Science.gov

Sample records for bone marrow mononuclear

  1. Bone marrow mononuclears from murine tibia after spaceflight on biosatellite

    NASA Astrophysics Data System (ADS)

    Andreeva, Elena; Roe, Maria; Buravkova, Ludmila; Andrianova, Irina; Goncharova, Elena; Gornostaeva, Alexandra

    Elucidation of the space flight effects on the adult stem and progenitor cells is an important goal in space biology and medicine. A unique opportunity for this is provided by project "BION -M1". The purpose of this study was to evaluate the effects of a 30-day flight on biosatellite "BION - M1" and the subsequent 7-day recovery on the quantity, viability, immunophenotype of mononuclears from murine tibia bone marrow. Also the in vitro characterization of functional capacity of multipotent mesenchymal stromal cells (MSCs) was scheduled. Under the project, the S57black/6 mice were divided into groups: spaceflight/vivarium control, recovery after spaceflight/ vivarium control to recovery. Bone marrow mononuclears were isolated from the tibia and immunophenotyped using antibodies against CD45, CD34, CD90 on a flow cytometer Epics XL (Beckman Coulter). A part of the each pool was frozen for subsequent estimation of hematopoietic colony-forming units (CFU), the rest was used for the evaluation of fibroblast CFU (CFUf) number, MSC proliferative activity and osteogenic potency. The cell number in the flight group was significantly lower than in the vivarium control group. There were no differences in this parameter between flight and control groups after 7 days of recovery. The mononuclears viability was more than 95 percent in all examined groups. Flow cytometric analysis showed no differences in the bone marrow cell immunophenotype (CD45, CD34, CD90.1 (Thy1)), but the flight animals had more large-sized CD45+mononuclears, than the control groups of mice. There was no difference in the CFUf number between groups. After 7 days in vitro the MSC number in flight group was twice higher than in vivarium group, after 10 days - 4 times higher. These data may indicate a higher proliferative activity of MSCs after spaceflight. MSCs showed the same and high alkaline phosphatase activity, both in flight and in the control groups, suggesting no effect of spaceflight factors on early

  2. Bone marrow and bone marrow derived mononuclear stem cells therapy for the chronically ischemic myocardium

    SciTech Connect

    Waksman, Ron; Baffour, Richard

    2003-09-01

    Bone marrow stem cells have been shown to differentiate into various phenotypes including cardiomyocytes, vascular endothelial cells and smooth muscle. Bone marrow stem cells are mobilized and home in to areas of injured myocardium where they are involved in tissue repair. In addition, bone marrow secretes multiple growth factors, which are essential for angiogenesis and arteriogenesis. In some patients, these processes are not enough to avert clinical symptoms of ischemic disease. Therefore, in vivo administration of an adequate number of stem cells would be a significant therapeutic advance. Unfractionated bone marrow derived mononuclear stem cells, which contain both hematopoietic and nonhematopoietic cells may be more appropriate for cell therapy. Studies in animal models suggest that implantation of different types of stem cells improve angiogenesis and arteriogenesis, tissue perfusion as well as left ventricular function. Several unanswered questions remain. For example, the optimal delivery approach, dosage and timing of the administration of cell therapy as well as durability of improvements need to be studied. Early clinical studies have demonstrated safety and feasibility of various cell therapies in ischemic disease. Randomized, double blind and placebo-controlled clinical trials need to be completed to determine the effectiveness of stem cell.

  3. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.

    PubMed

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo. PMID:25802865

  4. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes

    SciTech Connect

    Werb, Z.; Chin, J.R.

    1983-10-01

    A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. The authors defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by (/sup 35/S)methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, la, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow-derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WHEI-3, RAW 264.1, and MGI.D/sup +/ secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated.

  5. Functional and Transcriptomic Recovery of Infarcted Mouse Myocardium Treated with Bone Marrow Mononuclear Cells

    PubMed Central

    Lachtermacher, Stephan; Esporcatte, Bruno L. B.; da Silva de Azevedo Fortes, Fábio; Rocha, Nazareth Novaes; Montalvão, Fabrício; Costa, Patricia C.; Belem, Luciano; Rabischoffisky, Arnaldo; Neto, Hugo C. C. Faria; Vasconcellos, Rita; Iacobas, Dumitru A.; Iacobas, Sanda; Spray, David C.; Thomas, Neil M.; Goldenberg, Regina C. S.; de Carvalho, Antonio C. Campos

    2011-01-01

    Although bone marrow-derived mononuclear cells (BMNC) have been extensively used in cell therapy for cardiac diseases, little mechanistic information is available to support reports of their efficacy. To address this shortcoming, we compared structural and functional recovery and associated global gene expression profiles in post-ischaemic myocardium treated with BMNC transplantation. BMNC suspensions were injected into cardiac scar tissue 10 days after experimental myocardial infarction. Six weeks later, mice undergoing BMNC therapy were found to have normalized antibody repertoire and improved cardiac performance measured by ECG, treadmill exercise time and echocardiography. After functional testing, gene expression profiles in cardiac tissue were evaluated using high-density oligonucleotide arrays. Expression of more than 18% of the 11981 quantified unigenes was significantly altered in the infarcted hearts. BMNC therapy restored expression of 2099 (96.2%) of the genes that were altered by infarction but led to altered expression of 286 other genes, considered to be a side effect of the treatment. Transcriptional therapeutic efficacy, a metric calculated using a formula that incorporates both recovery and side effect of treatment, was 73%. In conclusion, our results confirm a beneficial role for bone marrow-derived cell therapy and provide new information on molecular mechanisms operating after BMNC transplantation on post ischemic heart failure in mice. PMID:21671060

  6. Molecular Imaging of Bone Marrow Mononuclear Cell Survival and Homing in Murine Peripheral Artery Disease

    PubMed Central

    van der Bogt, Koen E.A.; Hellingman, Alwine A.; Lijkwan, Maarten A.; Bos, Ernst-Jan; de Vries, Margreet R.; Fischbein, Michael P.; Quax, Paul H.; Robbins, Robert C.; Hamming, Jaap F.; Wu, Joseph C.

    2013-01-01

    Introduction Bone marrow mononuclear cell (MNC) therapy is a promising treatment for peripheral artery disease (PAD). This study aims to provide insight into cellular kinetics using molecular imaging following different transplantation methods. Methods and Results MNCs were isolated from F6 transgenic mice (FVB background) that express firefly luciferase (Fluc) and green fluorescence protein (GFP). Male FVB and C57Bl6 mice (n=50) underwent femoral artery ligation and were randomized into 4 groups receiving: (1) single intramuscular (i.m.) injection of 2×106 MNC; (2) four weekly i.m. injections of 5×105 MNC; (3) 2×106 MNCs intravenously (i.v.); and (4) PBS. Cellular kinetics, measured by in vivo bioluminescence imaging (BLI), revealed near-complete donor cell death 4 weeks after i.m. transplantation. Following i.v. transplantation, BLI monitored cells homed in on the injured area in the limb, as well as to the liver, spleen, and bone marrow. Ex vivo BLI showed presence of MNCs in the scar tissue and adductor muscle. However, no significant effects on neovascularisation were observed as monitored by Laser-Doppler-Perfusion-Imaging and histology. Conclusion This is one of the first studies to assess kinetics of transplanted MNCs in PAD using in vivo molecular imaging. MNC survival is short lived and MNCs do not significantly stimulate perfusion in this model. PMID:22239892

  7. Active hepatitis C virus infection in bone marrow and peripheral blood mononuclear cells from patients with mixed cryoglobulinaemia.

    PubMed Central

    Gabrielli, A; Manzin, A; Candela, M; Caniglia, M L; Paolucci, S; Danieli, M G; Clementi, M

    1994-01-01

    The presence of hepatitis C virus (HCV) genomic sequences was checked in plasma, liver, peripheral blood mononuclear cells (PBMC) and bone marrow cells from 11 patients with mixed cryoglobulinaemia positive for anti-HCV antibodies, and from 11 patients with chronic HCV hepatitis without serological evidence of cryoglobulinaemia. HCV RNA sequences were demonstrated by reverse transcription polymerase chain reaction in seven plasma samples, in six PBMC samples, and in seven bone marrow cell samples from the 11 cryoglobulinaemic subjects; otherwise, viral specific nucleic acids were detected in 10 plasma samples, in one PBMC sample, and in two bone marrow cell samples from the 11 patients with chronic hepatitis. The HCV replicative intermediate was evidenced in four of the six PBMC and in five of the seven bone marrow aspirate HCV RNA-positive samples. Analysis of subpopulations isolated from bone marrow and peripheral blood samples showed HCV RNA sequences in mononuclear cells belonging either the CD2+ subset or to the CD19+ subpopulation or to the adherent cells. Finally, we compared the nucleotide sequences of a large portion (-270 to -59) of the HCV 5'-untranslated region from five patients with mixed cryoglobulinaemia and from seven patients with chronic hepatitis without cryoglobulinaemia; the degree of heterogeneity, compared with the prototype HCV sequence, was similar in both groups. These findings from two groups of HCV-infected patients indicate that transient or permanent active HCV infection of bone marrow and PBMC is frequent in anti-HCV-positive patients with mixed cryoglobulinaemia, and suggest that extra-hepatic infection may play a major role in influencing the pathophysiology of this infection as well as the viral persistence. Images Fig. 1 PMID:8033425

  8. Autologous Bone Marrow Mononuclear Cell Therapy for Autism: An Open Label Proof of Concept Study

    PubMed Central

    Sharma, Alok; Gokulchandran, Nandini; Sane, Hemangi; Nagrajan, Anjana; Kulkarni, Pooja; Shetty, Akshata; Mishra, Priti; Kali, Mrudula; Biju, Hema; Badhe, Prerna

    2013-01-01

    Cellular therapy is an emerging therapeutic modality with a great potential for the treatment of autism. Recent findings show that the major underlying pathogenetic mechanisms of autism are hypoperfusion and immune alterations in the brain. So conceptually, cellular therapy which facilitates counteractive processes of improving perfusion by angiogenesis and balancing inflammation by immune regulation would exhibit beneficial clinical effects in patients with autism. This is an open label proof of concept study of autologous bone marrow mononuclear cells (BMMNCs) intrathecal transplantation in 32 patients with autism followed by multidisciplinary therapies. All patients were followed up for 26 months (mean 12.7). Outcome measures used were ISAA, CGI, and FIM/Wee-FIM scales. Positron Emission Tomography-Computed Tomography (PET-CT) scan recorded objective changes. Out of 32 patients, a total of 29 (91%) patients improved on total ISAA scores and 20 patients (62%) showed decreased severity on CGI-I. The difference between pre- and postscores was statistically significant (P < 0.001) on Wilcoxon matched-pairs signed rank test. On CGI-II 96% of patients showed global improvement. The efficacy was measured on CGI-III efficacy index. Few adverse events including seizures in three patients were controlled with medications. The encouraging results of this leading clinical study provide future directions for application of cellular therapy in autism. PMID:24062774

  9. Improved Quality of Life in A Case of Cerebral Palsy after Bone Marrow Mononuclear Cell Transplantation.

    PubMed

    Sharma, Alok; Sane, Hemangi; Kulkarni, Pooja; D'sa, Myola; Gokulchandran, Nandini; Badhe, Prerna

    2015-01-01

    Cerebral palsy (CP) is a non progressive, demyelinating disorder that affects a child's development and posture and may be associated with sensation, cognition, communication and perception abnormalities. In CP, cerebral white matter is injured resulting in the loss of oligodendrocytes. This causes damage to the myelin and disruption of nerve conduction. Cell therapy is being explored as an alternate therapeutic strategy as there is no treatment currently available for CP. To study the benefits of this treatment we have administered autologous bone marrow mononuclear cells (BMMNCs) to a 12-year-old CP case. He was clinically re-evaluated after six months and found to demonstrate positive clinical and functional outcomes. His trunk strength, upper limb control, hand functions, walking stability, balance, posture and coordination improved. His ability to perform activities of daily living improved. On repeating the Functional Independence Measure (FIM), the score increased from 90 to 113. A repeat positron emission tomography-computed tomography (PET-CT) scan of the brain six months after intervention showed progression of the mean standard deviation values towards normalization which correlated to the functional changes. At one year, all clinical improvements have remained. This indicated that cell transplantation may improve quality of life and have a potential for treatment of CP. PMID:26199918

  10. Improved Quality of Life in A Case of Cerebral Palsy after Bone Marrow Mononuclear Cell Transplantation

    PubMed Central

    Sharma, Alok; Sane, Hemangi; Kulkarni, Pooja; D’sa, Myola; Gokulchandran, Nandini; Badhe, Prerna

    2015-01-01

    Cerebral palsy (CP) is a non progressive, demyelinating disorder that affects a child’s development and posture and may be associated with sensation, cognition, communication and perception abnormalities. In CP, cerebral white matter is injured resulting in the loss of oligodendrocytes. This causes damage to the myelin and disruption of nerve conduction. Cell therapy is being explored as an alternate therapeutic strategy as there is no treatment currently available for CP. To study the benefits of this treatment we have administered autologous bone marrow mononuclear cells (BMMNCs) to a 12-year-old CP case. He was clinically re-evaluated after six months and found to demonstrate positive clinical and functional outcomes. His trunk strength, upper limb control, hand functions, walking stability, balance, posture and coordination improved. His ability to perform activities of daily living improved. On repeating the Functional Independence Measure (FIM), the score increased from 90 to 113. A repeat positron emission tomography-computed tomography (PET-CT) scan of the brain six months after intervention showed progression of the mean standard deviation values towards normalization which correlated to the functional changes. At one year, all clinical improvements have remained. This indicated that cell transplantation may improve quality of life and have a potential for treatment of CP. PMID:26199918

  11. Autologous Bone Marrow Mononuclear Cell Transplantation Delays Progression of Carotid Atherosclerosis in Rabbits.

    PubMed

    Cui, Kefei; Ma, Xiao; Yu, Lie; Jiang, Chao; Fu, Chao; Fu, Xiaojie; Yu, Xiaofang; Huang, Yuanjing; Hou, Suyun; Si, Caifeng; Chen, Zhengguang; Yu, Jing; Wan, Jieru; Wang, Jian

    2016-09-01

    Bone marrow mononuclear cells (BMMNCs) can counteract oxidative stress and inhibit the inflammatory response in focal ischemic stroke models. However, the effect of BMMNC transplantation on carotid atherosclerosis needs to be determined. The carotid atherosclerotic plaque model was established in New Zealand White rabbits by balloon injury and 8 weeks of high-fat diet. Rabbits were randomized to receive an intravenous injection of autologous bromodeoxyuridine (BrdU)-labeled BMMNCs or an equal volume of phosphate-buffered saline. Plaques were evaluated for expression of proinflammatory and anti-inflammatory cytokines, anti-oxidant proteins, and markers of cell death. BMMNCs migrated into atherosclerotic plaque on the first day after cell transplantation. BMMNC-treated rabbits had smaller plaques and more collagen deposition than did the vehicle-treated controls on day 28 (p < 0.05). BMMNC treatment significantly increased endothelial nitric oxide synthase and the anti-oxidant enzymes glutathione peroxidase and superoxide dismutase in plaques compared to vehicle treatment on day 7. BMMNC-treated rabbits also had lower levels of cleaved caspase-3 expression; lower levels of proinflammatory cytokines interleukin-1β, tumor necrosis factor alpha, and matrix metalloproteinase 9; and higher levels of insulin-like growth factor-1 and its receptor (p < 0.05). Autologous BMMNC transplantation can suppress the process of atherosclerotic plaque formation and is associated with enhanced anti-oxidative effect, reduced levels of inflammatory cytokines and cleaved caspase-3, and increased expression of insulin-like growth factor-1 and its receptor. BMMNC transplantation represents a novel approach for the treatment of carotid atherosclerosis. PMID:26232064

  12. Feasibility and safety of autologous bone marrow mononuclear cell transplantation in patients with advanced chronic liver disease

    PubMed Central

    Lyra, Andre Castro; Soares, Milena Botelho Pereira; da Silva, Luiz Flavio Maia; Fortes, Marcos Fraga; Silva, André Goyanna Pinheiro; Mota, Augusto César de Andrade; Oliveira, Sheilla A; Braga, Eduardo Lorens; de Carvalho, Wilson Andrade; Genser, Bernd; dos Santos, Ricardo Ribeiro; Lyra, Luiz Guilherme Costa

    2007-01-01

    AIM: To evaluate the safety and feasibility of bone marrow cell (BMC) transplantation in patients with chronic liver disease on the waiting list for liver transplantation. METHODS: Ten patients (eight males) with chronic liver disease were enrolled to receive infusion of autologous bone marrow-derived cells. Seven patients were classified as Child-Pugh B and three as Child-Pugh C. Baseline assessment included complete clinical and laboratory evaluation and abdominal MRI. Approximately 50 mL of bone marrow aspirate was prepared by centrifugation in a ficoll-hypaque gradient. At least of 100 millions of mononuclear-enriched BMCs were infused into the hepatic artery using the routine technique for arterial chemoembolization for liver tumors. Patients were followed up for adverse events up to 4 mo. RESULTS: The median age of the patients was 52 years (range 24-70 years). All patients were discharged 48 h after BMC infusion. Two patients complained of mild pain at the bone marrow needle puncture site. No other complications or specific side effects related to the procedure were observed. Bilirubin levels were lower at 1 (2.19 ± 0.9) and 4 mo (2.10 ± 1.0) after cell transplantation that baseline levels (2.78 ± 1.2). Albumin levels 4 mo after BMC infusion (3.73 ± 0.5) were higher than baseline levels (3.47 ± 0.5). International normalized ratio (INR) decreased from 1.48 (SD = 0.23) to 1.43 (SD = 0.23) one month after cell transplantation. CONCLUSION: BMC infusion into hepatic artery of patients with advanced chronic liver disease is safe and feasible. In addition, a decrease in mean serum bilirubin and INR levels and an increase in albumin levels are observed. Our data warrant further studies in order to evaluate the effect of BMC transplantation in patients with advanced chronic liver disease. PMID:17373741

  13. Various Cell Populations Within the Mononuclear Fraction of Bone Marrow Contribute to the Beneficial Effects of Autologous Bone Marrow Cell Therapy in a Rodent Stroke Model.

    PubMed

    Yang, Bing; Parsha, Kaushik; Schaar, Krystal; Xi, XiaoPei; Aronowski, Jaroslaw; Savitz, Sean I

    2016-08-01

    Cell-based therapies including bone-marrow derived mononuclear cells (MNCs) are now widely being studied because of their pleotropic effects and promising results to improve recovery after stroke in animal models. Unlike other types of cell therapies, MNCs is a mixture of lymphoid, myeloid, erythroid, and stem cell populations. Which cell population(s) accounts for the beneficial effects of MNCs in stroke recovery is unclear. In this paper, we employed a mouse stroke model with middle cerebral artery occlusion (MCAo), and used positively and negatively sorted autologous MNCs by MACs to determine which fractions of the MNCs contribute to their beneficial effects. We evaluated the benefits of neurofunctional recovery produced by individual cell lineages within MNCs in a long-term observation study up to 28 days after stroke. Mortality and modulation of inflammation were also compared among different sub-populations. We further studied the impact of neurotoxicity posed by activated microglia in the presence of different cell lineages within MNCs. We concluded that myeloid cell lineage and stem cell/progenitors appeared to be important components within MNCs that contribute to improved outcomes after stroke. PMID:26997513

  14. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; ...

  15. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity, nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  16. Adequate Selection of a Therapeutic Site Enables Efficient Development of Collateral Vessels in Angiogenic Treatment With Bone Marrow Mononuclear Cells

    PubMed Central

    Nemoto, Masaru; Koyama, Hiroyuki; Nishiyama, Ayako; Shigematsu, Kunihiro; Miyata, Tetsuro; Watanabe, Toshiaki

    2015-01-01

    Background Induction of angiogenic mechanisms to promote development of collateral vessels is considered promising for the treatment of peripheral arterial diseases. Collateral vessels generally develop from preexisting arteriolar connections, bypassing the diseased artery. We speculated that induction of angiogenic mechanisms should be directed to such arteriolar connections to achieve efficient collateral development. The aim of this study was to verify this hypothesis using autologous transplantation of bone marrow mononuclear cells in the rabbit model of chronic limb ischemia. Methods and Results The left femoral artery was excised to induce limb ischemia in male rabbits. In this model, arteriolar connections in the left coccygeofemoral muscle tend to develop into collateral vessels, although this transformation is insufficient to alleviate the limb ischemia. In contrast, arteriolar connections in the closely located adductor muscle do not readily develop into collateral vessels. At 21 days after ischemia initiation, a sufficient number of automononuclear cells were selectively injected in the left coccygeofemoral muscle (coccygeo group) or left adductor muscle (adductor group). Evaluation of calf blood pressure ratios, blood flow in the left internal iliac artery, and angiographic scores at day 28 after injection revealed that collateral development and improvement of limb ischemia were significantly more efficient in the coccygeo group than in the adductor group. Morphometric analysis of the coccygeofemoral muscle at day 14 showed similar results. Conclusions Specific delivery of mononuclear cells to the coccygeofemoral but not the adductor muscle effectively improves collateral circulation in the rabbit model of limb ischemia and suggests that adequate site selection can facilitate therapeutic angiogenesis. PMID:26370447

  17. Bone marrow mononuclear cells enhance anti-inflammatory effects of pravastatin against isoproterenol-induced myocardial infarction in rats.

    PubMed

    El-Mahdy, Nageh; Salem, Mohamed L; El-Sayad, Magda; El-Desouky, Karima I; Zaghow, Nesma

    2016-05-01

    The current study investigated the combinatorial effect of pravastatin (PRAV) and bone marrow mononuclear cells (BM-MNC) on acute myocardial infarction (AMI) induced experimentally in rats. After induction of MI, rats were given oral PRAV (20 mg/kg/day) for 28 days or a bolus intravenous injection (via lateral vein) of a total of 14 × 10(6) autologous BM-MNC or a combination of both. Serum brain natriuretic peptide (BNP) and histologic changes in cardiac tissues were assessed. Cardiac contents of lipid peroxides, superoxide dismutase (SOD) and inflammatory biomarkers including tumor necrosis factor (TNF)-α and interleukin (IL)-1β as well as vascular endothelial growth factor (VEGF) and nitric oxide (NO) were also measured. Combined PRAV and BM-MNC treatment significantly suppressed serum BNP. Cardiac cell apoptosis and inflammatory cell infiltration in heart tissue decreased significantly in both the PRAV and the PRAV + BM-MNC groups. Cardiac lipid peroxides along with TNFα and IL-1β levels were significantly reduced in both the PRAV and PRAV + BM-MNC hosts with an increase in SOD levels. However, the combined treatment increased cardiac NO levels and did not modify cardiac VEGF levels. The current results indicated that administration of BM-MNC improved the therapeutic efficacy of PRAV treatment by improving the morphology of infarcted hearts as well as decreasing inflammation in a host, but did not do so by inducing therapeutic angiogenesis. PMID:26606075

  18. Concise Review: Prospects of Bone Marrow Mononuclear Cells and Mesenchymal Stem Cells for Treating Status Epilepticus and Chronic Epilepsy.

    PubMed

    Agadi, Satish; Shetty, Ashok K

    2015-07-01

    Mononuclear cells (MNCs) and mesenchymal stem cells (MSCs) derived from the bone marrow and other sources have received significant attention as donor cells for treating various neurological disorders due to their robust neuroprotective and anti-inflammatory effects. Moreover, it is relatively easy to procure these cells from both autogenic and allogenic sources. Currently, there is considerable interest in examining the usefulness of these cells for conditions such as status epilepticus (SE) and chronic epilepsy. A prolonged seizure activity in SE triggers neurodegeneration in the limbic brain areas, which elicits epileptogenesis and evolves into a chronic epileptic state. Because of their potential for providing neuroprotection, diminishing inflammation and curbing epileptogenesis, early intervention with MNCs or MSCs appears attractive for treating SE as such effects may restrain the development of chronic epilepsy typified by spontaneous seizures and learning and memory impairments. Delayed administration of these cells after SE may also be useful for easing spontaneous seizures and cognitive dysfunction in chronic epilepsy. This concise review evaluates the current knowledge and outlook pertaining to MNC and MSC therapies for SE and chronic epilepsy. In the first section, the behavior of these cells in animal models of SE and their efficacy to restrain neurodegeneration, inflammation, and epileptogenesis are discussed. The competence of these cells for suppressing seizures and improving cognitive function in chronic epilepsy are conferred in the next section. The final segment ponders issues that need to be addressed to pave the way for clinical application of these cells for SE and chronic epilepsy. PMID:25851047

  19. Autologous bone marrow mononuclear cells therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury

    PubMed Central

    Bedi, Supinder S.; Walker, Peter A.; Shah, Shinil K.; Jimenez, Fernando; Thomas, Chelsea P.; Smith, Philippa; Hetz, Robert A.; Xue, Hasen; Pati, Shibani; Dash, Pramod K.; Cox, Charles S.

    2014-01-01

    Background Autologous bone marrow-derived mononuclear cells (AMNC) have shown therapeutic promise for central nervous system insults such as stroke and traumatic brain injury (TBI). We hypothesized that intravenous injection of AMNC provides neuroprotection which leads to cognitive improvement after TBI. Methods A controlled cortical impact (CCI) rodent traumatic brain injury (TBI) model was used to examine blood-brain barrier permeability (BBB), neuronal and glial apoptosis and cognitive behavior. Two groups of rats underwent CCI with (CCI-Autologous) or without AMNC treatment (CCI-Alone), consisting of 2 million AMNC/kilogram body weight harvested from the tibia and intravenously injected 72 hr after injury. CCI-Alone animals underwent sham harvests and received vehicle injections. Results 96 hr after injury, AMNC significantly reduced the BBB permeability in injured animals, and there was an increase in apoptosis of pro-inflammatory activated microglia in the ipsilateral hippocampus. At 4 weeks after injury, we examined changes in spatial memory after TBI due to AMNC treatment. There was a significant improvement in probe testing of CCI-Autologous group in comparison to CCI-Alone in the Morris Water Maze paradigm. Conclusions Our data demonstrate that the intravenous injection of AMNC after TBI leads to neuroprotection by preserving early BBB integrity and increasing activated microglial apoptosis. In addition, AMNC also improves cognitive function. PMID:23928737

  20. Intravenous administration of bone marrow mononuclear cells alleviates hearing loss after transient cochlear ischemia through paracrine effects.

    PubMed

    Takagi, Taro; Yoshida, Tadashi; Okada, Masahiro; Hata, Ryuji; Hato, Naohito; Gyo, Kiyofumi; Hakuba, Nobuhiro

    2014-05-16

    Bone marrow mononuclear cells (BMMCs) are known to enhance recovery from ischemic insults by secreting angiogenic factors and inducing the expression of angiogenic factors from host tissues. Therefore, the transplantation of BMMCs is considered a potential approach to promoting the repair of ischemic damaged organs. Here, we investigated the influence of BMMCs on progressive hair cell degeneration after transient cochlear ischemia in gerbils. Transient cochlear ischemia was produced by extracranial occlusion of the bilateral vertebral arteries immediately before their entry into the transverse foramen of the cervical vertebra. An intravenous injection of BMMCs prevented ischemia-induced hair cell degeneration and ameliorated hearing impairment. A tracking study showed that BMMCs injected into the femoral vein were limited in the spiral artery of the cochlea, suggesting that, although transplanted BMMCs were retained within the spiral ganglion area of the cochlea, they were neither transdifferentiated into cochlear cells nor fused with the injured hair cells and supporting cells in the organ of Corti to restore their functions. We also showed that the protein level of neurotrophin-3 and glial cell line-derived neurotrophic factor in the organ of Corti was upregulated after treatment with BMMCs. These results suggested that BMMCs have therapeutic potential possibly through paracrine effects. Thus, we propose the use of BMMCs as a potential new therapeutic strategy for hearing loss. PMID:24840930

  1. Comparison of Human Embryonic Stem Cell-Derived Cardiomyocytes, Cardiovascular Progenitors, and Bone Marrow Mononuclear Cells for Cardiac Repair

    PubMed Central

    Fernandes, Sarah; Chong, James J.H.; Paige, Sharon L.; Iwata, Mineo; Torok-Storb, Beverly; Keller, Gordon; Reinecke, Hans; Murry, Charles E.

    2015-01-01

    Summary Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) can improve the contractility of injured hearts. We hypothesized that mesodermal cardiovascular progenitors (hESC-CVPs), capable of generating vascular cells in addition to cardiomyocytes, would provide superior repair by contributing to multiple components of myocardium. We performed a head-to-head comparison of hESC-CMs and hESC-CVPs and compared these with the most commonly used clinical cell type, human bone marrow mononuclear cells (hBM-MNCs). In a nude rat model of myocardial infarction, hESC-CMs and hESC-CVPs generated comparable grafts. Both similarly improved systolic function and ventricular dilation. Furthermore, only rare human vessels formed from hESC-CVPs. hBM-MNCs attenuated ventricular dilation and enhanced host vascularization without engrafting long-term or improving contractility. Thus, hESC-CMs and CVPs show similar efficacy for cardiac repair, and both are more efficient than hBM-MNCs. However, hESC-CVPs do not form larger grafts or more significant numbers of human vessels in the infarcted heart. PMID:26607951

  2. DNA Damage and Augmented Oxidative Stress in Bone Marrow Mononuclear Cells from Angiotensin-Dependent Hypertensive Mice

    PubMed Central

    Campagnaro, Bianca P.; Tonini, Clarissa L.; Nogueira, Breno V.; Casarini, Dulce E.; Vasquez, Elisardo C.; Meyrelles, Silvana S.

    2013-01-01

    It has been proposed that the nonhemodynamic effects of angiotensin II are important for the damage observed in the two-kidney, one-clip (2K1C) renovascular hypertension model. Much evidence confirms that angiotensin II is directly involved in NAD(P)H oxidase activation and consequent superoxide anion production, which can damage DNA. The current study was performed to examine the effects of angiotensin-II-dependent hypertension in bone marrow mononuclear cells (BM-MNC); dihydroethidium staining was used to assess reactive oxygen species (ROS) production, and the comet assay was used to assess DNA fragmentation in 2K1C hypertensive mice 14 days after renal artery clipping. In this study we demonstrated that 2K1C hypertensive mice have an elevated lymphocyte count, while undifferentiated BM-MNC counts were diminished. 2K1C mice also showed an augmented ROS production and marked BM-MNC DNA fragmentation. In conclusion, endogenous renin angiotensin system activation-induced arterial hypertension is characterized by excessive ROS production in BM-MNC, which might cause marked DNA damage. PMID:23476745

  3. Autologous transplantation of CD34(+) bone marrow derived mononuclear cells in management of non-reconstructable critical lower limb ischemia.

    PubMed

    Ismail, Ahmed M; Abdou, Said M; Aty, Hassan Abdel; Kamhawy, Adel H; Elhinedy, Mohammed; Elwageh, Mohammed; Taha, Atef; Ezzat, Amal; Salem, Hoda A; Youssif, Said; Salem, Mohamed L

    2016-08-01

    Patients with a decrease in limb perfusion with a potential threat to limb viability manifested by ischemic rest pain, ischemic ulcers, and/or gangrene are considered to have critical limb ischemia (CLI). Because of this generally poor outcome, there is a strong need for attempting any procedure to save the affected limb. The aim of this work is to evaluate the possibility to use stem cell therapy as a treatment option for patients with chronic critical lower limb ischemia with no distal run off. This study includes 20 patients with chronic critical lower limb ischemia with no distal run off who are unsuitable for vascular or endovascular option. These patients underwent stem cell therapy (SCT) by autologous transplantation of bone marrow derived mononuclear cells. 55 % of patients treated with SCT showed improvement of the rest pain after the first month, 60 % continued improvement of the rest pain after 6 months, 75 % after 1 year and 80 % after 2 years and continued without any deterioration till the third year. Limb salvage rate after STC was 80 % after the first year till the end of the second and third years. SCT can result in angiogenesis in patients with no-option CLI, providing a foundation for the application of this therapy to leg ischemia. PMID:25511801

  4. Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease.

    PubMed

    Kanamaru, Takuya; Kamimura, Naomi; Yokota, Takashi; Nishimaki, Kiyomi; Iuchi, Katsuya; Lee, Hyunjin; Takami, Shinya; Akashiba, Hiroki; Shitaka, Yoshitsugu; Ueda, Masayuki; Katsura, Ken-Ichiro; Kimura, Kazumi; Ohta, Shigeo

    2015-04-24

    Stem cell transplantation therapy is currently in clinical trials for the treatment of ischemic stroke, and several beneficial aspects have been reported. Similarly, in Alzheimer's disease (AD), stem cell therapy is expected to provide an efficient therapeutic approach. Indeed, the intracerebral transplantation of stem cells reduced amyloid-β (Aβ) deposition and rescued memory deficits in AD model mice. Here, we show that intravenous transplantation of bone marrow-derived mononuclear cells (BMMCs) improves cognitive function in two different AD mouse models, DAL and APP mice, and prevents neurodegeneration. GFP-positive BMMCs were isolated from tibiae and femurs of 4-week-old mice and then transplanted intravenously into DAL and APP mice. Transplantation of BMMCs suppressed neuronal loss and restored memory impairment of DAL mice to almost the same level as in wild-type mice. Transplantation of BMMCs to APP mice reduced Aβ deposition in the brain. APP mice treated with BMMCs performed significantly better on behavioral tests than vehicle-injected mice. Moreover, the effects were observed even with transplantation after the onset of cognitive impairment in DAL mice. Together, our results indicate that intravenous transplantation of BMMCs has preventive effects against the cognitive decline in AD model mice and suggest a potential therapeutic effect of BMMC transplantation therapy. PMID:25698614

  5. [Long-term results of clinical application of autologous mononuclear bone marrow fraction for regeneration therapy of ischemic heart disease patients].

    PubMed

    Sedov, V M; Nemkov, A S; Afanas'ev, B V; Belyĭ, S A; Burnos, S N; Zverev, O G; Babenko, E V; Lukashenko, V I; Nesteruk, Iu A; Kobak, A E; Azovtsev, R A; Kreĭl', V A; Ryzhkova, D V; Iudina, O V

    2012-01-01

    An experience with using autologous bone marrow mononuclears for regeneration of the heart was analyzed in 97 patients in whom the intracoronary transplantation of autologous mononuclear bone marrow cells was performed. The results were estimated in terms up to 5 years and compared with a group of 37 patients who underwent only conservative treatment. A distinct positive dynamic of clinical and echocardiographic indices in the main group was noted in a subgroup of patients with a decreased ejection fraction (EF less than 50%) as compared with an analogous subgroup of patients in the control group. Substantial influence is exerted by regeneration therapy upon remote lethality. Thus, as a whole in the main group lethality over 5 years was 13.4% and in the group of control it was 21.6%. In the subgroup with a decreased ejection fraction and symptoms of heart failure lethality was 22.6% in the main group and 54.5%--in the control group. The intracoronary administration of the autologous bone marrow mononuclear fraction to inoperable patients with ischemic heart disease and a severe lesion of the coronary arteries and a decreased ejection fraction of the left ventricle is a safe and useful procedure resulting to substantially decreased lethality followed-up during 5 years against the background of conservative treatment. PMID:23227737

  6. Autologous Bone Marrow Mononuclear Cell Transplantation in Patients with Decompensated Alcoholic Liver Disease: A Randomized Controlled Trial

    PubMed Central

    Spahr, Laurent; Chalandon, Yves; Terraz, Sylvain; Kindler, Vincent; Rubbia-Brandt, Laura; Frossard, Jean-Louis; Breguet, Romain; Lanthier, Nicolas; Farina, Annarita; Passweg, Jakob; Becker, Christoph D.; Hadengue, Antoine

    2013-01-01

    Objective Impaired liver regeneration is associated with a poor outcome in patients with decompensated alcoholic liver disease (ALD). We assessed whether autologous bone marrow mononuclear cell transplantation (BMMCT) improved liver function in decompensated ALD. Design 58 patients (mean age 54 yrs; mean MELD score 19, all with cirrhosis, 81% with alcoholic steatohepatitis at baseline liver biopsy) were randomized early after hospital admission to standard medical therapy (SMT) alone (n = 30), including steroids in patients with a Maddrey’s score ≥32, or combined with G-CSF injections and autologous BMMCT into the hepatic artery (n = 28). Bone marrow cells were harvested, isolated and reinfused the same day. The primary endpoint was a ≥3 points decrease in the MELD score at 3 months, corresponding to a clinically relevant improvement in liver function. Liver biopsy was repeated at week 4 to assess changes in Ki67+/CK7+ hepatic progenitor cells (HPC) compartment. Results Both study groups were comparable at baseline. After 3 months, 2 and 4 patients died in the BMMCT and SMT groups, respectively. Adverse events were equally distributed between groups. Moderate alcohol relapse occurred in 31% of patients. The MELD score improved in parallel in both groups during follow-up with 18 patients (64%) from the BMMCT group and 18 patients (53%) from the SMT group reaching the primary endpoint (p = 0.43 (OR 1.6, CI 0.49–5.4) in an intention to treat analysis. Comparing liver biopsy at 4 weeks to baseline, steatosis improved (p<0.001), and proliferating HPC tended to decrease in both groups (−35 and −33%, respectively). Conclusion Autologous BMMCT, compared to SMT is a safe procedure but did not result in an expanded HPC compartment or improved liver function. These data suggest either insufficient regenerative stimulation after BMMCT or resistance to liver regenerative drive in patients with decompensated alcoholic cirrhosis. Trial Registration

  7. Transendocardial Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells for Ischemic Cardiomyopathy: The TAC-HFT Randomized Trial

    PubMed Central

    Heldman, Alan W.; DiFede, Darcy L.; Fishman, Joel E; Zambrano, Juan P.; Trachtenberg, Barry H.; Karantalis, Vasileios; Mushtaq, Muzammil; Williams, Adam R.; Suncion, Viky Y.; McNiece, Ian K.; Ghersin, Eduard; Soto, Victor; Lopera, Gustavo; Miki, Roberto; Willens, Howard; Hendel, Robert; Mitrani, Raul; Pattany, Pradip; Feigenbaum, Gary; Oskouei, Behzad; Byrnes, John; Lowery, Maureen H.; Sierra, Julio; Pujol, Mariesty V; Delgado, Cindy; Gonzalez, Phillip J.; Rodriguez, Jose E.; Bagno, Luiza Lima; Rouy, Didier; Altman, Peter; Foo, Cheryl Wong Po; da Silva, Jose; Anderson, Erica; Schwarz, Richard; Mendizabal, Adam; Hare, Joshua M.

    2014-01-01

    Importance Whether culture expanded mesenchymal stem cells or whole bone marrow mononuclear cells are safe and effective in chronic ischemic cardiomyopathy (ICM) remains controversial. Objective To demonstrate the safety of transendocardial stem cell injection with autologous mesenchymal stem cells (MSCs) and whole bone marrow mononuclear cells (BMCs) in patients with ischemic cardiomyopathy. Design, Setting and Patients A phase 1 and 2 randomized blinded placebo-controlled study involving 65 patients with ischemic cardiomyopathy and left ventricular (LV) ejection fraction less than50%(September 1, 2009-July 12, 2013). The study compared injection of MSCs (N=19) and placebo (N=11) or BMCs (N=19) with placebo (N=10) with 1-year of follow up. Interventions Injections into 10 LV sites with an infusion catheter. Main Outcomes and Measures Treatment-emergent 30 day serious adverse event rate defined as composite of death, myocardial infarction, stroke, hospitalization for worsening heart failure, perforation, tamponade or sustained ventricular arrhythmias. Results No patient had a treatment-emergent serious adverse events at day 30. The 1-year incidence of serious adverse events was 31.6% (95% CI, 12.6%-56.6%) for MSCs, 31.6% (95% CI, 12.6%-56.6%) for BMCs, and 38.1% (95% CI, 18.1%-61.6%) for placebo. Over 1-year the Minnesota Living with Heart Failure (MLHF) score improved with MSCs (repeated measures ANOVA P= .02) and BMCs (P= .005) but not placebo (P= .38), and 6-minute walk distance increased with MSCs only (repeated measures model P= .03). Infarct size as a percentage of LV Mass was reduced by MSCs (-18.9%; 95% CI, -30.4 to -7.4; within-group P= .004) but not by BMCs (-7.0%; 95% CI, -15.7%-1.7%; within-group P= .11) or placebo (-5.2; 95% CI, -16.8%-6.5%; within-group P=.36). Regional myocardial function as peak Eulerian circumferential strain at the site of injection improved with MSCs (-4.9; 95% CI, -13.3-3.5; within-group repeated measures P=.03) but not BMCs (-2

  8. Sustained effect of bone marrow mononuclear cell therapy in axonal regeneration in a model of optic nerve crush.

    PubMed

    Zaverucha-do-Valle, Camila; Mesentier-Louro, Louise; Gubert, Fernanda; Mortari, Nicoli; Padilha, Ana Beatriz; Paredes, Bruno D; Mencalha, Andre; Abdelhay, Eliana; Teixeira, Camila; Ferreira, Fernanda G M; Tovar-Moll, Fernanda; de Souza, Sergio Augusto L; Gutfilen, Bianca; Mendez-Otero, Rosalia; Santiago, Marcelo F

    2014-10-31

    In adult mammals, the regeneration of the optic nerve is very limited and at the moment there are several groups trying different approaches to increase retinal ganglion cell (RGC) survival and axonal outgrowth. One promising approach is cell therapy. In previous work, we performed intravitreal transplantation of bone-marrow mononuclear cells (BMMCs) after optic nerve crush in adult rats and we demonstrated an increase in RGC survival and axon outgrowth 14 days after injury. In the present work, we investigated if these results could be sustained for a longer period of time. Optic nerve crush was performed in Lister-hooded adult rats and BMMC or saline injections were performed shortly after injury. Neuronal survival and regeneration were evaluated in rats׳ retina and optic nerve after 28 days. We demonstrated an increase of 5.2 fold in the axon outgrowth 28 days after lesion, but the BMMCs had no effect on RGC survival. In an attempt to prolong RGC survival, we established a new protocol with two BMMC injections, the second one 7 days after the injury. Untreated animals received two injections of saline. We observed that although the axonal outgrowth was still increased after the second BMMC injection, the RGC survival was not significantly different from untreated animals. These results demonstrate that BMMCs transplantation promotes neuroregeneration at least until 28 days after injury. However, the effects on RGC survival previously observed by us at 14 days were not sustained at 28 days and could not be prolonged with a second dose of BMMC. PMID:25204691

  9. Therapeutic efficacy of bone marrow-derived mononuclear cells in diabetic polyneuropathy is impaired with aging or diabetes

    PubMed Central

    Kondo, Masaki; Kamiya, Hideki; Himeno, Tatsuhito; Naruse, Keiko; Nakashima, Eitaro; Watarai, Atsuko; Shibata, Taiga; Tosaki, Takahiro; Kato, Jiro; Okawa, Tetsuji; Hamada, Yoji; Isobe, Ken-ichi; Oiso, Yutaka; Nakamura, Jiro

    2015-01-01

    Aims/Introduction Recent studies have shown that cell transplantation therapies, such as endothelial precursor cells, bone marrow-derived mononuclear cells (BM-MNCs) and mesenchymal stem cells, are effective on diabetic polyneuropathy through ameliorating impaired nerve blood flow in diabetic rats. Here, we investigated the effects of BM-MNCs transplantation in diabetic polyneuropathy using BM-MNCs derived from adult (16-week-old) diabetic (AD), adult non-diabetic (AN) or young (8-week-old) non-diabetic (YN) rats. Materials and Methods BM-MNCs of AD and AN were isolated after an 8-week diabetes duration. The BM-MNCs were characterized using flow cytometry analysis of cell surface markers and reverse transcription polymerase chain reaction of several cytokines. BM-MNCs or saline were injected into hind limb muscles. Four weeks later, the thermal plantar test, nerve conduction velocity, blood flow of the sciatic nerve and capillary-to-muscle fiber ratio were evaluated. Results The number of CD29+/CD90+ cells that host mesenchymal stem cells in BM-MNCs decreased in AD compared with AN or YN, and transcript expressions of basic fibroblast growth factor and nerve growth factor in BM-MNCs decreased in AD compared with AN or YN. Impaired thermal sensation, decreased blood flow of the sciatic nerve and delayed nerve conduction velocity in 8-week-diabetic rats were significantly ameliorated by BM-MNCs derived from YN, whereas BM-MNCs from AD or AN rats did not show any beneficial effect in these functional tests. Conclusions These results show that cytokine production abilities and the mesenchymal stem cell population of BM-MNCs would be modified by aging and metabolic changes in diabetes, and that these differences could explain the disparity of the therapeutic efficacy of BM-MNCs between young and adult or diabetic and non-diabetic patients in diabetic polyneuropathy. PMID:25802721

  10. Effect of intramyocardial bone marrow-derived mononuclear cell injection on cardiac sympathetic innervation in patients with chronic myocardial ischemia.

    PubMed

    van Ramshorst, Jan; Beeres, Saskia L M A; Rodrigo, Sander F; Dibbets-Schneider, Petra; Scholte, Arthur J; Fibbe, Willem E; Zwaginga, Jaap J; Schalij, Martin J; Bax, Jeroen J; Atsma, Douwe E

    2014-03-01

    Intramyocardial bone marrow cell injection has been associated with improvements in myocardial perfusion and left ventricular function. The current substudy of a randomized, placebo-controlled, double-blinded study, investigated the effect of intramyocardial bone marrow cell injection on myocardial sympathetic innervation in patients with chronic myocardial ischemia. In a total of 16 patients (64 ± 8 years, 13 men), early and late iodine-123 metaiodobenzylguanidine (MIBG) imaging was performed before and 3 months after intramyocardial bone marrow cell injection. No improvements were observed in global early H/M ratio (P = 0.40), late H/M ratio (P = 0.43) and cardiac washout rate (P = 0.98). However, late 123-I MIBG SPECT defect score showed a trend to improvement in the bone marrow cell group (from 31.0 ± 7.1 to 28.1 ± 14.9) as compared to the placebo group (from 33.6 ± 8.5 to 34.5 ± 9.8, P = 0.055 between groups). This trend was mainly driven by a substantial improvement in three bone marrow cell-treated patients, which all had diabetes and severe MIBG defects. In these patients, the extent and severity of MIBG defects improved substantially independent of myocardial perfusion and cell injection sites. The present study does not demonstrate improvements in global cardiac sympathetic nerve innervation after intramyocardial bone marrow cell injection in patients with chronic myocardial ischemia. However, regional analysis of sympathetic nerve innervation reveals improvements in three diabetic patients independent of myocardial perfusion, suggestive of a therapeutic effect on diabetic cardiac sympathetic dysinnervation. PMID:24481723

  11. Bone marrow biopsy

    MedlinePlus

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may be taken from the pelvic or breast bone. Sometimes, other areas are used. Marrow is removed ...

  12. Bone marrow transplant - discharge

    MedlinePlus

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - ...

  13. Bone Marrow Diseases

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem cells ...

  14. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a person's ...

  15. [Ejection fraction and sizes of the left ventricle of the heart after intracoronary administration of autologous mononuclear cells of the bone marrow in patients with coronary artery disease with low ejection fraction].

    PubMed

    Burnos, S N; Nemkov, A S; Belyĭ, S A; Lukashenko, V I

    2011-01-01

    Since 2003 intracoronary administration of autologous bone marrow mononuclear cells has been performed in 119 patients with inoperable coronary artery disease, 53 of which had reduced ejection function that was gradually increased after injection of mononuclear bone marrow cells. By the 6th year the difference between the median of systolic and diastolic sizes of the left ventricle decreased by 12 and 14 mm respectively. In the control group the dynamics of changes of these indices at the same period was of negative character. The introduction of intracoronary bone marrow mononuclear cells is a safe and effective method of invasive therapy in patients with coronary artery disease to whom surgery is contraindicated. PMID:22191250

  16. No evidence of myocardial restoration following transplantation of mononuclear bone marrow cells in coronary bypass grafting surgery patients based upon cardiac SPECT and 18F-PET

    PubMed Central

    Tossios, Paschalis; Müller-Ehmsen, Jochen; Schmidt, Matthias; Scheid, Christof; Ünal, Nermin; Moka, Detlef; Schwinger, Robert HG; Mehlhorn, Uwe

    2006-01-01

    Background We tested the hypothesis, that intramyocardial injection of mononuclear bone marrow cells combined with coronary artery bypass grafting (CABG) surgery improves tissue viability or function in infarct regions with non-viable myocardium as assessed by nuclear imaging techniques. Methods Thus far, 7 patients (60 ± 10 [SD] years) undergoing elective CABG surgery after a myocardial infarction were included in this study. Prior to sternotomy, bone marrow was harvested by sternal puncture. Mononuclear bone marrow cells were isolated by gradient centrifugation and resuspended in 2 ml volume of Hank's buffered salt solution. At the end of CABG surgery 10 injections of 0.2 ml each were applied to the core area and borderzones of the infarct. Global and regional perfusion and viability were evaluated by ECG-gated 99mTc-tetrofosmin myocardial single-photon emission computed tomograph (SPECT) imaging and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in all study patients < 6 days before and 3 months after the intervention. Results Non-viable segments indicating transmural defects were identified in 5 patients. Two patients were found to have non-transmural defects before surgery. Concomitant surgical revascularisation and bone marrow cell injection was performed in all patients without major complications. The median total injected mononuclear cell number was 7.0 × 107 (range: 0.8–20.4). At 3 months 99mTc-tetrofosmin SPECT and 18F-FDG-PET scanning showed in 5 patients (transmural defect n = 4; non-transmural defect n = 1) no change in myocardial viability and in two patients (transmural defect n = 1, non-transmural defect n = 1) enhanced myocardial viability by 75%. Overall, global and regional LV ejection fraction was not significantly increased after surgery compared with the preoperative value. Conclusion In CABG surgery patients with non-viable segments the concurrent use of intramyocardial cell transfer did not show any clear improvement in

  17. Autologous Bone Marrow Mononuclear Cell Therapy is Safe and Promotes Amputation Free Survival in Patients with Critical Limb Ischemia

    PubMed Central

    Murphy, Michael P.; Lawson, Jeffrey H.; Rapp, Brian M.; Dalsing, Michael C.; Klein, Janet; Wilson, Michael G.; Hutchins, Gary D.; March, Keith L.

    2011-01-01

    Objective The purpose of this phase I open label non-randomized trial was to assess the safety and efficacy of autologous bone marrow mononuclear cell (ABMNC) therapy in promoting amputation free survival (AFS) in patients with critical limb ischemia (CLI). Methods Between September 2005 and March 2009 twenty-nine patients (30 limbs), with a median age of 66 (range 23–84) (14 male,15 female) with CLI were enrolled . Twentyone limbs presented with rest pain (RP), six with RP and ulceration, and three with ulcer only. All patients were not candidates for surgical bypass due to absence of a patent artery below the knee and/or endovascular approaches to improving perfusion was not possible as determined by an independent vascular surgeon. Patients were treated with an average dose of 1.7 ± 0.7 × 109 ABMNC injected intramuscularly in the index limb distal to the anterior tibial tuberosity. The primary safety endpoint was accumulation of serious adverse events and the primary efficacy endpoint was AFS at one year. Secondary endpoints at 12 weeks post-treatment were changes in first toe pressure (FTP), toe-brachial index (TBI), ankle-brachial index (ABI), and transcutaneous oxygen measurements (TcPO2). Perfusion of the index limb was measured with PET-CT with intra-arterial infusion of H2O15. Rest pain (RP), using a 10-cm visual analog scale, quality of life using the VascuQuol questionnaire, and ulcer healing were assessed at each follow-up interval. Subpopulations of endothelial progenitor cells were quantified prior to ABMNC administration using immunocytochemistry and fluorescent activated cell sorting. Results There were two serious adverse events however there no procedure related deaths. Amputation-free survival at one-year was 86.3%. There was a significant increase in FTP (10.2+ 6.2 mmHg, P=.02) and TBI (0.10± 0.05, P=.02) and a trend in improvement in ABI (0.08±0.04, P=.73). Perfusion Index by PET-CT H2O15 increased by 19.3 ± 3.1 and RP decreased

  18. Bone marrow aspiration

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  19. Bone marrow (stem cell) donation

    MedlinePlus

    Stem cell transplant; Allogeneic-donation ... There are two types of bone marrow donation: Autologous bone marrow transplant is when people donate their own bone marrow. "Auto" means self. Allogenic bone marrow transplant is when another person ...

  20. Cryopreservation of Bone Marrow Mononuclear Cells Alters Their Viability and Subpopulation Composition but Not Their Treatment Effects in a Rodent Stroke Model.

    PubMed

    Yang, Bing; Parsha, Kaushik; Schaar, Krystal; Satani, Nikunj; Xi, Xiaopei; Aronowski, Jaroslaw; Savitz, Sean I

    2016-01-01

    The systemic administration of autologous bone marrow (BM) derived mononuclear cells (MNCs) is under investigation as a novel therapeutic modality for the treatment of ischemic stroke. Autologous applications raise the possibility that MNCs could potentially be stored as a banked source. There have been no studies that investigate the effects of cryopreservation of BM-MNCs on their functional abilities in stroke models. In the present study, C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAo) for 60 minutes and then divided into two treatment groups: fresh MNCs versus cryopreserved MNCs. BM-MNCs were collected at 22 hours after MCAo and were stored in liquid nitrogen for 12 months in cryopreserved MNCs group. BM-MNCs cellular viability, composition, and phenotype of the various subpopulations of mice BM-MNCs were evaluated by flow cytometry, and the behavioral recovery of stroke animals was tested with freshly harvested MNCs versus cryopreserved MNCs by corner test and ladder rung test. We found that long-term cryopreservation negatively impacts the cellular viability of bone marrow MNCs. Cryopreservation also alters the cellular composition of various subpopulations within the MNCs. However, despite the changes observed in cryopreserved cells, both fresh and frozen MNCs have similar beneficial effect on behavioral and histological outcomes. PMID:27403167

  1. Cryopreservation of Bone Marrow Mononuclear Cells Alters Their Viability and Subpopulation Composition but Not Their Treatment Effects in a Rodent Stroke Model

    PubMed Central

    Parsha, Kaushik; Schaar, Krystal; Xi, Xiaopei; Aronowski, Jaroslaw; Savitz, Sean I.

    2016-01-01

    The systemic administration of autologous bone marrow (BM) derived mononuclear cells (MNCs) is under investigation as a novel therapeutic modality for the treatment of ischemic stroke. Autologous applications raise the possibility that MNCs could potentially be stored as a banked source. There have been no studies that investigate the effects of cryopreservation of BM-MNCs on their functional abilities in stroke models. In the present study, C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAo) for 60 minutes and then divided into two treatment groups: fresh MNCs versus cryopreserved MNCs. BM-MNCs were collected at 22 hours after MCAo and were stored in liquid nitrogen for 12 months in cryopreserved MNCs group. BM-MNCs cellular viability, composition, and phenotype of the various subpopulations of mice BM-MNCs were evaluated by flow cytometry, and the behavioral recovery of stroke animals was tested with freshly harvested MNCs versus cryopreserved MNCs by corner test and ladder rung test. We found that long-term cryopreservation negatively impacts the cellular viability of bone marrow MNCs. Cryopreservation also alters the cellular composition of various subpopulations within the MNCs. However, despite the changes observed in cryopreserved cells, both fresh and frozen MNCs have similar beneficial effect on behavioral and histological outcomes. PMID:27403167

  2. Bone marrow aspiration

    MedlinePlus

    ... creates suction. A small sample of bone marrow fluid flows into the tube. The needle is removed. Pressure and then a bandage are applied to the skin. The bone marrow fluid is sent to a laboratory and examined under ...

  3. Bone Marrow Diseases

    MedlinePlus

    ... that help with blood clotting. With bone marrow disease, there are problems with the stem cells or ... marrow makes too many white blood cells Other diseases, such as lymphoma, can spread into the bone ...

  4. Bone marrow biopsy

    MedlinePlus

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may ... This captures a tiny sample, or core, of bone marrow within the needle. The sample and needle are ...

  5. Imaging of Bone Marrow.

    PubMed

    Lin, Sopo; Ouyang, Tao; Kanekar, Sangam

    2016-08-01

    Bone marrow is the essential for function of hematopoiesis, which is vital for the normal functioning of the body. Bone marrow disorders or dysfunctions may be evaluated by blood workup, peripheral smears, marrow biopsy, plain radiographs, computed tomography (CT), MRI and nuclear medicine scan. It is important to distinguish normal spinal marrow from pathology to avoid missing a pathology or misinterpreting normal changes, either of which may result in further testing and increased health care costs. This article focuses on the diffuse bone marrow pathologies, because the majority of the bone marrow pathologies related to hematologic disorders are diffuse. PMID:27444005

  6. Influence of Delivery Method on Neuroprotection by Bone Marrow Mononuclear Cell Therapy following Ventral Root Reimplantation with Fibrin Sealant

    PubMed Central

    Barbizan, Roberta; Castro, Mateus V.; Barraviera, Benedito; Ferreira, Rui S.; Oliveira, Alexandre L. R.

    2014-01-01

    The present work compared the local injection of mononuclear cells to the spinal cord lateral funiculus with the alternative approach of local delivery with fibrin sealant after ventral root avulsion (VRA) and reimplantation. For that, female adult Lewis rats were divided into the following groups: avulsion only, reimplantation with fibrin sealant; root repair with fibrin sealant associated with mononuclear cells; and repair with fibrin sealant and injected mononuclear cells. Cell therapy resulted in greater survival of spinal motoneurons up to four weeks post-surgery, especially when mononuclear cells were added to the fibrin glue. Injection of mononuclear cells to the lateral funiculus yield similar results to the reimplantation alone. Additionally, mononuclear cells added to the fibrin glue increased neurotrophic factor gene transcript levels in the spinal cord ventral horn. Regarding the motor recovery, evaluated by the functional peroneal index, as well as the paw print pressure, cell treated rats performed equally well as compared to reimplanted only animals, and significantly better than the avulsion only subjects. The results herein demonstrate that mononuclear cells therapy is neuroprotective by increasing levels of brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF). Moreover, the use of fibrin sealant mononuclear cells delivery approach gave the best and more long lasting results. PMID:25157845

  7. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  8. Percutaneous Intramyocardial Delivery of Mesenchymal Stem Cells Induces Superior Improvement in Regional Left Ventricular Function Compared with Bone Marrow Mononuclear Cells in Porcine Myocardial Infarcted Heart

    PubMed Central

    Tao, Bo; Cui, Mingliang; Wang, Chen; Ma, Sai; Wu, Feng; Yi, Fu; Qin, Xing; Liu, Junting; Wang, Haichang; Wang, Zhe; Ma, Xiaowei; Tian, Jie; Chen, Yundai; Wang, Jing; Cao, Feng

    2015-01-01

    Aim: To investigate the efficacy and feasibility of percutaneous intramyocardial injection of bone marrow mesenchymal stem cells (MSC) and autologous bone marrow-derived mononuclear cells (BMMNC) on cardiac functional improvement in porcine myocardial infarcted hearts. Methods and Results: Acute myocardial infarction (AMI) was induced in 22 minipigs by temporary balloon occlusion of the left anterior descending coronary artery for 60min.Two weeks post AMI, BMMNC (n = 7, 245 ± 98×106), MSC (n = 8, 56 ± 17×106), or phosphate buffered saline (PBS; n = 7) were injected intramyocardially. Cardiac function and myocardial perfusion were analyzed by echocardiography and gated single-photon emission computed tomography/computed tomography (SPECT/CT) at 1 week before AMI and 2 and 10 weeks after AMI. Cell engraftment, proliferation, vascular density, and cardiac fibrosis were evaluated by histology analysis. In all groups, the echocardiography revealed no significant change in the left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), or left ventricular end-diastolic volume (LVEDV) at 10 weeks after AMI compared with those at 2 weeks after AMI. However, the wall motion score index (WMSI) and left ventricular systolic wall thickening (WT%) were significantly improved at 10 weeks compared with those at 2 weeks after AMI in the MSC group (WMSI 1.55 ± 0.06 vs. 1.87 ± 0.10, WT 33.4 ± 2.3% vs.24.8 ± 2.7%,p < 0.05) but not in the BMMNC group. In addition, myocardial perfusion quantified by SPECT/CT was improved in both the MSC and BMMNC groups, whereas the MSC group showed a superior improvement in vascular density and collagen volume fraction (p < 0.05). Conclusion: This preclinically relevant study suggests that when delivered by percutaneous (transcatheter) intramyocardial injection, MSC might be more effective than BMMNC to improve ischemia and reperfusion after AMI. PMID:25553108

  9. The Effect of Bone Marrow Mononuclear Cells on Lung Regeneration and Apoptosis in a Simple Model of Pulmonary Emphysema

    PubMed Central

    El-Badrawy, Mohammad K.; Shalabi, Nesrien M.; Mohamed, Mie A.; Ragab, Amany; Abdelwahab, Heba Wagih; Anber, Nahla; Sobh, Mohamed A.; Khater, Yomna; Abdel Hamid, Aziza A.

    2016-01-01

    Background In severe chronic stages of emphysema the only treatment is lung transplantation. SO, an urgent need exists for the development of effective treatments. Stem cells therapy arises as a new therapeutic approach. Aim of the Work To investigate whether bone marrow mononuclar cells (BMMNCs) can promote lung regeneration and decrease apoptosis in lipopolysaccharide (LPS) induced pulmonary emphysema in C57Bl/6 mice. Material and Methods 14 weeks old female mice (C57Bl/6), weighing around 25 g were used in this study. The mice were divided into 4 groups (10 in each group): group A: mice received no treatment, group B: mice received intranasal instillation of LPS with no further treatment, group C: mice received intranasal instillation of LPS then given a dose of BMMNCs and evaluated 21 days later and group D: the mice that received intranasal instillation of LPS then given a dose of Dulbecco’s Modified Eagle’s Medium (DMEM) and evaluated 21 days later. Imaging analysis was done using imagej program. To measure apoptotic index, Anti–caspase 3 polyclonal antibody staining was done. Results Analysis of the mean of airspace equivalent diameters (D0) and its statistical distribution (D1) for the different groups allowed to observe that group treated with BMMNCs (group C) showed the significant improvement in D0 and D1 than the group received LPS only (group B). Analysis of apoptotic index showed significant difference between BMMNCs treated group (group C) and that received LPS only (group B). Conclusions BMMNCs effectively promote lung regeneration and reduction of apoptosis in pulmonary emphysema. PMID:27426096

  10. The effect of autologous bone marrow mononuclear cell transplantation on the survival duration in Amyotrophic Lateral Sclerosis - a retrospective controlled study

    PubMed Central

    Sharma, Alok K; Sane, Hemangi M; Paranjape, Amruta A; Gokulchandran, Nandini; Nagrajan, Anjana; D’sa, Myola; Badhe, Prerna B

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disorder with fatal prognosis. Cellular therapy has been studied for ALS in various animal models and these advances have highlighted its potential to be a treatment modality. This is a retrospective controlled cohort study of total 57 patients. Out of these, 37 patients underwent autologous bone marrow mononuclear cell transplantation in addition to standard rehabilitation and Riluzole. Control group consisted of 20 patients who did not receive cell transplantation. The survival duration since the onset of the disease for both the groups was computed using a Kaplan-Meier Survival analysis and compared using log-rank test. Effect of age at onset, type of onset and lithium on survival duration in the intervention group was analyzed. Mean survival duration of patients in intervention group was 87.76 months which was higher than the control group mean survival duration of 57.38 months. Survival duration was significantly (p = 0.039) higher in people with the onset of the disease below 50 years of age. Limb onset and lithium also showed positive influence on the survival duration. Mean survival duration of the intervention group was also higher than the survival duration of ALS patients in previous epidemiological studies. In addition to the standard treatment with Riluzole, early intervention with combination of BMMNCs transplantation and Lithium may have a positive effect on the survival duration in ALS. Prospective randomized controlled studies with a larger sample size and rigorous methodology are required for conclusive findings. PMID:25973331

  11. Effects of Lycium barbarum Polysaccharides on Apoptosis, Cellular Adhesion, and Oxidative Damage in Bone Marrow Mononuclear Cells of Mice Exposed to Ionizing Radiation Injury

    PubMed Central

    Zhou, Jing; Pang, Hua; Li, Wenbo; Liu, Qiong; Xu, Lu; Liu, Qian; Liu, Ying

    2016-01-01

    Lycium barbarum has been used for more than 2500 years as a traditional herb and food in China. We investigated the effects of Lycium barbarum polysaccharides (LBP) on apoptosis, oxidative damage, and expression of adhesion molecules in bone marrow mononuclear cells (BMNC) of mice injured by ionizing radiation. Kunming mice were exposed to X-rays; then mice in the LBP groups were continuously injected with various concentrations of LBP intraperitoneally for 14 days. Mice in the control group were continuously injected with normal saline (NS) by the same route for 14 days. A normal group was set up. After 1, 7, and 14 days of treatment, mice were killed and BMNC were extracted. Cell cycle, apoptosis, and the expression of adhesion molecules CD44 and CD49d were detected by flow cytometry. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were identified by colorimetric analyses. LBP significantly decreased the percentage of G0/G1 phase, apoptosis, MDA level, and expression of CD44 and CD49d and distinctly increased the activity of SOD. LBP showed a protective effect on BMNC against ionizing radiation-induced apoptosis and oxidative damage and altered the expression of adhesion molecule. PMID:27314019

  12. Long-Term Spinal Ventral Root Reimplantation, but not Bone Marrow Mononuclear Cell Treatment, Positively Influences Ultrastructural Synapse Recovery and Motor Axonal Regrowth

    PubMed Central

    Barbizan, Roberta; Castro, Mateus V.; Ferreira Jr., Rui Seabra; Barraviera, Benedito; Oliveira, Alexandre L. R.

    2014-01-01

    We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and “g” ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion. PMID:25353176

  13. Six-month angiographic study of immediate autologous bone marrow mononuclear cell implantation on acute anterior wall myocardial infarction using a mini-pig model.

