516

  17. Long-term survival of murine allogeneic bone marrow chimeras: effect of anti-lymphocyte serum and bone marrow dose

    SciTech Connect

    Norin, A.J.; Emeson, E.E.; Veith, F.J.

    1981-02-01

    Graft-vs-host disease (GVHD) and failure of donor stem cells to engraft permanently are two major obstacles to successful bone marrow transplantation. The effect of a single large dose of anti-lymphocyte serum (ALS) on mice receiving various numbers of H-2 incompatible bone marrow cells was evaluated. Most animals receiving lethal total body irradiation (TBI) and allogeneic marrow died within 45 days due to GVHD. Mice that were given ALS 6 to 24 h before TBI and bone marrow 24 h after irradiation survived in good health for more than 200 days. These cell preparations caused lethal GVHD in third party mice indicating that the lack of alloreactivity was specific to the strain in which the unresponsiveness was originally induced.

  18. Bone marrow cells other than stem cells seed the bone marrow after rescue transfusion of fatally irradiated mice

    SciTech Connect

    Cronkite, E.P.; Inoue, T.; Bullis, J.E.

    1987-12-01

    In a previous publication, iodinated deoxyuridine (/sup 125/IUdR) incorporation data were interpreted as indicating that spleen colony-forming units (CFU-S) in DNA synthesis preferentially seeded bone marrow. In the present studies, the CFU-S content of marrow from irradiated, bone-marrow transfused mice was directly determined. Pretreatment of the transfused cells with cytocidal tritiated thymidine resulted in an insignificant diminution in CFU-S content when compared with nontritiated thymidine pretreatment, implying that there is no preferential seeding. The /sup 125/IUdR incorporation data have been reinterpreted as being a result of the proliferation of other progenitor cells present that have seeded the bone marrow.

  19. Usefulness of bone marrow imaging in childhood malignancies

    SciTech Connect

    Oseas, R.S.; Siddiqui, A.R.; Wellman, H.N.; Baehner, R.L.

    1982-08-01

    Two hundred six /sup 99m/Tc sulfur colloid bone marrow scans in 110 pediatrics patients were reviewed. The normal distribution of sulfur colloid in the lower extremities in various age groups was established. There was progressive loss of uptake with increasing age from less than two years to greater than ten years. Tumor replacement was seen as regions of decreased radioactivity, and the extent of the scan defect paralleled the response of the disease to therapy. Both chemotherapy and irradiation resulted in an extension of the /sup 99m/Tc SC to peripheral marrow sites. In irradiated areas, marrow scan defects were demonstrated and generally recovered normal activity by six months after the completion of therapy. Marrow scan abnormalities caused by tumor replacement were present in four patients despite normal bone scans and radiographs. Ultimate confirmation of tumor involvement was by needle aspiration or biopsy. Persistent marrow defects were seen in two patients with neuroblastoma who had remission of their disease: biopsy revealed myelofibrosis. /sup 99m/Tc sulfur colloid bone marrow scanning is a sensitive monitor of altered marrow activity associated with pediatric hematologic or oncologic diseases.

  20. Cell survival kinetics in peripheral blood and bone marrow during total body irradiation for marrow transplantation

    SciTech Connect

    Shank, B.; Andreeff, M.; Li, D.

    1983-11-01

    Cell survival kinetics in both peripheral blood and in bone marrow have been studied over the time course of hyperfractionated total body irradiation (TBI) for bone marrow transplantation. Our unique TBI regimen allows the study of the in vivo radiation effect uncomplicated by prior cyclophosphamide, since this agent is given after TBI in our cytoreduction scheme. Peripheral blood cell concentrations were monitored with conventional laboratory cell counts and differentials. Absolute bone marrow cell concentrations were monitored by measuring cell concentrations in an aspirate sample and correcting for dilution with blood by a cell cycle kinetic method using cytofluorometry. For lymphocytes in peripheral blood in patients in remission, the effective D/sub 0/ ranged from 373 rad in 10 children less than or equal to 10 y old, to 536 rad in the four patients between 11 to 17 y old, while n = 1.0 in all groups. There was no trend observed according to age. Granulocytes had a much higher effective D/sub 0/, approximately 1000 rad in vivo. Absolute nucleated cell concentration in marrow dropped slowly initially, due to an increased lymphocyte concentration in marrow during a concurrent drop in lymphocyte concentration in peripheral blood, but eventually fell on the last day of TBI ranging from 7 to 44% of the initial marrow nucleated cell concentration. Marrow myeloid elements, however, dropped continuously throughout the course of TBI.

  1. The microcirculation of bone and marrow in the diaphysis of the rat hemopoietic long bones.

    PubMed

    de Saint-Georges, L; Miller, S C

    1992-06-01

    The nature of the microcirculation of the diaphyseal portion of long bones and the adjacent bone marrow is poorly understood. The purpose of this study was to describe the blood supply in the diaphyseal cortex and the relationship of the bone vascular circulation to that of the bone marrow in the growing rat. India ink-gelatin was infused in the arterial system of 3-month-old rats and the vascularization was determined from histological sections. In some studies the periosteal circulation was blocked but the nutrient and metaphyseal arteriole systems were left intact. In the growing rat, most of the vascular flow appears to be centripetally through the diaphyseal cortex and this appears to be the primary blood supply for the adjacent bone marrow. The India ink traversed the cortex and entered the marrow through osteal canals at the endocortical surface. At the marrow-endocortical bone surface interface, ink exiting from the osteal canals filled the adjacent marrow sinusoids in what appeared as "bush-like" structures. From the bone marrow the ink appeared to drain into the central vein. Some arterioles from the nutrient system were found to penetrate the inner two thirds of the cortical bone and then re-enter the bone marrow. The centripetal flow of blood and the importance of the cortical flow for perfusion of the hemopoietic tissue was further documented when periosteal flow was obstructed. In this situation, the cortical bone and adjacent bone marrow were not perfused while the nutrient system and central vein were filled with ink.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1605383

  2. Understanding donors' motivations: a study of unrelated bone marrow donors.

    PubMed

    Switzer, G E; Dew, M A; Butterworth, V A; Simmons, R G; Schimmel, M

    1997-07-01

    Medical advances in bone marrow transplantation techniques and immunosuppressive medications have dramatically increased the number of such transplants performed each year, and consequently, the demand for bone marrow from unrelated donors. Although physiological aspects of bone marrow donation have been thoroughly investigated, very few studies have examined psychosocial factors that may impact individuals' donation decisions and outcomes. To examine one particular set of donor psychosocial issues, this study investigated motives for bone marrow donation among 343 unrelated bone marrow donors who donated through the National Marrow Donor Program. Six distinct types of donor motives were identified from open-ended questionnaire responses. Donors most frequently reported motives reflecting some awareness of both the costs (to themselves) and potential benefits (to themselves and the recipient) of donation. A desire to act in accordance with social or religious precepts, expected positive feelings about donating, empathy for the recipient, and the simple desire to help another person were also commonly cited reasons for donating. Among a series of donor background characteristics, donors' gender was the variable most strongly associated with motive type; women were most likely to cite expected positive feelings, empathy, and the desire to help someone. Central study findings indicated that donor motives predicted donors reactions to donation even after the effects of donor background characteristics (including gender) were controlled. Donors who reported exchange motives (weighing costs and benefits) and donors who reported simple (or idealized) helping motives experienced the donation as less positive in terms of higher predonation ambivalence and negative postdonation psychological reactions than did remaining donors. Donors who reported positive feeling and empathy motives had the most positive donation reactions in terms of lower ambivalence, and feeling like

  3. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    PubMed Central

    Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2005-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting. PMID:12567137

  4. An in vitro model for the study of human bone marrow angiogenesis: role of hematopoietic cytokines.

    PubMed

    Pelletier, L; Regnard, J; Fellmann, D; Charbord, P

    2000-04-01

    This study describes a human bone marrow endothelial cell culture in which endothelial cells are organized into capillary tubes. These endothelial cells were positive for von Willebrand Factor, expressed CD34, CD31, and L-fucose residues, took up acetylated low-density lipoproteins, contained Weibel-Palade bodies, and were ensheathed in a basal lamina (which included laminin beta1, EDa+ and EDb+ fibronectin, and collagen type iv). Pericytes expressing alpha-smooth muscle (alpha-SM) actin were spatially associated with the capillary tubes and there was a highly significant correlation between the number of capillary tubes and pericytes. In this model, basal angiogenesis was found to be vascular endothelial growth factor (VEGF)-dependent, because neutralization of endogenous VEGF induced a dramatic regression in the number of tubes. However, the presence of alpha-SM actin-expressing pericytes in the linings of endothelial tubes partially prevented the VEGF-neutralized tube regression. We also observed that nitric oxide production contributed to basal angiogenesis and that upregulation of nitric oxide increased the number of tubes. Tube numbers also decreased when antibodies neutralizing the integrin alphavbeta5 were applied to the cultures. Moreover, addition of any of the hematopoietic cytokines, erythropoietin, stem cell factor, granulocytic colony stimulating factor, or granulomonocytic colony stimulating factor induced a highly significant increase in tube formation. When erythropoietin and granulocytic colony stimulating factor were added, this increase was larger than the maximum increase observed with VEGF. Thus, we have described an in vitro model for human bone marrow angiogenesis in which pericytes and basal lamina matrix were associated with endothelial cells and formed fully organized capillary tubes. In this model, cytokines known to regulate hematopoiesis also seemed to be mediators of angiogenesis. This culture system may therefore prove to be a

  5. Hematopoietic bone marrow recovery after radiation therapy: MRI evaluation

    SciTech Connect

    Casamassima, F.; Ruggiero, C.; Caramella, D.; Tinacci, E.; Villari, N.; Ruggiero, M. )

    1989-05-01

    Magnetic resonance imaging (MRI) is able to detect the increase of adipocytes in the hematopoietic bone marrow that occurs as a consequence of radiotherapy and is indicative of the loss of myeloid tissue. By monitoring this process, it is also possible to determine the recovery of the bone marrow. The amount of viable hematopoietic tissue plays a fundamental role in determining whether the patient is able to undergo further antineoplastic therapy, particularly chemotherapy. We examined 35 patients who had been treated with radiotherapy for Hodgkin's lymphoma (12), uterine cervix carcinoma (nine), ovarian dysgerminoma (six), testicular seminoma (four), and non-Hodgkin's lymphoma (four). We observed that radiation-induced modifications of the MRI pattern in the bone marrow are tightly linked to two parameters; the administered radiation dose and the length of time passed after the treatment. Bone marrow recovery was observed only when patients were treated with doses lower than 50 Gy. The earlier radiation-induced modifications of the bone marrow MRI pattern occurred 6 to 12 months after irradiation, and they were most evident 5 to 6 years after the treatment. From 2 to 9 years after radiotherapy, we observed partial recovery. Complete recovery, when it occurred, was observed only 10 to 23 years after the treatment. Our results indicate that MRI studies are likely to be useful in the assessment of radiation-induced injuries.

  6. Lasting engraftment of histoincompatible bone marrow cells in dogs

    SciTech Connect

    Vriesendorp, H.M.; Klapwijk, W.M.; van Kessel, A.M.C.; Zurcher, C.; van Bekkum, D.W.

    1981-05-01

    Conditioning protocols were tested for their efficacy in increasng the incidence of engraftment of histoincompatible dog bone marrow cells. Cyclophosphamide and total body irradiation (TBI), Corynebacterium parvum and TBI, a 3- or 5-day delayed transfusion of bone marrow cells after TBI, or an increase in the number of donor bone marrow cells or lymphocytes appeared to be ineffective. These protocols were previously reported to promote recovery of splenic hemopoiesis in mice in short-term assays. The noted discrepancy between studies with mice and dogs invalidated allogeneic resistance as measured in the mouse spleen assay as a model for bone marrow allograft rejection. Intravenous treatment with silica particles or L-asparaginase did improve the engraftment rate after 7.5 Gy TBI. Low efficiency and significant extra toxicity restrict the applicability of these procedures. The most promising conditioning schedule found appeared to be two fractions of 6.0 Gy TBI separated by a 72-h interval. Prolonged survival was noted after transplantation of bone marrow cells from a one-DLA haplotype-mismatched donor. Possibilities for further improvement of this protocol are discussed.

