Sample records for bone morphogenic proteins

  1. Positive modulator of bone morphogenic protein-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  2. Positive modulator of bone morphogenic protein-2

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  3. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    PubMed Central

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2016-01-01

    In orthopedic surgery, large amount of diseased or injured bone routinely needs to be replaced. Autografts are mainly used but their availability is limited. Commercially available bone substitutes allow bone ingrowth but lack the capacity to induce bone formation. Thus, off-the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay early resorption. In-vitro, the biphasic material released 90% of rhBMP-2 and 10% of ZA in the first week. No major changes were found in the surface structure using scanning electron microscopy (SEM) or in the mechanical properties after adding rhBMP-2 or ZA. In-vivo bone formation was studied in an abdominal muscle pouch model in rats (n = 6/group). The mineralized volume was significantly higher when the biphasic material was combined with both rhBMP-2 and ZA (21.4 ± 5.5 mm3) as compared to rhBMP-2 alone (10.9 ± 2.1 mm3) when analyzed using micro computed tomography (μ-CT) (p < 0.01). In the clinical setting, the biphasic material combined with both rhBMP-2 and ZA can potentially regenerate large volumes of bone. PMID:27189411

  4. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    NASA Technical Reports Server (NTRS)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  5. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells

    PubMed Central

    Wang, Wei; Mariani, Francesca V.; Harland, Richard M.; Luo, Kunxin

    2000-01-01

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-β family members. PMID:11121043

  6. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells.

    PubMed

    Wang, W; Mariani, F V; Harland, R M; Luo, K

    2000-12-19

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-beta family members.

  7. Bone Formation in a Rat Tibial Defect Model Using Carboxymethyl Cellulose/BioC/Bone Morphogenic Protein-2 Hybrid Materials

    PubMed Central

    Kim, Hak-Jun; Park, Kyeongsoon; Kim, Sung Eun; Song, Hae-Ryong

    2014-01-01

    The objective of this study was to assess whether carboxymethyl cellulose- (CMC-) based hydrogel containing BioC (biphasic calcium phosphate (BCP); tricalcium phosphate (TCP) : hydroxyapatite (Hap) = 70 : 30) and bone morphogenic protein-2 (BMP-2) led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT) evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg) led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg). Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg) led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg). Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg) but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg) at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects. PMID:24804202

  8. Complications Associated With the Use of Recombinant Human Bone Morphogenic Protein-2 in Ridge Augmentation: A Case Report.

    PubMed

    Dragonas, Panagiotis; Palin, Charles; Khan, Saba; Gajendrareddy, Praveen K; Weiner, Whitney D

    2017-10-01

    This case report aims to describe in detail a complication associated with resorption of regenerated bone following implant placement and ridge augmentation using recombinant human bone morphogenic protein-2 (rhBMP-2) in combination with allograft and xenograft. Bilateral maxillary sinus and ridge augmentation procedures were completed using rhBMP-2 combined with allograft and xenograft. Five months later, significant bone augmentation was achieved, which allowed for the placement of 4 implants. Upon stage 2 surgery, significant dehiscence was noted in all implants. Treatment steps to address this complication included implant removal, guided bone regeneration with xenograft only, and placement of new implants followed by soft-tissue grafting. At the time of publication, this patient is status 1½ years post case completion with maintenance of therapy outcomes. Off-label use of rhBMP-2 has gained significant acceptance in implant dentistry. However, there is limited evidence regarding the bone maturation process when rhBMP-2 is combined with other biomaterials. More research may be needed regarding the timing and process of bone healing in the presence of rhBMP-2, in an effort to avoid surgical complications.

  9. The bone morphogenic protein inhibitor, noggin, reduces glycemia and vascular inflammation in db/db mice

    PubMed Central

    Koga, Mitsuhisa; Engberding, Niels; Dikalova, Anna E.; Chang, Kyung Hwa; Seidel-Rogol, Bonnie; Long, James S.; Lassègue, Bernard; Jo, Hanjoong

    2013-01-01

    Vascular diseases frequently accompany diabetes mellitus. Based on the current understanding of atherosclerosis as an inflammatory disorder of the vascular wall, it has been speculated that diabetes may accelerate atherosclerosis by inducing a proinflammatory milieu in the vasculature. ANG II and bone morphogenic proteins (BMPs) have been implicated in vascular inflammation. We evaluated the effect of angiotensin receptor blockade by valsartan and BMP inhibition by noggin on markers of vascular inflammation in a mouse model of diabetes. Noggin had no effect on blood pressure but decreased serum glucose levels, whereas valsartan significantly decreased blood pressure, but not serum glucose. Both inhibitors reduced reactive oxygen species production in the aorta. Additionally, noggin and valsartan diminish gene transcription and protein expression of various inflammatory molecules in the vascular wall. These observations indicate that although both inhibitors block superoxide production and have similar effects on inflammatory gene expression, glycemia and blood pressure may represent a secondary target differentially affected by noggin and valsartan. Our data clearly identify the BMP pathway as a potentially potent therapeutic target in diabetic inflammatory vascular disease. PMID:23812391

  10. Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration.

    PubMed

    Kim, MinSung; Jung, Won-Kyo; Kim, GeunHyung

    2013-11-01

    Biomedical scaffolds should be designed with highly porous three-dimensional (3D) structures that have mechanical properties similar to the replaced tissue, biocompatible properties, and biodegradability. Here, we propose a new composite composed of solid free-form fabricated polycaprolactone (PCL), bone morphogenic protein (BMP-2) or bone formation peptide (BFP-1), and alginate for bone tissue regeneration. In this study, PCL was used as a mechanical supporting component to enhance the mechanical properties of the final biocomposite and alginate was used as the deterring material to control the release of BMP-2 and BFP-1. A release test revealed that alginate can act as a good release control material. The in vitro biocompatibilities of the composites were examined using osteoblast-like cells (MG63) and the alkaline phosphatase (ALP) activity and calcium deposition were assessed. The in vitro test results revealed that PCL/BFP-1/Alginate had significantly higher ALP activity and calcium deposition than the PCL/BMP-2/Alginate composite. Based on these findings, release-controlled BFP-1 could be a good growth factor for enhancement of bone tissue growth and the simple-alginate coating method will be a useful tool for fabrication of highly functional biomaterials through release-control supplementation.

  11. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response

    NASA Technical Reports Server (NTRS)

    Sorescu, George P.; Sykes, Michelle; Weiss, Daiana; Platt, Manu O.; Saha, Aniket; Hwang, Jinah; Boyd, Nolan; Boo, Yong C.; Vega, J. David; Taylor, W. Robert; hide

    2003-01-01

    Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.

  12. Bone Morphogenic Protein-2 (rhBMP2)-Loaded Silk Fibroin Scaffolds to Enhance the Osteoinductivity in Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Du, Guang-Yu; He, Sheng-Wei; Sun, Chuan-Xiu; Mi, Li-Dong

    2017-10-01

    There is an increasing demand for formulations of silk fibroin (SF) scaffolds in biomedical applications. SF was crosslinked via glutaraldehyde with osteoinductive recombinant human bone morphogenic protein-2 (rhBMP2) of different ratios viz. (i) 3% SF with no rhBMP2 (SF), (ii) 3% SF with equal amount of rhBMP2 (SF+BMP2), and (iii) 12% SF with 3% of rhBMP2 (4SF+BMP2), and these solutions were used in electrospinning-based fabrication of nanoscaffolds for evaluating increased osteoinductive potential of SF scaffolds with rhBMP2. Stress-strain relationship suggested there is no loss in mechanical strength of fibers with addition of rhBMP2, and mechanical strength of scaffold was improved with increase in concentration of SF. rhBMP2 association increased the water retention capacity of scaffold as evident from swelling studies. Viability of hMSCs was found to be higher in conjugated scaffolds, and scaffolds do not exhibit any cytotoxicity towards guest cells. Cells were found to have higher alkaline phosphatase activity in conjugated scaffolds under in vitro and in vivo conditions which establishes the increased osteoinductivity of the novel construct. The scaffolds were found to be effective for in vivo bone formation as well.

  13. Bone morphogenic protein: an elixir for bone grafting--a review.

    PubMed

    Shah, Prasun; Keppler, Louis; Rutkowski, James

    2012-12-01

    Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor beta superfamily. This literature review focuses on the molecular biology of BMPs, their mechanism of action, and subsequent applications. It also discusses uses of BMPs in the fields of dentistry and orthopedics, research on methods of delivering BMPs, and their role in tissue regeneration. BMP has positive effects on bone grafts, and their calculated and timely use with other growth factors can provide extraordinary results in fractured or nonhealing bones. Use of BMP introduces new applications in the field of implantology and bone grafting. This review touches on a few unknown facts about BMP and this ever-changing field of research to improve human life.

  14. Rapid Activation of Bone Morphogenic Protein 9 by Receptor-mediated Displacement of Pro-domains*

    PubMed Central

    Kienast, Yvonne; Jucknischke, Ute; Scheiblich, Stefan; Thier, Martina; de Wouters, Mariana; Haas, Alexander; Lehmann, Christian; Brand, Verena; Bernicke, Dirk; Honold, Konrad; Lorenz, Stefan

    2016-01-01

    By non-covalent association after proteolytic cleavage, the pro-domains modulate the activities of the mature growth factor domains across the transforming growth factor-β family. In the case of bone morphogenic protein 9 (BMP9), however, the pro-domains do not inhibit the bioactivity of the growth factor, and the BMP9·pro-domain complexes have equivalent biological activities as the BMP9 mature ligand dimers. By using real-time surface plasmon resonance, we could demonstrate that either binding of pro-domain-complexed BMP9 to type I receptor activin receptor-like kinase 1 (ALK1), type II receptors, co-receptor endoglin, or to mature BMP9 domain targeting antibodies leads to immediate and complete displacement of the pro-domains from the complex. Vice versa, pro-domain binding by an anti-pro-domain antibody results in release of the mature BMP9 growth factor. Based on these findings, we adjusted ELISA assays to measure the protein levels of different BMP9 variants. Although mature BMP9 and inactive precursor BMP9 protein were directly detectable by ELISA, BMP9·pro-domain complex could only be measured indirectly as dissociated fragments due to displacement of mature growth factor and pro-domains after antibody binding. Our studies provide a model in which BMP9 can be readily activated upon getting into contact with its receptors. This increases the understanding of the underlying biology of BMP9 activation and also provides guidance for ELISA development for the detection of circulating BMP9 variants. PMID:26677222

  15. SoxB1-driven transcriptional network underlies neural-specific interpretation of morphogen signals.

    PubMed

    Oosterveen, Tony; Kurdija, Sanja; Ensterö, Mats; Uhde, Christopher W; Bergsland, Maria; Sandberg, Magnus; Sandberg, Rickard; Muhr, Jonas; Ericson, Johan

    2013-04-30

    The reiterative deployment of a small cadre of morphogen signals underlies patterning and growth of most tissues during embyogenesis, but how such inductive events result in tissue-specific responses remains poorly understood. By characterizing cis-regulatory modules (CRMs) associated with genes regulated by Sonic hedgehog (Shh), retinoids, or bone morphogenetic proteins in the CNS, we provide evidence that the neural-specific interpretation of morphogen signaling reflects a direct integration of these pathways with SoxB1 proteins at the CRM level. Moreover, expression of SoxB1 proteins in the limb bud confers on mesodermal cells the potential to activate neural-specific target genes upon Shh, retinoid, or bone morphogenetic protein signaling, and the collocation of binding sites for SoxB1 and morphogen-mediatory transcription factors in CRMs faithfully predicts neural-specific gene activity. Thus, an unexpectedly simple transcriptional paradigm appears to conceptually explain the neural-specific interpretation of pleiotropic signaling during vertebrate development. Importantly, genes induced in a SoxB1-dependent manner appear to constitute repressive gene regulatory networks that are directly interlinked at the CRM level to constrain the regional expression of patterning genes. Accordingly, not only does the topology of SoxB1-driven gene regulatory networks provide a tissue-specific mode of gene activation, but it also determines the spatial expression pattern of target genes within the developing neural tube.

  16. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone

    PubMed Central

    Mehta, Manav; Schmidt-Bleek, Katharina; Duda, Georg N; Mooney, David J

    2012-01-01

    Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing. PMID:22626978

  17. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone.

    PubMed

    Mehta, Manav; Schmidt-Bleek, Katharina; Duda, Georg N; Mooney, David J

    2012-09-01

    Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Periodontal tissue regeneration by combined applications of recombinant human osteogenic protein-1 and bone morphogenetic protein-2. A pilot study in Chacma baboons (Papio ursinus).

    PubMed

    Ripamonti, U; Crooks, J; Petit, J C; Rueger, D C

    2001-08-01

    Native and recombinant human bone morphogenetic/osteogenic proteins (BMPs/ OPs) singly initiate bone induction in vivo. The finding of synchronous but spatially different BMPs/OPs expression during periodontal tissue morphogenesis suggests novel therapeutic approaches using morphogen combinations based on recapitulation of embryonic development. Twelve furcation defects prepared in the first and second mandibular molars of three adult baboons (Papio ursinus) were used to assess whether qualitative histological aspects of periodontal tissue regeneration could be enhanced and tissue morphogenesis modified by combined or single applications of recombinant hOP-1 and hBMP-2. Doses of BMPs/OPs were 100 microg of each protein per 1 g of insoluble collagenous bone matrix as carrier. Approximately 200 mg of carrier matrix was used per furcation defect. Undecalcified sections cut for histological analysis 60 d after healing of hOP-1-treated specimens showed substantial cementogenesis with scattered remnants of the collagenous carrier. hBMP-2 applied alone induced greater amounts of mineralized bone and osteoid when compared to hOP-1 alone or to combined morphogen applications. Combined applications of hOP-1 and hBMP-2 did not enhance alveolar bone regeneration or new attachment formation over and above the single applications of the morphogens. The results of this study, which is the first to attempt to address the structure-activity relationship amongst BMP/OP family members, indicate that tissue morphogenesis induced by hOP-1 and hBMP-2 is qualitatively different when the morphogens are applied singly, with hOP-1 inducing substantial cementogenesis. hBMP-2 treated defects, on the other hand, showed limited cementum formation but a temporal enhancement of alveolar bone regeneration and remodelling. The demonstration of therapeutic mosaicism in periodontal regeneration will require extensive testing of ratios and doses of recombinant morphogen combinations for optimal tissue

  19. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr; Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex; Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exertmore » their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.« less

  20. Preclinical and clinical studies on the use of growth factors for bone repair: a systematic review.

    PubMed

    Fisher, Daniel Mark; Wong, James Min-Leong; Crowley, Conor; Khan, Wasim S

    2013-05-01

    Bone healing is a complex process. Whilst the majority of fractures heal with conventional treatment, open fractures, large bone defects and non unions still provide great challenges to Orthopaedic Surgeons. Whilst autologous bone graft is seen as the gold standard, the use of growth factors is a growing area of research to find an effective alternative with lower side effects such as donor site morbidity and the finite amount available. This systematic review aims to summarize the pre clinical in-vivo studies and examine the clinical studies on the use of growth factors in bone healing. Databases: PubMed, Medline, OVID, and Cochrane library. The following key words and search terms were used: Growth Factors, Bone Healing, Bone Morphogenic Protein, Transforming Growth Factor Beta, Insulin Like Growth Factor, Platelet Derived Growth Factor, Fracture. All articles were screened based on title with abstracts and full text articles reviewed as appropriate. Reference lists were reviewed from relevant articles to ensure comprehensive and systematic review. Three tables of studies were constructed focussing on Bone Morphogenic Proteins, Platelet Rich Plasma and Growth Factors and Tissue Engineering. Bone Morphogenic Proteins and Platelet Rich Plasma, which contains multiple growth factors, have been shown in preclinical and clinical trials to be an effective alternative to autologous bone graft. Bone Morphogenic Proteins have been shown to be effective in fracture non union, and in open tibial fractures. Platelet Rich Plasma has shown promise in preclinical trials and some small clinical trials, however numbers are limited. Bone Morphogenic Proteins have been shown to be superior to Platelet Rich Protein in one trial. Combining these growth factors with tissue engineering techniques is the focus of ongoing research, and through further clinical trials the most effective techniques for enhancing bone healing will be revealed.

  1. Morphogen transport

    PubMed Central

    Müller, Patrick; Rogers, Katherine W.; Yu, Shuizi R.; Brand, Michael; Schier, Alexander F.

    2013-01-01

    The graded distribution of morphogens underlies many of the tissue patterns that form during development. How morphogens disperse from a localized source and how gradients in the target tissue form has been under debate for decades. Recent imaging studies and biophysical measurements have provided evidence for various morphogen transport models ranging from passive mechanisms, such as free or hindered extracellular diffusion, to cell-based dispersal by transcytosis or cytonemes. Here, we analyze these transport models using the morphogens Nodal, fibroblast growth factor and Decapentaplegic as case studies. We propose that most of the available data support the idea that morphogen gradients form by diffusion that is hindered by tortuosity and binding to extracellular molecules. PMID:23533171

  2. A Therapeutic Potential for Marine Skeletal Proteins in Bone Regeneration

    PubMed Central

    Green, David W.; Padula, Matthew P.; Santos, Jerran; Chou, Joshua; Milthorpe, Bruce; Ben-Nissan, Besim

    2013-01-01

    A vital ingredient for engineering bone tissue, in the culture dish, is the use of recombinant matrix and growth proteins to help accelerate the growth of cultivated tissues into clinically acceptable quantities. The skeletal organic matrices of calcifying marine invertebrates are an untouched potential source of such growth inducing proteins. They have the advantage of being ready-made and retain the native state of the original protein. Striking evidence shows that skeleton building bone morphogenic protein-2/4 (BMP) and transforming growth factor beta (TGF-β) exist within various marine invertebrates such as, corals. Best practice mariculture and the latest innovations in long-term marine invertebrate cell cultivation can be implemented to ensure that these proteins are produced sustainably and supplied continuously. This also guarantees that coral reef habitats are not damaged during the collection of specimens. Potential proteins for bone repair, either extracted from the skeleton or derived from cultivated tissues, can be identified, evaluated and retrieved using chromatography, cell assays and proteomic methods. Due to the current evidence for bone matrix protein analogues in marine invertebrates, together with the methods established for their production and retrieval there is a genuine prospect that they can be used to regenerate living bone for potential clinical use. PMID:23574983

  3. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Chen, Lin; Zeng, Jing

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observedmore » that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the

  4. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    PubMed

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  5. High-density human mesenchymal stem cell rings with spatiotemporally-controlled morphogen presentation as building blocks for engineering bone diaphyseal tissue

    PubMed Central

    Herberg, Samuel; Varghai, Daniel; Cheng, Yuxuan; Dikina, Anna D.; Dang, Phuong N.; Rolle, Marsha W.; Alsberg, Eben

    2018-01-01

    Emerging biomimetic tissue engineering strategies aim to partially recapitulate fundamental events that transpire during embryonic skeletal development; namely, cellular self-organization and targeted morphogenetic pathway activation. Here, we describe self-assembled, scaffold-free human mesenchymal stem cell (hMSC) rings featuring microparticle-mediated presentation of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2). We tested the hypothesis that spatiotemporally-controlled dual presentation of TGF-β1 and BMP-2 is superior in modulating in vitro endochondral ossification of high-density cellular constructs compared to single morphogen delivery. hMSC rings were engineered by seeding cells with microparticles presenting (1) TGF-β1, (2) BMP-2, or (3) TGF-β1 + BMP-2 in custom agarose wells to facilitate self-assembly within 2 d, followed by horizontal culture on glass tubes for 5 weeks. At day 2, hMSC rings across groups revealed homogenous cellular organization mimetic of early mesenchymal condensation with no evidence of new matrix or mineral deposition. Significant early chondrogenic and osteogenic priming occurred with TGF-β1 + BMP-2 presentation compared to single morphogen-loaded groups. By week 5, TGF-β1-loaded hMSC rings had undergone chondrogenesis, while presentation of BMP-2 alone or in conjunction with TGF-β1 stimulated chondrogenesis, chondrocyte hypertrophy, and osteogenesis indicative of endochondral ossification. Importantly, tissue mineralization was most compelling with TGF-β1 + BMP-2 loading. Lastly, hMSC ring 'building blocks' were shown to efficiently fuse into tubes within 6 d post self-assembly. The resulting tubular tissue units exhibited structural integrity, highlighting the translational potential of this advanced biomimetic technology for potential early implantation in long bone defects. PMID:29577017

  6. Bidirectional transport model of morphogen gradient formation via cytonemes

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Kim, Hyunjoong

    2018-03-01

    Morphogen protein gradients play an important role in the spatial regulation of patterning during embryonic development. The most commonly accepted mechanism for gradient formation is diffusion from a source combined with degradation. Recently, there has been growing interest in an alternative mechanism, which is based on the direct delivery of morphogens along thin, actin-rich cellular extensions known as cytonemes. In this paper, we develop a bidirectional motor transport model for the flux of morphogens along cytonemes, linking a source cell to a one-dimensional array of target cells. By solving the steady-state transport equations, we show how a morphogen gradient can be established, and explore how the mean velocity of the motors affects properties of the morphogen gradient such as accumulation time and robustness. In particular, our analysis suggests that in order to achieve robustness with respect to changes in the rate of synthesis of morphogen, the mean velocity has to be negative, that is, retrograde flow or treadmilling dominates. Thus the potential targeting precision of cytonemes comes at an energy cost. We then study the effects of non-uniformly allocating morphogens to the various cytonemes projecting from a source cell. This competition for resources provides a potential regulatory control mechanism not available in diffusion-based models.

  7. [Role of G-protein alpha sub-units in the morphogenic processes of filamentous Ascomycota fungi].

    PubMed

    García-Rico, Ramón O; Fierro, Francisco

    The phylum Ascomycota comprises about 75% of all the fungal species described, and includes species of medical, phytosanitary, agricultural, and biotechnological importance. The ability to spread, explore, and colonise new substrates is a feature of critical importance for this group of organisms. In this regard, basic processes such as conidial germination, the extension of hyphae and sporulation, make up the backbone of development in most filamentous fungi. These processes require specialised morphogenic machinery, coordinated and regulated by mechanisms that are still being elucidated. In recent years, substantial progress has been made in understanding the role of the signalling pathway mediated by heterotrimericG proteins in basic biological processes of many filamentous fungi. This review focuses on the role of the alpha subunits of heterotrimericG proteins in the morphogenic processes of filamentous Ascomycota. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Modulation of the nanometer pore size improves magnesium adsorption into mesoporous titania coatings and promotes bone morphogenic protein 4 expression in adhering osteoblasts.

    PubMed

    Cecchinato, Francesca; Atefyekta, Saba; Wennerberg, Ann; Andersson, Martin; Jimbo, Ryo; Davies, Julia R

    2016-07-01

    Mesoporous (MP) titania films used as implant coatings have recently been considered as release systems for controlled administration of magnesium to enhance initial osteoblast proliferation in vitro. Tuning of the pore size in such titania films is aimed at increasing the osteogenic potential through effects on the total loading capacity and the release profile of magnesium. In this study, evaporation-induced self-assembly (EISA) was used with different structure-directing agents to form three mesoporous films with average pore sizes of 2nm (MP1), 6nm (MP2) and 7nm (MP3). Mg adsorption and release was monitored using quartz crystal microbalance with dissipation (QCM-D). The film surfaces were characterized with atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The effect of different Mg release on osteogenesis was investigated in human fetal osteoblasts (hFOB) using pre-designed osteogenesis arrays and real-time polymerase chain reaction (RT-PCR). Results showed a sustained release from all the films investigated, with higher magnesium adsorption into MP1 and MP3 films. No significant differences were observed in the surface nanotopography of the films, either with or without the presence of magnesium. MP3 films (7nm pore size) had the greatest effect on osteogenesis, up-regulating 15 bone-related genes after 1 week of hFOB growth and significantly promoting bone morphogenic protein (BMP4) expression after 3 weeks of growth. The findings indicate that the increase in pore width on the nano scale significantly enhanced the bioactivity of the mesoporous coating, thus accelerating osteogenesis without creating differences in surface roughness. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Fractional calculus and morphogen gradient formation

    NASA Astrophysics Data System (ADS)

    Yuste, Santos Bravo; Abad, Enrique; Lindenberg, Katja

    2012-12-01

    Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subdiffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order) death process. The resulting fractional equation is employed to study the developmental biology key problem of morphogen gradient formation for the case in which the morphogens are subdiffusive. If the morphogen degradation rate (reactivity) is constant, we find exponentially decreasing stationary concentration profiles, which are similar to the profiles found when the morphogens diffuse normally. However, for the case in which the degradation rate decays exponentially with the distance to the morphogen source, we find that the morphogen profiles are qualitatively different from the profiles obtained when the morphogens diffuse normally.

  10. On the importance of protein diffusion in biological systems: The example of the Bicoid morphogen gradient.

    PubMed

    Fradin, Cécile

    2017-11-01

    Morphogens are proteins that form concentration gradients in embryos and developing tissues, where they act as postal codes, providing cells with positional information and allowing them to behave accordingly. Bicoid was the first discovered morphogen, and remains one of the most studied. It regulates segmentation in flies, forming a striking exponential gradient along the anterior-posterior axis of early Drosophila embryos, and activating the transcription of multiple target genes in a concentration-dependent manner. In this review, the work done by us and by others to characterize the mobility of Bicoid in D. melanogaster embryos is presented. The central role played by the diffusion of Bicoid in both the establishment of the gradient and the activation of target genes is discussed, and placed in the context of the need for these processes to be all at once rapid, precise and robust. The Bicoid system, and morphogen gradients in general, remain amongst the most amazing examples of the coexistence, often observed in living systems, of small-scale disorder and large-scale spatial order. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Protein gradients in single cells induced by their coupling to "morphogen"-like diffusion

    NASA Astrophysics Data System (ADS)

    Nandi, Saroj Kumar; Safran, Sam A.

    2018-05-01

    One of the many ways cells transmit information within their volume is through steady spatial gradients of different proteins. However, the mechanism through which proteins without any sources or sinks form such single-cell gradients is not yet fully understood. One of the models for such gradient formation, based on differential diffusion, is limited to proteins with large ratios of their diffusion constants or to specific protein-large molecule interactions. We introduce a novel mechanism for gradient formation via the coupling of the proteins within a single cell with a molecule, that we call a "pronogen," whose action is similar to that of morphogens in multi-cell assemblies; the pronogen is produced with a fixed flux at one side of the cell. This coupling results in an effectively non-linear diffusion degradation model for the pronogen dynamics within the cell, which leads to a steady-state gradient of the protein concentration. We use stability analysis to show that these gradients are linearly stable with respect to perturbations.

  12. Plasma Surface Modification for Immobilization of Bone Morphogenic Protein-2 on Polycaprolactone Scaffolds

    NASA Astrophysics Data System (ADS)

    Kim, Byung Hoon; Myung, Sung Woon; Jung, Sang Chul; Ko, Yeong Mu

    2013-11-01

    The immobilization of recombinant human bone formation protein-2 (rhBMP-2) on polycaprolactone (PCL) scaffolds was performed by plasma polymerization. RhBMP-2, which induces osteoblast differentiation in various cell types, is a growth factor that plays an important role in bone formation and repair. The surface of the PCL scaffold was functionalized with the carboxyl groups of plasma-polymerized acrylic acid (PPAA) thin films. Plasma polymerization was carried out at a discharge power of 60 W at an acrylic acid flow rate of 7 sccm for 5 min. The PPAA thin film exhibited moderate hydrophilic properties and possessed a high density of carboxyl groups. Carboxyl groups and rhBMP-2 on the PCL scaffolds surface were identified by attenuated total reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The alkaline phosphatase activity assay showed that the rhBMP-2 immobilized PCL scaffold increased the level of MG-63 cell differentiation. Plasma surface modification for the preparation of biomaterials, such as biofunctionalized polymer scaffolds, can be used for the binding of bioactive molecules in tissue engineering.

  13. Gelatin- hydroxyapatite- calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties.

    PubMed

    Raina, Deepak Bushan; Larsson, David; Mrkonjic, Filip; Isaksson, Hanna; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2018-02-28

    In this study, a novel macroporous composite biomaterial consisting of gelatin-hydroxyapatite-calcium sulphate for delivery of bone morphogenic protein-2 (rhBMP-2) and zoledronic acid (ZA) has been developed. The biomaterial scaffold has a porous structure and functionalization of the scaffold with rhBMP-2 induces osteogenic differentiation of MC3T3-e1 cells seen by a significant increase in biochemical and genetic markers of osteoblastic differentiation. In-vivo muscle pouch experiments showed higher mineralization using scaffold+rhBMP-2 when compared to an approved absorbable collagen sponge (ACS)+rhBMP-2 as verified by micro-CT. Co-delivery of rhBMP-2+ZA via the novel scaffold enabled a reduction in the effective rhBMP-2 doses. The presence of tartrate resistant acid phosphatase staining in the rhBMP-2 group indicates osteoclastic resorption, which could be stalled by adding ZA, which by speculation could explain the net increase in mineralization. The new scaffold allowed for slow release of rhBMP-2 in-vitro (3.3±0.1%) after 4weeks. Using single photon emission computed tomography (SPECT), the release kinetics of 125 I-rhBMP-2 in-vivo was followed for 4weeks and a total of 65.3±15.2% 125 I-rhBMP-2 was released from the scaffolds. In-vitro 14 C-ZA release curve shows an initial burst release on day 1 (8.8±0.7%) followed by a slow release during the following 4weeks (13±0.1%). In-vivo, an initial release of 43.2±7.6% of 14 C-ZA was detected after 1day, after which the scaffold retained the remaining ZA during 4-weeks. Taken together, our results show that the developed biomaterial is an efficient carrier for spatio-temporal delivery of rhBMP-2 and ZA leading to increased bone formation compared to commercially available carrier for rhBMP-2. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Measurement and Perturbation of Morphogen Lifetime: Effects on Gradient Shape

    PubMed Central

    Drocco, Jeffrey A.; Grimm, Oliver; Tank, David W.; Wieschaus, Eric

    2011-01-01

    Protein lifetime is of critical importance for most biological processes and plays a central role in cell signaling and embryonic development, where it impacts the absolute concentration of signaling molecules and, potentially, the shape of morphogen gradients. Early conceptual and mathematical models of gradient formation proposed that steady-state gradients are established by an equilibration between the lifetime of a morphogen and its rates of synthesis and diffusion, though whether gradients in fact reach steady state before being read out is a matter of controversy. In any case, this class of models predicts that protein lifetime is a key determinant of both the time to steady state and the spatial extent of a gradient. Using a method that employs repeated photoswitching of a fusion of the morphogen Bicoid (Bcd) and the photoconvertible fluorescent protein Dronpa, we measure and modify the lifetime of Dronpa-Bcd in living Drosophila embryos. We find that the lifetime of Bcd is dynamic, changing from 50 min before mitotic cycle 14 to 15 min during cellularization. Moreover, by measuring total quantities of Bcd over time, we find that the gradient does not reach steady state. Finally, using a nearly continuous low-level conversion to the dark state of Dronpa-Bcd to mimic the effect of increased degradation, we demonstrate that perturbation of protein lifetime changes the characteristic length of the gradient, providing direct support for a mechanism based on synthesis, diffusion, and degradation. PMID:22004733

  15. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications

    PubMed Central

    Lucas, Cândida; Ferreira, Célia; Cazzanelli, Giulia; Franco-Duarte, Ricardo; Tulha, Joana

    2016-01-01

    In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information. PMID:29615596

  16. Local accumulation times for spatial difference in morphogen concentration

    NASA Astrophysics Data System (ADS)

    Wen, Xiaoqing; Yin, Hongwei

    During development of multicellular organisms, spatial patterns of cells and tissue organizations rely on the action of morphogens, which are signaling molecules and act as dose-dependent regulators of gene expression and cellular differentiation. Since some experimental evidences have indicated that the spatial difference in morphogen concentration regulates cellular proliferation rather than this concentration profile in developing tissues, we propose spatially discrete models to describe this difference for a synthesis-diffusion-degradation process of morphogen in infinite and finite development fields, respectively. For both of models, we respectively derive analytical expressions of local accumulation times, which are required to form the steady state of the spatial difference in morphogen concentration. Our results show that the local accumulation times for the spatial difference in morphogen concentrations are different from the ones for morphogen concentration profiles.

  17. Collagen Scaffolds in Bone Sialoprotein-Mediated Bone Regeneration

    PubMed Central

    Kruger, Thomas E.; Miller, Andrew H.; Wang, Jinxi

    2013-01-01

    Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds αvβ 3 and αvβ 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration. PMID:23653530

  18. Collagen scaffolds in bone sialoprotein-mediated bone regeneration.

    PubMed

    Kruger, Thomas E; Miller, Andrew H; Wang, Jinxi

    2013-01-01

    Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds α v β 3 and α v β 5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration.

  19. Genetic Variants in the Bone Morphogenic Protein Gene Family Modify the Association between Residential Exposure to Traffic and Peripheral Arterial Disease

    PubMed Central

    Ward-Caviness, Cavin K.; Neas, Lucas M.; Blach, Colette; Haynes, Carol S.; LaRocque-Abramson, Karen; Grass, Elizabeth; Dowdy, Elaine; Devlin, Robert B.; Diaz-Sanchez, David; Cascio, Wayne E.; Lynn Miranda, Marie; Gregory, Simon G.; Shah, Svati H.; Kraus, William E.; Hauser, Elizabeth R.

    2016-01-01

    There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been rarely performed particularly in the case of air pollution exposures. We performed race-stratified genome-wide gene-environment interaction association studies on European-American (EA, N = 1623) and African-American (AA, N = 554) cohorts to investigate the joint influence of common single nucleotide polymorphisms (SNPs) and residential exposure to traffic (“traffic exposure”)—a recognized vascular disease risk factor—on peripheral arterial disease (PAD). Traffic exposure was estimated via the distance from the primary residence to the nearest major roadway, defined as the nearest limited access highways or major arterial. The rs755249-traffic exposure interaction was associated with PAD at a genome-wide significant level (P = 2.29x10-8) in European-Americans. Rs755249 is located in the 3’ untranslated region of BMP8A, a member of the bone morphogenic protein (BMP) gene family. Further investigation revealed several variants in BMP genes associated with PAD via an interaction with traffic exposure in both the EA and AA cohorts; this included interactions with non-synonymous variants in BMP2, which is regulated by air pollution exposure. The BMP family of genes is linked to vascular growth and calcification and is a novel gene family for the study of PAD pathophysiology. Further investigation of BMP8A using the Genotype Tissue Expression Database revealed multiple variants with nominally significant (P < 0.05) interaction P-values in our EA cohort were significant BMP8A eQTLs in tissue types highlight relevant for PAD such as rs755249 (tibial nerve, eQTL P = 3.6x10-6) and rs1180341 (tibial artery, eQTL P = 5.3x10-6). Together these results reveal a novel gene, and possibly gene

  20. Vertebrate limb development: moving from classical morphogen gradients to an integrated 4-dimensional patterning system.

    PubMed

    Bénazet, Jean-Denis; Zeller, Rolf

    2009-10-01

    A wealth of classical embryological manipulation experiments taking mainly advantage of the chicken limb buds identified the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) as the respective ectodermal and mesenchymal key signaling centers coordinating proximodistal (PD) and anteroposterior (AP) limb axis development. These experiments inspired Wolpert's French flag model, which is a classic among morphogen gradient models. Subsequent molecular and genetic analysis in the mouse identified retinoic acid as proximal signal, and fibroblast growth factors (FGFs) and sonic hedgehog (SHH) as the essential instructive signals produced by AER and ZPA, respectively. Recent studies provide good evidence that progenitors are specified early with respect to their PD and AP fates and that morpho-regulatory signaling is also required for subsequent proliferative expansion of the specified progenitor pools. The determination of particular fates seems to occur rather late and depends on additional signals such as bone morphogenetic proteins (BMPs), which indicates that cells integrate signaling inputs over time and space. The coordinate regulation of PD and AP axis patterning is controlled by an epithelial-mesenchymal feedback signaling system, in which transcriptional regulation of the BMP antagonist Gremlin1 integrates inputs from the BMP, SHH, and FGF pathways. Vertebrate limb-bud development is controlled by a 4-dimensional (4D) patterning system integrating positive and negative regulatory feedback loops, rather than thresholds set by morphogen gradients.

  1. Role of ID Proteins in BMP4 Inhibition of Profibrotic Effects of TGF-β2 in Human TM Cells.

    PubMed

    Mody, Avani A; Wordinger, Robert J; Clark, Abbot F

    2017-02-01

    Increased expression of TGF-β2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-β2-induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-β2-induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-β2 induction of ECM proteins in TM cells. Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-β2-induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P < 0.05) and protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-β2-induced expression of fibronectin and PAI-1 in TM cells (P < 0.01). Bone morphogenic protein 4 induced ID1 and ID3 expression suppresses TGF-β2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-β2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies.

  2. Morphogenic Protein RodZ Interacts with Sporulation Specific SpoIIE in Bacillus subtilis.

    PubMed

    Muchová, Katarína; Chromiková, Zuzana; Bradshaw, Niels; Wilkinson, Anthony J; Barák, Imrich

    2016-01-01

    The first landmark in sporulation of Bacillus subtilis is the formation of an asymmetric septum followed by selective activation of the transcription factor σF in the resulting smaller cell. How the morphological transformations that occur during sporulation are coupled to cell-specific activation of transcription is largely unknown. The membrane protein SpoIIE is a constituent of the asymmetric sporulation septum and is a crucial determinant of σF activation. Here we report that the morphogenic protein, RodZ, which is essential for cell shape determination, is additionally required for asymmetric septum formation and sporulation. In cells depleted of RodZ, formation of asymmetric septa is disturbed and σF activation is perturbed. During sporulation, we found that SpoIIE recruits RodZ to the asymmetric septum. Moreover, we detected a direct interaction between SpoIIE and RodZ in vitro and in vivo, indicating that SpoIIE-RodZ may form a complex to coordinate asymmetric septum formation and σF activation. We propose that RodZ could provide a link between the cell shape machinery and the coordinated morphological and developmental transitions required to form a resistant spore.

  3. Stability and nuclear dynamics of the Bicoid morphogen gradient

    PubMed Central

    Gregor, Thomas; Wieschaus, Eric F.; McGregor, Alistair P.; Bialek, William; Tank, David W.

    2008-01-01

    Patterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remains largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (~1 hour after fertilization) with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal. Initial interphase concentration in nuclei in successive cycles is constant (±10%), demonstrating a form of gradient stability, but subsequently decays by approximately 30%. Both direct photobleaching measurements and indirect estimates of Bicoid-eGFP diffusion constants (D ≤ 1 μm2/s), provide a consistent picture of Bicoid transport on short (~min) time scales, but challenge traditional models of long range gradient formation. A new model is presented emphasizing the possible role of nuclear dynamics in shaping and scaling the gradient. PMID:17632061

  4. Morphogengineering roots: comparing mechanisms of morphogen gradient formation

    PubMed Central

    2012-01-01

    Background In developmental biology, there has been a recent focus on the robustness of morphogen gradients as possible providers of positional information. It was shown that functional morphogen gradients present strong biophysical constraints and lack of robustness to noise. Here we explore how the details of the mechanism which underlies the generation of a morphogen gradient can influence those properties. Results We contrast three gradient-generating mechanisms, (i) a source-decay mechanism; and (ii) a unidirectional transport mechanism; and (iii) a so-called reflux-loop mechanism. Focusing on the dynamics of the phytohormone auxin in the root, we show that only the reflux-loop mechanism can generate a gradient that would be adequate to supply functional positional information for the Arabidopsis root, for biophysically reasonable kinetic parameters. Conclusions We argue that traits that differ in spatial and temporal time-scales can impose complex selective pressures on the mechanism of morphogen gradient formation used for the development of the particular organism. PMID:22583698

  5. Theoretical analysis of degradation mechanisms in the formation of morphogen gradients

    NASA Astrophysics Data System (ADS)

    Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.

    2015-07-01

    Fundamental biological processes of development of tissues and organs in multicellular organisms are governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in the concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to a cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients for various degradation mechanisms is explicitly evaluated. It is found that linear degradation processes lead to a dynamic behavior specified by times to form the morphogen gradients that depend linearly on the distance from the source. This is because the effective potential due to the degradation is quite strong. At the same time, nonlinear degradation mechanisms yield a quadratic scaling in the morphogen gradients formation times since the effective potentials are much weaker. Physical-chemical explanations of these phenomena are presented.

  6. Infant formula promotes bone growth in neonatal piglets by enhancing osteoblastogenesis through bone morphogenic protein signaling

    USDA-ARS?s Scientific Manuscript database

    Relatively few studies have examined the effects of formula feeding relative to breast-feeding on bone in the neonate. Using peripheral quantitative CT scan and histomorphometric analysis, we demonstrated that neonatal piglets fed with soy-based formula (SF) and cow milk-based formula (MF) for 21 or...

  7. S6K is a morphogenic protein with a mechanism involving Filamin-A phosphorylation and phosphatidic acid binding.

    PubMed

    Henkels, Karen M; Mallets, Elizabeth R; Dennis, Patrick B; Gomez-Cambronero, Julian

    2015-04-01

    Change of cell shape in vivo plays many roles that are central to life itself, such as embryonic development, inflammation, wound healing, and pathologic processes such as cancer metastasis. Nonetheless, the spatiotemporal mechanisms that control the concerted regulation of cell shape remain understudied. Here, we show that ribosomal S6K, which is normally considered a protein involved in protein translation, is a morphogenic protein. Its presence in cells alters the overall organization of the cell surface and cell circularity [(4π × area)/(perimeter)(2)] from 0.47 ± 0.06 units in mock-treated cells to 0.09 ± 0.03 units in S6K-overexpressing macrophages causing stellation and arborization of cell shape. This effect was partially reversed in cells expressing a kinase-inactive S6K mutant and was fully reversed in cells silenced with small interference RNA. Equally important is that S6K is itself regulated by phospholipids, specifically phosphatidic acid, whereby 300 nM 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA), but not the control 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), binds directly to S6K and causes an ∼ 2.9-fold increase in S6K catalytic activity. This was followed by an increase in Filamin A (FLNA) functionality as measured by phospho-FLNA (S(2152)) expression and by a subsequent elevation of actin nucleation. This reliance of S6K on phosphatidic acid (PA), a curvature-inducing phospholipid, explained the extra-large perimeter of cells that overexpressed S6K. Furthermore, the diversity of the response to S6K in several unrelated cell types (fibroblasts, leukocytes, and invasive cancer cells) that we report here indicates the existence of an underlying common mechanism in mammalian cells. This new signaling set, PA-S6K-FLNA-actin, sheds light for the first time into the morphogenic pathway of cytoskeletal structures that are crucial for adhesion and cell locomotion during inflammation and metastasis. © FASEB.

  8. Cell-Surface Bound Nonreceptors and Signaling Morphogen Gradients

    PubMed Central

    Wan, Frederic Y.M.

    2013-01-01

    The patterning of many developing tissues is orchestrated by gradients of signaling morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. Such interactions are thought to make gradients robust, i.e. insensitive to change in the face of genetic or environmental perturbations. But just how this is accomplished is a major unanswered question. Recently extensive numerical simulations suggest that robustness of signaling gradients can be achieved through morphogen degradation mediated by cell surface bound non-signaling receptor molecules (or nonreceptors for short) such as heparan sulfate proteoglycans (HSPG). The present paper provides a mathematical validation of the results from the aforementioned numerical experiments. Extension of a basic extracellular model to include reversible binding with nonreceptors synthesized at a prescribed rate and mediated morphogen degradation shows that the signaling gradient diminishes with increasing concentration of cell-surface nonreceptors. Perturbation and asymptotic solutions obtained for i) low (receptor and nonreceptor) occupancy, and ii) high nonreceptor concntration permit more explicit delineation of the effects of nonreceptors on signaling gradients and facilitate the identification of scenarios in which the presence of nonreceptors may or may not be effective in promoting robustness. PMID:25232201

  9. Activin signalling and response to a morphogen gradient.

    PubMed

    Gurdon, J B; Harger, P; Mitchell, A; Lemaire, P

    1994-10-06

    Using combinations of amphibian embryo tissues, it is shown that the selection of genes expressed by a cell is determined by its distance from a source of activin, a peptide growth factor contained in vegetal cells and able to induce other cells to form mesoderm. This long-range signal spreads over at least 10 cell diameters in a few hours. It does so by passive diffusion, because it can by-pass cells that do not themselves respond to the signal nor synthesize protein. These results provide direct support for the operation of a morphogen concentration gradient in vertebrate development.

  10. Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking.

    PubMed

    Nowak, Matthias; Machate, Anja; Yu, Shuizi Rachel; Gupta, Mansi; Brand, Michael

    2011-02-01

    Forty years ago, it was proposed that during embryonic development and organogenesis, morphogen gradients provide positional information to the individual cells within a tissue leading to specific fate decisions. Recently, much insight has been gained into how such morphogen gradients are formed and maintained; however, which cellular mechanisms govern their interpretation within target tissues remains debated. Here we used in vivo fluorescence correlation spectroscopy and automated image analysis to assess the role of endocytic sorting dynamics on fibroblast growth factor 8 (Fgf8) morphogen gradient interpretation. By interfering with the function of the ubiquitin ligase Cbl, we found an expanded range of Fgf target gene expression and a delay of Fgf8 lysosomal transport. However, the extracellular Fgf8 morphogen gradient remained unchanged, indicating that the observed signalling changes are due to altered gradient interpretation. We propose that regulation of morphogen signalling activity through endocytic sorting allows fast feedback-induced changes in gradient interpretation during the establishment of complex patterns.

  11. Development of morphogen gradient: The role of dimension and discreteness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teimouri, Hamid; Kolomeisky, Anatoly B.

    2014-02-28

    The fundamental processes of biological development are governed by multiple signaling molecules that create non-uniform concentration profiles known as morphogen gradients. It is widely believed that the establishment of morphogen gradients is a result of complex processes that involve diffusion and degradation of locally produced signaling molecules. We developed a multi-dimensional discrete-state stochastic approach for investigating the corresponding reaction-diffusion models. It provided a full analytical description for stationary profiles and for important dynamic properties such as local accumulation times, variances, and mean first-passage times. The role of discreteness in developing of morphogen gradients is analyzed by comparing with available continuummore » descriptions. It is found that the continuum models prediction about multiple time scales near the source region in two-dimensional and three-dimensional systems is not supported in our analysis. Using ideas that view the degradation process as an effective potential, the effect of dimensionality on establishment of morphogen gradients is also discussed. In addition, we investigated how these reaction-diffusion processes are modified with changing the size of the source region.« less

  12. [Bone morphogenetic proteins (BMP): clinical application for reconstruction of bone defects].

    PubMed

    Sierra-García, Gerardo Daniel; Castro-Ríos, Rocío; Gónzalez-Horta, Azucena; Lara-Arias, Jorge; Chávez-Montes, Abelardo

    2016-01-01

    Since the introduction of bone morphogenetic proteins, their use has become an invaluable ally for the treatment of bone defects. These proteins are potent growth factors, related to angiogenic and osteogenic activity. The osteoinductive capacity of recombinant bone morphogenetic protein (rhBMP) in the formation of bone and cartilage has been confirmed in in vitro studies and evaluated in clinical trials. To obtain a therapeutic effect, administration is systemic, by injection over the physiological dose. Among the disadvantages, ectopic bone formation or high morbidity in cases of spinal fusion is observed. In this review, the roles of bone morphogenetic proteins in bone repair and clinical applications are analyzed. These findings represent advances in the study of bone regeneration and application of growth factors for more predictable results.

  13. Crk synergizes with epidermal growth factor for epithelial invasion and morphogenesis and is required for the met morphogenic program.

    PubMed

    Lamorte, Louie; Rodrigues, Sonia; Naujokas, Monica; Park, Morag

    2002-10-04

    Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor, stimulates cell spreading, cell dispersal, and the inherent morphogenic program of various epithelial cell lines. Although both hepatocyte growth factor and epidermal growth factor (EGF) can activate downstream signaling pathways in Madin-Darby canine kidney epithelial cells, EGF fails to promote the breakdown of cell-cell junctional complexes and initiate an invasive morphogenic program. We have undertaken a strategy to identify signals that synergize with EGF in this process. We provide evidence that the overexpression of the CrkII adapter protein complements EGF-stimulated pathways to induce cell dispersal in two-dimensional cultures and cell invasion and branching morphogenesis in three-dimensional collagen gels. This finding correlates with the ability of CrkII to promote the breakdown of adherens junctions in stable cell lines and the ability of EGF to stimulate enhanced Rac activity in cells overexpressing CrkII. We have previously shown that the Gab1-docking protein is required for branching morphogenesis downstream of the Met receptor. Consistent with a role for CrkII in promoting EGF-dependent branching morphogenesis, the binding of Gab1 to CrkII is required for the branching morphogenic program downstream of Met. Together, our data support a role for the CrkII adapter protein in epithelial invasion and morphogenesis and underscores the importance of considering the synergistic actions of signaling pathways in cancer progression.

  14. Effects of analogues of hydra peptide morphogen on DNA synthesis in the myocardium of newborn albino rats.

    PubMed

    Sazonova, E N; Yakovenko, I G; Kryzhanovskaya, S Yu; Budylev, A A; Timoshin, S S

    2012-01-01

    DNA-synthetic activity of myocardial cells was studied by (3)H-thymidine autoradiography in newborn albino rats after intraperitoneal injection of hydra peptide morphogen and its analogues. Administration of hydra peptide morphogen stimulated proliferative activity in the myocardium. Short analogues of hydra peptide morphogen, 6C and 3C peptides, produced a similar effect. Administration of arginine-containing analogue of hydra peptide morphogen significantly reduced the number of DNA-synthesizing nuclei in the ventricular myocardium of newborn albino rats. The role of the structure of the peptide molecule in the realization of the morphogenetic effects of hydra peptide morphogen is discussed.