    PubMed

    Sheu, Jiunn-Jye; Yuen, Chun-Man; Sun, Cheuk-Kwan; Chang, Li-Teh; Yen, Chia-Hung; Chiang, Chiang-Hua; Ko, Sheung-Fat; Pei, Sung-Nan; Chua, Sarah; Bhasin, Anuj; Wu, Chiung-Jen; Yip, Hon-Kan

    2009-03-01

    This study investigated six-month angiographic results of autologous bone marrow mononuclear cell (BMMNC) transplantation immediately following acute myocardial infarction (AMI) in a mini-pig model.AMI was induced by left anterior descending artery ligation. Twenty-four mini-pigs were equally divided into group 1 [AMI plus saline injection in infarcted area (IA)], group 2 (AMI plus BMMNC transplantation into non-IA), group 3 (AMI plus BMMNC implantation into IA), and group 4 (sham control). One-week cultured BMMNCs (3.0 x 10(7)) were immediately transplanted following AMI induction. Angiographic studies over 6 months demonstrated that mitral regurgitation (MR) was lower in groups 3 and 4 than in groups 1 and 2 (all P < 0.01). Wall motion scores and left ventricular ejection fraction (LVEF) were higher in groups 3 and 4 than in groups 1 and 2 (all P < 0.05). Collateral circulation was higher in group 3 than in groups 1 and 2 ( P < 0.01). The wall thickness of the IA was higher, whereas the heart weight was lower in group 3 than in groups 1 and 2 (all P < 0.01).Immediate autologous BMMNC transplantation into IA is superior to saline-treated only or BMMNC transplantation into non-IA following AMI for reducing MR and improving LVEF. PMID:19367032

  14. Cell Size Critically Determines Initial Retention of Bone Marrow Mononuclear Cells in the Heart after Intracoronary Injection: Evidence from a Rat Model

    PubMed Central

    Campbell, Niall G.; Kaneko, Masahiro; Shintani, Yasunori; Narita, Takuya; Sawhney, Vinit; Coppen, Steven R.; Yashiro, Kenta; Mathur, Anthony; Suzuki, Ken

    2016-01-01

    Intracoronary injection of bone marrow mononuclear cells (BMMNC) is an emerging treatment for heart failure. Initial donor cell retention in the heart is the key to the success of this approach, but this process remains insufficiently characterized. Although it is assumed that cell size of injected cells may influence their initial retention, no scientific evidence has been reported. We developed a unique model utilizing an ex-vivo rat heart perfusion system, enabling quantitative assessment of retention of donor cells after intracoronary injection. The initial (5 minutes after intracoronary injection) retention rate of BMMNC was as low as approximately 20% irrespective of donor cell doses injected (1×106, 8×106, 4×107). Quantitative cell-size assessment revealed a positive relationship between the size of BMMNC and retention ratio; larger subpopulations of BMMNC were more preferentially retained compared to smaller ones. Furthermore, a larger cell type—bone marrow-derived mesenchymal stromal cells (median size = 11.5μm versus 7.0μm for BMMNC)—had a markedly increased retention rate (77.5±1.8%). A positive relationship between the cell size and retention ratio was also seen in mesenchymal stromal cells. Flow-cytometric studies showed expression of cell-surface proteins, including integrins and selectin-ligands, was unchanged between pre-injection BMMNC and those exited from the heart, suggesting that biochemical interaction between donor cells and host coronary endothelium is not critical for BMMNC retention. Histological analyses showed that retained BMMNC and mesenchymal stromal cells were entrapped in the coronary vasculature and did not extravasate by 60 minutes after transplantation. Whilst BMMNC did not change coronary flow after intracoronary injection, mesenchymal stromal cells reduced it, suggesting coronary embolism, which was supported by the histological finding of intravascular cell-clump formation. These data indicate that cell

  15. Cell Size Critically Determines Initial Retention of Bone Marrow Mononuclear Cells in the Heart after Intracoronary Injection: Evidence from a Rat Model.

    PubMed

    Campbell, Niall G; Kaneko, Masahiro; Shintani, Yasunori; Narita, Takuya; Sawhney, Vinit; Coppen, Steven R; Yashiro, Kenta; Mathur, Anthony; Suzuki, Ken

    2016-01-01

    Intracoronary injection of bone marrow mononuclear cells (BMMNC) is an emerging treatment for heart failure. Initial donor cell retention in the heart is the key to the success of this approach, but this process remains insufficiently characterized. Although it is assumed that cell size of injected cells may influence their initial retention, no scientific evidence has been reported. We developed a unique model utilizing an ex-vivo rat heart perfusion system, enabling quantitative assessment of retention of donor cells after intracoronary injection. The initial (5 minutes after intracoronary injection) retention rate of BMMNC was as low as approximately 20% irrespective of donor cell doses injected (1×106, 8×106, 4×107). Quantitative cell-size assessment revealed a positive relationship between the size of BMMNC and retention ratio; larger subpopulations of BMMNC were more preferentially retained compared to smaller ones. Furthermore, a larger cell type-bone marrow-derived mesenchymal stromal cells (median size = 11.5μm versus 7.0μm for BMMNC)-had a markedly increased retention rate (77.5±1.8%). A positive relationship between the cell size and retention ratio was also seen in mesenchymal stromal cells. Flow-cytometric studies showed expression of cell-surface proteins, including integrins and selectin-ligands, was unchanged between pre-injection BMMNC and those exited from the heart, suggesting that biochemical interaction between donor cells and host coronary endothelium is not critical for BMMNC retention. Histological analyses showed that retained BMMNC and mesenchymal stromal cells were entrapped in the coronary vasculature and did not extravasate by 60 minutes after transplantation. Whilst BMMNC did not change coronary flow after intracoronary injection, mesenchymal stromal cells reduced it, suggesting coronary embolism, which was supported by the histological finding of intravascular cell-clump formation. These data indicate that cell-size dependent

  16. Bone marrow fat.

    PubMed

    Hardouin, Pierre; Pansini, Vittorio; Cortet, Bernard

    2014-07-01

    Bone marrow fat (BMF) results from an accumulation of fat cells within the bone marrow. Fat is not a simple filling tissue but is now considered as an actor within bone microenvironment. BMF is not comparable to other fat depots, as in subcutaneous or visceral tissues. Recent studies on bone marrow adipocytes have shown that they do not appear only as storage cells, but also as cells secreting adipokines, like leptin and adiponectin. Moreover bone marrow adipocytes share the same precursor with osteoblasts, the mesenchymal stem cell. It is now well established that high BMF is associated with weak bone mass in osteoporosis, especially during aging and anorexia nervosa. But numerous questions remain discussed: what is the precise phenotype of bone marrow adipocytes? What is the real function of BMF, and how does bone marrow adipocyte act on its environment? Is the increase of BMF during osteoporosis responsible for bone loss? Is BMF involved in other diseases? How to measure BMF in humans? A better understanding of BMF could allow to obtain new diagnostic tools for osteoporosis management, and could open major therapeutic perspectives. PMID:24703396

  17. Bone Marrow Mononuclear Cell Transplantation Promotes Therapeutic Angiogenesis via Upregulation of the VEGF-VEGFR2 Signaling Pathway in a Rat Model of Vascular Dementia

    PubMed Central

    Wang, Jianping; Fu, Xiaojie; Jiang, Chao; Yu, Lie; Wang, Menghan; Han, Wei; Liu, Liu; Wang, Jian

    2014-01-01

    Bone marrow mononuclear cells (BMMNCs) are important for angiogenesis after stroke. We investigated the effects of BMMNCs on cognitive function, angiogenesis, and the vascular endothelial growth factor (VEGF)-VEGF receptor 2 (VEGFR2) signaling pathway in a rat model of vascular dementia. We transplanted BMMNCs into rats that had undergone permanent bilateral occlusion of the common carotid arteries (2VO) and observed their migration in vivo. On day 28, we assessed cognitive function with the Morris Water Maze test and examined vascular density and white matter damage within the corpus striatum by staining with fluorescein lycopersicon esculentum (tomato) lectin or Luxol fast blue. We evaluated expression of VEGF, rapidly accelerated fibrosarcoma 1 (Raf1), and extracellular-signal-regulated kinases 1 and 2 (ERK1/2) in the ischemic hemisphere by Western blot analysis on day 7 after cell transplantation. Contribution of the VEGF-VEGFR2 signaling pathway was confirmed by using VEGFR2 inhibitor SU5416. BMMNCs penetrated the blood-brain barrier and reached the ischemic cortex and white matter or incorporated into vascular walls of 2VO rats. BMMNC-treated 2VO rats had better learning and memory, higher vascular density, and less white matter damage than did vehicle-treated rats. The beneficial effects of BMMNCs were abolished by pretreatment of rats with SU5416. Protein expression of VEGF and phosphorylated Raf1 and ERK1/2 was also significantly increased by BMMNC treatment, but this upregulation was reversed by SU5416. BMMNCs can enhance angiogenesis, reduce white matter damage, and promote cognitive recovery in 2VO rats. The angiogenic effect may result from upregulation of the VEGF-VEGFR2 signaling pathway. PMID:24589546

  18. A clinical study shows safety and efficacy of autologous bone marrow mononuclear cell therapy to improve quality of life in muscular dystrophy patients.

    PubMed

    Sharma, Alok; Sane, Hemangi; Badhe, Prerna; Gokulchandran, Nandini; Kulkarni, Pooja; Lohiya, Mamta; Biju, Hema; Jacob, V C

    2013-01-01

    Muscular dystrophy is a genetic disorder with no definite cure. A study was carried out on 150 patients diagnosed with muscular dystrophy. These included Duchenne muscular dystrophy, limb-girdle muscular dystrophy, and Becker muscular dystrophy variants. They were administered autologous bone marrow-derived mononuclear cells intrathecally and intramuscularly at the motor points of the antigravity weak muscles followed by vigorous rehabilitation therapy. No significant adverse events were noted. Assessment after transplantation showed neurological improvements in trunk muscle strength, limb strength on manual muscle testing, gait improvements, and a favorable shift on assessment scales such as the Functional Independence Measure and the Brooke and Vignos Scales. Furthermore, imaging and electrophysiological studies also showed significant changes in selective cases. On a mean follow-up of 12 ± 1 months, overall 86.67% cases showed symptomatic and functional improvements, with six patients showing changes with respect to muscle regeneration and a decrease in fatty infiltration on musculoskeletal magnetic resonance imaging and nine showing improved muscle electrical activity on electromyography. Fifty-three percent of the cases showed an increase in trunk muscle strength, 48% showed an increase in upper limb strength, 59% showed an increase in lower limb strength, and approximately 10% showed improved gait. These data were statistically analyzed using Student's paired t test and found to be significant. The results show that this treatment is safe and efficacious and also improves the quality of life of patients having muscular dystrophy. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation. PMID:24070109

  19. Evaluation of the survival of bone marrow-derived mononuclear cells and the growth factors produced upon intramedullary transplantation in rat models of acute spinal cord injury.

    PubMed

    Arai, Kiyotaka; Harada, Yasuji; Tomiyama, Hiroyuki; Michishita, Masaki; Kanno, Nobuo; Yogo, Takuya; Suzuki, Yoshihisa; Hara, Yasushi

    2016-08-01

    Intramedullary bone marrow-derived mononuclear cell (BM-MNC) transplantation has demonstrated neuroprotective effects in the chronic stage of spinal cord injury (SCI). However, no previous study has evaluated its effects in the acute stage, even though cell death occurs mainly within 1week after injury in all neuronal cells. Moreover, the mechanism underlying these effects remains unclear. We aimed to investigate the survival of intramedullary transplanted allogeneic BM-MNCs and the production of growth factors after transplantation to clarify the therapeutic potential of intramedullary transplanted BM-MNCs and their protective effects in acute SCI. Sprague-Dawley rats were subjected to traumatic SCI and received intramedullary transplantation of EGFP(+)BM-MNCs (n=6), BM-MNCs (n=10), or solvent (n=10) immediately after injury. To evaluate the transplanted BM-MNCs and their therapeutic effects, immunohistochemical evaluations were performed at 3 and 7days post-injury (DPI). BM-MNCs were observed at the injected site at both 3 (683±83 cells/mm(2)) and 7 DPI (395±64 cells/mm(2)). The expression of hepatocyte growth factor was observed in approximately 20% transplanted BM-MNCs. Some BM-MNCs also expressed monocyte chemotactic protein-1 or vascular endothelial growth factor. The demyelinated area and number of cleaved caspase-3-positive cells were significantly smaller in the BM-MNC-transplanted group at 3 DPI. Hindlimb locomotor function was significantly improved in the BM-MNC-transplanted group at 7 DPI. These results suggest that intramedullary transplantation of BM-MNCs is an efficient method for introducing a large number of growth factor-producing cells that can induce neuroprotective effects in the acute stage of SCI. PMID:27473980

  20. Clonal analysis of multipotent stromal cells derived from CD271+ bone marrow mononuclear cells: functional heterogeneity and different mechanisms of allosuppression

    PubMed Central

    Kuçi, Zyrafete; Seiberth, Julia; Latifi-Pupovci, Hatixhe; Wehner, Sibylle; Stein, Stefan; Grez, Manuel; Bönig, Halvard; Köhl, Ulrike; Klingebiel, Thomas; Bader, Peter; Kuçi, Selim

    2013-01-01

    Previous reports demonstrated a relationship between proliferation potential and trilineage differentiation in mesenchymal stromal cell-derived clones generated using plastic adherence (PA-MSCs). However, there are no reports presenting a clonal analysis of the proliferative potential, differentiation potential and allosuppressive effects of human mesenchymal stromal cell subsets. In this study, we performed a clonal analysis of mesenchymal stromal cells generated from human CD271+ bone marrow mononuclear cells (CD271-MSCs). After transfection with the gene encoding green fluorescent protein, the cells were single-cell sorted and cultured for 2–4 weeks. A population doubling analysis demonstrated that 25% of CD271-MSC clones are fast-proliferating clones compared to only 10% of PA-MSC clones. Evaluation of the allosuppressive potential demonstrated that 81.8% of CD271-MSC clones were highly allosuppressive compared to only 58% of PA-MSC clones. However, no consistent correlation was observed between allosuppression and proliferative potential. Prostaglandin E2 levels were positively correlated with the allosuppressive activity of individual clones, suggesting that this molecule may be a useful predictive biomarker for the allosuppressive potential of mesenchymal stromal cells. In contrast, inhibitory studies of indoleamine 2,3 dioxygenase indicated that none of the clones used this enzyme to mediate their allosuppressive effect. Differentiation studies revealed the presence of tripotent, bipotent and unipotent CD271-MSC and PA-MSC clones which suppressed the allogeneic reaction to differing extents in vitro. In conclusion, our findings demonstrate differences between CD271-MSCs and PA-MSCs and indicate that neither proliferation potential nor differentiation potential represents a consistent predictive parameter for the immunomodulatory effects of either type of mesenchymal stromal cells. PMID:23975178

  1. c-kit+AT2R+ Bone Marrow Mononuclear Cell Subset Is a Superior Subset for Cardiac Protection after Myocardial Infarction

    PubMed Central

    Du, Mingjun; Zhang, Wentian; Wang, Chenxi; Lian, Feng; Xue, Song

    2016-01-01

    Although the bone marrow mononuclear cell (BMMNC) is known as an ideal cell type for cell-based therapy for MI treatment, the effective subpopulation still remains unknown. Our study aimed at identifying the optimal subset of BMMNCs suited for cardiac regeneration. In this study, we observed that MI led to (i) a significant increase of the c-kit+AT2R+ BMMNC subpopulation in mice and (ii) a modest increase of AT2R+ BMMNCs in humans. c-kit+AT2R+ and c-kit+AT2R− BMMNC subpopulations were obtained from mice after MI. Then, we cocultured cardiac H9C2 cells with c-kit+AT2R+, c-kit+AT2R−, and unfractionated BMMNCs; finally, we found that the c-kit+AT2R+ subset is superior to the c-kit+AT2R− subset in improving cardiomyocyte protection in vitro. Of note, c-kit+AT2R+ BMMNCs showed a more robust migration capacity than c-kit+AT2R− and unfractionated BMMNCs in vitro and in vivo. Additionally, compared to c-kit+AT2R− and unfractionated BMMNCs, intravenous transplantation of c-kit+AT2R+ BMMNC resulted in smaller infarct size and lower levels of inflammatory reactions in heart tissue, leading to a higher global heart function improvement. In conclusion, our results indicate that the c-kit+AT2R+ BMMNC subpopulation exerts a protective effect against MI and shows promising therapeutic possibilities with regard to the treatment of ischemic heart disease. PMID:27429622

  2. Bone marrow mononuclear cell transplantation promotes therapeutic angiogenesis via upregulation of the VEGF-VEGFR2 signaling pathway in a rat model of vascular dementia.

    PubMed

    Wang, Jianping; Fu, Xiaojie; Jiang, Chao; Yu, Lie; Wang, Menghan; Han, Wei; Liu, Liu; Wang, Jian

    2014-05-15

    Bone marrow mononuclear cells (BMMNCs) are important for angiogenesis after stroke. We investigated the effects of BMMNCs on cognitive function, angiogenesis, and the vascular endothelial growth factor (VEGF)-VEGF receptor 2 (VEGFR2) signaling pathway in a rat model of vascular dementia. We transplanted BMMNCs into rats that had undergone permanent bilateral occlusion of the common carotid arteries (2VO) and observed their migration in vivo. On day 28, we assessed cognitive function with the Morris Water Maze test and examined vascular density and white matter damage within the corpus striatum by staining with fluorescein lycopersicon esculentum (tomato) lectin or Luxol fast blue. We evaluated expression of VEGF, rapidly accelerated fibrosarcoma 1 (Raf1), and extracellular-signal-regulated kinases 1 and 2 (ERK1/2) in the ischemic hemisphere by Western blot analysis on day 7 after cell transplantation. Contribution of the VEGF-VEGFR2 signaling pathway was confirmed by using VEGFR2 inhibitor SU5416. BMMNCs penetrated the blood-brain barrier and reached the ischemic cortex and white matter or incorporated into vascular walls of 2VO rats. BMMNC-treated 2VO rats had better learning and memory, higher vascular density, and less white matter damage than did vehicle-treated rats. The beneficial effects of BMMNCs were abolished by pretreatment of rats with SU5416. Protein expression of VEGF and phosphorylated Raf1 and ERK1/2 was also significantly increased by BMMNC treatment, but this upregulation was reversed by SU5416. BMMNCs can enhance angiogenesis, reduce white matter damage, and promote cognitive recovery in 2VO rats. The angiogenic effect may result from upregulation of the VEGF-VEGFR2 signaling pathway. PMID:24589546

  3. Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model

    PubMed Central

    2013-01-01

    Introduction The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. Methods A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO2), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. Results Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1β and TNF-α in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. Conclusions We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic

  4. Bone marrow culture

    MedlinePlus

    ... 2015 Updated by: Yi-Bin Chen, MD, Leukemia/Bone Marrow Transplant Program, Massachusetts General Hospital, Boston, MA. Also reviewed ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  5. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... Help a Friend Who Cuts? Aspiration and Biopsy: Bone Marrow KidsHealth > For Teens > Aspiration and Biopsy: Bone Marrow Print A A A Text Size What's in ... Risks If You Have Questions What It Is Bone marrow aspirations and biopsies are performed to examine bone ...

  6. Bone marrow aspiration

    PubMed Central

    Bain, B

    2001-01-01

    Bone marrow aspiration biopsies are carried out principally to permit cytological assessment but also for immunophenotypic, cytogenetic, molecular genetic, and other specialised investigations. Often, a trephine biopsy is carried out as part of the same procedure. Bone marrow aspirations should be carried out by trained individuals who are aware of the indications, contraindications, and hazards of the procedure. They should follow a standard operating procedure. The operator should have made an adequate assessment of clinical and haematological features to ensure both that appropriate indications exist and that all relevant tests are performed. For the patient's comfort and safety, the posterior iliac crest is generally the preferred site of aspiration. Films of aspirated marrow and, when appropriate, films of crushed particles should be made and labelled. Once thoroughly dry, films should be fixed and stained. As a minimum, a Romanowsky stain and a Perls' stain are required. A cover slip should be applied. The bone marrow films should be assessed and reported in a systematic manner so that nothing of importance is overlooked, using a low power, then intermediate, then high power objective. A differential count should be performed. An interpretation of the findings, in the light of the clinical and haematological features, should be given. The report should be signed or computer authorised, using a secure password, and issued in a timely manner. Key Words: bone marrow aspirate • haematological diagnosis PMID:11533068

  7. Bone Marrow Aspiration and Biopsy

    MedlinePlus

    ... the bone marrow and capability for blood cell production, including red blood cells (RBCs), white blood cells ( ... can affect the bone marrow and blood cell production. A specialist who has expertise in the diagnosis ...

  8. Bone-marrow transplant - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100112.htm Bone-marrow transplant - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Bone-marrow is a soft, fatty tissue found inside of ...

  9. Intracoronary infusion of autologous mononuclear cells from bone marrow or G-CSF mobilised apheresis product may not improve remodelling, contractile function, perfusion or infarct size in a swine model of large myocardial infarction

    PubMed Central

    de Silva, Ranil; Raval, Amish N.; Hadi, Mohiuddin; Gildea, Karena M.; Bonifacino, Aylin C.; Yu, Zu-Xi; Yau, Yu Ying; Leitman, Susan F.; Bacharach, Stephen L.; Donahue, Robert E.; Read, Elizabeth J.; Lederman, Robert J.

    2008-01-01

    Background In a blinded, placebo controlled study, we investigated whether intracoronary infusion of autologous mononuclear cells from G-CSF mobilised apheresis product or bone marrow (BM) improved sensitive outcome measures in a swine model of large MI. Methods and Results Four days after LAD occlusion and reperfusion, cells from BM or apheresis product of saline (Placebo) or G-CSF injected animals were infused into the LAD. Large infarcts were created: baseline ejection fraction (EF) by MRI of 35.3 ± 8.5%, no difference between the Placebo, G-CSF and BM groups (p=0.16 by ANOVA). At 6 weeks EF fell to a similar degree in the Placebo, G-CSF and BM groups (−7.9±6.0%, −8.5±8.8% and −10.9±7.6%, p=0.78 by ANOVA). Left ventricular volumes and infarct size by MRI deteriorated similarly in all 3 groups. Quantitative PET demonstrated significant decline in FDG uptake rate in the LAD territory at follow-up, with no histological, angiographic or PET perfusion evidence of functional neovascularisation. Immunofluorescence failed to demonstrate transdifferentiation of infused cells. Conclusion Intracoronary infusion of mononuclear cells from either bone marrow or G-CSF mobilised apheresis product may not improve or limit deterioration in systolic function, adverse ventricular remodelling, infarct size or perfusion in a swine model of large MI. PMID:18502738

  10. Marrow-tumor interactions: the role of the bone marrow in controlling chemically induced tumors

    SciTech Connect

    Rosse, C

    1980-01-01

    This report summarizes work done to evaluate the role of the bone marrow in tumor growth regulation. Work done with the MCA tumor showed that several subclasses of mononuclear bone marrow cells (e.g. natural regulatory cell, NRC) play a major role in the regulation of tumor growth. Experiments with the spontaneous CE mammary carcinoma system illustrate that a rapid growth of certain neoplasms may be due to the fact that through some as yet undefined mechanism the tumor eliminates mononuclear cells in the bone marrow of the host and stops their production. (KRM)

  11. Effect of the Use and Timing of Bone Marrow Mononuclear Cell Delivery on Left Ventricular Function After Acute Myocardial Infarction: The TIME Randomized Trial

    PubMed Central

    Traverse, Jay H.; Henry, Timothy D.; Pepine, Carl J.; Willerson, James T.; Zhao, David X.M.; Ellis, Stephen G.; Forder, John R.; Anderson, R. David; Hatzopoulos, Antonis K.; Penn, Marc S.; Perin, Emerson C.; Chambers, Jeffrey; Baran, Kenneth W.; Raveendran, Ganesh; Lambert, Charles; Lerman, Amir; Simon, Daniel I.; Vaughan, Douglas E.; Lai, Dejian; Gee, Adrian P.; Taylor, Doris A.; Cogle, Christopher R.; Thomas, James D.; Olson, Rachel E.; Bowman, Sherry; Francescon, Judy; Geither, Carrie; Handberg, Eileen; Kappenman, Casey; Westbrook, Lynette; Piller, Linda B.; Simpson, Lara M.; Baraniuk, Sarah; Loghin, Catalin; Aguilar, David; Richman, Sara; Zierold, Claudia; Spoon, Daniel B.; Bettencourt, Judy; Sayre, Shelly L.; Vojvodic, Rachel W.; Skarlatos, Sonia I.; Gordon, David J.; Ebert, Ray F.; Kwak, Minjung; Moyé, Lemuel A.; Simari, Robert D.

    2013-01-01

    Context While the delivery of cell therapy following ST segment myocardial infarction (STEMI) has been evaluated in previous clinical trials, the influence of the timing of cell delivery on the effect on left ventricular (LV) function has not been analyzed in a trial that randomly designated the time of delivery. Objective To determine 1) the effect of intracoronary autologous bone marrow mononuclear cell (BMC) delivery following STEMI on recovery of global and regional LV function and 2) if timing of BMC delivery (3 versus 7 days following reperfusion) influences this effect. Design, Setting, and Patients Between July 17, 2008 and November 15, 2011, 120 patients were enrolled in a randomized, 2×2 factorial, double-blind, placebo-controlled trial of the National Heart, Lung, and Blood Institute (NHLBI)-sponsored Cardiovascular Cell Therapy Research Network (CCTRN) of patients with LV dysfunction (LV Ejection Fraction (LVEF) ≤45%) following successful primary percutaneous coronary intervention (PCI) of anterior STEMI. Interventions Intracoronary infusion of 150 × 106 BMCs or placebo (randomized 2:1 BMC:placebo) within 12 hours of aspiration and processing administered at Day 3 or Day 7 (randomized 1:1) post-PCI. Main Outcome Measures Co-primary endpoints were: 1) Change in global (LVEF) and regional (wall motion) LV function in infarct and border zones at 6 months measured by cardiac magnetic resonance imaging and 2) Change in LV function as affected by timing of treatment on Day 3 versus Day 7. Secondary endpoints included major adverse cardiovascular events as well as changes in LV volumes and infarct size. Results Patient mean age was 56.9±10.9 years with 87.5% male. At 6 months, LVEF increased similarly in both BMC (45.2±10.6 to 48.3±13.3 %) and placebo groups (44.5±10.8 to 47.8±13.6 %). No detectable treatment effect on regional LV function was observed in either infarct or border zones. Differences between therapy groups in the change in global LV

  12. Starvation marrow - gelatinous transformation of bone marrow.

    PubMed

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  13. Bone marrow trephine biopsy

    PubMed Central

    Bain, B

    2001-01-01

    Trephine biopsies of the bone marrow should be carried out, when clinically indicated, by trained individuals following a standard operating procedure. A bone marrow aspiration should be performed as part of the same procedure. For patient safety and convenience, biopsies are usually performed on the posterior iliac crest. The biopsy specimen should measure at least 1.6 cm and, if it does not, consideration should be given to repeating the procedure, possibly on the contralateral iliac crest. If bone marrow aspiration is found to be impossible, imprints from the biopsy specimen should be obtained. Otherwise, the specimen is placed immediately into fixative and after fixation is embedded in a resin or, more usually, decalcified and embedded in paraffin wax. Thin sections are cut and are stained, as a minimum, with haematoxylin and eosin and with a reticulin stain. A Giemsa stain is also desirable. A Perls' stain does not often give useful information and is not essential in every patient. The need for other histochemical or immunohistochemical stains is determined by the clinical circumstances and the preliminary findings. Trephine biopsy sections should be examined and reported in a systematic manner, assessment being made of the bones, the vessels and stroma, and the haemopoietic and any lymphoid or other tissue. Assessment should begin with a very low power objective, the entire section being examined. Further examination is then done with an intermediate and high power objective. Ideally, reporting of trephine biopsy sections should be done by an individual who is competent in both histopathology and haematology, and who is able to make an appropriate assessment of both the bone marrow aspirate and the trephine biopsy sections. When this is not possible, there should be close consultation between a haematologist and a histopathologist. The report should both describe the histological findings and give an interpretation of their importance. A signed or computer

  14. Detection of the Epstein-Barr virus in blood and bone marrow mononuclear cells of patients with aggressive B-cell non-Hodgkin’s lymphoma is not associated with prognosis

    PubMed Central

    MARQUES, HERLANDER; CATARINO, RAQUEL; DOMINGUES, NELSON; BARROS, ELIANE; PORTELA, CATARINA; ALMEIDA, MARIA INÊS; COSTA, SANDRA; REIS, RUI MANUEL; MEDEIROS, RUI; LONGATTO-FILHO, ADHEMAR

    2012-01-01

    The Epstein-Barr virus (EBV) is associated with a large spectrum of lymphoproliferative diseases. Traditional methods of EBV detection include the immunohistochemical identification of viral proteins and DNA probes to the viral genome in tumoral tissue. The present study explored the detection of the EBV genome, using the BALF5 gene, in the bone marrow or blood mononuclear cells of patients with diffuse large B-cell lymphomas (DLBCL) and related its presence to the clinical variables and risk factors. The results show that EBV detection in 21.5% of patients is not associated with age, gender, staging, B symptoms, international prognostic index scores or any analytical parameters, including lactate dehydrogenase (LDH) or β-2 microglobulin (B2M). The majority of patients were treated with R-CHOP-like (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone or an equivalent combination) and some with CHOP-like chemotherapy. Response rates [complete response (CR) + partial response (PR)] were not significantly different between EBV-negative and -positive cases, with 93.2 and 88.9%, respectively. The survival rate was also similar in the two groups, with 5-year overall survival (OS) rates of 64.3 and 76.7%, respectively. However, when analyzing the treatment groups separately there was a trend in EBV-positive patients for a worse prognosis in patients treated with CHOP-like regimens that was not identified in patients treated with R-CHOP-like regimens. We conclude that EBV detection in the bone marrow and blood mononuclear cells of DLBC patients has the same frequency of EBV detection on tumoral lymphoma tissue but is not associated with the risk factors, response rate and survival in patients treated mainly with immunochemotherapy plus rituximab. These results also suggest that the addition of rituximab to chemotherapy improves the prognosis associated with EBV detection in DLBCL. PMID:23226803

  15. Bone Marrow Derived Eosinophil Cultures

    PubMed Central

    Lu, Thomas X.; Rothenberg, Marc E.

    2016-01-01

    Eosinophils are multifunctional effector cells implicated in the pathogenesis of a variety of diseases including asthma, eosinophil gastrointestinal disorders and helminth infection. Mouse bone marrow derived progenitor cells can be differentiated into eosinophils following IL-5 exposure. These bone marrow derived eosinophils are fully differentiated at the end of a 14 day culture based on morphology and expression of molecular markers.

  16. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... A Recipes En Español Teachers - Looking for Health Lessons? Visit KidsHealth in the Classroom What Other Parents ... bone marrow sample for procedures (such as a stem cell transplant ) or other testing (such as chromosomal ...

  17. Orchiectomy increases bone marrow interleukin-6 levels in mice.

    PubMed

    Zhang, J; Pugh, T D; Stebler, B; Ershler, W B; Keller, E T

    1998-03-01

    Interleukin-6 (IL-6) appears to be an important factor in disease states associated with bone resorption. There is both in vitro and in vivo evidence supporting the fact that androgens down-regulate interleukin-6 production. These observations, in combination with the fact that osteoblasts and bone marrow stromal cells produce IL-6, led us to hypothesize that orchiectomy-induced androgen loss will result in increased IL-6 expression in the bone microenvironment. To prove our hypothesis we assessed the effect of orchiectomy on IL-6 protein and mRNA expression in bone marrow and spleen. We found that orchiectomy was associated with increased serum IL-6 levels at 3 and 28 days postsurgery. Phorbol ester-stimulated IL-6 levels were also higher in supernatants from bone marrow and spleen cell cultures from orchiectomized mice compared with unoperated or sham-operated mice. Additionally, we found that steady state IL-6 mRNA levels were increased in bone marrow but not spleen cells. Finally, we found that orchiectomized mice had splenomegaly and increased bone marrow cellularity. Histopathology of the spleen revealed lymphoid hyperplasia accompanied by a marked mononuclear cell infiltration of the red pulp. We conclude that orchiectomy induces IL-6 expression in the bone marrow. These findings suggest that endocrine and cytokine interactions contribute to bone pathophysiology. PMID:9501955

  18. [Inherited bone marrow failure syndromes].

    PubMed

    Okuno, Yusuke

    2016-02-01

    Inherited bone marrow failure syndromes comprise a series of disorders caused by various gene mutations. Genetic tests were formerly difficult to perform because of the large size and number of causative genes. However, recent advances in next-generation sequencing has enabled simultaneous testing of all causative genes to be performed at an acceptable cost. We collaboratively conducted a series of whole-exome sequencing studies of patients with inherited bone marrow failure syndromes and discovered RPS27/RPL27 and FANCT as causative genes of Diamond-Blackfan anemia and Fanconi anemia, respectively. Furthermore, we established a target gene sequencing system to cover 189 genes associated with pediatric blood diseases to assist genetic diagnoses in clinical practice. In this review, discovery of new causative genes and possible roles of next-generation sequencing in the genetic diagnosis of inherited bone marrow failure syndromes are discussed. PMID:26935625

  19. Mechanics of intact bone marrow.

    PubMed

    Jansen, Lauren E; Birch, Nathan P; Schiffman, Jessica D; Crosby, Alfred J; Peyton, Shelly R

    2015-10-01

    The current knowledge of bone marrow mechanics is limited to its viscous properties, neglecting the elastic contribution of the extracellular matrix. To get a more complete view of the mechanics of marrow, we characterized intact yellow porcine bone marrow using three different, but complementary techniques: rheology, indentation, and cavitation. Our analysis shows that bone marrow is elastic, and has a large amount of intra- and inter-sample heterogeneity, with an effective Young׳s modulus ranging from 0.25 to 24.7 kPa at physiological temperature. Each testing method was consistent across matched tissue samples, and each provided unique benefits depending on user needs. We recommend bulk rheology to capture the effects of temperature on tissue elasticity and moduli, indentation for quantifying local tissue heterogeneity, and cavitation rheology for mitigating destructive sample preparation. We anticipate the knowledge of bone marrow elastic properties for building in vitro models will elucidate mechanisms involved in disease progression and regenerative medicine. PMID:26189198

  20. Bone-marrow transplant - series (image)

    MedlinePlus

    Bone-marrow transplants are performed for: deficiencies in red blood cells (aplastic anemia) and white blood cells (leukemia or ... Bone-marrow transplants prolong the life of patients who might otherwise die. As with all major organ transplants, however, ...

  1. Bone Marrow Transplants: "Another Possibility at Life"

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Bone Marrow Transplants “Another Possibility at Life” Past Issues / Summer ... year, and, for 16,000 of them, a bone marrow transplant is the best treatment option, notes Susan ...

  2. Planning for a Bone Marrow Transplant (BMT)

    MedlinePlus

    ... us Digg Facebook Google Bookmarks Planning for a Bone Marrow Transplant (BMT) If you're going to have ... to a friend or family member undergoing a bone marrow or cord blood transplant. Help Your Loved One ...

  3. Transplant Outcomes (Bone Marrow and Cord Blood)

    MedlinePlus

    ... reports show patient survival and transplant data of bone marrow and umbilical cord blood transplants in the transplant ... Data by Center Report —View the number of bone marrow and cord blood transplants performed at a specific ...

  4. Bone scan appearances following bone and bone marrow biopsy

    SciTech Connect

    McKillop, J.H.; Maharaj, D.; Boyce, B.F.; Fogelman, I.

    1984-01-01

    Bone marrow and bone biopsies are performed not infrequently in patients referred for bone scans and represent a potential cause of a ''false positive'' focal abnormality on the bone scan. The authors have therefore examined the scan appearances in a series of patients who had undergone either sternal marrow biopsy, (Salah needle, diameter 1.2 mm) trephine iliac crest marrow biopsy (Jamshidi 11 gauge needle, diameter 3.5 mm) or a transiliac bone biopsy (needle diameter 8 mm). Of 18 patients studied 1 to 45 days after sternal marrow 17 had normal scan appearances at the biopsy site and 1 had a possible abnormality. None of 9 patients studied 4 to 19 days after trephine iliac crest marrow biopsy had a hot spot at the biopsy site. A focal scan abnormality was present at the biopsy site in 9/11 patients studied 5 to 59 days after a trans iliac bone biopsy. No resultant scan abnormality was seen in 4 patients imaged within 3 days of the bone biopsy or in 3 patients imaged 79 to 138 days after the procedure. Bone marrow biopsy of the sternum or iliac crest does not usually cause bone scan abnormalities. A focal abnormality at the biopsy site is common in patients imaged 5 days to 2 months after bone biopsy. The gauge of the needle employed in the biopsy and thus the degree of bone trauma inflicted, is likely to be main factor determining the appearance of bone scan abnormalities at the biopsy site.

  5. Mesenchymal stromal cells from pooled mononuclear cells of multiple bone marrow donors as rescue therapy in pediatric severe steroid-refractory graft-versus-host disease: a multicenter survey.

    PubMed

    Kuçi, Zyrafete; Bönig, Halvard; Kreyenberg, Hermann; Bunos, Milica; Jauch, Anna; Janssen, Johannes W G; Škifić, Marijana; Michel, Kristina; Eising, Ben; Lucchini, Giovanna; Bakhtiar, Shahrzad; Greil, Johann; Lang, Peter; Basu, Oliver; von Luettichau, Irene; Schulz, Ansgar; Sykora, Karl-Walter; Jarisch, Andrea; Soerensen, Jan; Salzmann-Manrique, Emilia; Seifried, Erhard; Klingebiel, Thomas; Bader, Peter; Kuçi, Selim

    2016-08-01

    To circumvent donor-to-donor heterogeneity which may lead to inconsistent results after treatment of acute graft-versus-host disease with mesenchymal stromal cells generated from single donors we developed a novel approach by generating these cells from pooled bone marrow mononuclear cells of 8 healthy "3(rd)-party" donors. Generated cells were frozen in 209 vials and designated as mesenchymal stromal cell bank. These vials served as a source for generation of clinical grade mesenchymal stromal cell end-products, which exhibited typical mesenchymal stromal cell phenotype, trilineage differentiation potential and at later passages expressed replicative senescence-related markers (p21 and p16). Genetic analysis demonstrated their genomic stability (normal karyotype and a diploid pattern). Importantly, clinical end-products exerted a significantly higher allosuppressive potential than the mean allosuppressive potential of mesenchymal stromal cells generated from the same donors individually. Administration of 81 mesenchymal stromal cell end-products to 26 patients with severe steroid-resistant acute graft-versus-host disease in 7 stem cell transplant centers who were refractory to many lines of treatment, induced a 77% overall response at the primary end point (day 28). Remarkably, although the cohort of patients was highly challenging (96% grade III/IV and only 4% grade II graft-versus-host disease), after treatment with mesenchymal stromal cell end-products the overall survival rate at two years follow up was 71±11% for the entire patient cohort, compared to 51.4±9.0% in graft-versus-host disease clinical studies, in which mesenchymal stromal cells were derived from single donors. Mesenchymal stromal cell end-products may, therefore, provide a novel therapeutic tool for the effective treatment of severe acute graft-versus-host disease. PMID:27175026

  6. Mesenchymal stromal cells from pooled mononuclear cells of multiple bone marrow donors as rescue therapy in pediatric severe steroid-refractory graft-versus-host disease: a multicenter survey

    PubMed Central

    Kuçi, Zyrafete; Bönig, Halvard; Kreyenberg, Hermann; Bunos, Milica; Jauch, Anna; Janssen, Johannes W.G.; Škifić, Marijana; Michel, Kristina; Eising, Ben; Lucchini, Giovanna; Bakhtiar, Shahrzad; Greil, Johann; Lang, Peter; Basu, Oliver; von Luettichau, Irene; Schulz, Ansgar; Sykora, Karl-Walter; Jarisch, Andrea; Soerensen, Jan; Salzmann-Manrique, Emilia; Seifried, Erhard; Klingebiel, Thomas; Bader, Peter; Kuçi, Selim

    2016-01-01

    To circumvent donor-to-donor heterogeneity which may lead to inconsistent results after treatment of acute graft-versus-host disease with mesenchymal stromal cells generated from single donors we developed a novel approach by generating these cells from pooled bone marrow mononuclear cells of 8 healthy “3rd-party” donors. Generated cells were frozen in 209 vials and designated as mesenchymal stromal cell bank. These vials served as a source for generation of clinical grade mesenchymal stromal cell end-products, which exhibited typical mesenchymal stromal cell phenotype, trilineage differentiation potential and at later passages expressed replicative senescence-related markers (p21 and p16). Genetic analysis demonstrated their genomic stability (normal karyotype and a diploid pattern). Importantly, clinical end-products exerted a significantly higher allosuppressive potential than the mean allosuppressive potential of mesenchymal stromal cells generated from the same donors individually. Administration of 81 mesenchymal stromal cell end-products to 26 patients with severe steroid-resistant acute graft-versus-host disease in 7 stem cell transplant centers who were refractory to many lines of treatment, induced a 77% overall response at the primary end point (day 28). Remarkably, although the cohort of patients was highly challenging (96% grade III/IV and only 4% grade II graft-versus-host disease), after treatment with mesenchymal stromal cell end-products the overall survival rate at two years follow up was 71±11% for the entire patient cohort, compared to 51.4±9.0% in graft-versus-host disease clinical studies, in which mesenchymal stromal cells were derived from single donors. Mesenchymal stromal cell end-products may, therefore, provide a novel therapeutic tool for the effective treatment of severe acute graft-versus-host disease. PMID:27175026

  7. Bone scan appearances following biopsy of bone and bone marrow

    SciTech Connect

    McKillop, J.H.; Maharaj, D.; Boyce, B.F.; Fogelman, I.

    1984-10-01

    The influence of sternal marrow aspiration, iliac crest marrow aspiration, and iliac crest bone biopsy on bone scan appearances was examined. Eighteen patients were scanned a mean of 9.9 days after sternal marrow aspiration with a Salah needle. Bone scans obtained in 9 patients a mean of 10 days aftr iliac crest trephine marrow biopsy with a Jamshidi needle showed no abnormality at the biopsy site. In 18 patients with metabolic bone disease who had undergone iliac crest bone biopsy with an 8 mm needle, a scan abnormality due to the biopsy was usually present when the interval between the biopsy and the scan was 5 days to 2 months. Patients who were scanned within 3 days of iliac crest bone biopsy or more than 2 months after biopsy had normal scan appearance at the biopsy site.

  8. Bone Marrow Matters

    ERIC Educational Resources Information Center

    Dunne, Mark; Maklad, Rania; Heaney, Emma

    2014-01-01

    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  9. The efficacy of targeted intraarterial delivery of concentrated autologous bone marrow containing mononuclear cells in the treatment of osteonecrosis of the femoral head: A five year follow-up study

    PubMed Central

    Mao, Qiang; Jin, Hongting; Liao, Fei; Xiao, Luwei; Chen, Di; Tong, Peijian

    2014-01-01

    Objective To investigate the efficacy and safety of targeted delivery of autologous bone marrow mononuclear cells (BMMCs), which are highly enriched with mesenchymal stem cells (BMMSCs), via medial circumflex femoral artery in the treatment of osteonecrosis of the femoral head (ONFH). Methods 62 patients (78 hips) with ONFH were recruited in this study. All of these patients were treated with BMMCs perfusion via medial circumflex femoral artery. The concentrated BMMCs (30–60 ml) were gained from autologous bone marrow (100–200 ml) harvested from anterior iliac crest and then were intra-arterially perfused into the femoral head. Ficat stage was used to classify the radiological stage of ONFH. Harris hip score was used to evaluate the clinical symptoms of osteonecrosis. Ficat stage and Harris hip scores were assessed at onset of treatment at 6, 12, 24, 36, 48 and 60 months after the initial treatment. Total hip arthroplasty (THA) was also assessed as an endpoint at each follow-up. Results A follow-up on the patient was done at the end of five years, and 92.31% (72 of 78) of hips achieved a satisfactory clinical result while only 6 hips (7.69%) progressed to clinical failure and required THA. Radiological progression was noted in 34 of 78 hips (43.59%); the overall rate of collapse was 38.24% (26 of 68 hips) in stage-I and stage-II hip combinations and 12.5% (2 of 16)in stage-I hips and 46.15% (24 of 52) in stage-II hips. The mean time of conversion to THA was 3 years (1 to 5 years) and the average time to collapse were 3.5 years (1–5 years). The mean Harris hip score increased from 59 points at baseline to 75 points at 12 months, 82 points at 24 months, 81 points at 36 months, 79 points at 48 months and 74 points at 60 months. Five years after the treatment, 3 of 10 hips (30%) in stage-III had deteriorated to clinical failure whereas only 3 of 68 hips (4.41%) in stage-I and II combination had progressed to clinical failure (p < 0.05). Kaplan–Meier survival

  10. Primary bone marrow oedema syndromes.

    PubMed

    Patel, Sanjeev

    2014-05-01

    MRI scanning in patients with rheumatological conditions often shows bone marrow oedema, which can be secondary to inflammatory, degenerative, infective or malignant conditions but can also be primary. The latter condition is of uncertain aetiology and it is also uncertain whether it represents a stage in the progression to osteonecrosis in some patients. Patients with primary bone marrow oedema usually have lower limb pain, commonly the hip, knee, ankle or feet. The diagnosis is one of exclusion with the presence of typical MRI findings. Treatment is usually conservative and includes analgesics and staying off the affected limb. The natural history is that of gradual resolution of symptoms over a number of months. Evidence for medical treatment is limited, but open-label studies suggest bisphosphonates may help in the resolution of pain and improve radiological findings. Surgical decompression is usually used as a last resort. PMID:24080251

  11. Gillick, bone marrow and teenagers.

    PubMed

    Cherkassky, Lisa

    2015-09-01

    The Human Tissue Authority can authorise a bone marrow harvest on a child of any age if a person with parental responsibility consents to the procedure. Older children have the legal capacity to consent to medical procedures under Gillick, but it is unclear if Gillick can be applied to non-therapeutic medical procedures. The relevant donation guidelines state that the High Court shall be consulted in the event of a disagreement, but what is in the best interests of the teenage donor under s.1 of the Children Act 1989? There are no legal authorities on child bone marrow harvests in the United Kingdom. This article considers the best interests of the older saviour sibling and questions whether, for the purposes of welfare, the speculative benefits could outweigh the physical burdens. PMID:25911618

  12. Intra-arterial Autologous Bone Marrow Cell Transplantation in a Patient with Upper-extremity Critical Limb Ischemia

    SciTech Connect

    Madaric, Juraj; Klepanec, Andrej; Mistrik, Martin; Altaner, Cestmir; Vulev, Ivan

    2013-04-15

    Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.

  13. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice

    SciTech Connect

    Colnot, C. . E-mail: colnotc@orthosurg.ucsf.edu; Huang, S.; Helms, J.

    2006-11-24

    The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.

  14. Starvation marrow – gelatinous transformation of bone marrow

    PubMed Central

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  15. Nasopharyngeal carcinoma with bone marrow metastasis.

    PubMed

    Zen, H G; Jame, J M; Chang, A Y; Li, W Y; Law, C K; Chen, K Y; Lin, C Z

    1991-02-01

    Five of 23 patients with recurrent nasopharyngeal carcinoma (NPC) were diagnosed to have bone marrow metastasis. They all had advanced local-regional disease, and were treated with neoadjuvant chemotherapy and definitive radiotherapy after the initial diagnosis. Bone marrow metastasis developed 4-24 months later. The clinical features were anemia (5 of 5), leukopenia (3 of 5), thrombocytopenia (4 of 5), sepsis (3 of 5), tenderness of the sternum (3 of 5), and fever (4 of 5). Patients frequently had elevation of serum lactic dehydrogenase (LDH), alkaline phosphatase (ALK-P), and IgG and IgA antibody titers to Epstein-Barr viral capsid antigen when bone marrow involvement was diagnosed. However, clinical manifestations and laboratory tests were not specific. It is important that three patients had normal bone scans. All five patients had a rapid downhill course; four patients died within 23 days, and the fifth 3 months after the diagnosis of bone marrow metastasis. We concluded that bone marrow was a common metastatic site in NPC patients. Bone marrow metastasis adversely affected patients' survival and required a high index of suspicion for diagnosis. We suggested that bone marrow biopsy should be considered as a routine staging procedure in NPC patients and indicated especially when patients presented with abnormal blood counts, sepsis, bone pain, or tenderness of the sternum. It may be positive in the face of a normal bone scan. PMID:1987743

  16. Homing of chloromethylbenzoyl ammonia-labeled bone marrow mesenchymal stem cells in an immune-mediated bone marrow failure mouse model in vivo.

    PubMed

    Xiao, Y; Wang, Y; Li, L; Li, Y H; Pang, Y; Song, J Y; Jiang, Z J

    2014-01-01

    Aplastic anemia is an abnormal immune reaction disease in which T lymphocytes destroy hematopoietic stem and progenitor cells because of immune hyperactivity. Bone marrow mesenchymal stem cells (BMSCs) have hematopoietic supporting and immune regulation functions. This study investigated BMSCs homing in mice transplantation models after bone marrow failure. BALB/c mice were randomly divided into three groups: normal control, bone marrow failure model, and BMSC transplantation group. Chloromethyl benzamido-labeled BMSCs of BALB/c mice were transplanted through tail vein injection in mouse models with bone marrow failure. Flow cytometry and histological fluorescence microscopy were used to observe the dynamic distribution of labeled cells in different tissues. Average survival time, peripheral blood, and bone marrow morphological features were observed in mice from each group. Twenty-four hours after tail vein infusion of BMSCs, positively labeled cells were observed in the bone marrows of recipient mice, and the number of positive cells increased significantly at 72 h (P < 0.05). In dead or dying mice, white blood cells, hemoglobin, platelets, and bone marrow mononuclear cells were all significantly higher in the BMSC transplantation group than in the BMSCs of the model group (P < 0.01). Mean survival time was significantly shorter in the bone marrow failure model group than in the transplantation group (P < 0.05). These results confirmed that the major of BMSCs injected via tail vein could migrate to injured bone marrow tissues within 24-72 h in a mouse model of bone marrow failure. Furthermore, BMSCs can promote hematopoietic recovery, reduce the degree of bone marrow failure, and significantly prolong survival time. PMID:24421151

  17. Inherited Bone Marrow Failure Syndromes (IBMFS)

    Cancer.gov

    The NCI IBMFS Cohort Study consists of affected individuals and their immediate families in North America who have an inherited bone marrow failure syndrome (IBMFS)-either one that has been specifically identified and defined, or bone marrow failure that appears to be inherited but has not yet been clearly identified as having a genetic basis.

  18. Effects of Mössbauer radiation on bone marrow cultures

    NASA Astrophysics Data System (ADS)

    Ortalli, I.; Pedrazzi, G.; Jiang, K.; Zhang, X.; Carlo-Stella, C.; Mangoni, L.; Rizzoli, V.

    1992-04-01

    A low radiation dose approach to cell eradication would be highly desirable in cancer treatments in order to reduce the side ellects of conventional radiotherapy. In the present work we present a preliminary study on coltures of bone marrow mononuclear cells collected from normal subjects and patients with chronic myelogenous leukaemia (CML). Hematin (104, 10-3, 10°M) has been added to mattow culture cells which were then irradiated with a 3.7 GBq (100 mCi)57Co/Rh Mossbauer source for 4 hours. Significant inbibition has been observed on the cell growth due to hematin and irradiatron.

  19. Bone Marrow Stress Decreases Osteogenic Progenitors.

    PubMed

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential. PMID:26220824

  20. Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation.

    PubMed

    Amend, Sarah R; Valkenburg, Kenneth C; Pienta, Kenneth J

    2016-01-01

    Investigation of the bone and the bone marrow is critical in many research fields including basic bone biology, immunology, hematology, cancer metastasis, biomechanics, and stem cell biology. Despite the importance of the bone in healthy and pathologic states, however, it is a largely under-researched organ due to lack of specialized knowledge of bone dissection and bone marrow isolation. Mice are a common model organism to study effects on bone and bone marrow, necessitating a standardized and efficient method for long bone dissection and bone marrow isolation for processing of large experimental cohorts. We describe a straightforward dissection procedure for the removal of the femur and tibia that is suitable for downstream applications, including but not limited to histomorphologic analysis and strength testing. In addition, we outline a rapid procedure for isolation of bone marrow from the long bones via centrifugation with limited handling time, ideal for cell sorting, primary cell culture, or DNA, RNA, and protein extraction. The protocol is streamlined for rapid processing of samples to limit experimental error, and is standardized to minimize user-to-user variability. PMID:27168390

  1. Bone marrow lesions: A systematic diagnostic approach

    PubMed Central

    Grande, Filippo Del; Farahani, Sahar J; Carrino, John A; Chhabra, Avneesh

    2014-01-01

    Bone marrow lesions on magnetic resonance (MR) imaging are common and may be seen with various pathologies. The authors outline a systematic diagnostic approach with proposed categorization of various etiologies of bone marrow lesions. Utilization of typical imaging features on conventional MR imaging techniques and other problem-solving techniques, such as chemical shift imaging and diffusion-weighted imaging (DWI), to achieve accurate final diagnosis has been highlighted. PMID:25114392

  2. Fat embolism syndrome following bone marrow harvesting.

    PubMed

    Baselga, J; Reich, L; Doherty, M; Gulati, S

    1991-06-01

    A case of fat embolism syndrome is reported following an uncomplicated bone marrow harvest. The presenting symptoms were restlessness, shortness of breath and arterial hypoxemia. A lung perfusion scan ruled out the presence of a lung thromboembolism. The patient received supportive therapy and recovered within a few hours. We speculate that the larger gauge needle (13 vs 15) used to aspirate the bone marrow may have represented increased trauma to the iliac crest leading to fat embolism. PMID:1873595

  3. Osteosarcoma after bone marrow transplantation.

    PubMed

    Ueki, Hideaki; Maeda, Naoko; Sekimizu, Masahiro; Tsukushi, Satoshi; Nishida, Yoshihiro; Horibe, Keizo

    2013-03-01

    Three children treated with bone marrow transplantation for acute lymphoblastic leukemia, Diamond-Blackfan anemia, and congenital amegakaryocytic thrombocytopenia developed secondary osteosarcoma in the left tibia at the age of 13, 13, and 9 years, respectively, at 51, 117, and 106 months after transplantation, respectively. Through treatment with chemotherapy and surgery, all 3 patients are alive without disease. We surveyed the literature and reviewed 10 cases of osteosarcoma after hematopoietic stem cell transplantation (SCT), including our 3 cases. Eight of the patients had received myeloablative total body irradiation before SCT. The mean interval from SCT to the onset of osteosarcoma was 6 years and 4 months, and the mean age at the onset of osteosarcoma was 14 years and 5 months. The primary site of the post-SCT osteosarcoma was the tibia in 6 of 10 cases, in contrast to de novo osteosarcoma, in which the most common site is the femur. At least 7 of the 10 patients are alive without disease. Osteosarcoma should be one of the items for surveillance in the follow-up of patients who undergo SCT. PMID:22995925

  4. Bone Marrow Immunity and Myelodysplasia

    PubMed Central

    Lambert, Claude; Wu, Yuenv; Aanei, Carmen

    2016-01-01

    Myelodysplastic syndrome (MDS) is characterized by an ineffective hematopoiesis with production of aberrant clones and a high cell apoptosis rate in bone marrow (BM). Macrophages are in charge of phagocytosis. Innate Immune cells and specific T cells are in charge of immunosurveillance. Little is known on BM cell recruitment and activity as BM aspirate is frequently contaminated with peripheral blood. But evidences suggest an active role of immune cells in protection against MDS and secondary leukemia. BM CD8+ CD28− CD57+ T cells are directly cytotoxic and have a distinct cytokine signature in MDS, producing TNF-α, IL-6, CCL3, CCL4, IL-1RA, TNFα, FAS-L, TRAIL, and so on. These tools promote apoptosis of aberrant cells. On the other hand, they also increase MDS-related cytopenia and myelofibrosis together with TGFβ. IL-32 produced by stromal cells amplifies NK cytotoxicity but also the vicious circle of TNFα production. Myeloid-derived suppressing cells (MDSC) are increased in MDS and have ambiguous role in protection/progression of the diseases. CD33 is expressed on hematopoietic stem cells on MDS and might be a potential target for biotherapy. MDS also has impact on immunity and can favor chronic inflammation and emergence of autoimmune disorders. BM is the site of hematopoiesis and thus contains a complex population of cells at different stages of differentiation from stem cells and early engaged precursors up to almost mature cells of each lineage including erythrocytes, megakaryocytes, myelo-monocytic cells (monocyte/macrophage and granulocytes), NK cells, and B cells. Monocytes and B cell finalize their maturation in peripheral tissues or lymph nodes after migration through the blood. On the other hand, T cells develop in thymus and are present in BM only as mature cells, just like other well vascularized tissues. BM precursors have a strong proliferative capacity, which is usually associated with a high risk for genetic errors, cell dysfunction, and

  5. [Method for concentrating marrow stem cells using the IBM 2991 washer. Necessary preparation before in vitro treatment of bone marrow by pharmacologic or immunologic means].

    PubMed

    Hervé, P; Coffe, C; Peters, A

    1983-04-01

    The technique using the IBM 2991 blood cell processor is an effective technique for the concentration of mononuclear cells from large volumes of bone marrow. The marrow cells are layered on to Ficoll Metrizoate using the IBM processing set. The mononuclear cells and CFU-GM recoveries are in close relationship with the hematocrit of the cell suspension processed. Twenty two bone marrows have been collected and purified according to this protocol. The mononuclear cell recovery is an average of 78,3% (range: 44-92%) and the CFU-GM recovery is in average of 67,5% (range: 40-89%). At the end of the procedure the cell viability is satisfying (97,1% +/- 1,7 are trypan blue negatives). When it is necessary to remove from the bone marrow collected either malignant cells prior autologous bone marrow graft or T lymphocytes in an attempt to prevent GVHD in allogeneic BMT, the purity of marrow cell suspension become a fundamental parameter. PMID:6348924

  6. Impact of bone marrow on respiratory disease.

    PubMed

    Rankin, Sara M

    2008-06-01

    The bone marrow is not only a site of haematopoiesis but also serves as an important reservoir for mature granulocytes and stem cells, including haematopoietic stem cells, mesenchymal stem cells and fibrocytes. In respiratory diseases, such as asthma and idiopathic pulmonary fibrosis these cells are mobilised from the bone marrow in response to blood-borne mediators and subsequently recruited to the lungs. Although the granulocytes contribute to the inflammatory reaction, stem cells may promote tissue repair or remodelling. Understanding the factors and molecular mechanisms that regulate the mobilisation of granulocytes and stem cells from the bone marrow may lead to the identification of novel therapeutic targets for the treatment of a wide range of respiratory disorders. PMID:18372214

  7. Effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    SciTech Connect

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-02-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. /sup 51/Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras.

  8. Numbers and phenotype of lymphocytes emigrating from sheep bone marrow after in situ labelling with fluorescein isothiocyanate.

    PubMed Central

    Pabst, R; Miyasaka, M; Dudler, L

    1986-01-01

    In normal young lambs the bone marrow was selectively labelled with fluorescein isothiocyanate by a temporary perfusion of one hind-leg. One day later, the incidence of bone marrow emigrants in different lymph nodes, spleen, Peyer's patches, thymus, non-perfused bone marrow and blood was determined. The emigrants were also phenotyped by the use of monoclonal antibodies and classified into monocytes or lymphocyte subsets. Large numbers of lymphocytes left the bone marrow of the perfused leg during 1 day. Considerable numbers of cells migrated to other bone marrow compartments. Varying numbers of mononuclear emigrants were found in peripheral lymphoid organs, with labelling indices ranging from 1.06% in the blood to 0.004% in the thymus. In the spleen, comparable numbers of B- and T-lymphocyte emigrants from the bone marrow were found, whereas in the blood, lymph nodes and jejunal Peyer's patches many more emigrants were T lymphocytes than B lymphocytes. In the prescapular lymph nodes, for instance, 90.4% of emigrants were T cells but only 9.6% were B cells. Based on the large numbers of lymphocytes emigrating from the bone marrow, their phenotypes and their entry into other bone marrow compartments, it it can be concluded that the bone marrow of young lambs is an integral part of the migratory route of lymphocytes. Images Figure 2 Figure 3 PMID:3095227

  9. The effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    SciTech Connect

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-02-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. /sup 51/Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras. These results raise the possibility that the fulminant GVHD seen in human marrow transplantation is in part due to the major contamination of bone marrow with peripheral blood that results from the techniques currently used for human bone marrow harvest.

  10. Comparison of bone marrow aspiration and bone marrow biopsy in neoplastic diseases.

    PubMed

    Hamid, G A; Hanbala, N

    2009-07-01

    Naturally trephine biopsies have definitive advantages over aspirates in case of dry tap bone marrow aspirates as a result of fibrosis or densely packed bone marrow by tumour cells and may be informative independent of cytology especially in bone marrow involvement by lymphomas and carcinomas. In this prospective descriptive study we aimed to compare between the bone marrow trephine biopsy (BMTB) and bone marrow aspirates (BMAs) regarding the detection rate of solid tumours, lymphoma and myeloma involvement of the bone marrow. The study was carried out in the department of pathology and Haematology-Oncology of Al-Gamhouria Teaching Hospital/Aden during the period between Jan 2005 to Dec 2005. A total of 32 patients with suspected or confirmed malignancy undergone both BMTB and BMA from the posterior superior iliac crest and both results were compared. We divided them into three groups: those with solid tumours (21) patients, lymphoma (7) patients and with MM (4) patients. Our results showed that BMA had a 47.6% sensitivity, 100.0% specificity, with positive predictive value (100%), and negative predictive value (50.0%). In solid tumours alone it had a sensitivity of (40.0%), 100% specificity, with positive predictive value (100%), and negative predictive value (64.7%). This gives the BMA a lower sensitivity in detecting solid tumour metastasis and lymphoma involvement in comparison to BMTB. In conclusion, any patient with suspected or confirmed cancer should undergo BMTB because of its high sensitivity compared to BMA. PMID:20194084

  11. MR imaging of therapy-induced changes of bone marrow

    PubMed Central

    Henning, Tobias; Link, Thomas M.

    2006-01-01

    MR imaging of bone marrow infiltration by hematologic malignancies provides non-invasive assays of bone marrow cellularity and vascularity to supplement the information provided by bone marrow biopsies. This article will review the MR imaging findings of bone marrow infiltration by hematologic malignancies with special focus on treatment effects. MR imaging findings of the bone marrow after radiation therapy and chemotherapy will be described. In addition, changes in bone marrow microcirculation and metabolism after anti-angiogenesis treatment will be reviewed. Finally, new specific imaging techniques for the depiction of regulatory events that control blood vessel growth and cell proliferation will be discussed. Future developments are directed to yield comprehensive information about bone marrow structure, function and microenvironment. PMID:17021706

  12. [Allogenic bone marrow transplantation complications. Part II].

    PubMed

    Saloua, L; Tarek, B O; Abderrahman, A; Abdeladhim, B A

    2000-03-01

    Bone marrow transplantation increase the chances of cure of many hematology and also neoplasms cancers. The procedure is however a cause of expected mortality and morbidity. The complications are represented by mucocutaneous, toxicity graft versus host disease, veno-occlusive disease and most importantly injections consequences all this complications needs to be prevented and treated considering the risk associated to the moderling immunosuppression. PMID:11026816

  13. Liver disease after bone marrow transplantation.

    PubMed Central

    Farthing, M J; Clark, M L; Sloane, J P; Powles, R L; McElwain, T J

    1982-01-01

    Liver dysfunction occurs after bone marrow transplantation but the relative importance of graft versus host disease and other factors, such as infection, radiation, and drugs, has not been clearly established. We have studied liver status before and after bone marrow transplantation in 43 consecutive patients and have related this to survival and factors that are recognised to cause liver injury. Minor abnormalities of liver tests occurred in 21% of patients before grafting but this did not influence survival or the development of liver disease after transplantation. During the first 50 days after grafting, 83% of patients had abnormal liver tests which were more severe in patients who subsequently died. Alanine transaminase was significantly higher in non-survivors and appeared to predict survival early after transplantation. Only non-survivors developed clinical signs of liver disease. Severe liver disease was always associated with graft versus host disease and atypia of the small bile ducts was the most useful histological marker of hepatic involvement with this disease. Two of the patients with hepatic graft versus host disease also has hepatic veno-occlusive disease and three fatalities had opportunistic infection of the liver, although, in the latter, death was not due primarily to liver dysfunction. Previous hepatitis and androgen therapy could not be implicated as important causes of hepatic damage but chemotherapy for acute leukaemia and conditioning regimens for bone marrow transplantation appear to be the most important factors in the development of hepatic veno-occlusive disease. Images Fig. 3 Fig. 4 PMID:7042484

  14. Bone marrow manifestations in multicentric Castleman disease.

    PubMed

    Ibrahim, Hazem A H; Balachandran, Kirsty; Bower, Mark; Naresh, Kikkeri N

    2016-03-01

    This study aimed to document the morphological and immunophenotypic features, and describe the diagnostic features of bone marrow (BM) involvement in human herpes virus 8 Multicentric Castleman disease (HHV8-MCD). BM trephine biopsy (BMTB) specimens from 28 patients were revisited. Samples were evaluated for expression of CD3, CD20, CD138, CD68R, glycophorin C, CD42b, HHV8-latency-associated nuclear antigen (LANA1), Epstein-Barr virus-encoded small RNA and light chains. Presence of significant numbers of HHV8-LANA1(+) lymphoid/plasmacytic cells, noted in 10/28 cases, was indicative of BM involvement and was associated with low CD4 and CD8 counts in peripheral blood. The characteristic morphological appearance of MCD seen in lymph nodes is a rare finding in BMTB. 4/5 cases with lymphoid aggregates were involved by MCD, whereas 6/23 cases without lymphoid aggregates were involved by MCD (P = 0·023). 9/18 cases with hypercellular marrow were involved by MCD, whilst only 1/8 cases with normo/hypocellular marrow showed involvement by MCD (P = 0·070). While 9/21 cases with increased marrow reticulin were involved by MCD, none of the cases with no increase in reticulin were involved by MCD (P = 0·080). Reactive plasmacytosis is a frequent finding. We conclude that bone marrow is involved in a significant proportion of patients with MCD (36%), and involvement can be identified by HHV8-LANA1 immunohistochemistry. PMID:26817834

  15. Post-bone marrow transplant patient management.

    PubMed Central

    Poliquin, C. M.

    1990-01-01

    Increasingly, bone marrow transplant (BMT) is the treatment of choice for certain hematologic diseases. BMT is, however, a risky procedure with many potentially serious complications. Some complications are the result of the conditioning regimen, a stage of transplantation that includes large doses of chemotherapy and/or radiation therapy. Conditioning-induced neutropenia and thrombocytopenia often result in infection, bleeding, and mucositis. Veno-occlusive disease (VOD), a chemotherapy-induced hepatotoxicity, can cause a mild to severe form of liver disease. Other complications are directly attributable to the engrafted new marrow. Graft-versus-host disease, a rejection process initiated by immunocompetent donor T lymphocytes, is a complication frequently observed in allogeneic BMT. Approximately 14-28 days after the day of transplant, signs of engraftment begin to appear. When specific discharge criteria are met, the BMT patient is discharged from the hospital. Specific follow-up medical care is ongoing for about one year after BMT. PMID:2293508

  16. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies

    PubMed Central

    Zahr, Abdallah Abou; Salama, Mohamed E.; Carreau, Nicole; Tremblay, Douglas; Verstovsek, Srdan; Mesa, Ruben; Hoffman, Ronald; Mascarenhas, John

    2016-01-01

    Bone marrow fibrosis is a central pathological feature and World Health Organization major diagnostic criterion of myelofibrosis. Although bone marrow fibrosis is seen in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the myelofibrosis hematopoietic stem/progenitor cell, contributing to an impaired microenvironment favoring malignant over normal hematopoiesis. Increased expression of inflammatory cytokines, lysyl oxidase, transforming growth factor-β, impaired megakaryocyte function, and aberrant JAK-STAT signaling have all been implicated in the pathogenesis of bone marrow fibrosis. A number of studies indicate that bone marrow fibrosis is an adverse prognostic variable in myeloproliferative neoplasms. However, modern myelofibrosis prognostication systems utilized in risk-adapted treatment approaches do not include bone marrow fibrosis as a prognostic variable. The specific effect on bone marrow fibrosis of JAK2 inhibition, and other rationally based therapies currently being evaluated in myelofibrosis, has yet to be fully elucidated. Hematopoietic stem cell transplantation remains the only curative therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with myelofibrosis. Here we review the pathogenesis, biological consequences, and prognostic impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting the clonal hematopoietic stem/progenitor cell, aberrant signaling pathways, fibrogenic cytokines, and the tumor microenvironment. PMID:27252511

  17. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies.