  7. Lasting engraftment of histoincompatible bone marrow cells in dogs

    SciTech Connect

    Vriesendorp, H.M.; Klapwijk, W.M.; van Kessel, A.M.; Zurcher, C.; van Bekkum, D.W.

    1981-05-01

    Conditioning protocols were tested for their efficacy in increasing the incidence of engraftment of histoincompatible dog bone marrow cells. Cyclophosphamide and total body irradation (TBI), Corynebacterium parvum and TBI, a 3- or 5-day delayed transfusion of bone marrow cells after TBI, or an increase in the number of donor bone marrow cells or lymphocytes appeared to be ineffective. These protocols were previously reported to promote recovery of splenic hemopoiesis in mice in short-term assays. The noted discrepancy between studies with mice and dogs invalidated allogeneic resistance as measured in the mouse spleen assay as a model for bone marrow allograft rejection. Intravenous treatment with silica particles or L-asparaginase did improve the engraftment rate after 7.5 Gy TBI. Low efficiency and significant extra toxicity restrict the applicability of these procedures. The most promising conditioning schedule found appeared to be two fractions of 6.0 Gy TBI separated by a 72-hr interval. Prolonged survival was noted after transplantation of bone marrow cells from a one-DLA haplo-type-mismatched donor. Possibilities for further improvement of this protocol are discussed.

  8. Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia.

    PubMed

    Uy, Geoffrey L; Hsu, Yen-Michael S; Schmidt, Amy P; Stock, Wendy; Fletcher, Theresa R; Trinkaus, Kathryn M; Westervelt, Peter; DiPersio, John F; Link, Daniel C

    2015-12-01

    In acute lymphoblastic leukemia (ALL) the bone marrow microenvironment provides growth and survival signals that may confer resistance to chemotherapy. Granulocyte colony-stimulating factor (G-CSF) potently inhibits lymphopoiesis by targeting stromal cells that comprise the lymphoid niche in the bone marrow. To determine whether lymphoid niche disruption by G-CSF sensitizes ALL cells to chemotherapy, we conducted a pilot study of G-CSF in combination with chemotherapy in patients with relapsed or refractory ALL. Thirteen patients were treated on study; three patients achieved a complete remission (CR/CRi) for an overall response rate of 23%. In the healthy volunteers, G-CSF treatment disrupted the lymphoid niche, as evidenced by reduced expression of CXCL12, interleukin-7, and osteocalcin. However, in most patients with relapsed/refractory ALL expression of these genes was markedly suppressed at baseline. Thus, although G-CSF treatment was associated with ALL cell mobilization into the blood, and increased apoptosis of bone marrow resident ALL cells, alterations in the bone marrow microenvironment were modest and highly variable. These data suggest that disruption of lymphoid niches by G-CSF to sensitize ALL cells to chemotherapy may be best accomplished in the consolidation where the bone marrow microenvironment is more likely to be normal. PMID:26467815

  9. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants.

    PubMed

    Birmingham, E; Kreipke, T C; Dolan, E B; Coughlin, T R; Owens, P; McNamara, L M; Niebur, G L; McHugh, P E

    2015-04-01

    Low magnitude high frequency (LMHF) loading has been shown to have an anabolic effect on trabecular bone in vivo. However, the precise mechanical signal imposed on the bone marrow cells by LMHF loading, which induces a cellular response, remains unclear. This study investigates the influence of LMHF loading, applied using a custom designed bioreactor, on bone adaptation in an explanted trabecular bone model, which isolated the bone and marrow. Bone adaptation was investigated by performing micro CT scans pre and post experimental LMHF loading, using image registration techniques. Computational fluids dynamic models were generated using the pre-experiment scans to characterise the mechanical stimuli imposed by the loading regime prior to adaptation. Results here demonstrate a significant increase in bone formation in the LMHF loaded group compared to static controls and media flow groups. The calculated shear stress in the marrow was between 0.575 and 0.7 Pa, which is within the range of stimuli known to induce osteogenesis by bone marrow mesenchymal stem cells in vitro. Interestingly, a correlation was found between the bone formation balance (bone formation/resorption), trabecular number, trabecular spacing, mineral resorption rate, bone resorption rate and mean shear stresses. The results of this study suggest that the magnitude of the shear stresses generated due to LMHF loading in the explanted bone cores has a contributory role in the formation of trabecular bone and improvement in bone architecture parameters. PMID:25281407

  10. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis.

    PubMed

    Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-03-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion. PMID:25333855

  11. The Use of Total Human Bone Marrow Fraction in a Direct Three-Dimensional Expansion Approach for Bone Tissue Engineering Applications: Focus on Angiogenesis and Osteogenesis

    PubMed Central

    Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-01-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion. PMID:25333855

  12. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Jimi, Eijiro

    2016-01-01

    Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment. PMID:27298623

  13. Phenotypic, genotypic, and functional characterization of normal and acute myeloid leukemia-derived marrow endothelial cells.

    PubMed

    Pizzo, Russell J; Azadniv, Mitra; Guo, Naxin; Acklin, Joshua; Lacagnina, Kimberly; Coppage, Myra; Liesveld, Jane L

    2016-05-01

    In addition to participation in homing, egress, and transmigration of hematopoietic cells, marrow endothelium also contributes to cell proliferation and survival. Endothelial cells from multiple vascular beds are able to prevent spontaneous or therapy-induced apoptosis in acute myelogenous leukemia (AML) blasts. Marrow-derived endothelial cells from leukemia patients have not been well-characterized, and in this work, endothelial cells were purified from marrow aspirates from normal subjects or from newly diagnosed AML patients to compare these cells phenotypically and functionally. By reverse transcription polymerase chain reaction, these cells express CD31, Tie-2, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS), supporting endothelial origin. They take up acetyl low-density lipoprotein and are able to form tubular structures. Culture of AML cells with endothelial cells from both normal and AML subjects supported adhesion, transmigration, and leukemia colony-forming unit outgrowth. RNA-sequencing analysis revealed 130 genes significantly up- or downregulated in AML-derived endothelial cells as compared with those derived from normal marrow. The genes differentially expressed (p < 0.001) were included in biological function categories involving cancer, cell development, cell growth and proliferation, cell signaling, inflammatory response, and cell death and survival. Further pathway analysis revealed upregulation of c-Fos and genes involved in chemotaxis such as CXCL16. AML-derived endothelial cells are similar in phenotype and function to their normal marrow-derived counterparts, but genomic analysis suggests a differential signature with altered expression of genes, which could play a role in leukemogenesis or leukemia cell maintenance in the marrow microenvironment. PMID:26851308

  14. Whole bone marrow irradiation for the treatment of multiple myeloma

    SciTech Connect

    Coleman, M.; Saletan, S.; Wolf, D.; Nisce, L.; Wasser, J.; McIntyre, O.R.; Tulloh, M.

    1982-04-01

    Nine patients with multiple myeloma were treated with whole bone marrow irradiation. Six had heavily pretreated disease refractory to chemotherapy. Three had stable disease lightly pretreated by chemotherapy. A modification of the ''three and two'' total nodal radiation technique was employed. Although varying and often severe treatment related cytopenia occurred, infectious complications, clinical bleeding, and nonhematalogic complications were minimal. Five of nine patients showed a decrease in monoclonal protein components, and one showed an increase during treatment. These preliminary results indicate that a reduction of tumor cell burden may occur in patients following whole bone marrow irradiation and that the technique is feasible. Whole bone marrow irradiation combined with chemotherapy represents a new conceptual therapeutic approach for multiple myeloma.

  15. Modeling Selective Elimination of Quiescent Cancer Cells from Bone Marrow

    PubMed Central

    Cavnar, Stephen P.; Rickelmann, Andrew D.; Meguiar, Kaille F.; Xiao, Annie; Dosch, Joseph; Leung, Brendan M.; Cai Lesher-Perez, Sasha; Chitta, Shashank; Luker, Kathryn E.; Takayama, Shuichi; Luker, Gary D.

    2015-01-01

    Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer. PMID:26408255

  16. P-glycoprotein expression in normal and reactive bone marrows.

    PubMed Central

    Hegewisch-Becker, S.; Fliegner, M.; Tsuruo, T.; Zander, A.; Zeller, W.; Hossfeld, D. K.

    1993-01-01

    The expression of mdr1 gene product P-glycoprotein (P-gp) was investigated in 53 normal and reactive bone marrows by means of immunocytochemistry, using the monoclonal antibody (mAb) C219 and the alkaline phosphatase anti-alkaline phosphatase method. In a limited number of patients, data were confirmed by using the mAb MRK16 or a polymerase chain reaction assay for mdr1 gene expression. There was no history of prior chemotherapy or any malignancy in this group. Bone marrow aspirates were obtained as part of a routine diagnostic programme in bone marrow donors or in patients presenting with a variety of diagnoses such as unexplained gammopathy, fever, anaemia, other changes in peripheral blood smear, rheumatoid arthritis, vasculitis, or urticaria pigmentosa. Morphologically the bone marrow was normal in 23 patients, a megaloblastic erythropoiesis was seen in two patients and unspecific changes were seen in 28 patients. Twenty-seven of 53 samples were found to be positive for P-gp expression with the percentage of positive cells ranging from 2%-80% (mean = 24%). With a cutoff point of 10%, five of 23 normal (22%) and 13 of 28 reactive bone marrows (46%) were considered positive for P-gp expression. There was no obvious correlation between diagnosis or age and P-gp expression. Additional staining for the early surface marker CD-34 was performed in 12 samples, with none of them revealing more than 1% positivity. Since P-gp expression has so far been described only in CD-34 positive bone marrow cells, data suggest that P-gp expression may be reinduced in CD-34 negative cells under conditions which remain to be determined. Images Figure 1 Figure 2 PMID:8094974

  17. Hematogones: a multiparameter analysis of bone marrow precursor cells.

    PubMed

    Longacre, T A; Foucar, K; Crago, S; Chen, I M; Griffith, B; Dressler, L; McConnell, T S; Duncan, M; Gribble, J

    1989-02-01

    Morphologically distinct lymphoid cells with homogeneous, condensed chromatin and scant cytoplasm can be observed in large numbers in the bone marrow of children with a variety of hematologic and nonhematologic disorders. In some patients, these cells may account for greater than 50% of the bone marrow cells, creating a picture that can be confused with acute lymphoblastic leukemia (ALL) or metastatic tumor. Although originally called hematogones (HGs), a variety of other names have been proposed for these unique cells. The clinical significance of expanded HGs has not been resolved, and the biologic features of these cells are incompletely described. In this study, we correlate the clinical, morphologic, cytochemical, flow cytometric, molecular, and cytogenetic properties of bone marrow samples from 12 children with substantial numbers of HGs (range 8% to 55% of bone marrow cells). Diagnoses in these patients included anemia, four; neutropenia, one; anemia and neutropenia, one; idiopathic thrombocytopenic purpura, two; retinoblastoma, two; Ewing's sarcoma, one; and germ cell tumor, one. Flow cytometric analyses of bone marrow cells demonstrated a spectrum extending from early B-cell precursors (CD10+, CD19+, TdT+, HLA-Dr+) to mature surface immunoglobulin-bearing B cells in these patients, corroborating our morphologic impression of HGs, intermediate forms, and mature lymphocytes. DNA content was normal, and no clonal abnormality was identified by either cytogenetic or immunoglobulin and T-cell receptor (TCR) gene rearrangement studies. Follow-up ranged from 3 months to 3 years. None of the patients has developed acute leukemia or bone marrow involvement by solid tumor. The possible role of HGs in immune recovery and hematopoiesis is presented. PMID:2917189

  18. Allergen-Induced Eotaxin-rich Pro-angiogenic Bone Marrow Progenitors: A Blood Borne Cellular Envoy for Lung Eosinophilia

    PubMed Central

    Asosingh, Kewal; Hanson, Jodi D.; Cheng, Georgiana; Aronica, Mark A.; Erzurum, Serpil C.