  15. Membrane Targeting of Grb2-associated Binder-1 (Gab1) Scaffolding Protein through Src Myristoylation Sequence Substitutes for Gab1 Pleckstrin Homology Domain and Switches an Epidermal Growth Factor Response to an Invasive Morphogenic Program

    PubMed Central

    Maroun, Christiane R.; Naujokas, Monica A.; Park, Morag

    2003-01-01

    The hepatocyte growth factor receptor tyrosine kinase Met promotes cell dissociation and the inherent morphogenic program of epithelial cells. In a search for substrates downstream from Met, we have previously identified the Grb2-associated binder-1 (Gab1) as critical for the morphogenic program. Gab1 is a scaffold protein that acts to diversify the signal downstream from the Met receptor through its ability to couple with multiple signal transduction pathways. Gab1 contains a pleckstrin homology (PH) domain with specificity for phosphatidylinositol 3,4,5-trisphosphate. The phospholipid binding capacity of the Gab1 PH domain is required for the localization of Gab1 at sites of cell-cell contact in colonies of epithelial cells and for epithelial morphogenesis, suggesting that PH domain-dependent subcellular localization of Gab1 is a prerequisite for function. We have investigated the requirement for membrane localization of Gab1 for biological activity. We show that substitution of the Gab1 PH domain with the myristoylation signal from the c-Src protein is sufficient to replace the Gab1 PH domain for epithelial morphogenesis. The membrane targeting of Gab1 enhances Rac activity in the absence of stimulation and switches a nonmorphogenic noninvasive response to epidermal growth factor to a morphogenic invasive program. These results suggest that the subcellular localization of Gab1 is a critical determinant for epithelial morphogenesis and invasiveness. PMID:12686619

  16. Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers

    PubMed Central

    Sheikh, Zeeshan; Javaid, Mohammad Ahmad; Hamdan, Nader; Hashmi, Raheel

    2015-01-01

    Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs). BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration. PMID:28788032

  17. Bone morphogenetic protein (BMP)1-3 enhances bone repair.

    PubMed

    Grgurevic, Lovorka; Macek, Boris; Mercep, Mladen; Jelic, Mislav; Smoljanovic, Tomislav; Erjavec, Igor; Dumic-Cule, Ivo; Prgomet, Stefan; Durdevic, Dragan; Vnuk, Drazen; Lipar, Marija; Stejskal, Marko; Kufner, Vera; Brkljacic, Jelena; Maticic, Drazen; Vukicevic, Slobodan

    2011-04-29

    Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E(1) osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology.

    PubMed

    Jules, Joel; Yang, Shuying; Chen, Wei; Li, Yi-Ping

    2015-01-01

    Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins' regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases. © 2015 Elsevier Inc. All rights reserved.

  19. A role for NRAGE in NF-κB activation through the non-canonical BMP pathway

    PubMed Central

    2010-01-01

    Background Previous studies have linked neurotrophin receptor-interacting MAGE protein to the bone morphogenic protein signaling pathway and its effect on p38 mediated apoptosis of neural progenitor cells via the XIAP-Tak1-Tab1 complex. Its effect on NF-κB has yet to be explored. Results Herein we report that NRAGE, via the same XIAP-Tak1-Tab1 complex, is required for the phosphorylation of IKK -α/β and subsequent transcriptional activation of the p65 subunit of NF-κB. Ablation of endogenous NRAGE by siRNA inhibited NF-κB pathway activation, while ablation of Tak1 and Tab1 by morpholino inhibited overexpression of NRAGE from activating NF-κB. Finally, cytokine profiling of an NRAGE over-expressing stable line revealed the expression of macrophage migration inhibitory factor. Conclusion Modulation of NRAGE expression revealed novel roles in regulating NF-κB activity in the non-canonical bone morphogenic protein signaling pathway. The expression of macrophage migration inhibitory factor by bone morphogenic protein -4 reveals novel crosstalk between an immune cytokine and a developmental pathway. PMID:20100315

  20. Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology

    PubMed Central

    Jules, Joel; Yang, Shuying; Chen, Wei; Li, Yi-Ping

    2016-01-01

    Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins’ regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases. PMID:26123302

  1. Tissue-Engineered Autologous Grafts for Facial Bone Reconstruction

    PubMed Central

    Bhumiratana, Sarindr; Bernhard, Jonathan C.; Alfi, David M.; Yeager, Keith; Eton, Ryan E.; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M.; Lopez, Mandi J.; Eisig, Sidney B.; Vunjak-Novakovic, Gordana

    2016-01-01

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care—the use of bone harvested from another region in the body—has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, without bone morphogenic proteins, using native bovine bone matrix and a perfusion bioreactor for the growth and transport of living grafts. The ramus-condyle unit (RCU), the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatan minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material, and crafted it into an anatomically correct shape using image-guided micromilling, to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either non-seeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665

  2. Platelet-rich plasma for long bone healing

    PubMed Central

    Lenza, Mário; Ferraz, Silvia de Barros; Viola, Dan Carai Maia; dos Santos, Oscar Fernando Pavão; Cendoroglo, Miguel; Ferretti, Mario

    2013-01-01

    ABSTRACT Objective: To evaluate effectiveness of the use of platelet-rich plasma as coadjuvant for union of long bones. Methods: The search strategy included the Cochrane Library (via Central) and MEDLINE (via PubMed). There were no limits as to language or publication media. The latest search strategy was conducted in December 2011. It included randomized clinical trials that evaluated the use of platelet-rich plasma as coadjuvant medication to accelerate union of long bones (acute fractures, pseudoarthrosis and bone defects). The outcomes of interest for this review include bone regeneration, adverse events, costs, pain, and quality of life. The authors selected eligible studies, evaluated the methodological quality, and extracted the data. It was not possible to perform quantitative analysis of the grouped studies (meta-analyses). Results: Two randomized prospective clinical trials were included, with a total of 148 participants. One of them compared recombinant human morphogenic bone protein-7 versus platelet-rich plasma for the treatment of pseudoarthrosis; the other evaluated the effects of three coadjuvant treatments for union of valgising tibial osteotomies (platelet-rich plasma, platelet-rich plasma plus bone marrow stromal cells, and no coadjuvant treatment). Both had low statistical power and moderate to high risk of bias. Conclusion: There was no conclusive evidence that sustained the use of platelet-rich plasma as a coadjuvant to aid bone regeneration of fractures, pseudoarthrosis, or bone defects. PMID:23579757

  3. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  4. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  5. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  6. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... devices that contain bone grafting material. The special control is the FDA guidance document entitled... devices that include any therapeutic biologic (e.g., bone morphogenic protein). Intervertebral body fusion...

  7. TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation

    PubMed Central

    Chen, Guiqian; Deng, Chuxia; Li, Yi-Ping

    2012-01-01

    Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation. PMID:22298955

  8. Development of 3D in vitro platform technology to engineer mesenchymal stem cells.

    PubMed

    Hosseinkhani, Hossein; Hong, Po-Da; Yu, Dah-Shyong; Chen, Yi-Ru; Ickowicz, Diana; Farber, Ira-Yudovin; Domb, Abraham J

    2012-01-01

    This study aims to develop a three-dimensional in vitro culture system to genetically engineer mesenchymal stem cells (MSC) to express bone morphogenic protein-2. We employed nanofabrication technologies borrowed from the spinning industry, such as electrospinning, to mass-produce identical building blocks in a variety of shapes and sizes to fabricate electrospun nanofiber sheets comprised of composites of poly (glycolic acid) and collagen. Homogenous nanoparticles of cationic biodegradable natural polymer were formed by simple mixing of an aqueous solution of plasmid DNA encoded bone morphogenic protein-2 with the same volume of cationic polysaccharide, dextran-spermine. Rat bone marrow MSC were cultured on electrospun nanofiber sheets comprised of composites of poly (glycolic acid) and collagen prior to the incorporation of the nanoparticles into the nanofiber sheets. Bone morphogenic protein-2 was significantly detected in MSC cultured on nanofiber sheets incorporated with nanoparticles after 2 days compared with MSC cultured on nanofiber sheets incorporated with naked plasmid DNA. We conclude that the incorporation of nanoparticles into nanofiber sheets is a very promising strategy to genetically engineer MSC and can be used for further applications in regenerative medicine therapy.

  9. Interaction betwen Lead and Bone Protein to Affect Bone Calcium Level Using UV-Vis Spectroscopy

    NASA Astrophysics Data System (ADS)

    Noor, Z.; Azharuddin, A.; Aflanie, I.; Kania, N.; Suhartono, E.

    2018-05-01

    This present study aim to evaluate the interactions between lead (Pb) and with bone protein by UV-Vis approach. In addition, this prsent study also aim to investigate the effect of Pb on bone calcium (Ca) level. The present study was a true experimental study design to examine the impact of Pb exposure in bone of male rats (Rattus novergicus). The study involved 5 groups, P1 was the control group, while the other (P2-P5) were the case group with exposure of Pb in different concentration within 4 weeks. At the end of the exposure, the interaction between Pb and protein was determined using UV-Vis spectrophotometric method, and the Ca level was determined using permanganometric method. The results shows that that there is an interaction between Pb and bone protein. The result also shows that the value of the binding constant of Protein-Pb is 32.71. It means Pb have an high affinity to bind with bone protein, which promote a further reaction to induced the release of bone Ca from the bone protein. In conclusion, this present study found an obvious relationship between Pb and bone protein which promote a further reaction to increase the releasing of bone calcium.

  10. Transient Overexpression of Sonic Hedgehog Alters the Architecture and Mechanical Properties of Trabecular Bone

    PubMed Central

    Kiuru, Maija; Solomon, Jason; Ghali, Bassem; van der Meulen, Marjolein; Crystal, Ronald G; Hidaka, Chisa

    2009-01-01

    Bone formation and remodeling involve coordinated interactions between osteoblasts and osteoclasts through signaling networks involving a variety of molecular pathways. We hypothesized that overexpression of Sonic hedgehog (Shh), a morphogen with a crucial role in skeletal development, would stimulate osteoblastogenesis and bone formation in adult animals in vivo. Systemic administration of adenovirus expressing the N-terminal form of Shh into adult mice resulted in a primary increase in osteoblasts and their precursors. Surprisingly, however, this was associated with altered trabecular morphology, decreased bone volume, and decreased compressive strength in the vertebrae. Whereas no change was detected in the number of osteoclast precursors, bone marrow stromal cells from Shh-treated mice showed enhanced osteoclastogenic potential in vitro. These effects were mediated by the PTH/PTH-related protein (PTHrP) pathway as evidenced by increased sensitivity to PTH stimulation and upregulation of the PTH/PTHrP receptor (PPR). Together, these data show that Shh has stimulatory effects on osteoprogenitors and osteoblasts in adult animals in vivo, which results in bone remodeling and reduced bone strength because of a secondary increase in osteoclastogenesis. PMID:19338448

  11. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Dongren; Howard, Angela; Bruun, Donald

    2008-04-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrationsmore » that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE{sup -/-}) versus wild type (AChE{sup +/+}) mice indicated that while these OPs inhibited axonal growth in AChE{sup +/+} DRG neurons, they had no effect on axonal growth in AChE{sup -/-} DRG neurons. However, transfection of AChE{sup -/-} DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs.« less

  12. Bone protein “extractomics”: comparing the efficiency of bone protein extractions of Gallus gallus in tandem mass spectrometry, with an eye towards paleoproteomics

    PubMed Central

    DeHart, Caroline J.; Schweitzer, Mary H.; Thomas, Paul M.; Kelleher, Neil L.

    2016-01-01

    Proteomic studies of bone require specialized extraction protocols to demineralize and solubilize proteins from within the bone matrix. Although various protocols exist for bone protein recovery, little is known about how discrete steps in each protocol affect the subset of the bone proteome recovered by mass spectrometry (MS) analyses. Characterizing these different “extractomes” will provide critical data for development of novel and more efficient protein extraction methodologies for fossils. Here, we analyze 22 unique sub-extractions of chicken bone and directly compare individual extraction components for their total protein yield and diversity and coverage of bone proteins identified by MS. We extracted proteins using different combinations and ratios of demineralizing reagents, protein-solubilizing reagents, and post-extraction buffer removal methods, then evaluated tryptic digests from 20 µg aliquots of each fraction by tandem MS/MS on a 12T FT-ICR mass spectrometer. We compared total numbers of peptide spectral matches, peptides, and proteins identified from each fraction, the redundancy of protein identifications between discrete steps of extraction methods, and the sequence coverage obtained for select, abundant proteins. Although both alpha chains of collagen I (the most abundant protein in bone) were found in all fractions, other collagenous and non-collagenous proteins (e.g., apolipoprotein, osteonectin, hemoglobin) were differentially identified. We found that when a standardized amount of extracted proteins was analyzed, extraction steps that yielded the most protein (by weight) from bone were often not the ones that produced the greatest diversity of bone proteins, or the highest degree of protein coverage. Generally, the highest degrees of diversity and coverage were obtained from demineralization fractions, and the proteins found in the subsequent solubilization fractions were highly redundant with those in the previous fraction. Based on

  13. A soluble bone morphogenetic protein type IA receptor increases bone mass and bone strength

    PubMed Central

    Baud’huin, Marc; Solban, Nicolas; Cornwall-Brady, Milton; Sako, Dianne; Kawamoto, Yoshimi; Liharska, Katia; Lath, Darren; Bouxsein, Mary L.; Underwood, Kathryn W.; Ucran, Jeffrey; Kumar, Ravindra; Pobre, Eileen; Grinberg, Asya; Seehra, Jasbir; Canalis, Ernesto; Pearsall, R. Scott; Croucher, Peter I.

    2012-01-01

    Diseases such as osteoporosis are associated with reduced bone mass. Therapies to prevent bone loss exist, but there are few that stimulate bone formation and restore bone mass. Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily, which act as pleiotropic regulators of skeletal organogenesis and bone homeostasis. Ablation of the BMPR1A receptor in osteoblasts increases bone mass, suggesting that inhibition of BMPR1A signaling may have therapeutic benefit. The aim of this study was to determine the skeletal effects of systemic administration of a soluble BMPR1A fusion protein (mBMPR1A–mFc) in vivo. mBMPR1A–mFc was shown to bind BMP2/4 specifically and with high affinity and prevent downstream signaling. mBMPR1A–mFc treatment of immature and mature mice increased bone mineral density, cortical thickness, trabecular bone volume, thickness and number, and decreased trabecular separation. The increase in bone mass was due to an early increase in osteoblast number and bone formation rate, mediated by a suppression of Dickkopf-1 expression. This was followed by a decrease in osteoclast number and eroded surface, which was associated with a decrease in receptor activator of NF-κB ligand (RANKL) production, an increase in osteoprotegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentration. mBMPR1A treatment also increased bone mass and strength in mice with bone loss due to estrogen deficiency. In conclusion, mBMPR1A–mFc stimulates osteoblastic bone formation and decreases bone resorption, which leads to an increase in bone mass, and offers a promising unique alternative for the treatment of bone-related disorders. PMID:22761317

  14. Molecular mechanisms underlying the actions of dietary factors on the skeleton

    USDA-ARS?s Scientific Manuscript database

    This book chapter summarizes the current state of knowledge on molecular mechanisms whereby nutritional status and dietary factors found in fruits, vegetables, and grains affect bone turnover and skeletal quality. The Wnt-beta catenin and bone morphogenic protein (BMP) pathways in osteoblast bone ce...

  15. High Dietary Protein Intake and Protein-Related Acid Load on Bone Health.

    PubMed

    Cao, Jay J

    2017-12-01

    Consumption of high-protein diets is increasingly popular due to the benefits of protein on preserving lean mass and controlling appetite and satiety. The paper is to review recent clinical research assessing dietary protein on calcium metabolism and bone health. Epidemiological studies show that long-term, high-protein intake is positively associated with bone mineral density and reduced risk of bone fracture incidence. Short-term interventional studies demonstrate that a high-protein diet does not negatively affect calcium homeostasis. Existing evidence supports that the negative effects of the acid load of protein on urinary calcium excretion are offset by the beneficial skeletal effects of high-protein intake. Future research should focus on the role and the degree of contribution of other dietary and physiological factors, such as intake of fruits and vegetables, in reducing the acid load and further enhancing the anabolic effects of protein on the musculoskeletal system.

  16. Dense Bicoid hubs accentuate binding along the morphogen gradient

    PubMed Central

    Mir, Mustafa; Reimer, Armando; Haines, Jenna E.; Li, Xiao-Yong; Stadler, Michael; Garcia, Hernan

    2017-01-01

    Morphogen gradients direct the spatial patterning of developing embryos; however, the mechanisms by which these gradients are interpreted remain elusive. Here we used lattice light-sheet microscopy to perform in vivo single-molecule imaging in early Drosophila melanogaster embryos of the transcription factor Bicoid that forms a gradient and initiates patterning along the anteroposterior axis. In contrast to canonical models, we observed that Bicoid binds to DNA with a rapid off rate throughout the embryo such that its average occupancy at target loci is on-rate-dependent. We further observed Bicoid forming transient “hubs” of locally high density that facilitate binding as factor levels drop, including in the posterior, where we observed Bicoid binding despite vanishingly low protein levels. We propose that localized modulation of transcription factor on rates via clustering provides a general mechanism to facilitate binding to low-affinity targets and that this may be a prevalent feature of other developmental transcription factors. PMID:28982761

  17. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.

    PubMed

    Yu, Shuizi Rachel; Burkhardt, Markus; Nowak, Matthias; Ries, Jonas; Petrásek, Zdenek; Scholpp, Steffen; Schwille, Petra; Brand, Michael

    2009-09-24

    It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.

  18. JAK/STAT controls organ size and fate specification by regulating morphogen production and signalling

    PubMed Central

    Recasens-Alvarez, Carles; Ferreira, Ana; Milán, Marco

    2017-01-01

    A stable pool of morphogen-producing cells is critical for the development of any organ or tissue. Here we present evidence that JAK/STAT signalling in the Drosophila wing promotes the cycling and survival of Hedgehog-producing cells, thereby allowing the stable localization of the nearby BMP/Dpp-organizing centre in the developing wing appendage. We identify the inhibitor of apoptosis dIAP1 and Cyclin A as two critical genes regulated by JAK/STAT and contributing to the growth of the Hedgehog-expressing cell population. We also unravel an early role of JAK/STAT in guaranteeing Wingless-mediated appendage specification, and a later one in restricting the Dpp-organizing activity to the appendage itself. These results unveil a fundamental role of the conserved JAK/STAT pathway in limb specification and growth by regulating morphogen production and signalling, and a function of pro-survival cues and mitogenic signals in the regulation of the pool of morphogen-producing cells in a developing organ. PMID:28045022

  19. A Method for Whole Protein Isolation from Human Cranial Bone

    PubMed Central

    Lyon, Sarah M.; Mayampurath, Anoop; Rogers, M. Rose; Wolfgeher, Donald J.; Fisher, Sean M.; Volchenboum, Samuel L.; He, Tong-Chuan; Reid, Russell R.

    2016-01-01

    The presence of the dense hydroxyapatite matrix within human bone limits the applicability of conventional protocols for protein extraction. This has hindered the complete and accurate characterization of the human bone proteome thus far, leaving many bone-related disorders poorly understood. We sought to refine an existing method of protein extraction from mouse bone to extract whole proteins of varying molecular weights from human cranial bone. Whole protein was extracted from human cranial suture by mechanically processing samples using a method that limits protein degradation by minimizing heat introduction to proteins. The presence of whole protein was confirmed by western blotting. Mass spectrometry was used to sequence peptides and identify isolated proteins. The data have been deposited to the ProteomeXchange with identifier PXD003215. Extracted proteins were characterized as both intra- and extracellular and had molecular weights ranging from 9.4-629 kDa. High correlation scores among suture protein spectral counts support the reproducibility of the method. Ontology analytics revealed proteins of myriad functions including mediators of metabolic processes and cell organelles. These results demonstrate a reproducible method for isolation of whole protein from human cranial bone, representing a large range of molecular weights, origins and functions. PMID:27677936

  20. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family.

    PubMed

    Ripamonti, Ugo; Parak, Ruqayya; Klar, Roland M; Dickens, Caroline; Dix-Peek, Thérèse; Duarte, Raquel

    2016-10-01

    haematopoietic bone marrow that forms by day 15 in heterotopic rectus abdominis sites. Synergistic binary applications also induce the morphogenesis of rudimentary embryonic growth plates indicating that the "memory" of developmental events in embryo can be redeployed postnatally by the application of morphogen combinations. Synergistic binary applications or single relatively high doses of hTGF-β3 have shown that hTGF-β3 induces bone by expressing a variety of inductive morphogenetic proteins that result in the rapid induction of bone formation. Tissue induction thus invocated singly by hTGF-β3 recapitulates the synergistic induction of bone formation by binary applications of hTGF-β1 and -β3 isoforms with hOP-1. Both synergistic strategies result in the rapid induction and expansion of the transformed mesenchymal tissue into large corticalized heterotopic ossicles with osteoblast-like cell differentiation at the periphery of the implanted reconstituted specimens with "tissue transfiguration" in vivo. Molecularly, the rapid induction of bone formation by binary applications of hOP-1 and hTGF-β3 or by hTGF-β3 applied singly resides in the up-regulation of selected genes involved in tissue induction and morphogenesis, Osteocalcin, RUNX-2, OP-1, TGF-β1 and -β3 with however the noted lack of TGF-β2 up-regulation. Copyright © 2016. Published by Elsevier Ltd.

  1. * Composite Biomaterial as a Carrier for Bone-Active Substances for Metaphyseal Tibial Bone Defect Reconstruction in Rats.

    PubMed

    Horstmann, Peter Frederik; Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Lidgren, Lars; Petersen, Michael Mørk; Tägil, Magnus

    2017-12-01

    Restoring lost bone is a major challenge in orthopedic surgery. Currently available treatment strategies have shortcomings, such as risk of infection, nonunion, and excessive resorption. Our primary aim was to study if a commercially available gentamicin-containing composite calcium sulfate/hydroxyapatite biomaterial (GBM) could serve as a carrier for local delivery of bone morphogenic protein-2 (BMP-2) and zoledronic acid (ZA) in a tibia defect model in rats. Empty and allograft-filled defects were used as controls. A 3 × 4-mm metaphyseal bone defect was created in the proximal tibia, and the rats were grouped according to defect filling: (1) Empty, (2) Allograft, (3) GBM, (4) GBM + ZA, and (5) GBM + ZA + BMP-2. In vivo microcomputed tomography (micro-CT) images at 4 weeks showed significantly higher mineralized tissue volume (MV) in the intramedullary defect region and the neocortical/callus region in all GBM-treated groups. After euthanization at 8 weeks, ex vivo micro-CT showed that addition of ZA (GBM + ZA) and BMP-2 (GBM + ZA + BMP-2) mainly increased the neocortical and callus formation, with the highest MV in the combined ZA and BMP-2-treated group. Qualitative histological analysis, verifying the increased neocortical/callus thickness and finding of trabecular bone in all GBM-treated groups, supported that the differences in MV measured with micro-CT in fact represented bone tissue. In conclusion, GBM can serve as a carrier for ZA and BMP-2 leading to increased MV in the neocortex and callus of a metaphyseal bone defect in rats.

  2. SBDS Protein Expression Patterns in the Bone Marrow

    PubMed Central

    Wong, Trisha E.; Calicchio, Monica L.; Fleming, Mark D.; Shimamura, Akiko; Harris, Marian H.

    2010-01-01

    Shwachman Diamond Syndrome (SDS) is an inherited bone marrow failure syndrome caused by biallelic SBDS gene mutations. Here we examined SBDS protein levels in human bone marrow. SBDS protein expression was high in neutrophil progenitors, megakaryocytes, plasma cells and osteoblasts. In contrast, SBDS protein levels were low in all hematopoietic cell lineages from patients harboring the common SBDS mutations. We conclude that SBDS protein levels vary widely between specific marrow lineages. Uniformly low SBDS protein expression levels distinguish the majority of SDS patients from controls or other marrow failure syndromes. PMID:20658628

  3. Reaction-diffusion systems and external morphogen gradients: the two-dimensional case, with an application to skeletal pattern formation.

    PubMed

    Glimm, Tilmann; Zhang, Jianying; Shen, Yun-Qiu; Newman, Stuart A

    2012-03-01

    We investigate a reaction-diffusion system consisting of an activator and an inhibitor in a two-dimensional domain. There is a morphogen gradient in the domain. The production of the activator depends on the concentration of the morphogen. Mathematically, this leads to reaction-diffusion equations with explicitly space-dependent terms. It is well known that in the absence of an external morphogen, the system can produce either spots or stripes via the Turing bifurcation. We derive first-order expansions for the possible patterns in the presence of an external morphogen and show how both stripes and spots are affected. This work generalizes previous one-dimensional results to two dimensions. Specifically, we consider the quasi-one-dimensional case of a thin rectangular domain and the case of a square domain. We apply the results to a model of skeletal pattern formation in vertebrate limbs. In the framework of reaction-diffusion models, our results suggest a simple explanation for some recent experimental findings in the mouse limb which are much harder to explain in positional-information-type models.

  4. Response of bone marrow stromal cells to graded co-electrospun scaffolds and its implications for engineering the ligament-bone interface.

    PubMed

    Samavedi, Satyavrata; Guelcher, Scott A; Goldstein, Aaron S; Whittington, Abby R

    2012-11-01

    Biomaterial scaffolds with gradients in architecture, mechanical and chemical properties have the potential to improve the osseointegration of ligament grafts by recapitulating phenotypic gradients that exist at the natural ligament-bone (L-B) interface. Towards the larger goal of regenerating the L-B interface, this in vitro study was performed to investigate the potential of two scaffolds with mineral gradients in promoting a spatial gradient of osteoblastic differentiation. Specifically, the first graded scaffold was fabricated by co-electrospinning two polymer solutions (one doped with nano-hydroxyapatite particles) from offset spinnerets, while the second was created by immersing the first scaffold in a 5 × simulated body fluid. Rat bone marrow stromal cells, cultured in the presence of osteogenic supplements, were found to be metabolically active on all regions of both scaffolds after 1 and 7 days of culture. Gene expression of bone morphogenic protein-2 and osteopontin was elevated on mineral-containing regions as compared to regions without mineral, while the expression of alkaline phosphatase mRNA revealed the opposite trend. Finally, the presence of osteopontin and bone sialoprotein confirmed osteoblastic phenotypic maturation by day 28. This study indicates that co-electrospun scaffolds with gradients in mineral content can guide the formation of phenotypic gradients and may thus promote the regeneration of the L-B interface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Bone morphogenetic protein and bone metastasis, implication and therapeutic potential.

    PubMed

    Ye, Lin; Mason, Malcolm D; Jiang, Wen G

    2011-01-01

    Bone metastasis is one of the most common and severe complications in advanced malignancies, particularly in the three leading cancers; breast cancer, prostate cancer and lung cancer. It is currently incurable and causes severe morbidities, including bone pain, hypercalcemia, pathological fracture, spinal cord compression and consequent paralysis. However, the mechanisms underlying the development of bone metastasis remain largely unknown. Bone morphogenetic proteins (BMPs) belong to the TGF-beta superfamily and are pluripotent factors involved in the regulation of embryonic development and postnatal homeostasis of various organs and tissues, by controlling cellular differentiation, proliferation and apoptosis. Since they are potent regulators for bone formation, there is an increasing interest to investigate BMPs and their roles in bone metastasis. BMPs have been implicated in various neoplasms, at both primary and secondary tumors, particularly skeletal metastasis. Recently studies have also suggested that BMP signaling and their antagonists play pivotal roles in bone metastasis. In this review, we discuss the current knowledge of aberrations of BMPs which have been indicated in tumor progression, and particularly in the development of bone metastasis.

  6. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  7. Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation.

    PubMed

    Miszuk, Jacob M; Xu, Tao; Yao, Qingqing; Fang, Fang; Childs, Josh D; Hong, Zhongkui; Tao, Jianning; Fong, Hao; Sun, Hongli

    2018-03-01

    Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities in vitro , however, these bio-inert synthetic polymers produced limited BMP2-induced bone formation in vivo. We therefore hypothesize that functionalization of NF 3D PCL scaffolds with bone-like hydroxyapatite (HA) and BMP2 signaling activator phenamil will provide a favorable osteogenic niche for bone formation at low doses of BMP2. Compared to PCL-3D scaffolds, PCL/HA-3D scaffolds demonstrated synergistically enhanced osteogenic differentiation capabilities of C2C12 cells with phenamil. Importantly, in vivo studies showed this synergism was able to generate significantly increased new bone in an ectopic mouse model, suggesting PCL/HA-3D scaffolds act as a favorable synthetic extracellular matrix for bone regeneration.

  8. Color-pattern analysis of eyespots in butterfly wings: a critical examination of morphogen gradient models.

    PubMed

    Otaki, Joji M

    2011-06-01

    Butterfly wing color patterns consist of many color-pattern elements such as eyespots. It is believed that eyespot patterns are determined by a concentration gradient of a single morphogen species released by diffusion from the prospective eyespot focus in conjunction with multiple thresholds in signal-receiving cells. As alternatives to this single-morphogen model, more flexible multiple-morphogen model and induction model can be proposed. However, the relevance of these conceptual models to actual eyespots has not been examined systematically. Here, representative eyespots from nymphalid butterflies were analyzed morphologically to determine if they are consistent with these models. Measurement of ring widths of serial eyespots from a single wing surface showed that the proportion of each ring in an eyespot is quite different among homologous rings of serial eyespots of different sizes. In asymmetric eyespots, each ring is distorted to varying degrees. In extreme cases, only a portion of rings is expressed remotely from the focus. Similarly, there are many eyespots where only certain rings are deleted, added, or expanded. In an unusual case, the central area of an eyespot is composed of multiple "miniature eyespots," but the overall macroscopic eyespot structure is maintained. These results indicate that each eyespot ring has independence and flexibility to a certain degree, which is less consistent with the single-morphogen model. Considering a "periodic eyespot", which has repeats of a set of rings, damage-induced eyespots in mutants, and a scale-size distribution pattern in an eyespot, the induction model is the least incompatible with the actual eyespot diversity.

  9. Preservation of the bone protein osteocalcin in dinosaurs

    NASA Astrophysics Data System (ADS)

    Muyzer, Gerard; Sandberg, Philip; Knapen, Marjo H. J.; Vermeer, Cees; Collins, Matthew; Westbroek, Peter

    1992-10-01

    Two different immunological assays were used to identify the remains of a bone matrix protein, osteocalcin (OC), in the bones of dinosaurs and other fossil vertebrates. Antibodies raised against OC from modern vertebrates showed strong immunological cross-reactivity with modern and relatively young fossil samples and significant reactions with some of the dinosaur bone extracts. The presence of OC was confirmed by the detection of a peptide-bound, uniquely vertebrate amino acid, γcarboxyglutamic acid (Gla). Preservation of OC in fossil bones appears to be strongly dependent on the burial history and not simply on age. These results extend the range of protein preservation in the geologic record and provide a first step toward a molecular phylogeny of the dinosaurs.

  10. Bone protein extraction without demineralization using principles from hydroxyapatite chromatography.

    PubMed

    Cleland, Timothy P; Vashishth, Deepak

    2015-03-01

    Historically, extraction of bone proteins has relied on the use of demineralization to better retrieve proteins from the extracellular matrix; however, demineralization can be a slow process that restricts subsequent analysis of the samples. Here, we developed a novel protein extraction method that does not use demineralization but instead uses a methodology from hydroxyapatite chromatography where high concentrations of ammonium phosphate and ammonium bicarbonate are used to extract bone proteins. We report that this method has a higher yield than those with previously published small-scale extant bone extractions, with and without demineralization. Furthermore, after digestion with trypsin and subsequent high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis, we were able to detect several extracellular matrix and vascular proteins in addition to collagen I and osteocalcin. Our new method has the potential to isolate proteins within a short period (4h) and provide information about bone proteins that may be lost during demineralization or with the use of denaturing agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Congenital Bone Fractures in Spinal Muscular Atrophy: Functional Role for SMN Protein in Bone Remodeling

    PubMed Central

    Shanmugarajan, Srinivasan; Swoboda, Kathryn J.; Iannaccone, Susan T.; Ries, William L.; Maria, Bernard L.; Reddy, Sakamuri V.

    2009-01-01

    Spinal muscular atrophy is the second most common fatal childhood disorder. Core clinical features include muscle weakness caused by degenerating lower motor neurons and a high incidence of bone fractures and hypercalcemia. Fractures further compromise quality of life by progression of joint contractures or additional loss of motor function. Recent observations suggest that bone disease in spinal muscular atrophy may not be attributed entirely to lower motor neuron degeneration. The presence of the spinal muscular atrophy disease-determining survival motor neuron gene (SMN), SMN expression, and differential splicing in bone-resorbing osteoclasts was recently discovered. Its ubiquitous expression and the differential expression of splice variants suggest that SMN has specific roles in bone cell function. SMN protein also interacts with osteoclast stimulatory factor. Mouse models of human spinal muscular atrophy disease suggest a potential role of SMN protein in skeletal development. Dual energy x-ray absorptiometry analysis demonstrated a substantial decrease in total bone area and poorly developed caudal vertebra in the mouse model. These mice also had pelvic bone fractures. Studies delineating SMN signaling mechanisms and gene transcription in a cell-specific manner will provide important molecular insights into the pathogenesis of bone disease in children with spinal muscular atrophy. Moreover, understanding bone remodeling in spinal muscular atrophy may lead to novel therapeutic approaches to enhance skeletal health and quality of life. This article reviews the skeletal complications associated with spinal muscular atrophy and describes a functional role for SMN protein in osteoclast development and bone resorption activity. PMID:17761651

  12. Challenges in defining the role of dietary protein in bone health

    USDA-ARS?s Scientific Manuscript database

    In systematic review of the impact of dietary protein on bone health and falls, dietary protein was positively associated with spinal bone mineral density but not with bone density at other skeletal sites, with fractures or with falls. This editorial highlights some of the limitations of the current...

  13. High dietary protein intake and protein-related acid load on bone health

    USDA-ARS?s Scientific Manuscript database

    Protein is an essential nutrient for humans and is required for maintaining optimal bone structure and growth. Consumption of high protein diets in excess of the Recommended Dietary Allowance of (0.8 g protein/kg body weight/d) is increasingly popular due to the benefits of protein on preserving lea...

  14. A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium

    PubMed Central

    Ramsay, Joshua P.; Williamson, Neil R.; Spring, David R.; Salmond, George P. C.

    2011-01-01

    Gas vesicles are hollow intracellular proteinaceous organelles produced by aquatic Eubacteria and Archaea, including cyanobacteria and halobacteria. Gas vesicles increase buoyancy and allow taxis toward air–liquid interfaces, enabling subsequent niche colonization. Here we report a unique example of gas vesicle-mediated flotation in an enterobacterium; Serratia sp. strain ATCC39006. This strain is a member of the Enterobacteriaceae previously studied for its production of prodigiosin and carbapenem antibiotics. Genes required for gas vesicle synthesis mapped to a 16.6-kb gene cluster encoding three distinct homologs of the main structural protein, GvpA. Heterologous expression of this locus in Escherichia coli induced copious vesicle production and efficient cell buoyancy. Gas vesicle morphogenesis in Serratia enabled formation of a pellicle-like layer of highly vacuolated cells, which was dependent on oxygen limitation and the expression of ntrB/C and cheY-like regulatory genes within the gas-vesicle gene cluster. Gas vesicle biogenesis was strictly controlled by intercellular chemical signaling, through an N-acyl homoserine lactone, indicating that in this system the quorum-sensing molecule acts as a morphogen initiating organelle development. Flagella-based motility and gas vesicle morphogenesis were also oppositely regulated by the small RNA-binding protein, RsmA, suggesting environmental adaptation through physiological control of the choice between motility and flotation as alternative taxis modes. We propose that gas vesicle biogenesis in this strain represents a distinct mechanism of mobility, regulated by oxygen availability, nutritional status, the RsmA global regulatory system, and the quorum-sensing morphogen. PMID:21873216

  15. A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium.

    PubMed

    Ramsay, Joshua P; Williamson, Neil R; Spring, David R; Salmond, George P C

    2011-09-06

    Gas vesicles are hollow intracellular proteinaceous organelles produced by aquatic Eubacteria and Archaea, including cyanobacteria and halobacteria. Gas vesicles increase buoyancy and allow taxis toward air-liquid interfaces, enabling subsequent niche colonization. Here we report a unique example of gas vesicle-mediated flotation in an enterobacterium; Serratia sp. strain ATCC39006. This strain is a member of the Enterobacteriaceae previously studied for its production of prodigiosin and carbapenem antibiotics. Genes required for gas vesicle synthesis mapped to a 16.6-kb gene cluster encoding three distinct homologs of the main structural protein, GvpA. Heterologous expression of this locus in Escherichia coli induced copious vesicle production and efficient cell buoyancy. Gas vesicle morphogenesis in Serratia enabled formation of a pellicle-like layer of highly vacuolated cells, which was dependent on oxygen limitation and the expression of ntrB/C and cheY-like regulatory genes within the gas-vesicle gene cluster. Gas vesicle biogenesis was strictly controlled by intercellular chemical signaling, through an N-acyl homoserine lactone, indicating that in this system the quorum-sensing molecule acts as a morphogen initiating organelle development. Flagella-based motility and gas vesicle morphogenesis were also oppositely regulated by the small RNA-binding protein, RsmA, suggesting environmental adaptation through physiological control of the choice between motility and flotation as alternative taxis modes. We propose that gas vesicle biogenesis in this strain represents a distinct mechanism of mobility, regulated by oxygen availability, nutritional status, the RsmA global regulatory system, and the quorum-sensing morphogen.

  16. High-dose bone morphogenetic protein-induced ectopic abdomen bone growth.

    PubMed

    Deutsch, Harel

    2010-02-01

    Infuse [bone morphogenetic protein (BMP)] is increasingly used in spinal fusion surgery. The authors report a rare complication of BMP use. This is a case report. A 55-year-old male underwent a thoracic T8 to the pelvis fusion for degenerative lumbar disc disease and pseudarthrosis at another institution. The procedure involved an anterior and posterior approach with the use of multiple units of BMP. The patient presented to our institution with complaints of weight loss, pain, tenderness, and increasing solid growth in the left lower quadrant several months after his surgery. A computed tomography revealed ectopic bone growth in the retroperitoneal area and pelvis contiguous to the anterior lumbar exposure. The anterior wound was re-explored, and a large sheet of ectopic bone was removed from the retroperitoneal space. We report a rare case of extraspinal ectopic bone growth because of the use of multiple packages of BMP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. High protein consumption in trained women: bad to the bone?

    PubMed

    Antonio, Jose; Ellerbroek, Anya; Evans, Cassandra; Silver, Tobin; Peacock, Corey A

    2018-01-01

    It has been posited that the consumption of extra protein (> 0.8 g/kg/d) may be deleterious to bone mineral content. However, there is no direct evidence to show that consuming a high-protein diet results in a demineralization of the skeleton. Thus, the primary endpoint of this randomized controlled trial was to determine if a high-protein diet affected various parameters of whole body and lumbar bone mineral content in exercise-trained women. Twenty-four women volunteered for this 6-month investigation ( n  = 12 control, n = 12 high-protein). The control group was instructed to consume their habitual diet; however, the high-protein group was instructed to consume ≥2.2 g of protein per kilogram body weight daily (g/kg/d). Body composition was assessed via dual-energy x-ray absorptiometry (DXA). Subjects were instructed to keep a food diary via the mobile app MyFitnessPal ® . Exercise or activity level was not controlled. Subjects were asked to maintain their current levels of exercise. During the 6-month treatment period, there was a significant difference in protein intake between the control and high-protein groups (mean±SD; control: 1.5±0.3, high-protein: 2.8±1.1 g/kg/d); however, there were no differences in the consumption total calories, carbohydrate or fat. Whole body bone mineral density did not change in the control (pre: 1.22±0.08, post: 1.22±0.09 g/cm 2 ) or high-protein group (pre: 1.25±0.11, post: 1.24±0.10 g/cm 2 ). Similarly, lumbar bone mineral density did not change in the control (pre: 1.08±0.16, post: 1.05±0.13 g/cm 2 ) or high-protein group (pre: 1.07±0.11, post: 1.08±0.12 g/cm 2 ). In addition, there were no changes in whole body or lumbar T-Scores in either group. Furthermore, there were no changes in fat mass or lean body mass. Despite an 87% higher protein intake (high-protein versus control), 6 months of a high-protein diet had no effect on whole body bone mineral density, lumbar bone mineral density, T

  18. Clinical application of bone morphogenetic proteins for bone healing: a systematic review.

    PubMed

    Krishnakumar, Gopal Shankar; Roffi, Alice; Reale, Davide; Kon, Elizaveta; Filardo, Giuseppe

    2017-06-01

    This paper documents the existing evidence on bone morphogenetic proteins (BMPs) use for the treatment of bone fractures, non-union, and osteonecrosis, through a review of the clinical literature, underlying potential and limitations in terms of cost effectiveness and risk of complications. A systematic review was performed on the PubMed database using the following string: (bone morphogenetic proteins OR BMPs) and (bone repair OR bone regeneration) including papers from 2000 to 2016. The search focused on clinical trials dealing with BMPs application to favor bone regeneration in bone fractures, non-union, and osteonecrosis, in English language, with level of evidence I, II, III, and IV. Relevant data (type of study, number of patients, BMPs delivery material, dose, site, follow-up, outcome, and adverse events) were extracted and analyzed. Forty-four articles met the inclusion criteria: 10 randomized controlled trials (RCTs), 7 comparative studies, 18 case series, and 9 case reports. rhBMP-2 was documented mainly for the treatment of fractures, and rhBMP-7 mainly for non-unions and osteonecrosis. Mixed results were found among RCTs and comparative papers: 11 reported positive results for BMPs augmentation, 3 obtained no significant effects, and 2 showed negative results. The only study comparing the two BMPs showed a better outcome with rhBMP-2 for non-union treatment. Clinical evidence on BMPs use for the treatment of fractures, non-union, and osteonecrosis is still controversial, with the few available reports being mainly of low quality. While positive findings have been described in many studies, mixed results are still present in the literature in terms of efficacy and adverse events. The difficulties in drawing clear conclusions are also due to the studies heterogeneity, mainly in terms of different BMPs applied, with different concomitant treatments for each bone pathology. Therefore, further research with well-designed studies is needed in order to

  19. Effect of dietary protein level and source on bone mineralization in rats.

    PubMed

    Gralak, M A; Piastowska, A W; Leontowicz, H; Leontowicz, M; Antczak, A; Kulasek, G W; Szara, T; Narojek, T

    2004-01-01

    Bone mineralization was studied in rats. Animals were divided into three feeding groups: LCP - diet with 13.5% crude protein in DM (5% of gluten, 10% of casein), HCP - diet with 21.2% CP in DM (8% of gluten, 10% of casein), and LSM - diet based on grain meals and meat-bone meal (21% CP in DM). After 28 days feeding, animals were euthanased by cervical dislocation and femur bones were collected, weighed and kept frozen until analyses. Diets with 21% protein (HCP, LSM) significantly increased weight of femur bones. Despite of the substantially higher ash level (7.1%) in the LSM diet than in the LCP diet (3.4%), rats of both groups had the similar bone concentration of Ca (15.7 +/- 1.1 vs. 17.4 +/- 1.1 g/kg) and Zn (178.7 +/- 7.9 vs. 173.0 +/- 8.5 mg/kg). However bone density in LSM rats was significantly higher than in LCP ones. Although rats fed HCP diet had intermediate bone density, the bone concentration of Ca (11.4 +/- 0.5 g/kg) and Zn (145.1 +/- 2.9 mg/kg) was significantly lower, than in animals fed LCP and LSM diets. This was related to the very wide protein/calcium (37:1 g/g) and protein/zinc (5.3:1 g/mg) ratios in HCP diet. Those ratios were narrowest in the LSM diet: 16.2:1 (CP/Ca) and 2.6:1 (CP/Zn). It can be conluded that protein/mineral ratio in a diet is a very important factor in bone development, besides dietary protein and ash contents itselves.

  20. One year soy protein supplementation has positive effects on bone formation markers but not bone density in postmenopausal women.

    PubMed

    Arjmandi, Bahram H; Lucas, Edralin A; Khalil, Dania A; Devareddy, Latha; Smith, Brenda J; McDonald, Jennifer; Arquitt, Andrea B; Payton, Mark E; Mason, Claudia

    2005-02-23

    Although soy protein and its isoflavones have been reported to reduce the risk of osteoporosis in peri- and post-menopausal women, most of these studies are of short duration (i.e. six months). The objective of this study was to examine if one year consumption of soy-containing foods (providing 25 g protein and 60 mg isoflavones) exerts beneficial effects on bone in postmenopausal women. Eighty-seven eligible postmenopausal women were randomly assigned to consume soy or control foods daily for one year. Bone mineral density (BMD) and bone mineral content (BMC) of the whole body, lumbar (L1-L4), and total hip were measured using dual energy x-ray absorptiometry at baseline and after one year. Blood and urine markers of bone metabolism were also assessed. Sixty-two subjects completed the one-year long study. Whole body and lumbar BMD and BMC were significantly decreased in both the soy and control groups. However, there were no significant changes in total hip BMD and BMC irrespective of treatment. Both treatments positively affected markers of bone formation as indicated by increased serum bone-specific alkaline phosphatase (BSAP) activity, insulin-like growth factor-I (IGF-I), and osteocalcin (BSAP: 27.8 and 25.8%, IGF-I: 12.8 and 26.3%, osteocalcin: 95.2 and 103.4% for control and soy groups, respectively). Neither of the protein supplements had any effect on urinary deoxypyridinoline excretion, a marker of bone resorption. Our findings suggest that although one year supplementation of 25 g protein per se positively modulated markers of bone formation, this amount of protein was unable to prevent lumbar and whole body bone loss in postmenopausal women.

  1. Osteoimmunology: Influence of the Immune System on Bone Regeneration and Consumption.

    PubMed

    Limmer, Andreas; Wirtz, Dieter C

    2017-06-01

    Background Stimulating bone regeneration is a central aim in orthopaedic and trauma surgery. Although the replacement of bone with artificial materials like cement or apatite helps to keep up bone stability, new bone often cannot be regenerated. Increasing research efforts have led to the clinical application of growth factors stimulating bone growth (e.g. bone morphogenic protein, BMP) and inhibitors preventing bone consumption (e.g. RANKL blocking antibodies). These factors mostly concentrate on stimulating osteoblast or preventing osteoclast activity. Current Situation It is widely accepted that osteoblasts and osteoclasts are central players in bone regeneration. This concept assumes that osteoblasts are responsible for bone growth while osteoclasts cause bone consumption by secreting matrix-degrading enzymes such as cathepsin K and matrix metalloproteinases (MMP). However, according to new research results, bone growth or consumption are not regulated by single cell types. It is rather the interaction of various cell types that regulates bone metabolism. While factors secreted by osteoblasts are essential for osteoclast differentiation and activation, factors secreted by activated osteoclasts are essential for osteoblast activity. In addition, recent research results imply that the influence of the immune system on bone metabolism has long been neglected. Factors secreted by macrophages or T cells strongly influence bone growth or degradation, depending on the bone microenvironment. Infections, sterile inflammation or tumour metastases not only affect bone cells directly, but also influence immune cells such as T cells indirectly. Furthermore, immune cells and bone are mechanistically regulated by similar factors such as cytokines, chemokines and transcription factors, suggesting that the definition of bone and immune cells has to be thought over. Outlook Bone and the immune system are regulated by similar mechanisms. These newly identified similarities

  2. Pattern of Bone Generation after Irradiation in Vascularized Tissue Engineered Constructs.

    PubMed

    Eweida, Ahmad; Fathi, Ibrahim; Eltawila, Ahmed M; Elsherif, Ahmad M; Elkerm, Yasser; Harhaus, Leila; Kneser, Ulrich; Sakr, Mahmoud F

    2018-02-01

     Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization.  We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation.  The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs.  The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. AFM study of morphology and mechanical properties of a chimeric spider silk and bone sialoprotein protein for bone regeneration

    PubMed Central

    Gomes, Sílvia; Numata, Keiji; Leonor, Isabel B.; Mano, João F.; Reis, Rui L.; Kaplan, David L.

    2011-01-01

    Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6mer+BSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference between the elastic modulus of the chimeric silk protein, 6mer+BSP, and control films consisting of only the silk component (6mer). The behaviour of the 6mer+BSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca2+ ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone-formation with this new chimeric silk-BSP protein. PMID:21370930

  4. AFM study of morphology and mechanical properties of a chimeric spider silk and bone sialoprotein protein for bone regeneration.

    PubMed

    Gomes, Sílvia; Numata, Keiji; Leonor, Isabel B; Mano, João F; Reis, Rui L; Kaplan, David L

    2011-05-09

    Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6mer+BSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference among the elastic modulus of the chimeric silk protein, 6mer+BSP, and control films consisting of only the silk component (6mer). The behavior of the 6mer+BSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring, and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca(2+) ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone formation with this new chimeric silk-BSP protein.

  5. Increasing dietary protein requirements in elderly people for optimal muscle and bone health.

    PubMed

    Gaffney-Stomberg, Erin; Insogna, Karl L; Rodriguez, Nancy R; Kerstetter, Jane E

    2009-06-01

    Osteoporosis and sarcopenia are degenerative diseases frequently associated with aging. The loss of bone and muscle results in significant morbidity, so preventing or attenuating osteoporosis and sarcopenia is an important public health goal. Dietary protein is crucial for development of bone and muscle, and recent evidence suggests that increasing dietary protein above the current Recommended Dietary Allowance (RDA) may help maintain bone and muscle mass in older individuals. Several epidemiological and clinical studies point to a salutary effect of protein intakes above the current RDA (0.8 g/kg per day) for adults aged 19 and older. There is evidence that the anabolic response of muscle to dietary protein is attenuated in elderly people, and as a result, the amount of protein needed to achieve anabolism is greater. Dietary protein also increases circulating insulin-like growth factor, which has anabolic effects on muscle and bone. Furthermore, increasing dietary protein increases calcium absorption, which could be anabolic for bone. Available evidence supports a beneficial effect of short-term protein intakes up to 1.6 to 1.8 g/kg per day, although long-term studies are needed to show safety and efficacy. Future studies should employ functional measures indicative of protein adequacy, as well as measures of muscle protein synthesis and maintenance of muscle and bone tissue, to determine the optimal level of dietary protein. Given the available data, increasing the RDA for older individuals to 1.0 to 1.2 g/kg per day would maintain normal calcium metabolism and nitrogen balance without affecting renal function and may represent a compromise while longer-term protein supplement trials are pending.