    PubMed

    Zahr, Abdallah Abou; Salama, Mohamed E; Carreau, Nicole; Tremblay, Douglas; Verstovsek, Srdan; Mesa, Ruben; Hoffman, Ronald; Mascarenhas, John

    2016-06-01

    Bone marrow fibrosis is a central pathological feature and World Health Organization major diagnostic criterion of myelofibrosis. Although bone marrow fibrosis is seen in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the myelofibrosis hematopoietic stem/progenitor cell, contributing to an impaired microenvironment favoring malignant over normal hematopoiesis. Increased expression of inflammatory cytokines, lysyl oxidase, transforming growth factor-β, impaired megakaryocyte function, and aberrant JAK-STAT signaling have all been implicated in the pathogenesis of bone marrow fibrosis. A number of studies indicate that bone marrow fibrosis is an adverse prognostic variable in myeloproliferative neoplasms. However, modern myelofibrosis prognostication systems utilized in risk-adapted treatment approaches do not include bone marrow fibrosis as a prognostic variable. The specific effect on bone marrow fibrosis of JAK2 inhibition, and other rationally based therapies currently being evaluated in myelofibrosis, has yet to be fully elucidated. Hematopoietic stem cell transplantation remains the only curative therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with myelofibrosis. Here we review the pathogenesis, biological consequences, and prognostic impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting the clonal hematopoietic stem/progenitor cell, aberrant signaling pathways, fibrogenic cytokines, and the tumor microenvironment. PMID:27252511

  18. Metastatic thymoma involving the bone marrow

    PubMed Central

    Wenceslao, Stella; Krause, John R.

    2016-01-01

    Although relatively rare, thymomas can be involved in a considerable variety of clinical presentations. Clinicians should be mindful of the breadth of associations with other diseases, including autoimmune disorders and many secondary nonthymic malignancies. For the pathologist, knowledge of the extremely varied histopathologic presentation of thymoma is vital to formulate a proper differential, workup, and diagnosis. The presented case illustrates the finding of very rare metastatic thymoma involvement of bone marrow, identified during evaluation for pancytopenia. The history of prior prostate cancer and an uncharacterized pancreatic lesion, as well as the familial presentation, also suggests a possible underlying hereditary syndrome. PMID:26722174

  19. The inherited bone marrow failure syndromes.

    PubMed

    Chirnomas, S Deborah; Kupfer, Gary M

    2013-12-01

    Molecular pathogenesis may be elucidated for inherited bone marrow failure syndromes (IBMFS). The study and presentation of the details of their molecular biology and biochemistry is warranted for appropriate diagnosis and management of afflicted patients and to identify the physiology of the normal hematopoiesis and mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies, which include ribosome assembly and ribosomal RNA processing. The Fanconi anemia pathway has become interdigitated with the familial breast cancer syndromes. In this article, the diseases that account for most IBMFS diagnoses are analyzed. PMID:24237972

  20. Autologous bone marrow transplantation by photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.

    1992-06-01

    Simultaneous exposure of Merocyanine 540 dye containing cultured tumor cells to 514-nm laser light (93.6 J/cm2) results in virtually complete cell destruction. Under identical conditions, 40% of the normal progenitor (CFU-GM) cells survive the treatment. Laser- photoradiation treated, cultured breast cancer cells also were killed, and living tumor cells could not be detected by clonogenic assays or by anti-cytokeratin monoclonal antibody method. Thus, laser photoradiation therapy could be useful for purging of contaminating tumor cells from autologous bone marrow.

  1. Marrow Fat and Bone: Review of Clinical Findings

    PubMed Central

    Schwartz, Ann V.

    2015-01-01

    With growing interest in the connection between fat and bone, there has been increased investigation of the relationship with marrow fat in particular. Clinical research has been facilitated by the development of non-invasive methods to measure bone marrow fat content and composition. Studies in different populations using different measurement techniques have established that higher marrow fat is associated with lower bone density and prevalent vertebral fracture. The degree of unsaturation in marrow fat may also affect bone health. Although other fat depots tend to be strongly correlated, marrow fat has a distinct pattern, suggesting separate mechanisms of control. Longitudinal studies are limited, but are crucial to understand the direct and indirect roles of marrow fat as an influence on skeletal health. With greater appreciation of the links between bone and energy metabolism, there has been growing interest in understanding the relationship between marrow fat and bone. It is well established that levels of marrow fat are higher in older adults with osteoporosis, defined by either low bone density or vertebral fracture. However, the reasons for and implications of this association are not clear. This review focuses on clinical studies of marrow fat and its relationship to bone. PMID:25870585

  2. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy

    NASA Astrophysics Data System (ADS)

    Wilderman, S. J.; Roberson, P. L.; Bolch, W. E.; Dewaraja, Y. K.

    2013-07-01

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  3. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration.

    PubMed

    Colnot, Céline

    2009-02-01

    Bone repair requires the mobilization of adult skeletal stem cells/progenitors to allow deposition of cartilage and bone at the injury site. These stem cells/progenitors are believed to come from multiple sources including the bone marrow and the periosteum. The goal of this study was to establish the cellular contributions of bone marrow and periosteum to bone healing in vivo and to assess the effect of the tissue environment on cell differentiation within bone marrow and periosteum. Results show that periosteal injuries heal by endochondral ossification, whereas bone marrow injuries heal by intramembranous ossification, indicating that distinct cellular responses occur within these tissues during repair. [corrected] Next, lineage analyses were used to track the fate of cells derived from periosteum, bone marrow, and endosteum, a subcompartment of the bone marrow. Skeletal progenitor cells were found to be recruited locally and concurrently from periosteum and/or bone marrow/endosteum during bone repair. Periosteum and bone marrow/endosteum both gave rise to osteoblasts, whereas the periosteum was the major source of chondrocytes. Finally, results show that intrinsic and environmental signals modulate cell fate decisions within these tissues. In conclusion, this study sheds light into the origins of skeletal stem cells/progenitors during bone regeneration and indicates that periosteum, endosteum, and bone marrow contain pools of stem cells/progenitors with distinct osteogenic and chondrogenic potentials that vary with the tissue environment. PMID:18847330

  4. Vertebral hyperemia associated with bone marrow insult and recovery

    SciTech Connect

    Klein, H.A.; Bolden, R.O.; Simone, F.J.

    1984-06-01

    A 15-year-old boy with rhabdoid sarcoma received chemotherapy, which was followed by bone marrow depression, massive nosebleeds and, finally, hematologic recovery. On both hepatobiliary and renal scintigraphy, prominent vertebral activity was present in early images. Correlation with his clinical course suggests that the findings reflect hyperemia due to marrow insult and recovery. Radionuclide imaging to detect hyperemia may be a useful probe for drug effects on hematopoietic bone marrow.

  5. Bone marrow lesions and subchondral bone pathology of the knee.

    PubMed

    Kon, Elizaveta; Ronga, Mario; Filardo, Giuseppe; Farr, Jack; Madry, Henning; Milano, Giuseppe; Andriolo, Luca; Shabshin, Nogah

    2016-06-01

    Bone marrow lesions (BMLs) around the knee are a common magnetic resonance imaging (MRI) finding. However, despite the growing interest on BMLs in multiple pathological conditions, they remain controversial not only for the still unknown role in the etiopathological processes, but also in terms of clinical impact and treatment. The differential diagnosis includes a wide range of conditions: traumatic contusion and fractures, cyst formation and erosions, hematopoietic and infiltrated marrow, developmental chondroses, disuse and overuse, transient bone marrow oedema syndrome and, lastly, subchondral insufficiency fractures and true osteonecrosis. Regardless the heterogeneous spectrum of these pathologies, a key factor for patient management is the distinction between reversible and irreversible conditions. To this regard, MRI plays a major role, leading to the correct diagnosis based on recognizable typical patterns that have to be considered together with coexistent abnormalities, age, and clinical history. Several treatment options have been proposed, from conservative to surgical approaches. In this manuscript the main lesion patterns and their management have been analysed to provide the most updated evidence for the differential diagnosis and the most effective treatment. PMID:27075892

  6. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis. PMID:18173180

  7. Advanced therapies using autologous bone marrow cells for chronic liver disease.

    PubMed

    Takami, Taro; Terai, Shuji; Sakaida, Isao

    2012-07-01

    The radical treatment currently for decompensated liver cirrhosis is still liver transplantation. However, liver transplants are not widely performed worldwide and development of genuine regeneration therapy for liver cirrhosis is an urgent task. We have developed a novel murine model [the green fluorescent protein (GFP)/carbon tetrachloride (CCl4) model], and reported that infused GFP-positive bone marrow cells repopulated cirrhotic liver. Moreover, repopulated bone marrow cells ameliorated liver fibrosis through higher expression of matrix metalloproteinase-9, consistent with improved liver functions and better survival rate. Based on these findings, we started a clinical trial of autologous bone marrow cell infusion (ABMi) therapy for decompensated liver cirrhotic patients, and reported the efficacy and the safety of this approach. On the other hand, various other clinical studies for liver disease have been also reported, including hepatic administration of autologous CD34-positive cells induced by granulocyte colony-stimulating factor (G-CSF), portal vein administration of CD133-positive mononuclear cells, and administration of autologous bone marrow derived mesenchymal stem cells (MSCs). Effectiveness of these approaches has been shown in some patients. We provided here an overview of the current status of liver regeneration therapies including our results of the murine GFP/CCl4 model and ABMi therapy for liver cirrhosis and future prospects. PMID:22846198

  8. Erythroblastic Islands in the Bone Marrow of Patients with Immune-Related Pancytopenia

    PubMed Central

    Wang, Yi-Hao; Fu, Rong; Dong, Shu-Wen; Liu, Hui; Shao, Zong-Hong

    2014-01-01

    Background Immune-related pancytopenia (IRP) is characterized by pancytopenia caused by autoantibody-mediated bone marrow destruction or suppression. The bone marrows of IRP patients have remarkably increased erythroblastic islands (EIs). Methodology and Principal Findings We determined the immunoglobulin G (IgG) autoantibodies in some parts of EIs of IRP patients using immunofluorescence to investigate the biological function of EIs with IgG in the pathophysiology of IRP. The dominant class of autoantibodies detected in mononuclear cells was IgG (CD34 IgG, CD15 IgG, and GlycoA IgG), specifically IgG on GlycoA-positive cells (GlycoA IgG). Results show that extravascular hemolysis occurred in IRP through IgG autoantibodies in the EIs. These data included a high percentage of reticulocytes in the peripheral blood, hypererythrocytosis in the bone marrow, and high serum bilirubin. Furthermore, we examined the macrophages in the bone marrow of IRP patients. The results show that the number of activated macrophages relatively increased, and the phagocytic activity of macrophages significantly increased. Conclusions and Significance Increased EIs with IgG were the sites of erythroblast phagocytosis by the activated macrophages, rather than erythropoietic niches. The IgG autoantibodies in the EIs possibly functioned as adhesion molecules for a ring of erythroblasts around the macrophages, thereby forming morphologic EIs. PMID:24740145

  9. Phase 1 Trial of Autologous Bone Marrow Stem Cell Transplantation in Patients with Spinal Cord Injury

    PubMed Central

    Kakabadze, Zurab; Mardaleishvili, Konstantine; Chutkerashvili, Gocha; Chelishvili, Irakli; Harders, Albrecht; Loladze, George; Shatirishvili, Gocha; Kipshidze, Nodar; Chakhunashvili, David; Chutkerashvili, Konstantine

    2016-01-01

    Introduction. A total of 18 patients, with complete motor deficits and paraplegia caused by thoracic and lumbar spine trauma without muscle atrophy or psychiatric problems, were included into this study. Materials and Methods. The bone marrow was aspirated from the anterior iliac crest under local anesthesia and the mononuclear fraction was isolated by density gradient method. At least 750 million mononuclear-enriched cells, suspended in 2 mL of saline, were infused intrathecally. Results and Discussion. The study reports demonstrated improvement of motor and sensory functions of various degrees observed in 9 of the 18 (50%) cases after bone marrow stem cell transplantation. Measured by the American Spinal Injury Association (ASIA) scale, 7 (78%) out of the 9 patients observed an improvement by one grade, while two cases (22%) saw an improvement by two grades. However, there were no cases in which the condition was improved by three grades. Conclusions. Analysis of subsequent treatment results indicated that the transplantation of mononuclear-enriched autologous BMSCs is a feasible and safe technique. However, successful application of the BMSCs in the clinical practice is associated with the necessity of executing more detailed examinations to evaluate the effect of BMSCs on the patients with spinal cord injury. PMID:27433165

  10. Phase 1 Trial of Autologous Bone Marrow Stem Cell Transplantation in Patients with Spinal Cord Injury.

    PubMed

    Kakabadze, Zurab; Kipshidze, Nickolas; Mardaleishvili, Konstantine; Chutkerashvili, Gocha; Chelishvili, Irakli; Harders, Albrecht; Loladze, George; Shatirishvili, Gocha; Kipshidze, Nodar; Chakhunashvili, David; Chutkerashvili, Konstantine

    2016-01-01

    Introduction. A total of 18 patients, with complete motor deficits and paraplegia caused by thoracic and lumbar spine trauma without muscle atrophy or psychiatric problems, were included into this study. Materials and Methods. The bone marrow was aspirated from the anterior iliac crest under local anesthesia and the mononuclear fraction was isolated by density gradient method. At least 750 million mononuclear-enriched cells, suspended in 2 mL of saline, were infused intrathecally. Results and Discussion. The study reports demonstrated improvement of motor and sensory functions of various degrees observed in 9 of the 18 (50%) cases after bone marrow stem cell transplantation. Measured by the American Spinal Injury Association (ASIA) scale, 7 (78%) out of the 9 patients observed an improvement by one grade, while two cases (22%) saw an improvement by two grades. However, there were no cases in which the condition was improved by three grades. Conclusions. Analysis of subsequent treatment results indicated that the transplantation of mononuclear-enriched autologous BMSCs is a feasible and safe technique. However, successful application of the BMSCs in the clinical practice is associated with the necessity of executing more detailed examinations to evaluate the effect of BMSCs on the patients with spinal cord injury. PMID:27433165

  11. Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications

    PubMed Central

    Piccinin, Meghan A; Khan, Zia A

    2014-01-01

    Diabetes leads to complications in select organ systems primarily by disrupting the vasculature of the target organs. These complications include both micro- (cardiomyopathy, retinopathy, nephropathy, and neuropathy) and macro-(atherosclerosis) angiopathies. Bone marrow angiopathy is also evident in both experimental models of the disease as well as in human diabetes. In addition to vascular disruption, bone loss and increased marrow adiposity have become hallmarks of the diabetic bone phenotype. Emerging evidence now implicates enhanced marrow adipogenesis and changes to cellular makeup of the marrow in a novel mechanistic link between various secondary complications of diabetes. In this review, we explore the mechanisms of enhanced marrow adipogenesis in diabetes and the link between changes to marrow cellular composition, and disruption and depletion of reparative stem cells. PMID:26317050

  12. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    SciTech Connect

    Otsuru, Satoru; Tamai, Katsuto . E-mail: tamai@gts.med.osaka-u.ac.jp; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-03-09

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood.

  13. [Current problems in pediatric bone marrow transplantation].

    PubMed

    Kato, S

    1993-05-01

    Bone marrow transplantation (BMT) has been increasingly applied to a variety of potentially fatal diseases in childhood. However, trends of indication of BMT are changing because chemotherapy in leukemia and immunosuppressive therapy with/without colony stimulating factor in aplastic anemia are improving. Several progresses have been noted in matched unrelated BMT and peripheral blood stem cell transplantation as well as in sibling BMT or autologous BMT. Many efforts are being made to decrease rejection rate or leukemia relapse and to improve quality of life by new conditioning regimens. Attempts to induce GVL effects or syngeneic GVHD are currently under progress. The quality of life in long term surviving children are generally good and acceptable, although delay in growth, infertility, cataract and obstructive lung disease are seen in a few patients. PMID:8315825

  14. Lung function after bone marrow grafting

    SciTech Connect

    Depledge, M.H.; Barrett, A.; Powles, R.L.

    1983-02-01

    Results of a prospective lung function study are presented for 48 patients with acute myeloid leukemia (AML) treated with total body irradiation (TBI) and bone marrow transplantation (BMT) at the Royal Marsden Hospital between 1978 and 1980. Patients with active disease or who were in remission following cytoreductive chemotherapy had mildly impaired gas exchange prior to grafting. After TBI and BMT all patients studied developed progressive deterioration of lung function during the first 100 days, although these changes were subclinical. Infection and graft-versus-host disease (GvHD) were associated with further worsening of restrictive ventilatory defects and diffusing capacity (D/sub L/CO). Beyond 100 days, ventilatory ability returned to normal and gas transfer improved, although it failed to reach pre-transplant levels. There was no evidence of progressive pulmonary fibrosis during the first year after grafting.

  15. The Inherited Bone Marrow Failure Syndromes

    PubMed Central

    Chirnomas, S. Deborah; Kupfer, Gary M

    2013-01-01

    In spite of the rarity of inherited bone marrow failure syndromes (IBMFS), they represent diseases for which the molecular pathogenesis may be elucidated. Their study and presentation of the details of their molecular biology and biochemistry is warranted not only for appropriate diagnosis and management of afflicted patients but also because they lend clues to the normal physiology of the normal hematopoiesis and, in many cases, mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies that entail both ribosome assembly as well as ribosomal RNA processing. The Fanconi anemia (FA) pathway itself has become interdigitated with the familial breast cancer syndromes. The sections that follow present a more detailed analysis of the diseases that account for the majority of IBMFS diagnoses. PMID:24237972

  16. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling

    PubMed Central

    Crane, Janet L.; Cao, Xu

    2014-01-01

    During bone resorption, abundant factors previously buried in the bone matrix are released into the bone marrow microenvironment, which results in recruitment and differentiation of bone marrow mesenchymal stem cells (MSCs) for subsequent bone formation, temporally and spatially coupling bone remodeling. Parathyroid hormone (PTH) orchestrates the signaling of many pathways that direct MSC fate. The spatiotemporal release and activation of matrix TGF-β during osteoclast bone resorption recruits MSCs to bone-resorptive sites. Dysregulation of TGF-β alters MSC fate, uncoupling bone remodeling and causing skeletal disorders. Modulation of TGF-β or PTH signaling may reestablish coupled bone remodeling and be a potential therapy. PMID:24487640

  17. A Method for Generation of Bone Marrow-Derived Macrophages from Cryopreserved Mouse Bone Marrow Cells

    PubMed Central

    Lima, Djalma S.; Zamboni, Dario S.

    2010-01-01

    The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells. PMID:21179419

  18. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases.

    PubMed

    Mesentier-Louro, Louise A; Zaverucha-do-Valle, Camila; Rosado-de-Castro, Paulo H; Silva-Junior, Almir J; Pimentel-Coelho, Pedro M; Mendez-Otero, Rosalia; Santiago, Marcelo F

    2016-01-01

    Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized. PMID:26649049

  19. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    PubMed Central

    Mesentier-Louro, Louise A.; Zaverucha-do-Valle, Camila; Rosado-de-Castro, Paulo H.; Silva-Junior, Almir J.; Pimentel-Coelho, Pedro M.; Mendez-Otero, Rosalia; Santiago, Marcelo F.

    2016-01-01

    Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized. PMID:26649049

  20. Bone marrow injection: A novel treatment for tennis elbow

    PubMed Central

    Singh, Ajit; Gangwar, Devendra Singh; Singh, Shekhar

    2014-01-01

    Objective: The objective of this prospective study was assessment of efficacy of bone marrow aspirate (BMA) (containing plasma rich in growth factors and mesenchymal stem cells) injection in treatment of tennis elbow. Materials and Methods: A total of 30 adult patients of previously untreated tennis elbow were administered single injection of BMA. This concentrate was made by centrifugation of iliac BMA at 2000 rpm for 20-30 min and only upper layer containing platelet rich plasma and mononuclear cells was injected. Assessment was performed at baseline, 2 weeks, 6 weeks and 12 weeks using Patient-rated Tennis Elbow Evaluation (PRTEE) score. Results: Baseline pre-injection mean PRTEE score was 72.8 ± 6.97 which decreased to a mean PRTEE score of 40.93 ± 5.94 after 2 weeks of injection which was highly significant (P < 0.0001). The mean PRTEE score at 6 week and 12 week follow-up was 24.46 ± 4.58 and 14.86 ± 3.48 respectively showing a highly significant decrease from baseline scores (P < 0.0001). Conclusion: Treatment of tennis elbow patients with single injection of BMA showed a significant improvement in short to medium term follow-up. In future, such growth factors and/or stem cells based injection therapy can be developed as an alternative conservative treatment for patients of tennis elbow, especially who have failed non-operative treatment before surgical intervention is taken. PMID:25097421

  1. Bone Marrow Adipose Tissue: A New Player in Cancer Metastasis to Bone

    PubMed Central

    Morris, Emma V.; Edwards, Claire M.

    2016-01-01

    The bone marrow is a favored site for a number of cancers, including the hematological malignancy multiple myeloma, and metastasis of breast and prostate cancer. This specialized microenvironment is highly supportive, not only for tumor growth and survival but also for the development of an associated destructive cancer-induced bone disease. The interactions between tumor cells, osteoclasts and osteoblasts are well documented. By contrast, despite occupying a significant proportion of the bone marrow, the importance of bone marrow adipose tissue is only just emerging. The ability of bone marrow adipocytes to regulate skeletal biology and hematopoiesis, combined with their metabolic activity, endocrine functions, and proximity to tumor cells means that they are ideally placed to impact both tumor growth and bone disease. This review discusses the recent advances in our understanding of how marrow adipose tissue contributes to bone metastasis and cancer-induced bone disease. PMID:27471491

  2. Bone and bone-marrow blood flow in chronic granulocytic leukemia and primary myelofibrosis

    SciTech Connect

    Lahtinen, R.; Lahtinen, T.; Romppanen, T.

    1982-03-01

    Blood flow in hematopoietic bone marrow and in nonhematopoietic bone has been measured with a Xe-133 washout method in 20 patients with chronic granulocytic leukemia (CGL) and in seven with primary myelofibrosis. Age-matched healthy persons served as controls. Bone-marrow blood flow in CGL was dependent upon the phase of the disease. In the metamorphosis phase, bone-marrow blood flow was high compared with that in the well-controlled phase. Apart from the initial phase, the mean values for bone blood flow in CGL were increased compared with the values of the healthy controls. In myelofibrosis the bone blood flow was also increased. Bone-marrow blood flow in these diseases was dependent upon the cellularity of bone marrow as measured morphometrically.

  3. Endocrine complications following pediatric bone marrow transplantation.

    PubMed

    Ho, Josephine; Lewis, Victor; Guilcher, Gregory M T; Stephure, David K; Pacaud, Danièle

    2011-01-01

    Pediatric bone marrow transplantation (BMT) for various diseases can lead to endocrine system dysfunction owing to preparative regimens involving chemotherapy and radiation therapy. We assessed the prevalence of post-BMT endocrine complications in children treated at the Alberta Children's Hospital (ACH) from 1991 to 2001. Time of onset of endocrine dysfunction, underlying disease processes, chemotherapy, radiation therapy and age at BMT were characterized. Subjects of <18 years of age at the time of allogeneic or autologous BMT for whom 1-year follow-up through the ACH and a chart were available for review were included in the study. Subjects with a pre-existing endocrine condition were excluded. Of the 194 pediatric BMT procedures performed at the ACH between January 1, 1991 and December 31, 2001, 150 complete charts were available for review. Sixty five subjects received follow-up care at other centers and were excluded. Therefore, a total of 85 subjects were included in the review. The prevalence of endocrine complications identified was: primary hypothyroidism 1.2%, compensated hypothyroidism 7.0%, hyperthyroidism 2.4%, hypergonadotrophic hypogonadism 22.4%, abnormal bone density 2.4%, and secondary diabetes mellitus 1.2%. These findings emphasize the need to screen for endocrine system dysfunction, particularly hypergonadotrophic hypogonadism, in children who have undergone BMT. Children need long-term follow-up so that endocrine complications can be diagnosed and treated promptly. PMID:21823531

  4. Jaw bone marrow-derived osteoclast precursors internalize more bisphosphonate than long-bone marrow precursors.

    PubMed

    Vermeer, Jenny A F; Jansen, Ineke D C; Marthi, Matangi; Coxon, Fraser P; McKenna, Charles E; Sun, Shuting; de Vries, Teun J; Everts, Vincent

    2013-11-01

    Bisphosphonates (BPs) are widely used in the treatment of several bone diseases, such as osteoporosis and cancers that have metastasized to bone, by virtue of their ability to inhibit osteoclastic bone resorption. Previously, it was shown that osteoclasts present at different bone sites have different characteristics. We hypothesized that BPs could have distinct effects on different populations of osteoclasts and their precursors, for example as a result of a different capacity to endocytose the drugs. To investigate this, bone marrow cells were isolated from jaw and long bone from mice and the cells were primed to differentiate into osteoclasts with the cytokines M-CSF and RANKL. Before fusion occurred, cells were incubated with fluorescein-risedronate (FAM-RIS) for 4 or 24h and uptake was determined by flow cytometry. We found that cultures obtained from the jaw internalized 1.7 to 2.5 times more FAM-RIS than long-bone cultures, both after 4 and 24h, and accordingly jaw osteoclasts were more susceptible to inhibition of prenylation of Rap1a after treatment with BPs for 24h. Surprisingly, differences in BP uptake did not differentially affect osteoclastogenesis. This suggests that jaw osteoclast precursors are less sensitive to bisphosphonates after internalization. This was supported by the finding that gene expression of the anti-apoptotic genes Bcl-2 and Bcl-xL was higher in jaw cells than long bone cells, suggesting that the jaw cells might be more resistant to BP-induced apoptosis. Our findings suggest that bisphosphonates have distinct effects on both populations of osteoclast precursors and support previous findings that osteoclasts and precursors are bone-site specific. This study may help to provide more insights into bone-site-specific responses to bisphosphonates. PMID:23962725

  5. Bone marrow invasion in multiple myeloma and metastatic disease.

    PubMed

    Vilanova, J C; Luna, A

    2016-04-01

    Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases. PMID:26767542

  6. Technetium-99m antimony colloid for bone-marrow imaging

    SciTech Connect

    Martindale, A.A.; Papadimitriou, J.M.; Turner, J.H.

    1980-11-01

    Technetium-99m antimony colloid was prepared in our laboratory for bone-marrow imaging. Optimal production of colloid particles of size range 1 to 13 nm was achieved by the use of polyvinylpyrrolidone of mol. wt. 44,000. Electron microscopy was used to size the particles. Studies in rabbits showed exclusive concentration in the subendothelial dendritic phagocytes of the bone marrow. Pseudopods from these cells were found to traverse interendothelial junctions and concentrate colloid from the sinusoids. Imaging studies of bone marrow in rabbits showed the superiority of the Tc-99m antimony colloid over the much larger colloidal particle of Tc-99m sulfur colloid. Tissue distribution studies in the rat confirmed that bone-marrow uptake of Tc-99m antimony colloid was greater than that of Tc-99m sulfur colloid, although blood clearance was much slower.

  7. [Bone marrow involvement in ovarian cancer determined by immunohistochemical methods].

    PubMed

    Gabriel, M; Obrebowska, A; Spaczyński, M

    2000-01-01

    Atypical epithelial cells in the bone marrow of patients with ovarian cancer were evaluated using immunohistochemical techniques. We investigated cytospin preparations of bone marrow taken from 9 women with benign ovarian tumors and 59 women with malignant ovarian tumors. Two monoclonal antibodies (NCL-C11 and NCL-CA 125) were used. With both antibodies we were able to detect keratin and CA 125 antigen expression in the bone marrow of 9 (18.4%) of the patients with ovarian cancer. With regard to the wide histological differentiation of ovarian carcinomas, the presence of atypical epithelial cells in the bone marrow was required as a prognostic factor for survival and relapses. This should be investigated in a larger study group. PMID:11326158

  8. Understanding Bone Marrow Transplantation as a Treatment Option

    MedlinePlus

    ... you have had, and your overall health. Transplant Process A bone marrow or cord blood transplant is ... The Transplant Process . For more about the search process, HLA matching, and steps of a transplant, such ...

  9. Bone Marrow Diseases - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bone Marrow Diseases URL of this page: https://medlineplus.gov/languages/bonemarrowdiseases.html Other topics A-Z A B ...

  10. Distinct bone marrow blood vessels differentially regulate haematopoiesis.

    PubMed

    Itkin, Tomer; Gur-Cohen, Shiri; Spencer, Joel A; Schajnovitz, Amir; Ramasamy, Saravana K; Kusumbe, Anjali P; Ledergor, Guy; Jung, Yookyung; Milo, Idan; Poulos, Michael G; Kalinkovich, Alexander; Ludin, Aya; Kollet, Orit; Shakhar, Guy; Butler, Jason M; Rafii, Shahin; Adams, Ralf H; Scadden, David T; Lin, Charles P; Lapidot, Tsvee

    2016-04-21

    Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols. PMID:27074509

  11. Bone Marrow Diseases - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bone Marrow Diseases URL of this page: https://www.nlm.nih.gov/medlineplus/languages/bonemarrowdiseases.html Other topics A-Z A B ...

  12. Gene expression in human lupus: bone marrow differentiates active from inactive patients and displays apoptosis and granulopoiesis signatures

    PubMed Central

    Nakou, Magdalene; Knowlton, Nicholas; Frank, Mark B.; Bertsias, George; Osban, Jeanette; Sandel, Clayton E.; Papadaki, Eleni; Raptopoulou, Amalia; Sidiropoulos, Prodromos; Kritikos, Heraklis; Tassiulas, Ioannis; Centola, Michael; Boumpas, Dimitrios T.

    2009-01-01

    Objective The cells of the immune system originate from the bone marrow (BM), where many of them also mature. To better understand the aberrant immune response in systemic lupus erythematosus (SLE), we examined the BM in lupus patients using DNA microarrays and compared it to the peripheral blood (PB). Patients and Methods Bone marrow mononuclear cells (BMMCs) from 20 SLE patients (11 with active disease and 9 with inactive disease) and peripheral blood mononuclear cells (PBMCs) from 27 patients (16 active/ 11 inactive); BMMCs and PBMCs from 7 healthy individuals and 3 osteoarthritis patients served as controls. Samples were analyzed on genome-scale microarrays with 21,329 genes represented. Results We found 102 differentially expressed genes between patients’ and controls’ BMMCs (unpaired student t-test), involved in various biologic processes; 53 of them are involved in major networks including cell death, growth, signaling and proliferation. Comparative analysis between BM and PB of patients identified 88 genes differentially expressed; 61 out of 88 participate in cell growth and differentiation, cellular movement and morphology, immune response and other hematopoietic cell functions. Unsupervised clustering of highly expressed genes revealed two major SLE patient clusters (active and inactive) in BM, but not in PB. The upregulated genes in the bone marrow of active patients included genes involved in cell death and granulopoiesis. Conclusion Microarray analysis of the bone marrow differentiates active from inactive lupus patients and provides further evidence for the role of apoptosis and granulocytes in the pathogenesis of the disease. PMID:18975309

  13. A marker chromosome in post-transplant bone marrow.

    PubMed

    Morsberger, Laura; Powell, Kerry; Ning, Yi

    2016-01-01

    Detection of small supernumerary marker chromosomes in karyotype analysis represents a diagnostic challenge. While such markers are usually detected during cytogenetic studies of constitutional chromosome abnormalities, they have also been found in specimens submitted from patients with acquired malignancies. We report here the detection of a marker chromosome in a bone marrow specimen from a patient who received a bone marrow transplantation. We discuss the importance of proper characterization and interpretation of marker chromosomes in clinical practice. PMID:27252781

  14. Memory T-cell competition for bone marrow seeding.

    PubMed

    Di Rosa, Francesca; Santoni, Angela

    2003-03-01

    The presence in the bone marrow of memory CD8 T cells is well recognized. However, it is still largely unclear how T-cell migration from the lymphoid periphery to the bone marrow is regulated. In the present report, we show that antigen-specific CD4 T cells, as well as antigen-specific CD8 T cells, localize to the bone marrow of immunized mice, and are sustained there over long periods of time. To investigate the rules governing T-cell migration to the bone marrow, we generated chimeric mice in which the lymphoid periphery contained two genetically or phenotypically distinct groups of T cells, one of which was identical to the host. We then examined whether a distinct type of T cell had an advantage over the others in the colonization of bone marrow. Our results show that whereas ICAM1 and CD18 molecules are both involved in homing to lymph nodes, neither is crucial for T-cell bone marrow colonization. We also observed that memory-phenotype CD44high T cells, but not virgin-type CD44-/low T cells, preferentially home to the bone marrow upon adoptive transfer to normal young mice, but not to thymectomized old recipients where an existing memory T-cell pool precludes their free access. Thus, T-cell colonization of the bone marrow uses distinct molecules from those implicated in lymph node homing, and is regulated both by the properties of the T cell and by the competitive efficacy of other T cells inhabiting the same, saturable niche. This implies that the homing potential of an individual lymphocyte is not merely an intrinsic property of the cell, but rather a property of the lymphoid system taken as a whole. PMID:12603595

  15. Bone Marrow Negative Visceral Leishmaniasis in an Adolescent Male

    PubMed Central

    Jetley, S; Rana, S; Khan, S; Zeeba, JS; Hassan, MJ; Kapoor, P

    2013-01-01

    Visceral Leishmaniasis or Kala Azar is endemic in certain regions of India. In endemic areas, the constellation of fever, progressive weight loss, weakness, pronounced splenomegaly, anemia, leukopenia, and hypergammaglobulinemia is highly suggestive of visceral leishmaniasis. Demonstration of the parasite in liver, splenic or bone marrow aspirates is confirmatory. We present a case in which Leishmania donovani (LD) bodies were demonstrated on splenic aspirate. We were unable to demonstrate LD bodies on bone marrow aspiration. PMID:23682278

  16. Pulmonary fat and bone marrow embolism in aircraft accident victims.

    PubMed

    Bierre, A R; Koelmeyer, T D

    1983-04-01

    On 28 November 1979, an Air New Zealand DC10 aircraft crashed into Mt Erebus, Antarctica with the loss of 257 passengers and crew. Postmortem examinations were carried out on 231 victims in Auckland, 4641 kilometres north of the crash site, and lung tissue was present in 205 cases. Pulmonary fat emboli were present in 134 cases (65%), pulmonary bone marrow emboli in 60 (29%) and pulmonary edema in 76 cases (37%). Clear relationships were demonstrated, firstly between the extent of fat and bone marrow embolism, secondly between the extent of fat and bone marrow embolism and the presence of pulmonary edema, and thirdly between the extent of fat and bone marrow embolism and the extent of cardiovascular damage. It was apparent that death had occurred immediately following impact, and the extent of fat and bone marrow embolism varied inversely with the severity of the injuries found. The most severely injured victims were those seated in the rear cabin of the aircraft suggesting that this was the site of impact with the ground. Our studies show that pulmonary fat embolism occurs very rapidly after severe injury and is followed by increasing numbers of fat and bone marrow emboli depending on the nature of the mortal injuries. PMID:6888959

  17. Activation of bone marrow phagocytes following benzene treatment of mice.

    PubMed Central

    Laskin, D L; MacEachern, L; Snyder, R

    1989-01-01

    Techniques in flow cytometry/cell sorting were used to characterize the effects of benzene and its metabolites on subpopulations of bone marrow cells. Treatment of male Balb/c mice with benzene (880 mg/kg) or a combination of its metabolites, hydroquinone and phenol (50 mg/kg), resulted in a 30 to 40% decrease in bone marrow cellularity. Flow cytometric analysis revealed two subpopulations of bone marrow cells that could be distinguished by their size and density or granularity. The larger, more dense subpopulation was found to consist predominantly of macrophages and granulocytes as determined by monoclonal antibody binding and by cell sorting. Benzene treatment had no selective cytotoxic effects on subpopulations of bone marrow cells. To determine if benzene treatment activated bone marrow phagocytes, we quantified production of hydrogen peroxide by these cells using the fluorescent indicator dye, 2',7'-dichlorofluorescein diacetate. We found that macrophages and granulocytes from bone marrow of treated mice produced 50% more hydrogen peroxide in response to the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate than did cells from control animals. It is hypothesized that phagocyte activation and production of cytotoxic reactive oxygen intermediates may contribute to hematotoxicity induced by benzene. PMID:2676504

  18. Transplantation immunology: Solid Organ and bone marrow

    PubMed Central

    Chinen, Javier; Buckley, Rebecca H.

    2010-01-01

    Development of the field of organ and tissue transplantation has accelerated remarkably since the human major histocompatibility complex (MHC) was discovered in 1967. Matching of donor and recipient for MHC antigens has been shown to have a significant positive effect on graft acceptance. The roles of the different components of the immune system involved in the tolerance or rejection of grafts and in graft-versus-host disease have been clarified. These components include: antibodies, antigen presenting cells, helper and cytotoxic T cell subsets, immune cell surface molecules, signaling mechanisms and cytokines that they release. The development of pharmacologic and biological agents that interfere with the alloimmune response and graft rejection has had a crucial role in the success of organ transplantation. Combinations of these agents work synergistically, leading to lower doses of immunosuppressive drugs and reduced toxicity. Reports of significant numbers of successful solid organ transplants include those of the kidneys, liver, heart and lung. The use of bone marrow transplantation for hematological diseases, particularly hematological malignancies and primary immunodeficiencies, has become the treatment of choice in many of these conditions. Other sources of hematopoietic stem cells are also being used, and diverse immunosuppressive drug regimens of reduced intensity are being proposed to circumvent the mortality associated with the toxicity of these drugs. Gene therapy to correct inherited diseases by infusion of gene-modified autologous hematopoietic stem cells has shown efficacy in two forms of severe combined immunodeficiency, providing an alternative to allogeneic tissue transplantation. PMID:20176267

  19. Post-bone marrow transplant thrombotic microangiopathy.

    PubMed

    Obut, F; Kasinath, V; Abdi, R

    2016-07-01

    Thrombotic microangiopathy (TMA) is a systemic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia and organ failure. Post-bone marrow transplant TMA (post-BMT TMA) is a life-threatening condition that has been reported to afflict between 0.5 and 63.6% of BMT patients. The incidence of post-BMT TMA is affected by evolving therapies such as conditioning regimens. The etiology of post-BMT TMA is thought to be multifactorial, including the effects of immunosuppressive agents, viral infections, TBI and GvHD. A growing body of evidence highlights the importance of complement system activation and endothelial damage in post-BMT TMA. Although plasmapheresis has commonly been used, its therapeutic rationale for the majority of post-BMT TMA cases is unclear in the absence of circulatory inhibitors. It has become possible to target complement activation with eculizumab, a drug that blocks the terminal complement pathway. Early studies have highlighted the importance of anti-complement therapies in treating post-BMT TMA. Moreover, finding complement gene mutations may identify patients at risk, but whether such patients benefit from prophylactic anti-complement therapies before BMT remains to be studied. This review focuses on diagnostic criteria, pathophysiology, treatment and renal outcomes of post-BMT TMA. PMID:26974272

  20. Bone marrow fibrosis in childhood acute lymphoblastic leukaemia.

    PubMed Central

    Wallis, J P; Reid, M M

    1989-01-01

    Bone marrow trephine biopsy specimens were obtained at diagnosis from 63 of 76 consecutively presenting children with acute lymphoblastic leukaemia (ALL). The association between marrow fibrosis and presenting features, including immunophenotype, was analysed. Reticulin was increased in 45 of 56 cases in which blasts expressed B lineage markers, but in only one of seven with T-ALL. A weak association was also found between marrow fibrosis and splenomegaly in those with common ALL. Marrow fibrosis is apparently associated with some examples of ALL of B cell lineage, but precisely which subtypes and whether the phenomenon is clinically important remain to be determined. PMID:2613918

  1. Bone marrow atrophy induced by murine cytomegalovirus infection.

    PubMed Central

    Gibbons, A E; Price, P; Shellam, G R

    1994-01-01

    Acute, sublethal infection of mice with murine cytomegalovirus (MCMV) resulted in up to 80% decreases in the number of cells recoverable from the bone marrow, and a decrease in peripheral blood leucocyte counts during the first week of infection. Depopulation of the leucopoietic areas of the marrow was evident from examination of histological sections. The severity of bone marrow atrophy in MCMV-infected mice of different strains correlated with previously described genetically determined sensitivity to MCMV disease. Although the phenomenon only occurred when mice were inoculated with infectious virus preparations, fewer than one in 10(5) marrow cells were productively infected, suggesting that atrophy was not due to lytic infection of large numbers of bone marrow cells. Interestingly, increases in serum colony-stimulating activity were observed and these were proportional to the severity of bone marrow atrophy. After MCMV infection, we observed increases in the proportions of cells expressing some B-cell and myeloid cell markers and a decrease in the proportion of cells expressing an erythroid cell marker. There was no change in the frequency of marrow cells expressing mature T-cell markers. The numbers of myeloid lineage-committed progenitor cells (GM-CFU) in the marrow decreased 10- to 20-fold in BALB/c nu/+ mice, while there was a threefold decrease in their numbers in BALB/c nu/nu mice. In addition, increases in serum colony-stimulating activity were greater in BALB/c nu/+ mice than in BALB/c nu/nu mice. Our results suggest that growth factors produced after MCMV infection may accelerate the maturation and migration of cells from the marrow to sites of virus replication and inflammation, thus accounting for the depletion in numbers of marrow cells observed soon after MCMV infection. Images Figure 3 Figure 4 PMID:7959876

  2. Spinal nociceptive transmission by mechanical stimulation of bone marrow

    PubMed Central

    Tanaka, Satoshi; Sekiguchi, Takemi; Sugiyama, Daisuke; Kawamata, Mikito

    2016-01-01

    Background Since bone marrow receives innervation from A-delta and C-fibers and since an increase in intramedullary pressure in bone marrow may induce acute pain in orthopedic patients during surgery and chronic pain in patients with bone marrow edema, skeletal pain may partly originate from bone marrow. Intraosseous lesions, such as osteomyelitis and bone cancer, are also known to produce cutaneous hypersensitivity, which might be referred pain from bone. However, little is known about pain perception in bone marrow and referred pain induced by bone disease. Thus, we carried out an in vivo electrophysiological study and behavioral study to determine whether increased intraosseous pressure of the femur induces acute pain and whether increased intraosseous pressure induces referred pain in the corresponding receptive fields of the skin. Results Intraosseous balloon inflation caused spontaneous pain-related behavior and mechanical hyperalgesia and allodynia in the lumbosacral region. Single neuronal activities of spinal dorsal horn neurons were extracellularly isolated, and then evoked responses to non-noxious and noxious cutaneous stimuli and intraosseous balloon inflation were recorded. Ninety-four spinal dorsal horn neurons, which had somatic receptive fields at the lower back and thigh, were obtained. Sixty-two percent of the wide-dynamic-range neurons (24/39) and 86% of the high-threshold neurons (12/14) responded to intraosseous balloon inflation, while none of the low-threshold neurons (0/41) responded to intraosseous balloon inflation. Spinally administered morphine (1 µg) abolished balloon inflation-induced spontaneous pain-related behavior and mechanical hyperalgesia in awake rats and also suppressed evoked activities of wide-dynamic-range neurons to noxious cutaneous stimulation and intraosseous balloon inflation. Conclusions The results suggest that mechanical stimulation to bone marrow produces nociception, concomitantly producing its referred pain

  3. Urothelial Cancer With Occult Bone Marrow Metastases and Isolated Thrombocytopenia

    PubMed Central

    Alva, Ajjai; Davis, Elizabeth; Chinnaiyan, Arul M.; Dhanasekaran, Saravana; Mehra, Rohit

    2015-01-01

    Bladder cancer rarely presents clinically with a myelophthisic picture from diffuse bone marrow infiltration especially in the absence of detectable skeletal metastases. A 75-year old man presented with newly diagnosed urothelial cell carcinoma of the bladder. Pathology from transurethral resection of bladder tumor demonstrated muscle-invasive disease. Pre-therapy imaging including CT abdomen/pelvis, CXR and bone scan demonstrated liver lesions concerning for metastatic disease but no skeletal metastases. Labs were notable for isolated thrombocytopenia, hypercalcemia and acute kidney injury prompting hospitalization. Hematologic work-up including bone marrow aspiration and biopsy revealed diffuse infiltration of the bone marrow by urothelial cancer. The case illustrates the importance of fully investigating otherwise unexplained clinical findings in patients with clinically localized urothelial cancer prior to curative intent surgery. PMID:26793516

  4. Bone marrow cells other than stem cells seed the bone marrow after rescue transfusion of fatally irradiated mice

    SciTech Connect

    Cronkite, E.P.; Inoue, T.; Bullis, J.E.

    1987-12-01

    In a previous publication, iodinated deoxyuridine (/sup 125/IUdR) incorporation data were interpreted as indicating that spleen colony-forming units (CFU-S) in DNA synthesis preferentially seeded bone marrow. In the present studies, the CFU-S content of marrow from irradiated, bone-marrow transfused mice was directly determined. Pretreatment of the transfused cells with cytocidal tritiated thymidine resulted in an insignificant diminution in CFU-S content when compared with nontritiated thymidine pretreatment, implying that there is no preferential seeding. The /sup 125/IUdR incorporation data have been reinterpreted as being a result of the proliferation of other progenitor cells present that have seeded the bone marrow.

  5. Long-term survival of murine allogeneic bone marrow chimeras: effect of anti-lymphocyte serum and bone marrow dose

    SciTech Connect

    Norin, A.J.; Emeson, E.E.; Veith, F.J.

    1981-02-01

    Graft-vs-host disease (GVHD) and failure of donor stem cells to engraft permanently are two major obstacles to successful bone marrow transplantation. The effect of a single large dose of anti-lymphocyte serum (ALS) on mice receiving various numbers of H-2 incompatible bone marrow cells was evaluated. Most animals receiving lethal total body irradiation (TBI) and allogeneic marrow died within 45 days due to GVHD. Mice that were given ALS 6 to 24 h before TBI and bone marrow 24 h after irradiation survived in good health for more than 200 days. These cell preparations caused lethal GVHD in third party mice indicating that the lack of alloreactivity was specific to the strain in which the unresponsiveness was originally induced.

  6. Usefulness of bone marrow imaging in childhood malignancies

    SciTech Connect

    Oseas, R.S.; Siddiqui, A.R.; Wellman, H.N.; Baehner, R.L.

    1982-08-01

    Two hundred six /sup 99m/Tc sulfur colloid bone marrow scans in 110 pediatrics patients were reviewed. The normal distribution of sulfur colloid in the lower extremities in various age groups was established. There was progressive loss of uptake with increasing age from less than two years to greater than ten years. Tumor replacement was seen as regions of decreased radioactivity, and the extent of the scan defect paralleled the response of the disease to therapy. Both chemotherapy and irradiation resulted in an extension of the /sup 99m/Tc SC to peripheral marrow sites. In irradiated areas, marrow scan defects were demonstrated and generally recovered normal activity by six months after the completion of therapy. Marrow scan abnormalities caused by tumor replacement were present in four patients despite normal bone scans and radiographs. Ultimate confirmation of tumor involvement was by needle aspiration or biopsy. Persistent marrow defects were seen in two patients with neuroblastoma who had remission of their disease: biopsy revealed myelofibrosis. /sup 99m/Tc sulfur colloid bone marrow scanning is a sensitive monitor of altered marrow activity associated with pediatric hematologic or oncologic diseases.

  7. Cell survival kinetics in peripheral blood and bone marrow during total body irradiation for marrow transplantation

    SciTech Connect

    Shank, B.; Andreeff, M.; Li, D.

    1983-11-01

    Cell survival kinetics in both peripheral blood and in bone marrow have been studied over the time course of hyperfractionated total body irradiation (TBI) for bone marrow transplantation. Our unique TBI regimen allows the study of the in vivo radiation effect uncomplicated by prior cyclophosphamide, since this agent is given after TBI in our cytoreduction scheme. Peripheral blood cell concentrations were monitored with conventional laboratory cell counts and differentials. Absolute bone marrow cell concentrations were monitored by measuring cell concentrations in an aspirate sample and correcting for dilution with blood by a cell cycle kinetic method using cytofluorometry. For lymphocytes in peripheral blood in patients in remission, the effective D/sub 0/ ranged from 373 rad in 10 children less than or equal to 10 y old, to 536 rad in the four patients between 11 to 17 y old, while n = 1.0 in all groups. There was no trend observed according to age. Granulocytes had a much higher effective D/sub 0/, approximately 1000 rad in vivo. Absolute nucleated cell concentration in marrow dropped slowly initially, due to an increased lymphocyte concentration in marrow during a concurrent drop in lymphocyte concentration in peripheral blood, but eventually fell on the last day of TBI ranging from 7 to 44% of the initial marrow nucleated cell concentration. Marrow myeloid elements, however, dropped continuously throughout the course of TBI.

  8. The microcirculation of bone and marrow in the diaphysis of the rat hemopoietic long bones.

    PubMed

    de Saint-Georges, L; Miller, S C

    1992-06-01

    The nature of the microcirculation of the diaphyseal portion of long bones and the adjacent bone marrow is poorly understood. The purpose of this study was to describe the blood supply in the diaphyseal cortex and the relationship of the bone vascular circulation to that of the bone marrow in the growing rat. India ink-gelatin was infused in the arterial system of 3-month-old rats and the vascularization was determined from histological sections. In some studies the periosteal circulation was blocked but the nutrient and metaphyseal arteriole systems were left intact. In the growing rat, most of the vascular flow appears to be centripetally through the diaphyseal cortex and this appears to be the primary blood supply for the adjacent bone marrow. The India ink traversed the cortex and entered the marrow through osteal canals at the endocortical surface. At the marrow-endocortical bone surface interface, ink exiting from the osteal canals filled the adjacent marrow sinusoids in what appeared as "bush-like" structures. From the bone marrow the ink appeared to drain into the central vein. Some arterioles from the nutrient system were found to penetrate the inner two thirds of the cortical bone and then re-enter the bone marrow. The centripetal flow of blood and the importance of the cortical flow for perfusion of the hemopoietic tissue was further documented when periosteal flow was obstructed. In this situation, the cortical bone and adjacent bone marrow were not perfused while the nutrient system and central vein were filled with ink.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1605383

  9. Understanding donors' motivations: a study of unrelated bone marrow donors.

    PubMed

    Switzer, G E; Dew, M A; Butterworth, V A; Simmons, R G; Schimmel, M

    1997-07-01

    Medical advances in bone marrow transplantation techniques and immunosuppressive medications have dramatically increased the number of such transplants performed each year, and consequently, the demand for bone marrow from unrelated donors. Although physiological aspects of bone marrow donation have been thoroughly investigated, very few studies have examined psychosocial factors that may impact individuals' donation decisions and outcomes. To examine one particular set of donor psychosocial issues, this study investigated motives for bone marrow donation among 343 unrelated bone marrow donors who donated through the National Marrow Donor Program. Six distinct types of donor motives were identified from open-ended questionnaire responses. Donors most frequently reported motives reflecting some awareness of both the costs (to themselves) and potential benefits (to themselves and the recipient) of donation. A desire to act in accordance with social or religious precepts, expected positive feelings about donating, empathy for the recipient, and the simple desire to help another person were also commonly cited reasons for donating. Among a series of donor background characteristics, donors' gender was the variable most strongly associated with motive type; women were most likely to cite expected positive feelings, empathy, and the desire to help someone. Central study findings indicated that donor motives predicted donors reactions to donation even after the effects of donor background characteristics (including gender) were controlled. Donors who reported exchange motives (weighing costs and benefits) and donors who reported simple (or idealized) helping motives experienced the donation as less positive in terms of higher predonation ambivalence and negative postdonation psychological reactions than did remaining donors. Donors who reported positive feeling and empathy motives had the most positive donation reactions in terms of lower ambivalence, and feeling like

  10. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    PubMed Central

    Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2005-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting. PMID:12567137

  11. Hematopoietic bone marrow recovery after radiation therapy: MRI evaluation

    SciTech Connect

    Casamassima, F.; Ruggiero, C.; Caramella, D.; Tinacci, E.; Villari, N.; Ruggiero, M. )

    1989-05-01

    Magnetic resonance imaging (MRI) is able to detect the increase of adipocytes in the hematopoietic bone marrow that occurs as a consequence of radiotherapy and is indicative of the loss of myeloid tissue. By monitoring this process, it is also possible to determine the recovery of the bone marrow. The amount of viable hematopoietic tissue plays a fundamental role in determining whether the patient is able to undergo further antineoplastic therapy, particularly chemotherapy. We examined 35 patients who had been treated with radiotherapy for Hodgkin's lymphoma (12), uterine cervix carcinoma (nine), ovarian dysgerminoma (six), testicular seminoma (four), and non-Hodgkin's lymphoma (four). We observed that radiation-induced modifications of the MRI pattern in the bone marrow are tightly linked to two parameters; the administered radiation dose and the length of time passed after the treatment. Bone marrow recovery was observed only when patients were treated with doses lower than 50 Gy. The earlier radiation-induced modifications of the bone marrow MRI pattern occurred 6 to 12 months after irradiation, and they were most evident 5 to 6 years after the treatment. From 2 to 9 years after radiotherapy, we observed partial recovery. Complete recovery, when it occurred, was observed only 10 to 23 years after the treatment. Our results indicate that MRI studies are likely to be useful in the assessment of radiation-induced injuries.

  12. Lasting engraftment of histoincompatible bone marrow cells in dogs

    SciTech Connect

    Vriesendorp, H.M.; Klapwijk, W.M.; van Kessel, A.M.C.; Zurcher, C.; van Bekkum, D.W.

    1981-05-01

    Conditioning protocols were tested for their efficacy in increasng the incidence of engraftment of histoincompatible dog bone marrow cells. Cyclophosphamide and total body irradiation (TBI), Corynebacterium parvum and TBI, a 3- or 5-day delayed transfusion of bone marrow cells after TBI, or an increase in the number of donor bone marrow cells or lymphocytes appeared to be ineffective. These protocols were previously reported to promote recovery of splenic hemopoiesis in mice in short-term assays. The noted discrepancy between studies with mice and dogs invalidated allogeneic resistance as measured in the mouse spleen assay as a model for bone marrow allograft rejection. Intravenous treatment with silica particles or L-asparaginase did improve the engraftment rate after 7.5 Gy TBI. Low efficiency and significant extra toxicity restrict the applicability of these procedures. The most promising conditioning schedule found appeared to be two fractions of 6.0 Gy TBI separated by a 72-h interval. Prolonged survival was noted after transplantation of bone marrow cells from a one-DLA haplotype-mismatched donor. Possibilities for further improvement of this protocol are discussed.

  13. Lasting engraftment of histoincompatible bone marrow cells in dogs

    SciTech Connect

    Vriesendorp, H.M.; Klapwijk, W.M.; van Kessel, A.M.; Zurcher, C.; van Bekkum, D.W.

    1981-05-01

    Conditioning protocols were tested for their efficacy in increasing the incidence of engraftment of histoincompatible dog bone marrow cells. Cyclophosphamide and total body irradation (TBI), Corynebacterium parvum and TBI, a 3- or 5-day delayed transfusion of bone marrow cells after TBI, or an increase in the number of donor bone marrow cells or lymphocytes appeared to be ineffective. These protocols were previously reported to promote recovery of splenic hemopoiesis in mice in short-term assays. The noted discrepancy between studies with mice and dogs invalidated allogeneic resistance as measured in the mouse spleen assay as a model for bone marrow allograft rejection. Intravenous treatment with silica particles or L-asparaginase did improve the engraftment rate after 7.5 Gy TBI. Low efficiency and significant extra toxicity restrict the applicability of these procedures. The most promising conditioning schedule found appeared to be two fractions of 6.0 Gy TBI separated by a 72-hr interval. Prolonged survival was noted after transplantation of bone marrow cells from a one-DLA haplo-type-mismatched donor. Possibilities for further improvement of this protocol are discussed.

  14. Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia.

    PubMed

    Uy, Geoffrey L; Hsu, Yen-Michael S; Schmidt, Amy P; Stock, Wendy; Fletcher, Theresa R; Trinkaus, Kathryn M; Westervelt, Peter; DiPersio, John F; Link, Daniel C

    2015-12-01

    In acute lymphoblastic leukemia (ALL) the bone marrow microenvironment provides growth and survival signals that may confer resistance to chemotherapy. Granulocyte colony-stimulating factor (G-CSF) potently inhibits lymphopoiesis by targeting stromal cells that comprise the lymphoid niche in the bone marrow. To determine whether lymphoid niche disruption by G-CSF sensitizes ALL cells to chemotherapy, we conducted a pilot study of G-CSF in combination with chemotherapy in patients with relapsed or refractory ALL. Thirteen patients were treated on study; three patients achieved a complete remission (CR/CRi) for an overall response rate of 23%. In the healthy volunteers, G-CSF treatment disrupted the lymphoid niche, as evidenced by reduced expression of CXCL12, interleukin-7, and osteocalcin. However, in most patients with relapsed/refractory ALL expression of these genes was markedly suppressed at baseline. Thus, although G-CSF treatment was associated with ALL cell mobilization into the blood, and increased apoptosis of bone marrow resident ALL cells, alterations in the bone marrow microenvironment were modest and highly variable. These data suggest that disruption of lymphoid niches by G-CSF to sensitize ALL cells to chemotherapy may be best accomplished in the consolidation where the bone marrow microenvironment is more likely to be normal. PMID:26467815

  15. Bone marrow-derived macrophages and the CNS: An update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders.

    PubMed

    Larochelle, Antoine; Bellavance, Marc-André; Michaud, Jean-Philippe; Rivest, Serge

    2016-03-01

    The central nervous system (CNS) is a very unique system with multiple features that differentiate it from systemic tissues. One of the most captivating aspects of its distinctive nature is the presence of the blood brain barrier (BBB), which seals it from the periphery. Therefore, to preserve tissue homeostasis, the CNS has to rely heavily on resident cells such as microglia. These pivotal cells of the mononuclear lineage have important and dichotomous roles according to various neurological disorders. However, certain insults can overwhelm microglia as well as compromising the integrity of the BBB, thus allowing the infiltration of bone marrow-derived macrophages (BMDMs). The use of myeloablation and bone marrow transplantation allowed the generation of chimeric mice to study resident microglia and infiltrated BMDM separately. This breakthrough completely revolutionized the way we captured these 2 types of mononuclear phagocytic cells. We now realize that microglia and BMDM exhibit distinct features and appear to perform different tasks. Since these cells are central in several pathologies, it is crucial to use chimeric mice to analyze their functions and mechanisms to possibly harness them for therapeutic purpose. This review will shed light on the advent of this methodology and how it allowed deciphering the ontology of microglia and its maintenance during adulthood. We will also compare the different strategies used to perform myeloablation. Finally, we will discuss the landmark studies that used chimeric mice to characterize the roles of microglia and BMDM in several neurological disorders. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger. PMID:26432480

  16. Treatment of pressure ulcers with autologous bone marrow nuclear cells in patients with spinal cord injury

    PubMed Central

    Sarasúa, J González; López, S Pérez; Viejo, M Álvarez; Basterrechea, M Pérez; Rodríguez, A Fernández; Gutiérrez, A Ferrero; Gala, J García; Menéndez, Y Menéndez; Augusto, D Escudero; Arias, A Pérez; Hernández, J Otero

    2011-01-01

    Context Pressure ulcers are especially difficult to treat in patients with spinal cord injury (SCI) and recurrence rates are high. Prompted by encouraging results obtained using bone marrow stem cells to treat several diseases including chronic wounds, this study examines the use of autologous stem cells from bone marrow to promote the healing of pressure ulcers in patients with SCI. Objective To obtain preliminary data on the use of bone marrow mononuclear cells (BM-MNCs) to treat pressure ulcers in terms of clinical outcome, procedure safety, and treatment time. Participants Twenty-two patients with SCI (19 men, 3 women; mean age 56.41 years) with single type IV pressure ulcers of more than 4 months duration. Interventions By minimally invasive surgery, the ulcers were debrided and treated with BM-MNCs obtained by Ficoll density gradient separation of autologous bone marrow aspirates drawn from the iliac crest. Results In 19 patients (86.36%), the pressure ulcers treated with BM-MNCs had fully healed after a mean time of 21 days. The number of MNCs isolated was patient dependent, although similar clinical outcomes were observed in each case. Compared to conventional surgical treatment, mean intra-hospital stay was reduced from 85.16 to 43.06 days. Following treatment, 5 minutes of daily wound care was required per patient compared to 20 minutes for conventional surgery. During a mean follow-up of 19 months, none of the resolved ulcers recurred. Conclusions Our data indicate that cell therapy using autologous BM-MNCs could be an option to treat type IV pressure ulcers in patients with SCI, avoiding major surgical intervention. PMID:21756569

  17. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants.

    PubMed

    Birmingham, E; Kreipke, T C; Dolan, E B; Coughlin, T R; Owens, P; McNamara, L M; Niebur, G L; McHugh, P E

    2015-04-01

    Low magnitude high frequency (LMHF) loading has been shown to have an anabolic effect on trabecular bone in vivo. However, the precise mechanical signal imposed on the bone marrow cells by LMHF loading, which induces a cellular response, remains unclear. This study investigates the influence of LMHF loading, applied using a custom designed bioreactor, on bone adaptation in an explanted trabecular bone model, which isolated the bone and marrow. Bone adaptation was investigated by performing micro CT scans pre and post experimental LMHF loading, using image registration techniques. Computational fluids dynamic models were generated using the pre-experiment scans to characterise the mechanical stimuli imposed by the loading regime prior to adaptation. Results here demonstrate a significant increase in bone formation in the LMHF loaded group compared to static controls and media flow groups. The calculated shear stress in the marrow was between 0.575 and 0.7 Pa, which is within the range of stimuli known to induce osteogenesis by bone marrow mesenchymal stem cells in vitro. Interestingly, a correlation was found between the bone formation balance (bone formation/resorption), trabecular number, trabecular spacing, mineral resorption rate, bone resorption rate and mean shear stresses. The results of this study suggest that the magnitude of the shear stresses generated due to LMHF loading in the explanted bone cores has a contributory role in the formation of trabecular bone and improvement in bone architecture parameters. PMID:25281407

  18. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Jimi, Eijiro

    2016-01-01

    Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment. PMID:27298623

  19. Modeling Selective Elimination of Quiescent Cancer Cells from Bone Marrow

    PubMed Central

    Cavnar, Stephen P.; Rickelmann, Andrew D.; Meguiar, Kaille F.; Xiao, Annie; Dosch, Joseph; Leung, Brendan M.; Cai Lesher-Perez, Sasha; Chitta, Shashank; Luker, Kathryn E.; Takayama, Shuichi; Luker, Gary D.

    2015-01-01

    Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer. PMID:26408255

  20. Whole bone marrow irradiation for the treatment of multiple myeloma

    SciTech Connect

    Coleman, M.; Saletan, S.; Wolf, D.; Nisce, L.; Wasser, J.; McIntyre, O.R.; Tulloh, M.

    1982-04-01

    Nine patients with multiple myeloma were treated with whole bone marrow irradiation. Six had heavily pretreated disease refractory to chemotherapy. Three had stable disease lightly pretreated by chemotherapy. A modification of the ''three and two'' total nodal radiation technique was employed. Although varying and often severe treatment related cytopenia occurred, infectious complications, clinical bleeding, and nonhematalogic complications were minimal. Five of nine patients showed a decrease in monoclonal protein components, and one showed an increase during treatment. These preliminary results indicate that a reduction of tumor cell burden may occur in patients following whole bone marrow irradiation and that the technique is feasible. Whole bone marrow irradiation combined with chemotherapy represents a new conceptual therapeutic approach for multiple myeloma.

  1. P-glycoprotein expression in normal and reactive bone marrows.

    PubMed Central

    Hegewisch-Becker, S.; Fliegner, M.; Tsuruo, T.; Zander, A.; Zeller, W.; Hossfeld, D. K.

    1993-01-01

    The expression of mdr1 gene product P-glycoprotein (P-gp) was investigated in 53 normal and reactive bone marrows by means of immunocytochemistry, using the monoclonal antibody (mAb) C219 and the alkaline phosphatase anti-alkaline phosphatase method. In a limited number of patients, data were confirmed by using the mAb MRK16 or a polymerase chain reaction assay for mdr1 gene expression. There was no history of prior chemotherapy or any malignancy in this group. Bone marrow aspirates were obtained as part of a routine diagnostic programme in bone marrow donors or in patients presenting with a variety of diagnoses such as unexplained gammopathy, fever, anaemia, other changes in peripheral blood smear, rheumatoid arthritis, vasculitis, or urticaria pigmentosa. Morphologically the bone marrow was normal in 23 patients, a megaloblastic erythropoiesis was seen in two patients and unspecific changes were seen in 28 patients. Twenty-seven of 53 samples were found to be positive for P-gp expression with the percentage of positive cells ranging from 2%-80% (mean = 24%). With a cutoff point of 10%, five of 23 normal (22%) and 13 of 28 reactive bone marrows (46%) were considered positive for P-gp expression. There was no obvious correlation between diagnosis or age and P-gp expression. Additional staining for the early surface marker CD-34 was performed in 12 samples, with none of them revealing more than 1% positivity. Since P-gp expression has so far been described only in CD-34 positive bone marrow cells, data suggest that P-gp expression may be reinduced in CD-34 negative cells under conditions which remain to be determined. Images Figure 1 Figure 2 PMID:8094974

  2. Hematogones: a multiparameter analysis of bone marrow precursor cells.

    PubMed

    Longacre, T A; Foucar, K; Crago, S; Chen, I M; Griffith, B; Dressler, L; McConnell, T S; Duncan, M; Gribble, J

    1989-02-01

    Morphologically distinct lymphoid cells with homogeneous, condensed chromatin and scant cytoplasm can be observed in large numbers in the bone marrow of children with a variety of hematologic and nonhematologic disorders. In some patients, these cells may account for greater than 50% of the bone marrow cells, creating a picture that can be confused with acute lymphoblastic leukemia (ALL) or metastatic tumor. Although originally called hematogones (HGs), a variety of other names have been proposed for these unique cells. The clinical significance of expanded HGs has not been resolved, and the biologic features of these cells are incompletely described. In this study, we correlate the clinical, morphologic, cytochemical, flow cytometric, molecular, and cytogenetic properties of bone marrow samples from 12 children with substantial numbers of HGs (range 8% to 55% of bone marrow cells). Diagnoses in these patients included anemia, four; neutropenia, one; anemia and neutropenia, one; idiopathic thrombocytopenic purpura, two; retinoblastoma, two; Ewing's sarcoma, one; and germ cell tumor, one. Flow cytometric analyses of bone marrow cells demonstrated a spectrum extending from early B-cell precursors (CD10+, CD19+, TdT+, HLA-Dr+) to mature surface immunoglobulin-bearing B cells in these patients, corroborating our morphologic impression of HGs, intermediate forms, and mature lymphocytes. DNA content was normal, and no clonal abnormality was identified by either cytogenetic or immunoglobulin and T-cell receptor (TCR) gene rearrangement studies. Follow-up ranged from 3 months to 3 years. None of the patients has developed acute leukemia or bone marrow involvement by solid tumor. The possible role of HGs in immune recovery and hematopoiesis is presented. PMID:2917189

  3. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors

    PubMed Central

    Green, Danielle E.; Rubin, Clinton T.

    2014-01-01

    The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941

  4. Inherited bone marrow failure syndromes in adolescents and young adults.

    PubMed

    Wilson, David B; Link, Daniel C; Mason, Philip J; Bessler, Monica

    2014-09-01

    The inherited bone marrow failure syndromes are a diverse group of genetic diseases associated with inadequate production of one or more blood cell lineages. Examples include Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, thrombocytopenia absent radii syndrome, severe congenital neutropenia, and Shwachman-Diamond syndrome. The management of these disorders was once the exclusive domain of pediatric subspecialists, but increasingly physicians who care for adults are being called upon to diagnose or treat these conditions. Through a series of patient vignettes, we highlight the clinical manifestations of inherited bone marrow failure syndromes in adolescents and young adults. The diagnostic and therapeutic challenges posed by these diseases are discussed. PMID:24888387

  5. Immune Cell Isolation from Mouse Femur Bone Marrow

    PubMed Central

    Liu, Xiaoyu; Quan, Ning

    2016-01-01

    The bone marrow is the site of hematopoesis and contains mixed population of blood cells including erythrocytes, granulocytes, monocytes, dendritic cells, lymphocytes and hematopoietic stem cells. The following protocol provides a simple and fast method for isolation of bone marrow immune cells (no erythrocytes) from mouse femurs with a yield of approximate 8 × 107 cells in 5 ml culture media (1.6 × 104 cells/μl). Further isolation or flow cytometric analysis might be required for study of specific immune cell types.