    2010-01-01

    Background Eosinophilic inflammation is closely related to angiogenesis in asthmatic airway remodeling. In ovalbumin-sensitized mice, bone marrow-derived pro-angiogenic endothelial progenitor cells (EPCs) are rapidly recruited into the lungs after ovalbumin aerosol challenge, and promptly followed by mobilization and recruitment of eosinophils. Objective We hypothesized that bone marrow-derived EPCs initiate the recruitment of eosinophils through expression of eosinophil chemoattractant eotaxin-1. Methods EPCs were isolated from ovalbumin murine model of allergic airway inflammation and from asthma patients. Endothelial and smooth muscle cells were isolated from mice. Eotaxin-1 expression was analyzed by immunofluorescence, real-time PCR or by ELISA. In vivo recruitment of eosinophils by EPCs was analyzed in mice. Results Circulating EPCs of asthmatic individuals had higher levels of eotaxin-1 as compared to controls. In the murine model, ovalbumin allergen exposure augmented eotaxin-1 mRNA and protein levels in EPCs. The EPCs from ovalbumin-sensitized and challenged mice released high levels of eotaxin-1 upon contact with lung endothelial cells from sensitized and challenged mice, but not from control animals, and not upon contact with cardiac or hepatic endothelial cells from sensitized and challenged mice. Intranasal administration of the eotaxin-rich media overlying cultures of EPCs caused recruitment into lungs, confirming functional chemoattractant activity. Conclusions Bone marrow-derived EPCs are early responders to environmental allergen exposures, and initiate a parallel switch to a pro-angiogenic and pro-eosinophilic environment in the asthmatic lungs. PMID:20227754

  19. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors

    PubMed Central

    Green, Danielle E.; Rubin, Clinton T.

    2014-01-01

    The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941

  20. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC).

    PubMed

    Huh, Sung Woo; Shetty, Asode Ananthram; Ahmed, Saif; Lee, Dong Hwan; Kim, Seok Jung

    2016-01-01

    Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-staged arthroscopic procedure. This method combines a modified microfracture technique with the application of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis. PMID:27489409

  1. Inherited bone marrow failure syndromes in adolescents and young adults.

    PubMed

    Wilson, David B; Link, Daniel C; Mason, Philip J; Bessler, Monica

    2014-09-01

    The inherited bone marrow failure syndromes are a diverse group of genetic diseases associated with inadequate production of one or more blood cell lineages. Examples include Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, thrombocytopenia absent radii syndrome, severe congenital neutropenia, and Shwachman-Diamond syndrome. The management of these disorders was once the exclusive domain of pediatric subspecialists, but increasingly physicians who care for adults are being called upon to diagnose or treat these conditions. Through a series of patient vignettes, we highlight the clinical manifestations of inherited bone marrow failure syndromes in adolescents and young adults. The diagnostic and therapeutic challenges posed by these diseases are discussed. PMID:24888387

  2. Immune Cell Isolation from Mouse Femur Bone Marrow

    PubMed Central

    Liu, Xiaoyu; Quan, Ning

    2016-01-01

    The bone marrow is the site of hematopoesis and contains mixed population of blood cells including erythrocytes, granulocytes, monocytes, dendritic cells, lymphocytes and hematopoietic stem cells. The following protocol provides a simple and fast method for isolation of bone marrow immune cells (no erythrocytes) from mouse femurs with a yield of approximate 8 × 107 cells in 5 ml culture media (1.6 × 104 cells/μl). Further isolation or flow cytometric analysis might be required for study of specific immune cell types.

  3. Inherited bone marrow failure syndromes in adolescents and young adults

    PubMed Central

    Wilson, David B.; Link, Daniel C.; Mason, Philip J.; Bessler, Monica

    2015-01-01

    The inherited bone marrow failure syndromes are a diverse group of genetic diseases associated with inadequate production of one or more blood cell lineages. Examples include Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, thrombocytopenia absent radii syndrome, severe congenital neutropenia, and Shwachman-Diamond syndrome. The management of these disorders was once the exclusive domain of pediatric subspecialists, but increasingly physicians who care for adults are being called upon to diagnose or treat these conditions. Through a series of patient vignettes, we highlight the clinical manifestations of inherited bone marrow failure syndromes in adolescents and young adults. The diagnostic and therapeutic challenges posed by these diseases are discussed. PMID:24888387

  4. Growth Hormone Regulates the Balance Between Bone Formation and Bone Marrow Adiposity

    PubMed Central

    Menagh, Philip J; Turner, Russell T; Jump, Donald B; Wong, Carmen P; Lowry, Malcolm B; Yakar, Shoshana; Rosen, Clifford J; Iwaniec, Urszula T

    2010-01-01

    Cancellous bone decreases and bone marrow fat content increases with age. Osteoblasts and adipocytes are derived from a common precursor, and growth hormone (GH), a key hormone in integration of energy metabolism, regulates the differentiation and function of both cell lineages. Since an age-related decline in GH is associated with bone loss, we investigated the relationship between GH and bone marrow adiposity in hypophysectomized (HYPOX) rats and in mice with defects in GH signaling. HYPOX dramatically reduced body weight gain, bone growth and mineralizing perimeter, serum insulin-like growth factor 1 (IGF-1) levels, and mRNA levels for IGF-1 in liver and bone. Despite reduced body mass and adipocyte precursor pool size, HYPOX resulted in a dramatic increase in bone lipid levels, as reflected by increased bone marrow adiposity and bone triglyceride and cholesterol content. GH replacement normalized bone marrow adiposity and precursor pool size, as well as mineralizing perimeter in HYPOX rats. In contrast, 17β -estradiol, IGF-1, thyroxine, and cortisone were ineffective. Parathyroid hormone (PTH) reversed the inhibitory effects of HYPOX on mineralizing perimeter but had no effect on adiposity. Finally, bone marrow adiposity was increased in mice deficient in GH and IGF-1 but not in mice deficient in serum IGF-1. Taken together, our findings indicate that the reciprocal changes in bone and fat mass in GH signaling-deficient rodents are not directly coupled with one another. Rather, GH enhances adipocyte as well as osteoblast precursor pool size. However, GH increases osteoblast differentiation while suppressing bone marrow lipid accumulation. © 2010 American Society for Bone and Mineral Research PMID:19821771

  5. Significance of bone marrow edema in pathogenesis of rheumatoid arthritis

    PubMed Central

    Sudoł-Szopińska, Iwona; Kontny, Ewa; Maśliński, Włodzimierz; Prochorec-Sobieszek, Monika; Warczyńska, Agnieszka; Kwiatkowska, Brygida

    2013-01-01

    Summary Assessing the pathology of the synovium, its thickening and increased vascularity through ultrasound and magnetic resonance examinations (more often an ultrasound study alone) is still considered a sensitive parameter in the diagnosis of rheumatoid arthritis and in monitoring of treatment efficacy. Magnetic resonance studies showed that, aside from the joint pannus, the subchondral bone tissue constitutes an essential element in the development of rheumatoid arthritis. Bone marrow edema correlates with inflammation severity, joint destruction, clinical signs and symptoms of rheumatoid arthritis, and thus is considered a predictor of rapid radiological progression of the disease. The newest studies reveal that bone marrow edema may be a more sensitive indicator of the response to therapy than appearance of the synovium. Bone marrow edema presents with increased signal in T2-weighted images, being most visible in fat saturation or IR sequences (STIR, TIRM). On the other hand, it is hypointense and less evident in T1-weighted images. It becomes enhanced (hyperintense) after contrast administration. Histopathological studies confirmed that it is a result of bone inflammation (osteitis/osteomyelitis), i.e. replacememt of bone marrow fat by inflammatory infiltrates containing macrophages, T lymphocytes, B lymphocytes, plasma cells and osteoclasts. Bone marrow edema appears after a few weeks from occurrence of symptoms and therefore is considered an early marker of inflammation. It correlates with clinical assessment of disease activity and elevated markers of acute inflammatory phase, i.e. ESR and CRP. It is a reversible phenomenon and may become attenuated due to biological treatment. It is considered a “herald” of erosions, as the risk of their formation is 6-fold higher in sites where BME was previously noted PMID:23493495

  6. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    PubMed Central

    Wang, Lin; Adams, Ralf H.

    2016-01-01

    Blood vessel growth in the skeletal system and osteogenesis appear coupled suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells1,2. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here, we show that vascular growth in bone involves a specialised, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours3,4. Endothelial cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae, and decreased bone mass. Based on a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralisation, chondrocyte maturation, the formation of trabeculae, and osteoprogenitor numbers in endothelial cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications. PMID:24647000

  7. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    NASA Astrophysics Data System (ADS)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Wang, Lin; Adams, Ralf H.

    2014-03-01

    Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.

  8. Regulation of CXCL12 expression by canonical Wnt signaling in bone marrow stromal cells.

    PubMed

    Tamura, Masato; Sato, Mari M; Nashimoto, Masayuki

    2011-05-01

    CXCL12 (stromal cell-derived factor-1, SDF-1), produced by stromal and endothelial cells including cells of the bone marrow, binds to its receptor CXCR4 and this axis regulates hematopoietic cell trafficking. Recently, osteoclast precursor cells were found to express CXCR4 and a potential role for the CXCL12-CXCR4 axis during osteoclast precursor cell recruitment/retention and development was proposed as a regulator of bone resorption. We examined the role of canonical Wnt signaling in regulating the expression of CXCL12 in bone marrow stromal cells. In mouse stromal ST2 cells, CXCL12 mRNA was expressed, while its expression was reduced in Wnt3a over-expressing ST2 (Wnt3a-ST2) cells or by treatment with lithium chloride (LiCl). Wnt3a decreased CXCL12 levels in culture supernatants from mouse bone marrow stromal cells. The culture supernatant from Wnt3a-ST2 cells also reduced migratory activity of bone marrow-derived cells in a Transwell migration assay. Silencing of glycogen synthase kinase-3β decreased CXCL12 expression, suggesting that the canonical Wnt signaling pathway regulates CXCL12 expression. In a transfection assay, LiCl down-regulated the activity of a reporter gene, a 1.8kb fragment of the 5'-flanking region of the CXCL12 gene. These results show that canonical Wnt signaling regulates CXCL12 gene expression at the transcriptional level, and this is the first study linking chemokine expression to canonical Wnt signaling. PMID:21296678

  9. The survival of cryopreserved human bone marrow stem cells.

    PubMed

    Hill, R S; Mackinder, C A; Postlewaight, B F; Blacklock, H A

    1979-07-01

    Two methods for cryopreservation of bone marrow stem cells were compared using bone marrow obtained from 36 patients. Included in this group were 21 persons with the diagnosis of leukaemia including 14 either with acute myeloid or lymphoblastic leukaemia in remission following intensive remission induction chemotherapy. After freeze-preservation and reconstitution, all marrow samples were tested for nucleated cell (NC) recovery and grown on agar to assess colony forming units (CFUC) and cluster forming units in culture (CluFUc). A slow dilution reconstitution method using freezing media containing AB negative plasma resulted in recovery of 85% of the CFUc activity of fresh marrow. This result was significantly better than the 47% CFUc recovery obtained when freezing media without plasma and a rapid dilution reconstitution technique were used. NC recoveries following slow dilution (51%) and rapid dilution (44%) were not significantly different. CluFUc were disproportionately reduced compared with CFUc although yielding similar results with both methods (26% and 32%). No correlation was found for either method between CFUc and NC recovery or between CFUc and CluFUc recovery in cryopreserved bone marrow. PMID:392422

  10. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...

  11. Total body irradiation in bone marrow transplantation: the influence of fractionation and delay of marrow infusion

    SciTech Connect

    Lichter, A.S.; Tracy, D.; Lam, W.C.; Order, S.E.

    1980-03-01

    Bone marrow transplantation (BMT) after total body irradiation (TBI) and cyclophosphamide is being employed increasingly in the therapy of end stage leukemia. Interstitial pneumonitis (IP) represents a major acute toxicity after allogeneic transplantation. A more rapid reconstitution of lymphoid organs and bone marrow post transplant may result in increased immune competence and hence fewer opportunistic pulmonary infections and IP. By delaying the infusion of marrow to 72 hr after TBI (1250 rad at 7.5 rad/min) instead of the customary 24 hr, we can demonstrate an increase in initial repopulation of thymus, spleen and bone marrow, with syngeneic transplants in Lewis rats. Interstitial pneumonitis may also be caused, in part, by the pulmonary toxicity of large single exposures of TBI. Clinical and laboratory data suggest that fractionated TBI may be less toxic to the lung. When fractionated TBI (625 rad x 2, 7.5 rad/min) is compared to single dose TBI (1250 rad, 7.5 rad/min), and increased initial repopulation of lymphoid organs is observed when fractionated therapy is employed. Delay in marrow infusion and fractionation of TBI exposure may have clinical advantages in patients who receive BMT.