  6. Bone morphogenetic protein 7 (BMP-7) influences tendon-bone integration in vitro.

    PubMed

    Schwarting, Tim; Lechler, Philipp; Struewer, Johannes; Ambrock, Marius; Frangen, Thomas Manfred; Ruchholtz, Steffen; Ziring, Ewgeni; Frink, Michael

    2015-01-01

    Successful graft ingrowth following reconstruction of the anterior cruciate ligament is governed by complex biological processes at the tendon-bone interface. The aim of this study was to investigate in an in vitro study the effects of bone morphogenetic protein 7 (BMP-7) on tendon-bone integration. To study the biological effects of BMP-7 on the process of tendon-bone-integration, two independent in vitro models were used. The first model involved the mono- and coculture of bovine tendon specimens and primary bovine osteoblasts with and without BMP-7 exposure. The second model comprised the mono- and coculture of primary bovine osteoblasts and fibroblasts. Alkaline phosphatase (ALP), lactate dehydrogenase (LDH), lactate and osteocalcin (OCN) were analyzed by ELISA. Histological analysis and electron microscopy of the tendon specimens were performed. In both models, positive effects of BMP-7 on ALP enzyme activity were observed (p<0.001). Additionally, similar results were noted for LDH activity and lactate concentration. BMP-7 stimulation led to a significant increase in OCN expression. Whereas the effects of BMP-7 on tendon monoculture peaked during an early phase of the experiment (p<0.001), the cocultures showed a maximal increase during the later stages (p<0.001). The histological analysis showed a stimulating effect of BMP-7 on extracellular matrix formation. Organized ossification zones and calcium carbonate-like structures were only observed in the BMP-stimulated cell cultures. This study showed the positive effects of BMP-7 on the biological process of tendon-bone integration in vitro. Histological signs of improved mineralization were paralleled by increased rates of osteoblast-specific protein levels in primary bovine osteoblasts and fibroblasts. Our findings indicated a role for BMP-7 as an adjuvant therapeutic agent in the treatment of ligamentous injuries, and they emphasized the importance of the transdifferentiation process of tendinous fibroblasts

  7. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling.

    PubMed

    Mishina, Yuji; Starbuck, Michael W; Gentile, Michael A; Fukuda, Tomokazu; Kasparcova, Viera; Seedor, J Gregory; Hanks, Mark C; Amling, Michael; Pinero, Gerald J; Harada, Shun-ichi; Behringer, Richard R

    2004-06-25

    Bone morphogenetic proteins (BMPs) function during various aspects of embryonic development including skeletogenesis. However, their biological functions after birth are less understood. To investigate the role of BMPs during bone remodeling, we generated a postnatal osteoblast-specific disruption of Bmpr1a that encodes the type IA receptor for BMPs in mice. Mutant mice were smaller than controls up to 6 months after birth. Irregular calcification and low bone mass were observed, but there were normal numbers of osteoblasts. The ability of the mutant osteoblasts to form mineralized nodules in culture was severely reduced. Interestingly, bone mass was increased in aged mutant mice due to reduced bone resorption evidenced by reduced bone turnover. The mutant mice lost more bone after ovariectomy likely resulting from decreased osteoblast function which could not overcome ovariectomy-induced bone resorption. In organ culture of bones from aged mice, ablation of the Bmpr1a gene by adenoviral Cre recombinase abolished the stimulatory effects of BMP4 on the expression of lysosomal enzymes essential for osteoclastic bone resorption. These results demonstrate essential and age-dependent roles for BMP signaling mediated by BMPRIA (a type IA receptor for BMP) in osteoblasts for bone remodeling.

  8. Differential proteomic analysis of a human breast tumor and its matched bone metastasis identifies cell membrane and extracellular proteins associated with bone metastasis.

    PubMed

    Dumont, Bruno; Castronovo, Vincent; Peulen, Olivier; Blétard, Noëlla; Clézardin, Philippe; Delvenne, Philippe; De Pauw, Edwin A; Turtoi, Andrei; Bellahcène, Akeila

    2012-04-06

    The classical fate of metastasizing breast cancer cells is to seed and form secondary colonies in bones. The molecules closely associated with these processes are predominantly present at the cell surface and in the extracellular space, establishing the first contacts with the target tissue. In this study, we had the rare opportunity to analyze a bone metastatic lesion and its corresponding breast primary tumor obtained simultaneously from the same patient. Using mass spectrometry, we undertook a proteomic study on cell surface and extracellular protein-enriched material. We provide a repertoire of significantly modulated proteins, some with yet unknown roles in the bone metastatic process as well as proteins notably involved in cancer cell invasiveness and in bone metabolism. The comparison of these clinical data with those previously obtained using a human osteotropic breast cancer cell line highlighted an overlapping group of proteins. Certain differentially expressed proteins are validated in the present study using immunohistochemistry on a retrospective collection of breast tumors and matched bone metastases. Our exclusive set of selected proteins supports the setup of further investigations on both clinical samples and experimental bone metastasis models that will help to reveal the finely coordinated expression of proteins that favor the development of metastases in the bone microenvironment.

  9. * Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering.

    PubMed

    Cunniffe, Gráinne M; Gonzalez-Fernandez, Tomas; Daly, Andrew; Sathy, Binulal N; Jeon, Oju; Alsberg, Eben; Kelly, Daniel J

    2017-09-01

    Regeneration of complex bone defects remains a significant clinical challenge. Multi-tool biofabrication has permitted the combination of various biomaterials to create multifaceted composites with tailorable mechanical properties and spatially controlled biological function. In this study we sought to use bioprinting to engineer nonviral gene activated constructs reinforced by polymeric micro-filaments. A gene activated bioink was developed using RGD-γ-irradiated alginate and nano-hydroxyapatite (nHA) complexed to plasmid DNA (pDNA). This ink was combined with bone marrow-derived mesenchymal stem cells (MSCs) and then co-printed with a polycaprolactone supporting mesh to provide mechanical stability to the construct. Reporter genes were first used to demonstrate successful cell transfection using this system, with sustained expression of the transgene detected over 14 days postbioprinting. Delivery of a combination of therapeutic genes encoding for bone morphogenic protein and transforming growth factor promoted robust osteogenesis of encapsulated MSCs in vitro, with enhanced levels of matrix deposition and mineralization observed following the incorporation of therapeutic pDNA. Gene activated MSC-laden constructs were then implanted subcutaneously, directly postfabrication, and were found to support superior levels of vascularization and mineralization compared to cell-free controls. These results validate the use of a gene activated bioink to impart biological functionality to three-dimensional bioprinted constructs.

  10. Microsphere-Based Scaffolds Encapsulating Tricalcium Phosphate And Hydroxyapatite For Bone Regeneration

    PubMed Central

    Gupta, Vineet; Lyne, Dina V.; Barragan, Marilyn; Berkland, Cory J.; Detamore, Michael S.

    2016-01-01

    Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix (ECM) components relevant to bone tissue compared to the “blank” (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration. PMID:27272903

  11. Orthobiologics in Pediatric Sports Medicine.

    PubMed

    Bray, Christopher C; Walker, Clark M; Spence, David D

    2017-07-01

    Orthobiologics are biological substances that allow injured muscles, tendons, ligaments, and bone to heal more quickly. They are found naturally in the body; at higher concentrations they can aid in the healing process. These substances include autograft bone, allograft bone, demineralized bone matrix, bone morphogenic proteins, growth factors, stem cells, plasma-rich protein, and ceramic grafts. Their use in sports medicine has exploded in efforts to increase graft incorporation, stimulate healing, and get athletes back to sport with problems including anterior cruciate ligament ruptures, tendon ruptures, cartilage injuries, and fractures. This article reviews orthobiologics and their applications in pediatric sports medicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength.

    PubMed

    Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René

    2010-06-01

    Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.

    PubMed

    McCarthy, Bryce; Yuan, Yuan; Koria, Piyush

    2016-07-08

    Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.

  14. Morphogen-based simulation model of ray growth and joint patterning during fin development and regeneration.

    PubMed

    Rolland-Lagan, Anne-Gaëlle; Paquette, Mathieu; Tweedle, Valerie; Akimenko, Marie-Andrée

    2012-03-01

    The fact that some organisms are able to regenerate organs of the correct shape and size following amputation is particularly fascinating, but the mechanism by which this occurs remains poorly understood. The zebrafish (Danio rerio) caudal fin has emerged as a model system for the study of bone development and regeneration. The fin comprises 16 to 18 bony rays, each containing multiple joints along its proximodistal axis that give rise to segments. Experimental observations on fin ray growth, regeneration and joint formation have been described, but no unified theory has yet been put forward to explain how growth and joint patterns are controlled. We present a model for the control of fin ray growth during development and regeneration, integrated with a model for joint pattern formation, which is in agreement with published, as well as new, experimental data. We propose that fin ray growth and joint patterning are coordinated through the interaction of three morphogens. When the model is extended to incorporate multiple rays across the fin, it also accounts for how the caudal fin acquires its shape during development, and regains its correct size and shape following amputation.

  15. Strategies for delivering bone morphogenetic protein for bone healing.

    PubMed

    Begam, Howa; Nandi, Samit Kumar; Kundu, Biswanath; Chanda, Abhijit

    2017-01-01

    Bone morphogenetic proteins (BMPs) are the most significant growth factors that belong to the Transforming Growth Factor Beta (TGF-β) super-family. Though more than twenty members of this family have been identified so far in humans, Food and Drug Administration (FDA) approved two growth factors: BMP-2 and BMP-7 for treatments of spinal fusion and long-bone fractures with collagen carriers. Currently BMPs are clinically used in spinal fusion, oral and maxillofacial surgery and also in the repair of long bone defects. The efficiency of BMPs depends a lot on the selection of suitable carriers. At present, different types of carrier materials are used: natural and synthetic polymers, calcium phosphate and ceramic-polymer composite materials. Number of research articles has been published on the minute intricacies of the loading process and release kinetics of BMPs. Despite the significant evidence of its potential for bone healing demonstrated in animal models, future clinical investigations are needed to define dose, scaffold and route of administration. The efficacy and application of BMPs in various levels with a proper carrier and dose is yet to be established. The present article collates various aspects of success and limitation and identifies the prospects and challenges associated with the use of BMPs in orthopaedic surgery. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. High Protein Intake Improves Insulin Sensitivity but Exacerbates Bone Resorption in Immobility (WISE Study)

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie

    2012-01-01

    Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (p<0.05) in CON. Isocaloric high protein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: p<0.001). Bone formation markers were unaffected by high protein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.

  17. Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells.

    PubMed

    Taşlı, P Neslihan; Aydın, Safa; Yalvaç, Mehmet Emir; Sahin, Fikrettin

    2014-03-01

    Bone morphogenetic proteins (BMPs) initiate, promote, and maintain odontogenesis and osteogenesis. In this study, we studied the effect of bone morphogenic protein 2 (BMP 2) and bone morphogenic protein 7 (BMP 7) as differentiation inducers in tooth and bone regeneration. We compared the effect of BMP 2 and BMP 7 on odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs). Third molar-derived hTGSCs were characterized with mesenchymal stem cell surface markers by flow cytometry. BMP 2 and BMP 7 were transfected into hTGSCs and the cells were seeded onto six-well plates. One day after the transfection, hTGSCs were treated with odontogenic and osteogenic mediums for 14 days. For confirmation of odontogenic and osteogenic differentiation, mRNA levels of BMP2, BMP 7, collagen type 1 (COL1A), osteocalsin (OCN), and dentin sialophosphoprotein (DSPP) genes were measured by quantitative real-time PCR. In addition to this, immunocytochemistry was performed by odontogenic and osteogenic antibodies and mineralization obtained by von Kossa staining. Our results showed that the BMP 2 and BMP 7 both promoted odontogenic and osteogenic differentiation of hTGSCs. Data indicated that BMP 2 treatment and BMP 7 treatment induce odontogenic differentiation without affecting each other, whereas they induce osteogenic differentiation by triggering expression of each other. These findings provide a feasible tool for tooth and bone tissue engineering.

  18. Gradual downhill running improves age-related skeletal muscle and bone weakness: implication of autophagy and bone morphogenetic proteins.

    PubMed

    Kim, Jeong-Seok; Lee, Young-Hee; Yi, Ho-Keun

    2016-12-01

    What is the central question of this study? Exercise training by running has an effect on age-related muscle and bone wasting that improves physical activity and quality of life in the elderly. However, the effect of downhill running on age-related muscle and bone wasting, and its mechanisms, are unclear. What is the main finding and its importance? Gradual downhill running can improve skeletal muscle growth and bone formation by enhancing autophagy and bone morphogenetic protein signalling in aged rats. Therefore, downhill running exercise might be a practical intervention to improve skeletal muscle and bone protection in the elderly. Recent evidence suggests that autophagy and the bone morphogenetic protein (BMP) signalling pathway regulate skeletal muscle growth and bone formation in aged rats. However, the effect of downhill running on muscle growth and bone formation is not well understood. Thus, we investigated the effect of downhill and uphill running on age-related muscle and bone weakness. Young and late middle-aged rats were randomly assigned to control groups (young, YC; and late middle-aged, LMC) and two types of running training groups (late middle-aged downhill, LMD; and late middle-aged uphill, LMU). Training was progressively carried out on a treadmill at a speed of 21 m min -1 with a slope of +10 deg for uphill training versus 16 m min -1 with a slope of -16 deg for downhill training, both for 60 min day -1 , 5 days week -1 for 8 weeks. Downhill and uphill training increased autophagy-related protein 5, microtubule-associated protein light chain, Beclin-1 and p62 proteins in aged rats. In addition, superoxide dismutase, haem oxygenase-1 and the BMP signalling pathway were elevated. Phosphorylation of mammalian target of rapamycin and myogenic differentiation were increased significantly in the LMD and LMU groups. Consequently, in the femur, BMP-2, BMP-7 and autophagy molecules were highly expressed in the LMD and LMU groups. These results

  19. Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth.

    PubMed

    Poh, Chye Khoon; Shi, Zhilong; Tan, Xiao Wei; Liang, Zhen Chang; Foo, Xue Mei; Tan, Hark Chuan; Neoh, Koon Gee; Wang, Wilson

    2011-09-01

    Cobalt chromium (CoCr) alloys are widely used in orthopedic practice, however, lack of integration into the bone for long-term survival often occurs, leading to implant failure. Revision surgery to address such a failure involves increased risks, complications, and costs. Advances to enhancement of bone-implant interactions would improve implant longevity and long-term results. Therefore, we investigated the effects of BMP peptide covalently grafted to CoCr alloy on osteogenesis. The BMP peptide was derived from the knuckle epitope of bone morphogenic protein-2 (BMP-2) and was conjugated via a cysteine amino acid at the N-terminus. X-ray photoelectron spectroscopy and o-phthaldialdehyde were used to verify successful grafting at various stages of surface functionalization. Surface topography was evaluated from the surface profile determined by atomic force microscopy. Osteoblastic cells (MC3T3-E1) were seeded on the substrates, and the effects of BMP peptide on osteogenic differentiation were evaluated by measuring alkaline phosphatase (ALP) activity and calcium mineral deposition. The functionalized surfaces showed a twofold increase in ALP activity after 2 weeks incubation and a fourfold increase in calcium content after 3 weeks incubation compared to the pristine substrate. These findings are potentially useful in the development of improved CoCr implants for use in orthopedic applications. Copyright © 2011 Orthopaedic Research Society.

  20. Targeting G-Protein Signaling for the Therapeutics of Prostate Tumor Bone Metastases and the Associated Chronic Bone Pain

    DTIC Science & Technology

    2015-09-01

    results in increased activity/expression of key pain-sensing receptor channels, such as TRPV1 , such that the channels are constitutively activated...Keywords: Prostate Cancer Bone Metastasis, Bone Cancer Pain, Heterotrimeric G protein betagamma subunits, G protein coupled receptors (GPCRs), TRPV1 ...vitro, as well as mediating GPCR-regulated TRPV1 channel function in cultured mouse sensory neurons (Aim 1) Major Goal/Objective 1: Determine the

  1. Targeting G-Protein Signaling for the Therapeutics of Prostate Tumor Bone Metastases and the Associated Chronic Bone Pain

    DTIC Science & Technology

    2013-07-01

    results in increased activity/expression of key pain-sensing receptor channels, such as TRPV1 , such that the channels are constitutively activated...Keywords: Prostate Cancer Bone Metastasis, Bone Cancer Pain, Heterotrimeric G protein betagamma subunits, G protein coupled receptors (GPCRs), TRPV1 ...cell growth, migration and invasion in vitro, as well as mediating GPCR-regulated TRPV1 channel function in cultured mouse sensory neurons (Aim 1

  2. Cilia/Ift protein and motor -related bone diseases and mouse models.

    PubMed

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.

  3. Engineered decellularized matrices to instruct bone regeneration processes.

    PubMed

    Papadimitropoulos, Adam; Scotti, Celeste; Bourgine, Paul; Scherberich, Arnaud; Martin, Ivan

    2015-01-01

    Despite the significant progress in the field of bone tissue engineering, cell-based products have not yet reached the stage of clinical adoption. This is due to the uncertain advantages from the standard-of-care, combined with challenging cost-and regulatory-related issues. Novel therapeutic approaches could be based on exploitation of the intrinsic regenerative capacity of bone tissue, provided the development of a deeper understanding of its healing mechanisms. While it is well-established that endogenous progenitors can be activated toward bone formation by overdoses of single morphogens, the challenge to stimulate the healing processes by coordinated and controlled stimulation of specific cell populations remains open. Here, we review the recent approaches to generate osteoinductive materials based on the use of decellularized extracellular matrices (ECM) as reservoirs of multiple factors presented at physiological doses and through the appropriate ligands. We then propose the generation of customized engineered and decellularized ECM (i) as a tool to better understand the processes of bone regeneration and (ii) as safe and effective "off-the-shelf" bone grafts for clinical use. This article is part of a Special Issue entitled Stem Cells and Bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Alternatives to Autologous Bone Graft in Alveolar Cleft Reconstruction: The State of Alveolar Tissue Engineering.

    PubMed

    Liang, Fan; Leland, Hyuma; Jedrzejewski, Breanna; Auslander, Allyn; Maniskas, Seija; Swanson, Jordan; Urata, Mark; Hammoudeh, Jeffrey; Magee, William

    2018-05-01

    Alveolar cleft reconstruction has historically relied on autologous iliac crest bone grafting (ICBG), but donor site morbidity, pain, and prolonged hospitalization have prompted the search for bone graft substitutes. The authors evaluated bone graft substitutes with the highest levels of evidence, and highlight the products that show promise in alveolar cleft repair and in maxillary augmentation. This comprehensive review guides the craniofacial surgeon toward safe and informed utilization of biomaterials in the alveolar cleft.A literature search was performed to identify in vitro human studies that fulfilled the following criteria: Level I or Level II of evidence, ≥30 subjects, and a direct comparison between a autologous bone graft and a bone graft substitute. A second literature search was performed that captured all studies, regardless of level of evidence, which evaluated bone graft substitutes for alveolar cleft repair or alveolar augmentation for dental implants. Adverse events for each of these products were tabulated as well.Sixteen studies featuring 6 bone graft substitutes: hydroxyapatite, demineralized bone matrix (DBM), β-tricalcium phosphate (TCP), calcium phosphate, recombinant human bone morphogenic protein-2 (rhBMP-2), and rhBMP7 fit the inclusion criteria for the first search. Through our second search, the authors found that DBM, TCP, rhBMP-2, and rhBMP7 have been studied most extensively in the alveolar cleft literature, though frequently in studies using less rigorous methodology (Level III evidence or below). rhBMP-2 was the best studied and showed comparable efficacy to ICBG in terms of volume of bone regeneration, bone density, and capacity to accommodate tooth eruption within the graft site. Pricing for products ranged from $290 to $3110 per 5 mL.The balance between innovation and safety is a complex process requiring constant vigilance and evaluation. Here, the authors profile several bone graft substitutes that demonstrate the most

  5. Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering.

    PubMed

    Babitha, S; Annamalai, Meenakshi; Dykas, Michal Marcin; Saha, Surajit; Poddar, Kingshuk; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Venkatesan, Thirumalai; Korrapati, Purna Sai

    2018-04-01

    A biomimetic Zein polydopamine based nanofiber scaffold was fabricated to deliver bone morphogenic protein-2 (BMP-2) peptide conjugated titanium dioxide nanoparticles in a sustained manner for investigating its osteogenic differentiation potential. To prolong its retention time at the target site, BMP-2 peptide has been conjugated to titanium dioxide nanoparticles owing to its high surface to volume ratio. The effect of biochemical cues from BMP-2 peptide and nanotopographical stimulation of electrospun Zein polydopamine nanofiber were examined for its enhanced osteogenic expression of human fetal osteoblast cells. The sustained delivery of bioactive signals, improved cell adhesion, mineralization, and differentiation could be attributed to its highly interconnected nanofibrous matrix with unique material composition. Further, the expression of osteogenic markers revealed that the fabricated nanofibrous scaffold possess better cell-biomaterial interactions. These promising results demonstrate the potential of the composite nanofibrous scaffold as an effective biomaterial substrate for bone regeneration. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Multi-protein Delivery by Nanodiamonds Promotes Bone Formation

    PubMed Central

    Moore, L.; Gatica, M.; Kim, H.; Osawa, E.; Ho, D.

    2013-01-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE® for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation. PMID:24045646

  7. Multi-protein delivery by nanodiamonds promotes bone formation.

    PubMed

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.

  8. Amniotic fluid-derived mesenchymal stem cells lead to bone differentiation when cocultured with dental pulp stem cells.

    PubMed

    De Rosa, Alfredo; Tirino, Virginia; Paino, Francesca; Tartaglione, Antonella; Mitsiadis, Thimios; Feki, Anis; d'Aquino, Riccardo; Laino, Luigi; Colacurci, Nicola; Papaccio, Gianpaolo

    2011-03-01

    Mesenchymal stem cells are present in many tissues of the human body, including amniotic fluid (AF) and dental pulp (DP). Stem cells of both AF and DP give rise to a variety of differentiated cells. In our experience, DP stem cells (DPSCs) display a high capacity to produce bone. Therefore, our aim was to investigate if AF-derived stem cells (AFSCs) were able to undergo bone differentiation in the presence of DPSCs. AFSCs were seeded under three different conditions: (i) cocultured with DPSCs previously differentiated into osteoblasts; (ii) cultured in the conditioned medium of osteoblast-differentiated DPSCs; (iii) cultured in the osteogenic medium supplemented with vascular endothelial growth factor and bone morphogenetic protein-2 (BMP-2). Results showed that AFSCs were positive for mesenchymal markers, and expressed high levels of Tra1-60, Tra1-80, BMPR1, BMPR2, and BMP-2. In contrast, AFSCs were negative for epithelial and hematopoietic/endothelial markers. When AFSCs were cocultured with DPSCs-derived osteoblasts, they differentiated into osteoblasts. A similar effect was observed when AFSCs were cultured in the presence of a conditioned medium originated from DPSCs. We found that osteoblasts derived from DPSCs released large amounts of BMP-2 and vascular endothelial growth factor into the culture medium and that those morphogens significantly upregulate RUNX-2 gene, stimulating osteogenesis. This study highlights the mechanisms of osteogenesis and strongly suggests that the combination of AFSCs with DPSCs may provide a rich source of soluble proteins useful for bone engineering purposes.

  9. Bone morphogenetic protein-2 and bone therapy: successes and pitfalls.

    PubMed

    Poon, Bonnie; Kha, Tram; Tran, Sally; Dass, Crispin R

    2016-02-01

    Bone morphogenetic proteins (BMPs), more specifically BMP-2, are being increasingly used in orthopaedic surgery due to advanced research into osteoinductive factors that may enhance and improve bone therapy. There are many areas in therapy that BMP-2 is being applied to, including dental treatment, open tibial fractures, cancer and spinal surgery. Within these areas of treatment, there are many reports of successes and pitfalls. This review explores the use of BMP-2 and its successes, pitfalls and future prospects in bone therapy. The PubMed database was consulted to compile this review. With successes in therapy, there were descriptions of a more rapid healing time with no signs of rejection or infection attributed to BMP-2 treatment. Pitfalls included BMP-2 'off-label' use, which lead to various adverse effects. Our search highlighted that optimising treatment with BMP-2 is a direction that many researchers are exploring, with areas of current research interest including concentration and dose of BMP-2, carrier type and delivery. © 2015 Royal Pharmaceutical Society.

  10. Morphogen and community effects determine cell fates in response to BMP4 signaling in human embryonic stem cells.

    PubMed

    Nemashkalo, Anastasiia; Ruzo, Albert; Heemskerk, Idse; Warmflash, Aryeh

    2017-09-01

    Paracrine signals maintain developmental states and create cell fate patterns in vivo and influence differentiation outcomes in human embryonic stem cells (hESCs) in vitro Systematic investigation of morphogen signaling is hampered by the difficulty of disentangling endogenous signaling from experimentally applied ligands. Here, we grow hESCs in micropatterned colonies of 1-8 cells ('µColonies') to quantitatively investigate paracrine signaling and the response to external stimuli. We examine BMP4-mediated differentiation in µColonies and standard culture conditions and find that in µColonies, above a threshold concentration, BMP4 gives rise to only a single cell fate, contrary to its role as a morphogen in other developmental systems. Under standard culture conditions BMP4 acts as a morphogen but this requires secondary signals and particular cell densities. We find that a 'community effect' enforces a common fate within µColonies, both in the state of pluripotency and when cells are differentiated, and that this effect allows a more precise response to external signals. Using live cell imaging to correlate signaling histories with cell fates, we demonstrate that interactions between neighbors result in sustained, homogenous signaling necessary for differentiation. © 2017. Published by The Company of Biologists Ltd.

  11. Analysis of bone protein and mineral composition in bone disease using synchrotron infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Hamerman, David; Chance, Mark R.; Carlson, Cathy S.

    1999-10-01

    by lower mineral/protein ratios and higher acid phosphate content. This immature bone may also be a symptom of slower bone formation rates related to estrogen deficiency.

  12. Targeted Knockdown of Bone Morphogenetic Protein Signaling within Neural Progenitors Protects the Brain and Improves Motor Function following Postnatal Hypoxia-Ischemia

    PubMed Central

    Dettman, Robert W.; Birch, Derin; Fernando, Augusta; Kessler, John A.; Dizon, Maria L.V.

    2018-01-01

    Hypoxic-ischemic injury (HI) to the neonatal human brain results in myelin loss that, in some children, can manifest as cerebral palsy. Previously, we had found that neuronal overexpression of the bone morphogenic protein (BMP) inhibitor noggin during development increased oligodendroglia and improved motor function in an experimental model of HI utilizing unilateral common carotid artery ligation followed by hypoxia. As BMPs are known to negatively regulate oligodendroglial fate specification of neural stem cells and alter differentiation of committed oligodendroglia, BMP signaling is likely an important mechanism leading to myelin loss. Here, we showed that BMP signaling is upregulated within oligodendroglia of the neonatal brain. We tested the hypothesis that inhibition of BMP signaling specifically within neural progenitor cells (NPCs) is sufficient to protect oligodendroglia. We conditionally deleted the BMP receptor 2 subtype (BMPR2) in NG2-expressing cells after HI. We found that BMPR2 deletion globally protects the brain as assessed by MRI and protects motor function as assessed by digital gait analysis, and that conditional deletion of BMPR2 maintains oligodendrocyte marker expression by immunofluorescence and Western blot and prevents loss of oligodendroglia. Finally, BMPR2 deletion after HI results in an increase in noncompacted myelin. Thus, our data indicate that inhibition of BMP signaling specifically in NPCs may be a tractable strategy to protect the newborn brain from HI. PMID:29324456

  13. Macrophage bone morphogenic protein receptor 2 depletion in idiopathic pulmonary fibrosis and Group III pulmonary hypertension.

    PubMed

    Chen, Ning-Yuan; D Collum, Scott; Luo, Fayong; Weng, Tingting; Le, Thuy-Trahn; M Hernandez, Adriana; Philip, Kemly; Molina, Jose G; Garcia-Morales, Luis J; Cao, Yanna; Ko, Tien C; Amione-Guerra, Javier; Al-Jabbari, Odeaa; Bunge, Raquel R; Youker, Keith; Bruckner, Brian A; Hamid, Rizwan; Davies, Jonathan; Sinha, Neeraj; Karmouty-Quintana, Harry

    2016-08-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. The development of pulmonary hypertension (PH) is considered the single most significant predictor of mortality in patients with chronic lung diseases. The processes that govern the progression and development of fibroproliferative and vascular lesions in IPF are not fully understood. Using human lung explant samples from patients with IPF with or without a diagnosis of PH as well as normal control tissue, we report reduced BMPR2 expression in patients with IPF or IPF+PH. These changes were consistent with dampened P-SMAD 1/5/8 and elevated P-SMAD 2/3, demonstrating reduced BMPR2 signaling and elevated TGF-β activity in IPF. In the bleomycin (BLM) model of lung fibrosis and PH, we also report decreased BMPR2 expression compared with control animals that correlated with vascular remodeling and PH. We show that genetic abrogation or pharmacological inhibition of interleukin-6 leads to diminished markers of fibrosis and PH consistent with elevated levels of BMPR2 and reduced levels of a collection of microRNAs (miRs) that are able to degrade BMPR2. We also demonstrate that isolated bone marrow-derived macrophages from BLM-exposed mice show reduced BMPR2 levels upon exposure with IL6 or the IL6+IL6R complex that are consistent with immunohistochemistry showing reduced BMPR2 in CD206 expressing macrophages from lung sections from IPF and IPF+PH patients. In conclusion, our data suggest that depletion of BMPR2 mediated by a collection of miRs induced by IL6 and subsequent STAT3 phosphorylation as a novel mechanism participating to fibroproliferative and vascular injuries in IPF. Copyright © 2016 the American Physiological Society.

  14. Dexamethasone Enhances Osteogenic Differentiation of Bone Marrow- and Muscle-Derived Stromal Cells and Augments Ectopic Bone Formation Induced by Bone Morphogenetic Protein-2

    PubMed Central

    Yuasa, Masato; Yamada, Tsuyoshi; Taniyama, Takashi; Masaoka, Tomokazu; Xuetao, Wei; Yoshii, Toshitaka; Horie, Masaki; Yasuda, Hiroaki; Uemura, Toshimasa; Okawa, Atsushi; Sotome, Shinichi

    2015-01-01

    We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without 10-7 M dexamethasone and then differentiated under osteogenic conditions with dexamethasone and BMP-2. The effects of dexamethasone on cell proliferation and osteogenic differentiation, and also on ectopic bone formation induced by BMP-2, were analyzed. Dexamethasone affected not only the proliferation rate but also the subpopulation composition of BMSCs and MuSCs, and subsequently augmented their osteogenic capacity during osteogenic differentiation. During osteogenic induction by BMP-2, dexamethasone also markedly affected cell proliferation in both BMSCs and MuSCs. In an in vivo ectopic bone formation model, bone formation in muscle-implanted scaffolds containing dexamethasone and BMP-2 was more than two fold higher than that in scaffolds containing BMP-2 alone. Our results suggest that dexamethasone potently enhances the osteogenic capability of BMP-2 and may thus decrease the quantity of BMP-2 required for clinical application, thereby reducing the complications caused by excessive doses of BMP-2. Highlights: 1. Dexamethasone induced selective proliferation of bone marrow- and muscle-derived cells with higher differentiation potential. 2. Dexamethasone enhanced the osteogenic capability of bone marrow- and muscle-derived cells by altering the subpopulation composition. 3. Dexamethasone augmented ectopic bone formation induced by bone morphogenetic protein-2. PMID:25659106

  15. Dietary protein, calcium metabolism and bone health in humans

    USDA-ARS?s Scientific Manuscript database

    Protein is the major structural constituent of bone (50% by volume). But it is also a major source of metabolic acid, especially protein from animal sources because it contains sulfur amino acids that generate sulfuric acid. Increased potential renal acid load has been closely associated with increa...

  16. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus

    1997-01-01

    The long-term goal for this program is to determine the structural and functional relationships of bone proteins and proteins that interact with bone. This information will used to design useful pharmacological compounds that will have a beneficial effect in osteoporotic patients and in the osteoporotic-like effects experienced on long duration space missions. The first phase of this program, funded under a cooperative research agreement with NASA through the Texas Medical Center, aimed to develop powerful recombinant expression systems and purification methods for production of large amounts of target proteins. Proteins expressed in sufficient'amount and purity would be characterized by a variety of structural methods, and made available for crystallization studies. In order to increase the likelihood of crystallization and subsequent high resolution solution of structures, we undertook to develop expression of normal and mutant forms of proteins by bacterial and mammalian cells. In addition to the main goals of this program, we would also be able to provide reagents for other related studies, including development of anti-fibrotic and anti-metastatic therapeutics.

  17. Short term effects on bone quality associated with consumption of soy protein isolate and other dietary protein sources in rapidly growing female rats

    USDA-ARS?s Scientific Manuscript database

    Beneficial effects of soy protein consumption on bone quality have been reported. The effects of other dietary protein sources such as whey protein hydrolysate (WPH) and rice protein isolate (RPI) on bone growth has been less well examined. The current study compared effects of feeding soy protein i...

  18. Effect of the “protein diet” and bone tissue.

    PubMed

    Nascimento da Silva, Zoraide; Azevedo de Jesuz, Vanessa; De Salvo Castro, Eduardo; Soares da Costa, Carlos Alberto; Teles Boaventura, Gilson; Blondet de Azeredo, Vilma

    2014-01-01

    The aim of this study is to evaluate the effect of the hyperproteic diet consumption on bone tissue. The study was conducted during sixty days. Twenty eight Wistar albinus rats, adults, originated from Laboratory of Experimental Nutrition were divided in four groups: (n = 7); Control 1 (C1), Control 2 (C2), Hyperproteic 1 (HP1) e Hyperproteic 2 (HP2). The C2 and HP2 groups were submitted to 30% of food restriction. The hyperproteic diet was based on the Atkins diet and prepared to simulate the protein diet. At the end of the study the animals were anesthetized to performer bone densitometry analyses by DEXA and blood and tissue collection. Serum and bone minerals analyses were conducted by colorimetric methods in automated equipment. The total bone mineral density (BMD) of the pelvis and the spine of the food restriction groups (HP2 e C2) were lower (p < 0.05) than C1 e HP1 groups. While the femur BMD of the HP2 was lower (p < 0.05) related to others groups. It had been observed reduction (p < 0.05) in the medium point of the width of femur diaphysis and in bone calcium level in the hyperproteic groups (HP1 e HP2). It was observed similar effect on the osteocalcin level, that presented lower (p < 0.05) in the hyperproteic groups. The insulin level was lower only in HP2 and serum calcium of the HP1 and HP2 groups was lower than C1. The protein diet promotes significant bone change on femur and in the hormones levels related to bone synthesis and maintenance of this tissue.

  19. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2

    PubMed Central

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn

    2015-01-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation. PMID:25813520

  20. Enhanced osteoinductive capacity and decreased variability by enrichment of demineralized bone matrix with a bone protein extract.

    PubMed

    Ramis, Joana M; Calvo, Javier; Matas, Aina; Corbillo, Cristina; Gayà, Antoni; Monjo, Marta

    2018-06-28

    Osteoinductive capacity of demineralized bone matrix (DBM) is sometimes insufficient or shows high variability between different batches of DBM. Here, we tried to improve its osteoinductive activity by alkali-urea or trypsin treatment but this strategy was unsuccessful. Then, we tested the enrichment of DBM with a bone protein extract (BPE) containing osteogenic growth factors comparing two sources: cortical bone powder and DBM. The osteoinductive capacity (alkaline phosphatase activity) of the obtained BPEs was evaluated in vitro in C2C12 cells. Specific protein levels present in the different BPE was determined by enzyme-linked immunosorbent assay or by a multiplex assay. BPE from cortical bone powder showed a lack of osteoinductive effect, in agreement with the low content on osteoinductive factors. In contrast, BPE from DBM showed osteoinductive activity but also high variability among donors. Thus, we decided to enrich DBM with BPE obtained from a pool of DBM from different donors. Following this strategy, we achieved increased osteoinductive activity and lower variability among donors. In conclusion, the use of a BPE obtained from a pool of demineralized bone to enrich DBM could be used to increase its osteoinductive effect and normalize the differences between donors.

  1. Effects of soy protein isolate and moderate exercise on bone turnover and bone mineral density in postmenopausal women

    PubMed Central

    Evans, Ellen M.; Racette, Susan B.; Van Pelt, Rachael E.; Peterson, Linda R.; Villareal, Dennis T.

    2008-01-01

    Objective The aim of this study was to assess the independent and additive effects of soy protein isolate (SPI) and moderate-intensity exercise (EX) on bone turnover and bone mineral density (BMD). Design This study used a placebo-controlled, double-blind (soy), randomized 2 (SPI vs milk protein isolate [MPI]) × 2 (EX vs no EX) design. Sixty-one postmenopausal women were randomized, and 43 (62 ± 5 y) completed the 9-month intervention (SPI, n = 10; MPI, n = 12; SPI + EX, n = 11; MPI + EX, n = 10). Serum C-terminal cross-linked telopeptides of type I collagen and serum bone-specific alkaline phosphatase were measured as markers of bone resorption and formation, respectively. BMD was measured by dual-energy x-ray absorptiometry. Results At 9 months, SPI reduced serum C-terminal cross-linked telopeptides (−13.3% ± 15.3% vs −1.5% ± 21.0%; P = 0.02) and serum bone-specific alkaline phosphatase (−4.7% ± 14.7% vs 6.5% ± 17.7%; P = 0.02) compared to milk protein isolate. EX attenuated the reduction in serum C-terminal cross-linked telopeptides (−1.9% ± 21.6% vs −12.4% ± 15.3%; P = 0.04); however, no EX effects were apparent in serum bone-specific alkaline phosphatase at 9 months (2.8% ± 16.1% vs −1.0% ± 18.3%; P = 0.28). Neither SPI nor EX affected BMD at any site; however, change in BMD was related to change in fat mass (r = 0.40, P < 0.05). Conclusions In postmenopausal women (1) SPI reduces bone turnover with no impact on BMD over 9 months; (2) moderate-intensity endurance exercise training did not favorably alter bone turnover and had no impact on BMD; and (3) there were no additive effects of soy and exercise on bone turnover or BMD. PMID:17213752

  2. Promotion of bone growth by dietary soy protein isolate: Comparision with dietary casein, whey hydrolysate and rice protein isolate in growing female rats

    USDA-ARS?s Scientific Manuscript database

    The effects of different dietary protein sources(casein (CAS), soy protein isolate (SPI), whey protein hydrolysate (WPH) and rice protein isolate (RPI)) on bone were studied in intact growing female rats and in ovarectomized (OVX) rats showing sex steroid deficiency-induced bone loss. In addition, S...

  3. Protein-based forensic identification using genetically variant peptides in human bone.

    PubMed

    Mason, Katelyn Elizabeth; Anex, Deon; Grey, Todd; Hart, Bradley; Parker, Glendon

    2018-04-22

    Bone tissue contains organic material that is useful for forensic investigations and may contain preserved endogenous protein that can persist in the environment for extended periods of time over a range of conditions. Single amino acid polymorphisms in these proteins reflect genetic information since they result from non-synonymous single nucleotide polymorphisms (SNPs) in DNA. Detection of genetically variant peptides (GVPs) - those peptides that contain amino acid polymorphisms - in digests of bone proteins allows for the corresponding SNP alleles to be inferred. Resulting genetic profiles can be used to calculate statistical measures of association between a bone sample and an individual. In this study proteomic analysis on rib cortical bone samples from 10 recently deceased individuals demonstrates this concept. A straight-forward acidic demineralization protocol yielded proteins that were digested with trypsin. Tryptic digests were analyzed by liquid chromatography mass spectrometry. A total of 1736 different proteins were identified across all resulting datasets. On average, individual samples contained 454±121 (x¯±σ) proteins. Thirty-five genetically variant peptides were identified from 15 observed proteins. Overall, 134 SNP inferences were made based on proteomically detected GVPs, which were confirmed by sequencing of subject DNA. Inferred individual SNP genetic profiles ranged in random match probability (RMP) from 1/6 to 1/42,472 when calculated with European population frequencies in the 1000 Genomes Project, Phase 3. Similarly, RMPs based on African population frequencies were calculated for each SNP genetic profile and likelihood ratios (LR) were obtained by dividing each European RMP by the corresponding African RMP. Resulting LR values ranged from 1.4 to 825 with a median value of 16. GVP markers offer a basis for the identification of compromised skeletal remains independent of the presence of DNA template. Published by Elsevier B.V.

  4. Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates.

    PubMed

    Sieker, J T; Kunz, M; Weißenberger, M; Gilbert, F; Frey, S; Rudert, M; Steinert, A F

    2015-03-01

    Bone morphogenetic protein 2 (BMP-2, encoded by BMP2) and Indian hedgehog protein (IHH, encoded by IHH) are well known regulators of chondrogenesis and chondrogenic hypertrophy. Despite being a potent chondrogenic factor BMP-2 was observed to induce chondrocyte hypertrophy in osteoarthritis (OA), growth plate cartilage and adult mesenchymal stem cells (MSCs). IHH might induce chondrogenic differentiation through different intracellular signalling pathways without inducing subsequent chondrocyte hypertrophy. The primary objective of this study is to test the efficacy of direct BMP2 and IHH gene delivery via bone marrow coagulates to influence histological repair cartilage quality in vivo. Vector-laden autologous bone marrow coagulates with 10(11) adenoviral vector particles encoding BMP2, IHH or the Green fluorescent protein (GFP) were delivered to 3.2 mm osteochondral defects in the trochlea of rabbit knees. After 13 weeks the histological repair cartilage quality was assessed using the ICRS II scoring system and the type II collagen positive area. IHH treatment resulted in superior histological repair cartilage quality than GFP controls in all of the assessed parameters (with P < 0.05 in five of 14 assessed parameters). Results of BMP2 treatment varied substantially, including severe intralesional bone formation in two of six joints after 13 weeks. IHH gene transfer is effective to improve repair cartilage quality in vivo, whereas BMP2 treatment, carried the risk intralesional bone formation. Therefore IHH protein can be considered as an attractive alternative candidate growth factor for further preclinical research and development towards improved treatments for articular cartilage defects. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Calcium Sulphate/Hydroxyapatite Carrier for Bone Formation in the Femoral Neck of Osteoporotic Rats.

    PubMed

    Sirka, Aurimas; Raina, Deepak Bushan; Isaksson, Hanna; Tanner, K Elizabeth; Smailys, Alfredas; Kumar, Ashok; Tarasevicius, Sarunas; Tägil, Magnus; Lidgren, Lars

    2018-06-01

    We investigated bone regeneration in the femoral neck canal of osteoporotic rats using a novel animal model. We used a calcium sulphate (CS)/ Hydroxyapatite (HA) carrier to locally deliver a bisphosphonate, zoledronic acid (ZA), with or without added recombinant human bone morphogenic protein-2 (rhBMP-2). Ovariectomized Sprague-Dawley rats of 28 weeks age were used. A 1 mm diameter and 8 mm long defect was created in the femoral neck by drilling from the lateral cortex in the axis of the femoral neck leaving the surrounding cortex intact. Three treatment groups and one control group were used 1) CS/HA alone, 2) CS/HA+ ZA (10 μg) 3) CS/HA+ZA (10 μg)+rhBMP-2 (4 μg) and 4) Empty defect. The bone formation was assessed at 4 weeks post-surgery using in vivo micro computed tomography (micro-CT). At 8 weeks post-surgery, the animals were sacrificed and both defect and contralateral femurs were subjected to micro-CT, mechanical testing and histology. Micro-CT results showed that the combination of CS/HA with ZA or ZA+rhBMP-2 increased the bone formation in the defect when compared to the other groups and to the contralateral hips. Evidence of new dense bone formation in CS/HA+ZA and CS/HA+ZA+rhBMP-2 groups was seen histologically. Mechanical testing results showed no differences in the load to fracture between the treatments in either of the treated or contralateral legs. The CS/HA biomaterial can be used as a carrier for ZA and rhBMP-2 to regenerate bone in the femoral neck canal of osteoporotic rats.

  6. Analysis of relevant proteins from bone graft harvested using the reamer irrigator and aspirator system (RIA) versus iliac crest (IC) bone graft and RIA waste water.

    PubMed

    Crist, Brett D; Stoker, Aaron M; Stannard, James P; Cook, James L

    2016-08-01

    Femoral reaming using a Reamer Irrigator Aspirator (RIA) can produce greater than three liters of waste water per procedure, which contains cells and proteins that could promote bone healing. This purpose of this study was to determine the protein profile of RIA waste water and compare protein synthesis by cells harvested via RIA versus iliac crest (IC) bone graft. Bone graft was collected from 30 patients-15 using RIA from the femur and 15 harvested from the iliac crest. Waste water collected during the RIA procedure was analyzed in 12 patients. Cells from each graft were cultured in monolayer using growth media for 14days and inductive media for the next 14days. Media samples were collected on days 14, 21, and 28. Proteins for analysis were chosen based on their potential in bone healing, pro-inflammatory, and anti-inflammatory processes. Proteins present in RIA waste water indicate the potential for clinical use of this filtrate as an adjunct for enhancing bone production, healing, and remodeling. Similarly, cells cultured from RIA bone graft harvests compared favorably to those from iliac crest bone grafts with respect to their potential to aid in bone healing. RIA waste water has potential to serve as an autogenic and allogenic enhancer for bone healing. Continued development of processing protocols for viable commercial use of the waste water and pre-clinical studies designed to evaluate RIA waste water products for bone healing are ongoing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer-bone morphogenetic protein matrices.

    PubMed

    Lu, Helen H; Kofron, Michelle D; El-Amin, Saadiq F; Attawia, Mohammed A; Laurencin, Cato T

    2003-06-13

    Over 800,000 bone grafting procedures are performed in the United States annually, creating a demand for viable alternatives to autogenous bone, the grafting standard in osseous repair. The objective of this study was to examine the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype and in vitro bone formation by muscle-derived cells. Specifically, we evaluated the ability of bone morphogenetic protein-7 (BMP-7), delivered from a poly(lactide-co-glycolide) (PLAGA) matrix, to induce the differentiation of cells derived from rabbit skeletal muscle into osteoblast-like cells and subsequently form mineralized tissue. Results confirmed that muscle-derived cells attached and proliferated on the PLAGA substrates. BMP-7 released from PLAGA induced the muscle-derived cells to increase bone marker expression and form mineralized cultures. These results demonstrate the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype by muscle-derived cells and present a new paradigm for bone tissue engineering.

  8. Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein.

    PubMed

    Roy, Sougata; Huang, Hai; Liu, Songmei; Kornberg, Thomas B

    2014-02-21

    Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapses made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian, and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target, and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses.

  9. Cytoneme-mediated contact-dependent transport of the Drosophila Decapentaplegic signaling protein

    PubMed Central

    Roy, Sougata; Huang, Hai; Liu, Songmei; Kornberg, Thomas B.

    2015-01-01

    Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapes made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target; and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses. PMID:24385607

  10. Canola and hydrogenated soybean oils accelerate ectopic bone formation induced by implantation of bone morphogenetic protein in mice.

    PubMed

    Hashimoto, Yoko; Mori, Mayumi; Kobayashi, Shuichiro; Hanya, Akira; Watanabe, Shin-Ichi; Ohara, Naoki; Noguchi, Toshihide; Kawai, Tatsushi; Okuyama, Harumi

    2014-01-01

    Canola oil (Can) and hydrogenated soybean oil (H2-Soy) are commonly used edible oils. However, in contrast to soybean oil (Soy), they shorten the survival of stroke-prone spontaneously hypertensive (SHRSP) rats. It has been proposed that the adverse effects of these oils on the kidney and testis are caused at least in part by dihydro-vitamin K (VK) 1 in H2-Soy and unidentified component(s) in Can. Increased intake of dihydro-VK1 is associated with decreased tissue VK2 levels and bone mineral density in rats and humans, respectively. The aim of the present study was to determine the effects of these oils on bone morphogenetic protein (BMP)-induced ectopic bone formation, which is promoted by VK2 deficiency, in relation to the role of VK in the γ-carboxylation of osteocalcin and matrix Gla protein. A crude extract of BMPs was implanted into a gap in the fascia of the femoral muscle in 5-week-old mice maintained on a Soy, Can, or H2-Soy diet. Newly formed bone volume, assessed by three-dimensional X-ray micro-computed tomography and three-dimensional reconstruction imaging for bone, was 4-fold greater in the Can and H2-Soy groups than in the Soy group. The plasma carboxylated osteocalcin (Gla-OC) and total OC (Gla-OC plus undercarboxylated osteocalcin [Glu-OC]) levels were significantly lower in the Can group than in the Soy group ( p < 0.05). However, these levels did not significantly differ between the H2-Soy and Soy groups. The plasma Gla-OC/Glu-OC ratio in the Can and H2-Soy groups was significantly lower (in Can; p = 0.044) or was almost significantly lower (in H2-Soy; p = 0.053) than that in the Soy group. In conclusion, Can and H2-Soy accelerated BMP-induced bone formation in mice to a greater extent than Soy. Further research is required to evaluate whether the difference in accelerated ectopic bone formation is associated with altered levels of VK2 and VK-dependent protein(s) among the three dietary groups.

  11. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    PubMed

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone

  12. Hydrogel Delivery of Mesenchymal Stem Cell–Expressing Bone Morphogenetic Protein-2 Enhances Bone Defect Repair

    PubMed Central

    Hsiao, Hui-Yi; Yang, Shu-Rui; Brey, Eric M.; Chu, I-Ming

    2016-01-01

    Background: The application of bone tissue engineering for repairing bone defects has gradually shown some satisfactory progress. One of the concerns raising scientific attention is the poor supply of growth factors. A number of growth factor delivery approaches have been developed for promoting bone formation. However, there is no systematic comparison of those approaches on efficiency of neobone formation. In this study, the approaches using periosteum, direct supply of growth factors, or gene transfection of growth factors were evaluated to determine the osteogenic capacity on the repair of bone defect. Methods: In total, 42 male 21-week-old Sprague-Dawley rats weighing 250 to 400 g were used as the bone defect model to evaluate the bone repair efficiency. Various tissue engineered constructs of poly(ethylene glycol)-poly(l-lactic acid) (PEG-PLLA) copolymer hydrogel with periosteum, with external supply of bone morphogenetic protein-2 (BMP2), or with BMP2-transfected bone marrow–derived mesenchymal stem cells (BMMSCs) were filled in a 7-mm bone defect region. Animals were euthanized at 3 months, and the hydrogel constructs were harvested. The evaluation with histological staining and radiography analysis were performed for the volume of new bone formation. Results: The PEG-PLLA scaffold with BMMSCs promotes bone regeneration with the addition of periosteum. The group with BMP2-transfected BMMSCs demonstrated the largest volume of new bone among all the testing groups. Conclusions: Altogether, the results of this study provide the evidence that the combination of PEG-PLLA hydrogels with BMMSCs and sustained delivery of BMP2 resulted in the maximal bone regeneration. PMID:27622106

  13. A computational statistics approach for estimating the spatial range of morphogen gradients

    PubMed Central

    Kanodia, Jitendra S.; Kim, Yoosik; Tomer, Raju; Khan, Zia; Chung, Kwanghun; Storey, John D.; Lu, Hang; Keller, Philipp J.; Shvartsman, Stanislav Y.

    2011-01-01

    A crucial issue in studies of morphogen gradients relates to their range: the distance over which they can act as direct regulators of cell signaling, gene expression and cell differentiation. To address this, we present a straightforward statistical framework that can be used in multiple developmental systems. We illustrate the developed approach by providing a point estimate and confidence interval for the spatial range of the graded distribution of nuclear Dorsal, a transcription factor that controls the dorsoventral pattern of the Drosophila embryo. PMID:22007136

  14. Gene Therapy of Bone Morphogenetic Protein for Periodontal Tissue Engineering

    PubMed Central

    Jin, Q-M.; Anusaksathien, O.; Webb, S.A.; Rutherford, R.B.; Giannobile, W.V.