  6. Inherited bone marrow failure syndromes in adolescents and young adults

    PubMed Central

    Wilson, David B.; Link, Daniel C.; Mason, Philip J.; Bessler, Monica

    2015-01-01

    The inherited bone marrow failure syndromes are a diverse group of genetic diseases associated with inadequate production of one or more blood cell lineages. Examples include Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, thrombocytopenia absent radii syndrome, severe congenital neutropenia, and Shwachman-Diamond syndrome. The management of these disorders was once the exclusive domain of pediatric subspecialists, but increasingly physicians who care for adults are being called upon to diagnose or treat these conditions. Through a series of patient vignettes, we highlight the clinical manifestations of inherited bone marrow failure syndromes in adolescents and young adults. The diagnostic and therapeutic challenges posed by these diseases are discussed. PMID:24888387

  7. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC).

    PubMed

    Huh, Sung Woo; Shetty, Asode Ananthram; Ahmed, Saif; Lee, Dong Hwan; Kim, Seok Jung

    2016-01-01

    Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-staged arthroscopic procedure. This method combines a modified microfracture technique with the application of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis. PMID:27489409

  8. Growth Hormone Regulates the Balance Between Bone Formation and Bone Marrow Adiposity

    PubMed Central

    Menagh, Philip J; Turner, Russell T; Jump, Donald B; Wong, Carmen P; Lowry, Malcolm B; Yakar, Shoshana; Rosen, Clifford J; Iwaniec, Urszula T

    2010-01-01

    Cancellous bone decreases and bone marrow fat content increases with age. Osteoblasts and adipocytes are derived from a common precursor, and growth hormone (GH), a key hormone in integration of energy metabolism, regulates the differentiation and function of both cell lineages. Since an age-related decline in GH is associated with bone loss, we investigated the relationship between GH and bone marrow adiposity in hypophysectomized (HYPOX) rats and in mice with defects in GH signaling. HYPOX dramatically reduced body weight gain, bone growth and mineralizing perimeter, serum insulin-like growth factor 1 (IGF-1) levels, and mRNA levels for IGF-1 in liver and bone. Despite reduced body mass and adipocyte precursor pool size, HYPOX resulted in a dramatic increase in bone lipid levels, as reflected by increased bone marrow adiposity and bone triglyceride and cholesterol content. GH replacement normalized bone marrow adiposity and precursor pool size, as well as mineralizing perimeter in HYPOX rats. In contrast, 17β -estradiol, IGF-1, thyroxine, and cortisone were ineffective. Parathyroid hormone (PTH) reversed the inhibitory effects of HYPOX on mineralizing perimeter but had no effect on adiposity. Finally, bone marrow adiposity was increased in mice deficient in GH and IGF-1 but not in mice deficient in serum IGF-1. Taken together, our findings indicate that the reciprocal changes in bone and fat mass in GH signaling-deficient rodents are not directly coupled with one another. Rather, GH enhances adipocyte as well as osteoblast precursor pool size. However, GH increases osteoblast differentiation while suppressing bone marrow lipid accumulation. © 2010 American Society for Bone and Mineral Research PMID:19821771

  9. Significance of bone marrow edema in pathogenesis of rheumatoid arthritis

    PubMed Central

    Sudoł-Szopińska, Iwona; Kontny, Ewa; Maśliński, Włodzimierz; Prochorec-Sobieszek, Monika; Warczyńska, Agnieszka; Kwiatkowska, Brygida

    2013-01-01

    Summary Assessing the pathology of the synovium, its thickening and increased vascularity through ultrasound and magnetic resonance examinations (more often an ultrasound study alone) is still considered a sensitive parameter in the diagnosis of rheumatoid arthritis and in monitoring of treatment efficacy. Magnetic resonance studies showed that, aside from the joint pannus, the subchondral bone tissue constitutes an essential element in the development of rheumatoid arthritis. Bone marrow edema correlates with inflammation severity, joint destruction, clinical signs and symptoms of rheumatoid arthritis, and thus is considered a predictor of rapid radiological progression of the disease. The newest studies reveal that bone marrow edema may be a more sensitive indicator of the response to therapy than appearance of the synovium. Bone marrow edema presents with increased signal in T2-weighted images, being most visible in fat saturation or IR sequences (STIR, TIRM). On the other hand, it is hypointense and less evident in T1-weighted images. It becomes enhanced (hyperintense) after contrast administration. Histopathological studies confirmed that it is a result of bone inflammation (osteitis/osteomyelitis), i.e. replacememt of bone marrow fat by inflammatory infiltrates containing macrophages, T lymphocytes, B lymphocytes, plasma cells and osteoclasts. Bone marrow edema appears after a few weeks from occurrence of symptoms and therefore is considered an early marker of inflammation. It correlates with clinical assessment of disease activity and elevated markers of acute inflammatory phase, i.e. ESR and CRP. It is a reversible phenomenon and may become attenuated due to biological treatment. It is considered a “herald” of erosions, as the risk of their formation is 6-fold higher in sites where BME was previously noted PMID:23493495

  10. Comparison of Uncultured Marrow Mononuclear Cells and Culture-Expanded Mesenchymal Stem Cells in 3D Collagen-Chitosan Microbeads for Orthopedic Tissue Engineering

    PubMed Central

    Wise, Joel K.; Alford, Andrea I.; Goldstein, Steven A.

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25×106 cells/mL, containing an estimated 5×104 MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2×105 cells/mL) were added to a 65–35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the microbead

  11. The survival of cryopreserved human bone marrow stem cells.

    PubMed

    Hill, R S; Mackinder, C A; Postlewaight, B F; Blacklock, H A

    1979-07-01

    Two methods for cryopreservation of bone marrow stem cells were compared using bone marrow obtained from 36 patients. Included in this group were 21 persons with the diagnosis of leukaemia including 14 either with acute myeloid or lymphoblastic leukaemia in remission following intensive remission induction chemotherapy. After freeze-preservation and reconstitution, all marrow samples were tested for nucleated cell (NC) recovery and grown on agar to assess colony forming units (CFUC) and cluster forming units in culture (CluFUc). A slow dilution reconstitution method using freezing media containing AB negative plasma resulted in recovery of 85% of the CFUc activity of fresh marrow. This result was significantly better than the 47% CFUc recovery obtained when freezing media without plasma and a rapid dilution reconstitution technique were used. NC recoveries following slow dilution (51%) and rapid dilution (44%) were not significantly different. CluFUc were disproportionately reduced compared with CFUc although yielding similar results with both methods (26% and 32%). No correlation was found for either method between CFUc and NC recovery or between CFUc and CluFUc recovery in cryopreserved bone marrow. PMID:392422

  12. Local injection of autologous bone marrow cells to regenerate muscle in patients with traumatic brachial plexus injury

    PubMed Central

    Hogendoorn, S.; Duijnisveld, B. J.; van Duinen, S. G.; Stoel, B. C.; van Dijk, J. G.; Fibbe, W. E.; Nelissen, R. G. H. H.

    2014-01-01

    Objectives Traumatic brachial plexus injury causes severe functional impairment of the arm. Elbow flexion is often affected. Nerve surgery or tendon transfers provide the only means to obtain improved elbow flexion. Unfortunately, the functionality of the arm often remains insufficient. Stem cell therapy could potentially improve muscle strength and avoid muscle-tendon transfer. This pilot study assesses the safety and regenerative potential of autologous bone marrow-derived mononuclear cell injection in partially denervated biceps. Methods Nine brachial plexus patients with insufficient elbow flexion (i.e., partial denervation) received intramuscular escalating doses of autologous bone marrow-derived mononuclear cells, combined with tendon transfers. Effect parameters included biceps biopsies, motor unit analysis on needle electromyography and computerised muscle tomography, before and after cell therapy. Results No adverse effects in vital signs, bone marrow aspiration sites, injection sites, or surgical wound were seen. After cell therapy there was a 52% decrease in muscle fibrosis (p = 0.01), an 80% increase in myofibre diameter (p = 0.007), a 50% increase in satellite cells (p = 0.045) and an 83% increase in capillary-to-myofibre ratio (p < 0.001) was shown. CT analysis demonstrated a 48% decrease in mean muscle density (p = 0.009). Motor unit analysis showed a mean increase of 36% in motor unit amplitude (p = 0.045), 22% increase in duration (p = 0.005) and 29% increase in number of phases (p = 0.002). Conclusions Mononuclear cell injection in partly denervated muscle of brachial plexus patients is safe. The results suggest enhanced muscle reinnervation and regeneration. Cite this article: Bone Joint Res 2014;3:38–47. PMID:24565688

  13. Total body irradiation in bone marrow transplantation: the influence of fractionation and delay of marrow infusion

    SciTech Connect

    Lichter, A.S.; Tracy, D.; Lam, W.C.; Order, S.E.

    1980-03-01

    Bone marrow transplantation (BMT) after total body irradiation (TBI) and cyclophosphamide is being employed increasingly in the therapy of end stage leukemia. Interstitial pneumonitis (IP) represents a major acute toxicity after allogeneic transplantation. A more rapid reconstitution of lymphoid organs and bone marrow post transplant may result in increased immune competence and hence fewer opportunistic pulmonary infections and IP. By delaying the infusion of marrow to 72 hr after TBI (1250 rad at 7.5 rad/min) instead of the customary 24 hr, we can demonstrate an increase in initial repopulation of thymus, spleen and bone marrow, with syngeneic transplants in Lewis rats. Interstitial pneumonitis may also be caused, in part, by the pulmonary toxicity of large single exposures of TBI. Clinical and laboratory data suggest that fractionated TBI may be less toxic to the lung. When fractionated TBI (625 rad x 2, 7.5 rad/min) is compared to single dose TBI (1250 rad, 7.5 rad/min), and increased initial repopulation of lymphoid organs is observed when fractionated therapy is employed. Delay in marrow infusion and fractionation of TBI exposure may have clinical advantages in patients who receive BMT.

  14. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...

  15. Mesenchymal stem cells expressing GD2 and CD271 correlate with breast cancer-initiating cells in bone marrow

    PubMed Central

    Cohen, Evan N; Gao, Hui; Mego, Michal; Lee, Bang-Ning; Lodhi, Ashutosh; Cristofanilli, Massimo; Lucci, Anthony

    2011-01-01

    Purpose The bone marrow microenvironment is considered a critical component in the dissemination and fate of cancer cells in the metastatic process. We explored the possible correlation between bone marrow mesenchymal stem cells (BM-MSC) and disseminated breast cancer-initiating cells (BCIC) in primary breast cancer patients. Results The percentages of BCIC (Aldefluor+CD326+CD44+CD24−) correlated with the percentages of BM-MSC, either CD45−GD2+CD200+CD271+ (Kedall's τ = 0.684, p = 0.004) or CD45−GD2+CD271+ in the bone marrow (Kedall's τ = 0.464, p = 0.042). Experimental Design Bone marrow mononuclear cells (BM-MNC) were collected at the time of primary surgery in 12 breast cancer patients. BM-MNC was immunophenotyped and BCIC was defined as epithelial cells (CD326+CD45−) with a “stem-like” phenotype (CD44+CD24low/−, ALDH activity). BM-MSC was defined as CD34−CD45− cells that co-expressed GD2, CD271 and/or CD200 within CD326-depleted BM-MNC. Conclusions There was a positive correlation between mesenchymal stem cells expressing GD2 and CD271 and breast cancer-initiating cells in BM of patients with primary breast cancer. PMID:21358274

  16. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    NASA Astrophysics Data System (ADS)

    Benkő, Klára; Pintye, Éva; Szabó, Boglárka; Géresi, Krisztina; Megyeri, Attila; Benkő, Ilona

    2008-12-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ—irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  17. Body/bone-marrow differential-temperature sensor

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  18. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis

    PubMed Central

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402

  19. Treating Families of Bone Marrow Recipients and Donors

    ERIC Educational Resources Information Center

    Cohen, Marie; And Others

    1977-01-01

    Luekemia and aplastic anemia are beginning to be treated by bone marrow transplants, involving donors and recipients from the same family. Such intimate involvement in the patient's life and death struggles typically produces a family crisis and frequent maladaptive responses by various family members. (Author)

  20. [Bone marrow biopsy: processing and use of molecular techniques].

    PubMed

    Quintanilla-Martinez, L; Tinguely, M; Bonzheim, I; Fend, F

    2012-11-01

    The rapid technological development in diagnostic pathology, especially of immunohistochemical and molecular techniques, also has a significant impact on diagnostic procedures for the evaluation of bone marrow trephine biopsies. The necessity for optimal morphology, combined with preservation of tissue antigens and nucleic acids on one hand and the wish for short turnaround times on the other hand require careful planning of the workflow for fixation, decalcification and embedding of trephines. Although any kind of bone marrow processing has its advantages and disadvantages, formalin fixation followed by EDTA decalcification can be considered a good compromise, which does not restrict the use of molecular techniques. Although the majority of molecular studies in haematological neoplasms are routinely performed on bone marrow aspirates or peripheral blood cells, there are certain indications, in which molecular studies such as clonality determination or detection of specific mutations need to be performed on the trephine biopsy. Especially, the determination of B- or T-cell clonality for the diagnosis of lymphoid malignancies requires stringent quality controls and knowledge of technical pitfalls. In this review, we discuss technical aspects of bone marrow biopsy processing and the application of diagnostic molecular techniques. PMID:23085692

  1. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    SciTech Connect

    Benko', Klara; Pintye, Eva; Szabo, Boglarka; Geresi, Krisztina; Megyeri, Attila; Benko, Ilona

    2008-12-08

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of {gamma}--irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD{sub 50} values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  2. Therapy Effects of Bone Marrow Stromal Cells on Ischemic Stroke

    PubMed Central

    Ye, Xinchun; Hu, Jinxia; Cui, Guiyun

    2016-01-01

    Stroke is the second most common cause of death and major cause of disability worldwide. Recently, bone marrow stromal cells (BMSCs) have been shown to improve functional outcome after stroke. In this review, we will focus on the protective effects of BMSCs on ischemic brain and the relative molecular mechanisms underlying the protective effects of BMSCs on stroke. PMID:27069533

  3. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.

    PubMed

    Kurhekar, Manish; Deshpande, Umesh

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402

  4. A Dosimetric Study of Radionuclide Therapy for Bone Marrow Ablation.

    NASA Astrophysics Data System (ADS)

    Bayouth, John Ellis

    In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 (166Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane -1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of 166Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of 166 Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of 166 Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head. A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six 166 Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with

  5. Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration.

    PubMed

    Dennis, James E; Esterly, Kelly; Awadallah, Amad; Parrish, Christopher R; Poynter, Gregory M; Goltry, Kristin L

    2007-10-01

    Preclinical and clinical studies have demonstrated the ability of bone marrow derived stem and progenitor cells to regenerate many tissues, including bone. Methods to expand or enrich progenitors from bone marrow are common; however, these methods include many steps not amenable to clinical use. A closed automated cell production culture system was developed for clinical-scale ex vivo production of bone marrow-derived stem and progenitor cells for hematopoietic reconstitution. The current study tested the ability of this bioreactor system to produce progenitor cells, termed tissue repair cells (TRC), possessing osteogenic potential. Three TRC formulations were evaluated: (a) cells cultured without exogenous cytokines (TRC); (b) cells cultured with exogenous cytokines (TRC-C); and (c) an adherent subset of TRC-C (TRC-C(Ad)). Starting human bone marrow mononuclear cells (BM MNC) and TRC products were characterized for the expression of cell surface markers, in vitro colony forming ability, and in vivo osteogenic potential. Results showed significant expansion of mesenchymal progenitors (CD90+, CD105+, and CD166+) in each TRC formulation. In vivo bone formation, measured by histology, was highest in the TRC group, followed by TRC-C(Ad) and TRC-C. The TRC product outperformed starting BM MNC and had equivalent bone forming potential to purified MSCs at the same cell dose. Post hoc analysis revealed that the presence of CD90+, CD105+, and CD166+ correlated strongly with in vivo bone formation scores (r(2) > .95). These results demonstrate that this bioreactor system can be used to generate, in a single step, a population of progenitor cells with potent osteogenic potential. Disclosure of potential conflicts of interest is found at the end of this article. PMID:17585167

  6. Nonspecific suppressor T cells cause decreased mixed lymphocyte culture reactivity in bone marrow transplant patients

    SciTech Connect

    Harada, M.; Ueda, M.; Nakao, S.; Kondo, K.; Odaka, K.; Shiobara, S.; Matsue, K.; Mori, T.; Matsuda, T.

    1986-07-15

    Decreased reactivity in mixed lymphocyte culture (MLC) was observed in patients within 1 yr after allogeneic and autologous bone marrow transplantation. Suppressor activity of peripheral blood mononuclear cells (PBMC) from transplant patients was studied by adding these cells as modulator cells to a bidirectional MLC with cells from normal individuals. PBMC from transplant patients markedly suppressed MLC reactivity in a dose-dependent manner. Suppressor activity was present in cells forming rosettes with sheep erythrocytes. Treatment of modulator cells with monoclonal antibodies against T cell differentiation antigens (OKT8, OKIa1) and complement completely abolished suppression of MLC. Suppressor activity was unaffected by 30 Gy irradiation. Suppressor activity declined gradually after transplantation and was inversely correlated with MLC reactivity of each patient at a significant level (p less than 0.01). These observations suggest that OKT8+ Ia+ radioresistant suppressor T cells play a role in the development of decreased MLC reactivity observed during the early post-transplant period.

  7. Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies.

    PubMed

    Lamghari, M; Almeida, M J; Berland, S; Huet, H; Laurent, A; Milet, C; Lopez, E

    1999-08-01

    There is frequently a loss of vertebral bone due to disease or aging. Nacre (mother of pearl from the oyster Pinctada maxima) stimulates bone cell differentiation and bone formation in vitro and in vivo. Experimental bone defects were prepared in the vertebrae of sheep and used to test the suitability of nacre as an injectable osteogenic biomaterial for treating vertebral bone loss. Twenty-one cavities were prepared in the first four upper lumbar vertebrae of 11 sheep and filled with nacre powder. The lumbar vertebrae were removed after 1 to 12 weeks, embedded undecalcified in methacrylate, and processed for histological studies. The nacre slowly dissolved and the experimental cavities contained a large active cell population. By 12 weeks, the experimental cavity was occupied by newly matured bone trabeculae in contact with or adjacent to the dissolving nacre. The functional new bone trabeculae were covered with osteoid lined with osteoblasts, indicating continuing bone formation. The in vitro study on rat bone marrow explants cultured with a water-soluble extract of the nacre organic matrix also resulted in the stimulation of osteogenic bone marrow cells with enhanced alkaline phosphatase activity. Thus, both the in vivo and in vitro findings suggest that nacre contains one or more signal molecules capable of activating osteogenic bone marrow cells. PMID:10458284

  8. Pressure and shear stress in trabecular bone marrow during whole bone loading.

    PubMed

    Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L

    2015-09-18

    Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology. PMID:26283413

  9. Bone marrow-derived stem cells and radiation response.

    PubMed

    Greenberger, Joel S; Epperly, Michael

    2009-04-01

    The recovery of tissues and organs from ionizing irradiation is critically dependent on the repopulation of resident stem cells, defined as the subset of cells with capacity for both self-renewal and differentiation. Stem cells of both hematopoietic and epithelial origin reside in defined areas of the cellular microenvironment (recently defined as the stem cell "niche"). Experiments using serial repopulation assays in serial generations of total body irradiated mice receiving transplanted marrow and in continuous bone marrow cultures both identified specific microanatomic sites that comprise the bone marrow stem cell niche. Supportive cells of the hematopoietic microenvironment not only contribute to stem cell repopulation capacity but also to the maintenance of their quiescent or nonproliferative state, which allows the most primitive hematopoietic stem cells to stay in a noncycling state protected from both direct ionizing radiation-induced cell-cycle phase-specific killing and indirect cytokine and free radical mediated killing. Recent evidence has defined both cell contact and humoral mechanisms of protection of hematopoietic stem cells by stromal cells. There is also recent evidence for multilineage differentiation capacity of cells of the hematopoietic microenvironment termed bone marrow stromal cells (mesenchymal stem cells). Both hematopoietic stem cells and mesenchymal stem cell populations have been shown to be involved in the repair of ionizing irradiation damage of distant epithelial as well as other hematopoietic sites through their capacity to migrate through the circulation. The radiobiology of these 2 bone marrow stem cell populations is the subject of intense investigation. This review defines the status of research in the areas of stem cell quiescence, niche contact, and migratory responses to ionizing irradiation. PMID:19249651

  10. Probabilistic Prediction of the Outcome of Bone-Marrow Transplantation

    PubMed Central

    Suermondt, H. Jacques; Amylon, Michael D.

    1989-01-01

    Bone-marrow transplantation is considered the treatment of choice for pediatric patients with recurring acute lymphoblastic leukemia, provided that a suitable donor is available. Many prognostic factors are known that help to predict the likely outcome of transplantation. We have implemented a system that applies probabilistic reasoning to the available data about individual patients to help determine the risk of recurrence and morbidity after transplantation, and to predict life expectancy. The resulting predictions can be used to decide whether marrow transplantation is the most desirable treatment modality for the patient.

  11. Bone marrow ablation followed by allogeneic marrow grafting during first complete remission of acute nonlymphocytic leukemia

    SciTech Connect

    Forman, S.J.; Spruce, W.E.; Farbstein, M.J.

    1983-03-01

    Of 33 patients who had undergone allogeneic bone marrow transplantation during first complete remission of acute nonlymphocytic leukemia, 21 patients have now been followed in continued complete remission for 6-64 mo (median greater than 18 mo) without maintenance chemotherapy. The median age of the surviving patients is 27 yr. Transplant-related complications occurring throughout the first year after marrow grafting were fatal in 7 patients, and leukemic recurrence led to the death of 5 patients. The actuarial long-term disease-free survival is 60% and the actuarial remission rate is 79%.

  12. CD34+ Cells Represent Highly Functional Endothelial Progenitor Cells in Murine Bone Marrow

    PubMed Central

    Yang, Junjie; Ii, Masaaki; Kamei, Naosuke; Alev, Cantas; Kwon, Sang-Mo; Kawamoto, Atsuhiko; Akimaru, Hiroshi; Masuda, Haruchika; Sawa, Yoshiki; Asahara, Takayuki

    2011-01-01

    Background Endothelial progenitor cells (EPCs) were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow. Methodology/Principal Findings CD34+ cells, c-Kit+/Sca-1+/Lin− (KSL) cells, c-Kit+/Lin− (KL) cells and Sca-1+/Lin− (SL) cells were isolated from mouse bone marrow mononuclear cells (BMMNCs) using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34+ cells showed the lowest EPC colony forming activity, CD34+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others. Conclusion These findings suggest that mouse CD34+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology. PMID:21655289

  13. Intracoronary infusion of a combination of bone marrow-derived stem cells in dogs

    PubMed Central

    Minguell, José J; Florenzano, Fernando M; Ramírez, Manuel R; Martínez, Ramón F; Lasala, Gabriel P

    2010-01-01

    BACKGROUND: Infusion of diverse types of bone marrow cells, as a source of endothelial progenitor cells (EPCs), into the ischemic myocardium is emerging as a promising therapy for coronary ischemia, probably mediated by the formation of new blood vessels. Studies have shown that while the procedure is safe and feasible, efficacy results are contentious. The investigators in the present preclinical translation study hypothesized that the infusion of a combination cell product consisting of EPCs and other cell types, such as mesenchymal stem cells, promotes the formation of more stable and mature blood vessels resulting in improved clinical outcomes. The safety and feasibility of the intracoronary infusion of such a cell combination was assessed in a canine model. METHODS: A mixture of canine autologous mononuclear cells (as the source of EPCs) and ex vivo-expanded bone marrow-derived mesenchymal stem cells or a placebo solution were intracoronarily infused into healthy dogs. Follow-up after cell/placebo infusion included an electrocardiogram, serum cardiac enzyme testing, a transthoracic echocardiography and a histopathological heart examination. RESULTS: On follow-up at all time points after infusion, no significant changes or abnormalities in vital signs, electrocardiogram, transthoracic echocardiography and heart histology were detected. CONCLUSIONS: From a clinical perspective, the safety and feasibility of the protocol used in the present animal study demonstrated clinical relevance and provided direct evidence supporting the intracoronary infusion of combination stem/progenitor cell products. PMID:20631864

  14. Donor origin of circulating endothelial progenitors after allogeneic bone marrow transplantation.

    PubMed

    Ikpeazu, C; Davidson, M K; Halteman, D; Browning, P J; Brandt, S J

    2000-01-01

    Endothelial cell precursors circulate in blood and express antigens found on hematopoietic stem cells, suggesting that such precursors might be subject to transplantation. To investigate, we obtained adherence-depleted peripheral blood mononuclear cells from 3 individuals who had received a sex-mismatched allogeneic bone marrow transplant (BMT) and cultured the cells on fibronectin-coated plates with endothelial growth factors. The phenotype of the spindle-shaped cells that emerged in culture was characterized by immunofluorescent staining, and the origin of the cells was determined using a polymerase chain reaction (PCR)-based assay for polymorphic short tandem repeats (STRs). The cells manifested a number of endothelial characteristics-such as von Wlllebrand factor, CD31, and Flk-1/KDR expression; Bandeiraea simplicifolia lectin 1 binding; and acetylated low-density lipoprotein uptake-but lacked expression of certain markers of activation or differentiation, including intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and the epitope for the anti-endothelial cell antibody P1H12. For each patient and at all time points studied (ranging from 5 to 52 months after transplantation), STR-PCR analysis showed that cultured cells and nucleated blood cells came exclusively from the bone marrow donor. These results demonstrate that circulating endothelial progenitors are both transplantable and capable of long-term repopulation of human allogeneic BMT recipients. PMID:10905767

  15. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms.

    PubMed

    Herroon, Mackenzie K; Rajagurubandara, Erandi; Hardaway, Aimalie L; Powell, Katelyn; Turchick, Audrey; Feldmann, Daniel; Podgorski, Izabela

    2013-11-01

    Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1β, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPARγ pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1β axis as a potential therapeutic target for this presently incurable disease. PMID:24240026

  16. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow

    PubMed Central

    Yu, Vionnie W.C.; Saez, Borja; Cook, Colleen; Lotinun, Sutada; Pardo-Saganta, Ana; Wang, Ying-Hua; Lymperi, Stefania; Ferraro, Francesca; Raaijmakers, Marc H.G.P.; Wu, Joy Y.; Zhou, Lan; Rajagopal, Jayaraj; Kronenberg, Henry M.; Baron, Roland

    2015-01-01

    Production of the cells that ultimately populate the thymus to generate α/β T cells has been controversial, and their molecular drivers remain undefined. Here, we report that specific deletion of bone-producing osteocalcin (Ocn)-expressing cells in vivo markedly reduces T-competent progenitors and thymus-homing receptor expression among bone marrow hematopoietic cells. Decreased intrathymic T cell precursors and decreased generation of mature T cells occurred despite normal thymic function. The Notch ligand DLL4 is abundantly expressed on bone marrow Ocn+ cells, and selective depletion of DLL4 from these cells recapitulated the thymopoietic abnormality. These data indicate that specific mesenchymal cells in bone marrow provide key molecular drivers enforcing thymus-seeding progenitor generation and thereby directly link skeletal biology to the production of T cell–based adaptive immunity. PMID:25918341

  17. Effects of prostaglandin on experimental bone malignancy and on scintigrams of bone and marrow. [Rabbits

    SciTech Connect

    Otsuka, N.; Ito, Y.; Nagai, K.; Terashima, H.; Yanagimoto, S.; Muranaka, A.

    1981-05-01

    The correlation between prostaglandin E (PgE) and scintigrams of bone (Tc-99m MDP) and bone marrow (Tc-99m SC) was investigated in normal and VX-2-bearing rabbits. PgE in plasma of normal rabbits was 486.2. In rabbits with VX-2 transplanted into femoral muscles, PgE was in the normal range unless the tumor invaded bone. PgE was not increase significantly in rabbits when the tumor was transplanted into the marrow cavity. When tumor invaded bone, PgE increassed markedly (to 1335). Elevation of PgE did not necessarily coincide with the appearance of positive bone scans. PgE in an indomethacin-treated group did not necessarily coincide with the appearance of positive bone scans. PgE in an indomethacin-treated group did not higher than in the untreated group. Indomethacin may suppress the local acceleration of calcium metabolism.

  18. Bone marrow and splenic histology in hairy cell leukaemia.

    PubMed

    Wotherspoon, Andrew; Attygalle, Ayoma; Mendes, Larissa Sena Teixeira

    2015-12-01

    Hairy cell leukaemia is a rare chronic neoplastic B-cell lymphoproliferation that characteristically involves blood, bone marrow and spleen with liver, lymph node and skin less commonly involved. Histologically, the cells have a characteristic appearance with pale/clear cytoplasm and round or reniform nuclei. In the spleen, the infiltrate involves the red pulp and is frequently associated with areas of haemorrhage (blood lakes). The cells stain for B-cell related antigens as well as with antibodies against tartrate-resistant acid phosphatase, DBA44 (CD72), CD11c, CD25, CD103, CD123, cyclin D1 and annexin A1. Mutation of BRAF -V600E is present and antibody to the mutant protein can be used as a specific marker. Bone marrow biopsy is essential in the initial assessment of disease as the bone marrow may be inaspirable or unrepresentative of degree of marrow infiltration as a result of the tumour associated fibrosis preventing aspiration of the tumour cell component. Bone marrow biopsy is important in the assessment of therapy response but in this context staining for CD11c and Annexin A1 is not helpful as they are also markers of myeloid lineage and identification of low level infiltration may be obscured. In this context staining for CD20 may be used in conjunction with morphological assessment and staining of serial sections for cyclin D1 and DBA44 to identify subtle residual infiltration. Staining for CD79a and CD19 is not recommended as these antibodies will identify plasma cells and can lead to over-estimation of disease. Staining for CD20 should not be used in patients following with anti-CD20 based treatments. Down regulation of cyclin D1 and CD25 has been reported in patients following BRAF inhibitor therapy and assessment of these antigens should not be used in this context. Histologically, hairy cell leukaemia needs to be distinguished from other B-cell lymphoproliferations associated with splenomegaly including splenic marginal zone lymphoma, splenic

  19. A novel method to isolate mesenchymal stem cells from bone marrow in a closed system using a device made by nonwoven fabric.

    PubMed

    Ito, Kinya; Aoyama, Tomoki; Fukiage, Kenichi; Otsuka, Seiji; Furu, Moritoshi; Jin, Yonghui; Nasu, Akira; Ueda, Michiko; Kasai, Yasunari; Ashihara, Eishi; Kimura, Shinya; Maekawa, Taira; Kobayashi, Akira; Yoshida, Shinya; Niwa, Hideo; Otsuka, Takanobu; Nakamura, Takashi; Toguchida, Junya

    2010-02-01

    Bone marrow stromal cells (BMSCs) include cells with multidirectional differentiation potential described as mesenchymal stem cells. For clinical use, it is important to develop a way to isolate BMSCs from bone marrow in a closed system without centrifugation. After screening 200 biomaterials, we developed a device containing a nonwoven fabric filter composed of rayon and polyethylene. The filter selectively traps BMSCs among mononuclear cells in bone marrow based on affinity, not cell size. The cells are then recovered by the retrograde flow. Using canine and human bone marrow cells, the biological properties of BMSCs isolated by the device were compared with those obtained by conventional methods using centrifugation. The total number isolated by the device was larger, as was the number of CD106(+)/STRO-1(+) double-positive cells. The cells showed osteogenic, chondrogenic, and adipogenic differentiation potential in vitro. Finally, the direct transplantation of cells isolated by the device without in vitro cultivation accelerated bone regeneration in a canine model of osteonecrosis in vivo. The proposed method is rapid and efficient, does not require a biological clean area, and will be useful for the clinical application of mesenchymal stem cells in bone marrow. PMID:19364273

  20. [Diagnosis and management of inherited bone marrow failure syndrome].

    PubMed

    Yabe, Miharu; Yabe, Hiromasa

    2015-10-01

    The inherited bone marrow failure syndromes (IBMFS) are rare disorders in which there is usually some form of bone marrow failure and typical changes in physical appearance, associated with a family history of the same disorder. Patients with IBMFS have a very high risk of developing myelodysplastic syndrome, acute myeloid leukemia, and solid tumors. The latest technology applied to the molecular pathogenesis of these disorders has led to identification of specific genetic mutations and now facilitates determining the appropriate diagnosis and management of afflicted patients. In this section, we describe physical and laboratory findings and management of the major IBMFS: Fanconi anemia, dyskeratosis congenita, Shwachman-Diamond syndrome, and Diamond Blackfan anemia. We also discuss their possible implications in the clinical features of Japanese patients. PMID:26458429

  1. Bone marrow stem cell as a potential treatment for diabetes.

    PubMed

    Li, Ming; Ikehara, Susumu

    2013-01-01

    Diabetes mellitus (DM) is a group of metabolic diseases in which a person has high blood glucose levels resulting from defects in insulin secretion and insulin action. The chronic hyperglycemia damages the eyes, kidneys, nerves, heart, and blood vessels. Curative therapies mainly include diet, insulin, and oral hypoglycemic agents. However, these therapies fail to maintain blood glucose levels in the normal range all the time. Although pancreas or islet-cell transplantation achieves better glucose control, a major obstacle is the shortage of donor organs. Recently, research has focused on stem cells which can be classified into embryonic stem cells (ESCs) and tissue stem cells (TSCs) to generate functional β cells. TSCs include the bone-marrow-, liver-, and pancreas-derived stem cells. In this review, we focus on treatment using bone marrow stem cells for type 1 and 2 DM. PMID:23671865

  2. Bone marrow examination before steroids in thrombocytopenic purpura or arthritis.

    PubMed

    Reid, M M

    1992-12-01

    Corticosteroids were used to treat two children with presumed idiopathic thrombocytopenic purpura and one with juvenile rheumatoid arthritis without examination of the bone marrow. Of the two with presumed idiopathic thrombocytopenic purpura, one had Fanconi's anaemia and the other may have had aplastic anaemia. The third child had acute lymphoblastic leukaemia. The diagnosis of Fanconi's anaemia was delayed. A diagnostic and therapeutic dilemma was caused in the second case. In the third, delayed diagnosis and, perhaps, compromised outlook resulted. These three cases re-emphasize the well aired caveats about the diagnosis of idiopathic thrombocytopenic purpura and juvenile rheumatoid arthritis and provide further support for the arguments of those who believe that if corticosteroids are to be used to treat such children, their bone marrow should be examined first. PMID:1290852

  3. Ethical issues in bone marrow transplantation in children.

    PubMed

    Bendorf, Aric; Kerridge, Ian H

    2011-09-01

    In the 50 years since the first successful human bone marrow transplant (BMT) was performed in 1959, BMT has become the optimal therapy for a wide variety of life-threatening paediatric haematological, immunological and genetic disorders. Unfortunately, while BMT generally provides the only possibility of cure for such afflicted children, few (25%) have a matched sibling available, and suitably matched unrelated donors are often not identified for many children in need of BMT. And even where BMT is possible, treatment is complex and arduous and associated with significant mortality and morbidity. The issues raised when either or both the donor and recipient are children and lack the capacity to make informed and rational decisions relating to BMT pose great challenges for all involved. This paper examines some of the ethical dilemmas that confront patients, families and medical practitioners when considering bone marrow transplantation in a child. PMID:21951444

  4. Total lymphatic irradiation and bone marrow in human heart transplantation

    SciTech Connect

    Kahn, D.R.; Hong, R.; Greenberg, A.J.; Gilbert, E.F.; Dacumos, G.C.; Dufek, J.H.

    1984-08-01

    Six patients, aged 36 to 59 years, had heart transplants for terminal myocardial disease using total lymphatic irradiation (TLI) and donor bone marrow in addition to conventional therapy. All patients were poor candidates for transplantation because of marked pulmonary hypertension, unacceptable tissue matching, or age. Two patients are living and well more than four years after the transplants. Two patients died of infection at six and seven weeks with normal hearts. One patient, whose preoperative pulmonary hypertension was too great for an orthotopic heart transplant, died at 10 days after such a procedure. The other patient died of chronic rejection seven months postoperatively. Donor-specific tolerance developed in 2 patients. TLI and donor bone marrow can produce specific tolerance to donor antigens and allow easy control of rejection, but infection is still a major problem. We describe a new technique of administering TLI with early reduction of prednisone that may help this problem.

  5. Bone marrow hypoplasia associated with fenbendazole administration in a dog.

    PubMed

    Gary, Anthony T; Kerl, Marie E; Wiedmeyer, Charles E; Turnquist, Susan E; Cohn, Leah A

    2004-01-01

    A 1.5-year-old Doberman pinscher was presented with sudden-onset of fever and malaise. Twelve days prior to presentation, fenbendazole therapy was initiated for a suspected lungworm infection. Results of a complete blood count on presentation showed pancytopenia, while histopathological evaluation of a bone marrow core sample revealed bone marrow hypoplasia of undetermined etiology. Bactericidal antibiotics and fluid therapy, as well as discontinuation of fenbendazole administration, led to a complete resolution of clinical and hematological abnormalities within 15 days. An idiosyncratic reaction to fenbendazole was suspected based on the absence of infectious, neoplastic, autoimmune, and toxic etiologies, as well as resolution of clinical signs and pancytopenia upon drug withdrawal. PMID:15131104

  6. Bone marrow-derived stem cells and respiratory disease.

    PubMed

    Jones, Carla P; Rankin, Sara M

    2011-07-01

    Adult bone marrow contains a number of discrete populations of progenitor cells, including endothelial, mesenchymal, and epithelial progenitor cells and fibrocytes. In the context of a range of diseases, endothelial progenitor cells have been reported to promote angiogenesis, mesenchymal stem cells are potent immunosuppressors but can also contribute directly to tissue regeneration, and fibrocytes have been shown to induce tissue fibrosis. This article provides an overview of the basic biology of these different subsets of progenitor cells, reporting their distinct phenotypes and functional activities. The differences in their secretomes are highlighted, and the relative role of cellular differentiation vs paracrine effects of progenitor cells is considered. The article reviews the literature examining the contribution of progenitor cells to the pathogenesis of respiratory disease, and discusses recent studies using bone marrow progenitor cells as stem cell therapies in the context of pulmonary hypertension, COPD, and asthma. PMID:21729891

  7. A stochastic model of radiation-induced bone marrow damage

    SciTech Connect

    Cotlet, G.; Blue, T.E.

    2000-03-01

    A stochastic model, based on consensus principles from radiation biology, is used to estimate bone-marrow stem cell pool survival (CFU-S and stroma cells) after irradiation. The dose response model consists of three coupled first order linear differential equations which quantitatively describe time dependent cellular damage, repair, and killing of red bone marrow cells. This system of differential equations is solved analytically through the use of a matrix approach for continuous and fractionated irradiations. The analytic solutions are confirmed through the dynamical solution of the model equations using SIMULINK. Rate coefficients describing the cellular processes of radiation damage and repair, extrapolated to humans from animal data sets and adjusted for neutron-gamma mixed fields, are employed in a SIMULINK analysis of criticality accidents. The results show that, for the time structures which may occur in criticality accidents, cell survival is established mainly by the average dose and dose rate.

  8. Late renal dysfunction in adult survivors of bone marrow transplantation

    SciTech Connect

    Lawton, C.A.; Cohen, E.P.; Barber-Derus, S.W.; Murray, K.J.; Ash, R.C.; Casper, J.T.; Moulder, J.E. )

    1991-06-01

    Until recently long-term renal toxicity has not been considered a major late complication of bone marrow transplantation (BMT). Late renal dysfunction has been described in a pediatric population status post-BMT which was attributable to the radiation in the preparatory regimen. A thorough review of adults with this type of late renal dysfunction has not previously been described. Fourteen of 103 evaluable adult patients undergoing allogeneic (96) or autologous (7) bone marrow transplantation, predominantly for leukemia and lymphomas, at the Medical College of Wisconsin (Milwaukee, WI) have had a syndrome of renal insufficiency characterized by increased serum creatinine, decreased glomerular filtration rate, anemia, and hypertension. This syndrome developed at a median of 9 months (range, 4.5 to 26 months) posttransplantation in the absence of specific identifiable causes. The cumulative probability of having this renal dysfunction is 20% at 1 year. Renal biopsies performed on seven of these cases showed the endothelium widely separated from the basement membrane, extreme thickening of the glomerular basement membrane, and microthrombi. Previous chemotherapy, antibiotics, and antifungals as well as cyclosporin may add to and possibly potentiate a primary chemoradiation marrow transplant renal injury, but this clinical syndrome is most analogous to clinical and experimental models of radiation nephritis. This late marrow transplant-associated nephritis should be recognized as a potentially limiting factor in the use of some intensive chemoradiation conditioning regimens used for BMT. Some selective attenuation of the radiation to the kidneys may decrease the incidence of this renal dysfunction.

  9. MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity

    PubMed Central

    Cordes, Christian; Baum, Thomas; Dieckmeyer, Michael; Ruschke, Stefan; Diefenbach, Maximilian N.; Hauner, Hans; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2016-01-01

    Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios. PMID:27445977

  10. Pancytopenia after allogeneic bone marrow transplant due to copper deficiency.

    PubMed

    Hudspeth, Michelle; Turner, Amy; Miller, Nicole; Lazarchick, John

    2014-05-01

    Pancytopenia occurring 1 year or later after allogeneic bone marrow transplantation typically prompts a primary consideration for relapse. We present the case of a 15-year old-girl who underwent transplantation for therapy-related myelodysplasia secondary to Ewing sarcoma treatment who developed pancytopenia with myelodysplasia 1 year after transplant due to copper deficiency. Copper deficiency is an important consideration in the evaluation of pancytopenia and myelodysplasia in pediatric patients. PMID:23652881

  11. Primary cutaneous aspergillosis and idiopathic bone marrow aplasia.

    PubMed

    Furlan, Karina Colossi; Pires, Mario Cezar; Kakizaki, Priscila; Chartuni, Juliana Cabral Nunes; Valente, Neusa Yuriko Sakai

    2016-01-01

    We describe the case of a 9-year-old boy with idiopathic bone marrow aplasia and severe neutropenia, who developed skin ulcers under cardiac monitoring electrodes. The diagnosis of primary cutaneous aspergillosis was made after the second biopsy and culture. Imaging investigation did not reveal internal fungal infection. The child was treated, but did not improve and died 3 months after admission. The report highlights and discusses the preventable risk of aspergillus skin infection in immunocompromised patients. PMID:27438213

  12. Shifts in bone marrow cell phenotypes caused by spaceflight.

    PubMed

    Ortega, M Teresa; Pecaut, Michael J; Gridley, Daila S; Stodieck, Louis S; Ferguson, Virginia; Chapes, Stephen K

    2009-02-01

    Bone marrow cells were isolated from the humeri of C57BL/6 mice after a 13-day flight on the space shuttle Space Transportation System (STS)-118 to determine how spaceflight affects differentiation of cells in the granulocytic lineage. We used flow cytometry to assess the expression of molecules that define the maturation/activation state of cells in the granulocytic lineage on three bone marrow cell subpopulations. These molecules included Ly6C, CD11b, CD31 (platelet endothelial cell adhesion molecule-1), Ly6G (Gr-1), F4/80, CD44, and c-Fos. The three subpopulations were small agranular cells [region (R)1], larger granular cells (R2), which were mostly neutrophils, and very large, very granular cells (R3), which had properties of macrophages. Although there were no composite phenotypic differences between total bone marrow cells isolated from spaceflight and ground-control mice, there were subpopulation differences in Ly6C (R1 and R3), CD11b (R2), CD31 (R1, R2, and R3), Ly6G (R3), F4/80 (R3), CD44(high) (R3), and c-Fos (R1, R2, and R3). In particular, the elevation of CD11b in the R2 subpopulation suggests neutrophil activation in response to landing. In addition, decreases in Ly6C, c-Fos, CD44(high), and Ly6G and an increase in F4/80 suggest that the cells in the bone marrow R3 subpopulation of spaceflight mice were more differentiated compared with ground-control mice. The presence of more differentiated cells may not pose an immediate risk to immune resistance. However, the reduction in less differentiated cells may forebode future consequences for macrophage production and host defenses. This is of particular importance to considerations of future long-term spaceflights. PMID:19056998

  13. Primary cutaneous aspergillosis and idiopathic bone marrow aplasia*

    PubMed Central

    Furlan, Karina Colossi; Pires, Mario Cezar; Kakizaki, Priscila; Chartuni, Juliana Cabral Nunes; Valente, Neusa Yuriko Sakai

    2016-01-01

    We describe the case of a 9-year-old boy with idiopathic bone marrow aplasia and severe neutropenia, who developed skin ulcers under cardiac monitoring electrodes. The diagnosis of primary cutaneous aspergillosis was made after the second biopsy and culture. Imaging investigation did not reveal internal fungal infection. The child was treated, but did not improve and died 3 months after admission. The report highlights and discusses the preventable risk of aspergillus skin infection in immunocompromised patients. PMID:27438213

  14. Thymopoietic and Bone Marrow Response to Murine Pneumocystis Pneumonia▿

    PubMed Central

    Shi, Xin; Zhang, Ping; Sempowski, Gregory D.; Shellito, Judd E.

    2011-01-01

    CD4+ T cells play a key role in host defense against Pneumocystis infection. To define the role of naïve CD4+ T cell production through the thymopoietic response in host defense against Pneumocystis infection, Pneumocystis murina infection in the lung was induced in adult male C57BL/6 mice with and without prior thymectomy. Pneumocystis infection caused a significant increase in the number of CCR9+ multipotent progenitor (MPP) cells in the bone marrow and peripheral circulation, an increase in populations of earliest thymic progenitors (ETPs) and double negative (DN) thymocytes in the thymus, and recruitment of naïve and total CD4+ T cells into the alveolar space. The level of murine signal joint T cell receptor excision circles (msjTRECs) in spleen CD4+ cells was increased at 5 weeks post-Pneumocystis infection. In thymectomized mice, the numbers of naïve, central memory, and total CD4+ T cells in all tissues examined were markedly reduced following Pneumocystis infection. This deficiency of naïve and central memory CD4+ T cells was associated with delayed pulmonary clearance of Pneumocystis. Extracts of Pneumocystis resulted in an increase in the number of CCR9+ MPPs in the cultured bone marrow cells. Stimulation of cultured bone marrow cells with ligands to Toll-like receptor 2 ([TLR-2] zymosan) and TLR-9 (ODN M362) each caused a similar increase in CCR9+ MPP cells via activation of the Jun N-terminal protein kinase (JNK) pathway. These results demonstrate that enhanced production of naïve CD4+ T lymphocytes through the thymopoietic response and enhanced delivery of lymphopoietic precursors from the bone marrow play an important role in host defense against Pneumocystis infection. PMID:21343353

  15. The bone marrow niche for haematopoietic stem cells

    PubMed Central

    Morrison, Sean J.; Scadden, David T.

    2015-01-01

    Preface Niches are local tissue microenvironments that maintain and regulate stem cells. Haematopoiesis provides a paradigm for understanding mammalian stem cells and their niches, yet the haematopoietic stem cell (HSC) niche remains incompletely defined and beset by competing models. Here we review progress in elucidating the location and cellular components of the HSC niche in the bone marrow. The niche is perivascular, created partly by mesenchymal stromal cells and endothelial cells and often, but not always, located near trabecular bone. Outstanding questions concern the cellular complexity of the niche, the role of the endosteum, and functional heterogeneity among perivascular microenvironments. PMID:24429631

  16. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response.

    PubMed

    Metzger, Thomas A; Kreipke, Tyler C; Vaughan, Ted J; McNamara, Laoise M; Niebur, Glen L

    2015-01-01

    Bone adapts to habitual loading through mechanobiological signaling. Osteocytes are the primary mechanical sensors in bone, upregulating osteogenic factors and downregulating osteoinhibitors, and recruiting osteoclasts to resorb bone in response to microdamage accumulation. However, most of the cell populations of the bone marrow niche,which are intimately involved with bone remodeling as the source of bone osteoblast and osteoclast progenitors, are also mechanosensitive. We hypothesized that the deformation of trabecular bone would impart mechanical stress within the entrapped bone marrow consistent with mechanostimulation of the constituent cells. Detailed fluid-structure interaction models of porcine femoral trabecular bone and bone marrow were created using tetrahedral finite element meshes. The marrow was allowed to flow freely within the bone pores, while the bone was compressed to 2000 or 3000 microstrain at the apparent level.Marrow properties were parametrically varied from a constant 400 mPas to a power law rule exceeding 85 Pas. Deformation generated almost no shear stress or pressure in the marrow for the low viscosity fluid, but exceeded 5 Pa when the higher viscosity models were used. The shear stress was higher when the strain rate increased and in higher volume fraction bone. The results demonstrate that cells within the trabecular bone marrow could be mechanically stimulated by bone deformation, depending on deformation rate, bone porosity, and bone marrow properties. Since the marrow contains many mechanosensitive cells, changes in the stimulatory levels may explain the alterations in bone marrow morphology with aging and disease, which may in turn affect the trabecular bone mechanobiology and adaptation. PMID:25363343

  17. High Incidence of Xenogenic Bone Marrow Engraftment in Pig-to-Baboon Intra-Bone Bone Marrow Transplantation

    PubMed Central

    Tasaki, M.; Wamala, I.; Tena, A.; Villani, V.; Sekijima, M.; Pathiraja, V.; Wilkinson, R. A.; Pratts, S.; Cormack, T.; Clayman, E.; Arn, J. S.; Shimizu, A.; Fishman, J. A.; Sachs, D. H.; Yamada, K.

    2015-01-01

    Previous attempts of α-1,3-galactocyltransferase knockout (GalTKO) pig bone marrow (BM) transplantation (Tx) into baboons have demonstrated a loss of macro-chimerism within 24 h in most cases. In order to achieve improved engraftment with persistence of peripheral chimerism, we have developed a new strategy of intra-bone BM (IBBM) Tx. Six baboons received GalTKO BM cells, with one-half of the cells transplanted into the bilateral tibiae directly and the remaining cells injected intravenously (IBBM/BM-Tx) with a conditioning immunosuppressive regimen. In order to assess immune responses induced by the combined IBBM/BM-Tx, three recipients received donor SLA-matched GalTKO kidneys in the peri-operative period of IBBM/BM-Tx (Group 1), and the others received kidneys 2 months after IBBM/BM-Tx (Group 2). Peripheral macro-chimerism was continuously detectable for up to 13 days (mean 7.7 days; range 3–13) post-IBBM/BM-Tx and in three animals, macro-chimerism reappeared at days 10, 14 and 21. Pig CFUs, indicating porcine progenitor cell engraftment, were detected in the host BM in four of six recipients on days 14, 15, 19 and 28. In addition, anti-pig unresponsiveness was observed by in vitro assays. GalTKO/pCMV-kidneys survived for extended periods (47 and 60 days). This strategy may provide a potent adjunct for inducing xenogeneic tolerance through BM-Tx. PMID:25676635

  18. Bone Marrow Stem Cell Contribution to Pulmonary Homeostasis and Disease

    PubMed Central

    McDonald, Lindsay T; LaRue, Amanda C

    2015-01-01

    The understanding of bone marrow stem cell plasticity and contribution of bone marrow stem cells to pathophysiology is evolving with the advent of innovative technologies. Recent data has led to new mechanistic insights in the field of mesenchymal stem cell (MSC) research, and an increased appreciation for the plasticity of the hematopoietic stem cell (HSC). In this review, we discuss current research examining the origin of pulmonary cell types from endogenous lung stem and progenitor cells as well as bone marrow-derived stem cells (MSCs and HSCs) and their contributions to lung homeostasis and pathology. We specifically highlight recent findings from our laboratory that demonstrate an HSC origin for pulmonary fibroblasts based on transplantation of a clonal population of cells derived from a single HSC. These findings demonstrate the importance of developing an understanding of the sources of effector cells in disease state. Finally, a perspective is given on the potential clinical implications of these studies and others addressing stem cell contributions to lung tissue homeostasis and pathology. PMID:26798846

  19. Bone marrow leishmaniasis: a review of situation in Thailand.

    PubMed

    Wiwanitkit, Viroj

    2011-10-01

    Leishmaniasis is an important tropical vector-borne disease. This infection can be seen in tropical area and it is considered to be one of the most important vector-borne infections at present. The general situation of the leishmaniasis in Thailand is hereby reviewed. Although Thailand is a tropical country, the leishmaniasis is not endemic but sporadic. The imported cases are documented in some literatures. The serious form of leishmaniasis, the visceral leishmaniasis is also detectable in Thailand. Also, the author performed an in depth literature review of the reports of bone marrow leishmaniasis, a specific kind of visceral leishmaniasis, in Thailand in order to summarize the characteristics of this infection among Thai patients. According to this review, there have been at least 5 reports in the literature of 6 cases of bone marrow leishmaniasis in the Thai population, of which no case was lethal. Concerning the clinical manifestations, all except had prolonged fever with unknown origin. From physical examination, all had hepatosplenomegaly. The striking findings were active hemophagocytosis with increased proliferation of lymphoidplasma cell line in the bone marrow and amastigotes of Leishmania donovani was demonstrated. Considering the treatment, pantavalent antimony compound was used and the excellent improvement and complete recovery. Finally, the author also discussed on the importance of leishmaniasis in Thailand relating to the present globalization and good traveling system. PMID:22014727

  20. T2 vertebral bone marrow changes after space flight

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Lin, C.; Evans, H.; Shackelford, L.; Martin, C.; Hedrick, T.

    1999-01-01

    Bone biopsies indicate that during immobilization bone marrow adipose tissue increases while the functional cellular fraction decreases. One objective of our Spacelab flight experiment was to determine, using in vivo volume-localized magnetic resonance spectroscopy (VLMRS), whether bone marrow composition was altered by space flight. Four crew members of a 17 day Spacelab mission participated in the experiment. The apparent cellular fraction and transverse relaxation time (T2) were determined twice before launch and at several times after flight. Immediately after flight, no significant change in the cellular fraction was found. However, the T2 of the cellular, but not the fat component increased following flight, although to a variable extent, in all crew members with a time course for return to baseline lasting several months. The T2 of seven control subjects showed no significant change. Although these observations may have several explanations, it is speculated that the observed T2 changes might reflect increased marrow osteoblastic activity during recovery from space flight.

  1. Isolation of Mouse Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Boregowda, Siddaraju V; Krishnappa, Veena; Phinney, Donald G

    2016-01-01

    Mesenchymal stem cells (MSCs) were initially characterized as connective tissue progenitors resident in bone marrow, but have now been isolated from a variety of tissues and organs and shown to also exhibit potent tissue regenerative properties mediated largely via paracrine actions. These findings have spurred the development of MSC-based therapies for treating a diverse array of nonskeletal diseases. Although genetic and experimental rodent models of disease represent important tools for developing efficacious MSC-based therapies, development of reliable methods to isolate MSCs from mouse bone marrow has been hampered by the unique biological properties of these cells. Indeed, few isolation schemes afford high yields and purity while maintaining the genomic integrity of cells. We recently demonstrated that mouse MSCs are highly sensitive to oxidative stress, and long-term expansion of these cells in atmospheric oxygen selects for immortalized clones that lack a functional p53 protein. Herein, we describe a protocol for the isolation of primary MSCs from mouse bone marrow that couples immunodepletion with culture in a low-oxygen environment and affords high purity and yield while preserving p53 function. PMID:27236673

  2. [The role of blood banks in bone marrow transplantation].

    PubMed

    Höcker, P; Wagner, A; Sklenar, G

    1991-01-01

    The transfusion service (TS) plays an important role in bone marrow transplantation (BMT). Many of the techniques and methods employed are also used in the daily work of a TS like tissue typing, apheresis techniques, handling of blood and its components under sterile conditions. In the pretransplantation phase the TS is responsible for the typing of recipient and presumptive donors, harvesting of autologous blood and selection of appropriate blood components. During BMT the TS can perform bone marrow harvesting, depletion of red cells in case of ABO-incompatibility and bone marrow manipulation when T-cell depletion or purging procedures are considered. Peripheral stem cell harvest by apheresis is also best performed by the TS experienced in such techniques. Storage of hematopoietic cells in liquid nitrogen and thawing are also techniques already used in most of the transfusion services. Post BMT, the support with blood components, irradiated and almost free of white cells to avoid TA-GVH and CMV-infection, is a major job of the TS. These facts demonstrate that a well organized transfusion service is a 'conditio sine qua non' for successful BMT. PMID:1725636

  3. Bone marrow stem cells: current and emerging concepts.

    PubMed

    Méndez-Ferrer, Simón; Scadden, David T; Sánchez-Aguilera, Abel

    2015-01-01

    The interactions of stromal cells with hematopoietic cells in the bone marrow have long been a subject of research, but only recently have technologies allowed us to dissect them at the stem cell level. On the other hand, limitations of these technical tools might explain numerous discrepancies in this field. It is becoming increasingly clear that mesenchymal stem cells (MSCs) represent an important component of the hematopoietic stem cell (HSC) niche in the bone marrow. However, there is heterogeneity among HSCs, and many putatively different mesenchymal progenitors identified in the bone marrow using Cre recombinase-driven mouse lines seem to exhibit HSC niche properties. Development of better reporter lines has demonstrated that some of these Cre lines do not always specifically mark the expected cells. Also, characterization of different cell populations has often been partial, and issues of redundancy and compensation might explain apparently contradictory results. Recognizing and overcoming these limitations, while also clearly defining the distinctions between subgroups of mesenchymal cells, will be essential to advance the field. PMID:25573321

  4. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  5. Bone marrow purging by a xanthine oxidase-antibody conjugate.

    PubMed

    Dinota, A; Tazzari, P L; Abbondanza, A; Battelli, M G; Gobbi, M; Stirpe, F

    1990-07-01

    The selective cytotoxicity of the xanthine oxidase conjugated to an 8A monoclonal antibody recognizing a human plasma cell-associated antigen has been described. The selectivity and the toxicity of the hypoxanthine/conjugated xanthine oxidase system was increased by removing the excess of conjugate and by adding chelated iron. Under these experimental conditions the cytotoxicity of the conjugate exceeded that of free xanthine oxidase by one order of magnitude. The conjugate effectively purged bone marrow from infiltrating neoplastic plasma cells and added target Raji cells, provided blood was removed and bone marrow peroxidases were exhausted. In conditions of purging effectiveness the conjugate had no toxicity to CFU-GM. No toxicity to mice was observed after i.v. injection of xanthine oxidase-antibody conjugate up to 2.9 U/kg body weight. Thus the hypoxanthine/conjugated xanthine oxidase system could be an effective and nontoxic tool for the ex vivo bone marrow purging in multiple myeloma patients for autologous transplantation. PMID:2390631

  6. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.

    PubMed

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Deliloğlu-Gürhan, S I

    2015-01-01

    Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell

  7. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration.

    PubMed

    Robey, Pamela G; Kuznetsov, Sergei A; Ren, Jiaqiang; Klein, Harvey G; Sabatino, Marianna; Stroncek, David F

    2015-01-01

    In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. This article is part of a Special Issue entitled Stem Cells and Bone. PMID:25064527

  8. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures.

    PubMed

    Hattersley, G; Chambers, T J

    1989-09-01

    The osteoclast is the cell that resorbs bone. It is known to derive from hemopoietic precursors, but analysis of lineage and regulation of differentiation has been hampered by lack of a specific marker that enables identification of cells of osteoclastic phenotype. Previously used markers, such as multinuclearity, that are specific for osteoclasts in bone become less specific in culture. Uniquely among bone and bone marrow cells, osteoclasts possess abundant calcitonin (CT) receptors. We therefore tested the correlation between the generation of bone-resorptive function and the formation of CT receptor-positive cells from hemopoietic tissue in vitro. Without 1,25-dihydroxy-vitamin D3 [1,25-(OH)2D3], a hormone that induces osteoclastic differentiation in vitro, bone marrow cultures showed very little bone resorption, and only small numbers of CT receptor-positive cells developed. When 1,25-(OH)2D3 was added to the cultures, CT receptor-positive cells developed within 1 day and reached a peak after 7 days. Bone resorption commenced within 2 days of hormone addition. There was a strong parallelism between the cumulative number of CT receptor-positive cells and the extent of bone resorption. The capacity of cultures to generate bone-resorptive activity and CT receptor-positive cells declined progressively when 1,25-(OH)2D3 was added to hemopoietic tissue after a 7- to 21-day hormone-free incubation period. The number of CT receptor-positive cells in these cultures correlated strongly (r = 0.96) with bone resorption. The behavior of these cultures suggests that 1,25-(OH)2D3 acts to induce terminal differentiation of osteoclast precursors present in the cultures, and that precursor cell numbers decreased with increasing time in vitro. All of the CT receptor-positive cells in control cultures and all of those seen shortly after 1,25-(OH)2D3 addition were mononuclear, despite considerable bone resorption; the majority of CT receptor-positive cells remained mononuclear

  9. Changes in vertebral bone marrow fat and bone mass after gastric bypass surgery: A pilot study.

    PubMed

    Schafer, A L; Li, X; Schwartz, A V; Tufts, L S; Wheeler, A L; Grunfeld, C; Stewart, L; Rogers, S J; Carter, J T; Posselt, A M; Black, D M; Shoback, D M

    2015-05-01

    Bone marrow fat may serve a metabolic role distinct from other fat depots, and it may be altered by metabolic conditions including diabetes. Caloric restriction paradoxically increases marrow fat in mice, and women with anorexia nervosa have high marrow fat. The longitudinal effect of weight loss on marrow fat in humans is unknown. We hypothesized that marrow fat increases after Roux-en-Y gastric bypass (RYGB) surgery, as total body fat decreases. In a pilot study of 11 morbidly obese women (6 diabetic, 5 nondiabetic), we measured vertebral marrow fat content (percentage fat fraction) before and 6 months after RYGB using magnetic resonance spectroscopy. Total body fat mass declined in all participants (mean ± SD decline 19.1 ± 6.1 kg or 36.5% ± 10.9%, p<0.001). Areal bone mineral density (BMD) decreased by 5.2% ± 3.5% and 4.1% ± 2.6% at the femoral neck and total hip, respectively, and volumetric BMD decreased at the spine by 7.4% ± 2.8% (p<0.001 for all). Effects of RYGB on marrow fat differed by diabetes status (adjusted p=0.04). There was little mean change in marrow fat in nondiabetic women (mean +0.9%, 95% CI -10.0 to +11.7%, p=0.84). In contrast, marrow fat decreased in diabetic women (-7.5%, 95% CI -15.2 to +0.1%, p=0.05). Changes in total body fat mass and marrow fat were inversely correlated among nondiabetic (r=-0.96, p=0.01) but not diabetic (r=0.52, p=0.29) participants. In conclusion, among those without diabetes, marrow fat is maintained on average after RYGB, despite dramatic declines in overall fat mass. Among those with diabetes, RYGB may reduce marrow fat. Thus, future studies of marrow fat should take diabetes status into account. Marrow fat may have unique metabolic behavior compared with other fat depots. PMID:25603463

  10. Changes in Vertebral Bone Marrow Fat and Bone Mass After Gastric Bypass Surgery: A Pilot Study

    PubMed Central

    Schafer, AL; Li, X; Schwartz, AV; Tufts, LS; Wheeler, AL; Grunfeld, C; Stewart, L; Rogers, SJ; Carter, JT; Posselt, AM; Black, DM; Shoback, DM

    2015-01-01

    Bone marrow fat may serve a metabolic role distinct from other fat depots, and it may be altered by metabolic conditions including diabetes. Caloric restriction paradoxically increases marrow fat in mice, and women with anorexia nervosa have high marrow fat. The longitudinal effect of weight loss on marrow fat in humans is unknown. We hypothesized that marrow fat increases after Roux-en-Y gastric bypass (RYGB) surgery, as total body fat decreases. In a pilot study of 11 morbidly obese women (6 diabetic, 5 nondiabetic), we measured vertebral marrow fat content (percentage fat fraction) before and 6 months after RYGB using magnetic resonance spectroscopy. Total body fat mass declined in all participants (mean ±SD decline 19.1 ±6.1 kg or 36.5 ±10.9%, p<0.001). Areal bone mineral density (BMD) decreased by 5.2 ±3.5% and 4.1 ±2.6% at the femoral neck and total hip, respectively, and volumetric BMD decreased at the spine by 7.4 ±2.8% (p<0.001 for all). Effects of RYGB on marrow fat differed by diabetes status (adjusted p=0.04). There was little mean change in marrow fat in nondiabetic women (mean +0.9%, 95% CI -10.0 to +11.7%, p=0.84). In contrast, marrow fat decreased in diabetic women (−7.5%, 95% CI -15.2 to +0.1%, p=0.05). Changes in total body fat mass and marrow fat were inversely correlated among nondiabetic (r=−0.96, p=0.01) but not diabetic (r=0.52, p=0.29) participants. In conclusion, among those without diabetes, marrow fat is maintained on average after RYGB, despite dramatic declines in overall fat mass. Among those with diabetes, RYGB may reduce marrow fat. Thus, future studies of marrow fat should take diabetes status into account. Marrow fat may have unique metabolic behavior compared with other fat depots. PMID:25603463

  11. Failure to Generate Bone Marrow Adipocytes Does Not Protect Mice from Ovariectomy-Induced Osteopenia

    PubMed Central

    Iwaniec, Urszula T.; Turner, Russell T.

    2012-01-01

    A reciprocal association between bone marrow fat and bone mass has been reported in ovariectomized rodents, suggesting that bone marrow adipogenesis has a negative effect on bone growth and turnover balance. Mice with loss of function mutations in kit receptor (kitW/W-v) have no bone marrow adipocytes in tibia or lumbar vertebra. We therefore tested the hypothesis that marrow fat contributes to development of osteopenia by comparing the skeletal response to ovariectomy (ovx) in growing wild type (WT) and bone marrow adipocyte-deficient kitW/W-v mice. Mice were ovx at 4 weeks of age and sacrificed 4 or 10 weeks post-surgery. Body composition was measured at necropsy by dual-energy X-ray absorptiometry. Cortical (tibia) and cancellous (tibia and lumbar vertebra) bone architecture were evaluated by microcomputed tomography. Bone marrow adipocyte size and density, osteoblast- and osteoclast-lined bone perimeters, and bone formation were determined by histomorphometry. Ovx resulted in an increase in total body fat mass at 10 weeks post-ovx in both genotypes, but the response was attenuated in the in kitW/W-v mice. Adipocytes were present in bone marrow of tibia and lumbar vertebra in WT mice and bone marrow adiposity increased following ovx. In contrast, marrow adipocytes were not detected in either intact or ovx kitW/W-v mice. However, ovx in WT and kitW/W-v mice resulted in statistically indistinguishable changes in cortical and cancellous bone mass, cortical and cancellous bone formation rate, and cancellous osteoblast and osteoclast-lined bone perimeters. In conclusion, our findings do not support a causal role for increased bone marrow fat as a mediator of ovx-induced osteopenia in mice. PMID:23246792

  12. Selectively eliminated blood monocytes and splenic suppressor macrophages in mice depleted of bone marrow by strontium 89

    SciTech Connect

    Shibata, Y.; Dempsey, W.L.; Morahan, P.S.; Volkman, A.