  12. Therapy Effects of Bone Marrow Stromal Cells on Ischemic Stroke

    PubMed Central

    Ye, Xinchun; Hu, Jinxia; Cui, Guiyun

    2016-01-01

    Stroke is the second most common cause of death and major cause of disability worldwide. Recently, bone marrow stromal cells (BMSCs) have been shown to improve functional outcome after stroke. In this review, we will focus on the protective effects of BMSCs on ischemic brain and the relative molecular mechanisms underlying the protective effects of BMSCs on stroke. PMID:27069533

  13. Treating Families of Bone Marrow Recipients and Donors

    ERIC Educational Resources Information Center

    Cohen, Marie; And Others

    1977-01-01

    Luekemia and aplastic anemia are beginning to be treated by bone marrow transplants, involving donors and recipients from the same family. Such intimate involvement in the patient's life and death struggles typically produces a family crisis and frequent maladaptive responses by various family members. (Author)

  14. [Bone marrow biopsy: processing and use of molecular techniques].

    PubMed

    Quintanilla-Martinez, L; Tinguely, M; Bonzheim, I; Fend, F

    2012-11-01

    The rapid technological development in diagnostic pathology, especially of immunohistochemical and molecular techniques, also has a significant impact on diagnostic procedures for the evaluation of bone marrow trephine biopsies. The necessity for optimal morphology, combined with preservation of tissue antigens and nucleic acids on one hand and the wish for short turnaround times on the other hand require careful planning of the workflow for fixation, decalcification and embedding of trephines. Although any kind of bone marrow processing has its advantages and disadvantages, formalin fixation followed by EDTA decalcification can be considered a good compromise, which does not restrict the use of molecular techniques. Although the majority of molecular studies in haematological neoplasms are routinely performed on bone marrow aspirates or peripheral blood cells, there are certain indications, in which molecular studies such as clonality determination or detection of specific mutations need to be performed on the trephine biopsy. Especially, the determination of B- or T-cell clonality for the diagnosis of lymphoid malignancies requires stringent quality controls and knowledge of technical pitfalls. In this review, we discuss technical aspects of bone marrow biopsy processing and the application of diagnostic molecular techniques. PMID:23085692

  15. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    SciTech Connect

    Benko', Klara; Pintye, Eva; Szabo, Boglarka; Geresi, Krisztina; Megyeri, Attila; Benko, Ilona

    2008-12-08

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of {gamma}--irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD{sub 50} values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  16. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    NASA Astrophysics Data System (ADS)

    Benkő, Klára; Pintye, Éva; Szabó, Boglárka; Géresi, Krisztina; Megyeri, Attila; Benkő, Ilona

    2008-12-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ—irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  17. Body/bone-marrow differential-temperature sensor

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  18. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis

    PubMed Central

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402

  19. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.

    PubMed

    Kurhekar, Manish; Deshpande, Umesh

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402

  20. A Dosimetric Study of Radionuclide Therapy for Bone Marrow Ablation.

    NASA Astrophysics Data System (ADS)

    Bayouth, John Ellis

    In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 (166Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane -1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of 166Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of 166 Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of 166 Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head. A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six 166 Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with

  1. Characterization of the in vitro stromal microenvironment of human bone marrow.

    PubMed

    Strobel, E S; Gay, R E; Greenberg, P L

    1986-09-01

    Utilizing long-term in vitro culture techniques, we characterized the cellular composition and functional attributes of the human in vitro bone marrow stromal microenvironment. Morphologic, specific cytochemical and immunologic methods demonstrated that the marrow stromal adherent layer (AL) reached confluency at two to three weeks, and was comprised of 60%-70% fibroblastic cells, 10%-20% endothelial cells, 10%-20% monocyte/macrophages and 5%-10% fat-laden adherent cells. These proportions of cell types persisted for at least three months concomitant with proliferation of CFU-gm and BFU-e. In contrast, umbilical cord blood cells did not form a stromal AL despite persistence of hemopoietic progenitor cell proliferation. These findings provide a basis for improved understanding of cellular interactions regulating hemopoiesis. PMID:3534110

  2. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice

    SciTech Connect

    Perkins, S.; Fleischman, R.A.

    1988-04-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produced by placental injection of bone marrow into genetically anemic Wx/Wv fetuses, a technique that essentially precludes engraftment of nonhematopoietic cells. Using two-color indirect immunofluorescence, the stromal cells in long-term bone marrow culture derived from these chimeras were analyzed for donor or host origin by strain-specific H-2 antigens, and for cell lineage by a variety of other specific markers. 75-95% of the stromal cells were shown to be hematopoietic cells of the monocyte-macrophage lineage, based upon donor origin, phagocytosis, and expression of specific hematopoietic surface antigens. The remaining 5-25% of the stromal cells were exclusively host in origin. Apart from occasional fat cells, these cells uniformly expressed collagen type IV, laminin, and a surface antigen associated with endothelial cells. Since these endothelial-like cells are not transplantable into radiation or fetal chimeras, they are not derived from hematopoietic stem cells. The contrast between our findings and human studies suggests either unexpected species differences in the origin of stromal lineages or limitations in the previous methodology used to detect nonhematopoietic stromal cells.

  3. In vitro osteogenic induction of bone marrow stromal cells with encapsulated gene-modified bone marrow stromal cells and in vivo implantation for orbital bone repair.

    PubMed

    Deng, Yuan; Zhou, Huifang; Yan, Chenxi; Wang, Yefei; Xiao, Caiwen; Gu, Ping; Fan, Xianqun

    2014-07-01

    Osteogenic induction with either growth factors or genetic modification has limitations due to the short half-life and cost of the former, or safety concerns regarding the latter. The objective of this study was to employ a microcapsulation technique to separate genetically modified and nonmodified bone marrow stromal cells (BMSCs) to establish a cost-effective and biosafe osteogenic induction methodology with functional evaluation in vitro and in vivo in a canine model. Autologous BMSCs were isolated and transduced with adenoviral vectors containing either BMP-2 or vascular endothelial growth factor (VEGF) or were dual transduced followed by encapsulation in alginate microcapsules using an electrostatic bead generator. After cocultured with encapsulated cells, normal autologous BMSCs were analyzed for osteogenic differentiation and seeded onto tricalcium phosphate (TCP) scaffolds for in vivo implantation to repair orbital wall bone defects (12 mm in diameter) in a canine model. In vitro assays showed that the expression of the transduced genes was significantly upregulated, with significantly more transduced proteins released from the transduced cells compared with control cells. Importantly, examination of the BMSCs induced by soluble factors released from the encapsulated cells revealed a significant upregulation of expression of osteogenic markers Runx2, BSP, OPN, and OCN in dual-transduction or induction groups. In addition, dual transduction and induction resulted in the highest increase of alkaline phosphatase activity and mineralization compared with other experimental groups. In vivo assays using CT, micro-CT, and histology further supported the qPCR and western blot findings. In conclusion, encapsulation of genetically modified BMSCs was able to release a sufficient amount of BMP-2 and VEGF, which effectively induced osteogenic differentiation of normal-cultured BMSCs and demonstrated bone repair of the orbital wall defect after implantation with

  4. Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies.

    PubMed

    Lamghari, M; Almeida, M J; Berland, S; Huet, H; Laurent, A; Milet, C; Lopez, E

    1999-08-01

    There is frequently a loss of vertebral bone due to disease or aging. Nacre (mother of pearl from the oyster Pinctada maxima) stimulates bone cell differentiation and bone formation in vitro and in vivo. Experimental bone defects were prepared in the vertebrae of sheep and used to test the suitability of nacre as an injectable osteogenic biomaterial for treating vertebral bone loss. Twenty-one cavities were prepared in the first four upper lumbar vertebrae of 11 sheep and filled with nacre powder. The lumbar vertebrae were removed after 1 to 12 weeks, embedded undecalcified in methacrylate, and processed for histological studies. The nacre slowly dissolved and the experimental cavities contained a large active cell population. By 12 weeks, the experimental cavity was occupied by newly matured bone trabeculae in contact with or adjacent to the dissolving nacre. The functional new bone trabeculae were covered with osteoid lined with osteoblasts, indicating continuing bone formation. The in vitro study on rat bone marrow explants cultured with a water-soluble extract of the nacre organic matrix also resulted in the stimulation of osteogenic bone marrow cells with enhanced alkaline phosphatase activity. Thus, both the in vivo and in vitro findings suggest that nacre contains one or more signal molecules capable of activating osteogenic bone marrow cells. PMID:10458284

  5. Pressure and shear stress in trabecular bone marrow during whole bone loading.

    PubMed

    Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L

    2015-09-18

    Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology. PMID:26283413

  6. Bone marrow-derived stem cells and radiation response.

    PubMed

    Greenberger, Joel S; Epperly, Michael

    2009-04-01

    The recovery of tissues and organs from ionizing irradiation is critically dependent on the repopulation of resident stem cells, defined as the subset of cells with capacity for both self-renewal and differentiation. Stem cells of both hematopoietic and epithelial origin reside in defined areas of the cellular microenvironment (recently defined as the stem cell "niche"). Experiments using serial repopulation assays in serial generations of total body irradiated mice receiving transplanted marrow and in continuous bone marrow cultures both identified specific microanatomic sites that comprise the bone marrow stem cell niche. Supportive cells of the hematopoietic microenvironment not only contribute to stem cell repopulation capacity but also to the maintenance of their quiescent or nonproliferative state, which allows the most primitive hematopoietic stem cells to stay in a noncycling state protected from both direct ionizing radiation-induced cell-cycle phase-specific killing and indirect cytokine and free radical mediated killing. Recent evidence has defined both cell contact and humoral mechanisms of protection of hematopoietic stem cells by stromal cells. There is also recent evidence for multilineage differentiation capacity of cells of the hematopoietic microenvironment termed bone marrow stromal cells (mesenchymal stem cells). Both hematopoietic stem cells and mesenchymal stem cell populations have been shown to be involved in the repair of ionizing irradiation damage of distant epithelial as well as other hematopoietic sites through their capacity to migrate through the circulation. The radiobiology of these 2 bone marrow stem cell populations is the subject of intense investigation. This review defines the status of research in the areas of stem cell quiescence, niche contact, and migratory responses to ionizing irradiation. PMID:19249651

  7. Probabilistic Prediction of the Outcome of Bone-Marrow Transplantation

    PubMed Central

    Suermondt, H. Jacques; Amylon, Michael D.

    1989-01-01

    Bone-marrow transplantation is considered the treatment of choice for pediatric patients with recurring acute lymphoblastic leukemia, provided that a suitable donor is available. Many prognostic factors are known that help to predict the likely outcome of transplantation. We have implemented a system that applies probabilistic reasoning to the available data about individual patients to help determine the risk of recurrence and morbidity after transplantation, and to predict life expectancy. The resulting predictions can be used to decide whether marrow transplantation is the most desirable treatment modality for the patient.

  8. Bone marrow ablation followed by allogeneic marrow grafting during first complete remission of acute nonlymphocytic leukemia

    SciTech Connect

    Forman, S.J.; Spruce, W.E.; Farbstein, M.J.

    1983-03-01

    Of 33 patients who had undergone allogeneic bone marrow transplantation during first complete remission of acute nonlymphocytic leukemia, 21 patients have now been followed in continued complete remission for 6-64 mo (median greater than 18 mo) without maintenance chemotherapy. The median age of the surviving patients is 27 yr. Transplant-related complications occurring throughout the first year after marrow grafting were fatal in 7 patients, and leukemic recurrence led to the death of 5 patients. The actuarial long-term disease-free survival is 60% and the actuarial remission rate is 79%.

  9. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms.