    2009-01-01

    Background The reconstruction of lost periodontal support including bone, ligament, and cementum is a major goal of therapy. Bone morphogenetic proteins (BMPs) have shown much potential in the regeneration of the periodontium. Limitations of BMP administration to periodontal lesions include need for high-dose bolus delivery, BMP transient biological activity, and low bioavailability of factors at the wound site. Gene transfer offers promise as an alternative treatment strategy to deliver BMPs to periodontal tissues. Methods This study utilized ex vivo BMP-7 gene transfer to stimulate tissue engineering of alveolar bone wounds. Syngeneic dermal fibroblasts (SDFs) were transduced ex vivo with adenoviruses encoding either green fluorescent protein (Ad-GFP or control virus), BMP-7 (Ad-BMP-7), or an antagonist of BMP bioactivity, noggin (Ad-noggin). Transduced cells were seeded onto gelatin carriers and then transplanted to large mandibular alveolar bone defects in a rat wound repair model. Results Ad-noggin treatment tended to inhibit osteogenesis as compared to the control-treated and Ad-BMP-7-treated specimens. The osseous lesions treated by Ad-BMP-7 gene delivery demonstrated rapid chrondrogenesis, with subsequent osteogenesis, cementogenesis and predictable bridging of the periodontal bone defects. Conclusion These results demonstrate the first successful evidence of periodontal tissue engineering using ex vivo gene transfer of BMPs and offers a new approach for repairing periodontal defects. PMID:12666709

  15. Comparative effect of soy protein, soy isoflavones, and 17beta-estradiol on bone metabolism in adult ovariectomized rats.

    PubMed

    Cai, David J; Zhao, Yongdong; Glasier, Jennifer; Cullen, Diane; Barnes, Stephen; Turner, Charles H; Wastney, Meryl; Weaver, Connie M

    2005-05-01

    This study provided a comprehensive investigation on the effect of soy protein and soy isoflavones on both calcium and bone metabolism in virgin adult rats. The measurements included bone histology, calcium kinetic modeling, calcium balance, bone densitometry, and whole body densitometry. Results confirmed the bone-preserving effect of estrogen but did not support a bone-sparing role of soy isoflavones. Several animal and short-term human studies have indicated that soy protein isolate enriched with isoflavones may be used as an alternative therapy to estrogen replacement therapy. However, none of the previous studies have investigated this estrogenic effect on both calcium and bone metabolism in animals or humans, which is essential in ascertaining the mode of action of isoflavones. This study was designed to determine the effects of soy protein versus isoflavones on calcium and bone metabolism in an ovariectomized rat model. Unmated 6-month-old ovariectomized and sham-operated female Sprague-Dawley rats were randomly assigned to nine groups (16 rats/group) and pair-fed soy- or casein-based diets with or without isoflavones for 8 weeks. A reference group was administered estrogen through subcutaneous implants (20-35 pg/liter plasma). Bone densitometry, histomorphometry, and mechanical testing were used to study bone metabolism and quality. Calcium metabolism was studied using calcium tracer balance and kinetics. After ovariectomy, estrogen prevented bone loss in trabecular bone and suppressed formation on both trabecular and cortical bone surfaces. Isoflavones given as enriched soy protein isolate or supplements did not prevent trabecular bone loss. Combining isoflavones with estrogen had no additional benefits over estrogen alone. There were no differences in response to isoflavones caused by protein source. None of the treatments significantly affected either total Ca balance or (45)Ca absorption. However, soy protein showed significant effects on reducing

  16. Calcium homeostasis and bone metabolic responses to protein diets and energy restriction: a randomized control trial

    USDA-ARS?s Scientific Manuscript database

    Despite some beneficial effects on bone, high protein diets are conventionally considered a primary dietary risk factor for osteoporosis and bone fracture due to the acid load associated with protein catabolism. To test the hypothesis that high dietary protein diets do not negatively affect calcium ...

  17. Effects of protein-rich supplementation and nandrolone on bone tissue after a hip fracture.

    PubMed

    Tengstrand, Birgitta; Cederholm, Tommy; Söderqvist, Anita; Tidermark, Jan

    2007-08-01

    Osteoporosis is a major health problem worldwide. Low weight is a major risk factor for low bone mass and fractures. The aim of this study was to investigate the effects on bone tissue of protein-rich supplementation alone or in combination with nandrolone decanoate in lean elderly women after a hip fracture. Sixty elderly women with BMI <24 kg/m(2) admitted to hospital due to a femoral neck fracture were randomised to a control group, to receive a protein-rich formula or to receive the same formula with an addition of nandrolone decanoate for 6 months. All patients received additional calcium and vitamin D. The effects after 6 and 12 months were measured by means of bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA), and with biochemical bone markers. Osteocalcin and C-terminal telopeptide of collagen-1 (CTX) were used to estimate bone formation and bone resorption, respectively. The analyses showed an increase in total body BMD at 6 and 12 months in patients who received protein-rich supplementation. Nandrolone decanoate did not appear to have any additional effect on BMD. Osteocalcin increased in all groups while no significant changes were found for CTX. The overall results of the study indicated that protein-rich supplementation given to lean elderly female hip fracture patients increased the total body BMD.

  18. Accelerators of Osteogenesis by Recombinant Human Bone Morphogenetic Protein-2

    PubMed Central

    Okubo, Yasunori; Kusumoto, Kenji; Bessho, Kazuhisa

    2007-01-01

    Bone morphogenetic protein (BMP) appears to be one of the most promising cytokine and for clinical use in reconstructive surgery for bony defects and augmentation. To evaluate the effect of basic fibroblast growth factor (bFGF), FK506, elcatonin, and hyperbaric oxygenation (HBO) on osteoinduction by recombinant human bone morphogenetic protein-2 (rhBMP-2), 2 or 5 μg of rhBMP-2 was implanted into intramuscular sites of rats. At 21 days after implantation, the osteoinductive activity in the treatment group and control group was compared radiographically, biochemically, and histologically. The amount of new bone in the treatment group was significantly greater than that in the control group. The alkaline phosphatase activity and calcium content in the treatment group were significantly higher than those in the control group. These results suggest that bFGF, FK506, elcatonin, and HBO accelerated the activity and rate of osteoinduction by rhBMP2. These results may be useful when BMP is applied clinically in near future. PMID:21901062

  19. DNA Methylation and Mutation of Small Colonic Neoplasms in Ulcerative Colitis and Crohn's Colitis: Implications for Surveillance.

    PubMed

    Johnson, David H; Taylor, William R; Aboelsoud, Mohammed M; Foote, Patrick H; Yab, Tracy C; Cao, Xiaoming; Smyrk, Thomas C; Loftus, Edward V; Mahoney, Douglas W; Ahlquist, David A; Kisiel, John B

    2016-07-01

    Stool DNA testing in patients with inflammatory bowel disease (IBD) may detect colorectal cancer and advanced precancers with high sensitivity; less is known about the presence of DNA markers in small IBD lesions, their association with metachronous neoplasia, or contribution to stool test positivity. At a single center in 2 blinded phases, we assayed methylated bone morphogenic protein 3, methylated N-Myc downstream-regulated gene 4, and mutant KRAS in DNA extracted from paraffin-embedded benign lesions, and matched control tissues of patients with IBD, who were followed for subsequent colorectal dysplasia. Stool samples from independent cases and controls with lesions <1 cm or advanced neoplasms were assayed for the same markers. Among IBD lesions (29 low-grade dysplasia, 19 serrated epithelial change, and 10 sessile serrated adenoma/polyps), the prevalence of methylation was significantly higher than in mucosae from 44 matched IBD controls (P < 0.0001 for methylated bone morphogenic protein 3 or methylated N-Myc downstream-regulated gene 4). KRAS mutations were more abundant in serrated epithelial change than all other groups (P < 0.001). Subsequent dysplasia was not associated with DNA marker levels. In stools, the sensitivity of methylated bone morphogenic protein 3 as a single marker was 60% for all lesions <1 cm, 63% for low-grade dysplasia ≥1 cm and 81% for high-grade dysplasia/colorectal cancer, all at 91% specificity (P < 0.0001). Selected DNA markers known to be present in advanced IBD neoplasia can also be detected in both tissues and stools from IBD patients with small adenomas and serrated lesions. Mutant KRAS exfoliated from serrated epithelial change lesions might raise false-positive rates. These findings have relevance to potential future applications of stool DNA testing for IBD surveillance.

  20. Combination of bone morphogenetic protein-2 plasmid DNA with chemokine CXCL12 creates an additive effect on bone formation onset and volume.

    PubMed

    Wegman, F; Poldervaart, M T; van der Helm, Y J; Oner, F C; Dhert, W J; Alblas, J

    2015-07-27

    Bone morphogenetic protein-2 (BMP-2) gene delivery has shown to induce bone formation in vivo in cell-based tissue engineering. In addition, the chemoattractant stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is known to recruit multipotent stromal cells towards its release site where it enhances vascularisation and possibly contributes to osteogenic differentiation. To investigate potential cooperative behaviour for bone formation, we investigated combined release of BMP-2 and SDF-1α on ectopic bone formation in mice. Multipotent stromal cell-seeded and cell-free constructs with BMP-2 plasmid DNA and /or SDF-1α loaded onto gelatin microparticles, were implanted subcutaneously in mice for a period of 6 weeks. Histological analysis and histomorphometry revealed that the onset of bone formation and the formed bone volume were both enhanced by the combination of BMP-2 and SDF-1α compared to controls in cell-seeded constructs. Samples without seeded multipotent stromal cells failed to induce any bone formation. We conclude that the addition of stromal cell-derived factor-1α to a cell-seeded alginate based bone morphogenetic protein-2 plasmid DNA construct has an additive effect on bone formation and can be considered a promising combination for bone regeneration.

  1. Slow rates of degradation of osteocalcin: Green light for fossil bone protein?

    NASA Astrophysics Data System (ADS)

    Collins, M. J.; Gernaey, A. M.; Nielsen-Marsh, C. M.; Vermeer, C.; Westbroek, P.

    2000-12-01

    Our claim, published in this journal, for successful immunodetection of the protein osteocalcin in dinosaur bone has been challenged on the grounds that the findings are inconsistent with the kinetics of decomposition. Here we show that the close association of osteocalcin to the bone mineral vastly enhances its preservation potential relative to the same protein in aqueous solution. We conducted heating experiments (75 95 °C) of modern bone powder and monitored the survival of three different regions of osteocalcin (N-terminal, His4-Hyp9; C-terminal, Phe45-Val49; and the mid-region, Pro15-Glu31) with monoclonal antibodies. Extrapolation of our data to 10 °C ambient burial temperatures indicates that preservation of the γ-carboxylated mid-region in fossil bone cannot be excluded on kinetic grounds. Clearly, in situ sequence analysis will be the only method by which the preservation of fossil macromolecules will be unequivocally established. Nevertheless, our findings demonstrate the importance of mineral association to protein survival, as was borne out by an investigation of Holocene (ca. 6 ka) bones. Only in those samples with little recrystallization was the γ-carboxylated mid-region well preserved. These results imply that the future success of ancient biomolecule research largely depends on our understanding the interaction between these materials and their environment throughout diagenesis.

  2. Influence on bone metabolism of dietary trace elements, protein, fat, carbohydrates, and vitamins.

    PubMed

    Sarazin, M; Alexandre, C; Thomas, T

    2000-01-01

    Osteoporosis is a multifactorial disease driven primarily by the genetic factors that control bone metabolism. Among environmental factors, diet may play a key role, affording a target for low-cost intervention. Calcium and vitamin D are well known to affect bone metabolism. Other nutrients may influence bone mass changes; for instance, a number of trace elements and vitamins other than vitamin D are essential to many of the steps of bone metabolism. A wide variety of foods provide these nutrients, and in industrialized countries deficiencies are more often due to idiosyncratic eating habits than to cultural influences. Both culture and vogue influence the amount of carbohydrate, fat, and protein in the typical diet. In children, the current trend is to reduce protein and to increase carbohydrate and fat. Data from epidemiological and animal studies suggest that this may adversely affect bone mass and the fracture risk.

  3. Bone morphogenetic protein-mediated interaction of periosteum and diaphysis. Citric acid and other factors influencing the generation of parosteal bone.

    PubMed

    Kübler, N; Urist, M R

    1990-09-01

    In rabbits, after long-bone growth is complete and the cambium layer regresses, mesenchymal-type cells with embryonic potential (competence) for bone development persist in the adventitial layer of periosteum. These cells are not determined osteoprogenitor cells (stem cells) because bone tissue differentiation does not occur when adult periosteum is transplanted into a heterotopic site. In this respect, adventitial cells differ from bone marrow stroma cells. In a parosteal orthotopic site in the space between the adult periosteum and diaphysis, implants of bone morphogenetic protein (BMP) and associated noncollagenous proteins (BMP/NCP) induce adventitia and adjacent muscle connective-tissue-derived cells to switch from a fibrogenetic to a chondroosteoprogenetic pattern of bone development. The quantity of induced bone is proportional to the dose of BMP/NCP in the range from 10 to 50 mg; immature rabbits produced larger deposits than mature rabbits in response to BMP/NCP. Preoperative local intramuscular injections of citric, edetic, or hyaluronic acids in specified concentrations markedly enhanced subperiosteal BMP/NCP-induced bone formation. The quantity of bovine or human BMP/NCP-induced bone formation in rabbits is also increased by very low-dose immunosuppression but not by bone mineral, tricalcium phosphate ceramic, inorganic calcium salts, or various space-occupying, unspecific chemical irritants. Although composities of BMP/NCP and allogeneic rabbit tendon collagen increased the quantity of bone in a parosteal site, in a heterotopic site the composite failed to induce bone formation. In a parosteal site, the conditions permitting BMP/NCP-induced bone formation develop, and the end product of the morphogenetic response is a duplicate diaphysis. How BMP reactivates the morphogenetic process in postfetal mesenchymal-type adventitial cells persisting in adult periosteum (including adjacent muscle attachments) is not known.

  4. Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients.

    PubMed

    Raspopovic, J; Marcon, L; Russo, L; Sharpe, J

    2014-08-01

    During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation. Copyright © 2014, American Association for the Advancement of Science.

  5. Identification of full-length dentin matrix protein 1 in dentin and bone.

    PubMed

    Huang, Bingzhen; Maciejewska, Izabela; Sun, Yao; Peng, Tao; Qin, Disheng; Lu, Yongbo; Bonewald, Lynda; Butler, William T; Feng, Jian; Qin, Chunlin

    2008-05-01

    Dentin matrix protein 1 (DMP1) has been identified in the extracellular matrix (ECM) of dentin and bone as the processed NH(2)-terminal and COOH-terminal fragment. However, the full-length form of DMP1 has not been identified in these tissues. The focus of this investigation was to search for the intact full-length DMP1 in dentin and bone. We used two types of anti-DMP1 antibodies to identify DMP1: one type specifically recognizes the NH(2)-terminal region and the other type is only reactive to the COOH-terminal region of the DMP1 amino acid sequence. An approximately 105-kDa protein, extracted from the ECM of rat dentin and bone, was recognized by both types of antibodies; and the migration rate of this protein was identical to the recombinant mouse full-length DMP1 made in eukaryotic cells. We concluded that this approximately 105-kDa protein is the full-length form of DMP1, which is considerably less abundant than its processed fragments in the ECM of dentin and bone. We also detected the full-length form of DMP1 and its processed fragments in the extract of dental pulp/odontoblast complex dissected from rat teeth. In addition, immunofluorescence analysis showed that in MC3T3-E1 cells the NH(2)-terminal and COOH-terminal fragments of DMP1 are distributed differently. Our findings indicate that the majority of DMP1 must be cleaved within the cells that synthesize it and that minor amounts of uncleaved DMP1 molecules are secreted into the ECM of dentin and bone.

  6. Recombinant human bone morphogenetic protein 2 in augmentation procedures: case reports.

    PubMed

    Luiz, Jaques; Padovan, Luis Eduardo Marques; Claudino, Marcela

    2014-01-01

    To successfully rehabilitate edentulous patients using endosseous implants, there must be enough available bone. Several techniques have been proposed for augmentation of sites with insufficient bone volume. Although autogenous bone has long been considered the gold standard for such procedures, the limited availability of graft material and a high morbidity rate are potential disadvantages of this type of graft. An alternative is to use recombinant human bone morphogenetic protein 2 (rhBMP-2), which is able to support bone regeneration in the oral environment. These cases demonstrate the applicability of rhBMP-2 in maxillary sinus elevation and augmentation procedures in the maxilla to enable dental implant placement. The use of rhBMP-2 in alveolar augmentation procedures had several clinical benefits for these patients.

  7. Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice

    PubMed Central

    Mizuhashi, Koji; Chaya, Taro; Kanamoto, Takashi; Omori, Yoshihiro; Furukawa, Takahisa

    2015-01-01

    Background Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119), encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif−/− mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif−/− mice. Results First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif−/− mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS) and osteoid maturation time (Omt), and significantly decreased mineral apposition rate (MAR) and bone formation rate per bone surface (BFR/BS). In addition, we observed that Obif−/− mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif−/− testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif−/− mice compared with wild-type mice, although this was not statistically significant. Conclusions Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues. PMID:26207632

  8. Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice.

    PubMed

    Mizuhashi, Koji; Chaya, Taro; Kanamoto, Takashi; Omori, Yoshihiro; Furukawa, Takahisa

    2015-01-01

    Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119), encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif-/- mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif-/- mice. First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif-/- mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS) and osteoid maturation time (Omt), and significantly decreased mineral apposition rate (MAR) and bone formation rate per bone surface (BFR/BS). In addition, we observed that Obif-/- mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif-/- testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif-/- mice compared with wild-type mice, although this was not statistically significant. Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues.

  9. Segmental Bone Regeneration Using a Load Bearing Biodegradable Carrier of Bone Morphogenetic Protein-2

    PubMed Central

    Chu, Tien-Min G.; Warden, Stuart J.; Turner, Charles H.; Stewart, Rena L.

    2006-01-01

    Segmental defect regeneration has been a clinical challenge. Current tissue engineering approach using porous biodegradable scaffolds to delivery osteogenic cells and growth factors demonstrated success in facilitating bone regeneration in these cases. However, due to the lack of mechanical property, the porous scaffolds were evaluated in non-load bearing area or were stabilized with stress-shielding devices (bone plate or external fixation). In this paper, we tested a scaffold that does not require a bone plate because it has sufficient biomechanical strength. The tube-shaped scaffolds were manufactured from poly(propylene) fumarate/tricalcium phosphate (PPF/TCP) composites. Dicalcium phosphate dehydrate (DCPD) were used as bone morphogenetic protein -2 (BMP-2) carrier. Twenty two scaffolds were implanted in 5 mm segmental defects in rat femurs stabilized with k-wire for 6 and 15 weeks with and without 10 μg of rhBMP-2. Bridging of the segmental defect was evaluated first radiographically and was confirmed by histology and micro- computer tomography (μ-CT) imaging. The scaffolds in the BMP group maintained the bone length throughout the duration of the study and allow for bridging. The scaffolds in the control group failed to induce bridging and collapsed at 15 weeks. Peripheral computed tomography (pQCT) showed that BMP-2 does not increase the bone mineral density in the callus. Finally, the scaffold in BMP group was found to restore the mechanical property of the rat femur after 15 weeks. Our results demonstrated that the load-bearing BMP-2 scaffold can maintain bone length and allow successfully regeneration in segmental defects. PMID:16996588

  10. Association of Protein Intake with Bone Mineral Density and Bone Mineral Content among Elderly Women: The OSTPRE Fracture Prevention Study.

    PubMed

    Isanejad, M; Sirola, J; Mursu, J; Kröger, H; Tuppurainen, M; Erkkilä, A T

    2017-01-01

    It has been hypothesized that high protein intakes are associated with lower bone mineral content (BMC). Previous studies yield conflicting results and thus far no studies have undertaken the interaction of body mass index (BMI) and physical activity with protein intakes in relation to BMC and bone mineral density (BMD). To evaluate the associations of dietary total protein (TP), animal protein (AP) and plant protein (PP) intakes with BMC and BMD and their changes. We tested also the interactions of protein intake with, obesity (BMI ≤30 vs. >30 kg/m2) and physical activity level (passive vs. active). Design/ Setting: Prospective cohort study (Osteoporosis Risk-Factor and Fracture-Prevention Study). Participants/measures: At the baseline, 554 women aged 65-72 years filled out a 3-day food record and a questionnaire covering data on lifestyle, physical activity, diseases, and medications. Intervention group received calcium 1000 mg/d and cholecalciferol 800 IU for 3 years. Control group received neither supplementation nor placebo. Bone density was measured at baseline and year 3, using dual energy x-ray absorptiometry. Multivariable regression analyses were conducted to examine the associations between protein intake and BMD and BMC. In cross-sectional analyses energy-adjusted TP (P≤0·029) and AP (P≤0·045) but not PP (g/d) were negatively associated with femoral neck (FN) BMD and BMC. Women with TP≥1·2 g/kg/body weight (BW) (Ptrend≤0·009) had lower FN, lumbar spine (LS) and total BMD and BMC. In follow-up analysis, TP (g/kg/BW) was inversely associated with LS BMD and LS BMC. The detrimental associations were stronger in women with BMI<30 kg/m2. In active women, TP (g/kg/BW) was positively associated with LS BMD and FN BMC changes. This study suggests detrimental associations between protein intake and bone health. However, these negative associations maybe counteracted by BMI>30 kg/m2 and physical activity.

  11. Bone morphogenetic proteins in musculoskeletal medicine.

    PubMed

    Giannoudis, Peter V; Einhorn, Thomas A

    2009-12-01

    Ongoing research at the molecular level has expanded our understanding of the physiological processes that regulate the complex phenomena of fracture healing and bone regeneration. A number of key molecules have been identified and shown to facilitate the progression of healing from one stage to another, leading to an uneventful outcome. Among these candidate molecules, bone morphogenetic proteins (BMPs) possess potent osteoinductive properties. They interact with osteoprogenitor cells, regulating both mitogenesis and differentiation potential. Since the discovery of BMPs, a number of experimental and clinical trials have supported their safety and efficacy of their use in therapy. Nonetheless, at times their efficacy falls short of expectations. Several factors have been identified as contributing to this result. It is anticipated that, as our knowledge expands and we understand better the complex pathways and cascades of molecular events attributable to BMPs, the application of these molecules in the clinical setting will continue to increase and to show more favourable outcomes. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Soy proteins and isoflavones affect bone mineral density in older women: a randomized controlled trial.

    PubMed

    Kenny, Anne M; Mangano, Kelsey M; Abourizk, Robin H; Bruno, Richard S; Anamani, Denise E; Kleppinger, Alison; Walsh, Stephen J; Prestwood, Karen M; Kerstetter, Jane E

    2009-07-01

    Soy foods contain several components (isoflavones and amino acids) that potentially affect bone. Few long-term, large clinical trials of soy as a means of improving bone mineral density (BMD) in late postmenopausal women have been conducted. Our goal was to evaluate the long-term effect of dietary soy protein and/or soy isoflavone consumption on skeletal health in late postmenopausal women. We conducted a randomized, double-blind, placebo-controlled clinical trial in 131 healthy ambulatory women aged >60 y. Ninety-seven women completed the trial. After a 1-mo baseline period, subjects were randomly assigned into 1 of 4 intervention groups: soy protein (18 g) + isoflavone tablets (105 mg isoflavone aglycone equivalents), soy protein + placebo tablets, control protein + isoflavone tablets, and control protein + placebo tablets. Consumption of protein powder and isoflavone pills did not differ between groups, and compliance with the study powder and pills was 80-90%. No significant differences in BMD were observed between groups from baseline to 1 y after the intervention or in BMD change between equol and non-equol producers. However, there were significant negative correlations between total dietary protein (per kg) and markers of bone turnover (P < 0.05). Because soy protein and isoflavones (either alone or together) did not affect BMD, they should not be considered as effective interventions for preserving skeletal health in older women. The negative correlation between dietary protein and bone turnover suggests that increasing protein intakes may suppress skeletal turnover. This trial was registered at ClinicalTrials.gov as NCT00668447.

  13. Stepwise verification of bone regeneration using recombinant human bone morphogenetic protein-2 in rat fibula model

    PubMed Central

    2017-01-01

    Objectives The purpose of this study was to introduce our three experiments on bone morphogenetic protein (BMP) and its carriers performed using the critical sized segmental defect (CSD) model in rat fibula and to investigate development of animal models and carriers for more effective bone regeneration. Materials and Methods For the experiments, 14, 16, and 24 rats with CSDs on both fibulae were used in Experiments 1, 2, and 3, respectively. BMP-2 with absorbable collagen sponge (ACS) (Experiments 1 and 2), autoclaved autogenous bone (AAB) and fibrin glue (FG) (Experiment 3), and xenogenic bone (Experiment 2) were used in the experimental groups. Radiographic and histomorphological evaluations were performed during the follow-up period of each experiment. Results Significant new bone formation was commonly observed in all experimental groups using BMP-2 compared to control and xenograft (porcine bone) groups. Although there was some difference based on BMP carrier, regenerated bone volume was typically reduced by remodeling after initially forming excessive bone. Conclusion BMP-2 demonstrates excellent ability for bone regeneration because of its osteoinductivity, but efficacy can be significantly different depending on its delivery system. ACS and FG showed relatively good bone regeneration capacity, satisfying the essential conditions of localization and release-control when used as BMP carriers. AAB could not provide release-control as a BMP carrier, but its space-maintenance role was remarkable. Carriers and scaffolds that can provide sufficient support to the BMP/carrier complex are necessary for large bone defects, and AAB is thought to be able to act as an effective scaffold. The CSD model of rat fibula is simple and useful for initial estimate of bone regeneration by agents including BMPs. PMID:29333367

  14. Bone Morphogenetic Protein (BMP) signaling in development and human diseases

    PubMed Central

    Wang, Richard N.; Green, Jordan; Wang, Zhongliang; Deng, Youlin; Qiao, Min; Peabody, Michael; Zhang, Qian; Ye, Jixing; Yan, Zhengjian; Denduluri, Sahitya; Idowu, Olumuyiwa; Li, Melissa; Shen, Christine; Hu, Alan; Haydon, Rex C.; Kang, Richard; Mok, James; Lee, Michael J.; Luu, Hue L.; Shi, Lewis L.

    2014-01-01

    Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling. PMID:25401122

  15. The relation between dietary protein, calcium and bone health in women: results from the EPIC-Potsdam cohort.

    PubMed

    Weikert, Cornelia; Walter, Dietmar; Hoffmann, Kurt; Kroke, Anja; Bergmann, Manuela M; Boeing, Heiner

    2005-01-01

    The role of dietary protein in bone health is controversial. The objective of the present study was to examine the association between protein intake, dietary calcium, and bone structure measured by broadband ultrasound attenuation (BUA). Our analysis includes 8,178 female study participants of the European Prospective Investigation into Cancer and Nutrition (EPIC) Potsdam Study. Ultrasound bone measurements were performed on the right os calcis, and BUA was determined. Dietary intake was assessed by a standardized food frequency questionnaire. We applied linear regression models to estimate the association between dietary protein and BUA. After multivariate adjustment, high intake of animal protein was associated with decreased BUA values (beta = -0.03; p = 0.010) whereas high vegetable protein intake was related to an increased BUA (beta = 0.11; p = 0.007). The effect of dietary animal protein on BUA was modified by calcium intake. High consumption of protein from animal origin may be unfavourable, whereas a higher vegetable protein intake may be beneficial for bone health. Our results strengthen the hypothesis that high calcium intake combined with adequate protein intake based on a high ratio of vegetable to animal protein may be protective against osteoporosis. Copyright (c) 2005 S. Karger AG, Basel.

  16. Constitutive stimulatory G protein activity in limb mesenchyme impairs bone growth.

    PubMed

    Karaca, Anara; Malladi, Vijayram Reddy; Zhu, Yan; Tafaj, Olta; Paltrinieri, Elena; Wu, Joy Y; He, Qing; Bastepe, Murat

    2018-05-01

    GNAS mutations leading to constitutively active stimulatory G protein alpha-subunit (Gsα) cause different tumors, fibrous dysplasia of bone, and McCune-Albright syndrome, which are typically not associated with short stature. Enhanced signaling of the parathyroid hormone/parathyroid hormone-related peptide receptor, which couples to multiple G proteins including Gsα, leads to short bones with delayed endochondral ossification. It has remained unknown whether constitutive Gsα activity also impairs bone growth. Here we generated mice expressing a constitutively active Gsα mutant (Gsα-R201H) conditionally upon Cre recombinase (cGsα R201H mice). Gsα-R201H was expressed in cultured bone marrow stromal cells from cGsα R201H mice upon adenoviral-Cre transduction. When crossed with mice in which Cre is expressed in a tamoxifen-regulatable fashion (CAGGCre-ER™), tamoxifen injection resulted in mosaic expression of the transgene in double mutant offspring. We then crossed the cGsα R201H mice with Prx1-Cre mice, in which Cre is expressed in early limb-bud mesenchyme. The double mutant offspring displayed short limbs at birth, with narrow hypertrophic chondrocyte zones in growth plates and delayed formation of secondary ossification center. Consistent with enhanced Gsα signaling, bone marrow stromal cells from these mice demonstrated increased levels of c-fos mRNA. Our findings indicate that constitutive Gsα activity during limb development disrupts endochondral ossification and bone growth. Given that Gsα haploinsufficiency also leads to short bones, as in patients with Albright's hereditary osteodystrophy, these results suggest that a tight control of Gsα activity is essential for normal growth plate physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Pharmacological activation of aldehyde dehydrogenase 2 promotes osteoblast differentiation via bone morphogenetic protein-2 and induces bone anabolic effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Monika; Pal, Subhashis; China, Shyamsundar

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes involved in detoxifying aldehydes. Previously, we reported that an ALDH inhibitor, disulfiram caused bone loss in rats and among ALDHs, osteoblast expressed only ALDH2. Loss-of-function mutation in ALDH2 gene is reported to cause bone loss in humans which suggested its importance in skeletal homeostasis. We thus studied whether activating ALDH2 by N-(1, 3-benzodioxol-5-ylmethyl)-2, 6-dichlorobenzamide (alda-1) had osteogenic effect. We found that alda-1 increased and acetaldehyde decreased the differentiation of rat primary osteoblasts and expressions of ALDH2 and bone morphogenetic protein-2 (BMP-2). Silencing ALDH2 in osteoblasts abolished the alda-1 effects. Further, alda-1 attenuatedmore » the acetaldehyde-induced lipid-peroxidation and oxidative stress. BMP-2 is essential for bone regeneration and alda-1 increased its expression in osteoblasts. We then showed that alda-1 (40 mg/kg dose) augmented bone regeneration at the fracture site with concomitant increase in BMP-2 protein compared with control. The osteogenic dose (40 mg/kg) of alda-1 attained a bone marrow concentration that was stimulatory for osteoblast differentiation, suggesting that the tissue concentration of alda-1 matched its pharmacologic effect. In addition, alda-1 promoted modeling-directed bone growth and peak bone mass achievement, and increased bone mass in adult rats which reiterated its osteogenic effect. In osteopenic ovariectomized (OVX) rats, alda-1 reversed trabecular osteopenia with attendant increase in serum osteogenic marker (procollagen type I N-terminal peptide) and decrease in oxidative stress. Alda-1 has no effect on liver and kidney function. We conclude that activating ALDH2 by alda-1 had an osteoanabolic effect involving increased osteoblastic BMP-2 production and decreased OVX-induced oxidative stress. - Highlights: • Alda-1 induced osteoblast differentiation that involved upregulation of ALDH2 and BMP-2 • Alda

  18. A current review of core decompression in the treatment of osteonecrosis of the femoral head.

    PubMed

    Pierce, Todd P; Jauregui, Julio J; Elmallah, Randa K; Lavernia, Carlos J; Mont, Michael A; Nace, James

    2015-09-01

    The review describes the following: (1) how traditional core decompression is performed, (2) adjunctive treatments, (3) multiple percutaneous drilling technique, and (4) the overall outcomes of these procedures. Core decompression has optimal outcomes when used in the earliest, precollapse disease stages. More recent studies have reported excellent outcomes with percutaneous drilling. Furthermore, adjunct treatment methods combining core decompression with growth factors, bone morphogenic proteins, stem cells, and bone grafting have demonstrated positive results; however, larger randomized trial is needed to evaluate their overall efficacy.

  19. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  20. WAIF1 Is a Cell-Surface CTHRC1 Binding Protein Coupling Bone Resorption and Formation.

    PubMed

    Matsuoka, Kazuhiko; Kohara, Yukihiro; Naoe, Yoshinori; Watanabe, Atsushi; Ito, Masako; Ikeda, Kyoji; Takeshita, Sunao

    2018-04-06

    The osteoclast-derived collagen triple helix repeat containing 1 (CTHRC1) protein stimulates osteoblast differentiation, but the underlying mechanism remains unclear. Here, we identified Wnt-activated inhibitory factor 1 (WAIF1)/5T4 as a cell-surface protein binding CTHRC1. The WAIF1-encoding Trophoblast glycoprotein (Tpbg) gene, which is abundantly expressed in the brain and bone but not in other tissues, showed the same expression pattern as Cthrc1. Tpbg downregulation in marrow stromal cells reduced CTHRC1 binding and CTHRC1-stimulated alkaline phosphatase activity through PKCδ activation of MEK/ERK, suggesting a novel WAIF1/PKCδ/ERK pathway triggered by CTHRC1. Unexpectedly, osteoblast lineage-specific deletion of Tpbg downregulated Rankl expression in mouse bones and reduced both bone formation and resorption; importantly, it impaired bone mass recovery following RANKL-induced resorption, reproducing the phenotype of osteoclast-specific Cthrc1 deficiency. Thus, the binding of osteoclast-derived CTHRC1 to WAIF1 in stromal cells activates PKCδ-ERK osteoblastogenic signaling and serves as a key molecular link between bone resorption and formation during bone remodeling. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.

  1. Bone Morphogenetic Proteins, Antagonists and Receptors in Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    expressed in prostate. This work investigates BMP receptors and BMP antagonists to understand the basic mechanisms to inhibit the BMP signaling in...during embryoge- nesis, and prostate cancer metastases to bone. BMP functions can be inhibited by antagonists such as Noggin or DAN. DAN is a protein...protein along with a constant 0-6 -1 10 100 1000 1O0ng/ml of BMP-6, we were able to show a ng/ml BMP-6 dose-dependent inhibition of BMP-6 activity in DU

  2. Promising efficacy of Escherichia coli recombinant human bone morphogenetic protein-2 in collagen sponge for ectopic and orthotopic bone formation and comparison with mammalian cell recombinant human bone morphogenetic protein-2.

    PubMed

    Kim, In Sook; Lee, Eui Nam; Cho, Tae Hyung; Song, Yun Mi; Hwang, Soon Jung; Oh, Ji Hye; Park, Eun Kyung; Koo, Tai Young; Seo, Young-Kwon

    2011-02-01

    Nonglycosylated recombinant human bone morphogenetic protein (rhBMP)-2 prepared in Escherichia coli (E. coli rhBMP-2) has recently been considered as an alternative to mammalian cell rhBMP-2. However, its clinical use is still limited owing to lack of evidence for osteogenic activity comparable with that of mammalian cell rhBMP-2 via microcomputed tomography-based analysis. Therefore, this study aimed to evaluate the ability of E. coli rhBMP-2 in absorbable collagen sponge to form ectopic and orthotopic bone and to compare it to that of mammalian rhBMP-2. In vitro investigation was performed to study osteoblast differentiation of human mesenchymal stromal cells. Both types of rhBMP-2 enhanced proliferation, alkaline phosphatase activity, and matrix mineralization of human mesenchymal stromal cells at similar levels. Similar tendencies were observed in microcomputed tomography analysis, which determined bone volume, fractional bone volume, trabecular thickness, trabecular separation, bone mineral density, and other characteristics. Histology from an in vivo osteoinductivity test and from a rat calvarial defect model demonstrated a dose-dependent increase in local bone formation. The E. coli rhBMP-2 group (5 μg) not only induced complete regeneration of an 8-mm critical-sized defect at 4 weeks, but also led to new bone with the same bone mineral density as normal bone at 8 weeks, with the same efficiency as that of mammalian cell rhBMP-2 (5 μg). These uniformly favorable results provide evidence that the osteogenic activity of E. coli rhBMP-2 is not inferior to that of mammalian cell rhBMP-2 despite its low solubility and lack of gylcosylation. These results suggest that the application of E. coli rhBMP-2 in absorbable collagen sponge may be a promising equivalent to mammalian cell rhBMP-2 in bone tissue engineering.

  3. Protein kinase Cα (PKCα) regulates bone architecture and osteoblast activity.

    PubMed

    Galea, Gabriel L; Meakin, Lee B; Williams, Christopher M; Hulin-Curtis, Sarah L; Lanyon, Lance E; Poole, Alastair W; Price, Joanna S

    2014-09-12

    Bones' strength is achieved and maintained through adaptation to load bearing. The role of the protein kinase PKCα in this process has not been previously reported. However, we observed a phenotype in the long bones of Prkca(-/-) female but not male mice, in which bone tissue progressively invades the medullary cavity in the mid-diaphysis. This bone deposition progresses with age and is prevented by disuse but unaffected by ovariectomy. Castration of male Prkca(-/-) but not WT mice results in the formation of small amounts of intramedullary bone. Osteoblast differentiation markers and Wnt target gene expression were up-regulated in osteoblast-like cells derived from cortical bone of female Prkca(-/-) mice compared with WT. Additionally, although osteoblastic cells derived from WT proliferate following exposure to estradiol or mechanical strain, those from Prkca(-/-) mice do not. Female Prkca(-/-) mice develop splenomegaly and reduced marrow GBA1 expression reminiscent of Gaucher disease, in which PKC involvement has been suggested previously. From these data, we infer that in female mice, PKCα normally serves to prevent endosteal bone formation stimulated by load bearing. This phenotype appears to be suppressed by testicular hormones in male Prkca(-/-) mice. Within osteoblastic cells, PKCα enhances proliferation and suppresses differentiation, and this regulation involves the Wnt pathway. These findings implicate PKCα as a target gene for therapeutic approaches in low bone mass conditions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Colloid, adhesive and release properties of nanoparticular ternary complexes between cationic and anionic polysaccharides and basic proteins like bone morphogenetic protein BMP-2.

    PubMed

    Petzold, R; Vehlow, D; Urban, B; Grab, A L; Cavalcanti-Adam, E A; Alt, V; Müller, M

    2017-03-01

    Herein we describe an interfacial local drug delivery system for bone morphogenetic protein 2 (BMP-2) based on coatings of polyelectrolyte complex (PEC) nanoparticles (NP). The application horizon is the functionalization of bone substituting materials (BSM) used for the therapy of systemic bone diseases. Nanoparticular ternary complexes of cationic and anionic polysaccharides and BMP-2 or two further model proteins, respectively, were prepared in dependence of the molar mixing ratio, pH value and of the cationic polysaccharide. As further proteins chymotrypsin (CHY) and papain (PAP) were selected, which served as model proteins for BMP-2 due to similar isoelectric points and molecular weights. As charged polysaccharides ethylenediamine modified cellulose (EDAC) and trimethylammonium modified cellulose (PQ10) were combined with cellulose sulphatesulfate (CS). Mixing diluted cationic and anionic polysaccharide and protein solutions according to a slight either anionic or cationic excess charge colloidal ternary dispersions formed, which were cast onto germanium model substrates by water evaporation. Dynamic light scattering (DLS) demonstrated, that these dispersions were colloidally stable for at least one week. Fourier Transform Infrared (FTIR) showed, that the cast protein loaded PEC NP coatings were irreversibly adhesive at the model substrate in contact to HEPES buffer and solely CHY, PAP and BMP-2 were released within long-term time scale. Advantageously, out of the three proteins BMP-2 showed the smallest initial burst and the slowest release kinetics and around 25% of the initial BMP-2 content were released within 14days. Released BMP-2 showed significant activity in the myoblast cells indicating the ability to regulate the formation of new bone. Therefore, BMP-2 loaded PEC NP are suggested as novel promising tool for the functionalization of BSM used for the therapy of systemic bone diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs.

    PubMed

    Wikesjö, Ulf M E; Xiropaidis, Andreas V; Qahash, Mohammed; Lim, Won Hee; Sorensen, Rachel G; Rohrer, Michael D; Wozney, John M; Hall, Jan

    2008-11-01

    Conventional oral/maxillofacial implants reach osseointegration over several months during which the titanium fixtures interact with alveolar bone. The objective of this study was to determine if adsorbing recombinant human bone morphogenetic protein-2 (rhBMP-2) onto a titanium porous oxide (TPO) implant surface might enhance or accelerate local bone formation and support osseointegration in a large animal oral/maxillofacial orthotopic model. Endosseous implants with a TPO surface were installed into the edentulated posterior mandible in eight adult Hound Labrador mongrel dogs. The implant surface had been adsorbed with rhBMP-2 at 0.2 or 4.0 mg/ml. TPO implants without rhBMP-2 served as control. Treatments were randomized between jaw quadrants. Mucosal flaps were advanced and sutured leaving the implants submerged. Clinical and radiographic evaluations were made immediately post-surgery, at day 10 (suture removal), and week 4 and 8 post-surgery. The animals received fluorescent bone markers at week 3, 4, and at week 8 post-surgery, when they were euthanized for histologic analysis. TPO implants coated with rhBMP-2 exhibited dose-dependent bone remodelling including immediate resorption and formation of implant adjacent bone, and early establishment of clinically relevant osseointegration. The resulting bone-implant contact, although clinically respectable, appeared significantly lower for rhBMP-2-coated implants compared with the control [rhBMP-2 (0.2 mg/ml) 43.3+/-10.8%versus 71.7+/-7.8%, p<0.02; rhBMP-2 (4.0 mg/ml) 35.4+/-10.6%versus 68.2+/-11.0%, p<0.03]. rhBMP-2 adsorbed onto TPO implant surfaces initiates dose-dependent peri-implant bone re-modelling resulting in the formation of normal, physiologic bone and clinically relevant osseointegration within 8 weeks.

  6. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products.

    PubMed

    Bae, Hyun W; Zhao, Li; Kanim, Linda E A; Wong, Pamela; Delamarter, Rick B; Dawson, Edgar G

    2006-05-20

    Enzyme-linked immunosorbent assay was used to detect bone morphogenetic proteins (BMPs) 2, 4, and 7 in 9 commercially available ("off the shelf") demineralized bone matrix (DBM) product formulations using 3 different manufacturer's production lots of each DBM formulation. To evaluate and compare the quantity of BMPs among several different DBM formulations (inter-product variability), as well as examine the variability of these proteins in different production lots within the same DBM formulation (intra-product variability). DBMs are commonly used to augment available bone graft in spinal fusion procedures. Surgeons are presented with an ever-increasing variety of commercially available human DBMs from which to choose. Yet, there is limited information on a specific DBM product's osteoinductive efficacy, potency, and constancy. There were protein extracts from each DBM sample separately dialyzed 4 times against distilled water at 4 degrees C for 48 hours. The amount of BMP-2, BMP-4, and BMP-7 was determined using enzyme-linked immunosorbent assay. RESULTS.: The concentrations of detected BMP-2 and BMP-7 were low for all DBM formulations, only nanograms of BMP were extracted from each gram of DBM (20.2-120.6 ng BMP-2/g DBM product; 54.2-226.8 ng BMP-7/g DBM). The variability of BMP concentrations among different lots of the same DBM formulation, intra-product variability, was higher than the variability of concentrations among different DBM formulations, inter-product variability (coefficient of variation range BMP-2 [16.34% to 76.01%], P < 0.01; BMP-7 [3.71% to 82.08%], P < 0.001). BMP-4 was undetectable. The relative quantities of BMPs in DBMs are low, in the order of 1 x 10(-9) g of BMP/g of DBM. There is higher variability in concentration of BMPs among 3 different lots of the same DBM formulation than among different DBM formulations. This variability questions DBM products' reliability and, possibly, efficacy in providing consistent osteoinduction.

  7. Effects of Recombinant Human Bone Morphogenetic Protein-2 on Vertical Bone Augmentation in a Canine Model.

    PubMed

    Hsu, Yung-Ting; Al-Hezaimi, Khalid; Galindo-Moreno, Pablo; O'Valle, Francisco; Al-Rasheed, Abdulaziz; Wang, Hom-Lay

    2017-09-01

    Vertical bone augmentation (VBA) remains unpredictable and challenging for most clinicians. This study aims to compare hard tissue outcomes of VBA, with and without recombinant human bone morphogenetic protein (rhBMP)-2, under space-making titanium mesh in a canine model. Eleven male beagle dogs were used in the study. Experimental ridge defects were created to form atrophic ridges. VBA was performed via guided bone regeneration using titanium mesh and allografts. In experimental hemimandibles, rhBMP-2/absorbable collagen sponge was well mixed with allografts prior to procedures, whereas a control buffer was applied within controls. Dogs were euthanized after a 4-month healing period. Clinical and radiographic examinations were performed to assess ridge dimensional changes. In addition, specimens were used for microcomputed tomography (micro-CT) assessment and histologic analysis. Membrane exposure was found on five of 11 (45.5%) rhBMP-2-treated sites, whereas it was found on nine of 11 (81.8%) non-rhBMP-2-treated sites. Within 4 months of healing, rhBMP-2-treated sites showed better radiographic bone density, greater defect fill, and significantly more bone gain in ridge height (P <0.05) than controls. Experimental hemimandibles exhibited lower rates of membrane exposure and a noteworthy, ectopic bone formation above the mesh in 72% of sites. Results from micro-CT also suggested a trend of less vertical bone gain and bone mineral density in controls (P >0.05). Under light microscope, predominant lamellar patterns were found in the specimen obtained from rhBMP-2 sites. With inherent limitations of the canine model and the concern of such a demanding surgical technique, current findings suggest that the presence of rhBMP-2 in a composite graft allows an increase of vertical gain, with formation of ectopic bone over the titanium mesh in comparison with non-rhBMP-2 sites.

  8. LIM mineralization protein-1 potentiates bone morphogenetic protein responsiveness via a novel interaction with Smurf1 resulting in decreased ubiquitination of Smads.

    PubMed

    Sangadala, Sreedhara; Boden, Scott D; Viggeswarapu, Manjula; Liu, Yunshan; Titus, Louisa

    2006-06-23

    Development and repair of the skeletal system and other organs is highly dependent on precise regulation of bone morphogenetic proteins (BMPs), their receptors, and their intracellular signaling proteins known as Smads. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, control of cellular responsiveness to BMPs is now a critical area that is poorly understood. We determined that LMP-1, a LIM domain protein capable of inducing de novo bone formation, interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads. In the region of LMP responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and can effectively compete with Smad1 and Smad5 for binding. We have shown that small peptides containing this motif can mimic the ability to block Smurf1 from binding Smads. This novel interaction of LMP-1 with the WW2 domain of Smurf1 to block Smad binding results in increased cellular responsiveness to exogenous BMP and demonstrates a novel regulatory mechanism for the BMP signaling pathway.

  9. Effect of HIP/Ribosomal Protein L29 Deficiency on Mineral Properties of Murine Bones and Teeth

    PubMed Central

    Sloofman, Laura G.; Verdelis, Kostas; Spevak, Lyudmila; Zayzafoon, Majd; Yamauchi, Mistuo; Opdenaker, Lynn M.; Farach-Carson, Mary C.; Boskey, Adele L.; Kirn-Safran, Catherine B.

    2010-01-01

    Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues. PMID:20362701

  10. Bone Regeneration in Rat Cranium Critical-Size Defects Induced by Cementum Protein 1 (CEMP1)

    PubMed Central

    Serrano, Janeth; Romo, Enrique; Bermúdez, Mercedes; Narayanan, A. Sampath; Zeichner-David, Margarita; Santos, Leticia; Arzate, Higinio

    2013-01-01

    Gene therapy approaches to bone and periodontal tissue engineering are being widely explored. While localized delivery of osteogenic factors like BMPs is attractive for promotion of bone regeneration; method of delivery, dosage and side effects could limit this approach. A novel protein, Cementum Protein 1 (CEMP1), has recently been shown to promote regeneration of periodontal tissues. In order to address the possibility that CEMP1 can be used to regenerate other types of bone, experiments were designed to test the effect of hrCEMP1 in the repair/regeneration of a rat calvaria critical-size defect. Histological and microcomputed tomography (µCT) analyses of the calvaria defect sites treated with CEMP1 showed that after 16 weeks, hrCEMP1 is able to induce 97% regeneration of the defect. Furthermore, the density and characteristics of the new mineralized tissues were normal for bone. This study demonstrates that hrCEMP1 stimulates bone formation and regeneration and has therapeutic potential for the treatment of bone defects and regeneration of mineralized tissues. PMID:24265720

  11. Bone substitutes and expanders in Spine Surgery: A review of their fusion efficacies

    PubMed Central

    Millhouse, Paul W; Kepler, Christopher K; Radcliff, Kris E.; Fehlings, Michael G.; Janssen, Michael E.; Sasso, Rick C.; Benedict, James J.; Vaccaro, Alexander R

    2016-01-01

    Study Design A narrative review of literature. Objective This manuscript intends to provide a review of clinically relevant bone substitutes and bone expanders for spinal surgery in terms of efficacy and associated clinical outcomes, as reported in contemporary spine literature. Summary of Background Data Ever since the introduction of allograft as a substitute for autologous bone in spinal surgery, a sea of literature has surfaced, evaluating both established and newly emerging fusion alternatives. An understanding of the available fusion options and an organized evidence-based approach to their use in spine surgery is essential for achieving optimal results. Methods A Medline search of English language literature published through March 2016 discussing bone graft substitutes and fusion extenders was performed. All clinical studies reporting radiological and/or patient outcomes following the use of bone substitutes were reviewed under the broad categories of Allografts, Demineralized Bone Matrices (DBM), Ceramics, Bone Morphogenic proteins (BMPs), Autologous growth factors (AGFs), Stem cell products and Synthetic Peptides. These were further grouped depending on their application in lumbar and cervical spine surgeries, deformity correction or other miscellaneous procedures viz. trauma, infection or tumors; wherever data was forthcoming. Studies in animal populations and experimental in vitro studies were excluded. Primary endpoints were radiological fusion rates and successful clinical outcomes. Results A total of 181 clinical studies were found suitable to be included in the review. More than a third of the published articles (62 studies, 34.25%) focused on BMP. Ceramics (40 studies) and Allografts (39 studies) were the other two highly published groups of bone substitutes. Highest radiographic fusion rates were observed with BMPs, followed by allograft and DBM. There were no significant differences in the reported clinical outcomes across all classes of bone

  12. [Effects of cuttlefish bone-bone morphogenetic protein composite material on osteogenesis and revascularization of bone defect in rats].