    1985-12-01

    The contribution of specific activity to the effects of the bone-seeking isotope, strontium 89 on radiosensitive components of mononuclear phagocyte populations was investigated in mice. CBA/J mice received a fixed dose of 2 microCi/g body weight of 89Sr with three different specific activities, 6 Ci, 100 microCi and 20 microCi per mg Sr. The estimated radioactivity located in the bone surface was 4200, 3000 and 2400 cpm/mg bone when measured 2 days after the administration of 89Sr, and was lost with an estimated biological half-life of 27, 25, and 23 days, respectively. Bone marrow suppression was assessed by quantitation of the depletion of macrophage-colony forming cells (M-CFC) grown in vitro in the presence of macrophage growth factor. The decline in M-CFC closely paralleled the level of radioactivity in the bone. These effects were clearly reflected by the depletion of monocytes in the blood, which were reduced to 14%, 14%, and 21% of control levels corresponding to SA's of 6 Ci/mg, 100 microCi/mg and 20 microCi/mg when counted on day 10. By day 30 the respective monocyte levels were 15%, 31%, and 77%. Furthermore, the induction of prostaglandin E producing suppressor macrophages (M phi) by Corynebacterium parvum administration was found to vary inversely with the effects of radioactivity in the bone, with initial impairment followed by quantitative recovery. Resident-type M phi in peritoneal cavity, however, appear to be unaffected by 89Sr-treatment. These data suggest, as before, that the monocytes and suppressor M phi are dependent on radiosensitive marrow cells. The observations also lead to the conclusion that the specific activity of 89Sr preparations is an important determinant of the degree of suppression and of the rate of recovery of bone marrow from the effects of irradiation that follow the administration of this isotope.

  13. Bone marrow transplantation after the Chernobyl nuclear accident

    SciTech Connect

    Baranov, A.; Gale, R.P.; Guskova, A.; Piatkin, E.; Selidovkin, G.; Muravyova, L.; Champlin, R.E.; Danilova, N.; Yevseeva, L.; Petrosyan, L. )

    1989-07-27

    On April 26, 1986, an accident at the Chernobyl nuclear power station in the Soviet Union exposed about 200 people to large doses of total-body radiation. Thirteen persons exposed to estimated total-body doses of 5.6 to 13.4 Gy received bone marrow transplants. Two transplant recipients, who received estimated doses of radiation of 5.6 and 8.7 Gy, are alive more than three years after the accident. The others died of various causes, including burns (the cause of death in five), interstitial pneumonitis (three), graft-versus-host disease (two), and acute renal failure and adult respiratory distress syndrome (one). There was hematopoietic (granulocytic) recovery in nine transplant recipients who could be evaluated, six of whom had transient partial engraftment before the recovery of their own marrow. Graft-versus-host disease was diagnosed clinically in four persons and suspected in two others. Although the recovery of endogenous hematopoiesis may occur after exposure to radiation doses of 5.6 to 13.4 Gy, we do not know whether it is more likely after the transient engraftment of transplanted stem cells. Because large doses of radiation affect multiple systems, bone marrow recovery does not necessarily ensure survival. Furthermore, the risk of graft-versus-host disease must be considered when the benefits of this treatment are being weighed.

  14. Role of immobilization of irradiated rats in the protective effect of bone marrow shielding

    NASA Technical Reports Server (NTRS)

    Gronskaya, N. F.; Strelin, G. S.

    1982-01-01

    Rats were exposed to X-radiation to study the influence of immobilization and shielding of part of bone marrow during exposure on survival. It is concluded that (1) the beneficial effect of the stress factor (created by the immobilization of rats during exposure) can aggregate with the effect of bone marrow shielding and, under certain conditions, imitate the latter; and (2) the probability of the protective effect of immobilization should be taken into account when assessing the influence of bone marrow shielding.

  15. Different expression of chemokines in rheumatoid arthritis and osteoarthritis bone marrow

    PubMed Central

    Kurowska, Weronika J.; Radzikowska, Anna; Massalska, Magdalena A.; Burakowski, Tomasz; Kontny, Ewa; Słowińska, Iwona; Gasik, Robert; Maśliński, Włodzimierz

    2016-01-01

    Objectives Rheumatoid arthritis (RA) is a chronic inflammatory disease leading to joint destruction. In addition to involvement of the joints, there is growing evidence that inflammatory/autoimmune processes take place in bone marrow, beginning the disease onset. Activated T and B cells accumulate in bone marrow, where also effective antigen presentation takes place. An increased number of activated T cells was observed in RA in comparison to osteoarthritis (OA) bone marrow. In the present study we analyzed the levels of chemokines that may be responsible for accumulation/retention of T-cells in the bone marrow of RA and OA patients. Material and methods Bone marrow samples were obtained from RA and OA patients during total hip replacement surgery, and bone marrow plasma was obtained by gradient centrifugation. Levels of the chemokines CX3CL1, CCL5, CCL2, CXCL12 and CXCL1 were measured in bone marrow plasma by specific ELISAs. Comparison between the groups of patients and statistical significance were analyzed by the two-tailed Mann-Whitney U test. Results Increased levels of CX3CL1 (818 ±431 pg/ml vs. 502 ±131 pg/ml, p < 0.0007) and CCL5 (5967 ±1680 pg/ml vs. 4878 ±2360 pg/ml, p < 0.05) respectively in bone marrow plasma from RA in comparison with OA patients were observed. In contrast, similar levels of CCL2, CXCL12 and CXCL1 in RA and OA bone marrow suggest that these cytokines do not play a significant role in the observed T cell accumulation in RA bone marrow. Conclusions CX3CL1 and CCL5 overproduced in RA bone marrow may contribute to the accumulation of T cells observed in RA bone marrow. PMID:27407279

  16. Bone Marrow Dosimetry Using 124I-PET

    PubMed Central

    Schwartz, Jazmin; Humm, John L.; Divgi, Chaitanya R.; Larson, Steven M.; O'Donoghue, Joseph A.

    2012-01-01

    Bone marrow is usually dose-limiting for radioimmunotherapy. In this study, we directly estimated red marrow activity concentration and the self-dose component of absorbed radiation dose to red marrow based on PET/CT of 2 different 124I-labeled antibodies (cG250 and huA33) and compared the results with plasma activity concentration and plasma-based dose estimates. Methods Two groups of patients injected with 124I-labeled monoclonal antibodies (11 patients with renal cancer receiving 124I-cG250 and 5 patients with colorectal cancer receiving 124I- huA33) were imaged by PET or PET/CT on 2 or 3 occasions after infusion. Regions of interest were drawn over several lumbar vertebrae, and red marrow activity concentration was quantified. Plasma activity concentration was also quantified using multiple patient blood samples. The red marrow–to–plasma activity concentration ratio (RMPR) was calculated at the times of imaging. The self-dose component of the absorbed radiation dose to the red marrow was estimated from the images, from the plasma measurements, and using a combination of both sets of measurements. Results RMPR was observed to increase with time for both groups of patients. Mean (±SD) time-dependent RMPR (RMPR(t)) for the cG250 group increased from 0.13 ± 0.06 immediately after infusion to 0.23 ± 0.09 at approximately 6 d after infusion. For the huA33 group, mean RMPR(t) was 0.10 ± 0.04 immediately after infusion, 0.13 ± 0.05 approximately 2 d after infusion, and 0.20 ± 0.09 approximately 7 d after infusion. Plasma-based estimates of red marrow self-dose tended to be greater than image-based values by, on average, 11% and 47% for cG250 and huA33, respectively, but by as much as −73% to 62% for individual patients. The hybrid method combining RMPR(t) and plasma activity concentration provided a closer match to the image-based dose estimates (average discrepancies, −2% and 18% for cG250 and huA33, respectively). Conclusion These results suggest that

  17. Male genital lichen sclerosus in recipients of bone marrow transplants.

    PubMed

    Thomas, L J; Shim, T N; Borysiewicz, C; Dinneen, M; Fawcett, H; Roy, A; Francis, N; Bunker, C B

    2016-07-01

    We describe two patients who received haematopoietic stem cell marrow transplantation, and developed male genital lichen sclerosus (MGLSc), one of whom also had squamous carcinoma in situ (Bowen disease). MGLSc has previously been associated with graft-versus-host disease. Various aetiological factors for LSc have been proposed, including a role for chronic occluded epithelial exposure to urine. A number of factors imply that the risk of malignant transformation in this bone marrow transplant group is likely to be higher than the overall figure of 2-9% cited for MGLSc. It is vital, therefore, that clinicians involved in the care of those with haematological malignancies are adequately prepared to examine the genitals of their patients, and to recognize and refer any suspect penile lesions. PMID:26936088

  18. Dissecting the Role of Bone Marrow Stromal Cells on Bone Metastases

    PubMed Central

    Buenrostro, Denise; Park, Serk In; Sterling, Julie A.

    2014-01-01

    Tumor-induced bone disease is a dynamic process that involves interactions with many cell types. Once metastatic cancer cells reach the bone, they are in contact with many different cell types that are present in the cell-rich bone marrow. These cells include the immune cells, myeloid cells, fibroblasts, osteoblasts, osteoclasts, and mesenchymal stem cells. Each of these cell populations can influence the behavior or gene expression of both the tumor cells and the bone microenvironment. Additionally, the tumor itself can alter the behavior of these bone marrow cells which further alters both the microenvironment and the tumor cells. While many groups focus on studying these interactions, much remains unknown. A better understanding of the interactions between the tumor cells and the bone microenvironment will improve our knowledge on how tumors establish in bone and may lead to improvements in diagnosing and treating bone metastases. This review details our current knowledge on the interactions between tumor cells that reside in bone and their microenvironment. PMID:25054153

  19. Lamellar Spacing in Cuboid Hydroxyapatite Scaffolds Regulates Bone Formation by Human Bone Marrow Stromal Cells

    PubMed Central

    Afghani, Shahrzad; Franco, Jaime; Launey, Max; Marshall, Sally; Marshall, Grayson W.; Nissenson, Robert; Lee, Janice; Tomsia, Antoni P.; Saiz, Eduardo

    2011-01-01

    Background A major goal in bone engineering is the creation of large volume constructs (scaffolds and stem cells) that bear load. The scaffolds must satisfy two competing requirements—they need be sufficiently porous to allow nutrient flow to maintain cell viability, yet sufficiently dense to bear load. We studied the effect of scaffold macroporosity on bone formation and scaffold strength, for bone formed by human bone marrow stromal cells. Methods Rigid cubical hydroxyapatite/tricalcium phosphate scaffolds were produced by robo-casting. The ceramic line thickness was held constant, but the distance between adjacent lines was either 50, 100, 200, 500, or 1000 μm. Cultured human bone marrow stromal cells were combined with the scaffolds in vitro; transplants were placed into the subcutis of immunodeficient mice. Transplants were harvested 9, 18, 23, 38, or 50 weeks later. Bone formation and scaffold strength were analyzed using histology and compression testing. Results Sixty transplants were evaluated. Cortical bone increased with transplant age, and was greatest among 500 μm transplants. In contrast, maximum transplant strength was greatest among 200 μm transplants. Conclusions Lamellar spacing within scaffolds regulates the extent of bone formation; 500 μm yields the most new bone, whereas 200 μm yields the strongest transplants. PMID:21294634

  20. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies.

    PubMed

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-06-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research. PMID:27482235

  1. Myeloid regeneration after whole body irradiation, autologous bone marrow transplantation, and treatment with an anabolic steroid.

    PubMed

    Ambrus, C M; Ambrus, J L

    1975-01-01

    Stumptail monkeys (Macaca speciosa) received lethal whole body radiation. Autologous bone marrow injection resulted in survival of the majority of the animals. Treatment with Deca-Durabolin, an anabolic steroid, caused more rapid recovery of colony-forming cell numbers in the bone marrow than in control animals. Both the Deca-Durabolin-treated and control groups were given autologous bone marrow transplantation. Anabolic steroid effect on transplanted bone marrow colonyforming cells may explain the increased rate of leukopoietic regeneration in anabolic steroid-treated animals as compared to controls. PMID:124758

  2. The diagnostic utility of bone marrow aspiration and biopsy in patients with acquired immunodeficiency syndrome.

    PubMed Central

    Gluckman, R. J.; Rosner, F.; Guarneri, J. J.

    1989-01-01

    Diagnostic bone marrow aspiration, biopsy, and culture are useful procedures in the evaluation of patients with suspected or proven acquired immunodeficiency syndrome (AIDS) who are febrile. In as many as one fourth of these patients, the information provided by the bone marrow examination may establish a diagnosis of a disseminated opportunistic infection when other studies are not informative. We have also discovered a previously unreported association between thrombocytopenia and the presence of bone marrow granulomas in our patients with AIDS and suggest that thrombocytopenia may be a clue to enable the clinician to predict a positive bone marrow result more accurately. The explanation for this apparent association remains to be elucidated. PMID:2733050

  3. Effect of nephrotoxic drugs on the development of radiation nephropathy after bone marrow transplantation

    SciTech Connect

    Lawton, C.A.; Fish, B.L.; Moulder, J.E. )

    1994-03-01

    Chronic renal failure is a significant cause of late morbidity in bone marrow transplant patients whose conditioning regimen includes total body irradiation (TBI). Radiation is a major cause of this syndrome (bone marrow transplant nephropathy), but it may not be the only cause. These studies use a rat syngeneic bone marrow transplant model to determine whether nephrotoxic agents used in conjunction with bone marrow transplantation (BMT) could be enhancing or accelerating the development of radiation nephropathy. Rats received 11-17 Gy TBI in six fractions over 3 days followed by syngeneic bone marrow transplant. In conjunction with the bone marrow transplants, animals received either no drugs, cyclosporine, amphotericin, gentamicin, or busulfan. Drugs were given in schedules analogous to their use in clinical bone marrow transplantation. Drug doses were chosen so that the drug regimen alone caused detectable acute nephrotoxicity. Animals were followed for 6 months with periodic renal function tests. Gentamicin had no apparent interactions with TBI. Amphotericin increased the incidence of engraftment failure, but did not enhance radiation nephropathy. Cyclosporin with TBI caused late morbidity that appeared to be due to neurological problems, but did not enhance radiation nephropathy. Busulfan resulted in a significant enhancement of radiation nephropathy. Of the nephrotoxins used in conjunction with bone marrow transplantation only radiation and busulfan were found to be risk factors for bone marrow transplant nephropathy. 34 refs., 4 figs., 2 tabs.

  4. Use of impedance plethysmography to continually monitor bone marrow blood flow

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Mcewen, G. N., Jr.; Gerber, R. L.; Cann, C. E.; Morey, E. R.

    1984-01-01

    An impedance-plethysmographic technique is described which can be used to quantify temporal bone-marrow blood-flow changes. Results obtained with the impedance technique compare favorably with the data from simultaneously administered microspheres. Injection of sympathomimetic drugs produced measurable responses: isoproterenol caused a significant increase in bone-marrow blood flow within 1 min, and levarterenol decreased bone-marrow blood flow. Data obtained with impedance plethysmography suggest that the technique is feasible for multiple measurements on the same animal and that the technique can be used to study acute or chronic changes in bone-marrow blood flow following various experimental treatments.

  5. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    PubMed Central

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-01-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research. PMID:27482235

  6. Characterization of functions of neutrophils from bone marrow of cattle with leukocyte adhesion deficiency.

    PubMed

    Nagahata, H; Nochi, H; Tamoto, K; Yamashita, K; Noda, H; Kociba, G J

    1995-02-01

    Marked differences in bone marrow cellularity were observed between cattle affected with leukocyte adhesion deficiency (LAD) and control cattle. The number of nucleated cells in bone marrow was 2.9 to 8.8 times higher in cattle affected with LAD, compared with controls. The myeloid-to-erythroid ratio of bone marrow from 3 cattle affected with LAD ranged from 2.4 to 12. Deficient CD18 expression on neutrophils isolated from bone marrow of cattle with LAD was clearly detected by flow cytometric analysis. Neutrophils from bone marrow of cattle affected with LAD appeared round and not flat, after adherence to plastic wells under agarose, whereas neutrophils from bone marrow of clinically normal cattle were firmly spread on the surface of plastic wells. In the chemotaxis under-agarose assay, many pseudopodia were detected on bone marrow neutrophils from clinically normal cattle, but were not detected on bone marrow neutrophils from cattle with LAD. Activities of chemotactic movements and phagocytosis of neutrophils isolated from bone marrow of cattle affected with LAD were documented to be severely impaired. PMID:7717579

  7. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    PubMed Central

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells. PMID:25206912

  8. Avascular necrosis of bone after allogeneic bone marrow transplantation: clinical findings, incidence and risk factors.

    PubMed

    Socié, G; Sélimi, F; Sedel, L; Frija, J; Devergie, A; Esperou Bourdeau, H; Ribaud, P; Gluckman, E

    1994-03-01

    In the present study we describe the incidence, clinical course, and management of avascular necrosis of bone following allogeneic bone marrow transplantation, and identify risk factors related to its development. All patients developing avascular necrosis of bone after allogeneic bone marrow transplantation between January 1974 and September 1992 were included in the analysis and were studied using the Hôpital Saint Louis Bone Marrow Transplant Database and hospital records. 27/727 allogeneic transplant recipients developed avascular necrosis leading to an 8.1% incidence at 5 years, by product limit estimate, ranging from 5% to 11.2%. Symptoms developed 119-1747 d (median 398 d) after transplantation. In these 27 patients a total of 52 joints were affected (mean 1.92 per patient, range 1-7). The hip joint was most often affected (69% of patients). All patients had joint pain that led to diagnosis by means of standard radiographs with or without the help of technetium-99 scans and/or magnetic resonance imaging. All but three patients received steroid therapy for acute graft-versus-host disease. Among 10 factors tested, three were shown to be significantly linked to an increased risk for developing avascular necrosis by multivariate analysis: male gender (relative risk (RR) 4.72, P = 0.002), age older than 16 (RR = 3.87, P = 0.004), and acute graft-versus-host disease requiring steroid therapy (RR = 6.30, P = 0.0002). 10 patients (37%) required joint replacement within 19 months (range 2-42) following diagnosis of avascular necrosis. In conclusion, avascular necrosis of bone is a frequent late complication of allogeneic bone marrow transplantation causing significant morbidity and requiring replacement surgery in one-third of affected patients. In this 18-year single-centre survey, older age, male gender and steroid therapy given for acute graft-versus-host disease were shown to independently increase the risk of avascular necrosis of bone. PMID:8043445

  9. Combination chemotherapy with cyclophosphamide, epirubicin and 5-fluorouracil causes trabecular bone loss, bone marrow cell depletion and marrow adiposity in female rats.

    PubMed

    Fan, Chiaming; Georgiou, Kristen R; McKinnon, Ross A; Keefe, Dorothy M K; Howe, Peter R C; Xian, Cory J

    2016-05-01

    The introduction of anthracyclines to adjuvant chemotherapy has increased survival rates among breast cancer patients. Cyclophosphamide, epirubicin and 5-fluorouracil (CEF) combination therapy is now one of the preferred regimens for treating node-positive breast cancer due to better survival with less toxicity involved. Despite the increasing use of CEF, its potential in causing adverse skeletal effects remains unclear. Using a mature female rat model mimicking the clinical setting, this study examined the effects of CEF treatment on bone and bone marrow in long bones. Following six cycles of CEF treatment (weekly intravenous injections of cyclophosphamide at 10 mg/kg, epirubicin at 2.5 mg/kg and 5-flurouracil at 10 mg/kg), a significant reduction in trabecular bone volume was observed at the metaphysis, which was associated with a reduced serum level of bone formation marker alkaline phosphatase (ALP), increased trends of osteoclast density and osteoclast area at the metaphysis, as well as an increased size of osteoclasts being formed from the bone marrow cells ex vivo. Moreover, a severe reduction of bone marrow cellularity was observed following CEF treatment, which was accompanied by an increase in marrow adipose tissue volume. This increase in marrow adiposity was associated with an expansion in adipocyte size but not in marrow adipocyte density. Overall, this study indicates that six cycles of CEF chemotherapy may induce some bone loss and severe bone marrow damage. Mechanisms for CEF-induced bone/bone marrow pathologies and potential preventive strategies warrant further investigation. PMID:26056019

  10. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells.

    PubMed

    Cavallo, C; Desando, G; Ferrari, A; Zini, N; Mariani, E; Grigolo, B

    2016-01-01

    Osteochondral lesions are considered a challenge for orthopedic surgeons. Currently, the treatments available are often unsatisfactory and unable to stimulate tissue regeneration. Tissue engineering offers a new therapeutic strategy, taking into account the role exerted by cells, biomaterial and growth factors in restoring tissue damage. In this light, Mesenchymal Stem Cells (MSCs) have been indicated as a fascinating tool for regenerative medicine thanks to their ability to differentiate into bone, cartilage and adipose tissue. However, in vitro-cultivation of MSCs could be associated with some risks such as de-differentiation/reprogramming, infection and contaminations of the cells. To overcome these shortcomings, a new approach is represented by the use of Bone Marrow Concentrate (BMC), that could allow the delivery of cells surrounded by their microenvironment in injured tissue. For this purpose, cells require a tridimensional scaffold that can support their adhesion, proliferation and differentiation. This study is focused on the potentiality of BMC seeded onto a hyaluronan-based scaffold (Hyaff-11) to differentiate into osteogenic lineage. This process depends on the specific interaction between cells derived from bone marrow (surrounded by their niche) and scaffold, that create an environment able to support the regeneration of damaged tissue. The data obtained from the present study demonstrate that BMC grown onto Hyaff-11 are able to differentiate toward osteogenic sense, producing specific osteogenic genes and matrix proteins. PMID:27358127

  11. Characterization of subsets of bone marrow-derived macrophages by flow cytometry analysis

    SciTech Connect

    Walker, E.B.; Akporiaye, E.T.; Warner, N.L.; Stewart, C.C.

    1985-01-01

    Normal C3H bone marrow cells were grown 7 days in medium containing L cell-derived colony stimulating factor-1 (CSF-1). During the first 4 days of culture, erythroid and granulocytic cells decreased while macrophages increased exponentially with a doubling time of about 31 hr. Only 0.3% of all cells in the initial bone marrrow suspension formed discrete colonies of mononuclear phagocytes, but by day 6 60% of the nonadherent cells were capable of forming macrophage colonies, representing a 200-fold enrichment of the original progenitor population. Using flow cytometry, mononuclear phagocytes obtained after 4 days of culture were separated into two distinct phenotypes based on their autofluorescence. Nonadherent cells were a discrete population of small cells exhibiting low autofluorescence, and the adherent cells were a broad heterogenous population of large cells exhibiting high autofluorescence. A panel of currently available rat monoclonal antibodies (MABs) against murine hematopoietic cells were used to determine whether unique subsets of macrophages could be resolved. The MABs RA 31B6 and H-11 stained virtually all the nonadherent cells but not adherent cells. The MABs E-2 and 11-4.1 (anti-H-2K/sup k/) stained almost all the adherent cells and demonstrated no significant staining of nonadherent cells. Nearly all the nonadherent and adherent cells were stained by the MABs DNL 4.4 and MAC-1. Additionally, the data suggest that the epitopes for MAC-2 and MAC-3 and ..gamma..2a Fc receptors develop late in nonadherent progenitor cells as they mature into adherent macrophages. 37 references, 5 figures, 5 tables.

  12. Targeted Pathologic Evaluation of Bone Marrow Donors Identifies Previously Undiagnosed Marrow Abnormalities

    PubMed Central

    Tilson, MP; Jones, RJ; Sexauer, A; Griffin, CA; Morsberger, LA; Batista, DAS; Small, D; Burns, KH; Gocke, CD; Vuica-Ross, M; Borowitz, MJ; Duffield, AS

    2013-01-01

    Potential bone marrow donors are screened to ensure the safety of both the donor and recipient. At our institution, potential donors with abnormal peripheral blood cell counts, a personal history of malignancy, or age >60 years are evaluated to ensure that they are viable candidates for donation. Evaluation of the marrow includes morphologic, flow cytometric and cytogenetic studies. 122 potential donors were screened between the years of 2001–2011, encompassing approximately 10% of all donors. The median age of the screened potential donors was 59 years, and included 59 men and 63 women. The donors were screened because of age >60 years old (33), anemia (22), cytopenias other than anemia (27), elevated peripheral blood counts without a concurrent cytopenia (20), elevated peripheral blood counts with a concurrent cytopenia (10), history of malignancy (4), abnormal peripheral blood differential (3), prior graft failure (1), history of treatment with chemotherapy (1), and body habitus (1). Marrow abnormalities were detected in 9% (11/122) of donors. These donors were screened because of anemia (5/22; 23%), age >60 years (2/33; 6%), history of malignancy (2/4; 50%), elevated peripheral blood counts (1/20; 5%), and body habitus (1/1; 100%). Abnormalities included plasma cell dyscrasia (3), abnormal marrow cellularity (3), clonal cytogenetic abnormalities (2), low-grade myelodysplastic syndrome (1), a mutated JAK2 V617F allele (1), and monoclonal B-cell lymphocytosis (1). Our experience indicates that extended screening of potential donors identifies a significant number of donors with previously undiagnosed marrow abnormalities. PMID:23769818

  13. Rosiglitazone Promotes Bone Marrow Adipogenesis to Impair Myelopoiesis under Stress

    PubMed Central

    Lu, Wenyi; Wang, Weimin; Wang, Shujuan; Feng, Yonghuai; Liu, Kaiyan

    2016-01-01

    Objective The therapeutic use of thiazolidinediones (TZDs) causes unwanted hematological side effects, although the underlying mechanisms of these effects are poorly understood. This study tests the hypothesis that rosiglitazone impairs the maintenance and differentiation of hematopoietic stem/progenitor cells, which ultimately leads to hematological abnormalities. Methods Mice were fed a rosiglitazone-supplemented diet or a normal diet for 6 weeks. To induce hematopoietic stress, all mice were injected once with 250 mg/kg 5-fluorouracil (5-Fu) intraperitoneally. Next, hematopoietic recovery, hematopoietic stem/progenitor cells (HSPCs) subsets, and myeloid differentiation after 5-Fu treatment were evaluated. The adipogenesis induced by rosiglitazone was assessed by histopathology and oil red O staining. The effect of adipocytes on HSPCs was studied with an in vitro co-culture system. Results Rosiglitazone significantly enhanced bone marrow adipogenesis and delayed hematopoietic recovery after 5-Fu treatment. Moreover, rosiglitazone inhibited proliferation of a granulocyte/monocyte progenitor (GMP) cell population and granulocyte/macrophage colony-stimulating factor (GM-CSF) colonies, although the proliferation and mobilization of Lin-c-kit+Sca-1+ cells (LSK) was maintained following hematopoietic stress. These effects could be partially reversed by the selective PPARγ antagonist BADGE. Finally, we demonstrated in a co-culture system that differentiated adipocytes actively suppressed the myeloid differentiation of HSPCs. Conclusion Taken together, our results demonstrate that rosiglitazone inhibits myeloid differentiation of HSPCs after stress partially by inducing bone marrow adipogenesis. Targeting the bone marrow microenvironment might be one mechanism by which rosiglitazone impairs stress-induced hematopoiesis. PMID:26895498

  14. Multiorgan WU Polyomavirus Infection in Bone Marrow Transplant Recipient

    PubMed Central

    Siebrasse, Erica A.; Nguyen, Nang L.; Willby, Melisa J.; Erdman, Dean D.; Menegus, Marilyn A.

    2016-01-01

    WU polyomavirus (WUPyV) was detected in a bone marrow transplant recipient with severe acute respiratory distress syndrome who died in 2001. Crystalline lattices of polyomavirus-like particles were observed in the patient’s lung by electron microscopy. WUPyV was detected in the lung and other tissues by real-time quantitative PCR and identified in the lung and trachea by immunohistochemistry. A subset of WUPyV-positive cells in the lung had morphologic features of macrophages. Although the role of WUPyV as a human pathogen remains unclear, these results clearly demonstrate evidence for infection of respiratory tract tissues in this patient. PMID:26691850

  15. Phase I/II study of Holmium-166-DOTMP for bone marrow ablation in multiple myeloma prior to bone marrow transplantation (BMT)

    SciTech Connect

    Podoloff, D.A.; Bhadkamkar, V.H.; Kasi, L.P.

    1994-05-01

    We evaluated a bone seeking radionuclide, Ho-166 DOTMP (which has both beta and gamma energies) as an agent for bone marrow ablation prior to bone marrow transplant. Six men and 1 woman in the age range 42-59 yrs. who had previously failed conventional chemotherapy using VAD (Vincristine, Adriamycin, Dexamethasone) were treated. Each patient received a diagnostic dose (Dx) of 30 mCi of Ho-166 DOTMP and underwent serial total body images using photopeak and scatter windows. Transmission images were obtained on day O. Transmission, scatter and photopeak images were used to calculate marrow dose and skeletal uptake. Therapy dose (Tx) was established to deliver a prescribed absorbed dose to the marrow. Bone marrow biopsy samples from lilac crest were obtained to determine activity concentration and to calculate marrow dose. The Dx was followed by a Tx of 25 Gy (3 pts.), 40 Gy (3 pts.) and 50 Gy (1 pt.). Additional total body imaging was accomplished prior to each Tx and SPECT after the final Tx. Bone retention varied from 26-33%. The calculated red marrow dose varied from 11 to 48 Gy. Toxicity was minimal and included: myalgia (1), nausea (2), increased BUN (1), sore throat (1), fever (1x1 day). Bone marrow ablation was achieved in 3/7 pts. The last pt. treated at the highest dose level had greater than 75% reduction in myeloma protein. We conclude that at doses as high as 31.8 mCi/Kg no significant toxicity has been observed. Diagnostic pretherapy imaging and derived dosimetry is helpful in prescribing a red marrow dose prior to radionuclide therapy. The MTD has not yet been reached. However, thus far Ho-166 DOTMP has safely ablated bone marrow prior to BMT.

  16. Effects of noncytopathic type 2 Bovine viral diarrhea virus on the proliferation of bone marrow progenitor cells

    PubMed Central

    2006-01-01

    Abstract The purpose of this study was to investigate the effects of isolates of noncytopathic type 2 Bovine viral diarrhea virus (ncpBVDV-2) of high and low virulence on the proliferation of bone marrow progenitor cells. Holstein calves 6 to 7 mo old and BVDV-naïve were inoculated intranasally with a BVDV isolate of high virulence (HV24515), a BVDV isolate of low virulence (LV11Q), or uninfected cell culture medium. Serial bone marrow and peripheral blood samples were collected before and after inoculation. Bone marrow mononuclear cells (BMMCs) were isolated and cultured for 5 d, and the mean number of colony-forming unit-granulocyte- macrophage (CFU-GM) colonies was determined. Tritiated (3H)-thymidine uptake by BMMCs was determined to indicate overall proliferative capacity. Virus isolation was done on concurrent samples of BMMCs and peripheral blood. Virus was isolated from BMMCs and peripheral blood buffy-coat cells as early as day 2 or 3 after inoculation. Neutropenia developed in both groups inoculated with a BVDV isolate. However, in the calves given LV11Q, neutrophil counts rebounded earlier in response to increased proliferation of BMMCs, whereas the response was delayed in calves given HV24515. Thymidine uptake was significantly increased (P = 0.0047) in BMMCs after inoculation compared with before inoculation in the calves given LV11Q but not in those given HV24515 or in the control calves. The median number of CFU-GM colonies was significantly decreased (P = 0.0164) after inoculation compared with before inoculation in the calves given HV24515, whereas there was no significant difference in the calves given LV11Q or in the control calves. The data support the hypothesis that the prolonged neutropenia observed in calves given HV24515 results at least in part from decreased proliferative capacity of bone marrow progenitor cells. PMID:16548328

  17. Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T cell acute lymphoblastic leukemia.

    PubMed

    Jost, Tanja Rezzonico; Borga, Chiara; Radaelli, Enrico; Romagnani, Andrea; Perruzza, Lisa; Omodho, Lorna; Cazzaniga, Giovanni; Biondi, Andrea; Indraccolo, Stefano; Thelen, Marcus; Te Kronnie, Geertruy; Grassi, Fabio

    2016-06-01

    Infiltration of the central nervous system is a severe trait of T cell acute lymphoblastic leukemia. Inhibition of CXC chemokine receptor 4 significantly ameliorates T cell acute lymphoblastic leukemia in murine models of the disease; however, signaling by CXC chemokine receptor 4 is important in limiting the divagation of peripheral blood mononuclear cells out of the perivascular space into the central nervous system parenchyma. Therefore, Inhibition of CXC chemokine receptor 4 potentially may untangle T cell acute lymphoblastic leukemia cells from retention outside the brain. Here, we show that leukemic lymphoblasts massively infiltrate cranial bone marrow, with diffusion to the meninges without invasion of the brain parenchyma, in mice that underwent xenotransplantation with human T cell acute lymphoblastic leukemia cells or that developed leukemia from transformed hematopoietic progenitors. We tested the hypothesis that T cell acute lymphoblastic leukemia neuropathology results from meningeal infiltration through CXC chemokine receptor 4-mediated bone marrow colonization. Inhibition of leukemia engraftment in the bone marrow by pharmacologic CXC chemokine receptor 4 antagonism significantly ameliorated neuropathologic aspects of the disease. Genetic deletion of CXCR4 in murine hematopoietic progenitors abrogated leukemogenesis induced by constitutively active Notch1, whereas lack of CCR6 and CCR7, which have been shown to be involved in T cell and leukemia extravasation into the central nervous system, respectively, did not influence T cell acute lymphoblastic leukemia development. We hypothesize that lymphoblastic meningeal infiltration as a result of bone marrow colonization is responsible for the degenerative alterations of the neuroparenchyma as well as the alteration of cerebrospinal fluid drainage in T cell acute lymphoblastic leukemia xenografts. Therefore, CXC chemokine receptor 4 may constitute a pharmacologic target for T cell acute lymphoblastic

  18. The effect of bone marrow concentrate and hyperbaric oxygen therapy on bone repair.

    PubMed

    Grassmann, J P; Schneppendahl, J; Sager, M; Hakimi, A R; Herten, M; Loegters, T T; Wild, M; Hakimi, M; Windolf, J; Jungbluth, P

    2015-01-01

    Neoangiogenesis represents an essential part of bone regeneration. Therefore the improvement of neovascularization is the subject of various research approaches. In addition autologous mesenchymal stem cells concentrate in combination with bone substitute materials have been shown to support bone regeneration. In a rabbit model we examined the proposed synergistic effect of hyperbaric oxygen therapy (HBOT) and bone marrow concentrate (BMC) with porous calcium phosphate granules (CPG) on neoangiogenesis and osseous consolidation of a critical- size defect. The animal groups treated with HBOT showed a significantly higher microvessel density (MVD) by immunhistochemistry. Furthermore HBOT groups presented a significantly larger amount of new bone formation histomorphometrically as well as radiologically. We conclude that the increase in perfusion as a result of increased angiogenesis may play a key role in the effects of HBOT and consequently promotes bone healing. PMID:25577213

  19. Short-Term Effect of Estrogen on Human Bone Marrow Fat.

    PubMed

    Limonard, Eelkje J; Veldhuis-Vlug, Annegreet G; van Dussen, Laura; Runge, Jurgen H; Tanck, Michael W; Endert, Erik; Heijboer, Annemieke C; Fliers, Eric; Hollak, Carla E; Akkerman, Erik M; Bisschop, Peter H

    2015-11-01

    Bone marrow fat, an unique component of the bone marrow cavity increases with aging and menopause and is inversely related to bone mass. Sex steroids may be involved in the regulation of bone marrow fat, because men have higher bone marrow fat than women and clinical observations have suggested that the variation in bone marrow fat fraction is greater in premenopausal compared to postmenopausal women and men. We hypothesized that the menstrual cycle and/or estrogen affects the bone marrow fat fraction. First, we measured vertebral bone marrow fat fraction with Dixon Quantitative Chemical Shift MRI (QCSI) twice a week during 1 month in 10 regularly ovulating women. The vertebral bone marrow fat fraction increased 0.02 (95% CI, 0.00 to 0.03) during the follicular phase (p = 0.033), and showed a nonsignificant decrease of 0.02 (95% CI, -0.01 to 0.04) during the luteal phase (p = 0.091). To determine the effect of estrogen on bone marrow fat, we measured vertebral bone marrow fat fraction every week for 6 consecutive weeks in 6 postmenopausal women before, during, and after 2 weeks of oral 17-β estradiol treatment (2 mg/day). Bone marrow fat fraction decreased by 0.05 (95% CI, 0.01 to 0.09) from 0.48 (95% CI, 0.42 to 0.53) to 0.43 (95% CI, 0.34 to 0.51) during 17-β estradiol administration (p < 0.001) and increased again after cessation. During 17-β estradiol administration the bone formation marker procollagen type I N propeptide (P1NP) increased (p = 0.034) and the bone resorption marker C-terminal crosslinking telopeptides of collagen type I (CTx) decreased (p < 0.001). In conclusion, we described the variation in vertebral bone marrow fat fraction among ovulating premenopausal women. And among postmenopausal women, we demonstrated that 17-β estradiol rapidly reduces the marrow fat fraction, suggesting that 17-β estradiol regulates bone marrow fat independent of bone mass. PMID:25982922

  20. Bone marrow as a metastatic niche for disseminated tumor cells from solid tumors

    PubMed Central

    Shiozawa, Yusuke; Eber, Matthew R; Berry, Janice E; Taichman, Russell S

    2015-01-01

    Bone marrow is a heterogeneous organ containing diverse cell types, and it is a preferred metastatic site for several solid tumors such as breast and prostate cancer. Recently, it has been shown that bone metastatic cancer cells interact with the bone marrow microenvironment to survive and grow, and thus this microenvironment is referred to as the ‘metastatic niche'. Once cancer cells spread to distant organs such as bone, the prognosis for the patient is generally poor. There is an urgent need to establish a greater understanding of the mechanisms whereby the bone marrow niche influences bone metastasis. Here we discuss insights into the contribution of the bone marrow ‘metastatic niche' to progression of bone metastatic disease, with a particular focus on cells of hematopoietic and mesenchymal origin. PMID:26029360

  1. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    PubMed

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress. PMID:23519534

  2. DNA methylation analysis of bone marrow cells at diagnosis of acute lymphoblastic leukemia and at remission.

    PubMed

    Nordlund, Jessica; Milani, Lili; Lundmark, Anders; Lönnerholm, Gudmar; Syvänen, Ann-Christine

    2012-01-01

    To detect genes with CpG sites that display methylation patterns that are characteristic of acute lymphoblastic leukemia (ALL) cells, we compared the methylation patterns of cells taken at diagnosis from 20 patients with pediatric ALL to the methylation patterns in mononuclear cells from bone marrow of the same patients during remission and in non-leukemic control cells from bone marrow or blood. Using a custom-designed assay, we measured the methylation levels of 1,320 CpG sites in regulatory regions of 413 genes that were analyzed because they display allele-specific gene expression (ASE) in ALL cells. The rationale for our selection of CpG sites was that ASE could be the result of allele-specific methylation in the promoter regions of the genes. We found that the ALL cells had methylation profiles that allowed distinction between ALL cells and control cells. Using stringent criteria for calling differential methylation, we identified 28 CpG sites in 24 genes with recurrent differences in their methylation levels between ALL cells and control cells. Twenty of the differentially methylated genes were hypermethylated in the ALL cells, and as many as nine of them (AMICA1, CPNE7, CR1, DBC1, EYA4, LGALS8, RYR3, UQCRFS1, WDR35) have functions in cell signaling and/or apoptosis. The methylation levels of a subset of the genes were consistent with an inverse relationship with the mRNA expression levels in a large number of ALL cells from published data sets, supporting a potential biological effect of the methylation signatures and their application for diagnostic purposes. PMID:22493696

  3. DNA Methylation Analysis of Bone Marrow Cells at Diagnosis of Acute Lymphoblastic Leukemia and at Remission

    PubMed Central

    Nordlund, Jessica; Milani, Lili; Lundmark, Anders; Lönnerholm, Gudmar; Syvänen, Ann-Christine

    2012-01-01

    To detect genes with CpG sites that display methylation patterns that are characteristic of acute lymphoblastic leukemia (ALL) cells, we compared the methylation patterns of cells taken at diagnosis from 20 patients with pediatric ALL to the methylation patterns in mononuclear cells from bone marrow of the same patients during remission and in non-leukemic control cells from bone marrow or blood. Using a custom-designed assay, we measured the methylation levels of 1,320 CpG sites in regulatory regions of 413 genes that were analyzed because they display allele-specific gene expression (ASE) in ALL cells. The rationale for our selection of CpG sites was that ASE could be the result of allele-specific methylation in the promoter regions of the genes. We found that the ALL cells had methylation profiles that allowed distinction between ALL cells and control cells. Using stringent criteria for calling differential methylation, we identified 28 CpG sites in 24 genes with recurrent differences in their methylation levels between ALL cells and control cells. Twenty of the differentially methylated genes were hypermethylated in the ALL cells, and as many as nine of them (AMICA1, CPNE7, CR1, DBC1, EYA4, LGALS8, RYR3, UQCRFS1, WDR35) have functions in cell signaling and/or apoptosis. The methylation levels of a subset of the genes were consistent with an inverse relationship with the mRNA expression levels in a large number of ALL cells from published data sets, supporting a potential biological effect of the methylation signatures and their application for diagnostic purposes. PMID:22493696

  4. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship

    PubMed Central

    Chen, J.; Gantz, M.; Punyanitya, M.; Heymsfield, S. B.; Gallagher, D.; Albu, J.; Engelson, E.; Kotler, D.; Pi-Sunyer, X.; Shapses, S.

    2012-01-01

    Summary The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. Introduction It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Methods Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18–88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. Results A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r=−0.533, −0.576, respectively; P<0.001). In multiple regression analyses with BMD as the dependent variable, ethnicity significantly entered the regression models as either an individual term or an interaction with BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premeno-pausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. Conclusions An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations. PMID

  5. Bone reconstruction of large defects using bone marrow derived autologous stem cells.

    PubMed

    Lucarelli, Enrico; Donati, Davide; Cenacchi, Annarita; Fornasari, Pier Maria

    2004-04-01

    Bone is a tissue that has the ability to heal itself when fractured. Occasionally, a critical defect can be formed when part of the bone is lost or excised, in this case the bone fails to heal and requires bone reconstruction to prevent a non-union defect. Autogenous cancellous bone is the current gold standard treatment in bone loss. Because the amount of autogenous cancellous bone that can be harvested is limited, the expanding need for bone reconstruction is paired by the growth of interest in the discipline of tissue engineering. Labs worldwide are working to provide the right carrier and the right set of cells that, once retransplanted, will ensure bone repair. Several investigators have focused their attention on a subset of autologous non-hematopoietic stem/progenitor cells contained in the adult bone marrow stroma, referred to as stromal stem cells (SSC), as the appropriate cells to be transplanted. The use of autologous cells is facilitated by less stringent ethical and regulatory issues and does not require the patient to be immunologically suppressed. In pre-clinical and clinical protocols of critical defects in which SSC are employed, two approaches are mainly used: in the first, SSC are derived from bone marrow and directly introduced at the lesion site, in the second, SSC are derived from several sites and are expanded ex vivo before being implanted. Both approaches, equally correct in principle, will have to demonstrate, with definitive evidence of their efficacy, their capability of solving a critical clinical problem such as non-union. In this report we outline the difficulties of working with SSC. PMID:15062758

  6. Cutaneous mast cell maturation does not depend on an intact bone marrow microenvironment

    SciTech Connect

    Charley, M.R.; Mikhael, A.; Sontheimer, R.D.; Gilliam, J.N.; Bennett, M.

    1984-01-01

    A study was made to determine whether the maturation of murine cutaneous mast cells from stem cells depends on an intact bone marrow microenvironment. Normal bone marrow cells (+/+) were infused into 2 groups of mast cell-deficient mice: WBB6F1-W/Wv mice and /sup 89/Sr-pretreated W/Wv mice. /sup 89/Sr is a long-lived bone-seeking radioisotope which provides continuous irradiation of the marrow and thereby ablates the marrow microenvironment. Skin biopsies revealed that the /sup 89/Sr-pretreated mice and the controls had repopulated their skin with mast cells equally well. Natural killer cell function was significantly depressed in the /sup 89/Sr-treated mice, confirming that the marrow microenvironment had been functionally altered. It appears that, although the precursors for cutaneous mast cells are marrow derived, they do not need an intact marrow microenvironment for maturation.

  7. The effects of simulated hypogravity on murine bone marrow cells

    NASA Technical Reports Server (NTRS)

    Lawless, Desales

    1989-01-01

    Mouse bone marrow cells grown in complete medium at unit gravity were compared with a similar population cultured in conditions that mimic some aspects of microgravity. After the cells adjusted to the conditions that simulated microgravity, they proliferated as fetal or oncogenic populations; their numbers doubled in twelve hour periods. Differentiated subpopulations were depleted from the heterogeneous mixture with time and the undifferentiated hematopoietic stem cells increased in numbers. The cells in the control groups in unit gravity and those in the bioreactors in conditions of microgravity were monitored under a number of parameters. Each were phenotyped as to cell surface antigens using a panel of monoclonal antibodies and flow cytometry. Other parameters compared included: pH, glucose uptake, oxygen consumption and carbon-dioxide production. Nuclear DNA was monitored by flow cytometry. Functional responses were studied by mitogenic stimulation by various lectins. The importance of these findings should have relevance to the space program. Cells should behave predictably in zero gravity; specific populations can be eliminated from diverse populations and other populations isolated. The availability of stem cell populations will enhance both bone marrow and gene transplant programs. Stem cells will permit developmental biologists study the paths of hematopoiesis.

  8. Current insights into inherited bone marrow failure syndromes.

    PubMed

    Chung, Nack-Gyun; Kim, Myungshin

    2014-08-01

    Inherited bone marrow failure syndrome (IBMFS) encompasses a heterogeneous and complex group of genetic disorders characterized by physical malformations, insufficient blood cell production, and increased risk of malignancies. They often have substantial phenotype overlap, and therefore, genotyping is often a critical means of establishing a diagnosis. Current advances in the field of IBMFSs have identified multiple genes associated with IBMFSs and their pathways: genes involved in ribosome biogenesis, such as those associated with Diamond-Blackfan anemia and Shwachman-Diamond syndrome; genes involved in telomere maintenance, such as dyskeratosis congenita genes; genes encoding neutrophil elastase or neutrophil adhesion and mobility associated with severe congenital neutropenia; and genes involved in DNA recombination repair, such as those associated with Fanconi anemia. Early and adequate genetic diagnosis is required for proper management and follow-up in clinical practice. Recent advances using new molecular technologies, including next generation sequencing (NGS), have helped identify new candidate genes associated with the development of bone marrow failure. Targeted NGS using panels of large numbers of genes is rapidly gaining potential for use as a cost-effective diagnostic tool for the identification of mutations in newly diagnosed patients. In this review, we have described recent insights into IBMFS and how they are advancing our understanding of the disease's pathophysiology; we have also discussed the possible implications they will have in clinical practice for Korean patients. PMID:25210520

  9. Ion channels in mesenchymal stem cells from rat bone marrow.

    PubMed

    Li, Gui-Rong; Deng, Xiu-Ling; Sun, Haiying; Chung, Stephen S M; Tse, Hung-Fat; Lau, Chu-Pak

    2006-06-01

    Mesenchymal stem cells (MSCs) from bone marrow are believed to be an ideal cell source for cardiomyoplasty; however, cellular electrophysiology is not understood. The present study was designed to investigate ion channels in undifferentiated rat MSCs. It was found that three types of outward currents were present in rat MSCs, including a small portion of Ca(2+)-activated K(+) channel (I(KCa)) sensitive to inhibition by iberiotoxin and/or clotromazole, a delayed rectifier K(+) current (IK(DR)), and a transient outward K(+) current (I(to)). In addition, tetrodotoxin (TTX)-sensitive sodium current (I(Na.TTX)) and nifedipine-sensitive L-type Ca(2+) current (I(Ca.L)) were found in a small population of rat MSCs. Moreover, reverse transcription-polymerase chain reaction revealed the molecular evidence of mRNA for the functional ionic currents, including Slo and KCNN4 for I(KCa); Kv1.4 for I(to); Kv1.2 and Kv2.1 for IK(DR); SCN2a1 for I(Na.TTX); and CCHL2a for I(Ca.L). These results demonstrate for the first time that multiple functional ion channel currents (i.e., I(KCa), I(to), IK(DR), I(Na.TTX), and I(Ca.L)) are present in rat MSCs from bone marrow; however, physiological roles of these ion channels remain to be studied. PMID:16484345

  10. Bone Marrow Graft in Man after Conditioning by Antilymphocytic Serum*

    PubMed Central

    Mathé, G.; Amiel, J. L.; Schwarzenberg, L.; Choay, J.; Trolard, P.; Schneider, M.; Hayat, M.; Schlumberger, J. R.; Jasmin, Cl.

    1970-01-01

    Allogeneic bone marrow grafts carried out after previous administration of antilymphocytic serum alone were attempted in 16 patients. Of these, six had acute myeloblastic leukaemia, four acute lymphoblastic leukaemia, and one a blast cell crisis in polycythaemia vera. Ten of these patients were in an overt phase of the disease and resistant to chemotherapy, while nine had complete agranulocytosis. In five of these patients erythrocyte and leucocyte antigenic markers demonstrated the establishment of the graft. One patient had thalassaemia major, and four others had aplasia of the bone marrow, in one case due to chloramphenicol poisoning and in another to virus hepatitis. The grafts were successful in the last two patients and transformed their clinical condition. No signs of early acute secondary disease were noted in any of the patients, either when the donor had been given antilymphocytic serum or when he was untreated. The grafts had no adoptive immunotherapeutic effect on the acute leukaemia. These observations have clearly shown that antilymphocytic serum has an immunosuppressive effect in man when it is used alone. PMID:4909449

  11. Adipose lineage specification of bone marrow-derived myeloid cells

    PubMed Central

    Majka, Susan M.; Miller, Heidi L.; Sullivan, Timothy; Erickson, Paul F.; Kong, Raymond; Weiser-Evans, Mary; Nemenoff, Raphael; Moldovan, Radu; Morandi, Shelley A.; Davis, James A.; Klemm, Dwight J.

    2012-01-01

    We have reported the production of white adipocytes in adipose tissue from hematopoietic progenitors arising from bone marrow. However, technical challenges have hindered detection of this adipocyte population by certain other laboratories. These disparate results highlight the need for sensitive and definitive techniques to identify bone marrow progenitor (BMP)-derived adipocytes. In these studies we exploited new models and methods to enhance detection of this adipocyte population. Here we showed that confocal microscopy with spectrum acquisition could effectively identify green fluorescent protein (GFP) positive BMP-derived adipocytes by matching their fluorescence spectrum to that of native GFP. Likewise, imaging flow cytometry made it possible to visualize intact unilocular and multilocular GFP-positive BMP-derived adipocytes and distinguished them from non-fluorescent adipocytes and cell debris in the cytometer flow stream. We also devised a strategy to detect marker genes in flow-enriched adipocytes from which stromal cells were excluded. This technique also proved to be an efficient means for detecting genetically labeled adipocytes and should be applicable to models in which marker gene expression is low or absent. Finally, in vivo imaging of mice transplanted with BM from adipocyte-targeted luciferase donors showed a time-dependent increase in luciferase activity, with the bulk of luciferase activity confined to adipocytes rather than stromal cells. These results confirmed and extended our previous reports and provided proof-of-principle for sensitive techniques and models for detection and study of these unique cells. PMID:23700536

  12. Bone Marrow Gene Therapy for HIV/AIDS

    PubMed Central

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-01-01

    Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described. PMID:26193303

  13. A novel metric for bone marrow cells chromosome pairing.

    PubMed

    Khmelinskii, Artem; Ventura, Rodrigo; Sanches, João

    2010-06-01

    Karyotyping is a set of procedures, in the scope of the cytogenetics, that produces a visual representation of the 46 chromosomes observed during the metaphase step of the cellular division, called mitosis, paired and arranged in decreasing order of size. Automatic pairing of bone marrow cells is a difficult task because these chromosomes appear distorted, overlapped, and their images are usually blurred with undefined edges and low level of detail. In this paper, a new metric is proposed to compare this type of chromosome images toward the design of an automatic pairing algorithm for leukemia diagnostic purposes. Besides the features used in the traditional karyotyping procedures, a new feature, based on mutual information , is proposed to increase the discriminate power of the G-banding pattern dissimilarity between chromosomes and improve the performance of the classifier. The pairing algorithm is formulated as a combinatorial optimization problem where the distances between homologous chromosomes are minimized and the distances between nonhomologous ones are maximized. The optimization task is solved by using an integer programming approach. A new bone marrow chromosome dataset--Lisbon-K1 (LK1) chromosome dataset with 9200 chromosomes---was build for this study. These chromosomes have much lower quality than the classic Copenhagen, Edinburgh, and Philadelphia datasets, and its classification and pairing is therefore more difficult. Experiments using real images from the LK(1) and Grisan et al. datasets based on a leave-one-out cross-validation strategy are performed to test and validate the pairing algorithm. PMID:20172790

  14. Autologous bone marrow stem cells--properties and advantages.

    PubMed

    Rice, Claire M; Scolding, Neil J

    2008-02-15

    The properties of self-renewal and multi-lineage differentiation make stem cells attractive candidates for use in cellular reparative therapy, particularly in neurological diseases where there is a paucity of treatment options. However, clinical trials using foetal material in Parkinson's disease have been disappointing and highlighted problems associated with the use of embryonic stem cells, including ethical issues and practical concerns regarding teratoma formation. Understandably, this has led investigators to explore alternative sources of stem cells for transplantation. The expression of neuroectodermal markers by cells of bone marrow origin focused attention on these adult stem cells. Although early enthusiasm has been tempered by dispute regarding the validity of reports of in vitro (trans)differentiation, the demonstration of functional benefit in animal models of neurological disease is encouraging. Here we will review some of the required properties of stem cells for use in transplantation therapy with specific reference to the development of bone marrow-derived cells as a source of cells for repair in demyelination. PMID:17669432

  15. Current insights into inherited bone marrow failure syndromes

    PubMed Central

    Chung, Nack-Gyun

    2014-01-01

    Inherited bone marrow failure syndrome (IBMFS) encompasses a heterogeneous and complex group of genetic disorders characterized by physical malformations, insufficient blood cell production, and increased risk of malignancies. They often have substantial phenotype overlap, and therefore, genotyping is often a critical means of establishing a diagnosis. Current advances in the field of IBMFSs have identified multiple genes associated with IBMFSs and their pathways: genes involved in ribosome biogenesis, such as those associated with Diamond-Blackfan anemia and Shwachman-Diamond syndrome; genes involved in telomere maintenance, such as dyskeratosis congenita genes; genes encoding neutrophil elastase or neutrophil adhesion and mobility associated with severe congenital neutropenia; and genes involved in DNA recombination repair, such as those associated with Fanconi anemia. Early and adequate genetic diagnosis is required for proper management and follow-up in clinical practice. Recent advances using new molecular technologies, including next generation sequencing (NGS), have helped identify new candidate genes associated with the development of bone marrow failure. Targeted NGS using panels of large numbers of genes is rapidly gaining potential for use as a cost-effective diagnostic tool for the identification of mutations in newly diagnosed patients. In this review, we have described recent insights into IBMFS and how they are advancing our understanding of the disease's pathophysiology; we have also discussed the possible implications they will have in clinical practice for Korean patients. PMID:25210520

  16. Bone marrow transplantation in subjects with mental disorders.

    PubMed

    Akaho, Rie; Sasaki, Tsukasa; Yoshino, Miyo; Hagiya, Katsuko; Akiyama, Hideki; Sakamaki, Hisashi

    2003-06-01

    Bone marrow transplantation (BMT) is a critical treatment of malignant illnesses including leukemia and others. Successful achievement of BMT requires the patients to tolerate isolation for several weeks to avoid infections. They are also required to follow several regulations and instructions to survive the treatment because the patients' physical condition is complicated due to the malignant illness, preparatory treatment and transplant of bone marrow from other subjects. These could be a significant challenge for patients with mental disorders. Here the cases are reported of seven leukemia patients who were referred to the Metropolitan Komagome Hospital for BMT from April 1996 through May 2000, who had been suffering from mental disorders, including schizophrenia, bipolar I mood disorder, panic disorder, dysthymic disorder, autistic disorder, and borderline personality disorder, prior to the treatment. The BMT was achieved in six out of the seven subjects; the exception was a subject with borderline personality disorder. Psychiatric treatments, including medication, to improve and maintain mental status appeared to be critical for the achievement of BMT in several patients. Understanding of the status of the malignant disease and the role of BMT was another significant issue. Test admission seemed to be helpful to reduce concerns and anxiety both in the patients and hospital staff. PMID:12753572

  17. Gluteal Compartment Syndrome following an Iliac Bone Marrow Aspiration

    PubMed Central

    Vega-Najera, Carlos; Leal-Contreras, Carlos; Leal-Berumen, Irene

    2013-01-01

    The compartment syndrome is a condition characterized by a raised hydraulic pressure within a closed and non expandable anatomical space. It leads to a vascular insufficiency that becomes critical once the vascular flow cannot return the fluids back to the venous system. This causes a potential irreversible damage of the contents of the compartment, especially within the muscle tissues. Gluteal compartment syndrome (GCS) secondary to hematomas is seldom reported. Here we present a case of a 51-year-old patient with history of a non-Hodgkin lymphoma who underwent a bone marrow aspiration from the posterior iliac crest that had excessive bleeding at the puncture zone. The patient complained of increasing pain, tenderness, and buttock swelling. Intraoperative pressure validation of the gluteal compartment was performed, and a GCS was diagnosed. The patient was treated with a gluteal region fasciotomy. The patient recovered from pain and swelling and was discharged shortly after from the hospital. We believe clotting and hematologic disorders are a primary risk factor in patients who require bone marrow aspirations or biopsies. It is important to improve awareness of GCS in order to achieve early diagnosis, avoid complications, and have a better prognosis. PMID:24392235

  18. Spleen and bone marrow megakaryocytes as targets for inhaled vanadium.

    PubMed

    Fortoul, Teresa I; Piñón-Zarate, Gabriela; Diaz-Bech, Maria Eugenia; González-Villalva, Adriana; Mussali-Galante, Patricia; Rodriguez-Lara, Vianey; Colin-Barenque, Laura; Martinez-Pedraza, Michelle; Montaño, Luis F

    2008-11-01

    An increased incidence in ischemic and thromboembolic events in the population of cities with rising air suspended particle pollution has suggested the interaction of some of the components of these particles in the coagulation system. A previous report from our laboratory identified thrombocytosis as a consequence of the subacute and chronic inhalation of vanadium. With this preceding information we decided to evaluate the effects of this element in the spleen and bone marrow in a mouse experimental model. CD-1 male mice inhaled V2O5 0.02 M for one hour twice a week for twelve weeks. The spleen and bone marrow were processed for light microscopy. The increase in quantity and size of megakaryocytes (MKs) in the exposed group in both organs was striking. Also, modifications in the cytoplasm, granule content and nuclear ultrastructure were evident. Our results indicate the influence of vanadium on megakaryopoyesis, an effect which could be the onset of the thrombocytosis previously reported by our group. The modifications in MKs described here suggest that inhaled vanadium could induce megakaryocytic proliferation, which may result in increased production of platelets and increased risk for thromboembolic events. PMID:18785114

  19. Bone marrow capacity for bone cells and trabecular bone turnover in immobilized tibia after sciatic neurectomy in mice.

    PubMed

    Sakai, A; Nakamura, T; Tsurukami, H; Okazaki, R; Nishida, S; Tanaka, Y; Norimura, T; Suzuki, K

    1996-05-01

    Trabecular bone turnover and bone marrow capacity for the development of bone cells in the tibia were assessed after sciatic neurectomy (NX) in mice. The right hindlimbs of 6-week-old DDY mice were neurectomized and left hindlimbs were sham-operated and served as NX controls. Histomorphometrical analyses of the trabecular bone of the proximal tibia demonstrated the initial decrease in bone formation rate for the first 14 days and the subsequent increase in osteoclast surface for the next 14 days. The number of adherent stromal cells per tibia obtained for the NX limbs was reduced on days 7 and 10 postsurgically, and then recovered on day 12. However, the alkaline phosphatase activity of the cells was persistently depressed. The formation of osteoclast-like multinucleated cells in the marrow cultures obtained from NX limbs at days 10, 12, and 14 showed a significant increase in the medium containing parathyroid hormone (PTH). The number of colonies cultured for colony forming units-fibroblastic (CFU-f) that developed from the marrow cells did not differ in the NX and the contralateral limbs at any time during the period. On the other hand, the number of colonies cultured of colony forming units for granulocytes and macrophages (CFU-GM) was markedly increased for both the NX and the contralateral tibiae at days 12 and 14. This study clearly demonstrates that there are two stages in the development of osteopenia after NX. During the first 14 days, trabecular bone formation and number of marrow stromal cells are reduced. In the second 14 day period, the trabecular osteoclast number is increased and osteoclast formation from the bone marrow cells is enhanced in the presence of PTH. However, neither the CFU-f nor the CFU-GM assay could identify the changes in osteogenic or osteoclastogenic potential of the bone marrow. These in vitro assays provide limited information on the shifts in bone marrow cell lineages and the local environment producing osteopenia in the

  20. Expression of proteoglycan core proteins in human bone marrow stroma.

    PubMed Central

    Schofield, K P; Gallagher, J T; David, G

    1999-01-01

    Heparan sulphate proteoglycans (HSPGs) present on the surface of bone marrow stromal cells and in the extracellular matrix (ECM) have important roles in the control of adhesion and growth of haemopoietic stem and progenitor cells. The two main groups of proteoglycans which contain heparan sulphate chains are members of the syndecan and glypican families. In this study we have identified the main surface membrane and matrix-associated HSPGs present in normal human bone marrow stroma formed in long-term culture. Proteoglycans were extracted from the adherent stromal layers and treated with heparitinase and chondroitinase ABC. The core proteins were detected by Western blotting using antibodies directed against syndecans-1-4, glypican-1 and the ECM HSPG, perlecan. Stromal cell expression at the RNA level was detected by Northern blotting and by reverse transcription PCR. Glypican-1, syndecan-3 and syndecan-4 were the major cell-membrane HSPG species and perlecan was the major ECM proteoglycan. There was no evidence for expression of syndecan-1 protein. Syndecan-3 was expressed mainly as a variant or processed 50-55 kDa core protein and in lower amounts as the characteristic 125 kDa core protein. These results suggest that syndecan-3, syndecan-4 and glypican-1 present on the surface of marrow stromal cells, together with perlecan in the ECM, may be responsible for creating the correct stromal 'niche' for the maintenance and development of haemopoietic stem and progenitor cells. The detection of a variant form of syndecan-3 as a major stromal HSPG suggests a specific role for this syndecan in haemopoiesis. PMID:10527946

  1. Myxomatous stromal changes and necrosis of bone marrow--a retrospective study of 3 years.

    PubMed

    Gupta, Nalini; Kumar, Vijay; Varma, Neelam; Garewal, Gurjeevan; Das, Reena; Ahluwalia, Jasmina; Dash, Sumitra

    2004-07-01

    Myxomatous stromal changes and bone marrow necrosis (BMN) are uncommon histologic findings. These changes have been found in various conditions like disseminated carcinomatosis, postchemotherapy cases, chronic infections, infiltrative disorders of the marrow etc. The present study is a retrospective study of 3 years (Jan, 1999 to Dec. 2001) from Deptt. Of Hematology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh (India). During this period, 3740 bone marrow samples were examined. Myxomatous stromal changes and bone marrow necrosis were noted in 0.43% (16/3740) and 0.45% (17/3740) samples respectively. In addition to common causes of myxomatous stromal changes and bone marrow necrosis as described in the literature, this study highlights the association of these conditions with some of the rarer entities like hyperoxalosis, leishmaniasis, parvovirus induced marrow aplasia and cryptococcal infection. There is paucity of such associations in the literature. PMID:16295422

  2. A T Cell View of the Bone Marrow

    PubMed Central

    Bonomo, Adriana; Monteiro, Ana Carolina; Gonçalves-Silva, Triciana; Cordeiro-Spinetti, Eric; Galvani, Rômulo Gonçalves; Balduino, Alex

    2016-01-01

    The majority of T cells present in the bone marrow (BM) represent an activated/memory phenotype and most of these, if not all, are circulating T cells. Their lodging in the BM keeps them activated, turning the BM microenvironment into a “memory reservoir.” This article will focus on how T cell activation in the BM results in both direct and indirect effects on the hematopoiesis. The hematopoietic stem cell niche will be presented, with its main components and organization, along with the role played by T lymphocytes in basal and pathologic conditions and their effect on the bone remodeling process. Also discussed herein will be how “normal” bone mass peak is achieved only in the presence of an intact adaptive immune system, with T and B cells playing critical roles in this process. Our main hypothesis is that the partnership between T cells and cells of the BM microenvironment orchestrates numerous processes regulating immunity, hematopoiesis, and bone remodeling. PMID:27242791

  3. Detection of micrometastatic prostate cancer cells in the bone marrow of patients with prostate cancer.

    PubMed Central

    Deguchi, T.; Yang, M.; Ehara, H.; Ito, S.; Nishino, Y.; Takahashi, Y.; Ito, Y.; Shimokawa, K.; Tanaka, T.; Imaeda, T.; Doi, T.; Kawada, Y.

    1997-01-01

    Thirty-five patients with prostate cancer were examined for micrometastases to the bone marrow using reverse transcription-polymerase chain reaction (RT-PCR) with primers specific for the prostate-specific antigen (PSA) gene. Of nine patients with bone metastases detectable by bone scan imaging, five patients had PSA mRNA expression in the bone marrow detectable by RT-PCR. Of 26 patients with negative bone scan findings, seven patients had PSA mRNA expression detectable in the bone marrow. RT-PCR could detect micrometastatic prostate cancer cells in the bone marrow that were not detectable by bone scan imaging. Of 16 patients with a serum PSA concentration of 25 ng ml(-1) or greater, only nine (56.3%) had bone metastases detected by bone scans. Of the remaining seven patients, five had micrometastases to the bone marrow detected by RT-PCR. Overall, 14 of 16 patients (87.5%) with a serum PSA concentration of 25 ng ml(-1) or greater had metastatic bone diseases including bone marrow micrometastases. Of 19 patients with a serum PSA concentration of less than 25 ng ml(-1), two (10.5%) had only micrometastatic disease detected by RT-PCR. A significant correlation was observed between the incidence of bone involvement and the serum PSA concentration. This study suggests that RT-PCR will potentially develop into a relevant tool to assess bone involvement including bone marrow micrometastases and establish a precise correlation between serum PSA concentration and metastatic bone disease in patients with prostate cancer. Images Figure 1 PMID:9043017

  4. Rare Bone Marrow Biopsy Complication: A Challenging Case of Sacroiliitis and Staphilococcus Aureus Sepsis

    PubMed Central

    Morotti, Alessandro; Barozzino, Maria Consiglio; Guerrasio, Angelo

    2016-01-01

    Bone marrow biopsy is a mandatory procedure to diagnose several hematological disorders. This invasive analysis is generally safe and the procedure-related risks are rare and include bleeding at the site of puncture and, very occasionally, local infections. Here, we describe a case of sacroiliitis that occurred as a consequence of bone marrow biopsy. PMID:27162606

  5. Recovery of hair coat color in Gray Collie (cyclic neutropenia)-normal bone marrow transplant chimeras.

    PubMed Central

    Yang, T. J.