    PubMed

    Herroon, Mackenzie K; Rajagurubandara, Erandi; Hardaway, Aimalie L; Powell, Katelyn; Turchick, Audrey; Feldmann, Daniel; Podgorski, Izabela

    2013-11-01

    Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1β, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPARγ pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1β axis as a potential therapeutic target for this presently incurable disease. PMID:24240026

  10. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri

    found in the umbilical cord and bone marrow as hematopoietic cells, a subset of mesenchymal stem cells, endothelial progenitor cells, endothelial cells of blood vessels, etc. [Beutler et al. 2000 ] Potential mechanisms responsible for radiation-acquired marrow cell failure include direct toxicity , direct damage of hematopoietic multipotential cells or cellular or humoral immune suppression of the marrow multipotential cells. [ Beutler et al. 2000] Methods: These studies were conducted at several different research institutions and laboratories listed as follows: Kazan All-Union Scientific Research Veterinary, Biotechnology Centre of Russian Academy of Science (North Osetia), Institute Belarussian Scientific and Research Institute for Radiobiology in Gomel, the St. Petersburg Veterinary Institute, the Advanced Medical Technology and Systems Inc., Ontario, Canada. The studies were approved by the Animal Care and Use Committee for ethical animal research equivalent, at each institution. A critically important volume of purified Radiation Toxins (RT) was isolated from larger mammalian irradiated animals. Subsequently the RT were characterized chemically and biologically. The experimental design of later studies compared relative toxicity, potential for development of acute radiation hematopoietic syndrome, and potential cloning disorder of multipotential hematopoietic progenitors and their derivative and lethality after intravenous or intramuscular injections of SRD containing Hematopoietic Radiation Toxins. These experiments have employed a wide variety of experimental animals. The animals were irradiated in RUM-17, Puma, and Panorama devices. The dose varied from 0.7Gy to 100Gy. The methods of immune depletion, immuno-lympho plasmasabsorption, as well as direct extraction, were used to refine and purify the specific Radiation Toxins from the central lymph of animals with Hematopoietic forms of Radiation Toxins. Experiments include administration of Hematopoietic

  11. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow

    PubMed Central

    Yu, Vionnie W.C.; Saez, Borja; Cook, Colleen; Lotinun, Sutada; Pardo-Saganta, Ana; Wang, Ying-Hua; Lymperi, Stefania; Ferraro, Francesca; Raaijmakers, Marc H.G.P.; Wu, Joy Y.; Zhou, Lan; Rajagopal, Jayaraj; Kronenberg, Henry M.; Baron, Roland

    2015-01-01

    Production of the cells that ultimately populate the thymus to generate α/β T cells has been controversial, and their molecular drivers remain undefined. Here, we report that specific deletion of bone-producing osteocalcin (Ocn)-expressing cells in vivo markedly reduces T-competent progenitors and thymus-homing receptor expression among bone marrow hematopoietic cells. Decreased intrathymic T cell precursors and decreased generation of mature T cells occurred despite normal thymic function. The Notch ligand DLL4 is abundantly expressed on bone marrow Ocn+ cells, and selective depletion of DLL4 from these cells recapitulated the thymopoietic abnormality. These data indicate that specific mesenchymal cells in bone marrow provide key molecular drivers enforcing thymus-seeding progenitor generation and thereby directly link skeletal biology to the production of T cell–based adaptive immunity. PMID:25918341

  12. Homing of chloromethylbenzoyl ammonia-labeled bone marrow mesenchymal stem cells in an immune-mediated bone marrow failure mouse model in vivo.

    PubMed

    Xiao, Y; Wang, Y; Li, L; Li, Y H; Pang, Y; Song, J Y; Jiang, Z J

    2014-01-01

    Aplastic anemia is an abnormal immune reaction disease in which T lymphocytes destroy hematopoietic stem and progenitor cells because of immune hyperactivity. Bone marrow mesenchymal stem cells (BMSCs) have hematopoietic supporting and immune regulation functions. This study investigated BMSCs homing in mice transplantation models after bone marrow failure. BALB/c mice were randomly divided into three groups: normal control, bone marrow failure model, and BMSC transplantation group. Chloromethyl benzamido-labeled BMSCs of BALB/c mice were transplanted through tail vein injection in mouse models with bone marrow failure. Flow cytometry and histological fluorescence microscopy were used to observe the dynamic distribution of labeled cells in different tissues. Average survival time, peripheral blood, and bone marrow morphological features were observed in mice from each group. Twenty-four hours after tail vein infusion of BMSCs, positively labeled cells were observed in the bone marrows of recipient mice, and the number of positive cells increased significantly at 72 h (P < 0.05). In dead or dying mice, white blood cells, hemoglobin, platelets, and bone marrow mononuclear cells were all significantly higher in the BMSC transplantation group than in the BMSCs of the model group (P < 0.01). Mean survival time was significantly shorter in the bone marrow failure model group than in the transplantation group (P < 0.05). These results confirmed that the major of BMSCs injected via tail vein could migrate to injured bone marrow tissues within 24-72 h in a mouse model of bone marrow failure. Furthermore, BMSCs can promote hematopoietic recovery, reduce the degree of bone marrow failure, and significantly prolong survival time. PMID:24421151

  13. Effects of prostaglandin on experimental bone malignancy and on scintigrams of bone and marrow. [Rabbits

    SciTech Connect

    Otsuka, N.; Ito, Y.; Nagai, K.; Terashima, H.; Yanagimoto, S.; Muranaka, A.

    1981-05-01

    The correlation between prostaglandin E (PgE) and scintigrams of bone (Tc-99m MDP) and bone marrow (Tc-99m SC) was investigated in normal and VX-2-bearing rabbits. PgE in plasma of normal rabbits was 486.2. In rabbits with VX-2 transplanted into femoral muscles, PgE was in the normal range unless the tumor invaded bone. PgE was not increase significantly in rabbits when the tumor was transplanted into the marrow cavity. When tumor invaded bone, PgE increassed markedly (to 1335). Elevation of PgE did not necessarily coincide with the appearance of positive bone scans. PgE in an indomethacin-treated group did not necessarily coincide with the appearance of positive bone scans. PgE in an indomethacin-treated group did not higher than in the untreated group. Indomethacin may suppress the local acceleration of calcium metabolism.

  14. Endogenous glucocorticoids control neutrophil mobilization from bone marrow to blood and tissues in non-inflammatory conditions

    PubMed Central

    Cavalcanti, D M H; Lotufo, C M C; Borelli, P; Ferreira, Z S; Markus, R P; Farsky, S H P

    2007-01-01

    Background and purpose: We have shown that endogenous glucocorticoids control neutrophil mobilization in the absence of inflammation. In this study the role of the glucocorticoid receptor (GR) in the physiological control of neutrophil mobilization was investigated, focusing on the specific mechanisms for mature neutrophils in bone marrow, circulating neutrophils and endothelial cells. Experimental approach: Male Wistar rats were treated with RU 38486 or adrenalectomized. Cell numbers in bone marrow and circulation were morphologically quantified and expressions of L-selectin determined by flow cytometry. Expressions of P-selectin, E-selectin, PECAM-1, VCAM-1 and ICAM-1 were measured by immunohistochemistry on vessels of cremaster muscle and their mRNA levels quantified in primary cultured endothelial cells. NF-κB activity in neutrophils and endothelium was quantified by EMSA. Key results: RU 38486 treatment altered the maturation phases of neutrophilic lineage and reduced expression of L-selectin in mature neutrophils from bone marrow; increased the number of neutrophils in the circulation and elevated the expression of L-selectin in these cells. P-selectin and E-selectin expression in endothelial cells was unchanged by adrenalectomy or RU 38486 treatment. Membrane expressions, mRNA levels of ICAM-1, VCAM-1 and PECAM-1 and NF-κB translocation into the nucleus were higher in the endothelium of adrenalectomized and RU 38486 treated rats. Conclusions and implications: Endogenous glucocorticoids, through activation of GR on neutrophils, physiologically control the rolling behaviour of these cells and, by modulating endothelial functions, affect their adhesiveness. The molecular mechanism induced by activated GR is different in each cell, as NF-κB translocation was only altered in endothelial cells. PMID:17982481

  15. Bone marrow and splenic histology in hairy cell leukaemia.

    PubMed

    Wotherspoon, Andrew; Attygalle, Ayoma; Mendes, Larissa Sena Teixeira

    2015-12-01

    Hairy cell leukaemia is a rare chronic neoplastic B-cell lymphoproliferation that characteristically involves blood, bone marrow and spleen with liver, lymph node and skin less commonly involved. Histologically, the cells have a characteristic appearance with pale/clear cytoplasm and round or reniform nuclei. In the spleen, the infiltrate involves the red pulp and is frequently associated with areas of haemorrhage (blood lakes). The cells stain for B-cell related antigens as well as with antibodies against tartrate-resistant acid phosphatase, DBA44 (CD72), CD11c, CD25, CD103, CD123, cyclin D1 and annexin A1. Mutation of BRAF -V600E is present and antibody to the mutant protein can be used as a specific marker. Bone marrow biopsy is essential in the initial assessment of disease as the bone marrow may be inaspirable or unrepresentative of degree of marrow infiltration as a result of the tumour associated fibrosis preventing aspiration of the tumour cell component. Bone marrow biopsy is important in the assessment of therapy response but in this context staining for CD11c and Annexin A1 is not helpful as they are also markers of myeloid lineage and identification of low level infiltration may be obscured. In this context staining for CD20 may be used in conjunction with morphological assessment and staining of serial sections for cyclin D1 and DBA44 to identify subtle residual infiltration. Staining for CD79a and CD19 is not recommended as these antibodies will identify plasma cells and can lead to over-estimation of disease. Staining for CD20 should not be used in patients following with anti-CD20 based treatments. Down regulation of cyclin D1 and CD25 has been reported in patients following BRAF inhibitor therapy and assessment of these antigens should not be used in this context. Histologically, hairy cell leukaemia needs to be distinguished from other B-cell lymphoproliferations associated with splenomegaly including splenic marginal zone lymphoma, splenic

  16. A stochastic model of radiation-induced bone marrow damage

    SciTech Connect

    Cotlet, G.; Blue, T.E.

    2000-03-01

    A stochastic model, based on consensus principles from radiation biology, is used to estimate bone-marrow stem cell pool survival (CFU-S and stroma cells) after irradiation. The dose response model consists of three coupled first order linear differential equations which quantitatively describe time dependent cellular damage, repair, and killing of red bone marrow cells. This system of differential equations is solved analytically through the use of a matrix approach for continuous and fractionated irradiations. The analytic solutions are confirmed through the dynamical solution of the model equations using SIMULINK. Rate coefficients describing the cellular processes of radiation damage and repair, extrapolated to humans from animal data sets and adjusted for neutron-gamma mixed fields, are employed in a SIMULINK analysis of criticality accidents. The results show that, for the time structures which may occur in criticality accidents, cell survival is established mainly by the average dose and dose rate.

  17. Bone marrow examination before steroids in thrombocytopenic purpura or arthritis.

    PubMed

    Reid, M M

    1992-12-01

    Corticosteroids were used to treat two children with presumed idiopathic thrombocytopenic purpura and one with juvenile rheumatoid arthritis without examination of the bone marrow. Of the two with presumed idiopathic thrombocytopenic purpura, one had Fanconi's anaemia and the other may have had aplastic anaemia. The third child had acute lymphoblastic leukaemia. The diagnosis of Fanconi's anaemia was delayed. A diagnostic and therapeutic dilemma was caused in the second case. In the third, delayed diagnosis and, perhaps, compromised outlook resulted. These three cases re-emphasize the well aired caveats about the diagnosis of idiopathic thrombocytopenic purpura and juvenile rheumatoid arthritis and provide further support for the arguments of those who believe that if corticosteroids are to be used to treat such children, their bone marrow should be examined first. PMID:1290852

  18. Ethical issues in bone marrow transplantation in children.

    PubMed

    Bendorf, Aric; Kerridge, Ian H

    2011-09-01

    In the 50 years since the first successful human bone marrow transplant (BMT) was performed in 1959, BMT has become the optimal therapy for a wide variety of life-threatening paediatric haematological, immunological and genetic disorders. Unfortunately, while BMT generally provides the only possibility of cure for such afflicted children, few (25%) have a matched sibling available, and suitably matched unrelated donors are often not identified for many children in need of BMT. And even where BMT is possible, treatment is complex and arduous and associated with significant mortality and morbidity. The issues raised when either or both the donor and recipient are children and lack the capacity to make informed and rational decisions relating to BMT pose great challenges for all involved. This paper examines some of the ethical dilemmas that confront patients, families and medical practitioners when considering bone marrow transplantation in a child. PMID:21951444

  19. Total lymphatic irradiation and bone marrow in human heart transplantation

    SciTech Connect

    Kahn, D.R.; Hong, R.; Greenberg, A.J.; Gilbert, E.F.; Dacumos, G.C.; Dufek, J.H.