    PubMed

    Liu, Yuan; Yu, Jiang; Bai, Jie; Gu, Jin-song; Cai, Bin; Zhou, Xia

    2013-12-01

    To study the effects of cuttlefish bone-bone morphogenetic protein (BMP) composite material on osteogenesis and revascularization of bone defect in rats. The cuttlefish bone was formed into cylinder with the diameter of about 5 mm and height of about 2 mm after the shell was removed, and then it was soaked in the recombinant human BMP 2 to make a cuttlefish bone-BMP (CBB) composite material. Thirty SD rats, with a defect of skull in every rat, were divided into the CBB and pure cuttlefish bone (PCB) groups according to the random number table, with 15 rats in each group. The rats in the group CBB and group PCB were transplanted with the corresponding material to repair the skull defect. At post transplantation week (PTW) 4, 6, and 8, 5 rats from every group were sacrificed by exsanguination, and ink perfusion was performed. One day later, all the transplants and part of the skull surrounding the defect were harvested, and general observation was conducted at the same time. The specimens were paraffin sectioned for HE staining and Masson staining. The area of microvessel and the area of newborn bone were observed and analyzed through histopathological techniques and image collection system. Data were processed with the analysis of variance of factorial design and LSD test. The correlation between the area of microvessel and the area of newborn bone of the group CBB was analyzed with Pearson correlation analysis. (1) The general observation of the transplant region showed that the transplants were encapsulated by a capsule of fibrous connective tissue. The texture of capsule was soft and relatively thick at PTW 4. The texture was tenacious and thin, but rather compact at PTW 6 and 8. The transplants became gelatinous at PTW 4, and similar to the cartilage tissue at PTW 6 and 8. (2) Histological observation showed that the structure of the transplants in two groups was damaged at PTW 4. A moderate quantity of inflammatory cell infiltration could be observed. The

  13. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells

    PubMed Central

    Kim, Kyobum; Dean, David; Wallace, Jonathan; Breithaupt, Rob; Mikos, Antonios G.; Fisher, John P.

    2011-01-01

    Scaffold design parameters, especially physical construction factors such as mechanical stiffness of substrate materials, pore size of 3D porous scaffolds, and channel geometry, are known to influence the osteogenic signal expression and subsequent differentiation of a transplanted cell population. In this study of photocrosslinked poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) scaffolds, the effect of DEF incorporation ratio and pore size on the osteogenic signal expression of rat bone marrow stromal cells (BMSCs) was investigated. Results demonstrated that DEF concentrations and pore sizes that led to increased scaffold mechanical stiffness also upregulated osteogenic signal expression, including bone morphogenic protein-2 (BMP-2), fibroblast growth factors-2 (FGF-2), transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and Runx2 transcriptional factor. Similar scaffold fabrication parameters supported rapid BMSC osteoblastic differentiation, as demonstrated by increased alkaline phosphatase (ALP) and osteocalcin expression. When scaffolds with random architecture, fabricated by porogen leaching, were compared to those with controlled architecture, fabricated by stereolithography (SLA), results showed that SLA scaffolds with the highly permeable and porous channels also have significantly higher expression of FGF-2, TGF-β1, and VEGF. Subsequent ALP expression and osteopontin secretion were also significantly increased in SLA scaffolds. Based upon these results, we conclude that scaffold properties provided by additive manufacturing techniques such as SLA fabrication, particularly increased mechanical stiffness and high permeability, may stimulate dramatic BMSC responses that promote rapid bone tissue regeneration. PMID:21396709

  14. Osteogenic Protein-1 (Bone Morphogenetic Protein-7) in the Treatment of Tibial Nonunions

    PubMed Central

    FRIEDLAENDER, GARY E.; PERRY, CLAYTON R.; DEAN COLE, J.; COOK, STEPHEN D.; CIERNY, GEORGE; MUSCHLER, GEORGE F.; ZYCH, GREGORY A.; CALHOUN, JASON H.; LAFORTE, AMY J.; YIN, SAMUEL

    2005-01-01

    Background: The role of bone morphogenetic proteins (BMPs) in osseous repair has been demonstrated in numerous animal models. Recombinant human osteogenic protein-1 (rhOP-1 or BMP-7) has now been produced and was evaluated in a clinical trial conducted under a Food and Drug Administration approved Investigational Device Exemption to establish both the safety and efficacy of this BMP in the treatment of tibial nonunions. The study also compared the clinical and radiographic results with this osteogenic molecule and those achieved with fresh autogenous bone. Materials and Methods: One hundred and twenty-two patients (with 124 tibial nonunions) were enrolled in a controlled, prospective, randomized, partially blinded, multi-center clinical trial between February, 1992, and August, 1996, and were followed at frequent intervals over 24 months. Each patient was treated by insertion of an intramedullary rod, accompanied by rhOP-1 in a type I collagen carrier or by fresh bone autograft. Assessment criteria included the severity of pain at the fracture site, the ability to walk with full weight-bearing, the need for surgical re-treatment of the nonunion during the course of this study, plain radiographic evaluation of healing, and physician satisfaction with the clinical course. In addition, adverse events were recorded, and sera were screened for antibodies to OP-1 and type-I collagen at each outpatient visit. Results: At 9 months following the operative procedures (the primary end-point of this study), 81% of the OP-1-treated nonunions (n = 63) and 85% of those receiving autogenous bone (n = 61) were judged by clinical criteria to have been treated successfully (p = 0.524). By radiographic criteria, at this same time point, 75% of those in the OP-1-treated group and 84% of the autograft-treated patients had healed fractures (p = 0.218). These clinical results continued at similar levels of success throughout 2 years of observation, and there was no statistically

  15. Effect of recombinant human bone morphogenetic protein-2 on bone regeneration and osseointegration of dental implants.

    PubMed

    Sykaras, N; Triplett, R G; Nunn, M E; Iacopino, A M; Opperman, L A

    2001-08-01

    Recombinant human bone morphogenetic protein-2 (rhBMP-2) induced bone regeneration and osseointegration was evaluated in bony defects created within the hollow chamber of endosseous dental implants in 14 foxhound dogs. Bilateral extractions of mandibular premolars were performed and surgical implantation of 104 hollow cylinder implants followed after 8 weeks of healing. Experimental implants had their hollow chamber filled with 20 microg of rhBMP-2 delivered with a bovine collagen carrier, whereas the control implants had their apical chamber left empty. Dogs were followed for 2, 4, 8 and 12 weeks. Histomorphometric evaluation and immunohistochemical analysis were performed. Minimal bone was regenerated at 2 weeks for both groups. At 4 weeks, bone fill averaged 23.48% for the rhBMP-2 and 5.98% for the control group (P<0.05). At 8 weeks, mean bone fill was 20.94% and 7.75% for the rhBMP-2 and the controls, respectively (P<0.05). At 12 weeks, mean bone fill was 31.39% and 24.31% for the rhBMP-2 and control implants, respectively (P>0.05). Bone-implant contact (BIC) increased for both groups over time and at 8 weeks the rhBMP-2 BIC value was 18.65% and for the control 7.22% (P<0.05). At 12 weeks, the BIC was 43.78% and 21.05% for the rhBMP-2 and the control group, respectively (P<0.05). Immunohistochemical staining for type II collagen was positive only for parts of the collagen carrier and formation of cartilaginous intermediate was not observed in any of the specimens. The results suggest that, in confined defects adjacent to dental implants, rhBMP-2 can induce bone regeneration in close apposition to the implant surface.

  16. Animal versus plant protein and adult bone health: A systematic review and meta-analysis from the National Osteoporosis Foundation

    PubMed Central

    Chung, Mei; Fu, Zhuxuan; Insogna, Karl L.; Karlsen, Micaela C.; LeBoff, Meryl S.; Shapses, Sue A.; Sackey, Joachim; Shi, Jian; Weaver, Connie M.

    2018-01-01

    Background Protein may have both beneficial and detrimental effects on bone health depending on a variety of factors, including protein source. Objective The aim was to conduct a systematic review and meta-analysis evaluating the effects of animal versus plant protein intake on bone mineral density (BMD), bone mineral content (BMC) and select bone biomarkers in healthy adults. Methods Searches across five databases were conducted through 10/31/16 for randomized controlled trials (RCTs) and prospective cohort studies in healthy adults that examined the effects of animal versus plant protein intake on 1) total body (TB), total hip (TH), lumbar spine (LS) or femoral neck (FN) BMD or TB BMC for at least one year, or 2) select bone formation and resorption biomarkers for at least six months. Strength of evidence (SOE) was assessed and random effect meta-analyses were performed. Results Seven RCTs examining animal vs. isoflavone-rich soy (Soy+) protein intake in 633 healthy peri-menopausal (n = 1) and post-menopausal (n = 6) women were included. Overall risk of bias was medium. Limited SOE suggests no significant difference between Soy+ vs. animal protein on LS, TH, FN and TB BMD, TB BMC, and bone turnover markers BSAP and NTX. Meta-analysis results showed on average, the differences between Soy+ and animal protein groups were close to zero and not significant for BMD outcomes (LS: n = 4, pooled net % change: 0.24%, 95% CI: -0.80%, 1.28%; TB: n = 3, -0.24%, 95% CI: -0.81%, 0.33%; FN: n = 3, 0.13%, 95% CI: -0.94%, 1.21%). All meta-analyses had no statistical heterogeneity. Conclusions These results do not support soy protein consumption as more advantageous than animal protein, or vice versa. Future studies are needed examining the effects of different protein sources in different populations on BMD, BMC, and fracture. PMID:29474360

  17. Collagen I derived recombinant protein microspheres as novel delivery vehicles for bone morphogenetic protein-2.

    PubMed

    Mumcuoglu, Didem; de Miguel, Laura; Jekhmane, Shehrazade; Siverino, Claudia; Nickel, Joachim; Mueller, Thomas D; van Leeuwen, Johannes P; van Osch, Gerjo J; Kluijtmans, Sebastiaan G

    2018-03-01

    Bone morphogenetic protein-2 (BMP-2) is a powerful osteoinductive protein; however, there is a need for the development of a safe and efficient BMP-2 release system for bone regeneration therapies. Recombinant extracellular matrix proteins are promising next generation biomaterials since the proteins are well-defined, reproducible and can be tailored for specific applications. In this study, we have developed a novel and versatile BMP-2 delivery system using microspheres from a recombinant protein based on human collagen I (RCP). In general, a two-phase release pattern was observed while the majority of BMP-2 was retained in the microspheres for at least two weeks. Among different parameters studied, the crosslinking and the size of the RCP microspheres changed the in vitro BMP-2 release kinetics significantly. Increasing the chemical crosslinking (hexamethylene diisocyanide) degree decreased the amount of initial burst release (24h) from 23% to 17%. Crosslinking by dehydrothermal treatment further decreased the burst release to 11%. Interestingly, the 50 and 72μm-sized spheres showed a significant decrease in the burst release compared to 207-μm sized spheres. Very importantly, using a reporter cell line, the released BMP-2 was shown to be bioactive. SPR data showed that N-terminal sequence of BMP-2 was important for the binding and retention of BMP-2 and suggested the presence of a specific binding epitope on RCP (K D : 1.2nM). This study demonstrated that the presented RCP microspheres are promising versatile BMP-2 delivery vehicles. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis.

    PubMed

    Butler, William T; Brunn, Jan C; Qin, Chunlin

    2003-01-01

    Dentinogenesis involves the initial odontoblastic synthesis of a collagen-rich extracellular matrix (ECM) and predentin that is converted to dentin when the collagen fibrils become mineralized. Since the width of predentin is rather uniform, we postulate that extracellular events regulate dentinogenesis. Similarly, osteogenesis involves an initial unmineralized osteoid that is mineralized and converted to bone. To gain insights into these two processes, we compared ECM proteins in bone with those in dentin, focusing upon the sialic acid (SA)-rich proteins. We observed qualitative similarities between the SA-rich proteins, but distinct differences in the amounts of osteopontin (OPN) and dentin sialoprotein (DSP). OPN, a predominant protein in bone, was found in much smaller amounts in dentin. Conversely, DSP was abundant in dentin ECM, but found sparingly in bone. Molecular cloning experiments indicate that coding sequences for DSP and dentin phosphoprotein (DPP) are found on the same mRNA. We believe that the initial form of the precursor protein DSPP is inactive in influencing the mineralization process and that it must be activated by cleavage of peptide bonds in conserved regions. Thus, unknown proteinases would act on DSPP, possibly at the mineralization front, and liberate active DPP, which plays an initiation and regulatory role in the formation of apatite crystals. This post-translational processing reaction would represent an important control point in dentinogenesis. Recently, we identified uncleaved DSPP in dentin extracts, which should allow us to test portions of our hypothesis.

  19. Efficient delivery of recombinant human bone morphogenetic protein (rhBMP-2) with dextran sulfate-chitosan microspheres.

    PubMed

    Xia, Yuan-Jun; Xia, Hong; Chen, Ling; Ying, Qing-Shui; Yu, Xiang; Li, Li-Hua; Wang, Jian-Hua; Zhang, Ying

    2018-04-01

    Bone morphogenetic protein-2 (BMP-2) serves an important role in the development of bone and cartilage. However, administration of BMP-2 protein alone by intravenous delivery is not very effective. Sustained delivery of stabilized BMP-2 by carriers has been proven necessary to improve the osteogenesis effect of BMP-2. The present study constructed a novel drug delivery system using dextran sulfate (DS)-chitosan (CS) microspheres and investigated the efficiency of the delivery system on recombinant human bone morphogenetic protein (rhBMP-2). The microsphere morphology, optimal ratio of DS/CS/rhBMP-2, and drug loading rate and entrapment efficiency of rhBMP-2 CS nanoparticles were determined. L929 cells were used to evaluate the cytotoxicity and effect of DS/CS/rhBMP-2 microspheres on cell proliferation. Differentiation study was conducted using bone marrow mesenchymal stem cells (BMSCs-C57) cells treated with DS/CS/rhBMP-2 microspheres or the control microspheres. The DS/CS/rhBMP-2 microspheres delivery system was successfully established. Subsequent complexation of rhBMP-2-bound DS with polycations afforded well defined microspheres with a diameter of ~250 nm. High protein entrapment efficiency (85.6%) and loading ratio (47.245) µg/mg were achieved. Release of rhBMP-2 from resultant microspheres persisted for over 20 days as determined by ELISA assay. The bioactivity of rhBMP-2 encapsulated in the CS/DS microsphere was observed to be well preserved as evidenced by the alkaline phosphatase activity assay and calcium nodule formation of BMSCs-C57 incubated with rhBMP-2-loaded microspheres. The results demonstrated that microspheres based on CS-DS polyion complexes were a highly efficient vehicle for delivery of rhBMP-2 protein. The present study may provide novel orientation for bone tissue engineering for repairing and regenerating bone defects.

  20. [Noncollagen bone proteins use in the composition of osteoplactic material Gapkol modified by vacuum].

    PubMed

    Volozhin, A I; Grigor'ian, A S; Desiatnichenko, K S; Ozhelevskaia, S A; Doktorov, A A; Kurdiumov, S G; Fionova, E V; Gurin, A N; Karakov, K G

    2008-01-01

    In rat experiments the ability of noncollagen bone proteins (NCBP) in the composition of osteoplactic modified material Gapkol (not tanned in formalin and subjected to vacuum extraction) to increase bone reparation in comparison with traditional Gapkol was studied. Quantitative evaluation was performed on rat parietal bone and qualitative evaluation was performed on rat mandible. It was shown that Gapkol with NCBP (not tanned in formalin and subjected to vacuum extraction) increased reparative osteogenesis.

  1. The Efficacy of Cyclic Injection of Bone Morphogenetic Protein-2 in Large-Scale Calvarial Bone Defects.

    PubMed

    Choi, Jin Mi; Jeong, Woo Shik; Park, Eun Jung; Choi, Jong Woo

    2017-03-01

    Bone morphogenetic protein-2 (BMP-2) appears to be one of the most potent growth factors thus far studied. However, recent publications on the clinical application of BMP-2 revealed that its correct control is the paramount issue in clinical practice. For improving BMP-2 delivery, the cyclic administration might be an alternative. Accordingly, the authors cyclically injected BMP-2 in a cyclic injection model of large cranial defects to maintain the proper dosage during the bone healing process. A 10-mm diameter calvarial bone defect was produced using a round drill in 8-week-old Sprague-Dawley rats. Silk-hydroxyapatite scaffolds soaked in the appropriate concentration of BMP-2 were implanted into the defect. The animals were split into 4 single-injection groups and 3 multiple-injection groups; the latter groups received weekly subcutaneous injections of BMP-2 solution (1, 5, and 10 μg/mL) for 4 weeks, whereas the former groups received a single injection of BMP-2 at these concentrations. Each rat underwent computed tomography at 8 weeks. In terms of total volumes of the new bone, the 5 μg/mL multiple-injection BMP-2 group had significantly greater increases in bone volume than the single-injection groups. In terms of bone thickness, the multiple-injection groups had better outcomes than the single-injection groups. Thus, the cyclic injection protocol restored the original thickness without overgrowth. Cyclic injection of BMP-2 permits more accurate dosage control than single injection and improves thickness and dense bone regeneration. Therefore, it may represent a promising approach for future clinical trials. Further investigation using a greater number of animals is required.

  2. Continuous delivery of rhBMP2 and rhVEGF165 at a certain ratio enhances bone formation in mandibular defects over the delivery of rhBMP2 alone--An experimental study in rats.

    PubMed

    Lohse, N; Moser, N; Backhaus, S; Annen, T; Epple, M; Schliephake, H

    2015-12-28

    The aim of the present study was to test the hypothesis that different amounts of vascular endothelial growth factor and bone morphogenic protein differentially affect bone formation when applied for repair of non-healing defects in the rat mandible. Porous composite PDLLA/CaCO3 carriers were fabricated as slow release carriers and loaded with rhBMP2 and rhVEGF165 in 10 different dosage combinations using gas foaming with supercritical carbon dioxide. They were implanted in non-healing defects of the mandibles of 132 adult Wistar rats with additional lateral augmentation. Bone formation was assessed both radiographically (bone volume) and by histomorphometry (bone density). The use of carriers with a ratio of delivery of VEGF/BMP between 0.7 and 1.2 was significantly related to the occurrence of significant increases in radiographic bone volume and/or histologic bone density compared to the use of carriers with a ratio of delivery of ≤ 0.5 when all intervals and all outcome parameters were considered. Moreover, simultaneous delivery at this ratio helped to "save" rhBMP2 as both bone volume and bone density after 13 weeks were reached/surpassed using half the dosage required for rhBMP2 alone. It is concluded, that the combined delivery of rhVEGF165 and rhBMP2 for repair of critical size mandibular defects can significantly enhance volume and density of bone formation over delivery of rhBMP2 alone. It appears from the present results that continuous simultaneous delivery of rhVEGF165 and rhBMP2 at a ratio of approximately 1 is favourable for the enhancement of bone formation. Copyright © 2015. Published by Elsevier B.V.

  3. Protein kinase D1 is essential for bone acquisition during pubertal growth.

    PubMed

    Ford, Jeffery J; Yeh, Lee-Chuan C; Schmidgal, Eric C; Thompson, Jason F; Adamo, Martin L; Lee, John C

    2013-11-01

    Bone formation and maintenance represents the summation of the balance of local and endocrine hormonal stimuli within a complex organ. Protein kinase D (PKD) is a member of the Ca(2+)/calmodulin-dependent kinase superfamily of serine/threonine kinases and has been described as the crossroads for the bone morphogenetic protein (BMP)-IGF-I signaling axis, which plays a major role in bone formation. The current study exploits the PKD1-deficient mouse model to examine the role of PKD in vivo in the skeleton. Dual-energy x-ray absorptiometry scan analysis of male and female pubescent mice demonstrated significantly decreased bone mineral density in the whole body and femoral bone compartments of PKD1 (+/-) mice, compared with their wild-type littermates. The body weight, nasal-anal length, and percentage body fat of the mice were not significantly different from their wild-type littermates. Cultured bone marrow stromal cells from PKD1 (+/-) mice demonstrated lower alkaline phosphatase activity in early differentiating osteoblasts and decreased mineralized nodule formation in mature osteoblasts. Quantitative RT-PCR analysis of osteoblast differentiation markers and osteoclast markers exhibited lower levels of expression in PKD1 (+/-) male mice than wild type. In female mice, however, only markers of osteoblast differentiation were reduced. PKD1 (+/-) mice also demonstrated a profound reduction in mRNA expression levels of BMP type II receptor and IGF-I receptor and in BMP-7 responsiveness in vitro. Together these data suggest that in mice, PKD1 action contributes to the regulation of osteoblastogenesis by altering gene expression with gender-specific effects on osteoclastogenesis, subsequently affecting skeletal matrix acquisition during puberty.

  4. Exaggerated inflammatory response after use of recombinant bone morphogenetic protein in recurrent unicameral bone cysts.

    PubMed

    MacDonald, Kevin M; Swanstrom, Morgan M; McCarthy, James J; Nemeth, Blaise A; Guliani, Teresa A; Noonan, Kenneth J

    2010-03-01

    Recurrent unicameral bone cysts (UBCs) can result in significant morbidity during a child's physical and emotional development. Multiple treatment options are available and a review of the literature fails to clearly define the optimal treatment for UBCs. Recombinant bone morphogenetic protein (BMP) has been used with success in other disorders of poor bone formation. This manuscript is the first to report on the use of recombinant BMP in the treatment of UBCs. Three patients with recurrent UBCs underwent revision surgery with recombinant BMP. Radiographic and medical review was performed and is reported here. In these patients, the use of BMP failed to fully resolve their UBC; 2 patients had complete recurrence that required further surgery. In addition to poor radiographic results, all patients developed exaggerated inflammatory responses in the acute postoperative period. Each child developed clinically significant limb swelling and pain that mimicked infection. On the basis of our poor radiographic results and a paradoxical clinical result, we no longer recommend the use of recombinant BMP in the manner reported here for the treatment of recurrent UBCs. Level IV, case series.

  5. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins and guided bone regeneration: a Raman spectroscopic study.

    PubMed

    Pinheiro, Antonio L B; Soares, Luiz G P; Cangussú, Maria Cristina T; Santos, Nicole R S; Barbosa, Artur Felipe S; Silveira Júnior, Landulfo

    2012-09-01

    We studied peaks of calcium hydroxyapatite (CHA) and protein and lipid CH groups in defects grafted with mineral trioxide aggregate (MTA) treated or not with LED irradiation, bone morphogenetic proteins and guided bone regeneration. A total of 90 rats were divided into ten groups each of which was subdivided into three subgroups (evaluated at 15, 21 and 30 days after surgery). Defects were irradiated with LED light (wavelength 850 ± 10 nm) at 48-h intervals for 15 days. Raman readings were taken at the surface of the defects. There were no statistically significant differences in the CHA peaks among the nonirradiated defects at any of the experimental time-points. On the other hand, there were significant differences between the defects filled with blood clot and the irradiated defects at all time-points (p < 0.001, p = 0.02, p < 0.001). There were significant differences between the mean peak CHA in nonirradiated defects at all the experimental time-points (p < 0.01). The mean peak of the defects filled with blood clot was significantly different from that of the defects filled with MTA (p < 0.001). There were significant differences between the defects filled with blood clot and the irradiated defects (p < 0.001). The results of this study using Raman spectral analysis indicate that infrared LED light irradiation improves the deposition of CHA in healing bone grafted or not with MTA.

  6. CCN3 Protein Participates in Bone Regeneration as an Inhibitory Factor*

    PubMed Central

    Matsushita, Yuki; Sakamoto, Kei; Tamamura, Yoshihiro; Shibata, Yasuaki; Minamizato, Tokutaro; Kihara, Tasuku; Ito, Masako; Katsube, Ken-ichi; Hiraoka, Shuichi; Koseki, Haruhiko; Harada, Kiyoshi; Yamaguchi, Akira

    2013-01-01

    CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy. PMID:23653360

  7. The evaluation of lyophilized polymer matrices for administering recombinant human bone morphogenetic protein-2.

    PubMed

    Duggirala, S S; Rodgers, J B; DeLuca, P P

    1996-07-01

    Novel unitary devices, prepared by lyophilization of viscous solutions of sodium carboxymethylcellulose (CMC) and methylcellulose (MC), were evaluated as sustained-release delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). In vitro characterization of the unitary devices, which contained rhBMP-2-loaded poly (d,l lactide-co-glycolide) (PLGA) bioerodible particles (BEPs), was conducted over a 2-month period. Determinations included buffer uptake, mass and molecular weight loss and rhBMP-2 release from the unitary devices. CMC devices imbibed approximately 16 times their weight of buffer, while with MC, equilibrium uptake was approximately 6 times the dry weight of the devices. Overall mass loss percentages were approximately 55 and 35%, respectively, for CMC and MC devices. rhBMP-2 release from the devices was essentially a triphasic process: an initial phase during which "free" protein (rhBMP-2 present on the surface and within the pores of the PLGA BEPs) was released, a lag period during which no release was discerned, and then release of "bound" rhBMP-2 (protein adsorbed to the BEPs). The release of bound protein correlated with the mass loss of the polymer which began after 3 weeks. Release from the unitary devices was lower than that from the BEPs alone, due to a retardation effect of the gelled CMC/MC polymers. In rabbits in which full-thickness cranial bone defects were created, the implants were well tolerated and induced significant new bone growth during an 8-week evaluation period. The CMC devices appear to have induced bone earlier (at 2 weeks), but this did not affect eventual 8-week results. CMC devices without rhBMP-2 appeared to provide some bone conduction, in contrast to the blank MC devices.

  8. Injectable chitosan microparticles incorporating bone morphogenetic protein-7 for bone tissue regeneration

    PubMed Central

    Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.

    2014-01-01

    This study investigates the influence of the controlled release of bone morphogenetic protein 7 (BMP-7) from cross-linked chitosan microparticles on pre-osteoblasts (OB-6) in vitro. BMP-7 was incorporated into microparticles by encapsulation during the particle preparation and coating after particle preparation. Chitosan microparticles had an average diameter of 700 μm containing ~100 ng of BMP-7. The release study profile indicates that nearly 98% of the BMP-7 coated on the microparticles was released in a period of 18 days while only 36% of the BMP-7 encapsulated in the microparticles was released in the same time period. Cell attachment study indicated that the BMP-7 coated microparticles have many cells adhered on the microparticles in comparison with microparticles without growth factors on day 10. DNA assay indicated a statistical significant increase (p<0.05) in the amount of DNA obtained from BMP-7 encapsulated and coated microparticles in comparison with microparticles without any growth factors. A real time RT-PCR experiment was performed to determine the expression of a few osteoblast specific genes - Dlx5, runx2, osterix, osteopontin, osteocalcin, and bone sialoprotein. The results thus suggest that chitosan microparticles obtained by coacervation method are biocompatible and helps in improving the encapsulation efficiency of BMP-7. Also BMP-7 incorporated in the microparticles is being released in a controlled fashion to support attachment, proliferation and differentiation of pre-osteoblasts, thus acting as a good scaffold for bone tissue regeneration. PMID:24497318

  9. The novel estrogen receptor G-protein-coupled receptor 30 is expressed in human bone.

    PubMed

    Heino, Terhi J; Chagin, Andrei S; Sävendahl, Lars

    2008-05-01

    Estrogens have significant impact on bone mineral metabolism. Besides the classical estrogen receptors (ERalpha and ERbeta), a trans-membrane G-protein-coupled receptor (GPR30) has been demonstrated to mediate estrogenic effects. We aimed to study whether GPR30 is expressed in bone cells and if so, whether the level of expression is developmentally regulated. Metaphyseal bone biopsies were collected from the tibia in 14 boys and 6 girls, all at different stages of puberty. GPR30 protein expression was studied by immunohistochemistry in paraffin-embedded sections. GPR30-positive osteocytes and osteoblasts were quantified and linear regression analysis was applied. Cytoplasmic GPR30 expression was detected in osteoblasts, osteocytes, and osteoclasts. Osteocytes were more frequently positive for GPR30 than osteoblasts (58+/-4% vs 46+/-3% positive cells respectively, P<0.05). Detailed analysis demonstrated that GPR30 positivity declined during pubertal development in osteocytes (R=-0.56, P<0.01) but not in osteoblasts (R=-0.31, P>0.05). No sex difference was observed in the numbers of GPR30-positive osteoblasts or osteocytes. Furthermore, GPR30 expression did not correlate with chronological or bone age. In conclusion, the novel ER GPR30 is expressed in osteoblasts, osteocytes, and osteoclasts suggesting that non-genomic estrogen signaling via GPR30 may exist in bone. However, the functional role of GPR30 in bone tissue remains to be elucidated.

  10. Insulin- like Growth Factor-Binding Protein Action in Bone Tissue: A Key Role for Pregnancy- Associated Plasma Protein-A.

    PubMed

    Beattie, James; Al-Khafaji, Hasanain; Noer, Pernille R; Alkharobi, Hanaa Esa; Alhodhodi, Aishah; Meade, Josephine; El-Gendy, Reem; Oxvig, Claus

    2018-01-01

    The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.

  11. Delayed Expression of Circulating TGF-β1 and BMP-2 Levels in Human Nonunion Long Bone Fracture Healing.

    PubMed

    Hara, Yoshiaki; Ghazizadeh, Mohammad; Shimizu, Hajime; Matsumoto, Hisashi; Saito, Nobuyuki; Yagi, Takanori; Mashiko, Kazuki; Mashiko, Kunihiro; Kawai, Makoto; Yokota, Hiroyuki

    2017-01-01

    The healing process of bone fracture requires a well-controlled multistage and sequential order beginning immediately after the injury. However, complications leading to nonunion exist, creating serious problems and costs for patients. Transforming growth factor-beta 1 (TGF-β1) and bone morphogenic protein 2 (BMP-2) are two major growth factors involved in human bone fracture healing by promoting various stages of bone ossification. In this study, we aimed to determine the role of these factors during the fracture healing of human long bones and assess their impacts on nonunion condition. We performed a comprehensive analysis of plasma TGF-β1 and BMP-2 levels in blood samples from 10 patients with proved nonunion and 10 matched patients with normal union following a predetermined time schedule. The concentrations of TGF-β1 and BMP-2 were measured at each time point using a solid-phase ELISA. TGF-β1 and BMP-2 levels were detectable in all patients. For all patients, a maximal peak for TGF-β1 was found at 3-week. In normal union group, TGF-β1 showed a maximal peak at 2-week while nonunion group had a delayed maximal peak at 3-week. Plasma levels of BMP-2 for all patients and for normal union group reached a maximal peak at 1-week, but nonunion group showed a delayed maximal peak at 2-week. In general, plasma TGF-β1 or BMP-2 level was not significantly different between normal union and nonunion groups. The expression levels of TGF-β1 and BMP-2 appeared to be delayed in nonunion patients which could play an important role in developing an early marker of fracture union condition and facilitate improved patient's management.

  12. The Effect of a Whey Protein Supplement on Bone Mass in Older Caucasian Adults

    PubMed Central

    Kerstetter, Jane E.; Brindisi, Jennifer; Sullivan, Rebecca R.; Mangano, Kelsey M.; Larocque, Sarah; Kotler, Belinda M.; Simpson, Christine A.; Cusano, Anna Maria; Gaffney-Stomberg, Erin; Kleppinger, Alison; Reynolds, Jesse; Dziura, James; Kenny, Anne M.; Insogna, Karl L.

    2015-01-01

    Context: It has been assumed that the increase in urine calcium (Ca) that accompanies an increase in dietary protein was due to increased bone resorption. However, studies using stable Ca isotopes have found that dietary protein increases Ca absorption without increasing bone resorption. Objective: The objective of the study was to investigate the impact of a moderately high protein diet on bone mineral density (BMD). Design: This was a randomized, double-blind, placebo-controlled trial of protein supplementation daily for 18 months. Setting: The study was conducted at two institutional research centers. Participants: Two hundred eight older women and men with a body mass index between 19 and 32 kg/m2 and a self-reported protein intake between 0.6 and 1.0 g/kg participated in the study. Intervention: Subjects were asked to incorporate either a 45-g whey protein or isocaloric maltodextrin supplement into their usual diet for 18 months. Main Outcome Measure: BMD by dual-energy x-ray absorptiometry, body composition, and markers of skeletal and mineral metabolism were measured at baseline and at 9 and 18 months. Results: There were no significant differences between groups for changes in L-spine BMD (primary outcome) or the other skeletal sites of interest. Truncal lean mass was significantly higher in the protein group at 18 months (P = .048). C-terminal telopeptide (P = .0414), IGF-1 (P = .0054), and urinary urea (P < .001) were also higher in the protein group at the end of the study period. There was no difference in estimated glomerular filtration rate at 18 months. Conclusion: Our data suggest that protein supplementation above the recommended dietary allowance (0.8 g/kg) may preserve fat-free mass without adversely affecting skeletal health or renal function in healthy older adults. PMID:25844619

  13. Osteogenic potential of the human bone morphogenetic protein 2 gene activated nanobone putty.

    PubMed

    Tian, Xiao-bin; Sun, Li; Yang, Shu-hua; Zhang, Yu-kun; Hu, Ru-yin; Fu, De-hao

    2008-04-20

    Nanobone putty is an injectable and bioresorbable bone substitute. The neutral-pH putty resembles hard bone tissue, does not contain polymers or plasticizers, and is self-setting and nearly isothermic, properties which are helpful for the adhesion, proliferation, and function of bone cells. The aim of this study was to investigate the osteogenic potential of human bone morphogenetic protein 2 (hBMP2) gene activated nanobone putty in inducing ectopic bone formation, and the effects of the hBMP2 gene activated nanobone putty on repairing bone defects. Twenty four Kunming mice were randomly divided into two groups. The nanobone putty + hBMP2 plasmid was injected into the right thigh muscle pouches of the mice (experiment side). The nanobone putty + blank plasmid or nanobone putty was injected into the left thigh muscle pouches of the group 1 (control side 1) or group 2 (control side 2), respectively. The effects of ectopic bone formation were evaluated by radiography, histology, and molecular biology analysis at 2 and 4 weeks after operation. Bilateral 15 mm radial defects were made in forty-eight rabbits. These rabbits were randomly divided into three groups: Group A, nanobone putty + hBMP2 plasmid; Group B, putty + blank plasmid; Group C, nanobone putty only. Six rabbits with left radial defects served as blank controls. The effect of bone repairing was evaluated by radiography, histology, molecular biology, and biomechanical analysis at 4, 8, and 12 weeks after operation. The tissue from the experimental side of the mice expressed hBMP2. Obvious cartilage and island-distributed immature bone formation in implants of the experiment side were observed at 2 weeks after operation, and massive mature bone observed at 4 weeks. No bone formation was observed in the control side of the mice. The ALP activity in the experiment side of the mice was higher than that in the control side. The tissue of Group A rabbits expressed hBMP2 protein and higher ALP level. The new bone

  14. A polymorphism in a conserved posttranscriptional regulatory motif alters bone morphogenetic protein 2 (BMP2) RNA:protein interactions.

    PubMed

    Fritz, David T; Jiang, Shan; Xu, Junwang; Rogers, Melissa B

    2006-07-01

    The bone morphogenetic protein (BMP)2 gene has been genetically linked to osteoporosis and osteoarthritis. We have shown that the 3'-untranslated regions (UTR) of BMP2 genes from mammals to fishes are extraordinarily conserved. This indicates that the BMP2 3'-UTR is under stringent selective pressure. We present evidence that the conserved region is a strong posttranscriptional regulator of BMP2 expression. Polymorphisms in cis-regulatory elements have been proven to influence susceptibility to a growing number of diseases. A common single nucleotide polymorphism (SNP) disrupts a putative posttranscriptional regulatory motif, an AU-rich element, within the BMP2 3'-UTR. The affinity of specific proteins for the rs15705 SNP sequence differs from their affinity for the normal human sequence. More importantly, the in vitro decay rate of RNAs with the SNP is higher than that of RNAs with the normal sequence. Such changes in mRNA:protein interactions may influence the posttranscriptional mechanisms that control BMP2 gene expression. The consequent alterations in BMP2 protein levels may influence the development or physiology of bone or other BMP2-influenced tissues.

  15. The extraction and measurement of bone morphogenetic protein 7 from bovine cortical bone as a function of particle size.

    PubMed

    Pietrzak, William S; Ali, Saba N

    2015-01-01

    Bone morphogenetic proteins (BMPs), present in parts per billion in bone, endow demineralized bone matrix (DBM) with osteoinductive properties suitable for clinical use. Although BMPs are mainly associated with bone matrix, they also associate with other bone compartments as well, including the mineral phase. The purpose of this study was to gain a more complete understanding of the distribution of BMPs in undemineralized bone. Eleven discrete particle size ranges of bovine cortical bone were prepared, ranging between less than 25 μm and 600 to 710 μm for the smallest and largest sizes, respectively. The bone was extracted with 4-M guanidine-HCl/0.05-M Tris-HCl, and the amount of BMP-7 released was measured with enzyme-linked immunosorbant assay. In addition, 106- to 710-μm bone particles were demineralized and similarly extracted for comparison. The measured BMP-7 content of the DBM was 24.6 ± 1.56 ng/g. The values for bone increased nonlinearly with decreasing particle size, ranging from 1.13 ± 0.50 ng/g for the 600- to 710-μm particles to 4.18 ± 1.14 ng/g for the less than 25-μm particles (P < 0.001). However, modeling the bone particles as solid spheres to estimate total surface area showed that the extracted BMP-7 per unit area was greater for larger particle sizes. These seemingly opposing results suggest that BMPs may become proportionally damaged or altered in response to the increased forces required to generate smaller particles and, as such, may not be detectable with enzyme-linked immunosorbant assay. In addition, minimization of bone particle size is not an effective strategy to approach the BMP availability of DBM.

  16. Fabrication of Vascularized Bone Flaps with Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Arteriovenous Bundle.

    PubMed

    Li, Bo; Ruan, Changshun; Ma, Yufei; Huang, Zhifeng; Huang, Zhenfei; Zhou, Gang; Zhang, Jing; Wang, Hai; Wu, Zhihong; Qiu, Guixing

    2018-05-21

    It is a common treatment strategy in the clinic to transplant a vascularized bone flap for a large bone defect. But it is difficult for peripheral blood vessels to grow into the central region of a large bone construct. In this study, we fabricated a vascularized bone flap from a three-dimensional (3D)-printed biodegradable poly(lactide-co-glycolide) (PLGA)/β-tri-calcium phosphate (β-TCP) scaffold using the combination of an arteriovenous (AV) bundle and recombinant human bone morphogenetic protein-2 (rhBMP-2). A degradable porous PLGA/β-TCP scaffold was prepared by adopting 3D plotting and a low-temperature deposition technique. rhBMP-2 chitosan microspheres (CMs) were fabricated and loaded into the scaffolds to induce ectopic bone formation. In Group SBV (scaffold+rhBMP-2+vessel), a femoral AV bundle was implanted into the central tunnel of the composite before embedding into intramuscular pockets. In Group SB (scaffold+rhBMP-2), the composite was directly implanted into intramuscular pockets. Bone formation was evaluated by imaging analysis (X-rays and microcomputed tomography) and histological analysis (Hematoxylin and Eosin staining and Masson staining) after 4 and 12 weeks, respectively. Vascularization was also assessed by imaging analysis (Microfil angiography) and histological analysis (CD31 immunohistochemical staining). The 3D-printed PLGA/β-TCP scaffold had good cytocompatibility. Ectopic bone formation in the scaffold could be successfully induced by the controlled release of rhBMP-2 through CMs. Comparing groups SBV and SB, vascularization of the composite was significantly enhanced by AV bundle implantation at 4 and 12 weeks. Moreover, rhBMP-2-induced bone formation was also significantly improved by the AV bundle at 4 and 12 weeks. The AV bundle not only improved vascularization and bone formation of the construct, but also provided a defined vascular axis to connect with the vascular system of the bone defect by microsurgical techniques. It

  17. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases.

    PubMed

    Martin, T John

    2016-07-01

    Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects. Copyright © 2016 the American Physiological Society.

  18. Altered Osteocyte-Specific Protein Expression in Bone after Childhood Solid Organ Transplantation

    PubMed Central

    Pereira, Renata C.; Valta, Helena; Tumber, Navdeep; Salusky, Isidro B.; Jalanko, Hannu

    2015-01-01

    Background Bone fragility is common post solid organ transplantation but little is known about bone pathology on a tissue level. Abnormal osteocytic protein expression has been linked to compromised bone health in chronic kidney disease (CKD) and immunosuppressant medications may impact osteocyte function. Methods Transiliac bone biopsies were obtained from 22 pediatric solid organ allograft recipients (average age 15.6 years) an average of 6.3 ± 1.2 years after transplantation and from 12 pediatric pre-dialysis CKD patients (average age 13.2 years). Histomorphometry and immunohistochemistry for FGF23, DMP1, sclerostin, and osteopontin were performed on all biopsies. Results FGF23 and sclerostin were increased in transplant recipients relative to non-transplant CKD, regardless of the type of allograft received and despite, in the case of liver and heart recipients, a higher GFR. Bone DMP1 expression was higher in liver or heart than in kidney recipients, concomitant with higher serum phosphate values. Osteopontin expression was higher in CKD than in transplant recipients (p<0.01). Bone FGF23 and sclerostin correlated directly (r = 0.38, p<0.05); bone FGF23 expression and osteoid thickness correlated inversely (r = - 0.46, p<0.01). Conclusions Solid-organ transplantation is associated with increased FGF23 and sclerostin expression. The contribution of these findings to compromised bone health post transplantation warrants further evaluation. PMID:26390291

  19. Altered Osteocyte-Specific Protein Expression in Bone after Childhood Solid Organ Transplantation.

    PubMed

    Pereira, Renata C; Valta, Helena; Tumber, Navdeep; Salusky, Isidro B; Jalanko, Hannu; Mäkitie, Outi; Wesseling Perry, Katherine

    2015-01-01

    Bone fragility is common post solid organ transplantation but little is known about bone pathology on a tissue level. Abnormal osteocytic protein expression has been linked to compromised bone health in chronic kidney disease (CKD) and immunosuppressant medications may impact osteocyte function. Transiliac bone biopsies were obtained from 22 pediatric solid organ allograft recipients (average age 15.6 years) an average of 6.3 ± 1.2 years after transplantation and from 12 pediatric pre-dialysis CKD patients (average age 13.2 years). Histomorphometry and immunohistochemistry for FGF23, DMP1, sclerostin, and osteopontin were performed on all biopsies. FGF23 and sclerostin were increased in transplant recipients relative to non-transplant CKD, regardless of the type of allograft received and despite, in the case of liver and heart recipients, a higher GFR. Bone DMP1 expression was higher in liver or heart than in kidney recipients, concomitant with higher serum phosphate values. Osteopontin expression was higher in CKD than in transplant recipients (p<0.01). Bone FGF23 and sclerostin correlated directly (r = 0.38, p<0.05); bone FGF23 expression and osteoid thickness correlated inversely (r = - 0.46, p<0.01). Solid-organ transplantation is associated with increased FGF23 and sclerostin expression. The contribution of these findings to compromised bone health post transplantation warrants further evaluation.

  20. Evaluation of the presence of VEGF, BMP2 and CBFA1 proteins in autogenous bone graft: histometric and immunohistochemical analysis.

    PubMed

    Guskuma, Marcos Heidy; Hochuli-Vieira, Eduardo; Pereira, Flávia Priscila; Rangel-Garcia, Idelmo; Okamoto, Roberta; Okamoto, Tetuo; Filho, Osvaldo Magro

    2014-06-01

    The purpose of this study was to evaluate the expression of proteins that participate in the osteoinduction stage (VEGF, BMP2 and CBFA1) of the process of bone regeneration of defects created in rat calvariae and filled with autogenous bone block grafts. 10 adult male rats (Rattus norvegicus albinus, Wistar) were used, who received two bone defects measuring 5 mm each in the calvariae. The bone defects constituted two experimental groups (n = 10): Control Group (CONT) (defects filled with a coagulum); Graft Group (GR) (defects filled with autogenous bone removed from the contralateral defect). The animals were submitted to euthanasia at 7 and 30 days post-operatively. Quantitative analysis demonstrated significantly greater bone formation in Group GR, but the presence of the studied proteins was significantly greater in the CONT Group in both time intervals of observation. It was not possible in this study in cortical bone block groups to detect the osteoinductive proteins in a significant amount during the repair process. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Inhibition of BMP signaling overcomes acquired resistance to cetuximab in oral squamous cell carcinomas.

    PubMed

    Yin, Jinlong; Jung, Ji-Eun; Choi, Sun Il; Kim, Sung Soo; Oh, Young Taek; Kim, Tae-Hoon; Choi, Eunji; Lee, Sun Joo; Kim, Hana; Kim, Eun Ok; Lee, Yu Sun; Chang, Hee Jin; Park, Joo Yong; Kim, Yeejeong; Yun, Tak; Heo, Kyun; Kim, Youn-Jae; Kim, Hyunggee; Kim, Yun-Hee; Park, Jong Bae; Choi, Sung Weon

    2018-02-01

    Despite expressing high levels of the epidermal growth factor receptor (EGFR), a majority of oral squamous cell carcinoma (OSCC) patients show limited response to cetuximab and ultimately develop drug resistance. However, mechanism underlying cetuximab resistance in OSCC is not clearly understood. Here, using a mouse orthotopic xenograft model of OSCC, we show that bone morphogenic protein-7-phosphorylated Smad-1, -5, -8 (BMP7-p-Smad1/5/8) signaling contributes to cetuximab resistance. Tumor cells isolated from the recurrent cetuximab-resistant xenograft models exhibited low EGFR expression but extremely high levels of p-Smad1/5/8. Treatment with the bone morphogenic protein receptor type 1 (BMPRI) inhibitor, DMH1 significantly reduced cetuximab-resistant OSCC tumor growth, and combined treatment of DMH1 and cetuximab remarkably reduced relapsed tumor growth in vivo. Importantly, p-Smad1/5/8 level was elevated in cetuximab-resistant patients and this correlated with poor prognosis. Collectively, our results indicate that the BMP7-p-Smad1/5/8 signaling is a key pathway to acquired cetuximab resistance, and demonstrate that combination therapy of cetuximab and a BMP signaling inhibitor as potentially a new therapeutic strategy for overcoming acquired resistance to cetuximab in OSCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway.

    PubMed

    Huang, Wen-Chin; Xie, Zhihui; Konaka, Hiroyuki; Sodek, Jaro; Zhau, Haiyen E; Chung, Leland W K

    2005-03-15

    Osteocalcin and bone sialoprotein are the most abundant noncollagenous bone matrix proteins expressed by osteoblasts. Surprisingly, osteocalcin and bone sialoprotein are also expressed by malignant but not normal prostate epithelial cells. The purpose of this study is to investigate how osteocalcin and bone sialoprotein expression is regulated in prostate cancer cells. Our investigation revealed that (a) human osteocalcin and bone sialoprotein promoter activities in an androgen-independent prostate cancer cell line of LNCaP lineage, C4-2B, were markedly enhanced 7- to 12-fold in a concentration-dependent manner by conditioned medium collected from prostate cancer and bone stromal cells. (b) Deletion analysis of human osteocalcin and bone sialoprotein promoter regions identified cyclic AMP (cAMP)-responsive elements (CRE) as the critical determinants for conditioned medium-mediated osteocalcin and bone sialoprotein gene expression in prostate cancer cells. Consistent with these results, the protein kinase A (PKA) pathway activators forskolin and dibutyryl cAMP and the PKA pathway inhibitor H-89, respectively, increased or repressed human osteocalcin and bone sialoprotein promoter activities. (c) Electrophoretic mobility shift assay showed that conditioned medium-mediated stimulation of human osteocalcin and bone sialoprotein promoter activities occurs through increased interaction between CRE and CRE-binding protein. (d) Conditioned medium was found to induce human osteocalcin and bone sialoprotein promoter activities via increased CRE/CRE-binding protein interaction in a cell background-dependent manner, with marked stimulation in selected prostate cancer but not bone stromal cells. Collectively, these results suggest that osteocalcin and bone sialoprotein expression is coordinated and regulated through cAMP-dependent PKA signaling, which may define the molecular basis of the osteomimicry exhibited by prostate cancer cells.

  3. Synergistic Effects of Vascular Endothelial Growth Factor on Bone Morphogenetic Proteins Induced Bone Formation In Vivo: Influencing Factors and Future Research Directions

    PubMed Central

    Li, Bo; Wang, Hai; Qiu, Guixing; Su, Xinlin

    2016-01-01

    Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs), as key mediators in angiogenesis and osteogenesis, are used in a combined delivery manner as a novel strategy in bone tissue engineering. VEGF has the potential to enhance BMPs induced bone formation. Both gene delivery and material-based delivery systems were incorporated in previous studies to investigate the synergistic effects of VEGF and BMPs. However, their results were controversial due to variation of methods incorporated in different studies. Factors influencing the synergistic effects of VEGF on BMPs induced bone formation were identified and analyzed in this review to reduce confusion on this issue. The potential mechanisms and directions of future studies were also proposed here. Further investigating mechanisms of the synergistic effects and optimizing these influencing factors will help to generate more effective bone regeneration. PMID:28070506

  4. Bone regeneration by recombinant human bone morphogenetic protein-2 around immediate implants: a pilot study in rats.

    PubMed

    Matin, Khalrul; Senpuku, Hidenobu; Hanada, Nobuhiro; Ozawa, Hidehiro; Ejiri, Sadakazu

    2003-01-01

    Difficulties relating to bone regeneration that complicate immediate implant placement include buccal and/or lingual fenestrations, primary anchorage of the implants, and the need for protection from functional loading during the osseointegration period. The objective of this pilot study was to evaluate bone regeneration by recombinant human bone morphogenetic protein-2 (rhBMP-2) around immediate implants placed in maxillary sockets in rats. A total of 16 cylindric 0.8 x 1.8-mm commercially pure, solid titanium Implants were placed immediately after gentle extraction of the maxillary first molar teeth of 8 male Wistar rats. The sockets were randomly divided into 3 groups: group 1 (n = 6) received rhBMP-2 with polylactic acid/polyglycolic acid copolymer-coated gelatin sponge carrier; group 2 (n = 5) received only the carrier; and group 3 (n = 5) received no grafting materials following placement The rats were euthanized at 90 days postsurgery for microscopic analysis. In group 1, the implant body remained submerged completely, including the coronal part, which was fully covered by a significant amount (30% of total height) of regenerated cortical bone, even though the implant could easily be pulled out by a tweezer at the time of placement. Close approximation between the implant surface and regenerated bone could also be detected, indicating good bone-to-implant contact. In contrast, only peri-implant bone regeneration occurred in group 2, and an approximate 0.3-mm coronal part of the implant remained exposed. When no grafting materials were used (group 3), almost one third of the total length of the implant was exfoliated out of the socket when no grafting materials were used. Based on previous study and data from 16 sockets of the present study, it could be concluded that rhBMP-2 facilitated the regeneration of bone around immediate implants. In particular, the bone covering the coronal part could have been regenerated shortly after surgery, which helped to

  5. Effects of laser photherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration: a Raman spectroscopic study.

    PubMed

    Pinheiro, Antonio L B; Aciole, Gilberth T S; Cangussú, Maria Cristina T; Pacheco, Marcos T T; Silveira, Landulfo

    2010-12-15

    We have used Raman analysis to assess bone healing on different models. Benefits on the isolated or combined use of mineral trioxide aggregate, bone morphogenetic proteins, guided bone regeneration and laser on bone repair have been reported, but not their combination. We studied peaks of hydroxyapatite and CH groups on defects grafted with MTA, treated or not with laser, BMPs, and GBR. Ninety rats were divided in 10 groups each, subdivided into three subgroups. Laser (λ850 nm) was applied at every other day for 2 weeks. Raman readings were taken at the surface of the defect. Statistical analysis (CHA) showed significant differences between all groups (p = 0.001) and between Group II and all other (p < 0.001), but not with Group X (p = 0.09). At day 21 differences were seen between all groups (p = 0.031) and between Groups VIII and X when compared with Groups VI (p = 0.03), V (p < 0.001), IV (p < 0.001), and IX (p = 0.04). At the end of the experimental period no significant differences were seen. On regards CH, significant differences were seen at the 15(th) day (p = 0.002) and between Group II and all other groups (p < 0.0001) but not with control. Advanced maturation on irradiated bone is because of increased secretion of calcium hydroxyapatite (CHA) that is indicative of greater calcification and resistance of the bone. We conclude that the association of the MTA with laser phototherapy (LPT) and/or not with GBR resulted in a better bone repair. The use of the MTA associated to IR LPT resulted in a more advanced and quality bone repair. Copyright © 2010 Wiley Periodicals, Inc.