    1978-01-01

    Gray Collie-normal bone marrow transplantation chimeras showed normal coloration of the hair coat on tails and several other areas 2 years after successful transplantation of bone marrow to correct cyclic neutropenia of the Gray Collie syndrome. Images Figures 1-2 PMID:347941

  6. A Novel Approach for Performing Bone Marrow Aspiration at the Time of Radical Prostatectomy

    PubMed Central

    Tosoian, Jeffrey J.; Reyes, Diane K.; Gorin, Michael A.; Hortopan, Steven; Partin, Alan W.; Pienta, Kenneth J.; Ross, Ashley E.; Schaeffer, Edward M.

    2016-01-01

    The bone marrow microenvironment represents a “metastatic niche” in which prostate cancer cells may persist and evade cytotoxic therapy. In order to study the biology of prostate cancer dissemination, we have established a safe and efficient method for performing pubic bone marrow aspiration at the time of radical prostatectomy. We herein describe our experience with this technique. PMID:27175343

  7. The Role of Bone Marrow Cells in the Phenotypic Changes Associated with Diabetic Nephropathy

    PubMed Central

    Yang, Guang; Cheng, Qingli; Liu, Sheng; Zhao, Jiahui

    2015-01-01

    The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in vivo. Expression levels of the genes encoding α1 type IV collagen and transforming growth factor-β1 in the kidney were assayed. Our results demonstrated that glucose tolerance was normal in the recipients of bone marrow transplants from both diabetic and control donors. However, compared with recipients of the control bone marrow transplant, the urinary albumin/creatinine ratio, glomerular size, and the mesangial/glomerular area ratio increased 3.3-fold (p < 0.01), 1.23-fold (p < 0.01), and 2.13-fold (p < 0.001), respectively, in the recipients of the diabetic bone marrow transplant. Expression levels of the genes encoding glomerular α1 type IV collagen and transforming growth factor-β1 were also significantly increased (p < 0.01) in the recipients of the diabetic bone marrow transplant. Our data suggest that bone marrow cells from the STZ-induced diabetic mice can confer a diabetic phenotype to recipient control mice without the presence of hyperglycemia. PMID:26340671

  8. Combination therapies prevent the neuropathic, proinflammatory characteristics of bone marrow in streptozotocin-induced diabetic rats.

    PubMed

    Dominguez, James M; Yorek, Mark A; Grant, Maria B

    2015-02-01

    We previously showed that peripheral neuropathy of the bone marrow was associated with loss of circadian rhythmicity of stem/progenitor cell release into the circulation. Bone marrow neuropathy results in dramatic changes in hematopoiesis that lead to microvascular complications, inflammation, and reduced endothelial repair. This series of events represents early pathogenesis before development of diabetic retinopathy. In this study we characterized early alterations within the bone marrow of streptozotocin (STZ)-induced diabetic rats following treatments that prevent experimental peripheral neuropathy. We asked whether bone marrow neuropathy and the associated bone marrow pathology were reversed with treatments that prevent peripheral neuropathy. Three strategies were tested: inhibition of neutral endopeptidase, inhibition of aldose reductase plus lipoic acid supplementation, and insulin therapy with antioxidants. All strategies prevented loss of nerve conduction velocity resulting from STZ-induced diabetes and corrected the STZ-induced diabetes-associated increase of immunoreactivity of neuropeptide Y, tyrosine hydroxylase, and somatostatin. The treatments also reduced concentrations of interleukin-1β, granulocyte colony-stimulating factor, and matrix metalloproteinase 2 in STZ-induced diabetic bone marrow supernatant and decreased the expression of NADPH oxidase 2, nitric oxide synthase 2, and nuclear factor-κB1 mRNA in bone marrow progenitor cells. These therapies represent novel approaches to attenuate the diabetic phenotype within the bone marrow and may constitute an important therapeutic strategy for diabetic microvascular complications. PMID:25204979

  9. Abnormal bone marrow distribution following unsuccessful hip replacement: a potential confusion on white cell scanning.

    PubMed

    Cunningham, D A

    1991-01-01

    A case is presented in which a grossly abnormal distribution of bone marrow following failed hip replacement would have led to the false diagnosis of osteomyelitis. The value of combining bone marrow scanning with indium white cell scanning in possible osteomyelitis is emphasised. PMID:2019282

  10. Blockage of caspase-1 activation ameliorates bone marrow inflammation in mice after hematopoietic stem cell transplantation.

    PubMed

    Qiao, Jianlin; Wu, Jinyan; Li, Yuanyuan; Xia, Yuan; Chu, Peipei; Qi, Kunming; Yan, Zhiling; Yao, Haina; Liu, Yun; Xu, Kailin; Zeng, Lingyu

    2016-01-01

    Conditioning regimens before hematopoietic stem cell transplantation (HSCT), cause damage to bone marrow and inflammation. Whether inflammasomes are involved in bone marrow inflammation remains unclear. The study aims to evaluate the role of inflammasomes in bone marrow inflammation after HSCT. On days 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of bone marrow inflammation, pro-inflammatory cytokines secretion, inflammasomes expression and caspase-1 activation. Bone marrow inflammation with neutrophils and macrophages infiltration was observed after HSCT. Secretion of IL-1β, IL-18, TNF-α and IL-6 were elevated, with increased caspase-1 activation and inflammasomes expression. Caspase-1 inhibitor administration after HSCT significantly reduced infiltration of neutrophils and macrophages into bone marrow and increased the numbers of megakaryocytes and platelets. In conclusion, inflammasomes activation is involved in bone marrow inflammation after HSCT and caspase-1 inhibition attenuates bone marrow inflammation and promoted hematopoietic reconstitution, suggesting targeting caspase-1 might be beneficial for improving HSCT outcomes. PMID:26639193

  11. Knowledge and attitude of Lublin universities students' toward the opportunity of becoming unrelated bone marrow donor.

    PubMed

    Sikora, Agnieszka; Wiorkowski, Krzysztof; Szara, Paulina; Drabko, Katarzyna

    2014-01-01

    Hematopoietic Stem Cell Transplantation (HSCT) is a very important life-saving procedure to treat many disorders. In August 2014, there were more than 24.5 million donor registered in the Worldwide Bone Marrow Donor Register. In the Polish Register of Unrelated Bone Marrow and Umbilical Cord Blood Donors at the end of 2013 there were almost 540 thousand registered bone marrow donors. Despite increasing numbers of registered donors, the amount of requests also increased. It shows that the number of donors is still insufficient. The analysis of knowledge and attitude of Lublin universities students' toward the opportunity to become an unrelated bone marrow donor was the aim of our study. 1609 Lublin students from non-medical universities from different years and specializations of study, of both sexes, aged 19-35 took part in the survey. It consisted of 16 questions. There were knowledge-testing questions, and also personal ones. Among interviewees, 16% were registered as potential bone marrow donors. The reason for not being registered registration chosen most often was that the surveyed did not take this into consideration. Correct answers to all of the questions were given by 21% of students. The biggest number of incorrect answers was given to the question about a place from bone marrow is harvested - nearly 49%. Registered students showed a better level of knowledge than the unregistered. We noted a low level of knowledge about bone marrow donation and possibility of becoming potential bone marrow donor among Lublin universities students. PMID:25648307

  12. Transplanted Bone Marrow Cells Repair Heart Tissue and Reduce Myocarditis in Chronic Chagasic Mice

    PubMed Central

    Soares, Milena B. P.; Lima, Ricardo S.; Rocha, Leonardo L.; Takyia, Christina M.; Pontes-de-Carvalho, Lain; Campos de Carvalho, Antonio C.; Ribeiro-dos-Santos, Ricardo

    2004-01-01

    A progressive destruction of the myocardium occurs in ∼30% of Trypanosoma cruzi-infected individuals, causing chronic chagasic cardiomyopathy, a disease so far without effective treatment. Syngeneic bone marrow cell transplantation has been shown to cause repair and improvement of heart function in a number of studies in patients and animal models of ischemic cardiopathy. The effects of bone marrow transplant in a mouse model of chronic chagasic cardiomyopathy, in the presence of the disease causal agent, ie, the T. cruzi, are described herein. Bone marrow cells injected intravenously into chronic chagasic mice migrated to the heart and caused a significant reduction in the inflammatory infiltrates and in the interstitial fibrosis characteristics of chronic chagasic cardiomyopathy. The beneficial effects were observed up to 6 months after bone marrow cell transplantation. A massive apoptosis of myocardial inflammatory cells was observed after the therapy with bone marrow cells. Transplanted bone marrow cells obtained from chagasic mice and from normal mice had similar effects in terms of mediating chagasic heart repair. These results show that bone marrow cell transplantation is effective for treatment of chronic chagasic myocarditis and indicate that autologous bone marrow transplant may be used as an efficient therapy for patients with chronic chagasic cardiomyopathy. PMID:14742250

  13. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function

    PubMed Central

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913

  14. High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment.

    PubMed

    Shu, Lei; Beier, Eric; Sheu, Tzong; Zhang, Hengwei; Zuscik, Michael J; Puzas, Edward J; Boyce, Brendan F; Mooney, Robert A; Xing, Lianping

    2015-04-01

    Obesity is a severe health problem in children, afflicting several organ systems including bone. However, the role of obesity on bone homeostasis and bone cell function in children has not been studied in detail. Here we used young mice fed a high-fat diet (HFD) to model childhood obesity and investigate the effect of HFD on the phenotype of cells within the bone marrow environment. Five-week-old male mice were fed a HFD for 3, 6, and 12 weeks. Decreased bone volume was detected after 3 weeks of HFD treatment. After 6 and 12 weeks, HFD-exposed mice had less bone mass and increased osteoclast numbers. Bone marrow cells, but not spleen cells, from HFD-fed mice had increased osteoclast precursor frequency, elevated osteoclast formation, and bone resorption activity, as well as increased expression of osteoclastogenic regulators including RANKL, TNF, and PPAR-gamma. Bone formation rate and osteoblast and adipocyte numbers were also increased in HFD-fed mice. Isolated bone marrow cells also had a corresponding elevation in the expression of positive regulators of osteoblast and adipocyte differentiation. Our findings indicate that in juvenile mice, HFD-induced bone loss is mainly due to increased osteoclast bone resorption by affecting the bone marrow microenvironment. Thus, targeting osteoclast formation may present a new therapeutic approach for bone complications in obese children. PMID:25673503

  15. Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders?

    PubMed

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy. PMID:22319243

  16. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    PubMed Central

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy. PMID:22319243

  17. High-fidelity organic preservation of bone marrow in ca. 10 Ma amphibians

    NASA Astrophysics Data System (ADS)

    McNamara, Maria E.; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique

    2006-08-01

    Bone marrow in ca. 10 Ma frogs and salamanders from the Miocene of Libros, Spain, represents the first fossilized example of this extremely decay-prone tissue. The bone marrow, preserved in three dimensions as an organic residue, retains the original texture and red and yellow color of hematopoietic and fatty marrow, respectively; moldic osteoclasts and vascular structures are also present. We attribute exceptional preservation of the fossilized bone marrow to cryptic preservation: the bones of the amphibians formed protective microenvironments, and inhibited microbial infiltration. Specimens in which bone marrow is preserved vary in their completeness and articulation and in the extent to which the body outline is preserved as a thin film of organically preserved bacteria. Cryptic preservation of these labile tissues is thus to a large extent independent of, and cannot be predicted by, the taphonomic history of the remainder of the specimen.

  18. Expression of bone morphogenetic proteins in stromal cells from human bone marrow long-term culture.

    PubMed

    Martinovic, Snjezana; Mazic, Sanja; Kisic, Veronika; Basic, Nikolina; Jakic-Razumovic, Jasminka; Borovecki, Fran; Batinic, Drago; Simic, Petra; Grgurevic, Lovorka; Labar, Boris; Vukicevic, Slobodan

    2004-09-01

    Highly purified primitive hemopoietic stem cells express BMP receptors but do not synthesize bone morphogenetic proteins (BMPs). However, exogenously added BMPs regulate their proliferation, differentiation, and survival. To further explore the mechanism by which BMPs might be involved in hemopoietic differentiation, we tested whether stromal cells from long-term culture (LTC) of normal human bone marrow produce BMPs, BMP receptors, and SMAD signaling molecules. Stromal cells were immunohistochemically characterized by the presence of lyzozyme, CD 31, factor VIII, CD 68, S100, alkaline phosphatase, and vimentin. Gene expression was analyzed by RT-PCR and the presence of BMP protein was confirmed by immunohistochemistry (IHC). The supportive role of the stromal cell layer in hemopoiesis in vitro was confirmed by a colony assay of clonogenic progenitors. Bone marrow stromal cells express mRNA and protein for BMP-3, -4, and -7 but not for BMP-2, -5, and -6 from the first to the eighth week of culture. Furthermore, stromal cells express the BMP type I receptors, activin-like kinase-3 (ALK-3), ALK-6, and the downstream transducers SMAD-1, -4, and -5. Thus, human bone marrow stromal cells synthesize BMPs, which might exert their effects on hemopoietic stem cells in a paracrine manner through specific BMP receptors. PMID:15314083

  19. [Inhibitory effect of 8-prenylnaringenin on osteoclastogensis of bone marrow cells and bone resorption activity].

    PubMed

    Lü, Xiang; Zhou, Ying; Chen, Ke-Ming; Zhao, Zhi; Zhou, Jian; Ma, Xiao-Ni

    2013-03-01

    This study is to investigate the effect of 8-prenylnaringenin (8-PNG) on osteoclastogensis of bone marrow cells and bone resorption activity of osteoclasts. Osteoclasts were separated from long bone marrow of newborn rabbits and cultured in alpha-MEM containing 10% FBS. 8-PNG was added into culture media at 1 x 10(-7), 1 x 10(-6), 1 x 10(-5) mol xL(-1), separately. 17beta-Estradiol (E2, 1 x 10(-7) mol x L(-7)) was used as positive control. T RAP staining and TRAP activity measurement were performed after 5 days, and the bone resorption pits were analyzed after 7 days. Annexin V staining for the detection of apoptotic osteoclasts was performed after 2, 4, 8, 12, 24, 36 and 48 h separately. The mRNA expression level of TRAP and cathepsin K (CTSK) was measured by real-time RT-PCR. 8-PNG significantly reduced the number of osteoclasts which was TRAP staining positive and with more than three nucleus, the area and number of bone resorption pits decreased obviously in 8-PNG-supplemented groups. The apoptosis rate peaked earlier in the 8-PNG-supplemented groups and the mRNA expression level of TRAP and CTSK decreased significantly. All these inhibitory effects were in a dose dependent manner, the highest effect was obtained by 1 x 10(-5) mol x L(-1) 8-PNG. 8-PNG inhibits bone resorption activity of osteoclasts by inducing osteoclast apoptosis and inhibiting the gene expression and enzyme activity including TRAP and CTSK, and restrains bone marrow cells to osteoclast differentiation. PMID:23724646

  20. Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation

    PubMed Central

    Wang, Fangjing; Eid, Saada; Dennis, James E; Cooke, Kenneth R; Auletta, Jeffery J; Lee, Zhenghong

    2015-01-01

    Mesenchymal stromal cells (MSCs) have shown promise as treatment for graft-versus-host disease (GvHD) following allogeneic bone marrow transplantation (alloBMT). Mechanisms mediating in vivo effects of MSCs remain largely unknown, including their biodistribution following infusion. To this end, human bone-marrow derived MSCs (hMSCs) were injected via carotid artery (IA) or tail vein (TV) into allogeneic and syngeneic BMT recipient mice. Following xenogeneic transplantation, MSC biodistribution was measured by bioluminescence imaging (BLI) using hMSCs transduced with a reporter gene system containing luciferase and by scintigraphic imaging using hMSCs labeled with [99mTc]-HMPAO. Although hMSCs initially accumulated in the lungs in both transplant groups, more cells migrated to organs in alloBMT recipient as measured by in vivo BLI and scintigraphy and confirmed by ex vivo BLI imaging, immunohistochemistry and quantitative RT-PCR. IA injection resulted in persistent whole–body hMSC distribution in alloBMT recipients, while hMSCs were rapidly cleared in the syngeneic animals within one week. In contrast, TV-injected hMSCs were mainly seen in the lungs with fewer cells traveling to other organs. Summarily, these results demonstrate the potential use of IA injection to alter hMSC biodistribution in order to more effectively deliver hMSCs to targeted tissues and microenvironments. PMID:27330253

  1. Mycobacterium tuberculosis Contaminant Risk on Bone Marrow Aspiration Material from Iliac Bone Patients with Active Tuberculous Spondylitis.

    PubMed

    Rahyussalim, Ahmad Jabir; Kurniawati, Tri; Rukmana, Andriansjah

    2016-01-01

    There was a concern on Mycobacterium tuberculosis spreading to the bone marrow, when it was applied on tuberculous spine infection. This research aimed to study the probability of using autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis. As many as nine patients with tuberculous spondylitis were used as samples. During the procedure, the vertebral lesion material and iliac bone marrow aspirates were obtained for acid fast staining, bacteria culture, and PCR (polymerase chain reaction) tests for Mycobacterium tuberculosis at the Clinical Microbiology Laboratory of Faculty of Medicine Universitas Indonesia. This research showed that there was a relationship between diagnostic confirmation of tuberculous spondylitis based on the PCR test and bacterial culture on the solid vertebral lesion material with the PCR test and bacterial culture from the bone marrow aspirates. If the diagnostic confirmation concluded positive results, then there was a higher probability that there would be a positive result for the bone marrow aspirates, so that it was not recommended to use autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis unless the PCR and culture examination of the bone marrow showed a negative result. PMID:27294117

  2. Mycobacterium tuberculosis Contaminant Risk on Bone Marrow Aspiration Material from Iliac Bone Patients with Active Tuberculous Spondylitis

    PubMed Central

    Rahyussalim, Ahmad Jabir; Kurniawati, Tri; Rukmana, Andriansjah

    2016-01-01

    There was a concern on Mycobacterium tuberculosis spreading to the bone marrow, when it was applied on tuberculous spine infection. This research aimed to study the probability of using autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis. As many as nine patients with tuberculous spondylitis were used as samples. During the procedure, the vertebral lesion material and iliac bone marrow aspirates were obtained for acid fast staining, bacteria culture, and PCR (polymerase chain reaction) tests for Mycobacterium tuberculosis at the Clinical Microbiology Laboratory of Faculty of Medicine Universitas Indonesia. This research showed that there was a relationship between diagnostic confirmation of tuberculous spondylitis based on the PCR test and bacterial culture on the solid vertebral lesion material with the PCR test and bacterial culture from the bone marrow aspirates. If the diagnostic confirmation concluded positive results, then there was a higher probability that there would be a positive result for the bone marrow aspirates, so that it was not recommended to use autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis unless the PCR and culture examination of the bone marrow showed a negative result. PMID:27294117

  3. The Role of Bone Marrow and Visceral Fat on Bone Metabolism

    PubMed Central

    Cauley, Jane A.

    2014-01-01

    The protective effect of total fat mass on bone mineral density (BMD) has been challenged with studies showing no or negative association after adjusting for weight. Subsequently, more studies have evaluated the relationship of regional adiposity with BMD, and findings were inconsistent for central obesity. Advancements in imaging techniques enable us to directly and noninvasively study the role of adiposity on skeletal health. Visceral adiposity measured by computed tomography (CT) has consistently been shown to have negative effects on bone. Availability of magnetic resonance spectroscopy (MRS) also allows us to noninvasively quantify bone marrow fat (BMF), which has been known to be associated with osteoporosis from histomorphometric studies. Using MRS along with dual energy x-ray absorptiometry, studies have reported a detrimental role of BMF on BMD. With the increase in aging and obesity of the population, it is important to continue this effort in identifying the contribution of adipose tissues to bone quality and fracture. PMID:21374105

  4. Selectively eliminated blood monocytes and splenic suppressor macrophages in mice depleted of bone marrow by strontium 89

    SciTech Connect

    Dempsey, W.L.; Morahan, P.S.

    1985-01-01

    The contribution of specific activity to the effects of the bone-seeking isotope, /sup 89/Sr on radiosensitive components of mononuclear phagocyte populations was investigated in mice. CBA/J mice received a fixed dose of 2 microcuries/g body weight of /sup 89/Sr with three different specific activities, 6 Ci, 100 microcuries, and 20 /sup 89/Sr microcuries per mg Sr. The estimated radioactivity located in the bone surface was 4200, 3000 and 2400 cpm/mg bone when measured 2 days after the administration of /sup 89/Sr, and was lost with an estimated biological half-life of 27, 25, and 23 days, respectively. Bone marrow suppression was assessed by quantitation of the depletion of macrophage-colony forming cells (M-CFC) grown in vitro. The decline in M-CFC closely paralleled the level of radioactivity in the bone. These effects were clearly reflected by the depletion of monocytes in the blood, which were reduced to 14%, 14%, and 21% of control levels corresponding to SA's of 6 Curies/mg, 100 microcuries/mg and 20 microcuries/mg when counted on day 10. By day 30 the respective monocyte levels were 15%, 31%, and 77%. Furthermore, the induction of prostaglandin E producing suppressor macrophages (marophages) by Corynebacterium parvum administration was found to vary inversely with the effects of radioactivity in the bone, with initial impairment followed by quantitative recorvery. Resident-type macrophages in impairment cavity appear to be unaffected by /sup 89/Sr-treament. These data suggest that the monocytes and suppressor macrophages are dependent on radiosensitive marrow cells.

  5. Bone marrow monocyte PECAM-1 deficiency elicits increased osteoclastogenesis resulting in trabecular bone loss.

    PubMed

    Wu, Yue; Tworkoski, Kathryn; Michaud, Michael; Madri, Joseph A

    2009-03-01

    In our investigations of the bone marrow (BM) of PECAM-1 null (knockout, KO) mice, we observed that the trabecular bone volume and number of trabeculae were significantly reduced in femoral and tibial long bones. Further studies in vitro revealed increased numbers and size of osteoclasts, enhanced bone resorption on dentin substrates, and hypersensitivity to macrophage CSF and receptor activator of NF-kappaB ligand in BM-derived osteoclast precursor cultures from KO mice. Associations among PECAM-1, Syk, and SHP-1 were found in wild-type BM monocyte derived osteoclast-like cells. The absence of PECAM-1 and SHP-1 interactions in the KO cells leads to the dysregulation of Syk kinases and/or phosphatases, possibly SHP-1. Indeed, KO derived osteoclast-like cells exhibited increased Syk tyrosine phosphorylation levels compared with WT cells. Lastly, WT mice engrafted with marrow from KO kindred showed loss of trabecular bone analogous to KO mice, consistent with increased osteoclastogenesis. PMID:19234161

  6. A case of early gastric cancer with bone metastases: are bone marrow micrometastases significant?

    PubMed

    Soufleris, K; Pilpilidis, I; Tzilves, D; Moschos, J; Gatopoulou, A; Patakiouta, F; Tarpagos, A; Katsos, I

    2007-01-01

    Gastric adenocarcinoma is currently the 14th cause of death worldwide. Early gastric cancer, defined as cancer not penetrating deeper than the submucosa, is considered to carry an excellent prognosis with 5-year survival rates reaching more than 90%. Cases of bone metastases due to intramucosal gastric cancer are very rarely described. A case of a 70-year old male presenting with confirmed bone metastases 7 years after a curative resection for a mucosal gastric carcinoma is discussed. The patient was investigated with bone marrow biopsy and bone scan and showed no other signs of disease. The clinicopathologic features included poor differentiation, signet ring cells presence, no lymph node involvement and a negative second laparotomy two years after the initial surgery. Studies concerning the presence of residual disease in the form of bone marrow micrometastases are briefly reviewed emphasizing that intramucosal gastric cancer still carries the p sibility for metastasis, many years after a curative resection, mandating long term alertness from the attending physician. PMID:17715641

  7. Allogeneic and autologous bone marrow transplantation for acute nonlymphocytic leukemia.

    PubMed

    Hurd, D D

    1987-12-01

    Current results show that 50% of young patients with ANLL who undergo allogeneic BMT experience prolonged DFS and may be cured. Encouraging results with high-dose chemo/radiotherapy and autologous BMT are likewise being reported. In addition, some studies using intensive postremission treatment without BMT have shown results comparable to many transplant series. As better ways of preventing GVHD are found, the morbidity and mortality of allogeneic BMT should be reduced and the benefits of transplantation for curing patients with ANLL should be increased. However, the applicability of allogeneic BMT will remain limited due to the availability of compatible donors whether related or unrelated. Further studies are needed in the use of postremission intensive therapy with and without autologous bone marrow support. However, results to date should engender the same degree of enthusiastic optimism that followed the early reports of improved outcome with allogeneic BMT when applied to first remission patients. PMID:3321445

  8. Prevention and treatment of fungal infections in bone marrow transplantation.

    PubMed

    Mossad, Sherif B

    2003-07-01

    There has not been as much success in the prevention and treatment of invasive fungal infections, particularly aspergillosis, compared to the prevention and treatment of cytomegalovirus infection and graft-versus-host disease in bone marrow transplant (BMT) recipients. Allogeneic BMT recipients who develop graft-versus-host disease and remain immunosuppressed for long periods are at major risk for development of these infections. Prevention of environmental exposure, antifungal chemoprophylaxis, and attempts at early diagnosis are essential for the reduction of mortality from invasive fungal infections. Chest computerized axial tomography is extremely useful in diagnosing pulmonary aspergillosis. However, microbiologic or histologic identification of infection remains essential. Unfortunately, the response to therapy in BMT recipients remains suboptimal. With the development of the lipid formulations of amphotericin B, the newer azoles, and the echinocandins, safer and more efficacious options have become available. The optimal use of antifungal agents or their combinations remains to be determined. PMID:12901327

  9. Neonatal manifestations of inherited bone marrow failure syndromes.

    PubMed

    Khincha, Payal P; Savage, Sharon A

    2016-02-01

    The inherited bone marrow failure syndromes (IBMFS) are a rare yet clinically important cause of neonatal hematological and non-hematological manifestations. Many of these syndromes, such as Fanconi anemia, dyskeratosis congenita and Diamond-Blackfan anemia, confer risks of multiple medical complications later in life, including an increased risk of cancer. Some IBMFS may present with cytopenias in the neonatal period whereas others may present only with congenital physical abnormalities and progress to pancytopenia later in life. A thorough family history and detailed physical examination are integral to the work-up of any neonate in whom there is a high index of suspicion for an IBMFS. Correct detection and diagnosis of these disorders is important for appropriate long-term medical surveillance and counseling not only for the patient but also for appropriate genetic counselling of their families regarding recurrence risks in future children and generations. PMID:26724991

  10. Protecting the interests of the child bone marrow donor.

    PubMed

    Terry, Louise M; Campbell, Anne

    2004-01-01

    At a time when designer babies have been created to act as cord blood donors to sick siblings, ethical debate has focused predominantly on the extent to which it is acceptable to create one human being to assist another. However, children are frequently used this way, by their families and doctors who extract their bone marrow, to try to save the life of another, usually a sibling. With any life-threatening illness, there is the possibility that the urgency of the sick sibling's need means that the short-term welfare of the donor child receives less attention than it should by parents and doctors. This article suggests ways to protect the interests of such children and empower them within the decision-making process and concludes that the drive to save life must be tempered by recognition of the intrinsic worth of donor children and their rights not to be exploited. PMID:15685919

  11. Bone Marrow Aspirate in the Treatment of Chondral Injuries

    PubMed Central

    Holton, James; Imam, Mohamed A.; Snow, Martin

    2016-01-01

    The ability of mesenchymal stem cells (MSCs) to transdifferentiate into a desired cell lineage has captured the imagination of scientists and clinicians alike. The limited ability for chondrocytes to regenerate in chondral injuries has raised the concept of using MSCs to help regenerate and repair damaged tissue. The expansion of cells in a laboratory setting to be delivered back to the patient is too costly for clinical use in the present tough economic climate. This process is slow with due to the complexity of trying to imitate the natural environment and biological stimulation of chondral cell replication and proliferation. Bone marrow aspirate concentrate (BMAC) has the potential to provide an easily accessible and readily available source of MSCs with key growth factors that can be used in treating chondral injuries. This review summarizes the underlying basic science of MSCs and the therapeutic potential of BMAC. PMID:27379241

  12. Autologous Bone Marrow Aspirate Therapy in Wound Healing

    PubMed Central

    Chittoria, Ravi Kumar; Nandhagopal, Vijayaraghavan; Mohapatra, Devi Prasad; Thiruvoth, Friji Meethale; Sivakumar, Dinesh Kumar; Asokan, Arjun

    2016-01-01

    Objective: To study the role of autologous bone marrow aspirate therapy (ABMAT) in wound healing. Approach: This is a retrospective analysis of 9 patients (11 chronic nonhealing wounds) in whom ABMAT was used. Patients (wounds) were grouped into two groups. Group 1 included 4 patients (5 wounds) refusing/unfit for reconstruction and managed only with ABMAT. Group 2 included 5 patients (6 wounds) who agreed/fit for reconstruction after wound bed preparation with ABMAT. End point of the study was complete wound healing. Results: ABMAT helped in complete healing of chronic nonhealing wounds by secondary intention in group 1 patients and enhanced process of wound bed preparation for reconstruction in group 2 patients. Innovation: This study highlights the importance of ABMAT in the management of chronic nonhealing wounds. Conclusion: ABMAT helps in wound bed preparation to allow the wound to heal completely or cover by skin graft/flap. PMID:26989576

  13. The single-staff model for bone marrow transplantation.

    PubMed

    Giles, K; Winslow, M N; Vaughan, W P

    1994-11-01

    This paper will demonstrate the advantages of pursuing an integrated model of care that utilizes one staff of caregivers in one facility for all phases of patient care from the time of patient evaluation through the time the patient returns to the care of his or her primary physician. We took the opportunity afforded by the development of a new program at the University of Alabama at Birmingham, the Bone Marrow Transplantation (BMT) Program, to reconsider as many variables as possible in an attempt to develop a model of care that would represent the best of all worlds, i.e., high levels of quality of care, quality of life, staff job enrichment, patient convenience, operational efficiency, and cost reduction. PMID:10140894

  14. Bone marrow adipose tissue: formation, function and regulation.

    PubMed

    Suchacki, Karla J; Cawthorn, William P; Rosen, Clifford J

    2016-06-01

    The human body requires an uninterrupted supply of energy to maintain metabolic homeostasis and energy balance. To sustain energy balance, excess consumed calories are stored as glycogen, triglycerides and protein, allowing the body to continue to function in states of starvation and increased energy expenditure. Adipose tissue provides the largest natural store of excess calories as triglycerides and plays an important role as an endocrine organ in energy homeostasis and beyond. This short review is intended to detail the current knowledge of the formation and role of bone marrow adipose tissue (MAT), a largely ignored adipose depot, focussing on the role of MAT as an endocrine organ and highlighting the pharmacological agents that regulate MAT. PMID:27022859

  15. Extrathymic development of murine T cells after bone marrow transplantation

    PubMed Central

    Holland, Amanda M.; Zakrzewski, Johannes L.; Tsai, Jennifer J.; Hanash, Alan M.; Dudakov, Jarrod A.; Smith, Odette M.; West, Mallory L.; Singer, Natalie V.; Brill, Jessie; Sun, Joseph C.; van den Brink, Marcel R.M.

    2012-01-01

    Restoring T cell competence is a significant clinical challenge in patients whose thymic function is severely compromised due to age or cytoreductive conditioning. Here, we demonstrate in mice that mesenteric LNs (MLNs) support extrathymic T cell development in euthymic and athymic recipients of bone marrow transplantation (BMT). Furthermore, in aged murine BMT recipients, the contribution of the MLNs to the generation of T cells was maintained, while the contribution of the thymus was significantly impaired. Thymic impairment resulted in a proportional increase in extrathymic-derived T cell progenitors. Extrathymic development in athymic recipients generated conventional naive TCRαβ T cells with a broad Vβ repertoire and intact functional and proliferative potential. Moreover, in the absence of a functional thymus, immunity against known pathogens could be augmented using engineered precursor T cells with viral specificity. These findings demonstrate the potential of extrathymic T cell development for T cell reconstitution in patients with limited thymic function. PMID:23160195

  16. Is hydroxyethyl starch necessary for sedimentation of bone marrow?

    PubMed

    Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny

    2015-02-01

    Hydroxyethyl starch (HES) is used to separate hematopoietic progenitor cells after bone marrow (BM) collection from red blood cells. The aims were to study alternatives for HAES-steril (200 kDa; not available anymore) and to optimize the sedimentation process. Using WBC-enriched product (10 × 10(9) WBC/L), instead of BM, sedimentation at 10% hematocrit using final 0.6 or 0.39% Voluven (130 kDa) or without HES appeared to be good alternatives for 0.6% HAES-steril. MNC recovery >80% and RBC depletion >90% was reached. Optimal sedimentation was reached using 110-140 mL volume. Centrifugation appeared not suitable for sedimentation. Additional testing with BM might be necessary to confirm these results. PMID:25544385

  17. Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    PubMed Central

    Vianna, Verônica Fernandes; Bonfim, Danielle Cabral; Cavalcanti, Amanda dos Santos; Fernandes, Marco Cury; Kahn, Suzana Assad; Casado, Priscila Ladeira; Lima, Inayá Correa; Murray, Samuel S.; Murray, Elsa J. Brochmann; Duarte, Maria Eugenia Leite

    2013-01-01

    Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics. PMID:23710460

  18. 1α,25-Dihydroxyvitamin D3 inhibits the differentiation and bone resorption by osteoclasts generated from Wistar rat bone marrow-derived macrophages

    PubMed Central

    WANG, DONG; GU, JIAN-HONG; CHEN, YANG; ZHAO, HONG-YAN; LIU, WEI; SONG, RUI-LONG; BIAN, JIAN-CHUN; LIU, XUE-ZHONG; YUAN, YAN; LIU, ZONG-PING

    2015-01-01

    The steroid hormone 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3] plays an important role in maintaining a balance in calcium and bone metabolism. To study the effects of 1α,25-(OH)2D3 on osteoclast (OC) formation and bone resorption, OC differentiation was induced in bone marrow-derived mononuclear cells from Wistar rats with the addition of macrophage colony stimulating factor and receptor activator for nuclear factor-κB ligand in vitro. Cells were then treated with 1α,25-(OH)2D3 at 10−9, 10−8 or 10−7 mol/l. OCs were identified using tartrate-resistant acid phosphatase staining and activity was monitored in the absorption lacunae by scanning electron microscopy. Expression levels of functional proteins associated with bone absorption, namely carbonic anhydrase II, cathepsin K and matrix metalloproteinase-9 were evaluated by western blot analysis. The results showed that 1α,25-(OH)2D3 inhibited the formation and activation of OCs in a dose-dependent manner and downregulated the expression levels of bone absorption-associated proteins. PMID:26622436

  19. Plastic embedded core biopsy: a complementary approach to bone marrow aspiration for diagnosing acute myeloid leukaemia.

    PubMed Central

    Islam, A; Frisch, B; Henderson, E S

    1989-01-01

    Bone marrow aspirates and biopsy specimens were taken at diagnosis from 51 patients with acute myeloid leukaemia (AML). The diagnosis was based on morphological and cytochemical analyses, and the leukaemias were classified by FAB criteria. A considerable difference was observed between the results of bone marrow aspirates and the findings of plastic-embedded bone marrow biopsy specimens, particularly in marrow cellularity, extent of blast cell infiltration, and cell type involved in the leukaemic process. The myelomonocytic cell type seemed to predominate in the sections. In four cases there was considerable marrow infiltration with maturing, but dysplastic, granulocytic cells in the sections, but not in the aspirate smears. Features of potential prognostic importance, such as bone marrow infiltration with inflammatory cells, were easily recognised and quantified in the sections. These results indicate that plastic embedded bone marrow biopsy sections complement the findings of bone marrow aspiration in the diagnosis of AML and may also provide information of independent prognostic importance that cannot be obtained by other means. Images Fig 2 Fig 5 Fig 6 Fig 7 Fig 8 PMID:2649520

  20. Bone Marrow-Derived Stem Cells: a Mixed Blessing in the Multifaceted World of Diabetic Complications.

    PubMed

    Mangialardi, Giuseppe; Madeddu, Paolo

    2016-05-01

    Diabetes is one of the main economic burdens in health care, which threatens to worsen dramatically if prevalence forecasts are correct. What makes diabetes harmful is the multi-organ distribution of its microvascular and macrovascular complications. Regenerative medicine with cellular therapy could be the dam against life-threatening or life-altering complications. Bone marrow-derived stem cells are putative candidates to achieve this goal. Unfortunately, the bone marrow itself is affected by diabetes, as it can develop a microangiopathy and neuropathy similar to other body tissues. Neuropathy leads to impaired stem cell mobilization from marrow, the so-called mobilopathy. Here, we review the role of bone marrow-derived stem cells in diabetes: how they are affected by compromised bone marrow integrity, how they contribute to other diabetic complications, and how they can be used as a treatment for these. Eventually, we suggest new tactics to optimize stem cell therapy. PMID:27025211

  1. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion

    PubMed Central

    2011-01-01

    We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies. PMID:21247486

  2. TGF-β1 induces bone marrow reticulin fibrosis in hairy cell leukemia

    PubMed Central

    Shehata, Medhat; Schwarzmeier, Josef D.; Hilgarth, Martin; Hubmann, Rainer; Duechler, Markus; Gisslinger, Heinz

    2004-01-01

    The mechanisms that lead to reticulin fibrosis of bone marrow (BM) in hairy cell leukemia (HCL) are not fully understood. We therefore investigated the involvement of TGF-β1, a potent fibrogenic cytokine, in this process. Immunoassays revealed that TGF-β1 is present at higher concentrations in BM, serum, and plasma of HCL patients in comparison with healthy donors (P < 0.001). RT-PCR and immunofluorescence studies showed that TGF-β1 is overexpressed at the mRNA and protein levels in peripheral blood, spleen, and BM mononuclear cells and that hairy cells (HCs) are the main source of TGF-β1. Active TGF-β1 correlated significantly with grades of BM fibrosis, infiltration with HCs, and serum procollagen type III aminoterminal propeptide (PIIINP). Ex vivo studies demonstrated that TGF-β1 significantly enhances the production and deposition of reticulin and collagen fibers by BM fibroblasts. In addition, BM plasma of HCL patients increased the synthesis of type I and type III procollagens, the main components of reticulin fibers, at the mRNA and protein levels. This fibrogenic activity of BM plasma was abolished by neutralizing anti–TGF-β1 antibodies. These results show, for the first time to our knowledge, that TGF-β1 is highly expressed in HCs and is directly involved in the pathogenesis of BM reticulin fibrosis in HCL. PMID:14991065

  3. Induction of allogeneic unresponsiveness by supralethal irradiation and bone marrow reconstitution. [Dogs

    SciTech Connect

    Rapaport, F.T.; Bachvaroff, R.J.; Akiyama, N.; Sato, T.

    1980-09-01

    Supralethally irradiated dogs were reconstituted wth their own stored bone marrow and were challenged at various time intervals with a kidney allograft. The data suggest that transplanted bone marrow cells may participate directly in the events leading to allogenic unresponsiveness. The time interval between marrow cell replacement and kidney allotransplantation required for optimal results suggest that at least one cycle of cell turnover by the replaced stem cells is needed in order to produce unresponsiveness. Host irradiation and reconstitution with stored autologous marrow may be useful in the treatment of certain forms of cancer.

  4. Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow

    PubMed Central

    Aguilar, Ruth; Magallon-Tejada, Ariel; Achtman, Ariel H.; Moraleda, Cinta; Joice, Regina; Cisteró, Pau; Li Wai Suen, Connie S. N.; Nhabomba, Augusto; Macete, Eusebio; Mueller, Ivo; Marti, Matthias; Alonso, Pedro L.; Menéndez, Clara; Schofield, Louis

    2014-01-01

    Plasmodium falciparum immature gametocytes are not observed in peripheral blood. However, gametocyte stages in organs such as bone marrow have never been assessed by molecular techniques, which are more sensitive than optical microscopy. We quantified P falciparum sexual stages in bone marrow (n = 174) and peripheral blood (n = 70) of Mozambican anemic children by quantitative polymerase chain reaction targeting transcripts specific for early (PF14_0748; PHISTa), intermediate (PF13_0247; Pfs48/45), and mature (PF10_0303; Pfs25) gametocytes. Among children positive for the P falciparum housekeeping gene (PF08_0085; ubiquitin-conjugating enzyme gene) in bone marrow (n = 136) and peripheral blood (n = 25), prevalence of immature gametocytes was higher in bone marrow than peripheral blood (early: 95% vs 20%, P < .001; intermediate: 80% vs 16%; P < .001), as were transcript levels (P < .001 for both stages). In contrast, mature gametocytes were more prevalent (100% vs 51%, P < .001) and abundant (P < .001) in peripheral blood than in the bone marrow. Severe anemia (3.57, 95% confidence interval 1.49-8.53) and dyserythropoiesis (6.21, 95% confidence interval 2.24-17.25) were independently associated with a higher prevalence of mature gametocytes in bone marrow. Our results highlight the high prevalence and abundance of early sexual stages in bone marrow, as well as the relationship between hematological disturbances and gametocyte development in this tissue. PMID:24335496

  5. In vivo cell kinetics of the bone marrow transplantation using dual colored transgenic rat system

    NASA Astrophysics Data System (ADS)

    Kai, Kotaro; Teraoka, Satoshi; Adachi, Yasushi; Ikehara, Susumu; Murakami, Takashi; Kobayashi, Eiji

    2008-02-01

    Because bone marrow is an adequate site for bone marrow stem cells, intra-bone marrow - bone marrow transplantation (IBM-BMT) is an efficient strategy for bone marrow transplantation (BMT). However, the fate of the transplanted cells remains unclear. Herein, we established a dual-colored transgenic rat system utilizing green fluorescent protein (GFP) and a luciferase (luc) marker. We then utilized this system to investigate the in vivo kinetics of transplanted bone marrow cells (BMCs) after authentic intravenous (IV)-BMT or IBM-BMT. The in vivo fate of the transplanted cells was tracked using an in vivo luminescent imaging technique; alterations in peripheral blood chimerism were also followed using flow cytometry. IBM-BMT and IV-BMT were performed using syngeneic and allogeneic rat combinations. While no difference in the proliferation pattern was observed between the two treatment groups at 7 days after BMT, different distribution patterns were clearly observed during the early phase. In the IBM-BMT-treated rats, the transplanted BMCs were engrafted immediately at the site of the injected bone marrow and expanded more rapidly than in the IV-BMT-treated rats during this phase. Graft-versus-host disease was also visualized. Our bio-imaging system using dual-colored transgenic rats is a powerful tool for performing quantitative and morphological assessments in vivo.

  6. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow

    PubMed Central

    Eash, Kyle J.; Greenbaum, Adam M.; Gopalan, Priya K.; Link, Daniel C.

    2010-01-01

    Neutrophils are a major component of the innate immune response. Their homeostasis is maintained, in part, by the regulated release of neutrophils from the bone marrow. Constitutive expression of the chemokine CXCL12 by bone marrow stromal cells provides a key retention signal for neutrophils in the bone marrow through activation of its receptor, CXCR4. Attenuation of CXCR4 signaling leads to entry of neutrophils into the circulation through unknown mechanisms. We investigated the role of CXCR2-binding ELR+ chemokines in neutrophil trafficking using mouse mixed bone marrow chimeras reconstituted with Cxcr2–/– and WT cells. In this context, neutrophils lacking CXCR2 were preferentially retained in the bone marrow, a phenotype resembling the congenital disorder myelokathexis, which is characterized by chronic neutropenia. Additionally, transient disruption of CXCR4 failed to mobilize Cxcr2–/– neutrophils. However, neutrophils lacking both CXCR2 and CXCR4 displayed constitutive mobilization, showing that CXCR4 plays a dominant role in neutrophil trafficking. With regard to CXCR2 ligands, bone marrow endothelial cells and osteoblasts constitutively expressed the ELR+ chemokines CXCL1 and CXCL2, and CXCL2 expression was induced in endothelial cells during G-CSF–induced neutrophil mobilization. Collectively, these data suggest that CXCR2 signaling is a second chemokine axis that interacts antagonistically with CXCR4 to regulate neutrophil release from the bone marrow. PMID:20516641

  7. Histological and In Vivo Microscopic Analysis of the Bone Marrow Microenvironment in a Murine Model of Chronic Myelogenous Leukemia.

    PubMed

    Weissenberger, Eva S; Krause, Daniela S

    2016-01-01

    Imaging of the leukemic bone marrow microenvironment, also called the leukemic bone marrow niche, is an essential method to determine and to evaluate the progression of chronic myelogenous leukemia (CML) and other leukemias in murine models. In this chapter we introduce the murine model of CML primarily used in our laboratory by describing blood and bone marrow analysis as well as the method of histological sectioning and immunohistochemistry in combination with various stainings that can help to understand the complex interaction between leukemic cells, their normal hematopoietic counterparts, and the bone marrow microenvironment. We conclude with describing how to image the bone marrow niche using in vivo microscopy. PMID:27581139

  8. Effect of autologous bone marrow-derived cells associated with guided bone regeneration or not in the treatment of peri-implant defects.

    PubMed

    Ribeiro, F V; Suaid, F F; Ruiz, K G S; Rodrigues, T L; Carvalho, M D; Nociti, F H; Sallum, E A; Casati, M Z

    2012-01-01

    This study investigated the effect of bone marrow-derived cells associated with guided bone regeneration in the treatment of dehiscence bone defects around dental implants. Iliac-derived bone marrow cells were harvested from dogs and phenotypically characterized with regard to their osteogenic properties. After teeth extraction, three implant sites were drilled, dehiscences created and implants placed. Dehiscences were randomly assigned to: bone marrow-derived cells, bone marrow-derived cells+guided bone regeneration, and control (no treatment). After 3 months, implants with adjacent tissues were processed histologically, bone-to-implant contact, bone fill within the threads, new bone area in a zone lateral to the implant, new bone height, and new bone weight at the bottom of the defect were determined. Phenotypic characterization demonstrated that bone marrow-derived cells presented osteogenic potential. Statistically higher bone fill within the threads was observed in both bone marrow-derived cells+guided bone regeneration bone marrow-derived cell groups compared with the control group (P<0.05), with no difference between the groups treated with cells (P>0.05). For the other parameters (new bone area, bone-to-implant contact, new bone height and new bone weight), only the bone marrow-derived cells+guided bone regeneration group presented higher values compared with the non-treated control (P<0.05). Bone marrow-derived cells provided promising results for peri-implantar bone regeneration, although the combined approach seems to be relevant, especially to bone formation out of the implant threads. PMID:21924867

  9. Localized CCR2 Activation in the Bone Marrow Niche Mobilizes Monocytes by Desensitizing CXCR4

    PubMed Central

    Park, Jeong Eun; Miller, Richard J.

    2015-01-01

    Inflammatory (classical) monocytes residing in the bone marrow must enter the bloodstream in order to combat microbe infection. These monocytes express high levels of CCR2, a chemokine receptor whose activation is required for them to exit the bone marrow. How CCR2 is locally activated in the bone marrow and how their activation promotes monocyte egress is not understood. Here, we have used double transgenic lines that can visualize CCR2 activation in vivo and show that its chemokine ligand CCL2 is acutely released by stromal cells in the bone marrow, which make direct contact with CCR2-expressing monocytes. These monocytes also express CXCR4, whose activation immobilizes cells in the bone marrow, and are in contact with stromal cells expressing CXCL12, the CXCR4 ligand. During the inflammatory response, CCL2 is released and activates the CCR2 on neighboring monocytes. We demonstrate that acutely isolated bone marrow cells co-express CCR2 and CXCR4, and CCR2 activation desensitizes CXCR4. Inhibiting CXCR4 by a specific receptor antagonist in mice causes CCR2-expressing cells to exit the bone marrow in absence of inflammatory insults. Taken together, these results suggest a novel mechanism whereby the local activation of CCR2 on monocytes in the bone marrow attenuates an anchoring signalling provided by CXCR4 expressed by the same cell and mobilizes the bone marrow monocyte to the blood stream. Our results also provide a generalizable model that cross-desensitization of chemokine receptors fine-tunes cell mobility by integrating multiple chemokine signals. PMID:26029924

  10. Development and characterization of a lung-protective method of bone marrow transplantation in the mouse.

    PubMed

    Janssen, William J; Muldrow, Alaina; Kearns, Mark T; Barthel, Lea; Henson, Peter M

    2010-05-31

    Allogeneic bone marrow transplantation is a common method used to study the contribution of myeloid and lymphoid cell populations in murine models of disease. The method requires lethal doses of radiation to ablate the bone marrow. Unintended consequences of radiation include organ injury and inflammatory cell activation. The goal of our study was to determine the degree to which bone marrow transplantation alters lungs and to develop a system to protect the lungs during radiation. C57BL/6 mice were subjected to total body irradiation with 900cGy and then transplanted with bone marrow from green fluorescent protein (GFP) expressing mice. Resultant chimeras exhibited a significant decline in alveolar macrophage numbers within 72h, modest influx of neutrophils in the lungs at 14days, and repopulation of the lungs by alveolar macrophages of bone marrow origin by 28days. Neutrophil influx and alveolar macrophage turnover were prevented when 1cm thick lead shields were used to protect the lungs during radiation, such that 8weeks after transplantation less than 30% of alveolar macrophages were of donor origin. Lung-shielded mice achieved a high level of bone marrow engraftment with greater than 95% of circulating leukocytes expressing GFP. In addition, their response to intratracheal lipopolysaccharide was similar to non-transplanted mice. We describe a model whereby lead shields protect resident cell populations in the lungs from radiation during bone marrow transplantation but permit full bone marrow engraftment. This system may be applicable to other organ systems in which protection from radiation during bone marrow transplantation is desired. PMID:20347833

  11. Diffusely discordant In-111 WBC/Tc-99m SC bone marrow uptake: A possible chemotherapeutic effect

    SciTech Connect

    Achong, D.M.; Oates, E.

    1995-07-01

    In-111 WBC scintigraphy in a women with relapsed acute lymphoid leukemia demonstrated normal uptake of white blood cells by the liver and spleen, but virtually absent bone marrow activity. Tc-99m Sc imaging confirmed normal marrow function and distribution. A bone marrow biopsy revealed mildly hypocellular, regenerating marrow without leukemic infiltration. The effects of systemic cytotoxic chemotherapy on marrow reticuloendothelial function may have been responsible for this discordant uptake. 5 refs., 2 figs.

  12. Repair of segmental bone defects with bone marrow and BMP-2 adenovirus in the rabbit radius

    NASA Astrophysics Data System (ADS)

    Cheng, Lijia; Lu, Xiaofeng; Shi, Yujun; Li, Li; Xue, Jing; Zhang, Li; Xia, Jie; Wang, Yujia; Zhang, Xingdong; Bu, Hong

    2012-12-01

    Bone tissue engineering (BTE) is approached via implantation of autogenous mesenchymal stem cells (MSCs), marrow cells, or platelet-rich plasma, etc. To the contrary, gene therapy combining with the bone marrow (BM) has not been often reported. This study was performed to investigate whether a modified BTE method, that is, the BM and a recombinant human bone morphogenetic protein-2 adenovirus (Ad.hBMP-2) gene administering in hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics could accelerate the healing of segmental defects in the rabbit radius. In our study, ceramics were immersed in the adenovirus overnight, and half an hour before surgery, autologous BM aspirates were thoroughly mixed with the ceramics; at the same time, a 15-mm radius defect was introduced in the bilateral forelimbs of all animals, after that, this defect was filled with the following: (1) Ad.hBMP-2 + HA/β-TCP + autologous BM (group 1); (2) HA/β-TCP + Ad.hBMP-2 (group 2); (3) HA/β-TCP alone (group 3); (4) an empty defect as a control (group 4). Histological observation and μ-CT analyses were performed on the specimens at weeks 2, 4, 8, and 12, respectively. In group 1, new bone was observed at week 4 and BM appeared at week 12, in groups 2 and 3, new bone was observed at week 8 and it was more mature at week 12, in contrast, the defect was not bridged in group 4 at week 12. The new bone area percentage in group 1 was significantly higher than that in groups 2 and 3. Our study indicated that BM combined with hBMP-2 adenovirus and porous ceramics could significantly increase the amount of newly formed bone. And this modified BTE method thus might have potentials in future clinical application.

  13. Reconstitution of the CD45RO(+) and CD20(+) lymphoid marrow population following allogeneic bone marrow transplantation for Ph(+) CML.

    PubMed

    Thiele, J; Kvasnicka, H M; Beelen, D W; Welter, A; Schneider, S; Leder, L D; Schaefer, U W

    2001-02-01

    Following bone marrow transplantation (BMT) investigations on the recovery of the B and T lymphocyte populations have focused on the peripheral blood and only marginally regard the bone marrow. An immunohistochemical and morphometric study was performed on 352 trephine biopsies derived from 123 patients with chronic myelogenous leukemia (CML) at standardized endpoints before and after allogeneic BMT and compared to a control group. The purpose of this investigation was to quantify the B-CD20(+) and T-CD45RO(+) lymphocyte subsets and to determine possible relationships with the occurrence of acute and chronic GVHD. Moreover, we studied the dynamics of lymphocyte repopulation in the post-transplant period, correlations with the total peripheral lymphocyte count and differences associated with sibling vs alternate HLA-compatible (unmanipulated) marrow grafts. Morphometric analysis revealed a very fast regeneration of CD45RO(+) and CD20(+) marrow lymphocytes in the first 2 weeks following BMT. In less than 2 months, in most patients, the post-transplant quantity of lymphocytes was comparable to that of the normal bone marrow. This finding was opposed to the profound depression of the absolute lymphocyte count in the peripheral blood. No relevant relationships could be calculated between engraftment status and the lymphocyte repopulation in the bone marrow. On the other hand, significant correlations were calculable between the development of (chronic and acute) GVHD including severity with the number of CD45RO(+) lymphocytes. In non-related graft constellations a more frequent evolution of acute grade III + IV GVHD was detectable. This complication was accompanied by an increased quantity of CD45RO(+) lymphocytes in the marrow. PMID:11313672

  14. Burkitt leukemia limited to the bone marrow has a better prognosis than Burkitt lymphoma with bone marrow involvement in adults.

    PubMed

    Song, Joo Y; Venkataraman, Girish; Fedoriw, Yuri; Herrera, Alex F; Siddiqi, Tanya; Alikhan, Mir B; Kim, Young S; Murata-Collins, Joyce; Weisenburger, Dennis D; Liu, Xueli; Duffield, Amy S

    2016-01-01

    Burkitt lymphoma patients with bulky disease often have bone marrow involvement. However, leukemic presentation of Burkitt lymphoma in the absence of a mass (pure Burkitt leukemia; PBL) is uncommon. Both PBL and Burkitt lymphoma/leukemia, presenting with a tumor mass and marrow involvement (BLL), are considered stage IV disease, which is associated with a poor prognosis. However, there is limited information on the prognosis in adults with PBL because they have typically been included in cohorts of patients with BLL. This study identified 23 patients, which included 10 PBL and 13 BLL cases. Complex karyotypes (100%) were seen in all BLL cases compared to the PBL group (40%; p = 0.061). Patients with PBL had a significantly better 5-year overall survival of 87.5% vs only 24.3% in the BLL group (p = 0.005). The 5-year overall survival of patients with PBL treated with intensive chemotherapy is superior to those with BLL who are similarly treated. PMID:26450341

  15. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity.

  16. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    NASA Astrophysics Data System (ADS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-11-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1°C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T2, since T2 increases linearly in fat during heating. T2-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T2. Calibration of T2-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T2 and temperature with a thermocouple. A positive T2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T2-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  17. Differential regulation of myeloid leukemias by the bone marrow microenvironment.

    PubMed

    Krause, Daniela S; Fulzele, Keertik; Catic, André; Sun, Chia Chi; Dombkowski, David; Hurley, Michael P; Lezeau, Sanon; Attar, Eyal; Wu, Joy Y; Lin, Herbert Y; Divieti-Pajevic, Paola; Hasserjian, Robert P; Schipani, Ernestina; Van Etten, Richard A; Scadden, David T

    2013-11-01

    Like their normal hematopoietic stem cell counterparts, leukemia stem cells (LSCs) in chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) are presumed to reside in specific niches in the bone marrow microenvironment (BMM) and may be the cause of relapse following chemotherapy. Targeting the niche is a new strategy to eliminate persistent and drug-resistant LSCs. CD44 (refs. 3,4) and interleukin-6 (ref. 5) have been implicated previously in the LSC niche. Transforming growth factor-β1 (TGF-β1) is released during bone remodeling and plays a part in maintenance of CML LSCs, but a role for TGF-β1 from the BMM has not been defined. Here, we show that alteration of the BMM by osteoblastic cell-specific activation of the parathyroid hormone (PTH) receptor attenuates BCR-ABL1 oncogene-induced CML-like myeloproliferative neoplasia (MPN) but enhances MLL-AF9 oncogene-induced AML in mouse transplantation models, possibly through opposing effects of increased TGF-β1 on the respective LSCs. PTH treatment caused a 15-fold decrease in LSCs in wild-type mice with CML-like MPN and reduced engraftment of immune-deficient mice with primary human CML cells. These results demonstrate that LSC niches in CML and AML are distinct and suggest that modulation of the BMM by PTH may be a feasible strategy to reduce LSCs, a prerequisite for the cure of CML. PMID:24162813

  18. Characterization of Fatty Acid Composition in Bone Marrow Fluid From Postmenopausal Women: Modification After Hip Fracture.

    PubMed

    Miranda, Melissa; Pino, Ana María; Fuenzalida, Karen; Rosen, Clifford J; Seitz, Germán; Rodríguez, J Pablo

    2016-10-01

    Bone marrow adipose tissue (BMAT) is associated with low bone mass, although the functional consequences for skeletal maintenance of increased BMAT are currently unclear. BMAT might have a role in systemic energy metabolism, and could be an energy source as well as an endocrine organ for neighboring bone cells, releasing cytokines, adipokines and free fatty acids into the bone marrow microenvironment. The aim of the present report was to compare the fatty acid composition in the bone marrow supernatant fluid (BMSF) and blood plasma of postmenopausal women women (65-80 years old). BMSF was obtained after spinning the aspirated bone marrow samples; donors were classified as control, osteopenic or osteoporotic after dual-energy X-ray absorptiometry. Total lipids from human bone marrow fluid and plasma were extracted, converted to the corresponding methyl esters, and finally analyzed by a gas chromatographer coupled with a mass spectrometer. Results showed that fatty acid composition in BMSF was dynamic and distinct from blood plasma, implying significance in the locally produced lipids. The fatty acid composition in the BMSF was enriched in saturated fatty acid and decreased in unsaturated fatty acids as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. On the other hand, there was no relationship between BMSF and bone mineral density. In conclusion, lipid composition of BMSF is distinct from the circulatory compartment, most likely reflecting the energy needs of the marrow compartment. J. Cell. Biochem. 117: 2370-2376, 2016. © 2016 Wiley Periodicals, Inc. PMID:27416518

  19. Bone marrow stromal cell assays – in vitro and in vivo

    PubMed Central

    Robey, Pamela Gehron; Kuznetsov, Sergei A.; Riminucci, Mara; Bianco, Paolo

    2014-01-01

    Summary Populations of bone marrow stromal cells (BMSCs, also known as bone marrow-derived “mesenchymal stem cells”) contain a a subset of cells that are able to recapitulate the formation of a bone/marrow organ (skeletal stem cells, SSCs). The biological properties of BMSC cultures are assessed by a variety of assays, both in vitro and in vivo. Application of these assays in an appropriate fashion provide a great deal of information on the role of BMSCs, and the subset of SSCs, in health and in disease. PMID:24482181

  20. Large-scale gene expression profiling data of bone marrow stromal cells from osteoarthritic donors.

    PubMed

    Stiehler, Maik; Rauh, Juliane; Bünger, Cody; Jacobi, Angela; Vater, Corina; Schildberg, Theresa; Liebers, Cornelia; Günther, Klaus-Peter; Bretschneider, Henriette

    2016-09-01

    This data article contains data related to the research article entitled, "in vitro characterization of bone marrow stromal cells from osteoarthritic donors" [1]. Osteoarthritis (OA) represents the main indication for total joint arthroplasty and is one of the most frequent degenerative joint disorders. However, the exact etiology of OA remains unknown. Bone marrow stromal cells (BMSCs) can be easily isolated from bone marrow aspirates and provide an excellent source of progenitor cells. The data shows the identification of pivotal genes and pathways involved in osteoarthritis by comparing gene expression patterns of BMSCs from osteoarthritic versus healthy donors using an array-based approach. PMID:27508214

  1. Antitumor immunomodulatory activity of allogenic bone marrow cells on TiNi scaffold

    NASA Astrophysics Data System (ADS)

    Kokorev, O. V.; Hodorenko, V. N.; Cherdyntseva, N. V.; Gunther, V. E.

    2016-08-01

    The present study was undertaken to evaluate the feasibility of modulation of anti-tumor response by allogenic bone marrow cell transplantation into porous TiNi-based scaffold. Transplantation of bone marrow cells into porous TiNi-based scaffold leads to antitumor (35%) and antimetastatic (55%) effects. The lifetime of tumor-bearing animals and implanted allogenic bone marrow cells in incubator of TiNi increases up to 60%. The possible mechanisms of the effect of allogenic cells on tumor process are the stimulation of endogenous effectors of antitumor immunity.

  2. GST-pi gene-transduced hematopoietic progenitor cell transplantation overcomes the bone marrow toxicity of cyclophosphamide in mice.

    PubMed

    Matsunaga, T; Sakamaki, S; Kuga, T; Kuroda, H; Kusakabe, T; Akiyama, T; Konuma, Y; Hirayama, Y; Kobune, M; Kato, J; Sasaki, K; Kogawa, K; Koyama, R; Niitsu, Y

    2000-08-10

    Autologous transplantation of bone marrow cells (BMCs) transduced with the multidrug resistance 1 (MDR1) gene or dihydrofolate reductase (DHFR) gene has already been applied in clinical chemoprotection trials. However, anticancer drugs frequently used in high-dose chemotherapy (HDC), such as alkylating agents, are not relevant to MDR1 or DHFR gene products. In this context, we have previously reported that glutathione S-transferase-pi (GST-pi) gene-transduced human CD34(+) cells showed resistance in vitro against 4-hydroperoxicyclophosphamide, an active form of cyclophosphamide (CY). In the present study, a subsequent attempt was made in a murine model to evaluate the effectiveness of transplantation of GST-pi-transduced BMCs to protect bone marrow against high-dose CY. The gene transfection was carried out retrovirally, employing a recombinant fibronectin fragment. Transfection efficiency into CFU-GM was 30%. After the transplantation, recipient mice (GST-pi mice) received three sequential courses of high-dose CY. As the chemotherapy courses advanced, both shortening of recovery period from WBC nadir and shallowing of WBC nadir were observed. In contrast to the fact that three of seven control mice died, possibly due to chemotoxicity, all seven GST-pi mice were alive after the third course, at which point the vector GST-pi gene was detected in 50% of CFU-GM derived from their BMCs and peripheral blood mononuclear cells. When BMCs obtained from these seven mice were retransplanted into secondary recipient mice, 20% of CFU-GM from BMCs showed positive signals for vector GST-pi DNA after 6 months. These data indicate that the GST-pi gene can confer resistance to bone marrow against CY by being transduced into long-term repopulating cells. PMID:10954901

  3. The Challenge and the Promise of Bone Marrow Cells for Human Cartilage Repair

    PubMed Central

    2015-01-01

    The cartilage repair potential of bone marrow–derived stem cells has been well described. Harnessing this potential for human articular cartilage repair remains challenging. Accessing bone marrow repair cells through marrow stimulation techniques such as microfracture is readily achieved with generally good but inconsistent results. Animal and human studies show feasibility for ex vivo processing of bone marrow to isolate, concentrate, and culture mesenchymal stem cells. Nevertheless, it has been difficult to show consistent and clinically meaningful improvement using bone marrow cell preparations above what has been achieved with microfracture. Consequently, microfracture continues to be the simplest and most commonly used method to enhance repair of focal articular cartilage defects. Emerging preclinical work in the equine model suggests a role for enhancing marrow-stimulation techniques through the use of natural scaffolds such as autologous platelet enriched fibrin as well as optimization of joint biology through localized gene therapy to support cartilage repair. In contrast to joint replacement where inert materials of known mechanical properties are used, host biology determines the relative success, failure, and durability of cartilage repair. As such, development of personalized strategies to improve the quality and durability of bone marrow cell–based articular cartilage repair represent exciting new areas of inquiry. Continued advances in stem cell biology, scaffold technologies, and methods to delineate and enhance host biology, both systemically and within the joint, hold promise for harnessing the full power of bone marrow cells to facilitate cartilage repair and regeneration.

  4. Modeling Hematopoiesis and Responses to Radiation Countermeasures in a Bone Marrow-on-a-Chip.

    PubMed

    Torisawa, Yu-Suke; Mammoto, Tadanori; Jiang, Elisabeth; Jiang, Amanda; Mammoto, Akiko; Watters, Alexander L; Bahinski, Anthony; Ingber, Donald E

    2016-05-01

    Studies on hematopoiesis currently rely on animal models because in vitro culture methods do not accurately recapitulate complex bone marrow physiology. We recently described a bone marrow-on-a-chip microfluidic device that enables the culture of living hematopoietic bone marrow and mimics radiation toxicity in vitro. In the present study, we used this microdevice to demonstrate continuous blood cell production in vitro and model bone marrow responses to potential radiation countermeasure drugs. The device maintained mouse hematopoietic stem and progenitor cells in normal proportions for at least 2 weeks in culture. Increases in the number of leukocytes and red blood cells into the microfluidic circulation also could be detected over time, and addition of erythropoietin induced a significant increase in erythrocyte production. Exposure of the bone marrow chip to gamma radiation resulted in reduction of leukocyte production, and treatment of the chips with two potential therapeutics, granulocyte-colony stimulating factor or bactericidal/permeability-increasing protein (BPI), induced significant increases in the number of hematopoietic stem cells and myeloid cells in the fluidic outflow. In contrast, BPI was not found to have any effect when analyzed using static marrow cultures, even though it has been previously shown to accelerate recovery from radiation-induced toxicity in vivo. These findings demonstrate the potential value of the bone marrow-on-a-chip for modeling blood cell production, monitoring responses to hematopoiesis-modulating drugs, and testing radiation countermeasures in vitro. PMID:26993746

  5. Influence of early zoledronic acid administration on bone marrow fat in ovariectomized rats.

    PubMed

    Li, Guan-Wu; Xu, Zheng; Chang, Shi-Xin; Zhou, Lei; Wang, Xiao-Yan; Nian, Hua; Shi, Xiao

    2014-12-01

    Although the primary target cell of bisphosphonates is the osteoclast, increasing attention is being given to other effector cells influenced by bisphosphonates, such as osteoblasts and marrow adipocytes. Early zoledronic acid (ZA) treatment to ovariectomized (OVX) rats has been found to fully preserve bone microarchitecture over time. However, little is known regarding the influence of ZA on marrow adipogenesis. The purpose of this study was to monitor the ability of early administration of ZA in restoring marrow adiposity in an estrogen-deficient rat model. Thirty female Sprague-Dawley rats were randomly divided into sham-operated (SHAM), OVX + vehicle, and OVX + ZA groups (n=10/group). Dual-energy x-ray absorptiometry and water/fat magnetic resonance imaging were performed at baseline, 6 weeks, and 12 weeks after treatment to assess bone mineral density and marrow fat fraction. Serum biochemical markers, bone remodeling, and marrow adipocyte parameters were analyzed using biochemistry, histomorphometry, and histopathology, respectively. The expression levels of osteoblast, adipocyte, and osteoclast-related genes in bone marrow were assessed using RT-PCR. The OVX rats showed marked bone loss, first detected at 12 weeks, but estrogen deficiency resulted in a remarked increase in marrow fat fraction, first detected at 6 weeks compared with the SHAM rats (all P < .001). Similarly, the OVX rats had a substantially larger percent adipocyte area (+163.0%), mean diameter (+29.5%), and higher density (+57.3%) relative to the SHAM rats. Bone histomorphometry, levels of osteoclast-related gene expression, and a serum resorption marker confirmed that ZA significantly suppressed bone resorption activities. Furthermore, ZA treatment returned adipocyte-related gene expression and marrow adipocyte parameters toward SHAM levels. These data suggest that a single dose of early ZA treatment acts to reverse marrow adipogenesis occurring during estrogen deficiency, which may

  6. Effects of OK-432 on murine bone marrow and the production of natural killer cells

    SciTech Connect

    Pollack, S.B.; Rosse, C.