    1984-08-01

    Six patients, aged 36 to 59 years, had heart transplants for terminal myocardial disease using total lymphatic irradiation (TLI) and donor bone marrow in addition to conventional therapy. All patients were poor candidates for transplantation because of marked pulmonary hypertension, unacceptable tissue matching, or age. Two patients are living and well more than four years after the transplants. Two patients died of infection at six and seven weeks with normal hearts. One patient, whose preoperative pulmonary hypertension was too great for an orthotopic heart transplant, died at 10 days after such a procedure. The other patient died of chronic rejection seven months postoperatively. Donor-specific tolerance developed in 2 patients. TLI and donor bone marrow can produce specific tolerance to donor antigens and allow easy control of rejection, but infection is still a major problem. We describe a new technique of administering TLI with early reduction of prednisone that may help this problem.

  20. Bone marrow hypoplasia associated with fenbendazole administration in a dog.

    PubMed

    Gary, Anthony T; Kerl, Marie E; Wiedmeyer, Charles E; Turnquist, Susan E; Cohn, Leah A

    2004-01-01

    A 1.5-year-old Doberman pinscher was presented with sudden-onset of fever and malaise. Twelve days prior to presentation, fenbendazole therapy was initiated for a suspected lungworm infection. Results of a complete blood count on presentation showed pancytopenia, while histopathological evaluation of a bone marrow core sample revealed bone marrow hypoplasia of undetermined etiology. Bactericidal antibiotics and fluid therapy, as well as discontinuation of fenbendazole administration, led to a complete resolution of clinical and hematological abnormalities within 15 days. An idiosyncratic reaction to fenbendazole was suspected based on the absence of infectious, neoplastic, autoimmune, and toxic etiologies, as well as resolution of clinical signs and pancytopenia upon drug withdrawal. PMID:15131104

  1. [Diagnosis and management of inherited bone marrow failure syndrome].

    PubMed

    Yabe, Miharu; Yabe, Hiromasa

    2015-10-01

    The inherited bone marrow failure syndromes (IBMFS) are rare disorders in which there is usually some form of bone marrow failure and typical changes in physical appearance, associated with a family history of the same disorder. Patients with IBMFS have a very high risk of developing myelodysplastic syndrome, acute myeloid leukemia, and solid tumors. The latest technology applied to the molecular pathogenesis of these disorders has led to identification of specific genetic mutations and now facilitates determining the appropriate diagnosis and management of afflicted patients. In this section, we describe physical and laboratory findings and management of the major IBMFS: Fanconi anemia, dyskeratosis congenita, Shwachman-Diamond syndrome, and Diamond Blackfan anemia. We also discuss their possible implications in the clinical features of Japanese patients. PMID:26458429

  2. Bone marrow stem cell as a potential treatment for diabetes.

    PubMed

    Li, Ming; Ikehara, Susumu

    2013-01-01

    Diabetes mellitus (DM) is a group of metabolic diseases in which a person has high blood glucose levels resulting from defects in insulin secretion and insulin action. The chronic hyperglycemia damages the eyes, kidneys, nerves, heart, and blood vessels. Curative therapies mainly include diet, insulin, and oral hypoglycemic agents. However, these therapies fail to maintain blood glucose levels in the normal range all the time. Although pancreas or islet-cell transplantation achieves better glucose control, a major obstacle is the shortage of donor organs. Recently, research has focused on stem cells which can be classified into embryonic stem cells (ESCs) and tissue stem cells (TSCs) to generate functional β cells. TSCs include the bone-marrow-, liver-, and pancreas-derived stem cells. In this review, we focus on treatment using bone marrow stem cells for type 1 and 2 DM. PMID:23671865

  3. Late renal dysfunction in adult survivors of bone marrow transplantation

    SciTech Connect

    Lawton, C.A.; Cohen, E.P.; Barber-Derus, S.W.; Murray, K.J.; Ash, R.C.; Casper, J.T.; Moulder, J.E. )

    1991-06-01

    Until recently long-term renal toxicity has not been considered a major late complication of bone marrow transplantation (BMT). Late renal dysfunction has been described in a pediatric population status post-BMT which was attributable to the radiation in the preparatory regimen. A thorough review of adults with this type of late renal dysfunction has not previously been described. Fourteen of 103 evaluable adult patients undergoing allogeneic (96) or autologous (7) bone marrow transplantation, predominantly for leukemia and lymphomas, at the Medical College of Wisconsin (Milwaukee, WI) have had a syndrome of renal insufficiency characterized by increased serum creatinine, decreased glomerular filtration rate, anemia, and hypertension. This syndrome developed at a median of 9 months (range, 4.5 to 26 months) posttransplantation in the absence of specific identifiable causes. The cumulative probability of having this renal dysfunction is 20% at 1 year. Renal biopsies performed on seven of these cases showed the endothelium widely separated from the basement membrane, extreme thickening of the glomerular basement membrane, and microthrombi. Previous chemotherapy, antibiotics, and antifungals as well as cyclosporin may add to and possibly potentiate a primary chemoradiation marrow transplant renal injury, but this clinical syndrome is most analogous to clinical and experimental models of radiation nephritis. This late marrow transplant-associated nephritis should be recognized as a potentially limiting factor in the use of some intensive chemoradiation conditioning regimens used for BMT. Some selective attenuation of the radiation to the kidneys may decrease the incidence of this renal dysfunction.

  4. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells.

    PubMed

    Rajantie, Iiro; Ilmonen, Maritta; Alminaite, Agne; Ozerdem, Ugur; Alitalo, Kari; Salven, Petri

    2004-10-01

    Bone marrow (BM)-derived cells are thought to participate in the growth of blood vessels during postnatal vascular regeneration and tumor growth, a process previously attributed to stem and precursor cells differentiating to endothelial cells. We used multichannel laser scanning confocal microscopy of whole-mounted tissues to study angiogenesis in chimeric mice created by reconstituting C57BL mice with genetically marked syngeneic BM. We show that BM-derived endothelial cells do not significantly contribute to tumor- or cytokine-induced neoangiogenesis. Instead, BM-derived periendothelial vascular mural cells were persistently detected at sites of tumor- or vascular endothelial growth factor-induced angiogenesis. Subpopulations of these cells expressed the pericyte-specific NG2 proteoglycan, or the hematopoietic markers CD11b and CD45, but did not detectably express the smooth muscle markers smooth muscle alpha-actin or desmin. Thus, the major contribution of the BM to angiogenic processes is not endothelial, but may come from progenitors for periendothelial vascular mural and hematopoietic effector cells. PMID:15191949

  5. MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity

    PubMed Central

    Cordes, Christian; Baum, Thomas; Dieckmeyer, Michael; Ruschke, Stefan; Diefenbach, Maximilian N.; Hauner, Hans; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2016-01-01

    Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios. PMID:27445977

  6. Primary cutaneous aspergillosis and idiopathic bone marrow aplasia.

    PubMed

    Furlan, Karina Colossi; Pires, Mario Cezar; Kakizaki, Priscila; Chartuni, Juliana Cabral Nunes; Valente, Neusa Yuriko Sakai

    2016-01-01

    We describe the case of a 9-year-old boy with idiopathic bone marrow aplasia and severe neutropenia, who developed skin ulcers under cardiac monitoring electrodes. The diagnosis of primary cutaneous aspergillosis was made after the second biopsy and culture. Imaging investigation did not reveal internal fungal infection. The child was treated, but did not improve and died 3 months after admission. The report highlights and discusses the preventable risk of aspergillus skin infection in immunocompromised patients. PMID:27438213

  7. Primary cutaneous aspergillosis and idiopathic bone marrow aplasia*

    PubMed Central

    Furlan, Karina Colossi; Pires, Mario Cezar; Kakizaki, Priscila; Chartuni, Juliana Cabral Nunes; Valente, Neusa Yuriko Sakai

    2016-01-01

    We describe the case of a 9-year-old boy with idiopathic bone marrow aplasia and severe neutropenia, who developed skin ulcers under cardiac monitoring electrodes. The diagnosis of primary cutaneous aspergillosis was made after the second biopsy and culture. Imaging investigation did not reveal internal fungal infection. The child was treated, but did not improve and died 3 months after admission. The report highlights and discusses the preventable risk of aspergillus skin infection in immunocompromised patients. PMID:27438213

  8. Pancytopenia after allogeneic bone marrow transplant due to copper deficiency.

    PubMed

    Hudspeth, Michelle; Turner, Amy; Miller, Nicole; Lazarchick, John

    2014-05-01

    Pancytopenia occurring 1 year or later after allogeneic bone marrow transplantation typically prompts a primary consideration for relapse. We present the case of a 15-year old-girl who underwent transplantation for therapy-related myelodysplasia secondary to Ewing sarcoma treatment who developed pancytopenia with myelodysplasia 1 year after transplant due to copper deficiency. Copper deficiency is an important consideration in the evaluation of pancytopenia and myelodysplasia in pediatric patients. PMID:23652881

  9. Thymopoietic and Bone Marrow Response to Murine Pneumocystis Pneumonia▿

    PubMed Central

    Shi, Xin; Zhang, Ping; Sempowski, Gregory D.; Shellito, Judd E.

    2011-01-01

    CD4+ T cells play a key role in host defense against Pneumocystis infection. To define the role of naïve CD4+ T cell production through the thymopoietic response in host defense against Pneumocystis infection, Pneumocystis murina infection in the lung was induced in adult male C57BL/6 mice with and without prior thymectomy. Pneumocystis infection caused a significant increase in the number of CCR9+ multipotent progenitor (MPP) cells in the bone marrow and peripheral circulation, an increase in populations of earliest thymic progenitors (ETPs) and double negative (DN) thymocytes in the thymus, and recruitment of naïve and total CD4+ T cells into the alveolar space. The level of murine signal joint T cell receptor excision circles (msjTRECs) in spleen CD4+ cells was increased at 5 weeks post-Pneumocystis infection. In thymectomized mice, the numbers of naïve, central memory, and total CD4+ T cells in all tissues examined were markedly reduced following Pneumocystis infection. This deficiency of naïve and central memory CD4+ T cells was associated with delayed pulmonary clearance of Pneumocystis. Extracts of Pneumocystis resulted in an increase in the number of CCR9+ MPPs in the cultured bone marrow cells. Stimulation of cultured bone marrow cells with ligands to Toll-like receptor 2 ([TLR-2] zymosan) and TLR-9 (ODN M362) each caused a similar increase in CCR9+ MPP cells via activation of the Jun N-terminal protein kinase (JNK) pathway. These results demonstrate that enhanced production of naïve CD4+ T lymphocytes through the thymopoietic response and enhanced delivery of lymphopoietic precursors from the bone marrow play an important role in host defense against Pneumocystis infection. PMID:21343353

  10. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response.

    PubMed

    Metzger, Thomas A; Kreipke, Tyler C; Vaughan, Ted J; McNamara, Laoise M; Niebur, Glen L

    2015-01-01

    Bone adapts to habitual loading through mechanobiological signaling. Osteocytes are the primary mechanical sensors in bone, upregulating osteogenic factors and downregulating osteoinhibitors, and recruiting osteoclasts to resorb bone in response to microdamage accumulation. However, most of the cell populations of the bone marrow niche,which are intimately involved with bone remodeling as the source of bone osteoblast and osteoclast progenitors, are also mechanosensitive. We hypothesized that the deformation of trabecular bone would impart mechanical stress within the entrapped bone marrow consistent with mechanostimulation of the constituent cells. Detailed fluid-structure interaction models of porcine femoral trabecular bone and bone marrow were created using tetrahedral finite element meshes. The marrow was allowed to flow freely within the bone pores, while the bone was compressed to 2000 or 3000 microstrain at the apparent level.Marrow properties were parametrically varied from a constant 400 mPas to a power law rule exceeding 85 Pas. Deformation generated almost no shear stress or pressure in the marrow for the low viscosity fluid, but exceeded 5 Pa when the higher viscosity models were used. The shear stress was higher when the strain rate increased and in higher volume fraction bone. The results demonstrate that cells within the trabecular bone marrow could be mechanically stimulated by bone deformation, depending on deformation rate, bone porosity, and bone marrow properties. Since the marrow contains many mechanosensitive cells, changes in the stimulatory levels may explain the alterations in bone marrow morphology with aging and disease, which may in turn affect the trabecular bone mechanobiology and adaptation. PMID:25363343

  11. High Incidence of Xenogenic Bone Marrow Engraftment in Pig-to-Baboon Intra-Bone Bone Marrow Transplantation

    PubMed Central

    Tasaki, M.; Wamala, I.; Tena, A.; Villani, V.; Sekijima, M.; Pathiraja, V.; Wilkinson, R. A.; Pratts, S.; Cormack, T.; Clayman, E.; Arn, J. S.; Shimizu, A.; Fishman, J. A.; Sachs, D. H.; Yamada, K.