  6. Activated protein C (APC) can increase bone anabolism via a protease-activated receptor (PAR)1/2 dependent mechanism.

    PubMed

    Shen, Kaitlin; Murphy, Ciara M; Chan, Ben; Kolind, Mille; Cheng, Tegan L; Mikulec, Kathy; Peacock, Lauren; Xue, Meilang; Park, Sang-Youel; Little, David G; Jackson, Chris J; Schindeler, Aaron

    2014-12-01

    Activated Protein C (APC) is an anticoagulant with strong cytoprotective properties that has been shown to promote wound healing. In this study APC was investigated for its potential orthopedic application using a Bone Morphogenetic Protein 2 (rhBMP-2) induced ectopic bone formation model. Local co-administration of 10 µg rhBMP-2 with 10 µg or 25 µg APC increased bone volume at 3 weeks by 32% (N.S.) and 74% (p<0.01) compared to rhBMP-2 alone. This was associated with a significant increase in CD31+ and TRAP+ cells in tissue sections of ectopic bone, consistent with enhanced vascularity and bone turnover. The actions of APC are largely mediated by its receptors endothelial protein C receptor (EPCR) and protease-activated receptors (PARs). Cultured pre-osteoblasts and bone nodule tissue sections were shown to express PAR1/2 and EPCR. When pre-osteoblasts were treated with APC, cell viability and phosphorylation of ERK1/2, Akt, and p38 were increased. Inhibition with PAR1 and sometimes PAR2 antagonists, but not with EPCR blocking antibodies, ameliorated the effects of APC on cell viability and kinase phosphorylation. These data indicate that APC can affect osteoblast viability and signaling, and may have in vivo applications with rhBMP-2 for bone repair. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Comparison of 2 weight-loss diets of different protein content on bone health: a randomized trial.

    PubMed

    Jesudason, David; Nordin, Be Christopher; Keogh, Jennifer; Clifton, Peter

    2013-11-01

    It has been hypothesized that hip-fracture rates are higher in developed than in developing countries because high-protein (HP) Western diets induce metabolic acidosis and hypercalciuria. Confounders include interactions between dietary protein and calcium, sodium, and potassium. We determined whether an HP or a high-normal-protein (HNP) weight-loss diet caused greater loss in bone mineral density (BMD) over 24 mo. The Weight Loss, Protein and Bone Density Study was conducted from 2008 to 2011 in 323 overweight [body mass index (BMI; in kg/m(2)) >27] postmenopausal women, with a total hip BMD t score less than -2.0. Subjects were randomly assigned to receive an isocaloric calcium-replete HP (≥90 g protein/d) or HNP (<80 g protein/d) weight-loss diet, with the aim of a difference of 20 g protein/d. A total of 186 subjects (90 subjects in the HP group, 96 subjects in the HNP group) completed 12 mo, and 137 subjects (69 subjects in the HP group, 68 subjects in the HNP group) completed 24 mo. Biomarkers confirmed a difference in protein intake of 16 and 13.1 g at 12 and 24 mo, respectively. Mean (±SE) weight loss was equal; HP subjects lost 7.9 ± 0.9 kg and HNP subjects lost 8.9 ± 0.9 kg at 24 mo. Subjects lost 1-2% BMD annually at lumbar spine vertebrae 2-4, the forearm, the femoral neck, and hip. ANCOVA showed no effect of the HP or HNP diet (P > 0.05 for diet and diet-time interactions). A diet-by-time analysis showed that the HNP diet increased C-terminal telopeptide and osteocalcin (P ≤ 0.001 for each) despite hypercalciuria (P = 0.029). High dietary protein intake during weight loss has no clinically significant effect on bone density but slows bone turnover. This trial was registered at the Australian and New Zealand Clinical Trials Registry (http://www.anzctr.org.au) as ACTRN12608000229370.

  8. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    PubMed Central

    Qi, Xin; Liu, Yang; Ding, Zhen-yu; Cao, Jia-qing; Huang, Jing-huan; Zhang, Jie-yuan; Jia, Wei-tao; Wang, Jing; Liu, Chang-sheng; Li, Xiao-lin

    2017-01-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration. PMID:28230059

  9. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    NASA Astrophysics Data System (ADS)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  10. Heterotopic bone formation around sintered porous-surfaced Ti-6Al-4V implants coated with native bone morphogenetic proteins.

    PubMed

    Simon, Ziv; Deporter, Douglas A; Pilliar, Robert M; Clokie, Cameron M

    2006-09-01

    Coating endosseous dental implants with growth factors such as bone morphogenetic proteins (BMPs) may be one way to accelerate and/or enhance the quality of osseointegration. The purpose of this study was to investigate in the murine muscle pouch model whether sintered porous-surfaced titanium alloy implants coated with BMPs would lead to heterotopic bone formation around and within the implant surface geometry. Porous-surfaced dental implants were coated with partially purified native human BMPs, with or without a carrier of Poloxamer 407 (BASF Corp., Parsippany, NJ), placed in gelatin capsules and implanted into the hindquarter muscles of mice. Mice were euthanized after 28 days. Sections of retrieved specimens were subsequently prepared for morphometric analysis of bone formation using backscatter electron microscopic images. Human BMPs, either with or without the carrier of Poloxamer 407, led to bone formation within and outside of the sintered porous implant surface. When the sintered implant surface region was subdivided into inner and outer halves, similar levels of bone ingrowth and contact were seen in the 2 halves. Evidence of bone formation to the depth of the solid implant core (i.e., the deepest level possible) also was seen. Sintered porous-surfaced dental implants can be used as substrate for partially purified BMPs in the murine muscle pouch model. With the addition of these osteoinductive factors, the porous implant surface supported bone formation within the surface porosity provided, in some instances, all the way to the solid implant core. The addition of growth factors to a sintered porous surface may be an efficient method for altering locally the healing sequence and quality of bone associated with osseointegration of bone-interfacing implants.

  11. Maxillary anterior ridge augmentation with recombinant human bone morphogenetic protein 2.

    PubMed

    Edmunds, Ryan K; Mealey, Brian L; Mills, Michael P; Thoma, Daniel S; Schoolfield, John; Cochran, David L; Mellonig, Jim

    2014-01-01

    No human studies exist on the use of recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS) as a sole graft material for lateral ridge augmentation in large ridge defect sites. This series evaluates the treatment outcome of maxillary anterior lateral ridge augmentation with rhBMP-2/ACS. Twenty patients were treated with rhBMP-2/ACS and fixation screws for space maintenance. Cone beam volumetric tomography measurements were used to determine gain in ridge width, and a bone core biopsy was obtained. The mean horizontal ridge gain was 1.2 mm across sites, and every site gained width.

  12. The use of bone morphogenic protein-7 (OP-1) in the management of resistant non-unions in the upper and lower limb.

    PubMed

    Papanna, M C; Al-Hadithy, N; Somanchi, B V; Sewell, M D; Robinson, P M; Khan, S A; Wilkes, R A

    2012-07-01

    The aim of the present study was to investigate the safety and efficacy of local implantation of BMP-7 for the treatment of resistant non-unions in the upper and lower limb. Fifty-two patients (30 males, mean age 52.8 years; range 20-81) were treated with local BMP-7 implantation in a bovine bone-derived collagen paste with or without revision of fixation. Thirty-six patients had closed injuries, ten had open injuries and six had infected non-unions. Patients had undergone a mean of 2 (1-5) operations prior to implantation of BMP-7. Clinical and radiological union was achieved in 94% at a mean time of 5.6 months (3-19). Two patients with subtrochanteric femoral fractures failed to achieve union secondary to inadequate fracture stabilisation, persistent unfavourable biological environment and systemic co-morbidities. One patient developed synostosis attributed to the BMP-7 application. This study demonstrates BMP-7 implanted in a bovine-derived collagen paste is an effective adjunctive treatment for resistant non-unions in the upper and lower limb. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Dietary protein level and source differentially affect bone metabolism, strength, and intestinal calcium transporter expression during ad libitum and food-restricted conditions in male rats

    USDA-ARS?s Scientific Manuscript database

    High protein diets may attenuate bone loss during energy restriction (ER). The objective of the current study was to determine whether high protein diets suppress bone turnover and improve bone quality in rats during ER and whether dietary protein source affects this relationship. Eighty 12-week o...

  14. Bone Morphogenetic Protein-2 Promotes Human Mesenchymal Stem Cell Survival and Resultant Bone Formation When Entrapped in Photocrosslinked Alginate Hydrogels.

    PubMed

    Ho, Steve S; Vollmer, Nina L; Refaat, Motasem I; Jeon, Oju; Alsberg, Eben; Lee, Mark A; Leach, J Kent

    2016-10-01

    There is a substantial need to prolong cell persistence and enhance functionality in situ to enhance cell-based tissue repair. Bone morphogenetic protein-2 (BMP-2) is often used at high concentrations for osteogenic differentiation of mesenchymal stem cells (MSCs) but can induce apoptosis. Biomaterials facilitate the delivery of lower doses of BMP-2, reducing side effects and localizing materials at target sites. Photocrosslinked alginate hydrogels (PAHs) can deliver osteogenic materials to irregular-sized bone defects, providing improved control over material degradation compared to ionically cross-linked hydrogels. It is hypothesized that the delivery of MSCs and BMP-2 from a PAH increases cell persistence by reducing apoptosis, while promoting osteogenic differentiation and enhancing bone formation compared to MSCs in PAHs without BMP-2. BMP-2 significantly decreases apoptosis and enhances survival of photoencapsulated MSCs, while simultaneously promoting osteogenic differentiation in vitro. Bioluminescence imaging reveals increased MSC survival when implanted in BMP-2 PAHs. Bone defects treated with MSCs in BMP-2 PAHs demonstrate 100% union as early as 8 weeks and significantly higher bone volumes at 12 weeks, while defects with MSC-entrapped PAHs alone do not fully bridge. This study demonstrates that transplantation of MSCs with BMP-2 in PAHs achieves robust bone healing, providing a promising platform for bone repair. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ablation of the Sam68 RNA Binding Protein Protects Mice from Age-Related Bone Loss

    PubMed Central

    Richard, Stéphane; Torabi, Nazi; Franco, Gladys Valverde; Tremblay, Guy A; Chen, Taiping; Vogel, Gillian; Morel, Mélanie; Cléroux, Patrick; Forget-Richard, Alexandre; Komarova, Svetlana; Tremblay, Michel L; Li, Wei; Li, Ailian; Gao, Yun Jing; Henderson, Janet E

    2005-01-01

    The Src substrate associated in mitosis of 68 kDa (Sam68) is a KH-type RNA binding protein that has been shown to regulate several aspects of RNA metabolism; however, its physiologic role has remained elusive. Herein we report the generation of Sam68-null mice by homologous recombination. Aged Sam68−/− mice preserved their bone mass, in sharp contrast with 12-month-old wild-type littermates in which bone mass was decreased up to approximately 75%. In fact, the bone volume of the 12-month-old Sam68−/− mice was virtually indistinguishable from that of 4-month-old wild-type or Sam68−/− mice. Sam68−/− bone marrow stromal cells had a differentiation advantage for the osteogenic pathway. Moreover, the knockdown of Sam68 using short hairpin RNA in the embryonic mesenchymal multipotential progenitor C3H10T1/2 cells resulted in more pronounced expression of the mature osteoblast marker osteocalcin when differentiation was induced with bone morphogenetic protein-2. Cultures of mouse embryo fibroblasts generated from Sam68+/+ and Sam68−/− littermates were induced to differentiate into adipocytes with culture medium containing pioglitazone and the Sam68−/− mouse embryo fibroblasts shown to have impaired adipocyte differentiation. Furthermore, in vivo it was shown that sections of bone from 12-month-old Sam68−/− mice had few marrow adipocytes compared with their age-matched wild-type littermate controls, which exhibited fatty bone marrow. Our findings identify endogenous Sam68 as a positive regulator of adipocyte differentiation and a negative regulator of osteoblast differentiation, which is consistent with Sam68 being a modulator of bone marrow mesenchymal cell differentiation, and hence bone metabolism, in aged mice. PMID:16362077

  16. Heterotopic ossification after the use of recombinant human bone morphogenetic protein-7

    PubMed Central

    Papanagiotou, Marianthi; Dailiana, Zoe H; Karachalios, Theophilos; Varitimidis, Sokratis; Hantes, Michael; Dimakopoulos, Georgios; Vlychou, Marianna; Malizos, Konstantinos N

    2017-01-01

    AIM To present the incidence of heterotopic ossification after the use of recombinant human bone morphogenetic protein-7 (rhBMP-7) for the treatment of nonunions. METHODS Bone morphogenetic proteins (BMPs) promote bone formation by auto-induction. Recombinant human BMP-7 in combination with bone grafts was used in 84 patients for the treatment of long bone nonunions. All patients were evaluated radiographicaly for the development of heterotopic ossification during the standard assessment for the nonunion healing. In all patients (80.9%) with radiographic signs of heterotopic ossification, a CT scan was performed. Nonunion site palpation and ROM evaluation of the adjacent joints were also carried out. Factors related to the patient (age, gender), the nonunion (location, size, chronicity, number of previous procedures, infection, surrounding tissues condition) and the surgical procedure (graft and fixation type, amount of rhBMP-7) were correlated with the development of heterotopic ossification and statistical analysis with Pearsons χ2 test was performed. RESULTS Eighty point nine percent of the nonunions treated with rhBMP-7, healed with no need for further procedures. Heterotopic bone formation occurred in 15 of 84 patients (17.8%) and it was apparent in the routine radiological evaluation of the nonunion site, in a mean time of 5.5 mo after the rhBMP-7 application (range 3-12). The heterotopic ossification was located at the femur in 8 cases, at the tibia in 6, and at the humerus in οne patient. In 4 patients a palpable mass was present and only in one patient, with a para-articular knee nonunion treated with rhBMP-7, the size of heterotopic ossification affected the knee range of motion. All the patients with heterotopic ossification were male. Statistical analysis proved that patient’s gender was the only important factor for the development of heterotopic ossification (P = 0.007). CONCLUSION Heterotopic ossification after the use of rhBMP-7 in nonunions was

  17. High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats

    PubMed Central

    You, Li; Sheng, Zheng-yan; Tang, Chuan-ling; Chen, Lin; Pan, Ling; Chen, Jin-yu

    2011-01-01

    Aim: To investigate the effects of high cholesterol diet on the development of osteoporosis and the underlying mechanisms in rats. Methods: Female Sprague-Dawley rats were randomly separated into 3 groups: (1) the high cholesterol fed rats were fed a high cholesterol diet containing 77% normal diet food, 3% cholesterol and 20% lard for 3 months; (2) ovariectomised (OVX) rats were bilaterally ovariectomised and fed a standard diet; and (3) the control rats were fed the standard diet. Bone mineral density (BMD) of the rats was measured using dual-energy X-ray absorptiometry. Serum levels of oestradiol (E2), osteocalcin (BGP) and carboxy-terminal collagen crosslinks (CTX) were measured using ELISA. Gene expression profile was determined with microarray. Mouse osteoblast cells (MC3T3-E1) were used for in vitro study. Proliferation, differentiation and oxidative stress of the osteoblasts were investigated using MTT, qRT-PCR and biochemical methods. Results: In high cholesterol fed rats, the femur BMD and serum BGP level were significantly reduced, while the CTX level was significantly increased. DNA microarray analysis showed that 2290 genes were down-regulated and 992 genes were up-regulated in this group of rats. Of these genes, 1626 were also down-regulated and 1466 were up-regulated in OVX rats. In total, 370 genes were up-regulated in both groups, and 976 genes were down-regulated. Some of the down-regulated genes were found to code for proteins involved in the transforming growth factor beta (TGF-β)/bone morphogenic protein (BMP) and Wnt signaling pathways. The up-regulated genes were found to code for IL-6 and Ager with bone-resorption functions. Treatment of MC3T3-E1 cells with cholesterol (12.5-50 μg/mL) inhibited the cell proliferation and differentiation in vitro in a concentration-dependent manner. The treatment also concentration-dependently reduced the expression of BMP2 and Cbfa1, and increased the oxidative injury in MC3T3-E1 cells. Conclusion: The

  18. Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: a randomized control trial

    USDA-ARS?s Scientific Manuscript database

    Although consuming dietary protein above current recommendations during energy deficit enhances blood lipid profiles and preserves lean body mass, concerns have been raised regarding effects of high-protein diets on bone health. To determine whether calcium homeostasis and bone turnover are affected...

  19. Brillouin light scattering spectroscopy for tissue engineering application

    NASA Astrophysics Data System (ADS)

    Akilbekova, Dana; Yakupov, Talgat; Ogay, Vyacheslav; Umbayev, Bauyrzhan; Yakovlev, Vladislav V.; Utegulov, Zhandos N.

    2018-02-01

    Biomechanical properties of mammalian bones, such as strength, toughness and plasticity, are essential for understanding how microscopic scale mechanical features can link to macroscale bones' strength and fracture resistance. We employ Brillouin light scattering (BLS) micro-spectroscopy for local assessment of elastic properties of bones under compression and the efficacy of the tissue engineering approach based on heparin-conjugated fibrin (HCF) hydrogels, bone morphogenic proteins (BMPs) and osteogenic stem cells in the regeneration of the bone tissues. BLS is noninvasive and label-free imaging modality for probing mechanical properties of hard tissues that can give information on structure-function properties of normal and pathological tissues. Results showed that HCF gels containing combination of all factors had the best effect with complete defect regeneration at week 9 and that the bones with fully consolidated fractures have higher values of elastic moduli compared to the bones with defects.

  20. Proteomic Analysis of Gingival Tissue and Alveolar Bone during Alveolar Bone Healing*

    PubMed Central

    Yang, Hee-Young; Kwon, Joseph; Kook, Min-Suk; Kang, Seong Soo; Kim, Se Eun; Sohn, Sungoh; Jung, Seunggon; Kwon, Sang-Oh; Kim, Hyung-Seok; Lee, Jae Hyuk; Lee, Tae-Hoon

    2013-01-01

    Bone tissue regeneration is orchestrated by the surrounding supporting tissues and involves the build-up of osteogenic cells, which orchestrate remodeling/healing through the expression of numerous mediators and signaling molecules. Periodontal regeneration models have proven useful for studying the interaction and communication between alveolar bone and supporting soft tissue. We applied a quantitative proteomic approach to analyze and compare proteins with altered expression in gingival soft tissue and alveolar bone following tooth extraction. For target identification and validation, hard and soft tissue were extracted from mini-pigs at the indicated times after tooth extraction. From triplicate experiments, 56 proteins in soft tissue and 27 proteins in alveolar bone were found to be differentially expressed before and after tooth extraction. The expression of 21 of those proteins was altered in both soft tissue and bone. Comparison of the activated networks in soft tissue and alveolar bone highlighted their distinct responsibilities in bone and tissue healing. Moreover, we found that there is crosstalk between identified proteins in soft tissue and alveolar bone with respect to cellular assembly, organization, and communication. Among these proteins, we examined in detail the expression patterns and associated networks of ATP5B and fibronectin 1. ATP5B is involved in nucleic acid metabolism, small molecule biochemistry, and neurological disease, and fibronectin 1 is involved in cellular assembly, organization, and maintenance. Collectively, our findings indicate that bone regeneration is accompanied by a profound interaction among networks regulating cellular resources, and they provide novel insight into the molecular mechanisms involved in the healing of periodontal tissue after tooth extraction. PMID:23824910

  1. Pregnancy-associated plasma protein-A modulates the anabolic effects of parathyroid hormone in mouse bone.

    PubMed

    Clifton, Kari B; Conover, Cheryl A

    2015-12-01

    Intermittent parathyroid hormone (PTH) is a potent anabolic therapy for bone, and several studies have implicated local insulin-like growth factor (IGF) signaling in mediating this effect. The IGF system is complex and includes ligands and receptors, as well as IGF binding proteins (IGFBPs) and IGFBP proteases. Pregnancy-associated plasma protein-A (PAPP-A) is a metalloprotease expressed by osteoblasts in vitro that has been shown to enhance local IGF action through cleavage of inhibitory IGFBP-4. This study was set up to test two specific hypotheses: 1) Intermittent PTH treatment increases the expression of IGF-I, IGFBP-4 and PAPP-A in bone in vivo, thereby increasing local IGF activity. 2) In the absence of PAPP-A, local IGF activity and the anabolic effects of PTH on bone are reduced. Wild-type (WT) and PAPP-A knock-out (KO) mice were treated with 80 μg/kg human PTH 1-34 or vehicle by subcutaneous injection five days per week for six weeks. IGF-I, IGFBP-4 and PAPP-A mRNA expression in bone were significantly increased in response to PTH treatment. PTH treatment of WT mice, but not PAPP-A KO mice, significantly increased expression of an IGF-responsive gene. Bone mineral density (BMD), as measured by DEXA, was significantly decreased in femurs of PAPP-A KO compared to WT mice with PTH treatment. Volumetric BMD, as measured by pQCT, was significantly decreased in femoral midshaft (primarily cortical bone), but not metaphysis (primarily trabecular bone), of PAPP-A KO compared to WT mice with PTH treatment. These data suggest that stimulation of PAPP-A expression by intermittent PTH treatment contributes to PTH bone anabolism in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Dose reduction of bone morphogenetic protein-2 for bone regeneration using a delivery system based on lyophilization with trehalose.

    PubMed

    Zhang, Xiaochen; Yu, Quan; Wang, Yan-An; Zhao, Jun

    2018-01-01

    To induce sufficient new bone formation, high doses of bone morphogenetic protein-2 (BMP-2) are applied in regenerative medicine that often induce serious side effects. Therefore, improved treatment strategies are required. Here, we investigate whether the delivery of BMP-2 lyophilized in the presence of trehalose reduced the dose of BMP-2 required for bone regeneration. A new growth factor delivery system was fabricated using BMP-2-loaded TiO 2 nanotubes by lyophilization with trehalose (TiO 2 -Lyo-Tre-BMP-2). We measured BMP-2 release characteristics, bioactivity, and stability, and determined the effects on the osteogenic differentiation of bone marrow stromal cells in vitro. Additionally, we evaluated the ability of this formulation to regenerate new bone around implants in rat femur defects by micro-computed tomography (micro-CT), sequential fluorescent labelling, and histological analysis. Compared with absorbed BMP-2-loaded TiO 2 nanotubes (TiO 2 -BMP-2), TiO 2 -Lyo-Tre-BMP-2 exhibited sustained release, consistent bioactivity, and higher stability of BMP-2, and resulted in greater osteogenic differentiation of BMSCs. Eight weeks post-operation, TiO 2 -Lyo-Tre-BMP-2 nanotubes, with various dosages of BMP-2, regenerated larger amounts of new bone than TiO 2 -BMP-2 nanotubes. Our findings indicate that delivery of BMP-2 lyophilized with trehalose may be a promising method to reduce the dose of BMP-2 and avoid the associated side effects.

  3. Tricalcium phosphate and glutaraldehyde crosslinked gelatin incorporating bone morphogenetic protein--a viable scaffold for bone tissue engineering.

    PubMed

    Yang, Shu-Hua; Hsu, Chung-King; Wang, Kuo-Cheng; Hou, Sheng-Mou; Lin, Feng-Huei

    2005-07-01

    Bone defects caused by various etiologies must be filled with suitable substances to promote bone repair. Autogenous iliac crest graft is most frequently used, but is often associated with morbidities. Several bone graft substitutes have been developed to provide osteoconductive matrices as well as to enhance osteoinductivity. A tricalcium phosphate and glutaraldehyde crosslinked gelatin (GTG) scaffold, incorporated with bone morphogenetic proteins (BMPs), was developed to provide an alternative mean of bone tissue engineering. This study investigated differences between GTG and BMP-4 immobilized GTG (GTG-BMP) scaffolds on neonatal rat calvaria osteoblast activities. The GTG scaffold possessed an average pore size of 200 microm and a porosity of 75%. HE staining revealed uniform cell distribution throughout the scaffold 24 h post cell seeding. Alkaline phosphatase (ALP) activity of the GTG samples increased initially and then stabilized at 3 weeks postseeding. ALP activity of the GTG-BMP samples was similar to that of the GTG samples in the second and third weeks, but it continued increasing and became significantly greater than that of the GTG samples by the fourth week. Gla-type osteocalcin (Gla-OC) activity of the GTG-BMP samples was initially lower, but also became significantly greater than that of the GTG samples by the fourth week. An HE stain revealed greater numbers of attached cells and a richer matrix deposits in the GTG-BMP samples. A von Kossa stain showed larger mineralizing nodules, in greater numbers, after 4 weeks of in vitro cultivation. These findings suggest that the GTG scaffold provides an excellent porous structure, conductive to greater cell attachment and osteoblast differentiation, and that utility can be significantly enhanced by the inclusion of BMPs. A GTG-BMP scaffold holds promise as a superior bioactive material for bone tissue engineering. Copyright 2005 Wiley Periodicals, Inc.

  4. The impact of various scaffold components on vascularized bone constructs.

    PubMed

    Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila

    2017-06-01

    Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct

  5. Biomimetic mineralization of recombinant collagen type I derived protein to obtain hybrid matrices for bone regeneration.

    PubMed

    Ramírez-Rodríguez, Gloria Belén; Delgado-López, José Manuel; Iafisco, Michele; Montesi, Monica; Sandri, Monica; Sprio, Simone; Tampieri, Anna

    2016-11-01

    Understanding the mineralization mechanism of synthetic protein has recently aroused great interest especially in the development of advanced materials for bone regeneration. Herein, we propose the synthesis of composite materials through the mineralization of a recombinant collagen type I derived protein (RCP) enriched with RGD sequences in the presence of magnesium ions (Mg) to closer mimic bone composition. The role of both RCP and Mg ions in controlling the precipitation of the mineral phase is in depth evaluated. TEM and X-ray powder diffraction reveal the crystallization of nanocrystalline apatite (Ap) in all the evaluated conditions. However, Raman spectra point out also the precipitation of amorphous calcium phosphate (ACP). This amorphous phase is more evident when RCP and Mg are at work, indicating the synergistic role of both in stabilizing the amorphous precursor. In addition, hybrid matrices are prepared to tentatively address their effectiveness as scaffolds for bone tissue engineering. SEM and AFM imaging show an homogeneous mineral distribution on the RCP matrix mineralized in presence of Mg, which provides a surface roughness similar to that found in bone. Preliminary in vitro tests with pre-osteoblast cell line show good cell-material interaction on the matrices prepared in the presence of Mg. To the best of our knowledge this work represents the first attempt to mineralize recombinant collagen type I derived protein proving the simultaneous effect of the organic phase (RCP) and Mg on ACP stabilization. This study opens the possibility to engineer, through biomineralization process, advanced hybrid matrices for bone regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of high-impact exercise on the physical properties of bones of ovariectomized rats fed to a high-protein diet.

    PubMed

    Shimano, R C; Yanagihara, G R; Macedo, A P; Yamanaka, J S; Shimano, A C; Tavares, J M R S; Issa, J P M

    2018-05-01

    The aim of this study was to evaluate the effects of high-impact physical exercise as a prophylactic and therapeutic means in osteopenic bones of rats submitted to ovariectomy and protein diet intake. A total of 64 Wistar rats were divided into eight groups (n = 8 each), being: OVX, ovx, standard diet and sedentary; OVXE, ovx, standard diet and jump; OVXP, ovx, high-protein diet and sedentary; and OVXEP, ovx, high-protein diet and jump; SH, sham, standard diet and sedentary; SHE, sham, standard diet and jump; SHP, sham, high-protein diet and sedentary; and SHEP, sham, high-protein diet and jump. OVX surgery consists of ovariectomy, and sham was the control surgery. The jumping protocol consisted of 20 jumps/day, 5 days/week. The bone structure was evaluated by densitometry, mechanical tests, histomorphometric, and immunohistochemical analyses. A high-protein diet resulted in increased bone mineral density (P = .049), but decreased maximal load (P = .026) and bone volume fraction (P = .023). The benefits of physical exercise were demonstrated by higher values of the maximal load in the trained groups compared to the sedentary groups (P < .001). The sham groups had decreased immunostaining of osteocalcin (P = .004) and osteopontin (P = .010) compared to ovx groups. However, the high-protein diet (P = .005) and jump exercise (P = .017) resulted in lower immunostaining of osteopontin compared to the standard diet and sedentary groups, respectively. In this experimental model, it was concluded that ovariectomy and a high-fat diet can negatively affect bone tissue and the high-impact exercise was not enough to suppress the deleterious effects caused by the protein diet and ovariectomy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Recombinant human bone morphogenetic protein-2 stimulates bone formation during interfrontal suture expansion in rabbits.

    PubMed

    Liu, Sean Shih-Yao; Xu, Haisong; Sun, Jun; Kontogiorgos, Elias; Whittington, Patrick R; Misner, Kenner G; Kyung, Hee-Moon; Buschang, Peter H; Opperman, Lynne A

    2013-08-01

    Suture expansion stimulates bone growth to correct craniofacial deficiencies but has a high potential of treatment relapse. The objective of this study was to investigate whether there is a dose-dependent relationship between the recombinant human bone morphogenetic protein-2 (rhBMP-2) and bone formation during suture expansion. Fifty 6-week-old male New Zealand white rabbits were randomly assigned to 5 groups to receive 0 (control), 0.01, 0.025, 0.1, or 0.4 mg/mL of rhBMP-2 delivered by absorbable collagen sponge placed over the interfrontal suture. The suture was expanded for 33 days by 200 g of constant force via a spring anchored with 2 miniscrew implants. Distance of suture expansion, suture volume, and cross-sectional area after expansion were measured using radiographs with bone markers and microcomputed tomography. Suture widths and mineralization appositional rates were calculated based on the widths between bone labels under an epifluorescent microscope. Software (Multilevel Win 2.0; University of Bristol, Bristol, United Kingdom) was used to model distance of suture expansion over time as polynomials to compare group differences. Wilcoxon signed rank tests were performed to compare the suture volume and cross-sectional area, mineral apposition rate, and suture width between groups. The significance level was set at P = 0.05. Whereas the sutures were expanded in all groups, sutures were expanded by significantly greater amounts in the control and the 0.01 mg/mL groups without fusing the sutures than in the 0.025, 0.1, and 0.4 mg/mL groups with fusing sutures. Compared with the controls, the 0.01 mg/mL group showed significantly lower suture volumes, cross-sectional areas, and suture widths after expansion. The mineral apposition rate was significantly higher in the 0.01 mg/mL group than in the controls from days 10 to 30. The 0.01 mg/mL dose of rhBMP-2 delivered by absorbable collagen sponge can stimulate bone formation at the bony edges of the suture

  8. Combination of Mineral Trioxide Aggregate and Platelet-rich Fibrin Promotes the Odontoblastic Differentiation and Mineralization of Human Dental Pulp Cells via BMP/Smad Signaling Pathway.

    PubMed

    Woo, Su-Mi; Kim, Won-Jae; Lim, Hae-Soon; Choi, Nam-Ki; Kim, Sun-Hun; Kim, Seon-Mi; Jung, Ji-Yeon

    2016-01-01

    Recent reports have shown that the combined use of platelet-rich fibrin (PRF), an autologous fibrin matrix, and mineral trioxide aggregate (MTA) as root filling material is beneficial for the endodontic management of an open apex. However, the potential of the combination of MTA and PRF as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro has not yet been studied. The purpose of this study was to evaluate the effect of the combination of MTA and PRF on odontoblastic maturation in HDPCs. HDPCs extracted from third molars were directly cultured with MTA and PRF extract (PRFe). Odontoblastic differentiation of HDPCs was evaluated by measuring the alkaline phosphatase (ALP) activity, and the expression of odontogenesis-related genes was detected using reverse-transcription polymerase chain reaction or Western blot. Mineralization formation was assessed by alizarin red staining. HDPCs treated with MTA and PRFe significantly up-regulated the expression of dentin sialoprotein and dentin matrix protein-1 and enhanced ALP activity and mineralization compared with those with MTA or PRFe treatment alone. In addition, the combination of MTA and PRFe induced the activation of bone morphogenic proteins (BMP)/Smad, whereas LDN193189, the bone morphogenic protein inhibitor, attenuated dentin sialophosphoprotein and dentin matrix protein-1 expression, ALP activity, and mineralization enhanced by MTA and PRFe treatment. This study shows that the combination of MTA and PRF has a synergistic effect on the stimulation of odontoblastic differentiation of HDPCs via the modulation of the BMP/Smad signaling pathway. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Bone Morphogenetic Protein Usage in Anterior Lumbar Interbody Fusion: What Else Can Go Wrong?

    PubMed

    Elias, Elias; Nasser, Zeina; Winegan, Lona; Verla, Terence; Omeis, Ibrahim

    2018-03-01

    Bone morphogenetic protein (BMP) graft showed promising outcome during early phases of its use. However, unreported adverse events and off-label use shattered its safe profile and raised concerns regarding its indication. In 2008 the U.S. Food and Drug Administration prohibited its use in anterior cervical spine procedures due to the possibility of edema, hematoma, and need to intubate. At the molecular level, BMPs act as multifactorial growth factors playing a role in cartilage, heart, and bone formation. However, its unfavorable effect on bone overgrowth or heterotopic ossification post spine surgeries has been described. Reported cases in the literature were limited to epidural bone formation. We present a rare and interesting case of a 59-year-old female, in whom BMP caused intradural bone growth several years after an anterior lumbar interbody fusion surgery. Caution must be exercised while using BMPs because of inadvertent complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo.

    PubMed

    Zara, Janette N; Siu, Ronald K; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M; Ting, Kang; Soo, Chia

    2011-05-01

    The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL.

  11. High Doses of Bone Morphogenetic Protein 2 Induce Structurally Abnormal Bone and Inflammation In Vivo

    PubMed Central

    Zara, Janette N.; Siu, Ronald K.; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M.; Ting, Kang

    2011-01-01

    The major Food and Drug Association–approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL. PMID:21247344

  12. Activation of the mitogen-activated protein kinase pathway by bone sialoprotein regulates osteoblast differentiation.

    PubMed

    Gordon, Jonathan A R; Hunter, Graeme K; Goldberg, Harvey A

    2009-01-01

    Bone sialoprotein (BSP) is an abundant protein in the extracellular matrix of bone that has been suggested to have several different physiological functions, including the nucleation of hydroxyapatite (HA), promotion of cell attachment and binding of collagen. Studies in our lab have demonstrated that increased expression of BSP in osteoblast cells can increase expression of the osteoblast-related genes Runx2 and Osx as well as alkaline phosphatase and osteocalcin and increase matrix mineralization. To determine the molecular mechanisms responsible for the BSP-mediated increase in osteoblastic differentiation, several functional domain mutants of BSP were expressed in primary rat bone osteoblastic cells, including the contiguous glutamic acid sequences (polyGlu) and the arginine-glycine-aspartic acid (RGD) motif. Markers of osteoblast differentiation, including matrix mineralization and alkaline phosphatase staining, were increased in cells expressing BSP mutants of the polyGlu sequences but not in cells expressing RGD-mutated BSP. We also determined the dependence on integrin-associated pathways in promoting BSP-mediated differentiation responses in osteoblasts by demonstrating the activation of focal adhesion kinase, MAP kinase-associated proteins ERK1/2, ribosomal s6 kinase 2 and the AP-1 protein cFos. Thus, the mechanism regulating osteoblast differentiation by BSP was determined to be dependent on integrin-mediated intracellular signaling pathways. Copyright 2008 S. Karger AG, Basel.

  13. [Slow-release recombinant human bone morphogenetic protein-2 suppresses chromium wear particle-induced osteolysis in rats].

    PubMed

    Li, Gan; Li, Qi; Lin, Li-Jun; Duan, Xin; Zhang, Xi-Qi

    2012-03-01

    To observe the effect of a slow-release recombinant human bone morphogenetic protein-2 (rhBMP-2) formulation on the expressions of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in a murine air pouch model of bone implantation. A cranial bone allograft was implanted in the air pouch induced on the back of the recipients. The rat models were then randomized into 5 groups, including a blank control group, chromium particle group, and 3 rhBMP-2 groups receiving 50, 100 or 200 µg/L slow-release rhBMP-2 in addition to chromium particles. Three weeks later, the expressions of RANKL and OPG in the air pouch was detected using Western blotting and RT-PCR, and the positively stained area for osteoclasts in the bone graft was determined with TRAP staining for drug effect assessment. RANKL and OPG expressions were found in the air pouches in all the 5 groups. RANKL and OPG protein and mRNA expressions, RANKL/OPG ratio and osteoclast staining area in the bone graft were the highest in chromium particle group (P<0.05), but were significantly decreased by treatment with the slow-release rhBMP-2 formulation (P<0.05); the measurements showed no significant differences between the blank control group and 200 µg/L rhBMP-2 group (P>0.05). Chromium particles can cause osteolysis by increasing the RANKL/OPG ratio in rats, and intervention with slow-release rhBMP-2 can significantly promote bone formation and suppress bone resorption by decreasing RANKL/OPG ratio.

  14. The Controversy Surrounding Bone Morphogenetic Proteins in the Spine: A Review of Current Research

    PubMed Central

    Hustedt, Joshua W.; Blizzard, Daniel J.

    2014-01-01

    Bone morphogenetic proteins have been in use in spinal surgery since 2002. These proteins are members of the TGF-beta superfamily and guide mesenchymal stem cells to differentiate into osteoblasts to form bone in targeted tissues. Since the first commercial BMP became available in 2002, a host of research has supported BMPs and they have been rapidly incorporated in spinal surgeries in the United States. However, recent controversy has arisen surrounding the ethical conduct of the research supporting the use of BMPs. Yale University Open Data Access (YODA) recently teamed up with Medtronic to offer a meta-analysis of the effectiveness of BMPs in spinal surgery. This review focuses on the history of BMPs and examines the YODA research to guide spine surgeons in their use of BMP in spinal surgery. PMID:25506287

  15. Bone morphogenetic protein use in spine surgery-complications and outcomes: a systematic review.

    PubMed

    Faundez, Antonio; Tournier, Clément; Garcia, Matthieu; Aunoble, Stéphane; Le Huec, Jean-Charles

    2016-06-01

    Because of significant complications related to the use of autologous bone grafts in spinal fusion surgery, bone substitutes and growth factors such as bone morphogenetic protein (BMP) have been developed. One of them, recombinant human (rh) BMP-2, has been approved by the Food and Drug Administration (FDA) for use under precise conditions. However, rhBMP-2-related side effects have been reported, used in FDA-approved procedures, but also in off-label use.A systematic review of clinical data was conducted to analyse the rhBMP-2-related adverse events (AEs), in order to assess their prevalence and the associated surgery practices. Medline search with keywords "bone morphogenetic protein 2", "lumbar spine", "anterolateral interbody fusion" (ALIF) and the filter "clinical trial". FDA published reports were also included. Study assessment was made by authors (experienced spine surgeons), based on quality of study designs and level of evidence. Extensive review of randomised controlled trials (RCTs) and controlled series published up to the present point, reveal no evidence of a significant increase of AEs related to rhBMP-2 use during ALIF surgeries, provided that it is used following FDA guidelines. Two additional RCTs performed with rhBMP-2 in combination with allogenic bone dowels reported increased bone remodelling in BMP-treated patients. This AE was transient and had no consequence on the clinical outcome of the patients. No other BMP-related AEs were reported in these studies. This literature review confirms that the use of rhBMP-2 following FDA-approved recommendations (i.e. one-level ALIF surgery with an LT-cage) is safe. The rate of complications is low and the AEs had been identified by the FDA during the pre-marketing clinical trials. The clinical efficiency of rhBMP-2 is equal or superior to that of allogenic or autologous bone graft in respect to fusion rate, low back pain disability, patient satisfaction and rate of re-operations. For all other off

  16. The anabolic effects of vitamin D-binding protein-macrophage activating factor (DBP-MAF) and a novel small peptide on bone.

    PubMed

    Schneider, Gary B; Grecco, Kristina J; Safadi, Fayez F; Popoff, Steven N

    2003-01-01

    Vitamin D-binding protein-macrophage activating factor (DBP-MAF) has previously been shown to stimulate bone resorption and correct the skeletal defects associated with osteopetrosis in two nonallelic mutations in rats. This same protein and a small fragment of the protein have now been shown to demonstrate an anabolic effect on the skeleton of both newborn and young adult, intact rats. The novel peptide fragment was synthetically produced based on the human amino acid sequence at the site of glycosylation in the third domain of the native protein (DBP). The peptide tested is 14 amino acids in length and demonstrates no homologies other than to that region of DBP. Newborn rats were injected i.p. with saline, peptide (0.4 ng/g body wt.) or DBP-MAF (2 ng/g body wt.) every other day from birth to 14 days of age. On day 16 the rats were euthanized and the long bones collected for bone densitometry by pQCT. After 2 weeks of treatment with either the whole protein (DBP-MAF) or the small peptide, bone density was significantly increased in the treated animals compared to the saline controls. Young adult female rats (180 grams) were given s.c. injections of saline or peptide (0.4 ng/g body wt. or 5 ng/g body wt.) every other day for 2 weeks; 2 days after the final injections, the rats were euthanized and the femurs and tibias collected for bone densitometry. Both doses of the peptide resulted in significant increases in bone density as determined by pQCT. Young adult rats were injected locally with a single dose of the peptide (1 microg) or saline into the marrow cavity of the distal femur. One week after the single injection, the bones were collected for radiographic and histological evaluation. The saline controls showed no evidence of new bone formation, whereas the peptide-treated animals demonstrated osteoinduction in the marrow cavity and osteogenesis of surrounding cortical and metaphyseal bone. These data suggest that DBP-MAF and the synthetic peptide represent

  17. A Comparative Analysis of Recombinant Human Bone Morphogenetic Protein-2 with a Demineralized Bone Matrix versus Iliac Crest Bone Graft for Secondary Alveolar Bone Grafts in Patients with Cleft Lip and Palate: Review of 501 Cases.

    PubMed

    Hammoudeh, Jeffrey A; Fahradyan, Artur; Gould, Daniel J; Liang, Fan; Imahiyerobo, Thomas; Urbinelli, Leo; Nguyen, JoAnna T; Magee, William; Yen, Stephen; Urata, Mark M

    2017-08-01

    Alveolar cleft reconstruction using iliac crest bone graft is considered standard of care for children with complete cleft lip and palate at the time of mixed dentition. Harvesting bone may result in donor-site morbidity and additional operating time and length of hospitalization. Recombinant human bone morphogenetic protein (rhBMP)-2 with a demineralized bone matrix is an alternative bone source for alveolar cleft reconstruction. The authors investigated the outcomes of rhBMP-2/demineralized bone matrix versus iliac crest bone graft for alveolar cleft reconstruction by reviewing postoperative surgical complications and cleft closure. A retrospective chart review was conducted for 258 rhBMP-2/demineralized bone matrix procedures (mean follow-up, 2.9 years) and 243 iliac crest bone graft procedures (mean follow-up, 4.1 years) on 414 patients over a 12-year period. The authors compared complications, canine eruption, and alveolar cleft closure between the two groups. In the rhBMP-2/demineralized bone matrix group, one patient required prolonged intubation because of intraoperative airway swelling not thought to be caused by rhBMP-2, 36 reported facial swelling and one required outpatient steroids as treatment, and 12 had dehiscence; however, half of these complications resolved without intervention. Twenty-three of the 228 rhBMP-2/demineralized bone matrix patients and 28 of the 242 iliac crest bone graft patients required repeated surgery for alveolar cleft repair. Findings for canine tooth eruption into the cleft site through the graft were similar between the groups. The rhBMP-2/demineralized bone matrix appears to be an acceptable alternative for alveolar cleft repair. The authors found no increase in serious adverse events with the use of this material. Local complications, such as swelling and minor wound dehiscence, predominantly improved without intervention. Therapeutic, III.

  18. Morphogenic designer--an efficient tool to digitally design tooth forms.

    PubMed

    Hajtó, J; Marinescu, C; Silva, N R F A

    2014-01-01

    Different digital software tools are available today for the purpose of designing anatomically correct anterior and posterior restorations. The current concepts present weaknesses, which can be potentially addressed by more advanced modeling tools, such as the ones already available in professional CAD (Computer Aided Design) graphical software. This study describes the morphogenic designer (MGD) as an efficient and easy method for digitally designing tooth forms for the anterior and posterior dentition. Anterior and posterior tooth forms were selected from a collection of digitalized natural teeth and subjectively assessed as "average". The models in the form of STL files were filtered, cleaned, idealized, and re-meshed to match the specifications of the software used. The shapes were then imported as wavefront ".obj" model into Modo 701, software built for modeling, texturing, visualization, and animation. In order to create a parametric design system, intentional interactive deformations were performed on the average tooth shapes and then further defined as morph targets. By combining various such parameters, several tooth shapes were formed virtually and their images presented. MGD proved to be a versatile and powerful tool for the purpose of esthetic and functional digital crown designs.

  19. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles.

    PubMed

    Förster, Yvonne; Schmidt, Johannes R; Wissenbach, Dirk K; Pfeiffer, Susanne E M; Baumann, Sven; Hofbauer, Lorenz C; von Bergen, Martin; Kalkhof, Stefan; Rammelt, Stefan

    2016-01-01

    Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis.

  20. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles

    PubMed Central

    Wissenbach, Dirk K.; Pfeiffer, Susanne E. M.; Baumann, Sven; Hofbauer, Lorenz C.; von Bergen, Martin; Kalkhof, Stefan; Rammelt, Stefan

    2016-01-01

    Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis. PMID:27441377

  1. Characterisation of Bone Beneficial Components from Australian Wallaby Bone

    PubMed Central

    Lao, Weiguo; Jin, Xingliang; Tan, Yi; Xiao, Linda; Padula, Matthew P.; Bishop, David P.; Reedy, Brian; Ong, Madeleine; Kamal, Mohammad A.; Qu, Xianqin

    2016-01-01

    Background: Osteoporosis is a condition in which the bones become brittle, increasing the risk of fractures. Complementary medicines have traditionally used animal bones for managing bone disorders, such as osteoporosis. This study aimed to discover new natural products for these types of conditions by determining mineral and protein content of bone extracts derived from the Australian wallaby. Methods: Inductively coupled plasma-mass spectrometry and Fourier transform infrared spectroscopic analysis were used for mineral tests, proteome analysis was using LC/MS/MS and the effects of wallaby bone extracts (WBE)s on calcium deposition and alkaline phosphatase activity were evaluated in osteogenic cells derived from adipose tissue-derived stem cells (ADSCs). Results: Concentrations of calcium and phosphorus were 26.21% and 14.72% in WBE respectively. Additionally, minerals found were wide in variety and high in concentration, while heavy metal concentrations of aluminium, iron, zinc and other elements were at safe levels for human consumption. Proteome analysis showed that extracts contained high amounts of bone remodelling proteins, such as osteomodulin, osteopontin and osteoglycin. Furthermore, in vitro evaluation of WBEs showed increased deposition of calcium in osteoblasts with enhanced alkaline phosphatase activity in differentiated adipose-derived stem cells. Conclusion: Our results demonstrate that wallaby bone extracts possess proteins and minerals beneficial for bone metabolism. WBEs may therefore be used for developing natural products for conditions such as osteoporosis and further investigation to understand biomolecular mechanism by which WBEs prevent osteoporosis is warranted. PMID:28930133

  2. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering.

    PubMed

    Muzio, Giuliana; Martinasso, Germana; Baino, Francesco; Frairia, Roberto; Vitale-Brovarone, Chiara; Canuto, Rosa A

    2014-11-01

    In this work, the role of shock wave-induced increase of bone morphogenetic proteins in modulating the osteogenic properties of osteoblast-like cells seeded on a bioactive scaffold was investigated using gremlin as a bone morphogenetic protein antagonist. Bone-like glass-ceramic scaffolds, based on a silicate experimental bioactive glass developed at the Politecnico di Torino, were produced by the sponge replication method and used as porous substrates for cell culture. Human MG-63 cells, exposed to shock waves and seeded on the scaffolds, were treated with gremlin every two days and analysed after 20 days for the expression of osteoblast differentiation markers. Shock waves have been shown to induce osteogenic activity mediated by increased expression of alkaline phosphatase, osteocalcin, type I collagen, BMP-4 and BMP-7. Cells exposed to shock waves plus gremlin showed increased growth in comparison with cells treated with shock waves alone and, conversely, mRNA contents of alkaline phosphatase and osteocalcin were significantly lower. Therefore, the shock wave-mediated increased expression of bone morphogenetic protein in MG-63 cells seeded on the scaffolds is essential in improving osteogenic activity; blocking bone morphogenetic protein via gremlin completely prevents the increase of alkaline phosphatase and osteocalcin. The results confirmed that the combination of glass-ceramic scaffolds and shock waves exposure could be used to significantly improve osteogenesis opening new perspectives for bone regenerative medicine. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Effects of orthopedic implants with a polycaprolactone polymer coating containing bone morphogenetic protein-2 on osseointegration in bones of sheep.