    1985-01-01

    The streptococcal preparation, OK-432, which augments anti-tumor responses in humans and mice, has been shown to be a potent immunomodulator. Among its effects is a pronounced augmentation of natural killer (NK) activity. The hypothesis that OK-432 alters the rates of production and maturation of NK cells in the bone marrow was tested. Studies to determine the kinetic parameters of NK cell production in normal C57BL/6J mice using tritiated thymidine, /sup 3/H-TdR, as a DNA marker are described. We are now extending those studies to determine the effect of OK-432 on the bone marrow and on the production of NK cells in the marrow. Initial observations are reported which indicate that OK-432 has profound effects on the cellularity and mitotic activity of the bone marrow, and in particular, on cells with the characteristics of natural killer cells within the marrow. 17 refs., 3 figs., 4 tabs.

  7. The Peripheral Blood Mononuclear Cell Count Is Associated With Bone Health in Elderly Men

    PubMed Central

    Lin, Xianfeng; Yu, Hejun; Zhao, Chenchen; Qian, Yu; Hong, Dun; Huang, Kangmao; Mo, Jian; Qin, An; Fang, Xiangqian; Fan, Shunwu

    2016-01-01

    Abstract The peripheral blood mononuclear cell (PBMC) count is a routinely used and meaningful index for infection and blood diseases. PBMCs may be closely related to osteoclasts and include osteoclast precursors; we examined the association between the PBMC count and bone health. This research included 2806 community men aged ≥50 years who underwent full health examinations from October 2007 through December 2011 in four medical centers. The PBMC count was significantly high among subjects with “at least osteopenia” compared with controls. In analysis of covariance adjusted for potential confounders, the bone mineral density (BMD) value and T-score had a significant decreasing trend across the quartiles of PBMC count. In univariate analysis, the PBMC count had a strong association with “at least osteopenia” (odds ratio [OR] = 2.520, 95% confidence interval [CI]: 1.397–4.547). After adjustment for confounding factors (multivariate analysis) from Model 1 to 4, PBMC count remained as an independent risk factor for “at least osteopenia” (OR = 2.481, 95% CI: 1.176–5.236). Moreover, after adjusting for all confounding variables, participants had a significantly high OR in the body mass index (BMI) <25 group (OR = 2.798, CI: 1.122–6.973; P = 0.027) and systolic blood pressure (SBP) <140 group (OR = 2.519, CI: 1.059–5.993; P = 0.037). In conclusion, the PBMC count is significantly associated with bone loss in elderly men and the exact mechanism requires further clarification. PMID:27082593

  8. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. PMID:24755526

  9. Bone marrow changes in adolescent girls with anorexia nervosa.

    PubMed

    Ecklund, Kirsten; Vajapeyam, Sridhar; Feldman, Henry A; Buzney, Catherine D; Mulkern, Robert V; Kleinman, Paul K; Rosen, Clifford J; Gordon, Catherine M

    2010-02-01

    Early osteoporosis is common among adolescent girls with anorexia nervosa (AN) and may result from premature conversion of red (RM) to yellow bone marrow. We performed right knee magnetic resonance imaging (MRI) on a 1.0 T extremity scanner in 20 patients and 20 healthy controls, aged 16.2 +/- 1.6 years (mean +/- SD). Coronal T(1)-weighted (T(1)W) images and T(1) maps were generated from T(1) relaxometry images. Blinded radiologists visually assessed RM in the distal femoral and proximal tibial metaphyses in T(1)W images using a scale of signal intensity from 0 (homogeneous hyperintensity, no RM) to 4 (all dark, complete RM). Subjects with AN exhibited nearly twofold lower metaphyseal RM scores in both the femur (0.64 versus 1.22, p = .03) and tibia (0.54 versus 0.96, p = .08). In relaxometric measurements of four selected regions (femur and tibia amd epiphysis and metaphysis), subjects with AN showed higher mean epiphyseal but lower metaphyseal T(1). The net AN-control difference between epiphysis and metaphysis was 70 ms in the femur (+31 versus -35 ms, p = .02) and of smaller magnitude in the tibia. In relaxometry data from the full width of the femur adjacent to the growth plate, AN subjects showed mean T(1) consistently lower than in controls by 30 to 50 ms in virtually every part of the sampling region. These findings suggest that adolescents with AN exhibit premature conversion of hematopoietic to fat cells in the marrow of the peripheral skeleton potentially owing to adipocyte over osteoblast differentiation in the mesenchymal stem cell pool. PMID:19653811

  10. Salvianolic Acid B Prevents Bone Loss in Prednisone-Treated Rats through Stimulation of Osteogenesis and Bone Marrow Angiogenesis

    PubMed Central

    Cui, Liao; Li, Ting; Liu, Yuyu; Zhou, Le; Li, Pinghua; Xu, Bilian; Huang, Lianfang; Chen, Yan; Liu, Yanzhi; Tian, Xiaoyan; Jee, Webster S. S.; Wu, Tie

    2012-01-01

    Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10−6 mol/L to 10−7 mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin mRNA expression with

  11. Identifying belief targets to increase bone marrow registry participation among students who have never donated blood.

    PubMed

    Hyde, Melissa K; McLaren, Patrick J; White, Katherine M

    2014-01-01

    New members on bone marrow registries worldwide are needed to allow sufficient diversity in the donor pool to meet patient needs. We used the theory of planned behaviour belief-basis and surveyed students who had not donated blood previously (i.e. non-donors) (N = 150) about the behavioural, normative, and control beliefs informing their intentions to join the Australian Bone Marrow Donor Registry. Key beliefs predicting non-donors' intentions included: viewing bone marrow donation as an invasion of the body (β = -.35), normative support from parents (β = .40), anticipating pain/side effects from giving blood (β = -.27), and lack of knowledge about how to register (β = -.30). Few non-donors endorsed these beliefs, suggesting they are ideal targets for change in strategies encouraging bone marrow donor registration. PMID:23473418

  12. Stem Cell Transplant (Peripheral Blood, Bone Marrow, and Cord Blood Transplants)

    MedlinePlus

    ... donor cells may be harvested (removed) in an operating room, and then processed in the lab right ... called bone marrow harvest . It’s done in an operating room, while the donor is under general anesthesia ( ...

  13. Effect of Danggui Buxue Tang on immune-mediated aplastic anemia bone marrow proliferation mice.

    PubMed

    Yang, Xian; Huang, Chong-Gang; Du, Shou-Ying; Yang, Shui-Ping; Zhang, Xue; Liu, Jian-Yi; Xian-QinLuo; Xu, Jia-Hong

    2014-04-15

    To investigate the pharmacological effects of Danggui Buxue Tang (DBT) on immune-mediated aplasia anemia mice. The model of immune-mediated aplasia anemia mice was induced by means of (60)Co γ-ray irradiation and mixed cells of thymus and lymphnode of DBA/2 mice infusion through tail vein, the parameters tested indices were as following: blood picture, bone marrow nucleated cell count (BMNC), murine colony-forming unit-megakaryocytes (CFU-GM) of bone marrow cells, murine colony-forming unit-erthroid (CFU-E) and burst forming unit-erythroid (BFU-E). The results showed that DBT could not only withstand significantly decreation of blood cells by immune-mediated, but also stimulate on the growth of bone marrow colony cell and increase the weight of hemopoietic progenitor of bone marrow. Therefore, DBT had an obvious treat effect on immune-mediated aplasia anemia models mice. PMID:24290471

  14. The bone-fat interface: basic and clinical implications of marrow adiposity.

    PubMed

    Devlin, Maureen J; Rosen, Clifford J

    2015-02-01

    Obesity and osteoporosis are two of the most common chronic disorders of the 21st century. Both are accompanied by significant morbidity. The only place in the mammalian organism where bone and fat lie adjacent to each other is in the bone marrow. Marrow adipose tissue is a dynamic depot that probably exists as both constitutive and regulated compartments. Adipocytes secrete cytokines and adipokines that either stimulate or inhibit adjacent osteoblasts. The relationship of marrow adipose tissue to other fat depots is complex and might play very distinct parts in modulation of metabolic homoeostasis, haemopoiesis, and osteogenesis. Understanding of the relationship between bone and fat cells that arise from the same progenitor within the bone marrow niche provides insight into the pathophysiology of age-related osteoporosis, diabetes, and obesity. PMID:24731667

  15. A systematic review of psychosocial factors affecting survival after bone marrow transplantation.

    PubMed

    Hoodin, Flora; Weber, Shauncie

    2003-01-01

    An electronic database search identified 15 studies of psychosocial factors affecting survival after bone marrow transplantation. The studies were assessed for methodological quality by two reviewers using the procedures of Bland and colleagues. Although some studies found that psychological variables affect survival after bone marrow transplantation, the reviewers' analysis of the methodologically sound studies suggested that survival after bone marrow transplantation is not substantively affected by depressed mood or other psychopathology in adults or by social support in adults or children. Longer survival may be related to lower "anxious preoccupation," higher "fighting spirit," and better quality of life ratings before and soon after transplant in adults. Overall, however, the literature is insufficiently developed to provide definitive evidence for a relationship between psychological variables and survival after bone marrow transplantation. Future primary studies in this area should be designed to maximize replicability and generalizability. PMID:12724499

  16. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation.

    PubMed

    Liu, Zhiqiang; Xu, Jingda; He, Jin; Liu, Huan; Lin, Pei; Wan, Xinhai; Navone, Nora M; Tong, Qiang; Kwak, Larry W; Orlowski, Robert Z; Yang, Jing

    2015-10-27

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma chemotherapy resistance. We reveal that mature human adipocytes activate autophagy and upregulate the expression of autophagic proteins, thereby suppressing chemotherapy-induced caspase cleavage and apoptosis in myeloma cells. We found that adipocytes secreted known and novel adipokines, such as leptin and adipsin. The addition of these adipokines enhanced the expression of autophagic proteins and reduced apoptosis in myeloma cells. In vivo studies further demonstrated the importance of bone marrow-derived adipocytes in the reduced response of myeloma cells to chemotherapy. Our findings suggest that adipocytes, adipocyte-secreted adipokines, and adipocyte-activated autophagy are novel targets for combatting chemotherapy resistance and enhancing treatment efficacy in myeloma patients. PMID:26455377

  17. Analysis of tumor-derived DNA in plasma and bone marrow fluid in lung cancer patients.

    PubMed

    Goto, Taichiro; Hirotsu, Yosuke; Oyama, Toshio; Amemiya, Kenji; Omata, Masao

    2016-03-01

    Liquid biopsies such as circulating tumor DNA in plasma and disseminated tumor cells in the bone marrow are currently available. However, it is unclear which types of samples are appropriate for detecting tumor DNA in these biopsies. Here, we collected primary tumors, pulmonary venous blood, peripheral blood, and rib bone marrow fluid from 10 lung cancer patients. Targeted deep sequencing was performed to identify mutations across 70 specimens. As a result, a total of 43 mutations were identified in the primary tumors. The mutation in the tumors was also identified in circulating tumor DNA in the pulmonary venous and peripheral blood in two patients. These patients showed poor prognosis, as compared to the other patients. However, no mutation was identified in the bone marrow in any of the patients. These results demonstrated that circulating tumor DNA in plasma is more sensitive and clinically useful as a biomarker as compared to DNA in bone marrow fluid. PMID:26897174

  18. The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control

    PubMed Central

    Malara, Alessandro; Abbonante, Vittorio; Buduo, Christian A. Di; Tozzi, Lorenzo; Currao, Manuela; Balduini, Alessandra

    2015-01-01

    SUMMARY Megakaryocytes are rare cells found in the bone marrow, responsible for the everyday production and release of millions of platelets into the bloodstream. Since the discovery and cloning, in 1994, of their principal humoral factor, thrombopoietin, and its receptor c-Mpl, many efforts have been directed to define the mechanisms underlying an efficient platelet production. However, more recently different studies have pointed out new roles for megakaryocytes as regulators of bone marrow homeostasis and physiology. In this review we discuss the interaction and the reciprocal regulation of megakaryocytes with the different cellular and extracellular components of the bone marrow environment. Finally, we provide evidence that these processes may concur to the reconstitution of the bone marrow environment after injury and their deregulation may lead to the development of a series of inherited or acquired pathologies. PMID:25572292

  19. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells

    PubMed Central

    Verdi, Javad; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Verdi, Hadi; Shoae-Hassani, Alireza

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was significantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These findings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics. PMID:25206899

  20. Herpes simplex virus (HSV) colitis in a bone marrow transplant recipient.

    PubMed

    Naik, H R; Chandrasekar, P H

    1996-02-01

    Herpes simplex virus (HSV) infections are common in bone marrow transplantation patients. Unusual sites may be involved, however colonic disease with HSV is rare. We report a successfully treated case of colitis due to HSV, cytomegalovirus, Clostridium difficile and graft-versus-host disease in an allogeneic marrow recipient. PMID:8640181

  1. A STUDY OF PREDICTED BONE MARROW DISTRIBUTION ON CALCULATED MARROW DOSE FROM EXTERNAL RADIATION EXPOSURES USING TWO SETS OF IMAGE DATA FOR THE SAME INDIVIDUAL

    PubMed Central

    Caracappa, Peter F.; Chao, T. C. Ephraim; Xu, X. George

    2010-01-01

    Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ

  2. Bone marrow is a major site of long-term antibody production after acute viral infection.

    PubMed Central

    Slifka, M K; Matloubian, M; Ahmed, R

    1995-01-01

    Antiviral antibody production is often sustained for long periods after resolution of an acute viral infection. Despite extensive documentation of this phenomenon, the mechanisms involved in maintaining long-term antibody production remain poorly defined. As a first step towards understanding the nature of long-term humoral immunity, we examined the anatomical location of antibody-producing cells during acute viral infection. Using the lymphocytic choriomeningitis virus (LCMV) model, we found that after resolution of the acute infection, when antiviral plasma cells in the spleen decline, a population of virus-specific plasma cells appears in the bone marrow and constitutes the major source of long-term antibody production. Following infection of adult mice, LCMV-specific antibody-secreting cells (ASC) peaked in the spleen at 8 days postinfection but were undetectable in the bone marrow at that time. The infection was essentially cleared by 15 days, and the ASC numbers in the spleen rapidly declined while an increasing population of LCMV-specific ASC began to appear in the bone marrow. Compared with the peak response at 8 days postinfection, time points from 30 days to more than 1 year later demonstrated greater-than-10-fold reductions in splenic ASC. In contrast, LCMV-specific plasma cell numbers in the bone marrow remained high and correlated with the high levels of antiviral serum antibody. The presence of LCMV-specific plasma cells in the bone marrow was not due to persistent infection at this site, since the virus was cleared from both the spleen and bone marrow with similar kinetics as determined by infectivity and PCR assays. The immunoglobulin G subclass profile of antibody-secreting cells derived from bone marrow and the spleen correlated with the immunoglobulin G subclass distribution of LCMV-specific antibody in the serum. Upon rechallenge with LCMV, the spleen exhibited a substantial increase in virus-specific plasma cell numbers during the early phase

  3. Phenotypic analysis of bone marrow lymphocytes from children with acute thrombocytopenic purpura.

    PubMed

    Guiziry, Dalai E L; El, Gendy Wessam; Farahat, Nahla; Hassab, Hoda

    2005-01-01

    Hematogones are benign immature B cells that commonly populate the bone marrow of children. Their presence has been noted to interfere with the flow-cytometric analysis of acute lymphoblastic leukemia (ALL), because their immunophenotype is similar to B-precursor cell lymphoblasts. Immune-mediated thrombocytopenia is a clinical condition characterized by increased platelet destruction due to sensitization of platelets by autoantibodies. The aim of this study was to determine the incidence and clinical impact of bone marrow hematogones in cases of acute immune thrombocytopenic purpura (ITP) among children. This was done by immunophenotyping of bone marrow lymphocytes of ITP cases and controls and follow up of cases. This study was done on 25 cases of ITP, 12 females and 13 males, their age ranged from 2 to 13 years. A control group was included in the study, 15 cases of apparently healthy children with matching age and sex taken from among bone marrow donors. Cases and controls were subjected to bone marrow lymphocyte immunophenotyping with flow-cytometry to verify the presence of hematogones. A statistically significant increase in the percentage of hematogones was demonstrated in their bone marrows. An increased percentage of CD10+ lymphocytes was demonstrated; with a mean of 18+/-15.2%, CD19+ with a mean of 27+/-16.3% and CD34+ with a mean of 3.7+/-3.2%. No correlation was found between the percentage of hematogones and peripheral platelet count or bone marrow lymphocytic count. In conclusion, there is an increase in the bone marrow hematogones in ITP cases in comparison to normal controls. This could be the sequence of an immunological response to the cause which determined the disease, or the regeneration of the stem cell compartment following transient damage. PMID:16734134

  4. Is it safe to avoid bone marrow examination in suspected itp?

    PubMed

    Naithani, Rahul; Kumar, Rajat; Mahapatra, M; Agrawal, Neerja; Pati, H P; Choudhry, V P

    2007-01-01

    Two children with suspected ITP are described. One child was treated outside with corticosteroids and was diagnosed acute lymphoblastic leukemia. Another child was fresh and diagnosed as acute myeloid leukemia on bone marrow aspirate examination. Both the children had no physical or peripheral smear finding suggestive of leukemia. We suggest that a bone marrow examination is required in developing countries for evaluation of thrombocytopenia before labeling it an immune thrombocytopenic purpura. PMID:17454791

  5. Aortic stenosis in a patient with Hurler's syndrome after bone marrow transplantation.

    PubMed

    Watanabe, Naruhito; Anagnostopoulos, Petros V; Azakie, Anthony

    2011-06-01

    We describe a case of severe aortic stenosis in a 16-year-old male with Hurler's syndrome who had prior bone marrow transplantation. The excised aortic valve leaflets showed characteristic pathologic findings of Hurler's syndrome. This is the first case report of aortic valve replacement in a patient with Hurler's syndrome treated with bone marrow transplantation that demonstrates progression of the aortic valve disease despite treatment. PMID:21262073

  6. Property of Human Bone Marrow Stromal Cells Derived From Bone Fragments Removed in Sagittal Split Ramus Osteotomy.

    PubMed

    Yoshida, Chihiro; Yamaguchi, Satoshi; Abe, Shigehiro; Harada, Kiyoshi

    2016-06-01

    Bone tissue engineering is in the process of making the shift from bench to bed. Organ as a cell source is important for tissue engineering. The appropriate cells should be harvested without invasiveness and ethical problems. The authors focused on mandibular cortex bone fragments removed in sagittal split ramus osteotomy as a cell source for bone tissue engineering. These bone fragments were discarded after surgery until now. Bone marrow stromal cells (BMSCs) were harvested from inside of bone fragments, which is an endosteal region. Endosteal region is known to be a hematopoietic stem cell niche and harbors osteoblasts, preosteoblasts, and mesenchymal stem cells (MSCs). Bone marrow stromal cells could be cultured easily, and grew rapidly in vitro under ordinary serum-supplemented culture condition. The expression pattern of surface markers of BMSCs was the same as that of MSCs. Bone marrow stromal cells could differentiated into multiple mesenchymal lineages (osteoblasts, adipocytes, chondrocytes, and smooth muscle cells). These results indicated the existence of MSCs in BMSCs. The osteoblastic characters of BMSCs were examined more closely. Bone marrow stromal cells showed a high alkaline phosphatase activity, and expressed osteoblastic markers (PTHr, bone sialoprotein, Type I collagen, Rnut-related transcription factor 2, and osteocalcin). In transplantation experiments, BMSCs generated ectopic bone tissues on the border of hydroxyapatite scaffold without osteogenic differentiation-inducing agents such as dexamethasone (Dex) or bone morphogenetic protein. The results of this study suggest that mandibular cortex bone fragments removed in sagittal split ramus osteotomy are a good cell source for bone tissue engineering. PMID:27171960

  7. Leptin Receptor Promotes Adipogenesis and Reduces Osteogenesis by Regulating Mesenchymal Stromal Cells in Adult Bone Marrow.

    PubMed

    Yue, Rui; Zhou, Bo O; Shimada, Issei S; Zhao, Zhiyu; Morrison, Sean J

    2016-06-01

    Skeletal stem cells (SSCs) that are the major source of osteoblasts and adipocytes in adult bone marrow express leptin receptor (LepR). To test whether LepR regulates SSC function, we conditionally deleted Lepr from limb bone marrow stromal cells, but not from the axial skeleton or hypothalamic neurons, using Prx1-Cre. Prx1-Cre;Lepr(fl/fl) mice exhibited normal body mass and normal hematopoiesis. However, limb bones from Prx1-Cre;Lepr(fl/fl) mice exhibited increased osteogenesis, decreased adipogenesis, and accelerated fracture healing. Leptin increased adipogenesis and reduced osteogenesis by activating Jak2/Stat3 signaling in bone marrow stromal cells. A high-fat diet increased adipogenesis and reduced osteogenesis in limb bones from wild-type mice, but not from Prx1-Cre;Lepr(fl/fl) mice. This reflected local effects of LepR on osteogenesis and adipogenesis by bone marrow stromal cells and systemic effects on bone resorption. Leptin/LepR signaling regulates adipogenesis and osteogenesis by mesenchymal stromal cells in the bone marrow in response to diet and adiposity. PMID:27053299

  8. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration.

    PubMed

    Huber, Bruno C; Grabmaier, Ulrich; Brunner, Stefan

    2014-11-26

    Parathyroid hormone (PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders. PMID:25426261

  9. Wnt/β-catenin signaling in bone marrow niche.

    PubMed

    Ahmadzadeh, Ahmad; Norozi, Fatemeh; Shahrabi, Saeid; Shahjahani, Mohammad; Saki, Najmaldin

    2016-02-01

    The bone marrow (BM) niche is a specific physiological environment for hematopoietic and non-hematopoietic stem cells (HSCs). Several signaling pathways (including Wnt/β-catenin) regulate various aspects of stem cell growth, function and death in the BM niche. In addition, the canonical Wnt pathway is crucial for directing self-renewal and differentiation as important mechanisms in many types of stem cells. We review the role of the Wnt/β-catenin pathway in the BM niche and its importance in stem cells. Relevant literature was identified by a PubMed search (1997-2014) of English-language literature by using the following keywords: BM niche, Wnt/β-catenin signaling, osteoblast, osteoclast and bone disease. The Wnt/β-catenin pathway regulates the stability of the β-catenin proto-oncogene. The stabilized β-catenin then translocates to the nucleus, forming a β-catenin-TCF/LEF complex regulating the transcription of specific target genes. Stem cells require β-catenin to mediate their response to Wnt signaling for maintenance and transition from the pluripotent state during embryogenesis. In adult stem cells, Wnt signaling functions at various hierarchical levels to contribute to the specification of the diverse tissues. Aberrant Wnt/β-catenin signaling and its downstream transcriptional regulators are observed in several malignant stem cells and human cancers. Because Wnt signaling can maintain stem cells and cancer cells, the ability to modulate the Wnt pathway either positively or negatively may be of therapeutic relevance. The controlled activation of Wnt signaling might allow us to enhance stem and progenitor cell activity when regeneration is needed. PMID:26475718

  10. Adiponectin Promotes Human Jaw Bone Marrow Stem Cell Osteogenesis.

    PubMed

    Pu, Y; Wu, H; Lu, S; Hu, H; Li, D; Wu, Y; Tang, Z

    2016-07-01

    Human jaw bone marrow mesenchymal stem cells (h-JBMMSCs) are multipotent progenitor cells with osteogenic differentiation potential. The relationship between adiponectin (APN) and the metabolism of h-JBMMSCs has not been fully elucidated, and the underlying mechanism remains unclear. The aim of the study was to investigate the effect and mechanism of APN on h-JBMMSC metabolism. h-JBMMSCs were obtained from the primary culture of human jaw bones and treated with or without APN (1 µg/mL). Osteogenesis-related gene expression was evaluated by real-time polymerase chain reaction (PCR), alkaline phosphatase (ALP) activity assay, and enzyme-linked immunosorbent assay (ELISA). To further investigate the signaling pathway, mechanistic studies were performed using Western blotting, immunofluorescence, lentiviral transduction, and SB202190 (a specific p38 inhibitor). Alizarin Red staining showed that APN promoted h-JBMMSC osteogenesis. Real-time PCR, ALP assay, and ELISA showed that ALP, osteocalcin (OCN), osteopontin, and integrin-binding sialoprotein were up-regulated in APN-treated cells compared to untreated controls. Immunofluorescence revealed that adaptor protein containing a pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL1) translocated from the nucleus to the cytoplasm with APN treatment. Additionally, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) increased over time with APN treatment. Moreover, knockdown of APPL1 or p38 MAPK inhibition blocked the expression of APN-induced calcification-related genes including ALP, Runt-related transcription factor 2 (RUNX2), and OCN. Furthermore, Alizarin Red staining of calcium nodes was not increased by the knockdown of APPL1 or p38 inhibition. Our data suggest that this regulation is mediated through the APPL1-p38 MAPK signaling pathway. These findings collectively provide evidence that APN induces the osteogenesis of h-JBMMSCs through APPL1-mediated p38 MAPK activation

  11. Morphological Changes in the Bone Marrow of the Dogs with Visceral Leishmaniasis

    PubMed Central

    Jacintho, Ana Paula Prudente; Moreira, Pamela Rodrigues Reina; Munari, Danísio Prado; Machado, Gisele Fabrino; Vasconcelos, Rosemeri de Oliveira

    2014-01-01

    The aim of this study was to evaluate the most frequent lesions in the bone marrow of dogs naturally infected by Leishmania (Leishmania) chagasi. Thirty-three dogs sacrificed at the Zoonosis Control Center of Araçatuba, a municipality endemic for visceral leishmaniasis (VL), were used. The animals were classified as asymptomatic, oligosymptomatic, and symptomatic groups. At the necropsy, bone marrow samples were collected from the femur, fixed, processed, and stained with hematoxylin and eosin. The lesion intensity was classified as mild, moderate, or severe. The parasite load was determined using immunohistochemistry. The most important lesions consisted of multifocal to diffuse granulomas, megakaryocytic dysplasia, and medullary aplasia. There were no statistical differences between the three clinical groups regarding parasite load and lesion intensity. Asymptomatic dogs also presented high parasitism in the bone marrow as dogs with clinical signs of VL. It was concluded that, regardless of clinical group, the bone marrow is a site for multiplication of Leishmania chagasi. Possibly, the bone marrow dysplasia may arise from the presence of many parasitized and activated macrophages in this organ. Consequently, it affects the profile of hematopoietic cells in the bone marrow and systemic circulation. PMID:24744957

  12. Concise Review: Diabetes, the Bone Marrow Niche, and Impaired Vascular Regeneration

    PubMed Central

    Ferraro, Francesca; Quaini, Federico; Asahara, Takayuki; Madeddu, Paolo

    2014-01-01

    Diabetes mellitus is a global health problem that results in multiorgan complications leading to high morbidity and mortality. Until recently, the effects of diabetes and hyperglycemia on the bone marrow microenvironment—a site where multiple organ systems converge and communicate—have been underappreciated. However, several new studies in mice, rats, and humans reveal that diabetes leads to multiple bone marrow microenvironmental defects, such as small vessel disease (microangiopathy), nerve terminal pauperization (neuropathy), and impaired stem cell mobilization (mobilopathy). The discovery that diabetes involves bone marrow-derived progenitors implicated in maintaining cardiovascular homeostasis has been proposed as a bridging mechanism between micro- and macroangiopathy in distant organs. Herein, we review the physiological and molecular bone marrow abnormalities associated with diabetes and discuss how bone marrow dysfunction represents a potential root for the development of the multiorgan failure characteristic of advanced diabetes. The notion of diabetes as a bone marrow and stem cell disease opens new avenues for therapeutic interventions ultimately aimed at improving the outcome of diabetic patients. PMID:24944206

  13. Noninvasive optical measurement of bone marrow lesions: a Monte Carlo study on visible human dataset

    NASA Astrophysics Data System (ADS)

    Su, Yu; Li, Ting

    2016-03-01

    Bone marrow is both the main hematopoietic and important immune organ. Bone marrow lesions (BMLs) may cause a series of severe complications and even myeloma. The traditional diagnosis of BMLs rely on mostly bone marrow biopsy/ puncture, and sometimes MRI, X-ray, and etc., which are either invasive and dangerous, or ionizing and costly. A diagnosis technology with advantages in noninvasive, safe, real-time continuous detection, and low cost is requested. Here we reported our preliminary exploration of feasibility verification of using near-infrared spectroscopy (NIRS) in clinical diagnosis of BMLs by Monte Carlo simulation study. We simulated and visualized the light propagation in the bone marrow quantitatively with a Monte Carlo simulation software for 3D voxelized media and Visible Chinese Human data set, which faithfully represents human anatomy. The results indicate that bone marrow actually has significant effects on light propagation. According to a sequence of simulation and data analysis, the optimal source-detector separation was suggested to be narrowed down to 2.8-3.2cm, at which separation the spatial sensitivity distribution of NIRS cover the most region of bone marrow with high signal-to-noise ratio. The display of the sources and detectors were optimized as well. This study investigated the light transport in spine addressing to the BMLs detection issue and reported the feasibility of NIRS detection of BMLs noninvasively in theory. The optimized probe design of the coming NIRS-based BMLs detector is also provided.

  14. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    SciTech Connect

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D/sub 0/ values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F/sub 1/+/+ mice after various doses of irradiation and injected into the skin of the congenic W/W/sup v/ mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bg/sup J//bg/sup J/, Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the backs of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosenitive than those localized in the skin. D/sup 0/ value was about 100 rad for the former and about 800 rad for the latter.

  15. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice

    SciTech Connect

    Kitamura, Y.; Yokoyama, M.; Sonoda, T.; Mori, K.J.

    1983-01-01

    Although tissue mast cells are derived from the bone marrow, some descendants of bone marrow-derived precursors retain the ability to proliferate and differentiate into mast cells even after localization in the skin. The purpose of the present study was to determine the D0 values for mast-cell precursors in the bone marrow and those localized in the skin. Bone marrow cells were removed from (WB X C57BL/6)F1-+/+ mice after various doses of irradiation and injected into the skin of the congenic W/Wv mice which were genetically without mast cells. Radiosensitivity of mast-cell precursors in the bone marrow was evaluated by determining the proportion of the injection sites at which mast cells did not appear. For the assay of the radiosensitivity of mast-cell precursors localized in the skin, pieces of skin were removed from beige C57BL/6 (bgJ/bgJ. Chediak-Higashi syndrome) mice after various doses of irradiation and grafted onto the back of the normal C57BL/6 mice. Radiosensitivity of mast-cell precursors in the skin was evaluated by determining the decrease of beige-type mast cells which possessed giant granules. Mast-cell precursors in the bone marrow were much more radiosensitive than those localized in the skin. D0 value was about 100 rad for the former and about 800 rad for the latter.

  16. Bone Marrow-Derived Cells in the Pathogenesis of Lung Fibrosis

    PubMed Central

    Moore, Bethany B.; Thannickal, Victor J.; Toews, Galen B.

    2016-01-01

    Progressive pulmonary fibrosis is characterized by failed alveolar reepithelialization and fibroblast/myofibroblast accumulation, with deposition of extracellular matrix. This results in loss of lung elasticity, alveolar collapse and fibrosis, impaired gas exchange and progressive decline in pulmonary function. Myofibroblasts represent an activated, contractile cellular phenotype that are potent producers of collagen and other extracellular matrix proteins. It is generally thought that myofibroblasts derive from local tissue fibroblasts. However, recent evidence suggests a portion of the progenitors for these cells may arise from the bone marrow. Fibrocytes, which share both leukocyte and mesenchymal markers, are found in increased numbers in bone marrow and lung of injured mice. Fibrocytes circulate in blood and are recruited to injured sites via chemotactic signals. Studies with bone marrow chimeric and parabiotic mice suggest that fibroblasts (and in some cases myofibroblasts) arise from circulating bone marrow precursors. Chemokine and chemokine receptor interactions are critical for the recruitment of bone marrow-derived progenitors. Once fibrocytes arrive in injured tissues, local factors induce their differentiation into fibroblasts/myofibroblasts. This review will summarize the experimental findings, supporting a role for the participation of bone marrow-derived cells in animal models of lung fibrosis, and potential implications for the pathogenesis of fibrotic lung diseases.

  17. Selective uptake of surface-modified phospholipid vesicles by bone marrow macrophages in vivo.

    PubMed

    Sou, Keitaro; Goins, Beth; Takeoka, Shinji; Tsuchida, Eishun; Phillips, William T

    2007-06-01

    An advantage of using vesicles (liposomes) as drug delivery carriers is that their pharmacokinetics can be controlled by surface characteristics, which can permit specific delivery of the encapsulated agents to organs or cells in vivo. Here we report a vesicle formulation which targets the bone marrow after intravenous injection in rabbits. Surface modification of the vesicle with an anionic amphiphile; L-glutamic acid, N-(3-carboxy-1-oxopropyl)-, 1,5-dihexadecyl ester (SA) results in significant targeting of vesicles to bone marrow. Further incorporation of as little as 0.6 mol% of poly(ethylene glycol)-lipid (PEG-DSPE) passively enhanced the distribution of SA-vesicles into bone marrow and inhibited hepatic uptake. In this model, more than 60% of the intravenously injected vesicles were distributed to bone marrow within 6 h after administration of a small dose of lipid (15 mg/kg b.w.). Histological evidence indicates that the targeting was achieved due to uptake by bone marrow macrophages (BMMphi). The efficient delivery of encapsulated scintigraphic and fluorescent imaging agents to BMMphi suggests that vesicles are promising carriers for the specific targeting of BMMphi and may be useful for delivering a wide range of therapeutic agents to bone marrow. PMID:17316790

  18. Re-evaluation of Need for Bone Marrow Examination in Patients with Isolated Thrombocytopenia Contributors.

    PubMed

    Purohit, Abhishek; Aggarwal, Mukul; Singh, Pawan Kumar; Mahapatra, Manoranjan; Seth, Tulika; Tyagi, Seema; Saxena, Renu; Pati, Hara P; Mishra, Pravas

    2016-06-01

    Diagnosis of immune thrombocytopenia (ITP) is based on clinical suspicion and normal peripheral smear except for thrombocytopenia. Bone marrow examination is carried out to rule out leukemia, myelodysplastic syndrome or aplastic anemia. However, in most cases, clinical diagnosis is not altered after the bone marrow reports. Hence, this present study was carried out to evaluate the justification for bone marrow examination in the setting of isolated thrombocytopenia. All patients presenting to the hematology OPD with isolated thrombocytopenia and suspected diagnosis of ITP, between October 2011 and April 2013, were included in the study. Data was collected from bone marrow reports and outpatient records. A total of 353 cases were found. 319 cases had features of typical ITP and the rest had some form of organomegaly and/or lymphadenopathy. Bone marrow examination in all cases revealed normal hematopoietic elements and prominence of megakaryocytes including juvenile forms with no novel diagnosis in any patient. Routine use of bone marrow examination in the diagnostic workup of isolated thrombocytopenia is not required in our center even if steroids are planned as a first line therapy. However, a detailed history, thorough examination with complete hemogram and peripheral smear examination are essential. PMID:27065582

  19. Efficient conditional gene expression following transplantation of retrovirally transduced bone marrow stem cells.

    PubMed

    Chung, Jie-Yu; Mackay, Fabienne; Alderuccio, Frank

    2015-01-01

    Retroviral gene therapy combined with bone marrow stem cell transplantation can be used to generate mice with ectopic gene expression in the bone marrow compartment in a quick and cost effective manner when compared to generating and maintaining transgenic mouse lines. However a limitation of this procedure is the lack of cell specificity in gene expression that is associated with the use of endogenous retroviral promoters. Restricting gene expression to specific cell subsets utilising tissue-specific promoter driven retroviral vectors is a challenge. Here we describe the generation of conditional expression of retrovirally encoded genes in specific bone marrow derived cell lineages utilising a Cre-dependent retroviral vector. By utilising Lck and CD19 restricted Cre transgenic bone marrow stem cells, we generate chimeric animals with T or B lymphocyte restricted gene expression respectively. The design of the Cre-dependent retroviral vector enables expression of encoded MOG and GFP genes only in association with Cre mediated DNA inversion. Importantly this strategy does not significantly increase the size of the retroviral vector; as such we are able to generate bone marrow chimeric animals with significantly higher chimerism levels than previous studies utilising Cre-dependent retroviral vectors and Cre transgenic bone marrow stem cells. This demonstrates that the use of Cre-dependent retroviral vectors is able to yield high chimerism levels for experimental use and represent a viable alternative to generating transgenic animals. PMID:25445328

  20. Therapeutic impact of erythropoietin-encapsulated liposomes targeted to bone marrow on renal anemia.

    PubMed

    Miyazaki, Yuri; Taguchi, Kazuaki; Sou, Keitaro; Watanabe, Hiroshi; Ishima, Yu; Miyakawa, Toshikazu; Mitsuya, Hiroaki; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2014-11-01

    Bone marrow is a key element in the diagnosis of disorders of erythropoiesis, including anemia, and a potential target in their treatment. However, because efficient delivery of diagnostic and therapeutic agents to bone marrow is difficult, such delivery is achieved by administering drugs in large quantities that often have adverse effects. Here, we achieved selective delivery of recombinant human erythropoietin (rHuEPO) to bone marrow, via its encapsulation in liposomes with l-glutamic acid, N-(3-carboxy-1-oxopropyl)-, 1,5-dihexadecyl ester (SA) (liposome-EPO). The result, in a rabbit model of renal anemia, was a beneficial effect on hematopoiesis, better than with rHuEPO alone. Also, we determined that liposome-EPO delivery to bone marrow depended on specific uptake by bone marrow macrophages because of the presence of SA. These results indicate both that liposome-EPO is a new, promising erythropoietin-stimulating agent and that liposomes with SA have potential for diagnostic and therapeutic applications in diseases originating from bone marrow. PMID:25255196

  1. Femur Window Chamber Model for In Vivo Cell Tracking in the Murine Bone Marrow.

    PubMed

    Chen, Yonghong; Maeda, Azusa; Bu, Jiachuan; DaCosta, Ralph

    2016-01-01

    Bone marrow is a complex organ that contains various hematopoietic and non-hematopoietic cells. These cells are involved in many biological processes, including hematopoiesis, immune regulation and tumor regulation. Commonly used methods for understanding cellular actions in the bone marrow, such as histology and blood counts, provide static information rather than capturing the dynamic action of multiple cellular components in vivo. To complement the standard methods, a window chamber (WC)-based model was developed to enable serial in vivo imaging of cells and structures in the murine bone marrow. This protocol describes a surgical procedure for installing the WC in the femur, in order to facilitate long-term optical access to the femoral bone marrow. In particular, to demonstrate its experimental utility, this WC approach was used to image and track neutrophils within the vascular network of the femur, thereby providing a novel method to visualize and quantify immune cell trafficking and regulation in the bone marrow. This method can be applied to study various biological processes in the murine bone marrow, such as hematopoiesis, stem cell transplantation, and immune responses in pathological conditions, including cancer. PMID:27500928

  2. Rheological behavior of fresh bone marrow and the effects of storage.

    PubMed

    Metzger, Thomas A; Shudick, Jonelle M; Seekell, Raymond; Zhu, Yingxi; Niebur, Glen L

    2014-12-01

    The progression of several diseases, such as osteoporosis and diabetes, are associated with changes in marrow composition and physiology. As these diseases are affected by aging and activity, the biomechanical properties and mechanobiology of marrow may play a role in their progression. Bone marrow is comprised primarily of cells, and provides a niche for several mechanosensitive cell lineages. The mechanical signals imparted to the cells depend on their interaction with one another, the extracellular matrix, and the intercellular fluid. At a macroscopic scale, these interactions manifest as viscosity in marrow. Marrow viscosity has been measured in human and bovine bone. However, a large range of storage, retrieval, and measurement techniques has resulted in inconsistent data. To provide physiologically relevant data, marrow samples from young adult pigs were harvested and tested within less than 8h of slaughter. The viscosity was over 100Pas at a shear rate of 1s(-1), and decreased with shear rate according to a power law. However, the marrow did not exhibit a measurable yield stress as some complex fluids do. The viscosity of samples that had been frozen and thawed prior to testing was lower by an order of magnitude. The difference in properties was associated with a loss of integrity of the marrow adipocyte membranes. Previous reports of bone marrow viscosity have shown inconsistent results, which may be due to different storage and handling prior to testing. The higher viscosity compared to previous reports would impact poroelastic models of bone, and suggests that the stress on marrow cells during whole bone loading may be higher than previously believed. PMID:25262201

  3. NK cell development in bone marrow and liver: site matters.

    PubMed

    Gotthardt, D; Prchal-Murphy, M; Seillet, C; Glasner, A; Mandelboim, O; Carotta, S; Sexl, V; Putz, E M

    2014-12-01

    The NKp46 protein is found on resting and activated natural killer (NK) cells and is involved in the recognition of malignant and infected cells. The expression of NKp46 is believed to precede that of DX5 in early NK cell development. We show that this is not the case in the bone marrow (BM). Here, NKp46 is predominantly expressed after DX5, whereas the liver harbors a subpopulation that expresses NKp46 but not DX5. NK cell precursors in the liver show much lower levels of Eomesodermin than NK cell precursors in the BM, although they express higher levels of granzymes and unlike the NK cell precursors in the BM are fully able to degranulate and produce interferon gamma (IFN-γ). The development of NK cells thus differs between the two organs. This needs to be considered when using NKp46 and DX5 as NK cell markers and when performing NK cell-specific gene deletion in Ncr1 transgenic mice. PMID:25319498

  4. Preemptive Bone Marrow Transplantation for FANCD1/BRCA2.

    PubMed

    Khan, Nicholas E; Rosenberg, Philip S; Lehmann, Harold P; Alter, Blanche P

    2015-10-01

    Children with biallelic mutations in FANCD1/BRCA2 are at uniquely high risks of leukemia and solid tumors. Preemptive bone marrow transplantation (PE-BMT) has been proposed to avoid the development of leukemia, but empirical study of PE-BMT is unlikely because of the rarity of these children and the unknown benefit of PE-BMT. We used survival analysis to estimate the risks of leukemia and the expected survival if leukemia could be eliminated by curative PE-BMT. We used the results in a decision analysis model to explore the plausibility of PE-BMT for children with variable ages at diagnosis and risks of transplantation-related mortality. For example, PE-BMT at 1 year of age with a 10% risk of transplantation-related mortality increased the mean survival by 1.7 years. The greatest benefit was for patients diagnosed between 1 and 3 years of age, after which the benefit of PE-BMT decreased with age at diagnosis, and the risk of death from solid tumors constituted a relatively greater burden of mortality. Our methods may be used to model survival for other hematologic disorders with limited empirical data and a pressing need for clinical guidance. PMID:26183081

  5. Transcriptional regulation of cathelicidin genes in chicken bone marrow cells.

    PubMed

    Lee, Sang In; Jang, Hyun June; Jeon, Mi-hyang; Lee, Mi Ock; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2016-04-01

    Cathelicidins form a family of vertebrate-specific immune molecules with an evolutionarily conserved gene structure. We analyzed the expression patterns of cathelicidin genes (CAMP, CATH3, and CATHB1) in chicken bone marrow cells (BMCs) and chicken embryonic fibroblasts (CEFs). We found that CAMP and CATHB1 were significantly up-regulated in BMCs, whereas the expression of CATH3 did not differ significantly between BMCs and CEFs. To study the mechanism underlying the up-regulation of cathelicidin genes in BMCs, we predicted the transcription factors (TFs) that bind to the 5'-flanking regions of cathelicidin genes. CEBPA, EBF1, HES1, MSX1, and ZIC3 were up-regulated in BMCs compared to CEFs. Subsequently, when a siRNA-mediated knockdown assay was performed for MSX1, the expression of CAMP and CATHB1 was decreased in BMCs. We also showed that the transcriptional activity of the CAMP promoter was decreased by mutation of the MSX1-binding sites present within the 5'-flanking region of CAMP. These results increase our understanding of the regulatory mechanisms controlling cathelicidin genes in BMCs. PMID:26908883

  6. Telomere length in inherited bone marrow failure syndromes.

    PubMed

    Alter, Blanche P; Giri, Neelam; Savage, Sharon A; Rosenberg, Philip S

    2015-01-01

    Telomeres are long DNA repeats and a protein complex at chromosome ends that are essential for genome integrity. Telomeres are very short in patients with dyskeratosis congenita due to germline mutations in telomere biology genes. We compared telomere length in patients with Fanconi anemia, Diamond-Blackfan anemia and Shwachman-Diamond syndrome with telomere length in dyskeratosis congenita. Telomere length was measured in six leukocyte subsets by automated multicolor flow fluorescence in situ hybridization, and age-adjusted using Z-scores (-2.326 = 1(st) percentile) were created. We examined individual data, and used canonical variate analysis for group comparisons and outlier detection. Most dyskeratosis congenita telomere lengths were below the 1(st) percentile, while only 2 Fanconi anemia and one each Diamond-Blackfan anemia and Shwachman-Diamond syndrome were that low. However, Fanconi anemia, Diamond-Blackfan anemia and Shwachman-Diamond syndrome clustered in the bottom half of the normal range. Canonical variate analysis separated dyskeratosis congenita widely from the other three syndromes by the first canonical variable (89.7% of the variance); the second variable (10.0%) separated Diamond-Blackfan anemia, Shwachman-Diamond syndrome, and Fanconi anemia from each other. Overall, unlike in dyskeratosis congenita, telomere lengths in patients with non-dyskeratosis congenita inherited bone marrow failure syndromes were usually in the normal range, albeit shorter than in unaffected individuals. Clinicaltrials.gov identifier: 00027274. PMID:25304614

  7. Bone marrow-derived cell regulation of skeletal muscle regeneration.

    PubMed

    Sun, Dongxu; Martinez, Carlo O; Ochoa, Oscar; Ruiz-Willhite, Lourdes; Bonilla, Jose R; Centonze, Victoria E; Waite, Lindsay L; Michalek, Joel E; McManus, Linda M; Shireman, Paula K

    2009-02-01

    Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type (WT) or CCR2(-/-) mice into irradiated WT or CCR2(-/-) host mice. Regardless of the host genotype, muscle regeneration and recruitment of BM-derived cells and macrophages were similar in mice replenished with WT BM, whereas BM-derived cells and macrophage accumulation were decreased and muscle regeneration was impaired in all animals receiving CCR2(-/-) BM. Furthermore, numbers of MPCs (CD34(+)/Sca-1(-)/CD45(-) cells) were significantly increased in mice receiving CCR2(-/-) BM despite the decreased size of regenerated myofibers. Thus, the expression of CCR2 on BM-derived cells regulated macrophage recruitment into injured muscle, numbers of MPC, and the extent of regenerated myofiber size, all of which were independent of CCR2 expression on host-derived cells. Future studies in regenerative medicine must include consideration of the role of BM-derived cells, possibly macrophages, in CCR2-dependent events that regulate effective skeletal muscle regeneration. PMID:18827026

  8. Characterization of bone marrow mesenchymal stromal cells in aplastic anaemia.

    PubMed

    Hamzic, Edita; Whiting, Karen; Gordon Smith, Edward; Pettengell, Ruth

    2015-06-01

    In aplastic anaemia (AA), haemopoietic activity is significantly reduced and generally attributed to failure of haemopoietic stem cells (HSC) within the bone marrow (BM). The regulation of haemopoiesis depends on the interaction between HSC and various cells of the BM microenvironment, including mesenchymal stromal cells (MSC). MSC involvement in the functional restriction of HSC in AA is largely unknown and therefore, the physical and functional properties of AA MSC were studied in vitro. MSC were characterized by their phenotype and ability to form adherent stromal layers. The functional properties of AA MSC were assessed through proliferative, clonogenic and cross-over culture assays. Results indicate that although AA MSC presented typical morphology and distinctive mesenchymal markers, stromal formation was reduced, with 50% of BM samples failing to produce adherent layers. Furthermore, their proliferative and clonogenic capacity was markedly decreased (P = 0·03 and P = 0·04 respectively) and the ability to sustain haemopoiesis was significantly reduced, as assessed by total cell proliferation (P = 0·032 and P = 0·019 at Week 5 and 6, respectively) and clonogenic potential of HSC (P = 0·02 at Week 6). It was concluded that the biological characteristics of AA MSC are different from those of control MSC and their in vitro haemopoiesis-supporting ability is significantly reduced. PMID:25819548

  9. Cytomegalovirus infection in the bone marrow transplant patient

    PubMed Central

    Bhat, Vivek; Joshi, Amit; Sarode, Rahul; Chavan, Preeti

    2015-01-01

    Cytomegalovirus (CMV) infection is an important contributor to the morbidity and mortality associated with bone marrow transplantation (BMT). Infection may lead to CMV disease involving multiple organs such as pneumonia, gastroenteritis, retinitis, central nervus system involvement and others. CMV seropositivity is an important risk factor and approximately half of BMT recipients will develop clinically significant infection most commonly in the first 100 d post-transplant. The commonly used tests to diagnose CMV infection in these patients include the pp65 antigenemia test and the CMV DNA polymerase chain reaction (PCR) assay. Because of its greater sensitivity and lesser turnaround time, the CMV PCR is nowadays the preferred test and serves as a main guide for pre-emptive therapy. Methods of CMV prevention include use of blood products from seronegative donors or leukodepleted products. Prophylaxis or pre-emptive therapy strategies for CMV prevention may be used post-transplant with the latter becoming more common. The commonly used antivirals for pre-emptive therapy and CMV disease management include intravenous gancyclovir and foscarnet. The role of intravenous immunoglobulin, although used commonly in CMV pneumonia is not clear. PMID:26722656

  10. UNRELATED DONOR BONE MARROW TRANSPLANTATION FOR MYELODYSPLASTIC SYNDROME IN CHILDREN

    PubMed Central

    Woodard, Paul; Carpenter, Paul A.; Davies, Stella M.; Gross, Thomas G.; He, Wensheng; Zhang, Mei-Jie; Horn, Biljana N.; Margolis, David A.; Perentesis, John P.; Sanders, Jean E.; Schultz, Kirk R.; Seber, Adriana; Woods, William G.; Eapen, Mary

    2010-01-01

    We describe long-term disease-free survival after unrelated donor bone marrow transplantation (BMT) for myelodysplastic syndrome (MDS) in 118 patients aged ≤18 years. Forty-six patients had refractory cytopenia (RC), 55, refractory anemia with excess blasts (RAEB) and 17, refractory anemia with excess blasts in transformation (RAEB-t). Transplant-related mortality was higher after mismatched BMT (relative risk [RR] 3.29, p=0.002). Disease recurrence was more likely with advanced stages of MDS at the time of BMT: RAEB (RR 6.50, p=0.01) or RAEB-t (RR 11.00, p=0.004). Treatment failure (recurrent disease or death from any cause; inverse of disease-free survival [DFS]) occurred in 68 patients. Treatment failure was higher after mismatched BMT (RR 2.79, p=0.001) and in those with RAEB-t (RR 2.38, p=0.02). Secondary MDS or chemotherapy prior to BMT was not associated with recurrence or treatment failure. Similarly, cytogenetic abnormalities were not associated with transplant outcomes. Eight-year DFS for patients with RC after matched and mismatched unrelated donor BMT was 65% and 40%, respectively. Corresponding DFS for patients with RAEB and RAEB-t was 48% and 28%, respectively. When a matched adult unrelated donor is available, BMT should be offered as first-line therapy and children with RC can be expected to have the best outcome. PMID:20813197

  11. Isolating Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow.

    PubMed

    Montali, Marina; Barachini, Serena; Pacini, Simone; Panvini, Francesca M; Petrini, Mario

    2016-01-01

    In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (MSCs) for clinical applications, we identified a novel cell population specifically selected for growth in human serum supplemented medium. These cells are characterized by morphological, phenotypic, and molecular features distinct from MSCs and we named them Mesodermal Progenitor Cells (MPCs). MPCs are round, with a thick highly refringent core region; they show strong, trypsin resistant adherence to plastic. Failure to expand MPCs directly revealed that they are slow in cycling. This is as also suggested by Ki-67 negativity. On the other hand, culturing MPCs in standard medium designed for MSC expansion, gave rise to a population of exponentially growing MSC-like cells. Besides showing mesenchymal differentiation capacity MPCs retained angiogenic potential, confirming their multiple lineage progenitor nature. Here we describe an optimized highly reproducible protocol to isolate and characterize hBM-MPCs by flow cytometry (CD73, CD90, CD31, and CD45), nestin expression, and F-actin organization. Protocols for mesengenic and angiogenic differentiation of MPCs are also provided. Here we also suggest a more appropriate nomenclature for these cells, which has been re-named as "Mesangiogenic Progenitor Cells". PMID:27500428

  12. Telomere length in inherited bone marrow failure syndromes

    PubMed Central

    Alter, Blanche P.; Giri, Neelam; Savage, Sharon A.; Rosenberg, Philip S.

    2015-01-01

    Telomeres are long DNA repeats and a protein complex at chromosome ends that are essential for genome integrity. Telomeres are very short in patients with dyskeratosis congenita due to germline mutations in telomere biology genes. We compared telomere length in patients with Fanconi anemia, Diamond-Blackfan anemia and Shwachman-Diamond syndrome with telomere length in dyskeratosis congenita. Telomere length was measured in six leukocyte subsets by automated multicolor flow fluorescence in situ hybridization, and age-adjusted using Z-scores (−2.326 = 1st percentile) were created. We examined individual data, and used canonical variate analysis for group comparisons and outlier detection. Most dyskeratosis congenita telomere lengths were below the 1st percentile, while only 2 Fanconi anemia and one each Diamond-Blackfan anemia and Shwachman-Diamond syndrome were that low. However, Fanconi anemia, Diamond-Blackfan anemia and Shwachman-Diamond syndrome clustered in the bottom half of the normal range. Canonical variate analysis separated dyskeratosis congenita widely from the other three syndromes by the first canonical variable (89.7% of the variance); the second variable (10.0%) separated Diamond-Blackfan anemia, Shwachman-Diamond syndrome, and Fanconi anemia from each other. Overall, unlike in dyskeratosis congenita, telomere lengths in patients with non-dyskeratosis congenita inherited bone marrow failure syndromes were usually in the normal range, albeit shorter than in unaffected individuals. clinicaltrials.gov identifier: 00027274 PMID:25304614

  13. Bone marrow scintigraphy and computed tomography in myloproliferative disease

    SciTech Connect

    Goldsmith, S.J.; Gilbert, H.S.; Hermann, G.

    1985-05-01

    Peripheral bone marrow (BM) expansion in myeloproliferative disease (MPD) is demonstrated by scintigraphy (scint) with Technetium 99m sulfur colloid (TSC) or Indium III chloride (In). Computed tomography (CT) of the normal adult medullary cavity yields negative attenuation coefficients (AC) which become positive when BM fat is replaced. BM scint and CT of the medullary cavity are obtained in 23 studies in 21 pts: 6 polycythemia vera (PCV), 6 post PCV myeloid metaplasis (MyM), 4 agnogenic MyM, 3 myelodysplasia with refractory anemia, 1 acute myelocytic leukemia and 1 chronic myelocytic with acute leukemic transformation. AC were measured for BM cavity of lower extremities at each third of the femur and tibia. Values ranged from -89 to +289 Hounsfield units. The results are presented in this paper. There was agreement between SCINT and CT in 83% pts and segments. 80% of MB segments with + AC had scint identified BM. BM biopsy of the iliac crest demonstrated fibrosis or blast proliferation in pts with +AC rather than hypercellularity or osteosclerosis. The highest AC values (>200) were seen in pts with blast proliferation and fibrosis. Decreased BM scint visualization and +CT AC correlated with BM fibrosis and may reflect replacement of BM elements or decreased RES function. BM scint and CT are useful to monitor MPD and select BM sites for biopsy.

  14. Bone Marrow Is a Reservoir for Cardiac Resident Stem Cells

    PubMed Central

    Liu, Na; Qi, Xin; Han, Zhibo; Liang, Lu; Kong, Deling; Han, Zhongchao; Zhao, Shihua; He, Zuo-Xiang; Li, Zongjin

    2016-01-01

    Resident cardiac stem cells (CSCs) represent a responsive stem cell reservoir within the adult myocardium and have a significant function in myocardial homeostasis and injury. However, the distribution, origin, homing and possible therapeutic benefits of CSCs are still under discussion. Here we investigated whether bone marrow (BM) stem cells could contribute to repopulating the pool of CSCs in heart. The engraftment of BM cells in heart was detected at a low level after BM transplantation (BMT) and ischemia/reperfusion (I/R) could increase BM cells engraftment but not significant. We clarified that more than 50% CSCs are derived from BM and confirmed that BM-derived CSCs have similar characteristics with the host CSCs. Furthermore, we transplanted BM-derived CSCs into heart ischemia models and presented evidence for the first time that BM-derived CSCs can differentiate into cardiomyocytes in vivo. In conclusions, BM stem cells could be a potential back-up source of CSCs for restoring heart function after injury or maintaining homeostasis of CSCs. PMID:27345618

  15. Genomic Characterization of the Inherited Bone Marrow Failure Syndromes

    PubMed Central

    Khincha, Payal P.; Savage, Sharon A.

    2013-01-01

    The inherited bone marrow failure syndromes (IBMFS) are a set of clinically related yet heterogeneous disorders in which at least one hematopoietic cell lineage is significantly reduced. Many of the IBMFS have notably increased cancer risks as well as other physical findings. Highly penetrant germline mutations in key pathways, such as DNA repair, telomere biology, or ribosomal biogenesis are causative of Fanconi anemia (FA), dyskeratosis congenita (DC) and Diamond-Blackfan anemia (DBA), respectively. Next-generation sequencing (NGS) generally refers to high-throughput, large-scale sequencing technologies and is being used more frequently to understand disease etiology. In the IBMFS, NGS has facilitated the discovery of germline mutations that cause thombocytopenia absent radii syndrome, a subset of DC and DBA, and other uncharacterized, but related, disorders. Panels of large numbers of genes are being used to molecularly characterize patients with IBMFS, such as FA and DBA. NGS is also accelerating the discovery of the genetic etiology of previously unclassified IBMFS. In this review, we will highlight recent studies that have employed NGS to ascertain the genetic etiology of IBMFS, namely FA, DC, DBA and TAR and discuss the translational utility of these findings. PMID:24246701

  16. Establishment of a bone marrow transplant satellite pharmacy.

    PubMed

    Woloschuk, D M; Nazeravich, D R; Gray, L J; Larter, J M

    1993-02-01

    The planning, establishment and operation of a bone marrow transplant (B.M.T.) satellite pharmacy in a 1100-bed teaching hospital are described. The B.M.T. satellite pharmacy was established because of the specialized pharmaceutical care needs of this patient population with a high risk for drug-related problems. The satellite pharmacy, which is located within a 19-bed Oncology Unit, provides integrated clinical-distributive services (unit-dose, IV-admixture system) to all B.M.T. patients. The satellite is open 10.5 hours per day, seven days per week. Staff consists of three full-time equivalent (F.T.E.) staff pharmacists, a 0.5 F.T.E. technician, and one F.T.E. clinical pharmacist. Staff pharmacists rotate between provision of B.M.T. pharmacy services, and provision of pharmacy services for the provincial Home Parenteral Nutrition program. The pharmacists are responsible for all aspects of drug distribution and clinical services for B.M.T. patients. Additional drug distribution and clinical services are provided to other Oncology Unit patients. The establishment of a satellite pharmacy has provided unique opportunities for pharmaceutical care of the B.M.T. patient. PMID:10124614

  17. Isolation and characterization of primary bone marrow mesenchymal stromal cells.

    PubMed

    Li, Hongzhe; Ghazanfari, Roshanak; Zacharaki, Dimitra; Lim, Hooi Ching; Scheding, Stefan

    2016-04-01

    Bone marrow (BM) contains a rare population of mesenchymal stromal cells (MSCs), which have been characterized as nonhematopoietic skeletal progenitor cells with central importance for the hematopoietic microenvironment. Classically, MSCs are isolated by plastic adherence and subsequent culture. However, as cultured stromal cells differ from their in vivo progenitors, it is important to identify the phenotype of the primary MSCs to study these cells in more detail. In the past years, several surface markers have been reported to be suitable for effective enrichment of BM-MSCs, and recent data indicate that the putative MSC stem/progenitor cell population in human adult BM is highly enriched in Lin(-) CD45(-) CD271(+) CD140a (PDGFRα)(low/-) cells. Moreover, surface marker combinations have been described for the isolation of MSCs from murine BM. On the basis of these findings, the role of primary MSCs can now be studied in normal and, importantly, diseased BM. Furthermore, genetically engineered mouse models have been developed as powerful tools to investigate well-defined BM stromal cell populations in vivo. Our discussion aims to provide a concise overview of the current state of the art in BM-MSC isolation in humans and briefly present murine MSC isolation approaches and genetic models. PMID:27270495

  18. Bone marrow-derived pancreatic stellate cells in rats.

    PubMed

    Sparmann, Gisela; Kruse, Marie-Luise; Hofmeister-Mielke, Nicole; Koczan, Dirk; Jaster, Robert; Liebe, Stefan; Wolff, Daniel; Emmrich, Jörg

    2010-03-01

    Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation. PMID:20101265

  19. Bone Marrow Is a Reservoir for Cardiac Resident Stem Cells.

    PubMed

    Liu, Na; Qi, Xin; Han, Zhibo; Liang, Lu; Kong, Deling; Han, Zhongchao; Zhao, Shihua; He, Zuo-Xiang; Li, Zongjin

    2016-01-01

    Resident cardiac stem cells (CSCs) represent a responsive stem cell reservoir within the adult myocardium and have a significant function in myocardial homeostasis and injury. However, the distribution, origin, homing and possible therapeutic benefits of CSCs are still under discussion. Here we investigated whether bone marrow (BM) stem cells could contribute to repopulating the pool of CSCs in heart. The engraftment of BM cells in heart was detected at a low level after BM transplantation (BMT) and ischemia/reperfusion (I/R) could increase BM cells engraftment but not significant. We clarified that more than 50% CSCs are derived from BM and confirmed that BM-derived CSCs have similar characteristics with the host CSCs. Furthermore, we transplanted BM-derived CSCs into heart ischemia models and presented evidence for the first time that BM-derived CSCs can differentiate into cardiomyocytes in vivo. In conclusions, BM stem cells could be a potential back-up source of CSCs for restoring heart function after injury or maintaining homeostasis of CSCs. PMID:27345618

  20. Interstitial pneumonitis after bone marrow transplantation. Assessment of risk factors

    SciTech Connect

    Weiner, R.S.; Bortin, M.M.; Gale, R.P.; Gluckman, E.; Kay, H.E.; Kolb, H.J.; Hartz, A.J.; Rimm, A.A.

    1986-02-01

    Data from 932 patients with leukemia who received bone marrow transplants were analyzed to determine factors associated with an increased risk of developing interstitial pneumonitis. Interstitial pneumonitis developed in 268 patients for a 2-year actuarial incidence of 35 +/- 4% (SD) and with a mortality rate of 24%. Six factors were associated with an increased risk: use of methotrexate rather than cyclosporine after transplantation (relative risk, 2.3; p less than 0.0002); older age (relative risk, 2.1; p less than 0.0001); presence of severe graft-versus-host disease (relative risk, 1.9; p less than 0.003); long interval from diagnosis to transplantation (relative risk, 1.6; p less than 0.002); performance ratings before transplantation of less than 100% (relative risk, 2.1; p less than 0.0001); and high dose-rates of irradiation in patients given methotrexate after transplantation (relative risk, 3.2; p less than 0.03). The risk of developing interstitial pneumonitis ranged from 8% in patients with none of these adverse risk factors to 94% in patients with all six. These findings may help to identify patients at high risk for this complication.