    2015-01-01

    Previous attempts of α-1,3-galactocyltransferase knockout (GalTKO) pig bone marrow (BM) transplantation (Tx) into baboons have demonstrated a loss of macro-chimerism within 24 h in most cases. In order to achieve improved engraftment with persistence of peripheral chimerism, we have developed a new strategy of intra-bone BM (IBBM) Tx. Six baboons received GalTKO BM cells, with one-half of the cells transplanted into the bilateral tibiae directly and the remaining cells injected intravenously (IBBM/BM-Tx) with a conditioning immunosuppressive regimen. In order to assess immune responses induced by the combined IBBM/BM-Tx, three recipients received donor SLA-matched GalTKO kidneys in the peri-operative period of IBBM/BM-Tx (Group 1), and the others received kidneys 2 months after IBBM/BM-Tx (Group 2). Peripheral macro-chimerism was continuously detectable for up to 13 days (mean 7.7 days; range 3–13) post-IBBM/BM-Tx and in three animals, macro-chimerism reappeared at days 10, 14 and 21. Pig CFUs, indicating porcine progenitor cell engraftment, were detected in the host BM in four of six recipients on days 14, 15, 19 and 28. In addition, anti-pig unresponsiveness was observed by in vitro assays. GalTKO/pCMV-kidneys survived for extended periods (47 and 60 days). This strategy may provide a potent adjunct for inducing xenogeneic tolerance through BM-Tx. PMID:25676635

  12. Bone marrow stem cells: current and emerging concepts.

    PubMed

    Méndez-Ferrer, Simón; Scadden, David T; Sánchez-Aguilera, Abel

    2015-01-01

    The interactions of stromal cells with hematopoietic cells in the bone marrow have long been a subject of research, but only recently have technologies allowed us to dissect them at the stem cell level. On the other hand, limitations of these technical tools might explain numerous discrepancies in this field. It is becoming increasingly clear that mesenchymal stem cells (MSCs) represent an important component of the hematopoietic stem cell (HSC) niche in the bone marrow. However, there is heterogeneity among HSCs, and many putatively different mesenchymal progenitors identified in the bone marrow using Cre recombinase-driven mouse lines seem to exhibit HSC niche properties. Development of better reporter lines has demonstrated that some of these Cre lines do not always specifically mark the expected cells. Also, characterization of different cell populations has often been partial, and issues of redundancy and compensation might explain apparently contradictory results. Recognizing and overcoming these limitations, while also clearly defining the distinctions between subgroups of mesenchymal cells, will be essential to advance the field. PMID:25573321

  13. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  14. Isolation of Mouse Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Boregowda, Siddaraju V; Krishnappa, Veena; Phinney, Donald G

    2016-01-01

    Mesenchymal stem cells (MSCs) were initially characterized as connective tissue progenitors resident in bone marrow, but have now been isolated from a variety of tissues and organs and shown to also exhibit potent tissue regenerative properties mediated largely via paracrine actions. These findings have spurred the development of MSC-based therapies for treating a diverse array of nonskeletal diseases. Although genetic and experimental rodent models of disease represent important tools for developing efficacious MSC-based therapies, development of reliable methods to isolate MSCs from mouse bone marrow has been hampered by the unique biological properties of these cells. Indeed, few isolation schemes afford high yields and purity while maintaining the genomic integrity of cells. We recently demonstrated that mouse MSCs are highly sensitive to oxidative stress, and long-term expansion of these cells in atmospheric oxygen selects for immortalized clones that lack a functional p53 protein. Herein, we describe a protocol for the isolation of primary MSCs from mouse bone marrow that couples immunodepletion with culture in a low-oxygen environment and affords high purity and yield while preserving p53 function. PMID:27236673

  15. Bone Marrow Stem Cell Contribution to Pulmonary Homeostasis and Disease

    PubMed Central

    McDonald, Lindsay T; LaRue, Amanda C

    2015-01-01

    The understanding of bone marrow stem cell plasticity and contribution of bone marrow stem cells to pathophysiology is evolving with the advent of innovative technologies. Recent data has led to new mechanistic insights in the field of mesenchymal stem cell (MSC) research, and an increased appreciation for the plasticity of the hematopoietic stem cell (HSC). In this review, we discuss current research examining the origin of pulmonary cell types from endogenous lung stem and progenitor cells as well as bone marrow-derived stem cells (MSCs and HSCs) and their contributions to lung homeostasis and pathology. We specifically highlight recent findings from our laboratory that demonstrate an HSC origin for pulmonary fibroblasts based on transplantation of a clonal population of cells derived from a single HSC. These findings demonstrate the importance of developing an understanding of the sources of effector cells in disease state. Finally, a perspective is given on the potential clinical implications of these studies and others addressing stem cell contributions to lung tissue homeostasis and pathology. PMID:26798846

  16. Bone marrow leishmaniasis: a review of situation in Thailand.

    PubMed

    Wiwanitkit, Viroj

    2011-10-01

    Leishmaniasis is an important tropical vector-borne disease. This infection can be seen in tropical area and it is considered to be one of the most important vector-borne infections at present. The general situation of the leishmaniasis in Thailand is hereby reviewed. Although Thailand is a tropical country, the leishmaniasis is not endemic but sporadic. The imported cases are documented in some literatures. The serious form of leishmaniasis, the visceral leishmaniasis is also detectable in Thailand. Also, the author performed an in depth literature review of the reports of bone marrow leishmaniasis, a specific kind of visceral leishmaniasis, in Thailand in order to summarize the characteristics of this infection among Thai patients. According to this review, there have been at least 5 reports in the literature of 6 cases of bone marrow leishmaniasis in the Thai population, of which no case was lethal. Concerning the clinical manifestations, all except had prolonged fever with unknown origin. From physical examination, all had hepatosplenomegaly. The striking findings were active hemophagocytosis with increased proliferation of lymphoidplasma cell line in the bone marrow and amastigotes of Leishmania donovani was demonstrated. Considering the treatment, pantavalent antimony compound was used and the excellent improvement and complete recovery. Finally, the author also discussed on the importance of leishmaniasis in Thailand relating to the present globalization and good traveling system. PMID:22014727

  17. T2 vertebral bone marrow changes after space flight

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Lin, C.; Evans, H.; Shackelford, L.; Martin, C.; Hedrick, T.

    1999-01-01

    Bone biopsies indicate that during immobilization bone marrow adipose tissue increases while the functional cellular fraction decreases. One objective of our Spacelab flight experiment was to determine, using in vivo volume-localized magnetic resonance spectroscopy (VLMRS), whether bone marrow composition was altered by space flight. Four crew members of a 17 day Spacelab mission participated in the experiment. The apparent cellular fraction and transverse relaxation time (T2) were determined twice before launch and at several times after flight. Immediately after flight, no significant change in the cellular fraction was found. However, the T2 of the cellular, but not the fat component increased following flight, although to a variable extent, in all crew members with a time course for return to baseline lasting several months. The T2 of seven control subjects showed no significant change. Although these observations may have several explanations, it is speculated that the observed T2 changes might reflect increased marrow osteoblastic activity during recovery from space flight.

  18. Bone marrow purging by a xanthine oxidase-antibody conjugate.

    PubMed

    Dinota, A; Tazzari, P L; Abbondanza, A; Battelli, M G; Gobbi, M; Stirpe, F

    1990-07-01

    The selective cytotoxicity of the xanthine oxidase conjugated to an 8A monoclonal antibody recognizing a human plasma cell-associated antigen has been described. The selectivity and the toxicity of the hypoxanthine/conjugated xanthine oxidase system was increased by removing the excess of conjugate and by adding chelated iron. Under these experimental conditions the cytotoxicity of the conjugate exceeded that of free xanthine oxidase by one order of magnitude. The conjugate effectively purged bone marrow from infiltrating neoplastic plasma cells and added target Raji cells, provided blood was removed and bone marrow peroxidases were exhausted. In conditions of purging effectiveness the conjugate had no toxicity to CFU-GM. No toxicity to mice was observed after i.v. injection of xanthine oxidase-antibody conjugate up to 2.9 U/kg body weight. Thus the hypoxanthine/conjugated xanthine oxidase system could be an effective and nontoxic tool for the ex vivo bone marrow purging in multiple myeloma patients for autologous transplantation. PMID:2390631

  19. [The role of blood banks in bone marrow transplantation].

    PubMed

    Höcker, P; Wagner, A; Sklenar, G

    1991-01-01

    The transfusion service (TS) plays an important role in bone marrow transplantation (BMT). Many of the techniques and methods employed are also used in the daily work of a TS like tissue typing, apheresis techniques, handling of blood and its components under sterile conditions. In the pretransplantation phase the TS is responsible for the typing of recipient and presumptive donors, harvesting of autologous blood and selection of appropriate blood components. During BMT the TS can perform bone marrow harvesting, depletion of red cells in case of ABO-incompatibility and bone marrow manipulation when T-cell depletion or purging procedures are considered. Peripheral stem cell harvest by apheresis is also best performed by the TS experienced in such techniques. Storage of hematopoietic cells in liquid nitrogen and thawing are also techniques already used in most of the transfusion services. Post BMT, the support with blood components, irradiated and almost free of white cells to avoid TA-GVH and CMV-infection, is a major job of the TS. These facts demonstrate that a well organized transfusion service is a 'conditio sine qua non' for successful BMT. PMID:1725636

  20. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.

    PubMed

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Deliloğlu-Gürhan, S I

    2015-01-01

    Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell

  1. Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience

    PubMed Central

    Charbord, Pierre; Livne, Erella; Gross, Gerhard; Häupl, Thomas; Neves, Nuno M.; Marie, Pierre; Bianco, Paolo; Jorgensen, Christian

    2011-01-01

    Genostem (acronym for “Adult mesenchymal stem cells engineering for connective tissue disorders. From the bench to the bed side”) has been an European consortium of 30 teams working together on human bone marrow Mesenchymal Stem Cell (MSC) biological properties and repair capacity. Part of Genostem activity has been dedicated to the study of basic issues on undifferentiated MSCs properties and on signalling pathways leading to the differentiation into 3 of the connective tissue lineages, osteoblastic, chondrocytic and tenocytic. We have evidenced that native bone marrow MSCs and stromal cells, forming the niche of hematopoietic stem cells, were the same cellular entity located abluminally from marrow sinus endothelial cells. We have also shown that culture-amplified, clonogenic and highly-proliferative MSCs were bona fide stem cells, sharing with other stem cell types the major attributes of self-renewal and of multipotential priming to the lineages to which they can differentiate (osteoblasts, chondrocytes, adipocytes and vascular smooth muscle cells/pericytes). Extensive transcription profiling and in vitro and in vivo assays were applied to identify genes involved in differentiation. Thus we have described novel factors implicated in osteogenesis (FHL2, ITGA5, Fgf18), chondrogenesis (FOXO1A) and tenogenesis (Smad8). Another part of Genostem activity has been devoted to studies of the repair capacity of MSCs in animal models, a prerequisite for future clinical trials. We have developed novel scaffolds (chitosan, pharmacologically active microcarriers) useful for the repair of both bone and cartilage. Finally and most importantly, we have shown that locally implanted MSCs effectively repair bone, cartilage and tendon. PMID:20198518

  2. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome

    PubMed Central

    Balderman, Sophia R.; Li, Allison J.; Hoffman, Corey M.; Frisch, Benjamin J.; Goodman, Alexandra N.; LaMere, Mark W.; Georger, Mary A.; Evans, Andrew G.; Liesveld, Jane L.; Becker, Michael W.