    PubMed

    Niehaus, Andrew J; Anderson, David E; Samii, Valerie F; Weisbrode, Steven E; Johnson, Jed K; Noon, Mike S; Tomasko, David L; Lannutti, John J

    2009-11-01

    To determine elution characteristics of bone morphogenetic protein (BMP)-2 from a polycaprolactone coating applied to orthopedic implants and determine effects of this coating on osseointegration. 6 sheep. An in vitro study was conducted to determine BMP-2 elution from polycaprolactone-coated implants. An in vivo study was conducted to determine the effects on osseointegration when the polycaprolactone with BMP-2 coating was applied to bone screws. Osseointegration was assessed via radiography, measurement of peak removal torque and bone mineral density, and histomorphometric analysis. Physiologic response was assessed by measuring serum bone-specific alkaline phosphatase activity and uptake of bone markers. Mean +/- SD elution on day 1 of the in vitro study was 263 +/- 152 pg/d, which then maintained a plateau at 59.8 +/- 29.1 pg/d. Mean peak removal torque for screws coated with polycalprolactone and BMP-2 (0.91 +/- 0.65 dN x m) and screws coated with polycaprolactone alone (0.97 +/- 1.30 dN.m) did not differ significantly from that for the control screws (2.34 +/- 1.62 dN x m). Mean bone mineral densities were 0.535 +/- 0.060 g/cm(2), 0.596 +/- 0.093 g/cm(2), and 0.524 +/- 0.142 g/cm(2) for the polycaprolactone-BMP-2-coated, polycaprolactone-coated, and control screws, respectively, and did not differ significantly among groups. Histologically, bone was in closer apposition to the implant with the control screws than with either of the coated screws. BMP-2 within the polycaprolactone coating did not stimulate osteogenesis. The polycaprolactone coating appeared to cause a barrier effect that prevented formation of new bone. A longer period or use of another carrier polymer may result in increased osseointegration.

  4. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations.

    PubMed

    Oryan, Ahmad; Alidadi, Soodeh; Moshiri, Ali; Bigham-Sadegh, Amin

    2014-01-01

    Healing and regeneration of large bone defects leading to non-unions is a great concern in orthopedic surgery. Since auto- and allografts have limitations, bone tissue engineering and regenerative medicine (TERM) has attempted to solve this issue. In TERM, healing promotive factors are necessary to regulate the several important events during healing. An ideal treatment strategy should provide osteoconduction, osteoinduction, osteogenesis, and osteointegration of the graft or biomaterials within the healing bone. Since many materials have osteoconductive properties, only a few biomaterials have osteoinductive properties which are important for osteogenesis and osteointegration. Bone morphogenetic proteins (BMPs) are potent inductors of the osteogenic and angiogenic activities during bone repair. The BMPs can regulate the production and activity of some growth factors which are necessary for the osteogenesis. Since the introduction of BMP, it has added a valuable tool to the surgeon's possibilities and is most commonly used in bone defects. Despite significant evidences suggesting their potential benefit on bone healing, there are some evidences showing their side effects such as ectopic bone formation, osteolysis and problems related to cost effectiveness. Bone tissue engineering may create a local environment, using the delivery systems, which enables BMPs to carry out their activities and to lower cost and complication rate associated with BMPs. This review represented the most important concepts and evidences regarding the role of BMPs on bone healing and regeneration from basic to clinical application. The major advantages and disadvantages of such biologic compounds together with the BMPs substitutes are also discussed. © 2014 International Union of Biochemistry and Molecular Biology.

  5. Lack of effect of bone morphogenetic protein 2 and 4 gene polymorphisms on bone density in postmenopausal Turkish women.

    PubMed

    Ozkan, Z S; Deveci, D; Onalan Etem, E; Yüce, H

    2010-11-30

    We investigated the effect of bone morphogenetic protein 2 and 4 (BMP-2 and -4) gene polymorphisms on bone density in postmenopausal Turkish women with osteoporosis. The frequency of single-nucleotide polymorphisms (SNPs) of BMP-2 and -4 genes was analyzed in 101 osteoporotic-postmenopausal women and 52 postmenopausal women with positive bone mineral density scores. We evaluated the frequency of the thymine→cytosine nucleotide variation at position 538 for BMP-4 and the transposition of adenine→thymine at codon 190 for BMP-2, with PCR. The proportions of genotypes observed for the BMP-2 SNP in the osteoporotic group were AA (47.5%), AT (39.6%), TT (12.9%), and in the non-osteoporotic group they were AA (48.1%), AT (40.4%), TT (11.5%). The corresponding frequencies for the BMP-4 SNP in the osteoporotic group were TT (30.7%), TC (45.5%), CC (23.8%), and in the non-osteoporotic group they were TT (26.9%), TC (40.4%), CC (32.7%). There were no significant differences in the frequencies of these genotypes between the patient and control groups. We conclude that genetic variations in BMP-2 and -4 do not substantially contribute to lumbar spine bone mineral density in postmenopausal Turkish women.

  6. Assessment of an improved bone washing protocol for deceased donor human bone.

    PubMed

    Eagle, M J; Man, J; Rooney, P; Hogg, P; Kearney, J N

    2015-03-01

    NHSBT Tissue Services issues bone to surgeons in the UK in two formats, fresh-frozen unprocessed bone from living donors and processed bone from deceased donors. Processed bone may be frozen or freeze dried and all processed bone is currently subjected to a washing protocol to remove blood and bone marrow. In this study we have improved the current bone washing protocol for cancellous bone and assessed the success of the protocol by measuring the removal of the bone marrow components: soluble protein, DNA and haemoglobin at each step in the process, and residual components in the bone at the end of the process. The bone washing protocol is a combination of sonication, warm water washes, centrifugation and chemical (ethanol and hydrogen peroxide) treatments. We report that the bone washing protocol is capable of removing up to 99.85 % soluble protein, 99.95 % DNA and 100 % of haemoglobin from bone. The new bone washing protocol does not render any bone cytotoxic as shown by contact cytotoxicity assays. No microbiological cell growth was detected in any of the wash steps. This process is now in use for processed cancellous bone issued by NHSBT.

  7. Protein Malnutrition Induces Bone Marrow Mesenchymal Stem Cells Commitment to Adipogenic Differentiation Leading to Hematopoietic Failure

    PubMed Central

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states. PMID:23516566

  8. Evaluation of the potential application of three different biomaterials combined with bone morphological proteins for enhancing tendon-bone integration.

    PubMed

    Pan, Weimin; Cao, Zheng; Li, Dan; Zhang, Mingjun

    2013-04-01

    Secure tendon-bone integration is crucial for successful anterior cruciate ligament (ACL) reconstruction. Previous studies have applied different types of biomaterial or biomaterial combined with bone-growth factors to enhance tendon-bone integration. However, which approach is better remains controversial. This comparison evaluation could help identify a suitable composite biomaterial for osteointegration of grafted tendon. Three different composite biomaterials mixed with bone morphological proteins (BMPs) were fabricated. The in vitro study investigates cell metabolism, osteogenic gene expression and the growth behaviour of bone marrow stromal cells (BMSCs) on fibrin glue-BMPs (FGB), calcium phosphate cement-BMPs (CPCB) and recombined bone xenograft (RBX), which are commercially, clinically available biomaterials. Meanwhile, the changes in the physical, morphological and mechanical properties between the three composites and the original biomaterials were also observed. The in vivo study mainly examined the osteogenic ability of the three composites through rat ectopic testing. The porosity structure of three biomaterials was improved after being combined with BMPs powder for SEM observation, and the setting times of the injectable composites were not significantly delayed. More importantly, there were no significant decreases in compressive strength between the three composite biomaterials and the original biomaterials. The highest proliferation rate of BMSCs was found in the RBX group, followed by the CPCB and FGB groups. BMSCs seeded onto an RBX showed the highest alkaline phosphatase (ALPase) activity and gene expression of collagen I (P < 0.05). Histological examination showed endochondral new bone formation in the specimens of all groups, but the ALPase activity of newly formed tissue in the RBX group showed the highest level (P < 0.01). Our results indicate that RBX seems to be a very good choice for accelerating tendon-bone integration, and CPCB also has

  9. Is Bone Morphogenetic Protein-2 as Effective as Alveolar Distraction Osteogenesis for Vertical Bone Regeneration?

    PubMed

    Reuss, Jose M; Pi-Anfruns, Joan; Moy, Peter K

    2018-04-01

    The aim of this study was to assess the clinical effectiveness of alveolar distraction osteogenesis (ADO) versus recombinant human bone morphogenetic protein-2 (rh-BMP-2) for vertical ridge augmentation. Few data have been published on vertical bone regeneration using rh-BMP-2. The authors implemented a retrospective cohort study and enrolled a sample composed of patients with deficient alveolar vertical bone height. The primary predictor variable was vertical augmentation with BMP-2 and a titanium mesh or ADO. The primary outcome variable was gain in vertical bone height (millimeters) measured using computed tomography. The secondary outcome variable was postoperative complications, namely need for further grafting before or simultaneous with implant placement, soft tissue dehiscence, paresthesia, infection, implant failure, and pain. Other outcomes included implant stability at time of placement and follow-up (implant stability quotient by resonance frequency analysis), surgical time (minutes), and total treatment time until implant placement (weeks). Other study variables included location of reconstruction (maxilla or mandible). Appropriate bivariate statistics were computed and statistical significance was set a P value less than .05. The retrospective review yielded 21 patients in the BMP group and 19 in the ADO group. For the BMP-2 group, the average vertical bone gain was 2.96 ± 1.8 mm overall (maxilla, mean 3.6 ± 3.1 mm; mandible, mean 2.32 ± 1.8 mm). For the ADO group, this gain was 4 ± 1.69 mm overall (maxilla, mean 2.8 ± 1.94 mm; mandible, mean 5.2 ± 4.67 mm). For complications, group BMP showed a statistically minor tendency for more postoperative problems, such as wound dehiscence. For implant survival, group BMP showed a 92.2% survival rate versus 96.3% in group ADO at 3 to 45 months after delivery of the prosthesis (average, 22 months). The 2 techniques showed similar values in absolute vertical bone gain. Group ADO showed

  10. Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I.

    PubMed Central

    Takeshita, S; Kikuno, R; Tezuka, K; Amann, E

    1993-01-01

    A cDNA library prepared from the mouse osteoblastic cell line MC3T3-E1 was screened for the presence of specifically expressed genes by employing a combined subtraction hybridization/differential screening approach. A cDNA was identified and sequenced which encodes a protein designated osteoblast-specific factor 2 (OSF-2) comprising 811 amino acids. OSF-2 has a typical signal sequence, followed by a cysteine-rich domain, a fourfold repeated domain and a C-terminal domain. The protein lacks a typical transmembrane region. The fourfold repeated domain of OSF-2 shows homology with the insect protein fasciclin I. RNA analyses revealed that OSF-2 is expressed in bone and to a lesser extent in lung, but not in other tissues. Mouse OSF-2 cDNA was subsequently used as a probe to clone the human counterpart. Mouse and human OSF-2 show a high amino acid sequence conservation except for the signal sequence and two regions in the C-terminal domain in which 'in-frame' insertions or deletions are observed, implying alternative splicing events. On the basis of the amino acid sequence homology with fasciclin I, we suggest that OSF-2 functions as a homophilic adhesion molecule in bone formation. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8363580

  11. Alendronate promotes bone formation by inhibiting protein prenylation in osteoblasts in rat tooth replantation model.

    PubMed

    Komatsu, Koichiro; Shimada, Akemi; Shibata, Tatsuya; Wada, Satoshi; Ideno, Hisashi; Nakashima, Kazuhisa; Amizuka, Norio; Noda, Masaki; Nifuji, Akira

    2013-11-01

    Bisphosphonates (BPs) are a major class of antiresorptive drug, and their molecular mechanisms of antiresorptive action have been extensively studied. Recent studies have suggested that BPs target bone-forming cells as well as bone-resorbing cells. We previously demonstrated that local application of a nitrogen-containing BP (N-BP), alendronate (ALN), for a short period of time increased bone tissue in a rat tooth replantation model. Here, we investigated cellular mechanisms of bone formation by ALN. Bone histomorphometry confirmed that bone formation was increased by local application of ALN. ALN increased proliferation of bone-forming cells residing on the bone surface, whereas it suppressed the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in vivo. Moreover, ALN treatment induced more alkaline phosphatase-positive and osteocalcin-positive cells on the bone surface than PBS treatment. In vitro studies revealed that pulse treatment with ALN promoted osteocalcin expression. To track the target cells of N-BPs, we applied fluorescence-labeled ALN (F-ALN) in vivo and in vitro. F-ALN was taken into bone-forming cells both in vivo and in vitro. This intracellular uptake was inhibited by endocytosis inhibitors. Furthermore, the endocytosis inhibitor dansylcadaverine (DC) suppressed ALN-stimulated osteoblastic differentiation in vitro and it suppressed the increase in alkaline phosphatase-positive bone-forming cells and subsequent bone formation in vivo. DC also blocked the inhibition of Rap1A prenylation by ALN in the osteoblastic cells. These data suggest that local application of ALN promotes bone formation by stimulating proliferation and differentiation of bone-forming cells as well as inhibiting osteoclast function. These effects may occur through endocytic incorporation of ALN and subsequent inhibition of protein prenylation.

  12. Angiopoietin-like protein 2 promotes chondrogenic differentiation during bone growth as a cartilage matrix factor.

    PubMed

    Tanoue, H; Morinaga, J; Yoshizawa, T; Yugami, M; Itoh, H; Nakamura, T; Uehara, Y; Masuda, T; Odagiri, H; Sugizaki, T; Kadomatsu, T; Miyata, K; Endo, M; Terada, K; Ochi, H; Takeda, S; Yamagata, K; Fukuda, T; Mizuta, H; Oike, Y

    2018-01-01

    Chondrocyte differentiation is crucial for long bone growth. Many cartilage extracellular matrix (ECM) proteins reportedly contribute to chondrocyte differentiation, indicating that mechanisms underlying chondrocyte differentiation are likely more complex than previously appreciated. Angiopoietin-like protein 2 (ANGPTL2) is a secreted factor normally abundantly produced in mesenchymal lineage cells such as adipocytes and fibroblasts, but its loss contributes to the pathogenesis of lifestyle- or aging-related diseases. However, the function of ANGPTL2 in chondrocytes, which are also differentiated from mesenchymal stem cells, remains unclear. Here, we investigate whether ANGPTL2 is expressed in or functions in chondrocytes. First, we evaluated Angptl2 expression during chondrocyte differentiation using chondrogenic ATDC5 cells and wild-type epiphyseal cartilage of newborn mice. We next assessed ANGPTL2 function in chondrogenic differentiation and associated signaling using Angptl2 knockdown ATDC5 cells and Angptl2 knockout mice. ANGPTL2 is expressed in chondrocytes, particularly those located in resting and proliferative zones, and accumulates in ECM surrounding chondrocytes. Interestingly, long bone growth was retarded in Angptl2 knockout mice from neonatal to adult stages via attenuation of chondrocyte differentiation. Both in vivo and in vitro experiments show that changes in ANGPTL2 expression can also alter p38 mitogen-activated protein kinase (MAPK) activity mediated by integrin α5β1. ANGPTL2 contributes to chondrocyte differentiation and subsequent endochondral ossification through α5β1 integrin and p38 MAPK signaling during bone growth. Our findings provide insight into molecular mechanisms governing communication between chondrocytes and surrounding ECM components in bone growth activities. Copyright © 2017. Published by Elsevier Ltd.

  13. Connective tissue growth factor and bone morphogenetic protein 2 are induced following myocardial ischemia in mice and humans.

    PubMed

    Rutkovskiy, Arkady; Sagave, Julia; Czibik, Gabor; Baysa, Anton; Zihlavnikova Enayati, Katarina; Hillestad, Vigdis; Dahl, Christen Peder; Fiane, Arnt; Gullestad, Lars; Gravning, Jørgen; Ahmed, Shakil; Attramadal, Håvard; Valen, Guro; Vaage, Jarle

    2017-09-01

    We aimed to study the cardiac expression of bone morphogenetic protein 2, its receptor 1 b, and connective tissue growth factor, factors implicated in cardiac embryogenesis, following ischemia/hypoxia, heart failure, and in remodeling hearts from humans and mice. Biopsies from the left ventricle of patients with end-stage heart failure due to dilated cardiomyopathy or coronary artery disease were compared with donor hearts and biopsies from patients with normal heart function undergoing coronary artery bypass grafting. Mouse model of post-infarction remodeling was made by permanent ligation of the left coronary artery. Hearts were analyzed by real-time polymerase chain reaction and Western blotting after 24 hours and after 2 and 4 weeks. Patients with dilated cardiomyopathy and mice post-infarction had increased cardiac expression of connective tissue growth factor. Bone morphogenetic protein 2 was increased in human hearts failing due to coronary artery disease and in mice post-infarction. Gene expression of bone morphogenetic protein receptor 1 beta was reduced in hearts of patients with failure, but increased two weeks following permanent ligation of the left coronary artery in mice. In conclusion, connective tissue growth factor is upregulated in hearts of humans with dilated cardiomyopathy, bone morphogenetic protein 2 is upregulated in remodeling due to myocardial infarction while its receptor 1 b in human failing hearts is downregulated. A potential explanation might be an attempt to engage regenerative processes, which should be addressed by further, mechanistic studies.

  14. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with eithermore » receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.« less

  15. Highly aligned porous Ti scaffold coated with bone morphogenetic protein-loaded silica/chitosan hybrid for enhanced bone regeneration.

    PubMed

    Jung, Hyun-Do; Yook, Se-Won; Han, Cheol-Min; Jang, Tae-Sik; Kim, Hyoun-Ee; Koh, Young-Hag; Estrin, Yuri

    2014-07-01

    Porous Ti has been widely investigated for orthopedic and dental applications on account of their ability to promote implant fixation via bone ingrowth into pores. In this study, highly aligned porous Ti scaffolds coated with a bone morphogenetic protein (BMP)-loaded silica/chitosan hybrid were produced, and their bone regeneration ability was evaluated by in vivo animal experiments. Reverse freeze casting allowed for the creation of highly aligned pores, resulting in a high compressive strength of 254 ± 21 MPa of the scaffolds at a porosity level of ∼51 vol %. In addition, a BMP-loaded silica/chitosan hybrid coating layer with a thickness of ∼1 μm was uniformly deposited on the porous Ti scaffold, which enabled the sustained release of the BMP over a prolonged period of time up to 26 days. The cumulative amount of the BMP released was ∼4 μg, which was much higher than that released from the specimen without a hybrid coating layer. In addition, the bone regeneration ability of the porous Ti scaffold with a BMP-loaded silica/chitosan coating layer was examined by in vivo animal testing using a rabbit calvarial defect model and compared with those of the as-produced porous Ti scaffold and porous Ti scaffold with a silica/chitosan coating layer. After 4 weeks of healing, the specimen coated with a BMP-loaded silica/chitosan hybrid showed a much higher bone regeneration volume (∼36%) than the as-produced specimen (∼15%) (p < 0.005) and even the specimen coated with a silica/chitosan hybrid (∼25%) (p < 0.05). © 2013 Wiley Periodicals, Inc.

  16. Biological Regulation of Bone Quality

    PubMed Central

    Alliston, Tamara

    2014-01-01

    The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149

  17. Turning Bone Morphogenetic Protein 2 (BMP2) On and Off in Mesenchymal Cells†

    PubMed Central

    Rogers, Melissa B.; Shah, Tapan A.; Shaikh, Nadia N.

    2016-01-01

    The concentration, location, and timing of bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) gene expression must be precisely regulated. Abnormal BMP2 levels cause congenital anomalies and diseases involving the mesenchymal cells that differentiate into muscle, fat, cartilage, and bone. The molecules and conditions that influence BMP2 synthesis are diverse. Understandably, complex mechanisms control Bmp2 gene expression. This review includes a compilation of agents and conditions that can induce Bmp2. The currently known trans-regulatory factors and cis-regulatory elements that modulate Bmp2 expression are summarized and discussed. This article is protected by copyright. All rights reserved PMID:25776852

  18. Formation of the long range Dpp morphogen gradient.

    PubMed

    Schwank, Gerald; Dalessi, Sascha; Yang, Schu-Fee; Yagi, Ryohei; de Lachapelle, Aitana Morton; Affolter, Markus; Bergmann, Sven; Basler, Konrad

    2011-07-01

    The TGF-β homolog Decapentaplegic (Dpp) acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED). In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution.

  19. A review of hedgehog signaling in cranial bone development

    PubMed Central

    Pan, Angel; Chang, Le; Nguyen, Alan; James, Aaron W.

    2013-01-01

    During craniofacial development, the Hedgehog (HH) signaling pathway is essential for mesodermal tissue patterning and differentiation. The HH family consists of three protein ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH), of which two are expressed in the craniofacial complex (IHH and SHH). Dysregulations in HH signaling are well documented to result in a wide range of craniofacial abnormalities, including holoprosencephaly (HPE), hypotelorism, and cleft lip/palate. Furthermore, mutations in HH effectors, co-receptors, and ciliary proteins result in skeletal and craniofacial deformities. Cranial suture morphogenesis is a delicate developmental process that requires control of cell commitment, proliferation and differentiation. This review focuses on both what is known and what remains unknown regarding HH signaling in cranial suture morphogenesis and intramembranous ossification. As demonstrated from murine studies, expression of both SHH and IHH is critical to the formation and fusion of the cranial sutures and calvarial ossification. SHH expression has been observed in the cranial suture mesenchyme and its precise function is not fully defined, although some postulate SHH to delay cranial suture fusion. IHH expression is mainly found on the osteogenic fronts of the calvarial bones, and functions to induce cell proliferation and differentiation. Unfortunately, neonatal lethality of IHH deficient mice precludes a detailed examination of their postnatal calvarial phenotype. In summary, a number of basic questions are yet to be answered regarding domains of expression, developmental role, and functional overlap of HH morphogens in the calvaria. Nevertheless, SHH and IHH ligands are integral to cranial suture development and regulation of calvarial ossification. When HH signaling goes awry, the resultant suite of morphologic abnormalities highlights the important roles of HH signaling in cranial development. PMID:23565096

  20. Bone Matrix Proteins: Isolation and Characterization of a Novel Cell-binding Keratan Sulfate Proteoglycan (Osteoadherin) from Bovine Bone

    PubMed Central

    Wendel, Mikael; Sommarin, Yngve; Heinegård, Dick

    1998-01-01

    A small cell-binding proteoglycan for which we propose the name osteoadherin was extracted from bovine bone with guanidine hydrochloride–containing EDTA. It was purified to homogeneity using a combination of ion-exchange chromatography, hydroxyapatite chromatography, and gel filtration. The Mr of the proteoglycan was 85,000 as determined by SDS-PAGE. The protein is rich in aspartic acid, glutamic acid, and leucine. Two internal octapeptides from the proteoglycan contained the sequences Glu-Ile-Asn-Leu-Ser-His-Asn-Lys and Arg-Asp-Leu-Tyr-Phe-Asn-Lys-Ile. These sequences are not previously described, and support the notion that osteoadherin belongs to the family of leucine-rich repeat proteins. A monospecific antiserum was raised in rabbits. An enzyme-linked immunosorbent assay was developed, and showed the osteoadherin content of bone extracts to be 0.4 mg/g of tissue wet weight, whereas none was found in extracts of various other bovine tissues. Metabolic labeling of primary bovine osteoblasts followed by immunoprecipitation showed the cells to synthesize and secrete the proteoglycan. Digesting the immunoprecipitated osteoadherin with N-glycosidase reduced its apparent size to 47 kD, thus showing the presence of several N-linked oligosaccharides. Digestion with keratanase indicated some of the oligosaccharides to be extended to keratan sulfate chains. In immunohistochemical studies of the bovine fetal rib growth plate, osteoadherin was exclusively identified in the primary bone spongiosa. Osteoadherin binds to hydroxyapatite. A potential function of this proteoglycan is to bind cells, since we showed it to be as efficient as fibronectin in promoting osteoblast attachment in vitro. The binding appears to be mediated by the integrin αvβ3, since this was the only integrin isolated by osteoadherin affinity chromatography of surface-iodinated osteoblast extracts. PMID:9566981

  1. Bromodomain and Extra-terminal (BET) Protein Inhibitors Suppress Chondrocyte Differentiation and Restrain Bone Growth.

    PubMed

    Niu, Ningning; Shao, Rui; Yan, Guang; Zou, Weiguo

    2016-12-23

    Small molecule inhibitors for bromodomain and extra-terminal (BET) proteins have recently emerged as potential therapeutic agents in clinical trials for various cancers. However, to date, it is unknown whether these inhibitors have side effects on bone structures. Here, we report that inhibition of BET bromodomain proteins may suppress chondrocyte differentiation and restrain bone growth. We generated a luciferase reporter system using the chondrogenic cell line ATDC5 in which the luciferase gene was driven by the promoter of Col2a1, an elementary collagen of the chondrocyte. The Col2a1-luciferase ATDC5 system was used for rapidly screening both activators and repressors of human collagen Col2a1 gene expression, and we found that BET bromodomain inhibitors reduce the Col2a1-luciferase. Consistent with the luciferase assay, BET inhibitors decrease the expression of Col2a1 Furthermore, we constructed a zebrafish line in which the enhanced green fluorescent protein (EGFP) expression was driven by col2a1 promoter. The transgenic (col2a1-EGFP) zebrafish line demonstrated that BET inhibitors I-BET151 and (+)-JQ1 may affect EGFP expression in zebrafish. Furthermore, we found that I-BET151 and (+)-JQ1 may affect chondrocyte differentiation in vitro and inhibit zebrafish growth in vivo Mechanistic analysis revealed that BET inhibitors influenced the depletion of RNA polymerase II from the Col2a1 promoter. Collectively, these results suggest that BET bromodomain inhibition may have side effects on skeletal bone structures. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Osteoinductive recombinant silk fusion proteins for bone regeneration.

    PubMed

    Dinjaski, Nina; Plowright, Robyn; Zhou, Shun; Belton, David J; Perry, Carole C; Kaplan, David L

    2017-02-01

    relating protein design parameters and functional outcome quantified by biomineralization and human mesenchymal stem cell differentiation. As such, it helps the design of osteoinductive recombinant biomaterials for bone regeneration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Prospective study of iliac crest bone graft harvest site pain and morbidity.

    PubMed

    Kim, David H; Rhim, Richard; Li, Ling; Martha, Juli; Swaim, Bryan H; Banco, Robert J; Jenis, Louis G; Tromanhauser, Scott G

    2009-11-01

    Morbidity associated with autologous bone graft harvest is an important factor in determining the utility of expensive alternatives such as recombinant bone morphogenic protein. The most frequently reported complication associated with graft harvest is chronic pain. To prospectively determine the degree of pain and morbidity associated with autologous iliac crest bone graft harvest and its effect on activities of daily living. Prospective observational cohort study. One hundred ten adult patients undergoing elective posterior lumbar spinal fusion surgery involving autologous iliac crest bone graft harvest. Patient self-reported Visual Analog Scale (VAS) scores for pain and a study-specific questionnaire regarding activities of daily living. One hundred ten patients were prospectively enrolled. Postoperative VAS scores (0-100) for harvest site pain were obtained at 6-week, 6- and 12-month follow-up. Patients completed a 12-month questionnaire regarding the persistence of specific symptoms and resulting limitation of specific activities. One hundred four patients were available for 1-year follow-up. Mean VAS pain scores (scale 0-100) at 6 weeks, 6 and 12 months were 22.7 (standard deviation [SD], 25.9), 15.9 (SD, 21.5), and 16.1 (SD, 24.6), respectively. At 12 months, 16.5% reported more severe pain from the harvest site than the primary surgical site, 29.1% reported numbness, and 11.3% found the degree of numbness bothersome, whereas 3.9% were bothered by scar appearance. With respect to activity limitations resulting from harvest site pain at 1 year, 15.1% reported some difficulty walking, 5.2% with employment, 12.9% with recreation, 14.1% with household chores, 7.6% with sexual activity, and 5.9% irritation from clothing. There is a significant rate of persistent pain and morbidity from iliac crest bone graft harvest when associated with elective spine surgery. Mean pain scores progressively decline over the first postoperative year. Nevertheless, harvest site

  4. Molecular dynamics simulations of the adsorption of bone morphogenetic protein-2 on surfaces with medical relevance.

    PubMed

    Utesch, Tillmann; Daminelli, Grazia; Mroginski, Maria Andrea

    2011-11-01

    Bone morphogenetic protein-2 (BMP-2) plays a crucial role in osteoblast differentiation and proliferation. Its effective therapeutic use for ectopic bone and cartilage regeneration depends, among other factors, on the interaction with the carrier at the implant site. In this study, we used classical molecular dynamics (MD) and a hybrid approach of steered molecular dynamics (SMD) combined with MD simulations to investigate the initial stages of the adsorption of BMP-2 when approaching two implant surfaces, hydrophobic graphite and hydrophilic titanium dioxide rutile. Surface adsorption was evaluated for six different orientations of the protein, two end-on and four side-on, in explicit water environment. On graphite, we observed a weak but stable adsorption. Depending on the initial orientation, hydrophobic patches as well as flexible loops of the protein were involved in the interaction with graphite. On the contrary, BMP-2 adsorbed only loosely to hydrophilic titanium dioxide. Despite a favorable interaction energy between protein and the TiO(2) surface, the rapid formation of a two-layer water structure prevented the direct interaction between protein and titanium dioxide. The first water adlayer had a strong repulsive effect on the protein, while the second attracted the protein toward the surface. For both surfaces, hydrophobic graphite and hydrophilic titanium dioxide, denaturation of BMP-2 induced by adsorption was not observed on the nanosecond time scale.

  5. Serum Protein Electrophoresis in the Evaluation of Lytic Bone Lesions

    PubMed Central

    Nystrom, Lukas M.; Buckwalter, Joseph A.; Syrbu, Sergei; Miller, Benjamin J.

    2013-01-01

    Serum protein electrophoresis (SPEP) is often obtained at the initial evaluation of a radiolucent bone lesion of unknown etiology. The results are considered convincing evidence of the presence or absence of a plasma cell neoplasm. The sensitivity and specificity of the SPEP have not been reported in this clinical scenario. Our purpose is to assess the diagnostic value of the SPEP in the initial work-up of the radiolucent bone lesion. We identified 182 patients undergoing evaluation of a radiolucent bone lesion that included tissue biopsy and an SPEP value. We then calculated the sen-sitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of SPEP as a diagnostic test for a plasma cell neo-plasm in this clinical scenario. Forty-six of 182 (25.3%) patients in our series were diagnosed with a plasma cell neo-plasm by histopathologic analysis. The sensitivity of SPEP was 71% and the specificity was 83%. PPV was 47% and NPV was 94%. When analyzing only those presenting with multiple lesions, the percentage of patients diag-nosed with multiple myeloma increased to 44.7% (34 of 76 patients). The SPEP, however, did not have a substantially increased diagnostic accuracy with sensitivity of 71%, specificity 79%, PPV 40% and NPV 93%. SPEP lacks sensitivity and positive predictive value to provide a definitive diagnosis of myeloma in radiolucent bone lesions, but has a high negative predictive value which may make it useful in ruling out the disease. We recommend that this test either be performed in conjunction with urine electrophoresis, immunofixation electro-phoresis and free light chain assay, or after biopsy confirming the diagnosis of myeloma. PMID:24027470

  6. Repulsive Guidance Molecules (RGMs) and Neogenin in Bone Morphogenetic Protein (BMP) signaling

    PubMed Central

    Tian, Chenxi; Liu, Jun

    2015-01-01

    Summary Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type I and type II serine/threonine kinase receptors and intracellular Smad proteins. The BMP pathway regulates multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type I trans-membrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction. PMID:23740870

  7. A high concentration of recombinant human bone morphogenetic protein-2 induces low-efficacy bone regeneration in sinus augmentation: a histomorphometric analysis in rabbits.

    PubMed

    Hong, Ji-Youn; Kim, Min-Soo; Lim, Hyun-Chang; Lee, Jung-Seok; Choi, Seong-Ho; Jung, Ui-Won

    2016-12-01

    The aim of the study was to elucidate the efficacy of bone regeneration at the early stage of healing in rabbit sinuses grafted with a biphasic calcium phosphate (BCP) carrier soaked in a high concentration of recombinant human bone morphogenetic protein-2 (rhBMP-2). Both maxillary sinuses of eight male rabbits were used. The sinus on one side (assigned randomly) was grafted with BCP loaded with rhBMP-2 (1.5 mg/ml; test group) using a soaking method, while the other was grafted with saline-soaked BCP (control group). After a 2-week healing period, the sinuses were analyzed by micro-computed tomography and histomorphometry. The total augmented area and soft tissue space were significantly larger in the test group than in the control group, whereas the opposite was true for the area of residual material and newly formed bone. Most of the new bone in the test group was localized to the Schneiderian membrane (SM), while very little bone formation was observed in the window and center regions of the sinus. New bone was distributed evenly in the control group sinuses. Within the limitations of this study, it appeared that application of a high concentration of rhBMP-2 soaked onto a BCP carrier inhibited bone regeneration from the pristine bone and increased soft tissue swelling and inflammatory response at the early healing stage of sinus augmentation, although osteoinductive potential was found along the SM. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: evaluation of the effect of leukocyte inclusion.

    PubMed

    Anitua, E; Zalduendo, M M; Prado, R; Alkhraisat, M H; Orive, G

    2015-03-01

    The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet-rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet-rich plasma (L-PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte-free (PRGF-Endoret) and L-PRP fibrin scaffolds were prepared, and both morphogen and proinflammatory cytokine release kinetics were analyzed. Clots were incubated with culture medium to monitor protein release over 8 days. Furthermore, the different fibrin scaffolds were morphologically characterized. Results show that leukocyte-free fibrin matrices were homogenous while leukocyte-containing ones were heterogeneous, loose and cellular. Leukocyte incorporation produced a significant increase in the contents of proinflammatory cytokines interleukin (IL)-1β and IL-16 but not in the platelet-derived growth factors release (<1.5-fold). Surprisingly, the availability of vascular endothelial growth factor suffered an important decrease after 3 days of incubation in the case of L-PRP matrices. While the release of proinflammatory cytokines was almost absent or very low from PRGF-Endoret, the inclusion of leukocytes induced a major increase in these cytokines, which was characterized by the presence of a latent period. The PRGF-Endoret matrices were stable during the 8 days of incubation. The inclusion of leukocytes alters the growth factors release profile and also increased the dose of proinflammatory cytokines. © 2014 Wiley Periodicals, Inc.

  9. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats.

    PubMed

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi; Zuki, Abu Bakar Zakaria; Imam, Mustapha Umar

    2013-01-01

    Osteoporosis and other bone degenerative diseases are among the most challenging non-communicable diseases to treat. Previous works relate bone loss due to osteoporosis with oxidative stress generated by free radicals and inflammatory cytokines. Alternative therapy to hormone replacement has been an area of interest to researchers for almost three decades due to hormone therapy-associated side effects. In this study, we investigated the effects of gamma-amino butyric acid (GABA), gamma-oryzanol (ORZ), acylated steryl glucosides (ASG), and phenolic extracts from germinated brown rice (GBR) on the expression of genes related to bone metabolism, such as bone morphogenic protein-2 (BMP-2), secreted protein acidic and rich in cysteine (SPARC), runt-related transcription factor 2 (RUNX-2), osteoblast-specific transcription factor osterix (Osx), periostin, osteoblast specific factor (Postn), collagen 1&2 (Col1&2), calcitonin receptor gene (CGRP); body weight measurement and also serum interleukin-6 (IL-6) and osteocalcin, in serum and bone. Rats were treated with GBR, ORZ, GABA, and ASG at (100 and 200 mg/kg); estrogen (0.2 mg/kg), or remifemin (10 and 20 mg/kg), compared to ovariectomized non-treated group as well as non-ovariectomized non-treated (sham) group. Enzyme-linked immunosorbent assay was used to measure the IL-6 and osteocalcin levels at week 2, 4, and 8, while the gene expression in the bone tissue was determined using the Genetic Analysis System (Beckman Coulter Inc., Brea, CA, USA). The results indicate that groups treated with GABA (100 and 200 mg/kg) showed significant upregulation of SPARC, calcitonin receptor, and BMP-2 genes (P < 0.05), while the ORZ-treated group (100 and 200 mg/kg) revealed significant (P < 0.05) upregulation of Osx, Postn, RUNX-2, and Col1&2. Similarly, IL-6 concentration decreased, while osteocalcin levels increased significantly (P < 0.05) in the treated groups as compared to ovariectomized non-treated groups. GABA and ORZ from

  10. Upregulation of genes related to bone formation by γ-amino butyric acid and γ-oryzanol in germinated brown rice is via the activation of GABAB-receptors and reduction of serum IL-6 in rats

    PubMed Central

    Muhammad, Sani Ismaila; Maznah, Ismail; Mahmud, Rozi; Zuki, Abu Bakar Zakaria; Imam, Mustapha Umar

    2013-01-01

    Background Osteoporosis and other bone degenerative diseases are among the most challenging non-communicable diseases to treat. Previous works relate bone loss due to osteoporosis with oxidative stress generated by free radicals and inflammatory cytokines. Alternative therapy to hormone replacement has been an area of interest to researchers for almost three decades due to hormone therapy-associated side effects. Methods In this study, we investigated the effects of gamma-amino butyric acid (GABA), gamma-oryzanol (ORZ), acylated steryl glucosides (ASG), and phenolic extracts from germinated brown rice (GBR) on the expression of genes related to bone metabolism, such as bone morphogenic protein-2 (BMP-2), secreted protein acidic and rich in cysteine (SPARC), runt-related transcription factor 2 (RUNX-2), osteoblast-specific transcription factor osterix (Osx), periostin, osteoblast specific factor (Postn), collagen 1&2 (Col1&2), calcitonin receptor gene (CGRP); body weight measurement and also serum interleukin-6 (IL-6) and osteocalcin, in serum and bone. Rats were treated with GBR, ORZ, GABA, and ASG at (100 and 200 mg/kg); estrogen (0.2 mg/kg), or remifemin (10 and 20 mg/kg), compared to ovariectomized non-treated group as well as non-ovariectomized non-treated (sham) group. Enzyme-linked immunosorbent assay was used to measure the IL-6 and osteocalcin levels at week 2, 4, and 8, while the gene expression in the bone tissue was determined using the Genetic Analysis System (Beckman Coulter Inc., Brea, CA, USA). Results The results indicate that groups treated with GABA (100 and 200 mg/kg) showed significant upregulation of SPARC, calcitonin receptor, and BMP-2 genes (P < 0.05), while the ORZ-treated group (100 and 200 mg/kg) revealed significant (P < 0.05) upregulation of Osx, Postn, RUNX-2, and Col1&2. Similarly, IL-6 concentration decreased, while osteocalcin levels increased significantly (P < 0.05) in the treated groups as compared to ovariectomized non

  11. Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells.

    PubMed

    Douglas, Timothy E L; Vandrovcová, Marta; Kročilová, Nikola; Keppler, Julia K; Zárubová, Jana; Skirtach, Andre G; Bačáková, Lucie

    2018-01-01

    Recently, milk-derived proteins have attracted attention for applications in the biomedical field such as tissue regeneration. Whey protein isolate (WPI), especially its main component β-lactoglobulin, can modulate immunity and acts as an antioxidant, antitumor, antiviral, and antibacterial agent. There are very few reports of the application of WPI in tissue engineering, especially in bone tissue engineering. In this study, we tested the influence of different concentrations of WPI on behavior of human osteoblast-like Saos-2 cells, human adipose tissue-derived stem cells (ASC), and human neonatal dermal fibroblasts (FIB). The positive effect on growth was apparent for Saos-2 cells and FIB but not for ASC. However, the expression of markers characteristic for early osteogenic cell differentiation [type-I collagen (COL1) and alkaline phosphatase (ALP)] as well as ALP activity, increased dose-dependently in ASC. Importantly, Saos-2 cells were able to deposit calcium in the presence of WPI, even in a proliferation medium without other supplements that support osteogenic cell differentiation. The results indicate that, depending on the cell type, WPI can act as an enhancer of cell proliferation and osteogenic differentiation. Therefore, enrichment of biomaterials for bone regeneration with WPI seems a promising approach, especially due to the low cost of WPI. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Associations between variants of bone morphogenetic protein 7 gene and growth traits in chickens.

    PubMed

    Wang, Yan; Guo, Fuyou; Qu, Hao; Luo, Chenglong; Wang, Jie; Shu, Dingming

    2018-04-18

    1. Enhancing bone strength to solve leg disorders in poultry has become an important goal in broiler production. 2. Bone morphogenetic protein 7 (BMP7), a member of the BMP family, represents an attractive therapeutic target for bone regeneration in humans and plays critical roles in skeletal development. 3. The objective of this study was to investigate the relationship between BMP7 gene expression, single nucleotide polymorphisms (SNPs) and growth traits in chickens. Here, a SNP (c.1995T>C) in the chicken (Gallus gallus) BMP7 gene was identified, that was associated with growth and carcass traits. 4. Genotyping revealed that the T allele occurred more frequently in breeds with high growth rates, whereas the C allele was predominant in those with low growth rates. The expression level of BMP7 in the thigh bone of birds with the TT genotype was significantly higher than in those with the CC genotype at 21, 42 and 91 days of age. 5. These findings suggest that selecting the birds with the TT genotype of SNP c.1995T>C could improve bone growth, could reduce leg disorders in fast-growing birds. The SNP c.1995T>C may serve as a selective marker for improving bone growth and increasing the consistency of body weights in poultry breeding.

  13. A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation

    PubMed Central

    Choe, Youngshik; Siegenthaler, Julie A.; Pleasure, Samuel J.

    2012-01-01

    Summary The corpus callosum is the most prominent commissural connection between the cortical hemispheres, and numerous neurodevelopmental disorders are associated with callosal agenesis. Using mice with either meningeal overgrowth or selective loss of meninges, we’ve identified a cascade of morphogenic signals initiated by the meninges that regulates corpus callosum development. The meninges produce BMP7, an inhibitor of callosal axon outgrowth. This activity is overcome by the induction of expression of Wnt3 by the callosal pathfinding neurons, which antagonizes the inhibitory effects of BMP7. Wnt3 expression in the cingulate callosal pathfinding axons is developmentally regulated by another BMP family member, GDF5, produced by the adjacent Cajal-Retzius neurons and turns on before outgrowth of the callosal axons. The effects of GDF5 are in turn under the control of a soluble GDF5 inhibitor, Dan, made by the meninges. Thus, the meninges and medial neocortex use a cascade of signals to regulate corpus callosum development. PMID:22365545

  14. Evaluation of bone regeneration with biphasic calcium phosphate substitute implanted with bone morphogenetic protein 2 and mesenchymal stem cells in a rabbit calvarial defect model.

    PubMed

    Kim, Beom-Su; Choi, Moon-Ki; Yoon, Jung-Hoon; Lee, Jun

    2015-07-01

    The aim of this study was to evaluate the in vivo osteogenic potential of biphasic calcium phosphate (BCP), bone morphogenetic protein 2 (BMP-2), and/or mesenchymal stem cell (MSC) composites by using a rabbit calvarial defect model. Bone formation was assessed by using three different kinds of implants in rabbit calvarial defects, BCP alone, BCP/recombinant human (rh) BMP-2, and BCP/rhBMP-2/MSCs composite. The implants were harvested after 2 or 8 weeks, and the area of new bone formation was quantified by micro-computed tomography (micro-CT) and histologic studies. The highest bone formation was achieved with the BCP/rhBMP-2/MSCs treatment, and it was significantly higher than that achieved with the empty or BCP-alone treatment. The quantity of new bone at 8 weeks was greater than at 4 weeks in each group. The relative density of osteocalcin immunoreactivity also increased during this interval. These results indicate that the combination of BCP, rhBMP-2, and MSCs synergistically enhances osteogenic potential during the early healing period and could be used as a bone graft substitute. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    PubMed Central

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  16. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    NASA Astrophysics Data System (ADS)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  17. The Effect of Simulated Microgravity Environment of RWV Bioreactors on Surface Reactions and Adsorption of Serum Proteins on Bone-bioactive Microcarriers

    NASA Technical Reports Server (NTRS)

    Radin, Shula; Ducheyne, P.; Ayyaswamy, P. S.

    2003-01-01

    Biomimetically modified bioactive materials with bone-like surface properties are attractive candidates for use as microcarriers for 3-D bone-like tissue engineering under simulated microgravity conditions of NASA designed rotating wall vessel (RWV) bioreactors. The simulated microgravity environment is attainable under suitable parametric conditions of the RWV bioreactors. Ca-P containing bioactive glass (BG), whose stimulatory effect on bone cell function had been previously demonstrated, was used in the present study. BG surface modification via reactions in solution, resulting formation of bone-like minerals at the surface and adsorption of serum proteins is critical for obtaining the stimulatory effect. In this paper, we report on the major effects of simulated microgravity conditions of the RWV on the BG reactions surface reactions and protein adsorption in physiological solutions. Control tests at normal gravity were conducted at static and dynamic conditions. The study revealed that simulated microgravity remarkably enhanced reactions involved in the BG surface modification, including BG dissolution, formation of bone-like minerals at the surface and adsorption of serum proteins. Simultaneously, numerical models were developed to simulate the mass transport of chemical species to and from the BG surface under normal gravity and simulated microgravity conditions. The numerical results showed an excellent agreement with the experimental data at both testing conditions.

  18. Metabolic advantages of higher protein diets and benefits of dairy foods on weight management, glycemic regulation, and bone.

    PubMed

    Pasiakos, Stefan M

    2015-03-01

    The Inst. of Medicine and World Health Organization have determined that 0.8 to 0.83 g protein·kg(-1) ·d(-1) is the quantity of protein required to establish nitrogen balance in nearly all healthy individuals. However, consuming higher protein diets may be metabolically advantageous, particularly for overweight and obese adults attempting weight loss, and for physically active individuals such as athletes and military personnel. Studies have demonstrated that higher protein diets may spare lean body mass during weight loss, promote weight management, enhance glycemic regulation, and increase intestinal calcium absorption, which may result in long-term improvements in bone health. The extent to which higher protein diets are beneficial is largely attributed to the digestive and absorptive properties, and also to the essential amino acid (EAA) content of the protein. Proteins that are rapidly digested and absorbed likely contribute to the metabolic advantages conferred by consuming higher protein diets. The EAA profiles, as well as the digestive and absorptive properties of dairy proteins, such as whey protein and casein, are particularly advantageous because they facilitate a rapid, robust, and sustained delivery of EAAs to the periphery. This article reviews the scientific literature assessing metabolic advantages associated with higher protein diets on weight management, glycemic regulation, and bone, with emphasis given to studies evaluating the potential benefits associated with dairy. © 2015 Institute of Food Technologists®

  19. Bone morphogenetic protein 2 and decorin expression in old fracture fragments and surrounding tissues.

    PubMed

    Han, X G; Wang, D K; Gao, F; Liu, R H; Bi, Z G

    2015-09-21

    Bone morphogenetic protein 2 (BMP-2) can promote fracture healing. Although the complex role BMP-2 in bone formation is increasingly understood, the role of endogenous BMP-2 in nonunion remains unclear. Decorin (DCN) can promote the formation of bone matrix and calcium deposition to control bone morphogenesis. In this study, tissue composition and expression of BMP-2 and DCN were detected in different parts of old fracture zones to explore inherent anti-fibrotic ability and osteogenesis. Twenty-three patients were selected, including eight cases of delayed union and 15 cases of nonunion. Average duration of delayed union or nonunion was 15 months. Fracture fragments and surrounding tissues, including bone grafts, marrow cavity contents, and sticking scars, were categorically sampled during surgery. Through observation and histological testing, component comparisons were made between fracture fragments and surrounding tissue. The expression levels of DCN and BMP-2 in different tissues were detected by immunohistochemical staining and real-time polymerase chain reaction. The expression of DCN and BMP- 2 in different parts of the nonunion area showed that, compared with bone graft and marrow cavity contents, sticking scars had the highest expression of BMP-2. Compared with the marrow cavity contents and sticking scars, bone grafts had the highest expression of DCN. The low antifibrotic and osteogenic activity of the nonunion area was associated with non-co-expression of BMP-2 and DCN. Therefore, the co-injection of osteogenic factor BMP and DCN into the nonunion area can improve the induction of bone formation and enhance the conversion of the old scar, thereby achieving better nonunion treatment.

  20. A New Regulator of Osteoclastogenesis: Estrogen Response Element–Binding Protein in Bone

    PubMed Central

    Chen, Hong; Gilbert, Linda C; Lu, X; Liu, Zhaofan; You, Shaojin; Weitzmann, M Neale; Nanes, Mark S; Adams, John

    2012-01-01

    The heterogeneous nuclear ribonucleoprotein (hnRNP)–like estrogen response element–binding protein (ERE-BP) competes with estrogen receptor α (ERα) for occupancy of estrogen response elements (EREs). Here we report that ERE-BP potently stimulates osteoclastogenesis. ERE-BP mRNA and protein were found to be expressed ubiquitously in bone. Overexpression of ERE-BP in cultured osteoblasts stimulated expression of the receptor activator of NF-κB ligand (RANKL) and decreased osteoprotegerin (OPG). The effect of ERE-BP on RANKL was shown to be transcriptional in transient transfection assay and competed with via the ER. Constitutive expression of ERE-BP increased the sensitivity of cells toward 1,25-dihydroxyvitamin D3 stimulation of RANKL expression. In contrast, knockdown of ERE-BP in stromal ST-2 cells decreased basal RANKL promoter activity. Cocultures of ERE-BP lentivirus–transduced ST-2 cells with spleen monocytes induced formation of multinucleated osteoclasts (OCs) characterized by tartrate-resistant acid phosphatase, calcitonin receptors, and functional calcium resorption from bone slices. Although ERα competed with ERE-BP for an ERE in a dose-dependent manner, ERE-BP was an independent and potent regulator of RANKL and osteoclastogenesis. In preosteoclastic RAW cells, overexpression of ERE-BP increased RANK, upregulated NF-κB signaling, and enhanced differentiation toward a mature OC phenotype independent of RANKL. These results identify ERE-BP as a potent modulator of osteoclastogenesis. We hypothesize that ERE-BP may play a critical role in the regulation of bone homeostasis as a modulator of estrogen sensitivity as well as by direct action on the transcription of critical osteoclastogenic genes. PMID:21773989

  1. Controversies surrounding high-protein diet intake: satiating effect and kidney and bone health.

    PubMed

    Cuenca-Sánchez, Marta; Navas-Carrillo, Diana; Orenes-Piñero, Esteban

    2015-05-01

    Long-term consumption of a high-protein diet could be linked with metabolic and clinical problems, such as loss of bone mass and renal dysfunction. However, although it is well accepted that a high-protein diet may be detrimental to individuals with existing kidney dysfunction, there is little evidence that high protein intake is dangerous for healthy individuals. High-protein meals and foods are thought to have a greater satiating effect than high-carbohydrate or high-fat meals. The effect of high-protein diets on the modulation of satiety involves multiple metabolic pathways. Protein intake induces complex signals, with peptide hormones being released from the gastrointestinal tract and blood amino acids and derived metabolites being released in the blood. Protein intake also stimulates metabolic hormones that communicate information about energy status to the brain. Long-term ingestion of high amounts of protein seems to decrease food intake, body weight, and body adiposity in many well-documented studies. The aim of this article is to provide an extensive overview of the efficacy of high protein consumption in weight loss and maintenance, as well as the potential consequences in human health of long-term intake. © 2015 American Society for Nutrition.