  1. Assessment of psychological distress in prospective bone marrow transplant patients.

    PubMed

    Trask, P C; Paterson, A; Riba, M; Brines, B; Griffith, K; Parker, P; Weick, J; Steele, P; Kyro, K; Ferrara, J

    2002-06-01

    Patient psychological distress is associated with many aspects of the bone marrow transplantation (BMT) process and has been linked with poor treatment outcomes. We assessed psychological distress in potential BMT candidates, and compared patient and nurse coordinator ratings of emotional distress at the time of initial BMT consultation. Fifty patients self-reported psychological distress using both the NCCN Distress Thermometer (DT) and the Hospital Anxiety and Depression Scale (HADS). Coordinators rated patient emotional distress using the DT and Coordinator Rating Scales that measure anxiety and depression. Fifty and 51% of patients self-reported clinically significant levels of emotional distress and anxiety, respectively, but only 20% self-reported clinically significant levels of depression. There was good correlation between ratings using the brief DT and the more comprehensive HADS. There was significant but only moderate agreement between patient and coordinator ratings of emotional distress and anxiety, with coordinators underestimating the number of patients with high levels of emotional distress. In addition, coordinator ratings of patient emotional distress primarily reflected anxiety, whereas anxiety and depression together only minimally accounted for patient self-reports of psychological distress. These findings suggest that: (1) the DT can be a useful screening device; (2) approximately half of patients at the time of initial consultation for BMT already experience significant levels of psychological distress; and (3) coordinators observe emotional distress primarily as anxiety, but patients experience psychological distress as something more than anxiety and depression. PMID:12080358

  2. Value of surveillance cultures in a bone marrow transplantation unit.

    PubMed

    Czirók, E; Prinz, G Y; Dénes, R; Reményi, P; Herendi, A

    1997-09-01

    Because of the increased risk of infection with the associated diagnostic and therapeutic problems in bone marrow transplantation (BMT) patients, the usefulness of surveillance cultures (SC) at the BMT department of the National Institute of Haematology, Blood Transfusion, Transplantation and Immunology, Budapest, was reviewed. Between January 1992 and May 1995, 26 BMT operations were performed; 13 patients had 23 febrile espisodes. In 12 of these episodes infection was clinically documented; however, SC of these patients yielded bacteria identical with those in the blood culture in only two episodes (1 and 6 days before their blood cultures became positive, respectively). Out of a total of 1187 samples from these patients, potentially pathogenic bacteria were isolated from 145 SC and 43 blood cultures (drawn on 31 different days). Suppression of the gastrointestinal flora could be achieved by the department's decontamination regimen; however, overgrowth by gram-positive organisms (mainly coagulase-negative staphylococci) occurred in the intestine and at other body sites. On the basis of these results, SC are of limited value in predicting infection or identifying the causative organisms of fever. On the other hand, SC are useful in confirming the efficiency of suppression of the body flora by antimicrobial agents. Specific treatment was based on suitably sampled materials, and close contact between physicians, infectious disease specialists and microbiologists was essential. PMID:9291891

  3. The bone marrow niche in support of breast cancer dormancy.

    PubMed

    Walker, Nykia D; Patel, Jimmy; Munoz, Jessian L; Hu, Madeleine; Guiro, Khadidiatou; Sinha, Garima; Rameshwar, Pranela

    2016-09-28

    Despite the success in detecting breast cancer (BC) early and, with aggressive therapeutic intervention, BC remains a clinical problem. The bone marrow (BM) is a favorable metastatic site for breast cancer cells (BCCs). In BM, the survival of BCCs is partly achieved by the supporting microenvironment, including the presence of immune suppressive cells such as mesenchymal stem cells (MSCs). The heterogeneity of BCCs brings up the question of how each subset interacts with the BM microenvironment. The cancer stem cells (CSCs) survive in the BM as cycling quiescence cells and, forming gap junctional intercellular communication (GJIC) with the hematopoietic supporting stromal cells and MSCs. This type of communication has been identified close to the endosteum. Additionally, dormancy can occur by soluble mediators such as cytokines and also by the exchange of exosomes. These latter mechanisms are reviewed in the context of metastasis of BC to the BM for transition as dormant cells. The article also discusses how immune cells such as macrophages and regulatory T-cells facilitate BC dormancy. The challenges of studying BC dormancy in 2-dimensional (2-D) system are also incorporated by proposing 3-D system by engineering methods to recapitulate the BM microenvironment. PMID:26546045

  4. The malignant clone and the bone-marrow environment.

    PubMed

    Podar, Klaus; Richardson, Paul G; Hideshima, Teru; Chauhan, Dharminder; Anderson, Kenneth C

    2007-12-01

    Multiple myeloma (MM) is characterized by the clonal expansion of monoclonal immunoglobulin-secreting plasma cells within the bone marrow (BM). It has become clear that the intimate reciprocal relationship between the tumor cell clone and the niches of the BM microenvironment plays a pivotal pathophysiologic role in MM. We and others have identified several new molecular targets and derived novel therapies which induce cytotoxicity against MM cells in the BM milieu, including thalidomide, bortezomib, and lenalidomide. Importantly, these agents induce tumor-cell death, as well as inhibit MM-cell-BM-stromal-cell (BMSC) adhesion and related tumor-cell growth, survival, and migration. Moreover, they block both constitutive and MM-cell binding-induced growth factor and cytokine secretion in BMSCs. Further, they also block tumor angiogenesis and can augment anti-MM immunity. Although all three of these agents are now FDA-approved to treat MM, patients inevitably relapse, and further improvements remain urgently needed. Here we review our current knowledge of the MM cell clone, as well as the impact of the BM microenvironment on tumor-cell growth, survival, migration and drug resistance. Delineating the mechanisms and sequelae of the reciprocal relationship between the MM cell clone, distinct BM extracellular matrix proteins, and accessory cell compartments may provide the basis for new effective therapeutic strategies to re-establish BM homeostasis and thereby improve MM patient outcome. PMID:18070708

  5. Bone marrow segmentation based on a combined consideration of transverse relaxation processes and Dixon oscillations.

    PubMed

    Balasubramanian, Mukund; Jarrett, Delma Y; Mulkern, Robert V

    2016-05-01

    The aim of this study was to demonstrate that gradient-echo sampling of single spin echoes can be used to isolate the signal from trabecular bone marrow, with high-quality segmentation and surface reconstructions resulting from the application of simple post-processing strategies. Theoretical expressions of the time-domain single-spin-echo signal were used to simulate signals from bone marrow, non-bone fatty deposits and muscle. These simulations were compared with and used to interpret signals obtained by the application of the gradient-echo sampling of a spin-echo sequence to image the knee and surrounding tissues at 1.5 T. Trabecular bone marrow has a much higher reversible transverse relaxation rate than surrounding non-bone fatty deposits and other musculoskeletal tissues. This observation, combined with a choice of gradient-echo spacing that accentuates Dixon-type oscillations from chemical-shift interference effects, enabled the isolation of bone marrow signal from surrounding tissues through the use of simple image subtraction and thresholding. Three-dimensional renderings of the marrow surface were then readily generated with this approach - renderings that may prove useful for bone morphology assessment, e.g. for the measurement of femoral anteversion. In conclusion, understanding the behavior of signals from bone marrow and surrounding tissue as a function of time through a spin echo facilitates the segmentation and reconstruction of bone marrow surfaces using straightforward post-processing strategies that are typically available on modern radiology workstations. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26866627

  6. Heterotopic implantation of autologous bone marrow in rock pigeons (Columba livia): possible applications in avian bone grafting.

    PubMed

    Sanaei, M Reza; Abu, Jalila; Nazari, Mojgan; Faiz, Nik Mohd; Bakar, Mohd Zuki Abu; Allaudin, Zeenathul N

    2011-12-01

    Autologous bone marrow, alone or as a composite marrow graft, has received much attention in various species. To assess the potential osteogenicity of autologous, extramedullary bone marrow implants in an avian model, 24 adult pigeons (Columba livia) were given intramuscular implantations of autologous marrow aspirated from the medial tibiotarsus. Birds were euthanatized at 1, 4, 6, 8, 10, and 12 weeks after surgery to evaluate whether ectopic bone had formed at the implant sites. Primary evaluations by in situ radiography and postmortem histologic examinations showed no evidence of bone formation. Further evaluation with histologic scores and histomorphometry revealed a significantly increased rate of angiogenesis at the implant sites by the sixth and tenth week postimplantation (P < .05). No significant differences between the treatment and control sites were present at any other endpoints. Results of this study show that, although autologous bone marrow lacks heterotopic osteogenic potentials in this avian model, it could still function as a useful adjunct to routine bone grafting techniques because of its unique capabilities to promote early angiogenesis. PMID:22458179

  7. The Role of Bone Marrow Microenvironment in Governing the Balance between Osteoblastogenesis and Adipogenesis

    PubMed Central

    Li, Jiao; Liu, Xingyu; zuo, Bin; Zhang, Li

    2016-01-01

    In the adult bone marrow, osteoblasts and adipocytes share a common precursor called mesenchymal stem cells (MSCs). The plasticity between the two lineages has been confirmed over the past decades, and has important implications in the etiology of bone diseases such as osteoporosis, which involves an imbalance between osteoblasts and adipocytes. The commitment and differentiation of bone marrow (BM) MSCs is tightly controlled by the local environment that maintains a balance between osteoblast lineage and adipocyte. However, pathological conditions linked to osteoporosis can change the BM microenvironment and shift the MSC fate to favor adipocytes over osteoblasts, and consequently decrease bone mass with marrow fat accumulation. This review discusses the changes that occur in the BM microenvironment under pathological conditions, and how these changes affect MSC fate. We suggest that manipulating local environments could have therapeutic implications to avoid bone loss in diseases like osteoporosis. PMID:27493836

  8. Characterization of multiphoton microscopy in the bone marrow following intravital laser osteotomy.

    PubMed

    Turcotte, Raphaël; Alt, Clemens; Mortensen, Luke J; Lin, Charles P

    2014-10-01

    The bone marrow is an important site where all blood cells are formed from hematopoietic stem cells and where hematologic malignancies such as leukemia emerge. It is also a frequent site for metastasis of solid tumors such as breast cancer and prostate cancer. Intravital microscopy is a powerful tool for studying the bone marrow with single cell and sub-cellular resolution. To improve optical access to this rich biological environment, plasma-mediated laser ablation with sub-microjoule femtosecond pulses was used to thin cortical bone. By locally removing a superficial layer of bone (local laser osteotomy), significant improvements in multiphoton imaging were observed in individual bone marrow compartments in vivo. This work demonstrates the utility of scanning laser ablation of hard tissue with sub-microjoule pulses as a preparatory step to imaging. PMID:25360374

  9. The Role of Bone Marrow Microenvironment in Governing the Balance between Osteoblastogenesis and Adipogenesis.

    PubMed

    Li, Jiao; Liu, Xingyu; Zuo, Bin; Zhang, Li

    2016-08-01

    In the adult bone marrow, osteoblasts and adipocytes share a common precursor called mesenchymal stem cells (MSCs). The plasticity between the two lineages has been confirmed over the past decades, and has important implications in the etiology of bone diseases such as osteoporosis, which involves an imbalance between osteoblasts and adipocytes. The commitment and differentiation of bone marrow (BM) MSCs is tightly controlled by the local environment that maintains a balance between osteoblast lineage and adipocyte. However, pathological conditions linked to osteoporosis can change the BM microenvironment and shift the MSC fate to favor adipocytes over osteoblasts, and consequently decrease bone mass with marrow fat accumulation. This review discusses the changes that occur in the BM microenvironment under pathological conditions, and how these changes affect MSC fate. We suggest that manipulating local environments could have therapeutic implications to avoid bone loss in diseases like osteoporosis. PMID:27493836

  10. Association of MRS-Based Vertebral Bone Marrow Fat Fraction with Bone Strength in a Human In Vitro Model

    PubMed Central

    Karampinos, Dimitrios C.; Ruschke, Stefan; Gordijenko, Olga; Grande Garcia, Eduardo; Kooijman, Hendrik; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Baum, Thomas

    2015-01-01

    Bone marrow adiposity has recently gained attention due to its association with bone loss pathophysiology. In this study, ten vertebrae were harvested from fresh human cadavers. Trabecular BMD and microstructure parameters were extracted from MDCT. Bone marrow fat fractions were determined using single-voxel MRS. Failure load (FL) values were assessed by destructive biomechanical testing. Significant correlations (P < 0.05) were observed between MRS-based fat fraction and MDCT-based parameters (up to r = −0.72) and MRS-based fat fraction and FL (r = −0.77). These findings underline the importance of the bone marrow in the pathophysiology and imaging diagnostics of osteoporosis. PMID:25969766

  11. Interleukin-2 and syngeneic bone marrow transplantation in a murine fibrosarcoma model.

    PubMed

    Ho, S P; Stebler, B; Ershler, W B

    1991-04-01

    Mice received interleukin-2 (IL-2) either before and after, or just after intravenous inoculation of syngeneic fibrosarcoma cells. Fewer pulmonary tumor colonies were observed in those animals treated with IL-2, and the best results were observed when IL-2 was administered prior to tumor inoculation. When mice were lethally irradiated and reconstituted with tumor-contaminated bone marrow, IL-2 treatment was also associated with fewer tumor lung colonies. IL-2 may prove to be a useful adjuvant therapy, particularly in the setting of autologous bone marrow transplantation when the infused marrow is contaminated with tumor cells. PMID:1873353

  12. An assessment of bone marrow and bone endosteum dosimetry methods for photon sources

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Lee, Choonsik; Shah, Amish P.; Bolch, Wesley E.

    2006-11-01

    The rather complex and microscopic histological structure of the skeletal system generally limits one's ability to accurately model this tissue during dosimetric evaluations. Consequently, various assumptions must be made to evaluate the absorbed dose from external and internal photons to the radiosensitive tissues of the red (or haematopoietically active) bone marrow and the osteogenic tissues of the skeletal endosteum. These various methods for photon skeletal dosimetry have not been inter-compared, partly due to the lack of a realistic reference model that can provide a high-resolution three-dimensional geometry for secondary electron particle transport. In the present study, the paired-image radiation transport (PIRT) model developed by Shah et al (2005 J. Nucl. Med. 45 344) was utilized to evaluate the absorbed dose per incident photon fluence to these skeletal regions from idealized parallel beams of monoenergetic photons. The PIRT model results were then used as a local reference against which absorbed doses via other methods were compared. For red bone marrow dosimetry, four approximate techniques were considered: (1) the dose response function method (DRF method) presented in ORNL/TM-8381, (2) the mass-energy absorption coefficient ratio method (two-parameter MEAC method), (3) the MEAC method with the additional use of energy-dependent dose enhancement factors from King and Spiers (1985 Br. J. Radiol. 58 345) (three-parameter MEAC method), and (4) the three-parameter MEAC method applied at the voxel level through the use image-specific CT numbers (CTN method). For the bone endosteum (i.e., bone surfaces), two approximate techniques were compared: (1) the DRF method for bone surfaces and (2) the homogeneous bone approximation (HBA) method. In each case, the local reference standard was assumed to be that of the PIRT model. Four different ex vivo bone specimens with distinctively different internal structures were used in the study: the cranium, the lumbar

  13. Osteogenic ability of bone marrow stem cells intraoperatively enriched by a novel matrix

    PubMed Central

    YE, QING; CHEN, KAINING; HUANG, WU; HE, YUNSONG; NONG, MINGSHAN; LI, CHUNXIANG; LIANG, TIANSEN

    2015-01-01

    Poly-L-lysine (PLL) is commonly used as an adhibiting agent due to its good viscosity, and demineralized bone matrix (DBM) is a common enriched matrix for selective cell retention technology. Therefore, the aim of this study was to use PLL to coat the surface and interspaces of DBM to form a novel type of enriched matrix [DBM coated with PLL (PLL-DBM)], in order to effectively improve the enrichment effects of bone marrow stem cells and enhance their osteogenic ability. Electron microscope scanning and the infrared spectrum were used to observe the structure of PLL-DBM and the optimal conditions for the combination of PLL and DBM. Enriching effects on bone marrow nucleated cells (NCs) and platelets (PLTs) were detected with an automated hematology analyzer. The osteogenesis of the following four groups was assessed with a grafting bone model in a goat spinal transverse process: IA, tissue engineered bone (TEB) fabricated following enrichment of bone marrow with PLL-DBM; IB, autogenous iliac bone; IIC, TEB fabricated following enrichment of bone marrow with DBM; IID, blank DBM. The goats were sacrificed in one batch at week 16 after the surgery and the fusion specimens were examined using X-ray and three-dimensional computed tomography (CT). In addition, the CT value was determined and the histology and biomechanics were analyzed in order to evaluate the osteogenic ability. The results showed that PLL and DBM combined well and that PLL-DBM exhibited a natural mesh pore structure. The fold enrichment of NCs and PLTs with PLL-DBM was significantly higher than that with DBM. The fusion effects of the IA and IB groups were similar and significantly enhanced compared with those of the IIC and IID groups. The results confirmed that PLL-DBM is an ideal enriched matrix for bone marrow stem cells, and TEB rapidly fabricated by PLL-DBM intraoperatively enriched bone marrow stem cells exhibits an improved osteogenic ability. PMID:25452771

  14. Experimental posterolateral spinal fusion with beta tricalcium phosphate ceramic and bone marrow aspirate composite graft

    PubMed Central

    Gupta, Ankit; Chauhan, Vijendra; Chauhan, Neena; Sharma, Sansar; Maheshwari, Rajesh; Agarwal, Atul

    2010-01-01

    Background: Beta tricalcium phosphate is commonly used in metaphyseal defects but its use in posterolateral spinal fusion remains controversial. There are very few published animal studies in which use of beta tricalcium phosphate has been evaluated in the posterolateral lumbar arthrodesis model. Hence we conducted a study to evaluate the potential of composite graft of beta tricalcium phosphate and bone marrow aspirate in comparison to autologous bone graft, when used for posterolateral spinal fusion. Materials and Methods: Single level posterolateral lumbar fusion was performed in 40 adult male Indian rabbits, which were assigned randomly into one of the four groups based on graft materials implanted; a) 3 gm beta tricalcium phosphate plus 3 ml bone marrow aspirate (Group I); b) 3 ml bone marrow aspirate alone (Group II); c) 3 gm beta tricalcium phosphate (Group III) and d) 3 gm autologous bone graft (Group IV). Each group had 10 rabbits. Half of the rabbits were sacrificed by injecting Phenobarbitone intraperitoneally after eight weeks and the remaining after 24 weeks, and were evaluated for fusion by X-rays, computed tomography (CT) scans, manual palpation test and histology. Results: Beta tricalcium phosphate used with bone marrow aspirate produced best results when compared to other groups (P =.0001). When beta tricalcium phosphate was used alone, fusion rates were better as compared to fusion achieved with autologous iliac crest bone graft though statistically not significant (P =0.07). Autologous bone graft showed signs of new bone formation. However, the rate of new bone formation was comparatively slow. Conclusion: Composite graft of beta tricalcium phosphate and bone marrow aspirate can be used as an alternative to autologous iliac crest bone graft. PMID:20924481

  15. The protocol for the isolation and cryopreservation of osteoclast precursors from mouse bone marrow and spleen.

    PubMed

    Boraschi-Diaz, Iris; Komarova, Svetlana V

    2016-01-01

    Osteoclasts are responsible for physiological bone remodeling as well as pathological bone destruction in osteoporosis, periodontitis and rheumatoid arthritis, and thus represent a pharmacological target for drug development. We aimed to characterize and compare the cytokine-induced osteoclastogenesis of bone marrow and spleen precursors. Established protocols used to generate osteoclasts from bone marrow were modified to examine osteoclastogenesis of the spleen cells of healthy mice. Osteoclast formation was successfully induced from spleen precursors using receptor activator of nuclear factor κB ligand (50 ng/ml) and macrophage colony stimulating factor (50 ng/ml). Compared to bone marrow cultures, differentiation from spleen required a longer cultivation time (9 days for spleen, as compared to 5 days for marrow cultures) and a higher plating density of non-adherent cells (75,000/cm(2) for spleen, as compared to 50,000/cm(2) for bone marrow). Osteoclasts generated from spleen precursors expressed osteoclast marker genes calcitonin receptor, cathepsin K and matrix metalloproteinase 9 and were capable of resorbing hydroxyapatite. The differentiation capacity of spleen and bone marrow precursors was comparable for BALB/c, C57BL/6 and FVB mice. We also developed and tested a cryopreservation protocol for the osteoclast precursors. While 70-80 % of cells were lost during the first week of freezing, during the subsequent 5 weeks the losses were within 2-5 % per week. Osteoclastogenesis from the recovered bone marrow precursors was successful up to 5 weeks after freezing. Spleen precursors retained their osteoclastogenic capacity for 1 week after freezing, but not thereafter. The described protocol is useful for the studies of genetically modified animals as well as for screening new osteoclast-targeting therapeutics. PMID:25245056

  16. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate

    PubMed Central

    Song, Guodong; Habibovic, Pamela; Bao, Chongyun; Hu, Jing; van Blitterswijk, Clemens A.; Yuan, Huipin; Chen, Wenchuan; Xu, Hockin H.K.

    2013-01-01

    Osteoinductive biomaterials are promising for bone repair. There is no direct proof that bone marrow mesenchymal stem cells (BMSCs) home to non-osseous sites and participate in ectopic bone formation induced by osteoinductive bioceramics. The objective of this study was to use a sex-mismatched beagle dog model to investigate BMSC homing via blood circulation to participate in ectopic bone formation via osteoinductive biomaterial. BMSCs of male dogs were injected into female femoral marrow cavity. The survival and stable chimerism of donor BMSCs in recipients were confirmed with polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH). Biphasic calcium phosphate (BCP) granules were implanted in dorsal muscles of female dogs. Y chromosomes were detected in samples harvested from female dogs which had received male BMSCs. At 4 weeks, cells with Y-chromosomes were distributed in the new bone matrix throughout the BCP granule implant. At 6 weeks, cells with Y chromosomes were present in newly mineralized woven bone. TRAP positive osteoclast-like cells were observed in 4-week implants, and the number of such cells decreased from 4 to 6 weeks. These results show that osteoprogenitors were recruited from bone marrow and homed to ectopic site to serve as a cell source for calcium phosphate-induced bone formation. In conclusion, BMSCs were demonstrated to migrate from bone marrow through blood circulation to non-osseous bioceramic implant site to contribute to ectopic bone formation in a canine model. BCP induced new bone in muscles without growth factor delivery, showing excellent osteoinductivity that could be useful for bone tissue engineering. PMID:23298780

  17. Nonspecific inhibition of alloantigen-induced proliferation by bone marrow natural regulatory cells

    SciTech Connect

    Dorshkind, K.; Rosse, C.

    1981-03-01

    We have previously reported that a lymphocyte-enriched fraction ofmurine bone marrow (BML) contains natural regulatory cells (NRC) that can inhibit in vitro proliferative and cytotoxic responses to alloantigens on a dose-dependent basis. In view of the potential importance of these cells to the outcome of bone marrow transplantation, we have undertaken a series of studies designed to inestigate the properties of the effector cell(s). Since clinical and experimental bone marrow transplantation is often performed by inoculating histoincompatible marrow into irradiated hosts, we have investigated the effects of irradiation on NRC and their ability to function across major and minor histocompatibility barriers. In this brief communication, we report that NRC can nonspecifically inhibit cellular immune responses across histocompatibility barriers and are not affected by high doses of irraddiation. In addition, we report that NRC are not T or B lymphocytes.

  18. Enrichment for CFU-C from murine and human bone marrow using soybean agglutinin

    SciTech Connect

    Reisner, Y.; Kapoor, N.; Hodes, M.Z.; O'Reilly, R.J.; Good, R.A.

    1982-02-01

    Mouse bone marrow and spleen cells agglutinated by soybean agglutinin (SBA) or peanut agglutinin (PNA) were previously shown to be enriched for spleen colony-forming cells (CFU-S) and sufficiently depleted of graft-versus-host reaction producing cells to allow hematologic reconstitution of lethally irradiated allogeneic recipient mice. A similar enrichment for cells capable of forming colonies in soft agar culture (CFU-C) has now been found in the SBA-agglutinated fraction of mouse bone marrow cells, in contrast to the finding that in human bone marrow the majority of the CFU-C are in the fraction not agglutinated by SBA. Cytofluorometric studies with fluorescein-labeled SBA (FITC-SBA) revealed that the majority of both mouse and human bone marrow cells bind the lectin. Experiments mixing the human marrow fractions separated by SBA reveal that true enrichment for CFU-C is achieved in the unagglutinated fraction, as opposed to a possible depletion of a suppressor cell population. Granulocytic, monocytic, and mixed cell colonies were all enriched in the SBA-unagglutinated cell fraction from human bone marrow.

  19. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    SciTech Connect

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-05-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and /sup 14/C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of /sup 14/C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose.

  20. Verapamil potentiation of melphalan cytotoxicity and cellular uptake in murine fibrosarcoma and bone marrow.

    PubMed Central

    Robinson, B. A.; Clutterbuck, R. D.; Millar, J. L.; McElwain, T. J.

    1985-01-01

    Growth delay by melphalan of two fibrosarcomas in CBA mice was prolonged by intraperitoneal (i.p.) verapamil, 10 mg kg-1. Verapamil also increased the area under the blood concentration time curve and the gastrointestinal toxicity of melphalan. Verapamil promoted melphalan cytotoxicity to murine bone marrow both in vivo, by CFU-S assay, and in vitro, by CFU-GM assay. In 1 microgram ml-1 [14C]-melphalan, verapamil (10 micrograms ml-1) increased by 1.5 times the [14C]-melphalan accumulation by murine bone marrow, reversibly and independently of external calcium. Efflux of [14C]-melphalan from murine bone marrow was retarded by verapamil. Verapamil increased [14C]-melphalan uptake by disaggregated fibrosarcoma cells but had no effect on melphalan accumulation and cytotoxicity in human bone marrow. Although verapamil affected melphalan pharmacokinetics, enhancement of cellular melphalan uptake by verapamil in murine fibrosarcoma and bone marrow appeared to account for much of the increase in melphalan cytotoxicity. The lack of potentiation of melphalan by verapamil in human marrow suggests differences in melphalan transport or in verapamil membrane interactions in mouse and man. PMID:4074636

  1. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia.

    PubMed

    Bär, Christian; Povedano, Juan Manuel; Serrano, Rosa; Benitez-Buelga, Carlos; Popkes, Miriam; Formentini, Ivan; Bobadilla, Maria; Bosch, Fatima; Blasco, Maria A

    2016-04-01

    Aplastic anemia is a fatal bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia. The disease can be hereditary or acquired and develops at any stage of life. A subgroup of the inherited form is caused by replicative impairment of hematopoietic stem and progenitor cells due to very short telomeres as a result of mutations in telomerase and other telomere components. Abnormal telomere shortening is also described in cases of acquired aplastic anemia, most likely secondary to increased turnover of bone marrow stem and progenitor cells. Here, we test the therapeutic efficacy of telomerase activation by using adeno-associated virus (AAV)9 gene therapy vectors carrying the telomeraseTertgene in 2 independent mouse models of aplastic anemia due to short telomeres (Trf1- andTert-deficient mice). We find that a high dose of AAV9-Terttargets the bone marrow compartment, including hematopoietic stem cells. AAV9-Terttreatment after telomere attrition in bone marrow cells rescues aplastic anemia and mouse survival compared with mice treated with the empty vector. Improved survival is associated with a significant increase in telomere length in peripheral blood and bone marrow cells, as well as improved blood counts. These findings indicate that telomerase gene therapy represents a novel therapeutic strategy to treat aplastic anemia provoked or associated with short telomeres. PMID:26903545

  2. Effects of supralethal total body irradiation and bone marrow reconstitution upon immunologic memory

    SciTech Connect

    Akiyama, N.; Bachvaroff, R.J.; Sato, T.; Rapaport, F.T.

    1981-03-01

    The transplantation of bone marrow from prospectively selected genotypically and pedigree DLA-identical donors into supralethally irradiated littermate and nonlittermate recipients within the Copperstown beagle colony has regularly resulted in the establishment of long-term chimerism, with no evidence of graft-versus-host disease in the recipients. It has been demonstrated that irradiated recipients exhibit significant decreases in their ability to muster primary immunological responses during the first months after reconstitution with bone marrow. Beyond the documented capacity of preirradiation blood transfusions to interfere with subsequent engraftment of allogeneic marrow, however, there have been no systematic studies of the possible effects of irradiation and bone marrow transplantation upon immunologic memory. The present study was designed in order to assess this question in greater detail, with particular regard to the effects of irradiation and bone marrow reconstitution upon host sensitization to skin allografts. The results indicate that, within the experimental limitations described, the state of sensitivity produced by first set skin allograft rejection is not affected significantly by supralethal total body irradiation and reconstitution of the recipient with allogeneic bone marrow.

  3. MRI evaluation of bone marrow changes in the diabetic foot: a practical approach.

    PubMed

    Toledano, Talya R; Fatone, Eliana A; Weis, Adina; Cotten, Anne; Beltran, Javier

    2011-07-01

    One of the most important roles of magnetic resonance (MR) in imaging of the diabetic foot is to differentiate between the common and often comorbid pathologies that present with abnormal bone marrow signal. The primary diagnostic challenges in this setting are to distinguish osteomyelitis from reactive bone marrow edema, neuroarthropathy from osteomyelitis, and the sterile from the superinfected neuropathic joint. Whereas both osteomyelitis and reactive marrow edema share increased T2 signal, osteomyelitis is confirmed by T1 hypointensity in the bone marrow and reactive edema demonstrates isolated T2 signal hyperintensity. In distinguishing osteomyelitis from neuroarthropathy, a localized or contiguously spreading forefoot focus of abnormal bone marrow away from the subchondral surface and adjacent to a skin ulcer, cellulitis, abscess, or sinus tract would be indicative of osteomyelitis. A midfoot, subchondral, periarticular, or polyarticular distribution of findings in the absence of a contiguous focus of skin disruption would strongly support neuroarthropathy. Parameters that have been successfully correlated with acute infection superimposed on neuroarthropathy include diffuse bone marrow signal abnormality, progressive subarticular enhancement, loss of subchondral cysts, and the presence of the MRI "ghost sign." PMID:21644199

  4. Bone marrow transfusions in previously irradiated, hematologically normal syngeneic mice

    SciTech Connect

    Brecher, G.; Lawce, H.; Tjio, J.H.

    1981-03-01

    Transfusion of syngeneic marrow into normal, nonirradiated recipients results only in minimal proliferation of donor cells. However, irradiated recipients, restored to hematologic normalcy by an initial marrow transfusion, subsequently sustain proliferation which replaces approximately 10% of endogenous marrow after a single transfusion of 4 x 10/sup 7/ marrow cells of the same strain as the host. Cells from histoincompatible donors proliferate only rarely or minimally in the marrows of these irradiated, but hematologically normal recipients without reirradiation. Syngeneic male donor cells proliferate in irradiated and restored female mice, while female donor cells fail to proliferate in the marrow of syngeneic male recipients. A possible explanation is that transfused female cells respond immunologically to the abundant H-Y antigen in the male environment and are eliminated as a result.

  5. Fever and arthralgia as the initial symptoms of primary bone marrow diffuse large B-cell lymphoma: A case report

    PubMed Central

    REN, SAISAI; TAO, YANLING; JIA, LU; CHENG, PANPAN; ZHANG, JILEI; ZHANG, HAO

    2016-01-01

    Primary bone marrow diffuse large B-cell lymphoma (DLBCL) is rare, and only a few cases have been reported. Fever and arthralgia as the initial symptom are extremely rare; however, awareness must be made of this presentation. The current study describes the clinical and pathological findings of a 41-year-old man affected by fever and arthralgia. Blood tests revealed leukopenia and anemia. Multiple bone marrow biopsies were conducted and confirmed the diagnosis of primary bone marrow DLBCL. Primary bone marrow DLBCL is a rare and frequently misdiagnosed subset of non-Hodgkin's lymphoma. The current case demonstrates that utility of bone marrow biopsy for diagnosis should not be ignored, and that repeated bone marrow punctures in multiple locations may be necessary. PMID:27123129

  6. [Biological characteristics of exosomes secreted by human bone marrow mesenchymal stem cells].

    PubMed

    Feng, Ying; Lu, Shi-Hong; Wang, Xin; Cui, Jun-Jie; Li, Xue; DU, Wen-Jing; Wang, Ying; Li, Juan-Juan; Song, Bao-Quan; Chen, Fang; Ma, Feng-Xia; Chi, Ying; Yang, Shao-Guang; Han, Zhong-Chao

    2014-06-01

    This study was aimed to explore the immunoregulatory function and capability supporting the angiogenesis of exosomes secreted by bone marrow mesenchymal stem cells (BMMSC) from healthy persons. Supernatant of BMMSC (P4-P6) was collected for exosome purification. Transmission electron microscopy (TEM) and Western blot were used to identify the quality of isolated exosomes. The amount of exosomes was quantified through bicinchoninic acid (BCA) protein assay. Human peripheral blood mononuclear cells (PBMNC) were isolated from healthy donor and added with isolating exosomes. After co-cultured for 72 h, IFN-γ from the co-culture system was detected by ELISA. The expression of miRNA-associated with immunity were detected by real-time reverse transcription polymerase chain reaction (Real-time RT-PCR). The interactions between exosomes and human umbilical vein endothelial cells (HUVEC) were observed with confocal microscopy. Subconfluent HUVEC were harvested and treated with the indicated concentration of exosomes. Nude mice were injected subcutaneously with exosomes or PBS as control to verify the ability of angiogenesis. The results showed that diameter range of exosomes was range from 40 to 160 nm. The isolated exosomes expressed the CD9. There was approximately linear relation between the secretion of exosomes and cell density. The exosomes suppressed the production of IFN-γ from PBMNC, and contained miRNA associated with immune regulation such as miR301, miR22 and miR-let-7a. Exosomes induced vascular tube formation in vitro and vascularization of Matrigel plugs in vivo. It is concluded that the BMMSC-derived exosomes can regulate immunity and support vascularization. PMID:24989260

  7. Generation of competent bone marrow-derived antigen presenting cells from the deer mouse (Peromyscus maniculatus)

    PubMed Central

    Davenport, Bennett J; Willis, Derall G; Prescott, Joseph; Farrell, Regina M; Coons, Teresa A; Schountz, Tony

    2004-01-01

    Background Human infections with Sin Nombre virus (SNV) and related New World hantaviruses often lead to hantavirus cardiopulmonary syndrome (HCPS), a sometimes fatal illness. Lungs of patients who die from HCPS exhibit cytokine-producing mononuclear infiltrates and pronounced pulmonary inflammation. Deer mice (Peromyscus maniculatus) are the principal natural hosts of SNV, in which the virus establishes life-long persistence without conspicuous pathology. Little is known about the mechanisms SNV employs to evade the immune response of deer mice, and experimental examination of this question has been difficult because of a lack of methodologies for examining such responses during infection. One such deficiency is our inability to characterize T cell responses because susceptible syngeneic deer mice are not available. Results To solve this problem, we have developed an in vitro method of expanding and generating competent antigen presenting cells (APC) from deer mouse bone marrow using commercially-available house mouse (Mus musculus) granulocyte-macrophage colony stimulating factor. These cells are capable of processing and presenting soluble protein to antigen-specific autologous helper T cells in vitro. Inclusion of antigen-specific deer mouse antibody augments T cell stimulation, presumably through Fc receptor-mediated endocytosis. Conclusions The use of these APC has allowed us to dramatically expand deer mouse helper T cells in culture and should permit extensive characterization of T cell epitopes. Considering the evolutionary divergence between deer mice and house mice, it is probable that this method will be useful to other investigators using unconventional models of rodent-borne diseases. PMID:15458574

  8. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation.

    PubMed

    Zhang, W; Zhu, C; Wu, Y; Ye, D; Wang, S; Zou, D; Zhang, X; Kaplan, D L; Jiang, X

    2014-01-01

    Vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) have been widely used in the fields of tissue engineering and regenerative medicine to stimulate angiogenesis and bone formation. The goal of this study was to determine whether VEGF and BMP-2 are involved in the homing of bone marrow stem cells (BMSCs) for bone regeneration and to provide insights into their mechanism of action. The chemoattraction of BMSCs to VEGF and BMP-2 was analysed in vitro using a checkerboard assay. VEGF and BMP-2 stimulated the chemotaxis of BMSCs but not chemokinesis. In vivo, both VEGF and BMP-2 also have been confirmed to induce the homing of tail vein injected BMSCs to the site of silk scaffold subcutaneous implantation in nude mice. When the scaffolds were implanted in the rabbit skull defects, more SSEA+ mesenchymal stem cells were mobilised and homed to silk scaffolds containing VEGF and/or BMP-2. More importantly, autogenic BMSCs were reinjected via the ear vein after labelling with lenti-GFP, and the cells were detected to home to the defects and differentiate into endothelial cells and osteogenic cells induced by VEGF and BMP-2. Finally, perfusion with Microfil showed that initial angiogenesis was enhanced in tissue-engineered complexes containing VEGF. Observations based on µCT assay and histological study revealed that bone formation was accelerated on BMP-2-containing scaffolds. These findings support our hypothesis that the localised release of VEGF and BMP-2 promote bone regeneration, in part by facilitating the mobilisation of endogenous stem cells and directing the differentiation of these cells into endothelial and osteogenic lineages. PMID:24425156

  9. Daily leptin blunts marrow fat but does not impact bone mass in calorie-restricted mice.

    PubMed

    Devlin, M J; Brooks, D J; Conlon, C; Vliet, M van; Louis, L; Rosen, C J; Bouxsein, M L

    2016-06-01

    Starvation induces low bone mass and high bone marrow adiposity in humans, but the underlying mechanisms are poorly understood. The adipokine leptin falls in starvation, suggesting that hypoleptinemia may be a link between negative energy balance, bone marrow fat accumulation, and impaired skeletal acquisition. In that case, treating mice with leptin during caloric restriction (CR) should reduce marrow adipose tissue (MAT) and improve bone mass. To test this hypothesis, female C57Bl/6J mice were fed a 30% CR or normal (N) diet from 5 to 10 weeks of age, with daily injections of vehicle (VEH), 1mg/kg leptin (LEP1), or 2mg/kg leptin (LEP2) (N=6-8/group). Outcomes included body mass, body fat percentage, and whole-body bone mineral density (BMD) via peripheral dual-energy X-ray absorptiometry, cortical and trabecular microarchitecture via microcomputed tomography (μCT), and MAT volume via μCT of osmium tetroxide-stained bones. Overall, CR mice had lower body mass, body fat percentage, BMD, and cortical bone area fraction, but more connected trabeculae, vs N mice (P<0.05 for all). Most significantly, although MAT was elevated in CR vs N overall, leptin treatment blunted MAT formation in CR mice by 50% vs VEH (P<0.05 for both leptin doses). CR LEP2 mice weighed less vs CR VEH mice at 9-10 weeks of age (P<0.05), but leptin treatment did not affect body fat percentage, BMD, or bone microarchitecture within either diet. These data demonstrate that once daily leptin bolus during CR inhibits bone marrow adipose expansion without affecting bone mass acquisition, suggesting that leptin has distinct effects on starvation-induced bone marrow fat formation and skeletal acquisition. PMID:27340200

  10. Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking.

    PubMed

    Selenica, Maj-Linda B; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B; Nash, Kevin R; Morgan, Dave; Gordon, Marcia N; Lee, Daniel C

    2016-05-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body

  11. [Protective effects of human bone marrow mesenchymal stem cells on hematopoietic organs of irradiated mice].

    PubMed

    Chen, Ling-Zhen; Yin, Song-Mei; Zhang, Xiao-Ling; Chen, Jia-Yu; Wei, Bo-Xiong; Zhan, Yu; Yu, Wei; Wu, Jin-Ming; Qu, Jia; Guo, Zi-Kuan

    2012-12-01

    The objective of this study was to explore the protective effects of human bone marrow mesenchymal stem cells (MSC) on hematopoietic organs of irradiated mice. Human bone marrow MSC were isolated, ex vivo expanded, and identified by cell biological tests. Female BALB/c mice were irradiated with (60)Co γ-ray at a single dose of 6 Gy, and received different doses of human MSC and MSC lysates or saline via tail veins. The survival of mice was record daily, and the femurs and spleens were harvested on day 9 and 16 for pathologic examination. The histological changes were observed and the cellularity was scored. The results showed that the estimated survival time of MSC- and MSC lysate-treated mice was comparable to that of controls. The hematopoiesis in the bone marrow of mice that received high-dose (5×10(6)) of MSC or MSC lysates was partially restored on day 9 and the capacity of hemopoietic tissue and cellularity scorings were significantly elevated as compared with that of controls (P < 0.05). Proliferative nudes were also obviously observed in the spleens of mice that received high-dose of MSC or MSC lysates on d 9 after irradiation. The histological structures of the spleen and bone marrow of the mice that received high-doses (5×10(6)) of MSC or MSC lysates were restored to normal, the cell proliferation displayed extraordinarily active. Further, the cellularity scores of the bone marrow were not significantly different between the high-dose MSC and MSC lysate-treated mice. It is concluded that the bone marrow MSC can promote the hematopoietic recovery of the irradiated mice, which probably is associated with the bioactive materials inherently existed in bone marrow cells. PMID:23257449

  12. Immune status of patients with inherited bone marrow failure syndromes

    PubMed Central

    Giri, Neelam; Alter, Blanche P; Penrose, Keri; Falk, Roni T; Pan, Yuanji; Savage, Sharon A; Williams, Marcus; Kemp, Troy J; Pinto, Ligia A

    2015-01-01

    Immune function abnormalities have been reported in patients with Fanconi anemia (FA), dyskeratosis congenita (DC) and, rarely, in Shwachman-Diamond syndrome (SDS) and Diamond-Blackfan anemia (DBA), but large systematic studies are lacking. We assessed immunological parameters in 118 patients with these syndromes and 202 unaffected relatives. We compared results in patients with reference values, and with values in relatives after adjusting for age, sex, corticosteroid-treatment and severe bone marrow failure (BMF). Adult patients (≥18 years) with FA had significantly lower immunoglobulins (IgG, IgA and IgM), total lymphocytes and CD4 T-cells than reference values or adult relatives (p<0.001); children with FA had normal values. Both children and adults with FA had lower B- and NK-cells (p<0.01) than relatives or reference values. Patients with DC had essentially normal immunoglobulins but lower total lymphocytes than reference values or relatives, and lower T-, B- and NK-cells; these changes were more marked in children than adults (p<0.01). Most patients with DBA and SDS had normal immunoglobulins and lymphocytes. Lymphoproliferative responses, serum cytokine levels, including TNF-α and IFN-γ, and cytokine levels in supernatants from phytohemagglutinin-stimulated cultures were similar across patient groups and relatives. Only patients with severe BMF, particularly those with FA and DC, had higher serum G-CSF and Flt3-ligand and lower RANTES levels compared with all other groups or relatives (p<0.05). Overall, immune function abnormalities were seen mainly in adult patients with FA, which likely reflects their disease-related progression, and in children with DC, which may be a feature of early-onset severe disease phenotype. PMID:25963299

  13. Retrospective Reconstructions of Active Bone Marrow Dose-Volume Histograms

    SciTech Connect

    Veres, Cristina; Allodji, Rodrigue S.; Llanas, Damien; Vu Bezin, Jérémi; Chavaudra, Jean; Mège, Jean Pierre; Lefkopoulos, Dimitri; Quiniou, Eric; Deutsh, Eric; Vathaire, Florent de; Diallo, Ibrahima

    2014-12-01

    Purpose: To present a method for calculating dose-volume histograms (DVH's) to the active bone marrow (ABM) of patients who had undergone radiation therapy (RT) and subsequently developed leukemia. Methods and Materials: The study focuses on 15 patients treated between 1961 and 1996. Whole-body RT planning computed tomographic (CT) data were not available. We therefore generated representative whole-body CTs similar to patient anatomy. In addition, we developed a method enabling us to obtain information on the density distribution of ABM all over the skeleton. Dose could then be calculated in a series of points distributed all over the skeleton in such a way that their local density reflected age-specific data for ABM distribution. Dose to particular regions and dose-volume histograms of the entire ABM were estimated for all patients. Results: Depending on patient age, the total number of dose calculation points generated ranged from 1,190,970 to 4,108,524. The average dose to ABM ranged from 0.3 to 16.4 Gy. Dose-volume histograms analysis showed that the median doses (D{sub 50%}) ranged from 0.06 to 12.8 Gy. We also evaluated the inhomogeneity of individual patient ABM dose distribution according to clinical situation. It was evident that the coefficient of variation of the dose for the whole ABM ranged from 1.0 to 5.7, which means that the standard deviation could be more than 5 times higher than the mean. Conclusions: For patients with available long-term follow-up data, our method provides reconstruction of dose-volume data comparable to detailed dose calculations, which have become standard in modern CT-based 3-dimensional RT planning. Our strategy of using dose-volume histograms offers new perspectives to retrospective epidemiological studies.

  14. Immune status of patients with inherited bone marrow failure syndromes.

    PubMed

    Giri, Neelam; Alter, Blanche P; Penrose, Keri; Falk, Roni T; Pan, Yuanji; Savage, Sharon A; Williams, Marcus; Kemp, Troy J; Pinto, Ligia A

    2015-08-01

    Immune function abnormalities have been reported in patients with Fanconi anemia (FA), dyskeratosis congenita (DC) and, rarely, in Shwachman-Diamond syndrome (SDS), and Diamond-Blackfan anemia (DBA), but large systematic studies are lacking. We assessed immunological parameters in 118 patients with these syndromes and 202 unaffected relatives. We compared the results in patients with reference values, and with values in relatives after adjusting for age, sex, corticosteroid treatment, and severe bone marrow failure (BMF). Adult patients (≥18 years) with FA had significantly lower immunoglobulins (IgG, IgA and IgM), total lymphocytes, and CD4 T cells than reference values or adult relatives (P < 0.001); children with FA had normal values. Both children and adults with FA had lower B- and NK cells (P < 0.01) than relatives or reference values. Patients with DC had essentially normal immunoglobulins but lower total lymphocytes than reference values or relatives, and lower T-, B-, and NK-cells; these changes were more marked in children than adults (P < 0.01). Most patients with DBA and SDS had normal immunoglobulins and lymphocytes. Lymphoproliferative responses, serum cytokine levels, including tumor necrosis factor-α and interferon-γ, and cytokine levels in supernatants from phytohemagglutinin-stimulated cultures were similar across patient groups and relatives. Only patients with severe BMF, particularly those with FA and DC, had higher serum G-CSF and Flt3-ligand and lower RANTES levels compared with all other groups or relatives (P < 0.05). Overall, immune function abnormalities were seen mainly in adult patients with FA, which likely reflects their disease-related progression, and in children with DC, which may be a feature of early-onset severe disease phenotype. PMID:25963299

  15. Remodeling of the thoracic aorta after bone marrow cell transplantation

    PubMed Central

    Felix, Alyne; Monteiro, Nemesis; Rocha, Vinícius Novaes; Oliveira, Genilza; Moraes, Alan Cesar; Andrade, Cherley; Nascimento, Ana Lucia; de Carvalho, Laís; Thole, Alessandra; Carvalho, Jorge

    2014-01-01

    Stem cells are characterized by their ability to differentiate into multiple cell lineages and display the paracrine effect. The aim of this work was to evaluate the effect of therapy with bone marrow cells (BMCs) on blood glucose, lipid metabolism and aortic wall remodeling in mice through the administration of a high fat diet and subsequent BMCs transplantation. C57BL/6 mice were fed a control diet (CO group) or an atherogenic diet (AT group). After 16 weeks, the AT group was divided into four groups: an AT 14 days group and AT 21 days group, that were given an injection of vehicle and sacrificed at 14 and 21 days after, respectively; AT-BMC 14 days group and AT-BMC 21 days group that was given an injection of BMCs and sacrificed at 14 and 21 days after. The CO group was sacrificed along with other groups. The BMCs transplant had reduced blood glucose, triglycerides and total cholesterol. The Qa (1/mm2) was quantitatively reduced in AT 14 days group, AT 21 days group and was high in AT-BMC 21 days group. The AT 21 days group exhibited increased tunica media and elastic system fibers. The immunolabeling for α-SMA and VEGF showed less immunolabeling in transplanted groups with BMCs. The immunostaining for PCNA seems to be more expressive in the group AT-BMC 21 days group. To conclude, our results support the concept that in mice, the injection of BMCs improve glucose levels, lipid metabolism and remodeling of the aortic wall in animals using atherogenic diet. PMID:25337194

  16. Serotonin augments smooth muscle differentiation of bone marrow stromal cells.

    PubMed

    Hirota, Nobuaki; McCuaig, Sarah; O'Sullivan, Michael J; Martin, James G

    2014-05-01

    Bone marrow stromal cells (BMSCs) contain a subset of multipotent stem cells. Here, we demonstrate that serotonin, a biogenic amine released by platelets and mast cells, can induce the smooth muscle differentiation of BMSCs. Brown Norway rat BMSCs stimulated with serotonin had increased expression of the smooth muscle markers smooth muscle myosin heavy chain (MHC) and α actin (α-SMA) by qPCR and Western blot, indicating smooth muscle differentiation. This was accompanied by a concomitant down-regulation of the microRNA miR-25-5p, which was found to negatively regulate smooth muscle differentiation. Serotonin upregulated serum response factor (SRF) and myocardin, transcription factors known to induce contractile protein expression in smooth muscle cells, while it down-regulated Elk1 and Kruppel-like factor 4 (KLF4), known to induce proliferation. Serotonin increased SRF binding to promoter regions of the MHC and α-SMA genes, assessed by chromatin immunoprecipitation assay. Induction of smooth muscle differentiation by serotonin was blocked by the knock-down of SRF and myocardin. Transforming growth factor (TGF)-β1 was constitutively expressed by BMSCs and serotonin triggered its release. Inhibition of miR-25-5p augmented TGF-β1 expression, however the differentiation of BMSCs was not mediated by TGF-β1. These findings demonstrate that serotonin promotes a smooth muscle-like phenotype in BMSCs by altering the balance of SRF, myocardin, Elk1 and KLF4 and miR-25-5p is involved in modulating this balance. Therefore, serotonin potentially contributes to the pathogenesis of diseases characterized by tissue remodeling with increased smooth muscle mass. PMID:24595007

  17. Body Composition After Bone Marrow Transplantation in Childhood

    PubMed Central

    Ruble, Kathy; Hayat, Matthew; Stewart, Kerry J.; Chen, Allen

    2014-01-01

    Purpose/Objectives To describe the body composition and fat distribution of childhood bone marrow transplantation (BMT) survivors at least one year post-transplantation and examine the ability of the Centers for Disease Control and Prevention criteria to identify survivors with elevated body fat percentage. Design Cross-sectional, descriptive. Setting Pediatric oncology program at a National Cancer Institute–designated comprehensive cancer center. Sample 48 childhood BMT survivors (27 males and 21 females). Methods Measurements included dual-energy x-ray absorptiometry scan, height, weight, and physical activity. Descriptive statistics were reported and mixed-model linear regression models were used to describe findings and associations. Main Research Variables Total body fat percentage and central obesity (defined as a ratio of central to peripheral fat of 1 or greater). Findings Fifty-four percent of survivors had body fat percentages that exceeded recommendations for healthy body composition and 31% qualified as having central obesity. Previous treatment with total body irradiation was associated with higher body fat percentage and central obesity, and graft-versus-host disease was associated with lower body fat percentage. The body mass index (BMI) criteria did not correctly identify the BMT survivors who had elevated body fat percentage. Conclusions Survivors of childhood BMT are at risk for obesity and central obesity that is not readily identified with standard BMI criteria. Implications for Nursing Nurses caring for BMT survivors should include evaluation of general and central obesity in their assessments. Patient education materials and resources for healthy weight and muscle building should be made available to survivors. Research is needed to develop appropriate interventions. PMID:22374492

  18. State of the antioxidative enzymes of rat bone marrow cells after irradiation, fractures, and a combination of both

    SciTech Connect

    Bogdanova, I.A.; Ovchinnikov, K.G.; Torbenko, V.P.; Gerasimov, A.M.

    1987-11-01

    The authors study bone marrow levels of antioxidative (antiradical) defensive systems (ADS) enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GP), glutathione reductase (GR), and glutathione: dehydroascorbate oxidoreductase (GDAR), rats and changes in their activity in the bone marrow at various times after irradiation, mechanical trauma, and a combination of both. Development of acute radiation sickness as a result of a single irradiation was accompanied by marked changes in the enzymic antioxidative system of rat bone marrow cells.

  19. Increased incidence of murine graft-versus-host disease after allogeneic bone marrow transplantation by previous infusion of syngeneic bone marrow cells

    SciTech Connect

    Waer, M.; Ang, K.K.; van der Schueren, E.; Vandeputte, M.

    1984-10-01

    Different groups of BALB/c mice received supralethal total-body irradiation (TBI; 8.5 Gy, day 0). When 30 x 10(6) allogeneic (C57B1) bone marrow (BM) cells were infused with or without 10 x 10(6) syngeneic (BALB/c) bM cells on day 1, many animals (60%) died from graft-versus-host disease (GVHD). Typing of peripheral blood leukocytes for donor antigens showed that, respectively, 22/22 and 17/21 of the mice in both groups became chimeric. When syngeneic bone marrow was given on day 1 and allogeneic bone marrow on day 2 after TBI, a similar number of animals (21/23) became chimeric, but GVHD occurred more frequently in this group (25/26 mice, P less than 0.01). When the syngeneic bone marrow cells were replaced by spleen cells, or when the transplantation of allogeneic bone marrow was delayed till days 3 or 6 after TBI, almost all mice rejected the allogeneic BM graft and became long-term survivors. BALB/c mice receiving 30 x 10(6) C57B1 BM cells after 17 daily fractions of 0.2 Gy of total lymphoid irradiation (TLI), showed a high incidence of chimerism (15/17) and in none of the latter animals was GVHD observed. Despite the high incidence of GVHD in the mice receiving allogeneic BM after TBI and syngeneic BM transplantation, as compared with mice prepared with TLI which do not develop GVHD, suppressor cells were as easily induced after TBI and syngeneic BM transplantation as after TLI.

  20. A hostel for the hostile: the bone marrow niche in hematologic neoplasms

    PubMed Central

    Krause, Daniela S.; Scadden, David T.

    2015-01-01

    Our understanding of the biology of the normal hematopoietic stem cell niche has increased steadily due to improved murine models and sophisticated imaging tools. Less well understood, but of growing interest, is the interaction between cells in the bone marrow during the initiation, maintenance and treatment of hematologic neoplasms. This review summarizes the emerging concepts of the normal and leukemic hematopoietic bone marrow niche. Furthermore, it reviews current models of how the microenvironment of the bone marrow may contribute to or be modified by leukemogenesis. Finally, it provides the rationale for a “two-pronged” approach, directly targeting cancer cells themselves while also targeting the bone microenvironment to make it inhospitable to malignant cells and, ultimately, eradicating cancer stem-like cells. PMID:26521296

  1. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    SciTech Connect

    Taguchi, Kazuhiro . E-mail: s3061@nms.ac.jp; Ogawa, Rei; Migita, Makoto; Hanawa, Hideki; Ito, Hiromoto; Orimo, Hideo

    2005-05-27

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses.

  2. Role of T cells in sex differences in syngeneic bone marrow transfers

    SciTech Connect

    Raveche, E.S.; Santoro, T.; Brecher, G.; Tjio, J.H.

    1985-11-01

    Transferred marrow cells will proliferate in normal mice not exposed to irradiation or any other type of stem cell depletion when five consecutive transfers of 40 million cells are given. Approximately 25% of the mitotic cells are of male donor origin observed cytogenetically in all of the female recipient spleens and marrow analyzed from two weeks to one and one-half years after transfusions. Male donor stem cells are accepted and form a stable component of the self-renewing stem cell pool. In contrast, only 5% female cells are found in male recipients. This sex difference in engraftment is not hormonal since castration of recipients does not alter the percentage of donor cells. Rigorous T depletion of female donor bone marrow, however, increases the percentage of donor engraftment to the level observed when male marrow, either whole or T depleted, is transferred to female recipients. The success of T-depleted female stem cells to seed male recipients is observed in both C57BL/6 and CBA/J. In addition, recipient nude BALB/c males, which lack a thymus, fail to accept whole bone marrow from BALB/c females. However, male bone marrow cells seed BALB/c nude females. These studies demonstrate that the poor engraftment of female cells in transfused male recipients is abrogated by the removal of T cells from the donor female marrow.

  3. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

    SciTech Connect

    Miyahara, Tatsuro; Takata, Masakazu; Miyata, Masaki; Nagai, Miyuki; Sugure, Akemi; Kozuka, Hiroshi; Kuze, Shougo )

    1991-08-01

    Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

  4. Hypercalcemia and altered biochemical bone markers in post-bone marrow transplantation osteopetrosis: a case report and literature review.

    PubMed

    Kulpiya, Alisa; Mahachoklertwattana, Pat; Pakakasama, Samart; Hongeng, Suradej; Poomthavorn, Preamrudee

    2012-08-01

    Autosomal recessive osteopetrosis is a rare disorder of bone resorption defect that results in generalized sclerotic bones and bone marrow failure. Allogeneic BMT is the only treatment for cure. One of the complications following a successful BMT is hypercalcemia that is a unique complication in this group of patients. We report a three-yr-old boy with osteopetrosis who developed hypercalcemia following the successful BMT. His maximal calcium level was 13.3 mg/dL. Markedly increased both bone formation and resorption markers were demonstrated along with hypercalcemia. These findings indicated an active donor-derived osteoclastic function and thus bone resorption following the successful donor engraftment in the patient. Treatment with hyperhydration, furosemide and bone resorption inhibitors, calcitonin, and bisphosphonate led to normalization of the serum calcium level. Bone resorption but not bone formation marker was persistently elevated despite having normocalcemia during a 16.5-month follow-up period. PMID:21323826

  5. Repopulation of the Irradiation Damaged Lung with Bone Marrow-derived Cells

    PubMed Central

    Bernard, Mark E.; Kim, Hyun; Rajagopalan, Malolan S.; Stone, Brandon; Salimi, Umar; Rwigema, Jean-Claude; Epperly, Michael W.; Shen, Hongmei; Goff, Julie P.; Franicola, Darcy; Dixon, Tracy; Cao, Shaonan; Zhang, Xichen; Wang, Hong; Stolz, Donna B.; Greenberger, Joel S.

    2012-01-01

    Aim The effect of lung irradiation on reduction of lung stem cells and repopulation with bone marrow-derived cells was measured. Materials and Methods Expression of green fluorescent protein positive cells (GFP+) in the lungs of thoracic irradiated FVB/NHsd mice (Harlan Sprague Dawley, Indianapolis, IN, USA) was determined. This was compared to the repopulation of bone marrow-derived cells found in the lungs from naphthalene treated male FVB/NHsd mice and gangciclovir (GVC) treated FeVBN GFP+ male marrow chimeric HSV-TK-CCSP. The level of mRNA for lung stem cell markers clara cell (CCSP), epithelium 1 (FOXJ1) and surfactant protein C (SP-C), and sorted single cells positive for marrow origin epithelial cells (GFP+ CD45−) was measured. Results The expression of pulmonary stem cells as determined by PCR was reduced most by GCV, then naphthalene, and least by thoracic irradiation. Irradiation, like GCV, reduced mRNA expression of CCSP, CYP2F2, and FOXJ1, while naphthalene reduced that of CCSP and CYP2F2. Ultrastructural analysis showed GFP+ pulmonary cells of bone marrow origin, with the highest frequency being found in GCV-treated groups. Conclusion Bone marrow progenitor cells may not participate in the repopulation of the lung following irradiation. PMID:22210711

  6. Selective Retention of Bone Marrow-Derived Cells to Enhance Spinal Fusion

    PubMed Central

    Matsukura, Yoichi; Nitto, Hironori; Boehm, Cynthia A.; Valdevit, Antonio D.; Kambic, Helen E.; Davros, William J.; Easley, Kirk A.; Powell, Kimerly A.

    2005-01-01

    Connective tissue progenitors can be concentrated rapidly from fresh bone marrow aspirates using some porous matrices as a surface for cell attachment and selective retention, and for creating a cellular graft that is enriched with respect to the number of progenitor cells. We evaluated the potential value of this method using demineralized cortical bone powder as the matrix. Matrix alone, matrix plus marrow, and matrix enriched with marrow cells were compared in an established canine spinal fusion model. Fusions were compared based on union score, fusion mass, fusion volume, and by mechanical testing. Enriched matrix grafts delivered a mean of 2.3 times more cells and approximately 5.6 times more progenitors than matrix mixed with bone marrow. The union score with enriched matrix was superior to matrix alone and matrix plus marrow. Fusion volume and fusion area also were greater with the enriched matrix. These data suggest that the strategy of selective retention provides a rapid, simple, and effective method for concentration and delivery of marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting procedures in various clinical settings. PMID:15738828

  7. An Irradiation-Altered Bone Marrow Microenvironment Impacts Anabolic Actions of PTH

    PubMed Central

    Koh, A. J.; Novince, C. M.; Li, X.; Wang, T.; Taichman, R. S.

    2011-01-01

    PTH stimulates bone formation and increases hematopoietic stem cells through mechanisms as yet uncertain. The purpose of this study was to identify mechanisms by which PTH links actions on cells of hematopoietic origin with osteoblast-mediated bone formation. C57B6 mice (10 d) were nonlethally irradiated and then administered PTH for 5–20 d. Irradiation reduced bone marrow cellularity with retention of cells lining trabeculae. PTH anabolic activity was greater in irradiated vs. nonirradiated mice, which could not be accounted for by altered osteoblasts directly or osteoclasts but instead via an altered bone marrow microenvironment. Irradiation increased fibroblast growth factor 2, TGFβ, and IL-6 mRNA levels in the bone marrow in vivo. Irradiation decreased B220 cell numbers, whereas the percent of Lin−Sca-1+c-kit+ (LSK), CD11b+, CD68+, CD41+, Lin−CD29+Sca-1+ cells, and proliferating CD45−Nestin+ cells was increased. Megakaryocyte numbers were reduced with irradiation and located more closely to trabecular surfaces with irradiation and PTH. Bone marrow TGFβ was increased in irradiated PTH-treated mice, and inhibition of TGFβ blocked the PTH augmentation of bone in irradiated mice. In conclusion, irradiation created a permissive environment for anabolic actions of PTH that was TGFβ dependent but osteoclast independent and suggests that a nonosteoclast source of TGFβ drives mesenchymal stem cell recruitment to support PTH anabolic actions. PMID:22045660

  8. Characterization of a 5-fluorouracil-enriched osteoprogenitor population of the murine bone marrow.

    PubMed

    Falla, N; Van Vlasselaer; Bierkens, J; Borremans, B; Schoeters, G; Van Gorp, U

    1993-12-15

    In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro. PMID:8260697

  9. Neonatal bone marrow transplantation prevents bone pathology in a mouse model of mucopolysaccharidosis type I

    PubMed Central

    Pievani, Alice; Azario, Isabella; Antolini, Laura; Shimada, Tsutomu; Patel, Pravin; Remoli, Cristina; Rambaldi, Benedetta; Valsecchi, Maria Grazia; Riminucci, Mara; Biondi, Andrea; Tomatsu, Shunji

    2015-01-01

    Neonatal bone marrow transplantation (BMT) could offer a novel therapeutic opportunity for genetic disorders by providing sustainable levels of the missing protein at birth, thus preventing tissue damage. We tested this concept in mucopolysaccharidosis type I (MPS IH; Hurler syndrome), a lysosomal storage disorder caused by deficiency of α-l-iduronidase. MPS IH is characterized by a broad spectrum of clinical manifestations, including severe progressive skeletal abnormalities. Although BMT increases the life span of patients with MPS IH, musculoskeletal manifestations are only minimally responsive if the timing of BMT delays, suggesting already irreversible bone damage. In this study, we tested the hypothesis that transplanting normal BM into newborn MPS I mice soon after birth can prevent skeletal dysplasia. We observed that neonatal BMT was effective at restoring α-l-iduronidase activity and clearing elevated glycosaminoglycans in blood and multiple organs. At 37 weeks of age, we observed an almost complete normalization of all bone tissue parameters, using radiographic, microcomputed tomography, biochemical, and histological analyses. Overall, the magnitude of improvements correlated with the extent of hematopoietic engraftment. We conclude that BMT at a very early stage in life markedly reduces signs and symptoms of MPS I before they appear. PMID:25298037

  10. Neonatal bone marrow transplantation prevents bone pathology in a mouse model of mucopolysaccharidosis type I.

    PubMed

    Pievani, Alice; Azario, Isabella; Antolini, Laura; Shimada, Tsutomu; Patel, Pravin; Remoli, Cristina; Rambaldi, Benedetta; Valsecchi, Maria Grazia; Riminucci, Mara; Biondi, Andrea; Tomatsu, Shunji; Serafini, Marta

    2015-03-01

    Neonatal bone marrow transplantation (BMT) could offer a novel therapeutic opportunity for genetic disorders by providing sustainable levels of the missing protein at birth, thus preventing tissue damage. We tested this concept in mucopolysaccharidosis type I (MPS IH; Hurler syndrome), a lysosomal storage disorder caused by deficiency of α-l-iduronidase. MPS IH is characterized by a broad spectrum of clinical manifestations, including severe progressive skeletal abnormalities. Although BMT increases the life span of patients with MPS IH, musculoskeletal manifestations are only minimally responsive if the timing of BMT delays, suggesting already irreversible bone damage. In this study, we tested the hypothesis that transplanting normal BM into newborn MPS I mice soon after birth can prevent skeletal dysplasia. We observed that neonatal BMT was effective at restoring α-l-iduronidase activity and clearing elevated glycosaminoglycans in blood and multiple organs. At 37 weeks of age, we observed an almost complete normalization of all bone tissue parameters, using radiographic, microcomputed tomography, biochemical, and histological analyses. Overall, the magnitude of improvements correlated with the extent of hematopoietic engraftment. We conclude that BMT at a very early stage in life markedly reduces signs and symptoms of MPS I before they appear. PMID:25298037

  11. Imaging Sensitivity of Quiescent Cancer Cells to Metabolic Perturbations in Bone Marrow Spheroids

    PubMed Central

    Cavnar, Stephen P.; Xiao, Annie; Gibbons, Anne E.; Rickelmann, Andrew D.; Neely, Taylor; Luker, Kathryn E.; Takayama, Shuichi; Luker, Gary D.

    2016-01-01

    Malignant cells from breast cancer and other common cancers such as prostate and melanoma may persist in bone marrow as quiescent, non-dividing cells that remain viable for years or even decades before resuming proliferation to cause recurrent disease. This phenomenon, referred to clinically as tumor dormancy, poses tremendous challenges to curing patients with breast cancer. Quiescent tumor cells resist chemotherapy drugs that predominantly target proliferating cells, limiting success of neo-adjuvant and adjuvant therapies. We recently developed a 3D spheroid model of quiescent breast cancer cells in bone marrow for mechanistic and drug testing studies. We combined this model with optical imaging methods for label-free detection of cells preferentially utilizing glycolysis versus oxidative metabolism to investigate the metabolic state of co-culture spheroids with different bone marrow stromal and breast cancer cells. Through imaging and biochemical assays, we identified different metabolic states of bone marrow stromal cells that control metabolic status and flexibilities of co-cultured breast cancer cells. We tested metabolic stresses and targeted inhibition of specific metabolic pathways to identify approaches to preferentially eliminate quiescent breast cancer cells from bone marrow environments. These studies establish an integrated imaging approach to analyze metabolism in complex tissue environments to identify new metabolically-targeted cancer therapies. PMID:27478871

  12. Combined Bone Marrow and Kidney Transplantation for the Induction of Specific Tolerance.

    PubMed

    Chen, Yi-Bin; Kawai, Tatsuo; Spitzer, Thomas R

    2016-01-01

    The induction of specific tolerance, in order to avoid the detrimental effects of lifelong systemic immunosuppressive therapy after organ transplantation, has been considered the "Holy Grail" of transplantation. Experimentally, tolerance has been achieved through clonal deletion, through costimulatory blockade, through the induction or infusion of regulatory T-cells, and through the establishment of hematopoietic chimerism following donor bone marrow transplantation. The focus of this review is how tolerance has been achieved following combined bone marrow and kidney transplantation. Preclinical models of combined bone marrow and kidney transplantation have shown that tolerance can be achieved through either transient or sustained hematopoietic chimerism. Combined transplants for patients with multiple myeloma have shown that organ tolerance and prolonged disease remissions can be accomplished with such an approach. Similarly, multiple clinical strategies for achieving tolerance in patients without an underlying malignancy have been described, in the context of either transient or durable mixed chimerism or sustained full donor hematopoiesis. To expand the chimerism approach to deceased donor transplants, a delayed tolerance approach, which will involve organ transplantation with conventional immunosuppression followed months later by bone marrow transplantation, has been successful in a primate model. As combined bone marrow and organ transplantation become safer and increasingly successful, the achievement of specific tolerance may become more widely applicable. PMID:27239198

  13. Chronic foot-shock stress potentiates the influx of bone marrow-derived microglia into hippocampus.

    PubMed

    Brevet, Marie; Kojima, Hideto; Asakawa, Akihiro; Atsuchi, Kaori; Ushikai, Miharu; Ataka, Koji; Inui, Akio; Kimura, Hiroshi; Sevestre, Henri; Fujimiya, Mineko

    2010-07-01

    For several years, a new population of microglia derived from bone marrow has been described in multiple settings such as infection, trauma, and neurodegenerative disease. The aim of this study was to investigate the migration of bone marrow-derived cells to the brain parenchyma after stress exposure. Stress exposure was performed in mice that had received bone marrow transplantation from GFP mice, allowing identification of blood-derived elements within the brain. Electric foot-shock exposure was chosen because of its ability to serve as fundamental and physical stress in mice. Bone marrow-derived GFP(+) cells migrated to the ventral part of the hippocampus and acquired a ramified microglia-like morphology. Microglia marker Iba1 was expressed by 100% of the ramified cells, whereas ramified cells were negative for the astrocyte marker GFAP. Compared with the case in the control group, ramified cells significantly increased after chronic exposure to stress (5 days). One month after 5 days of stress exposure, ramified cells significantly decreased in ventral hippocampus compared with the group examined immediately after the last stress exposure. We report for the first time the migration of bone marrow-derived cells to the ventral hippocampus after stress exposure. These cells have the characteristics of microglia. Mechanisms responsible for this migration and their roles in the brain remain to be determined. PMID:20155811

  14. Regression of Adjuvant-Induced Arthritis in Rats Following Bone Marrow Transplantation

    NASA Astrophysics Data System (ADS)

    van Bekkum, Dirk W.; Bohre, Els P. M.; Houben, Paul F. J.; Knaan-Shanzer, Shoshan

    1989-12-01

    Total body irradiation followed by bone