    2016-01-01

    In vitro evidence suggests that the bone marrow microenvironment (BMME) is altered in myelodysplastic syndromes (MDSs). Here, we study the BMME in MDS in vivo using a transgenic murine model of MDS with hematopoietic expression of the translocation product NUP98-HOXD13 (NHD13). This model exhibits a prolonged period of cytopenias prior to transformation to leukemia and is therefore ideal to interrogate the role of the BMME in MDS. In this model, hematopoietic stem and progenitor cells (HSPCs) were decreased in NHD13 mice by flow cytometric analysis. The reduction in the total phenotypic HSPC pool in NHD13 mice was confirmed functionally with transplantation assays. Marrow microenvironmental cellular components of the NHD13 BMME were found to be abnormal, including increases in endothelial cells and in dysfunctional mesenchymal and osteoblastic populations, whereas megakaryocytes were decreased. Both CC chemokine ligand 3 and vascular endothelial growth factor, previously shown to be increased in human MDS, were increased in NHD13 mice. To assess whether the BMME contributes to disease progression in NHD13 mice, we performed transplantation of NHD13 marrow into NHD13 mice or their wild-type (WT) littermates. WT recipients as compared with NHD13 recipients of NHD13 marrow had a lower rate of the combined outcome of progression to leukemia and death. Moreover, hematopoietic function was superior in a WT BMME as compared with an NHD13 BMME. Our data therefore demonstrate a contributory role of the BMME to disease progression in MDS and support a therapeutic strategy whereby manipulation of the MDS microenvironment may improve hematopoietic function and overall survival. PMID:26637787

  3. Ph+/VE-cadherin+ identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells.

    PubMed

    Wang, Lin; O'Leary, Heather; Fortney, James; Gibson, Laura F

    2007-11-01

    Although leukemic stem cells (LSCs) show a symbiotic relationship with bone marrow microenvironmental niches, the mechanism by which the marrow microenvironment contributes to self-renewal and proliferation of LSCs remains elusive. In the present study, we identified a unique subpopulation of Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL) cells coexpressing markers of endothelial cells (including VE-cadherin, PECAM-1, and Flk-1) and committed B-lineage progenitors. After long-term coculture with bone marrow stromal cells, tumor cells formed hematopoietic colonies and cords, expressed early stem- cell markers, and showed endothelial sprouting. Gene expression profiles of LSCs were altered in the presence of stromal cell contact. Stromal cell contact promoted leukemic cell VE-cadherin expression, stabilized beta-catenin, and up-regulated Bcr-abl fusion gene expression. Our study indicates that these specific tumor cells are uniquely positioned to respond to microenvironment-derived self-renewing and proliferative cues. Ph(+)/VE-cadherin(+) tumor subpopulation circumvents the requirement of exogenous Wnt signaling for self-renewal through stromal cell support of leukemic cell VE-cadherin expression and up-regulated Bcr-abl tyrosine kinase activity. These data suggest that strategies targeting signals in the marrow microenvironment that amplify the Bcr-abl/VE-cadherin/beta-catenin axis may have utility in sensitizing drug-resistant leukemic stem cells. PMID:17638851

  4. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration.

    PubMed

    Robey, Pamela G; Kuznetsov, Sergei A; Ren, Jiaqiang; Klein, Harvey G; Sabatino, Marianna; Stroncek, David F

    2015-01-01

    In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. This article is part of a Special Issue entitled Stem Cells and Bone. PMID:25064527

  5. Toll-like receptor 4 in bone marrow-derived cells contributes to the progression of diabetic retinopathy.

    PubMed

    Wang, Hui; Shi, Haojun; Zhang, Jing; Wang, Guoliang; Zhang, Jinxiang; Jiang, Fagang; Xiao, Qing

    2014-01-01

    Diabetic retinopathy (DR) is a major microvascular complication in diabetics, and its mechanism is not fully understood. Toll-like receptor 4 (TLR4) plays a pivotal role in the maintenance of the inflammatory state during DR, and the deletion of TLR4 eventually alleviates the diabetic inflammatory state. To further elucidate the mechanism of DR, we used bone marrow transplantation to establish reciprocal chimeric animals of TLR4 mutant mice and TLR4 WT mice combined with diabetes mellitus (DM) induction by streptozotocin (STZ) treatment to identify the role of TLR4 in different cell types in the development of the proinflammatory state during DR. TLR4 mutation did not block the occurrence of high blood glucose after STZ injection compared with WT mice but did alleviate the progression of DR and alter the expression of the small vessel proliferation-related genes, vascular endothelial growth factor (VEGF), and hypoxia inducible factor-1α (HIF-1α). Grafting bone marrow-derived cells from TLR4 WT mice into TLR4 mutant mice increased the levels of TNF-α, IL-1β, and MIP-2 and increased the damage to the retina. Similarly, VEGF and HIF-1α expression were restored by the bone marrow transplantation. These findings identify an essential role for TLR4 in bone marrow-derived cells contributing to the progression of DR. PMID:25214718

  6. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    SciTech Connect

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis.

  7. Changes in vertebral bone marrow fat and bone mass after gastric bypass surgery: A pilot study.

    PubMed

    Schafer, A L; Li, X; Schwartz, A V; Tufts, L S; Wheeler, A L; Grunfeld, C; Stewart, L; Rogers, S J; Carter, J T; Posselt, A M; Black, D M; Shoback, D M

    2015-05-01

    Bone marrow fat may serve a metabolic role distinct from other fat depots, and it may be altered by metabolic conditions including diabetes. Caloric restriction paradoxically increases marrow fat in mice, and women with anorexia nervosa have high marrow fat. The longitudinal effect of weight loss on marrow fat in humans is unknown. We hypothesized that marrow fat increases after Roux-en-Y gastric bypass (RYGB) surgery, as total body fat decreases. In a pilot study of 11 morbidly obese women (6 diabetic, 5 nondiabetic), we measured vertebral marrow fat content (percentage fat fraction) before and 6 months after RYGB using magnetic resonance spectroscopy. Total body fat mass declined in all participants (mean ± SD decline 19.1 ± 6.1 kg or 36.5% ± 10.9%, p<0.001). Areal bone mineral density (BMD) decreased by 5.2% ± 3.5% and 4.1% ± 2.6% at the femoral neck and total hip, respectively, and volumetric BMD decreased at the spine by 7.4% ± 2.8% (p<0.001 for all). Effects of RYGB on marrow fat differed by diabetes status (adjusted p=0.04). There was little mean change in marrow fat in nondiabetic women (mean +0.9%, 95% CI -10.0 to +11.7%, p=0.84). In contrast, marrow fat decreased in diabetic women (-7.5%, 95% CI -15.2 to +0.1%, p=0.05). Changes in total body fat mass and marrow fat were inversely correlated among nondiabetic (r=-0.96, p=0.01) but not diabetic (r=0.52, p=0.29) participants. In conclusion, among those without diabetes, marrow fat is maintained on average after RYGB, despite dramatic declines in overall fat mass. Among those with diabetes, RYGB may reduce marrow fat. Thus, future studies of marrow fat should take diabetes status into account. Marrow fat may have unique metabolic behavior compared with other fat depots. PMID:25603463

  8. Changes in Vertebral Bone Marrow Fat and Bone Mass After Gastric Bypass Surgery: A Pilot Study

    PubMed Central

    Schafer, AL; Li, X; Schwartz, AV; Tufts, LS; Wheeler, AL; Grunfeld, C; Stewart, L; Rogers, SJ; Carter, JT; Posselt, AM; Black, DM; Shoback, DM

    2015-01-01

    Bone marrow fat may serve a metabolic role distinct from other fat depots, and it may be altered by metabolic conditions including diabetes. Caloric restriction paradoxically increases marrow fat in mice, and women with anorexia nervosa have high marrow fat. The longitudinal effect of weight loss on marrow fat in humans is unknown. We hypothesized that marrow fat increases after Roux-en-Y gastric bypass (RYGB) surgery, as total body fat decreases. In a pilot study of 11 morbidly obese women (6 diabetic, 5 nondiabetic), we measured vertebral marrow fat content (percentage fat fraction) before and 6 months after RYGB using magnetic resonance spectroscopy. Total body fat mass declined in all participants (mean ±SD decline 19.1 ±6.1 kg or 36.5 ±10.9%, p<0.001). Areal bone mineral density (BMD) decreased by 5.2 ±3.5% and 4.1 ±2.6% at the femoral neck and total hip, respectively, and volumetric BMD decreased at the spine by 7.4 ±2.8% (p<0.001 for all). Effects of RYGB on marrow fat differed by diabetes status (adjusted p=0.04). There was little mean change in marrow fat in nondiabetic women (mean +0.9%, 95% CI -10.0 to +11.7%, p=0.84). In contrast, marrow fat decreased in diabetic women (−7.5%, 95% CI -15.2 to +0.1%, p=0.05). Changes in total body fat mass and marrow fat were inversely correlated among nondiabetic (r=−0.96, p=0.01) but not diabetic (r=0.52, p=0.29) participants. In conclusion, among those without diabetes, marrow fat is maintained on average after RYGB, despite dramatic declines in overall fat mass. Among those with diabetes, RYGB may reduce marrow fat. Thus, future studies of marrow fat should take diabetes status into account. Marrow fat may have unique metabolic behavior compared with other fat depots. PMID:25603463

  9. Failure to Generate Bone Marrow Adipocytes Does Not Protect Mice from Ovariectomy-Induced Osteopenia

    PubMed Central

    Iwaniec, Urszula T.; Turner, Russell T.

    2012-01-01

    A reciprocal association between bone marrow fat and bone mass has been reported in ovariectomized rodents, suggesting that bone marrow adipogenesis has a negative effect on bone growth and turnover balance. Mice with loss of function mutations in kit receptor (kitW/W-v) have no bone marrow adipocytes in tibia or lumbar vertebra. We therefore tested the hypothesis that marrow fat contributes to development of osteopenia by comparing the skeletal response to ovariectomy (ovx) in growing wild type (WT) and bone marrow adipocyte-deficient kitW/W-v mice. Mice were ovx at 4 weeks of age and sacrificed 4 or 10 weeks post-surgery. Body composition was measured at necropsy by dual-energy X-ray absorptiometry. Cortical (tibia) and cancellous (tibia and lumbar vertebra) bone architecture were evaluated by microcomputed tomography. Bone marrow adipocyte size and density, osteoblast- and osteoclast-lined bone perimeters, and bone formation were determined by histomorphometry. Ovx resulted in an increase in total body fat mass at 10 weeks post-ovx in both genotypes, but the response was attenuated in the in kitW/W-v mice. Adipocytes were present in bone marrow of tibia and lumbar vertebra in WT mice and bone marrow adiposity increased following ovx. In contrast, marrow adipocytes were not detected in either intact or ovx kitW/W-v mice. However, ovx in WT and kitW/W-v mice resulted in statistically indistinguishable changes in cortical and cancellous bone mass, cortical and cancellous bone formation rate, and cancellous osteoblast and osteoclast-lined bone perimeters. In conclusion, our findings do not support a causal role for increased bone marrow fat as a mediator of ovx-induced osteopenia in mice. PMID:23246792

  10. Bone marrow transplantation after the Chernobyl nuclear accident

    SciTech Connect

    Baranov, A.; Gale, R.P.; Guskova, A.; Piatkin, E.; Selidovkin, G.; Muravyova, L.; Champlin, R.E.; Danilova, N.; Yevseeva, L.; Petrosyan, L. )

    1989-07-27

    On April 26, 1986, an accident at the Chernobyl nuclear power station in the Soviet Union exposed about 200 people to large doses of total-body radiation. Thirteen persons exposed to estimated total-body doses of 5.6 to 13.4 Gy received bone marrow transplants. Two transplant recipients, who received estimated doses of radiation of 5.6 and 8.7 Gy, are alive more than three years after the accident. The others died of various causes, including burns (the cause of death in five), interstitial pneumonitis (three), graft-versus-host disease (two), and acute renal failure and adult respiratory distress syndrome (one). There was hematopoietic (granulocytic) recovery in nine transplant recipients who could be evaluated, six of whom had transient partial engraftment before the recovery of their own marrow. Graft-versus-host disease was diagnosed clinically in four persons and suspected in two others. Although the recovery of endogenous hematopoiesis may occur after exposure to radiation doses of 5.6 to 13.4 Gy, we do not know whether it is more likely after the transient engraftment of transplanted stem cells. Because large doses of radiation affect multiple systems, bone marrow recovery does not necessarily ensure survival. Furthermore, the risk of graft-versus-host disease must be considered when the benefits of this treatment are being weighed.