  2. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency.

    PubMed

    Chin, Kok-Yong; Abdul-Majeed, Saif; Mohamed, Norazlina; Ima-Nirwana, Soelaiman

    2017-02-15

    Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2) gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1) lovastatin 11 mg/kg/day alone; (2) tocotrienol derived from annatto bean (annatto tocotrienol) 60 mg/kg/day alone; (3) lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments ( p < 0.05). There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment ( p < 0.05). The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis.

  3. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency

    PubMed Central

    Chin, Kok-Yong; Abdul-Majeed, Saif; Mohamed, Norazlina; Ima-Nirwana, Soelaiman

    2017-01-01

    Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2) gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1) lovastatin 11 mg/kg/day alone; (2) tocotrienol derived from annatto bean (annatto tocotrienol) 60 mg/kg/day alone; (3) lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p < 0.05). There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment (p < 0.05). The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis. PMID:28212283

  4. Effects of a moderately high-protein diet and interval aerobic training combined with strength-endurance exercise on markers of bone metabolism, microarchitecture and turnover in obese Zucker rats.

    PubMed

    Nebot, Elena; Aparicio, Virginia A; Coll-Risco, Irene; Camiletti-Moirón, Daniel; Schneider, Johannes; Kapravelou, Garyfallia; Heimel, Patrick; Martínez, Rosario; Andrade, Ana; Slezak, Paul; Redl, Heinz; Porres, Jesús M; López-Jurado, María; Pietschmann, Peter; Aranda, Pilar

    2016-11-01

    Weight loss is a public health concern in obesity-related diseases such as metabolic syndrome, and the protein level of the diets seem to be crucial for the development and maintenance of bone. The nature of exercise and whether exercise in combination with moderately high-protein dietary interventions could protect against potential bone mass deficits remains unclear. To investigate the effects of a moderately high-protein diet and interval aerobic training combined with strength-endurance exercise (IASE) protocol on bone status, and to assess potential interaction effects (i.e. diet*IASE). Male Zucker fatty rats were randomized distributed into 4 groups (n=8): normoprotein+sedentary; normoprotein+exercise; moderately high-protein+sedentary, and moderately high-protein+exercise. Training groups conducted an IASE program, 5days/week for 2months. Markers of bone metabolism were measured in plasma. Parameters of bone mass and 3D outcomes for trabecular and cortical bone microarchitecture were assessed by micro-computed tomography. Femur length, plasma osteocalcin, sclerostin, osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, insulin, leptin, PTH, uric acid and urinary phosphorus levels were lower in the moderately high-protein compared to the normoprotein groups (all, p<0.05), whereas plasma alkaline phosphatase, aspartate aminotransferase, alanine transaminase, and urinary uric acid concentrations, and cortical total volume (TV) and bone volume (BV) were higher in the moderately high-protein (all, p<0.01). Final body weight and alkaline phosphatase levels were lower in the exercise compared to the sedentary (both, p<0.05), whereas femur length and weight, aminoterminal propeptides of type I procollagen and C-terminal telopeptides of type I collagen concentrations, and cortical TV and BV were higher in the exercise compared to the sedentary groups (all, p<0.05). The combination of interventions may be effective to enhance trabecular bone

  5. Radiographic and Histologic Evaluation of a Bone Void that Formed After Recombinant Human Bone Morphogenetic Protein-2-Mediated Sinus Graft Augmentation: A Case Report.

    PubMed

    Kang, Hyun-Joo; Jun, Choong-Man; Yun, Jeong-Ho

    2016-01-01

    In the present case report, the authors describe radiographic and histologic observations of a bone void that formed after a sinus augmentation using a graft material that contained recombinant human bone morphogenetic protein-2 (rhBMP-2) and discuss clinical and histologic implications of their findings. Sinus augmentation was performed using a graft material comprising 1 g of hydroxyapatite/β-tricalcium phosphate, which contained 1 mg of rhBMP-2. Radiographic evaluation was conducted with panoramic radiographs and computed tomography images of the augmented maxillary sinus, which were analyzed using a three-dimensional image-reconstruction program. Histologic evaluation was also performed on a biopsy specimen obtained 6 months after the sinus augmentation. The total augmented volume increased from 1,582.2 mm(3) immediately after the sinus augmentation to 3,344.9 mm3 at 6 months after the augmentation because of the formation of a bone void. Twenty-six months after the sinus augmentation, the bone void remained but had reduced in volume, with the total augmented volume reduced to 2,551.7 mm(3). Histologically, new bone was observed to be in contact with the grafted particles, and a fatty marrow-like tissue was present in the area of the bone void. This case report shows that the bone void that had formed after sinus augmentation resolved over time and seemed to be partially replaced with new bone. Furthermore, none of the implants failed, and clinical adverse events were not observed during the follow-up period.

  6. Th1 biased response to a novel Porphyromonas gingivalis protein aggravates bone resorption caused by this oral pathogen

    PubMed Central

    Leshem, Onir; Kashino, Suely S.; Gonçalves, Reginaldo B.; Suzuki, Noriyuki; Onodera, Masao; Fujimura, Akira; Sasaki, Hajime; Stashenko, Philip; Campos-Neto, Antonio

    2013-01-01

    In previous studies we showed that biasing the immune response to Porphyromonas gingivalis antigens to the Th1 phenotype increases inflammatory bone resorption caused by this organism. Using a T cell screening strategy we identified eight P. gingivalis genes coding for proteins that appear to be involved in T-helper cell responses. In the present study we characterized the protein, encoded by PG_1841 gene and evaluated its relevance in the in bone resorption caused by P. gingivalis because subcutaneous infection of mice with this organism resulted in the induction of Th1 biased response to the recombinant PG1841 antigen molecule. Using an immunization regime that strongly biases toward the Th1 phenotype followed by challenge with P. gingivalis in dental pulp tissue, we demonstrate that mice pre-immunized with rPG1841 developed severe bone loss compared with control immunized mice. Pre-immunization of mice with the antigen using a Th2 biasing regime resulted in no exacerbation of the disease. These results support the notion that selected antigens of P. gingivalis are involved in a biased Th1 host response that leads to the severe bone loss caused by this oral pathogen. PMID:18457976

  7. Role of bone morphogenetic protein-7 in renal fibrosis

    PubMed Central

    Li, Rui Xi; Yiu, Wai Han; Tang, Sydney C. W.

    2015-01-01

    Renal fibrosis is final common pathway of end stage renal disease. Irrespective of the primary cause, renal fibrogenesis is a dynamic process which involves a large network of cellular and molecular interaction, including pro-inflammatory cell infiltration and activation, matrix-producing cell accumulation and activation, and secretion of profibrogenic factors that modulate extracellular matrix (ECM) formation and cell-cell interaction. Bone morphogenetic protein-7 is a protein of the TGF-β super family and increasingly regarded as a counteracting molecule against TGF-β. A large variety of evidence shows an anti-fibrotic role of BMP-7 in chronic kidney disease, and this effect is largely mediated via counterbalancing the profibrotic effect of TGF-β. Besides, BMP-7 reduced ECM formation by inactivating matrix-producing cells and promoting mesenchymal-to-epithelial transition (MET). BMP-7 also increased ECM degradation. Despite these observations, the anti-fibrotic effect of BMP-7 is still controversial such that fine regulation of BMP-7 expression in vivo might be a great challenge for its ultimate clinical application. PMID:25954203

  8. Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice

    USDA-ARS?s Scientific Manuscript database

    We investigated the effects of diet (AIN93G or high-fat), physical activity (sedentary or voluntary running) and protein source (casein or soy protein isolate) and their interactions on bone microstructural changes in distal femurs in male C57BL/6 mice by using micro-computed tomography. After 14 w...

  9. Regulation of bone morphogenetic proteins in early embryonic development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  10. Characterization of UO2(2+) binding to osteopontin, a highly phosphorylated protein: insights into potential mechanisms of uranyl accumulation in bones.

    PubMed

    Qi, Lei; Basset, Christian; Averseng, Olivier; Quéméneur, Eric; Hagège, Agnès; Vidaud, Claude

    2014-01-01

    Bones are one of the few organs in which uranyl (UO2(2+)) accumulates. This large dioxo-cation displays affinity for carboxylates, phenolates and phosphorylated functional groups in proteins. The noncollagenous protein osteopontin (OPN) plays an important role in bone homeostasis. It is mainly found in the extracellular matrix of mineralized tissues but also in body fluids such as milk, blood and urine. Furthermore, OPN is an intrinsically disordered protein, which, like other proteins of the SIBLING family, contains a polyaspartic acid sequence and numerous patterns of alternating acidic and phosphorylated residues. All these properties led to the hypothesis that this protein could be prone to UO2(2+) binding. In this work, a simple purification procedure enabling highly purified bovine (bOPN) and human OPN (hOPN) to be obtained was developed. Various biophysical approaches were set up to study the impact of phosphorylations on the affinity of OPN for UO2(2+) as well as the formation of stable complexes originating from structural changes induced by the binding of this metal cation. The results obtained suggest a new mechanism of the interaction of UO2(2+) with bone metabolism and a new role for OPN as a metal transporter.

  11. Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling.

    PubMed

    Marsano, Anna; Medeiros da Cunha, Carolina M; Ghanaati, Shahram; Gueven, Sinan; Centola, Matteo; Tsaryk, Roman; Barbeck, Mike; Stuedle, Chiara; Barbero, Andrea; Helmrich, Uta; Schaeren, Stefan; Kirkpatrick, James C; Banfi, Andrea; Martin, Ivan

    2016-12-01

    : Chondrogenic differentiation of bone marrow-derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or soluble signals but typically suffers from limited efficiency, reproducibility across primary batches, and maintenance of phenotypic stability. Considering the avascular and hypoxic milieu of articular cartilage, we hypothesized that sole inhibition of angiogenesis can provide physiological cues to direct in vivo differentiation of uncommitted MSCs to stable cartilage formation. Human MSCs were retrovirally transduced to express a decoy soluble vascular endothelial growth factor (VEGF) receptor-2 (sFlk1), which efficiently sequesters endogenous VEGF in vivo, seeded on collagen sponges and immediately implanted ectopically in nude mice. Although naïve cells formed vascularized fibrous tissue, sFlk1-MSCs abolished vascular ingrowth into engineered constructs, which efficiently and reproducibly developed into hyaline cartilage. The generated cartilage was phenotypically stable and showed no sign of hypertrophic evolution up to 12 weeks. In vitro analyses indicated that spontaneous chondrogenic differentiation by blockade of angiogenesis was related to the generation of a hypoxic environment, in turn activating the transforming growth factor-β pathway. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. This article outlines the general paradigm of controlling the fate of implanted stem/progenitor cells by engineering their ability to establish specific microenvironmental conditions rather than directly providing individual morphogenic cues. Chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs) is typically targeted by morphogen delivery, which is often associated with limited efficiency, stability, and robustness. This article proposes a strategy to engineer MSCs with the capacity to establish specific

  12. Role of RGM coreceptors in bone morphogenetic protein signaling

    PubMed Central

    Halbrooks, Peter J; Ding, Ru; Wozney, John M; Bain, Gerard

    2007-01-01

    Background The repulsive guidance molecule (RGM) proteins, originally discovered for their roles in neuronal development, have been recently identified as co-receptors in the bone morphogenetic protein (BMP) signaling pathway. BMPs are members of the TGFβ superfamily of signaling cytokines, and serve to regulate many aspects of cellular growth and differentiation. Results Here, we investigate whether RGMa, RGMb, and RGMc play required roles in BMP and TGFβ signaling in the mouse myoblast C2C12 cell line. These cells are responsive to BMPs and are frequently used to study BMP/TGFβ signaling pathways. Using siRNA reagents to specifically knock down each RGM protein, we show that the RGM co-receptors are required for significant BMP signaling as reported by two cell-based BMP activity assays: endogenous alkaline phosphatase activity and a luciferase-based BMP reporter assay. Similar cell-based assays using a TGFβ-induced luciferase reporter show that the RGM co-receptors are not required for TGFβ signaling. The binding interaction of each RGM co-receptor to each of BMP2 and BMP12 is observed and quantified, and equilibrium dissociation constants in the low nanomolar range are reported. Conclusion Our results demonstrate that the RGMs play a significant role in BMP signaling and reveal that these molecules cannot functionally compensate for one another. PMID:17615080

  13. Molecular Actions of Ovarian Cancer G Protein-Coupled Receptor 1 Caused by Extracellular Acidification in Bone

    PubMed Central

    Yuan, Feng-Lai; Zhao, Ming-Dong; Jiang, Li-Bo; Wang, Hui-Ren; Cao, Lu; Zhou, Xiao-Gang; Li, Xi-Lei; Dong, Jian

    2014-01-01

    Extracellular acidification occurs under physiologic and pathologic conditions, such as exercise, ischemia, and inflammation. It has been shown that acidosis has various adverse effects on bone. In recent years there has been increasing evidence which indicates that ovarian cancer G protein-coupled receptor 1 (OGR1) is a pH-sensing receptor and mediates a variety of extracellular acidification-induced actions on bone cells and other cell types. Recent studies have shown that OGR1 is involved in the regulation of osteoclast differentiation, survival, and function, as well as osteoblast differentiation and bone formation. Moreover, OGR1 also regulates acid-induced apoptosis of endplate chondrocytes in intervertebral discs. These observations demonstrate the importance of OGR1 in skeletal development and metabolism. Here, we provide an overview of OGR1 regulation ofosteoclasts, osteoblasts, and chondrocytes, and the molecular actions of OGR1 induced by extracellular acidification in the maintenance of bone health. PMID:25479080

  14. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype.

    PubMed

    Samsa, William E; Vasanji, Amit; Midura, Ronald J; Kondratov, Roman V

    2016-03-01

    The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1(-/-) mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1(-/-) mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1(-/-) mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Deficiency of Circadian Clock Protein BMAL1 in Mice Results in a Low Bone Mass Phenotype

    PubMed Central

    Samsa, William E.; Vasanji, Amit; Midura, Ronald J.; Kondratov, Roman V.

    2016-01-01

    The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1−/− mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1−/− mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1−/− mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. PMID:26789548

  16. Fermented dairy products consumption is associated with attenuated cortical bone loss independently of total calcium, protein, and energy intakes in healthy postmenopausal women.

    PubMed

    Biver, E; Durosier-Izart, C; Merminod, F; Chevalley, T; van Rietbergen, B; Ferrari, S L; Rizzoli, R

    2018-05-03

    A longitudinal analysis of bone microstructure in postmenopausal women of the Geneva Retirees Cohort indicates that age-related cortical bone loss is attenuated at non-bearing bone sites in fermented dairy products consumers, not in milk or ripened cheese consumers, independently of total energy, calcium, or protein intakes. Fermented dairy products (FDP), including yogurts, provide calcium, phosphorus, and proteins together with prebiotics and probiotics, all being potentially beneficial for bone. In this prospective cohort study, we investigated whether FDP, milk, or ripened cheese consumptions influence age-related changes of bone mineral density (BMD) and microstructure. Dietary intakes were assessed at baseline and after 3.0 ± 0.5 years with a food frequency questionnaire in 482 postmenopausal women enrolled in the Geneva Retirees Cohort. Cortical (Ct) and trabecular (Tb) volumetric (v) BMD and microstructure at the distal radius and tibia were assessed by high-resolution peripheral quantitative computerized tomography, in addition to areal (a) BMD and body composition by dual-energy X-ray absorptiometry, at the same time points. At baseline, FDP consumers had lower abdominal fat mass and larger bone size at the radius and tibia. Parathyroid hormone and β-carboxyterminal cross-linked telopeptide of type I collagen levels were inversely correlated with FDP consumption. In the longitudinal analysis, FDP consumption (mean of the two assessments) was associated with attenuated loss of radius total vBMD and of Ct vBMD, area, and thickness. There was no difference in aBMD and at the tibia. These associations were independent of total energy, calcium, or protein intakes. For other dairy products categories, only milk consumption was associated with lower decrease of aBMD and of failure load at the radius. In this prospective cohort of healthy postmenopausal women, age-related Ct bone loss was attenuated at non-bearing bone sites in FDP consumers, not in milk

  17. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head

    PubMed Central

    Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei

    2015-01-01

    Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head. PMID:26629044

  18. Locally limited inhibition of bone resorption and orthodontic relapse by recombinant osteoprotegerin protein.

    PubMed

    Schneider, D A; Smith, S M; Campbell, C; Hayami, T; Kapila, S; Hatch, N E

    2015-04-01

    To determine minimal dose levels required for local inhibition of orthodontic relapse by recombinant OPG protein (OPG-Fc), while also determining effects of injected OPG-Fc on alveolar bone and long bone. The Department of Orthodontics and Pediatric Dentistry at the University of Michigan. Eighteen male Sprague Dawley rats. Maxillary molars were moved with nickel-titanium springs and then allowed to relapse in Sprague Dawley rats. Upon appliance removal, animals were injected with a single dose of 1.0 mg/kg OPG-Fc, 0.1 mg/kg OPG-Fc, or phosphate-buffered saline (vehicle) just distal to the molar teeth. Tooth movement measurements were made from stone casts, which were scanned and digitally measured. Alveolar tissues were examined by histology. Micro-computed tomography was used to quantify changes in alveolar and femur bone. Local injection of OPG-Fc inhibited molar but not incisor relapse, when compared to vehicle-injected animals. No significant differences in alveolar or femur bone were seen between the three treatment groups after 24 days of relapse. Our results demonstrate that a single local injection of OPG-Fc effectively inhibits orthodontic relapse, with minimal systemic bone metabolic effects. Our results also show that a single injection of OPG-Fc will influence tooth movement only in teeth close to the injection site. These findings indicate that OPG-Fc has potential as a safe and effective pharmacological means to locally control osteoclasts, for uses such as maintaining anchorage during orthodontic tooth movement and preventing orthodontic relapse in humans. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Root morphogenic pathways in Eucalyptus grandis are modified by the activity of protein arginine methyltransferases.

    PubMed

    Plett, Krista L; Raposo, Anita E; Bullivant, Stephen; Anderson, Ian C; Piller, Sabine C; Plett, Jonathan M

    2017-03-09

    Methylation of proteins at arginine residues, catalysed by members of the protein arginine methyltransferase (PRMT) family, is crucial for the regulation of gene transcription and for protein function in eukaryotic organisms. Inhibition of the activity of PRMTs in annual model plants has demonstrated wide-ranging involvement of PRMTs in key plant developmental processes, however, PRMTs have not been characterised or studied in long-lived tree species. Taking advantage of the recently available genome for Eucalyptus grandis, we demonstrate that most of the major plant PRMTs are conserved in E. grandis as compared to annual plants and that they are expressed in all major plant tissues. Proteomic and transcriptomic analysis in roots suggest that the PRMTs of E. grandis control a number of regulatory proteins and genes related to signalling during cellular/root growth and morphogenesis. We demonstrate here, using chemical inhibition of methylation and transgenic approaches, that plant type I PRMTs are necessary for normal root growth and branching in E. grandis. We further show that EgPRMT1 has a key role in root hair initiation and elongation and is involved in the methylation of β-tubulin, a key protein in cytoskeleton formation. Together, our data demonstrate that PRMTs encoded by E. grandis methylate a number of key proteins and alter the transcription of a variety of genes involved in developmental processes. Appropriate levels of expression of type I PRMTs are necessary for the proper growth and development of E. grandis roots.

  20. A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation.

    PubMed

    Choe, Youngshik; Siegenthaler, Julie A; Pleasure, Samuel J

    2012-02-23

    The corpus callosum is the most prominent commissural connection between the cortical hemispheres, and numerous neurodevelopmental disorders are associated with callosal agenesis. By using mice either with meningeal overgrowth or selective loss of meninges, we have identified a cascade of morphogenic signals initiated by the meninges that regulates corpus callosum development. The meninges produce BMP7, an inhibitor of callosal axon outgrowth. This activity is overcome by the induction of expression of Wnt3 by the callosal pathfinding neurons, which antagonize the inhibitory effects of BMP7. Wnt3 expression in the cingulate callosal pathfinding axons is developmentally regulated by another BMP family member, GDF5, which is produced by the adjacent Cajal-Retzius neurons and turns on before outgrowth of the callosal axons. The effects of GDF5 are in turn under the control of a soluble GDF5 inhibitor, Dan, made by the meninges. Thus, the meninges and medial neocortex use a cascade of signals to regulate corpus callosum development. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Higher glucocorticoid secretion in the physiological range is associated with lower bone strength at the proximal radius in healthy children: importance of protein intake adjustment.

    PubMed

    Shi, Lijie; Sánchez-Guijo, Alberto; Hartmann, Michaela F; Schönau, Eckhard; Esche, Jonas; Wudy, Stefan A; Remer, Thomas

    2015-02-01

    Whether higher production of glucocorticoids (GCs) within the physiological range may already be affecting bone status in healthy children is unknown. Because dietary protein intake affects both bone and GCs, we examined the association of urinary measures of glucocorticoid status and cortical bone in healthy non-obese children, after particularly controlling for protein intake. Proximal forearm bone parameters were measured by peripheral quantitative computed tomography (pQCT). Subjects studied (n = 175, 87 males, aged 6 to 18 years) had two 24-hour urine samples collected: the first sample at 1 year before bone measurement, and the second sample at the time of bone measurement. Major urinary GC metabolites were measured by mass spectrometry and summed to assess daily adrenal GC secretion (∑C21). Urinary free cortisol (UFF) and cortisone (UFE) were summed to assess potentially bioactive free GCs (UFF + UFE). After controlling for several covariates and especially urinary nitrogen (the biomarker of protein intake) cortisol secretion ∑C21 was inversely associated with all analyzed pQCT measures of bone quality. ∑C21 also predicted a higher endosteal and lower periosteal circumference, explaining both a smaller cortical area and (together with lower BMD) a lower strength-strain-index (SSI). UFF + UFE, UFE itself, and a urinary metabolite-estimate of 11beta-hydroxysteroid dehydrogenase type1 (11beta-HSD1) activity showed corresponding reciprocal associations (p < 0.05) with BMD and bone mineral content, but not with SSI and bone geometry variables. In conclusion, higher GC levels, even within the physiological range, appear to exert negative influences on bone modeling and remodeling already during growth. Our physiological data also suggest a relevant role of cortisone as the direct source for intracrine-generated cortisol by bone cell 11beta-HSD1. © 2014 American Society for Bone and Mineral Research.

  2. Fine mapping of the human bone morphogenetic protein-4 gene (BMP4) to chromosome 14q22-q23 by in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijngaard, A. van den; Boersma, C.J.C.; Olijve, W.

    Bone morphogenetic protein-4 (BMP-4) is a member of the transforming growth factor-{beta} (TGF-{beta}) superfamily and is involved in morphogenesis and bone cell differentiation. Recombinant BMP-4 can induce ectopic cartilage and bone formation when implanted subcutaneously or intramuscularly in rodents. This ectopic bone formation process resembles the process of bone formation during embryogenesis and fracture healing. A cosmid clone containing the complete human bone morphogenetic protein-4 gene (BMP4) was isolated (details to be published elsewhere) and used as a probe to determine the precise chromosomal localization of the human BMP4 gene. This cosmid clone was labeled with biotin-14-dATP and hybridized inmore » situ to chromosomal preparations of metaphase cells as described previously. In 20 metaphase preparations, an intense and specific fluorescence signal (FITC) was detected on the q arm of chromosome 14. The DAPI-counterstained chromosomes were computer-converted into GTG-like banding patterns, allowing the regional localization of BMP4 within 14q22-q23. 10 refs., 1 fig.« less

  3. Novel Therapy for Bone Regeneration in Large Segmental Defects

    DTIC Science & Technology

    2016-10-01

    reamed and nonreamed intrame- dullary nailing on fracture healing. Clin Orthop Relat Res. 1998;355(Suppl):S230–8. 37. Pape HC, Giannoudis PV. Fat embolism ...extension period (Year 4). 15. SUBJECT TERMS Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone...Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 3. OVERALL PROJECT

  4. Expression of the growth factor pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in the serum, cartilage and subchondral bone of patients with osteoarthritis.

    PubMed

    Kaspiris, Angelos; Mikelis, Constantinos; Heroult, Melanie; Khaldi, Lubna; Grivas, Theodoros B; Kouvaras, Ioannis; Dangas, Spyridon; Vasiliadis, Elias; Lioté, Frédéric; Courty, José; Papadimitriou, Evangelia

    2013-07-01

    Pleiotrophin is a heparin-binding growth factor expressed in embryonic but not mature cartilage, suggesting a role in cartilage development. Elucidation of the molecular changes observed during the remodelling process in osteoarthritis is of paramount importance. This study aimed to investigate serum pleiotrophin levels and expression of pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in the cartilage and subchondral bone of osteoarthritis patients. Serum samples derived from 16 osteoarthritis patients and 18 healthy donors. Pleiotrophin and receptor protein tyrosine phosphatase beta/zeta in the cartilage and subchondral bone were studied in 29 patients who had undergone total knee or hip replacement for primary osteoarthritis and in 10 control patients without macroscopic osteoarthritis changes. Serum pleiotrophin levels and expression of pleiotrophin in chondrocytes and subchondral bone osteocytes significantly increased in osteoarthritis patients graded Ahlback II to III. Receptor protein tyrosine phosphatase beta/zeta was mainly detected in the subchondral bone osteocytes of patients with moderate osteoarthritis and as disease severity increased, in the osteocytes and bone lining cells of the distant trabeculae. These data render pleiotrophin and receptor protein tyrosine phosphatase beta/zeta promising candidates for further studies towards developing targeted therapeutic schemes for osteoarthritis. Copyright © 2012 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  5. Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice.

    PubMed

    Yan, Lin; Graef, George L; Nielsen, Forrest H; Johnson, LuAnn K; Cao, Jay

    2015-06-01

    Physical activity and soy protein isolate (SPI) augmentation have been reported to be beneficial for bone health. We hypothesized that combining voluntary running and SPI intake would alleviate detrimental changes in bone induced by a high-fat diet. A 2 × 2 × 2 experiment was designed with diets containing 16% or 45% of energy as corn oil and 20% SPI or casein fed to sedentary or running male C57BL/6 mice for 14 weeks. Distal femurs were assessed for microstructural changes. The high-fat diet significantly decreased trabecular number (Tb.N) and bone mineral density (BMD) and increased trabecular separation (Tb.Sp). Soy protein instead of casein, regardless of fat content, in the diet significantly increased bone volume fraction, Tb.N, connectivity density, and BMD and decreased Tb.Sp. Voluntary running, regardless of fat content, significantly decreased bone volume fraction, Tb.N, connectivity density, and BMD and increased Tb.Sp. The high-fat diet significantly decreased osteocalcin and increased tartrate-resistant acid phosphatase 5b (TRAP 5b) concentrations in plasma. Plasma concentrations of osteocalcin were increased by both SPI and running. Running alleviated the increase in TRAP 5b induced by the high-fat diet. These findings demonstrate that a high-fat diet is deleterious, and SPI is beneficial to trabecular bone properties. The deleterious effect of voluntary running on trabecular structural characteristics indicates that there may be a maximal threshold of running beyond which beneficial effects cease and detrimental effects occur. Increases in plasma osteocalcin and decreases in plasma TRAP 5b in running mice suggest that a compensatory response occurs to counteract the detrimental effects of excessive running. Published by Elsevier Inc.

  6. Bone Morphogenetic Protein-7 Enhances Degradation of Osteoinductive Bioceramic Implants in an Ectopic Model

    PubMed Central

    Klünter, Tim; Schulz, Peter; Deisinger, Ulrike; Diez, Claudius; Waiss, Waltraud; Kirschneck, Christian; Reichert, Torsten E.; Detsch, Rainer

    2017-01-01

    Background: The aim of the present study was to evaluate the degradation pattern of highly porous bioceramics as well as the bone formation in presence of bone morphogenetic protein 7 (BMP-7) in an ectopic site. Methods: Novel calcium phosphate ceramic cylinders sintered at 1,300°C with a total porosity of 92–94 vol%, 45 pores per inch, and sized 15 mm (Ø) × 5 mm were grafted on the musculus latissimus dorsi bilaterally in 10 Göttingen minipigs: group I (n = 5): hydroxyapatite (HA) versus biphasic calcium phosphate (BCP), a mixture of HA and tricalcium phosphate (TCP) in a ratio of 60/40 wt%; group II (n = 5): TCP versus BCP. A test side was supplied in situ with 250 μg BMP-7. Fluorochrome bone labeling and computed tomography were performed in vivo. Specimens were evaluated 14 weeks after surgery by environmental scanning electron microscopy, fluorescence microscopy, tartrate-resistant acid phosphatase, and pentachrome staining. Results: Bone formation was enhanced in the presence of BMP-7 in all ceramics (P = 0.001). Small spots of newly formed bone were observed in all implants in the absence of BMP-7. Degradation of HA and BCP was enhanced in the presence of BMP-7 (P = 0.001). In those ceramics, osteoclasts were observed. TCP ceramics were almost completely degraded independently of the effect of BMP-7 after 14 weeks (P = 0.76), osteoclasts were not observed. Conclusions: BMP-7 enhanced bone formation and degradation of HA and BCP ceramics via osteoclast resorption. TCP degraded via dissolution. All ceramics were osteoinductive. Novel degradable HA and BCP ceramics in the presence of BMP-7 are promising bone substitutes in the growing individual. PMID:28740783

  7. Loss of Gi G-Protein-Coupled Receptor Signaling in Osteoblasts Accelerates Bone Fracture Healing.

    PubMed

    Wang, Liping; Hsiao, Edward C; Lieu, Shirley; Scott, Mark; O'Carroll, Dylan; Urrutia, Ashley; Conklin, Bruce R; Colnot, Celine; Nissenson, Robert A

    2015-10-01

    G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair. © 2015 American Society for Bone and Mineral Research.

  8. Kaempferol stimulates bone sialoprotein gene transcription and new bone formation.

    PubMed

    Yang, Li; Takai, Hideki; Utsunomiya, Tadahiko; Li, Xinyue; Li, Zhengyang; Wang, Zhitao; Wang, Shuang; Sasaki, Yoko; Yamamoto, Hirotsugu; Ogata, Yorimasa

    2010-08-15

    Kaempferol is a typical flavonol-type flavonoid that is present in a variety of vegetables and fruits, and has a protective effect on postmenopausal bone loss. Bone sialoprotein (BSP) is thought to function in the initial mineralization of bone and could be crucial for osteoblast differentiation, bone matrix mineralization and tumor metastasis. In the present study we investigated the regulation of BSP transcription by kaempferol in rat osteoblast-like UMR106 cells, and the effect of kaempferol on new bone formation. Kaempferol (5 microM) increased BSP and Osterix mRNA levels at 12 h and up-regulated Runx2 mRNA expression at 6 h. Kaempferol increased luciferase activity of the construct pLUC3, which including the promoter sequence between nucleotides -116 to +60. Transcriptional stimulation by kaempferol abrogated in constructs included 2 bp mutations in the inverted CCAAT, CRE, and FRE elements. Gel shift analyses showed that kaempferol increased nuclear protein binding to CRE and FRE elements, whereas the CCAAT-protein complex did not change after kaempferol stimulation. Twelve daily injections of 5 microM kaempferol directly into the periosteum of parietal bones of newborn rats increased new bone formation. These data suggest that kaempferol increased BSP gene transcription mediated through inverted CCAAT, CRE, and FRE elements in the rat BSP gene promoter, and could induce osteoblast activities in the early stage of bone formation. (c) 2010 Wiley-Liss, Inc.

  9. Controversies Surrounding High-Protein Diet Intake: Satiating Effect and Kidney and Bone Health12

    PubMed Central

    Cuenca-Sánchez, Marta; Navas-Carrillo, Diana; Orenes-Piñero, Esteban

    2015-01-01

    Long-term consumption of a high-protein diet could be linked with metabolic and clinical problems, such as loss of bone mass and renal dysfunction. However, although it is well accepted that a high-protein diet may be detrimental to individuals with existing kidney dysfunction, there is little evidence that high protein intake is dangerous for healthy individuals. High-protein meals and foods are thought to have a greater satiating effect than high-carbohydrate or high-fat meals. The effect of high-protein diets on the modulation of satiety involves multiple metabolic pathways. Protein intake induces complex signals, with peptide hormones being released from the gastrointestinal tract and blood amino acids and derived metabolites being released in the blood. Protein intake also stimulates metabolic hormones that communicate information about energy status to the brain. Long-term ingestion of high amounts of protein seems to decrease food intake, body weight, and body adiposity in many well-documented studies. The aim of this article is to provide an extensive overview of the efficacy of high protein consumption in weight loss and maintenance, as well as the potential consequences in human health of long-term intake. PMID:25979491

  10. Value of Osteoblast-Derived Exosomes in Bone Diseases.

    PubMed

    Ge, Min; Wu, Yingzhi; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng

    2017-06-01

    The authors' purpose is to reveal the value of osteoblast-derived exosomes in bone diseases. Microvesicles from supernatants of mouse Mc3t3 were isolated by ultracentrifugation and then the authors presented the protein profile by proteomics analysis. The authors detected a total number of 1536 proteins by mass spectrometry and found 172 proteins overlap with bone database. The Ingenuity Pathway Analysis shows network of "Skeletal and Muscular System Development and Function, Developmental Disorder, Hereditary Disorder" and pathway about osteogenesis. EFNB1 and transforming growth factor beta receptor 3 in the network, LRP6, bone morphogenetic protein receptor type-1, and SMURF1 in the pathway seemed to be valuable in the exosome research of related bone disease. The authors' study unveiled the content of osteoblast-derived exosome and discussed valuable protein in it which might provide novel prospective in bone diseases research.

  11. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans

    PubMed Central

    Liégeois, Samuel; Benedetto, Alexandre; Garnier, Jean-Marie; Schwab, Yannick; Labouesse, Michel

    2006-01-01

    Polarized intracellular trafficking in epithelia is critical in development, immunity, and physiology to deliver morphogens, defensins, or ion pumps to the appropriate membrane domain. The mechanisms that control apical trafficking remain poorly defined. Using Caenorhabditis elegans, we characterize a novel apical secretion pathway involving multivesicularbodies and the release of exosomes at the apical plasma membrane. By means of two different genetic approaches, we show that the membrane-bound V0 sector of the vacuolar H+-ATPase (V-ATPase) acts in this pathway, independent of its contribution to the V-ATPase proton pump activity. Specifically, we identified mutations in the V0 “a” subunit VHA-5 that affect either the V0-specific function or the V0+V1 function of the V-ATPase. These mutations allowed us to establish that the V0 sector mediates secretion of Hedgehog-related proteins. Our data raise the possibility that the V0 sector mediates exosome and morphogen release in mammals. PMID:16785323

  12. Palmitoylation of proteins in cancer.

    PubMed

    Resh, Marilyn D

    2017-04-15

    Post-translational modification of proteins by attachment of palmitate serves as a mechanism to regulate protein localization and function in both normal and malignant cells. Given the essential role that palmitoylation plays in cancer cell signaling, approaches that target palmitoylated proteins and palmitoyl acyltransferases (PATs) have the potential for therapeutic intervention in cancer. Highlighted here are recent advances in understanding the importance of protein palmitoylation in tumorigenic pathways. A new study has uncovered palmitoylation sites within the epidermal growth factor receptor that regulate receptor trafficking, signaling and sensitivity to tyrosine kinase inhibitors. Global data analysis from nearly 150 cancer studies reveals genomic alterations in several PATs that may account for their ability to function as tumor suppressors or oncogenes. Selective inhibitors have recently been developed that target hedgehog acyltransferase (Hhat) and Porcupine (Porcn), the acyltransferases that modify hedgehog and Wnt proteins, respectively. These inhibitors, coupled with targeted knockdown of Hhat and Porcn, reveal the essential functions of fatty acylation of secreted morphogens in a wide variety of human tumors. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  13. Bone Dysplasia Sclerosteosis Results from Loss of the SOST Gene Product, a Novel Cystine Knot–Containing Protein

    PubMed Central

    Brunkow, Mary E.; Gardner, Jessica C.; Van Ness, Jeff; Paeper, Bryan W.; Kovacevich, Brian R.; Proll, Sean; Skonier, John E.; Zhao, L.; Sabo, P. J.; Fu, Ying-Hui; Alisch, Reid S.; Gillett, Lucille; Colbert, Trenton; Tacconi, Paolo; Galas, David; Hamersma, Herman; Beighton, Peter; Mulligan, John T.

    2001-01-01

    Sclerosteosis is an autosomal recessive sclerosing bone dysplasia characterized by progressive skeletal overgrowth. The majority of affected individuals have been reported in the Afrikaner population of South Africa, where a high incidence of the disorder occurs as a result of a founder effect. Homozygosity mapping in Afrikaner families along with analysis of historical recombinants localized sclerosteosis to an interval of ∼2 cM between the loci D17S1787 and D17S930 on chromosome 17q12-q21. Here we report two independent mutations in a novel gene, termed “SOST.” Affected Afrikaners carry a nonsense mutation near the amino terminus of the encoded protein, whereas an unrelated affected person of Senegalese origin carries a splicing mutation within the single intron of the gene. The SOST gene encodes a protein that shares similarity with a class of cystine knot–containing factors including dan, cerberus, gremlin, prdc, and caronte. The specific and progressive effect on bone formation observed in individuals affected with sclerosteosis, along with the data presented in this study, together suggest that the SOST gene encodes an important new regulator of bone homeostasis. PMID:11179006

  14. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein.

    PubMed

    Brunkow, M E; Gardner, J C; Van Ness, J; Paeper, B W; Kovacevich, B R; Proll, S; Skonier, J E; Zhao, L; Sabo, P J; Fu, Y; Alisch, R S; Gillett, L; Colbert, T; Tacconi, P; Galas, D; Hamersma, H; Beighton, P; Mulligan, J

    2001-03-01

    Sclerosteosis is an autosomal recessive sclerosing bone dysplasia characterized by progressive skeletal overgrowth. The majority of affected individuals have been reported in the Afrikaner population of South Africa, where a high incidence of the disorder occurs as a result of a founder effect. Homozygosity mapping in Afrikaner families along with analysis of historical recombinants localized sclerosteosis to an interval of approximately 2 cM between the loci D17S1787 and D17S930 on chromosome 17q12-q21. Here we report two independent mutations in a novel gene, termed "SOST." Affected Afrikaners carry a nonsense mutation near the amino terminus of the encoded protein, whereas an unrelated affected person of Senegalese origin carries a splicing mutation within the single intron of the gene. The SOST gene encodes a protein that shares similarity with a class of cystine knot-containing factors including dan, cerberus, gremlin, prdc, and caronte. The specific and progressive effect on bone formation observed in individuals affected with sclerosteosis, along with the data presented in this study, together suggest that the SOST gene encodes an important new regulator of bone homeostasis.

  15. Monocyte chemotactic protein-1 attenuates and high-fat diet exacerbates bone loss in mice with pulmonary metastasis of Lewis lung carcinoma

    USDA-ARS?s Scientific Manuscript database

    Bone can be adversely affected by obesity and cancer-associated complications including wasting. The objective of this study was to determine whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects found in male C57BL/6 mice with Lewis lung...

  16. Ligand-Mediated Activation of an Engineered Gs G Protein-Coupled Receptor in Osteoblasts Increases Trabecular Bone Formation

    PubMed Central

    Hsiao, Edward C.; Millard, Susan M.; Louie, Alyssa; Huang, Yong; Conklin, Bruce R.; Nissenson, Robert A.

    2010-01-01

    Age-dependent changes in skeletal growth play important roles in regulating skeletal expansion and in the course of many diseases affecting bone. How G protein-coupled receptor (GPCR) signaling affects these changes is poorly understood. Previously, we described a mouse model expressing Rs1, an engineered receptor with constitutive Gs activity. Rs1 expression in osteoblasts from gestation induced a dramatic age-dependent increase in trabecular bone with features resembling fibrous dysplasia; however, these changes were greatly minimized if Rs1 expression was delayed until after puberty. To further investigate whether ligand-induced activation of the Gs-GPCR pathway affects bone formation in adult mice, we activated Rs1 in adult mice with the synthetic ligand RS67333 delivered continuously via an osmotic pump or intermittently by daily injections. We found that osteoblasts from adult animals can be stimulated to form large amounts of bone, indicating that adult mice are sensitive to the dramatic bone- forming actions of Gs signaling in osteoblasts. In addition, our results show that intermittent and continuous activation of Rs1 led to structurally similar but quantitatively different degrees of trabecular bone formation. These results indicate that activation of a Gs-coupled receptor in osteoblasts of adult animals by either intermittent or continuous ligand administration can increase trabecular bone formation. In addition, osteoblasts located at the bone epiphyses may be more responsive to Gs signaling than osteoblasts at the bone diaphysis. This model provides a powerful tool for investigating the effects of ligand-activated Gs-GPCR signaling on dynamic bone growth and remodeling. PMID:20150184

  17. Electrical peripheral nerve stimulation relieves bone cancer pain by inducing Arc protein expression in the spinal cord dorsal horn

    PubMed Central

    Sun, Ke-fu; Feng, Wan-wen; Liu, Yue-peng; Dong, Yan-bin; Gao, Li; Yang, Hui-lin

    2018-01-01

    Objective The analgesic effect on chronic pain of peripheral nerve stimulation (PNS) has been proven, but its underlying mechanism remains unknown. Therefore, this study aimed to assess the analgesic effect of PNS on bone cancer pain in a rat model and to explore the underlying mechanism. Materials and methods PNS on sciatic nerves with bipolar electrode was performed in both naïve and bone cancer pain model rats. Then, the protein levels of activity-regulated cytoskeleton-associated protein (Arc), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type glutamate receptor 1 (GluA1), and phosphate N-methyl-d-aspartic acid-type glutamate receptor subunit 2B (pGluNR2B) in spinal cord were evaluated by immunohistochemistry and Western blotting. Thermal paw withdraw latency and mechanical paw withdraw threshold were used to estimate the analgesic effect of PNS on bone cancer pain. Intrathecal administration of Arc shRNA was used to inhibit Arc expression in the spinal cord. Results PNS at 60 and 120 Hz for 20 min overtly induced Arc expression in the spinal cord, increased thermal pain thresholds in naïve rats, and relieved bone cancer pain; meanwhile, 10 Hz PNS did not achieve those results. In addition, PNS at 60 and 120 Hz also reduced the expression of GluA1, but not pGluNR2B, in the spinal cord. Finally, the anti-nociceptive effect and GluA1 downregulation induced by PNS were inhibited by intrathecal administration of Arc shRNA. Conclusion PNS (60 Hz, 0.3 mA) can relieve bone-cancer-induced allodynia and hyperalgesia by upregulating Arc protein expression and then by decreasing GluA1 transcription in the spinal cord dorsal horn. PMID:29606887

  18. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2

    PubMed Central

    Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia

    2017-01-01

    The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960

  19. Comparison of the effects of recombinant human bone morphogenetic protein-2 and -9 on bone formation in rat calvarial critical-size defects.

    PubMed

    Nakamura, Toshiaki; Shirakata, Yoshinori; Shinohara, Yukiya; Miron, Richard J; Hasegawa-Nakamura, Kozue; Fujioka-Kobayashi, Masako; Noguchi, Kazuyuki

    2017-12-01

    Among bone morphogenetic protein (BMP) family members, BMP-2 and BMP-9 have demonstrated potent osteoinductive potential. However, in vivo differences in their potential for bone regeneration remain unclear. The present study aimed to compare the effects of recombinant human (rh) BMP-2 and rhBMP-9 on bone formation in rat calvarial critical-size defects (CSD). Twenty-eight Wistar rats surgically received two calvarial defects bilaterally in each parietal bone. Defects (n = 56) were allocated into four groups: absorbable collagen sponge (ACS) alone, rhBMP-2 with ACS (rhBMP-2/ACS), rhBMP-9/ACS, or sham surgery (control), on the condition that the treatments of rhBMP-2/ACS and rhBMP-9/ACS, or the same treatments were not included in the same animal. Animals were sacrificed at 2 and 8 weeks post-surgery. The calvarial defects were analyzed for bone volume (BV) by micro-computed tomography and for percentages of defect closure (DC/DL), newly formed bone area (NBA/TA), bone marrow area (BMA/NBA), adipose tissue area (ATA/NBA), central bone height (CBH), and marginal bone height (MBH) by histomorphometric analysis. The BV in the rhBMP-2/ACS group (5.44 ± 3.65 mm 3 , n = 7) was greater than the other groups at 2 weeks post-surgery, and the rhBMP-2/ACS and rhBMP-9/ACS groups (18.17 ± 2.51 and 16.30 ± 2.46 mm 3 , n = 7, respectively) demonstrated significantly greater amounts of BV compared with the control and ACS groups (6.02 ± 2.90 and 9.30 ± 2.75 mm 3 , n = 7, respectively) at 8 weeks post-surgery. The rhBMP-2/ACS and rhBMP-9/ACS groups significantly induced new bone formation compared to the control and ACS groups at 8 weeks post-surgery. However, there were no statistically significant differences found between the rhBMP-2/ACS and rhBMP-9/ACS groups in any of the histomorphometric parameters. The ATA/NBA in the rhBMP-2/ACS group (9.24 ± 3.72%, n = 7) was the highest among the treatment groups at 8 weeks post-surgery. Within the

  20. High-fat diet enhances and monocyte chemoattractant protein-1 deficiency reduces bone loss in mice with pulmonary metastases of Lewis lung carcinoma

    USDA-ARS?s Scientific Manuscript database

    Bone is adversely affected by metastasis and metastasis-associated complications. Obesity is a risk factor for both bone and cancer. Adipose tissue is an endocrine organ that produces pro-inflammatory adipokines, such as monocyte chemotactic protein-1 (MCP-1), that contribute to obesity and obesit...

  1. Role of Adrenomedullin in Breast Cancer Bone Metastasis and Chemoresistance

    DTIC Science & Technology

    2008-05-01

    osteoblast proliferation but does not induce bone matrix protein (bone sialoprotein , type I collagen, osteocalcin, and osteopontin) mRNA expression...are incompletely understood. AM treatment stimulates osteoblast proliferation but does not induce bone matrix protein (bone sialoprotein , type I

  2. Bone nutrients for vegetarians.

    PubMed

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. © 2014 American Society for Nutrition.

  3. Does a high dietary acid content cause bone loss, and can bone loss be prevented with an alkaline diet?

    PubMed

    Hanley, David A; Whiting, Susan J

    2013-01-01

    A popular concept in nutrition and lay literature is that of the role of a diet high in acid or protein in the pathogenesis of osteoporosis. A diet rich in fruit and vegetable intake is thought to enhance bone health as the result of its greater potassium and lower "acidic" content than a diet rich in animal protein and sodium. Consequently, there have been a number of studies of diet manipulation to enhance potassium and "alkaline" content of the diet to improve bone density or other parameters of bone health. Although acid loading or an acidic diet featuring a high protein intake may be associated with an increase in calciuria, the evidence supporting a role of these variables in the development of osteoporosis is not consistent. Similarly, intervention studies with a more alkaline diet or use of supplements of potassium citrate or bicarbonate have not consistently shown a bone health benefit. In the elderly, inadequate protein intake is a greater problem for bone health than protein excess. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  4. Correlation of serum levels of fibroblast growth factor 23 and Klotho protein levels with bone mineral density in maintenance hemodialysis patients.

    PubMed

    Zheng, Shubei; Chen, Yan; Zheng, Yu; Zhou, Zhihong; Li, Zhanyuan

    2018-04-17

    The correlation of serum fibroblast growth factor 23 (FGF-23) and Klotho protein levels with bone mineral density (BMD) in maintenance hemodialysis (MHD) patients was analyzed. Between January 2015 and November 2015, 125 MHD patients in our hospital were enrolled. Dual-energy X-ray absorptiometry was used to examine the BMD in the femoral neck and lumbar spine of MHD patients. The patients were divided into three groups: a normal bone mass group, an osteopenia group, and an osteoporosis group. An ELISA was performed to measure serum FGF-23, Klotho protein, and 1,25(OH) 2 VitD 3 levels. Other parameters, including calcium (Ca), phosphorus (P), and parathyroid hormone, were also measured. Of the 125 MHD patients, 82.40% of patients had femoral neck osteopenia, and 56.00% of patients had lumbar spinal osteopenia. The serum FGF-23 level was highest in the osteoporosis group. However, there was no significant difference in serum FGF-23 levels among the three groups, depending on femoral neck and lumbar spinal BMD (P > 0.05). Spearman's correlation analysis also pointed to a lack of correlation between serum FGF-23 levels and BMD. Among the three groups, there were significant differences in serum Klotho protein levels and femoral neck BMD (P < 0.05). Serum Klotho protein levels in the osteoporosis group were clearly lower than those in the normal bone mass group and osteopenia group (P < 0.05). Similarly, serum Klotho protein levels were significantly lower in those with lumbar spinal osteopenia as compared with those in the normal group. There was a positive correlation between serum Klotho protein levels and BMD and T values for the femoral neck and lumbar spine. The results of a multiple linear regression analysis revealed that the serum Klotho protein level was one of the main factors affecting BMD in MHD patients. The serum level of FGF-23 was not correlated with a change in BMD of MHD patients, whereas the serum Klotho protein level was associated with

  5. Outcomes of Corneal Cross-Linking Correlate With Cone-Specific Lysyl Oxidase Expression in Patients With Keratoconus.

    PubMed

    Shetty, Rohit; Rajiv Kumar, Nimisha; Pahuja, Natasha; Deshmukh, Rashmi; Vunnava, KrishnaPoojita; Abilash, Valsala Gopalakrishnan; Sinha Roy, Abhijit; Ghosh, Arkasubhra

    2018-03-01

    To evaluate the correlation of visual and keratometry outcomes after corneal cross-linking (CXL) in patients with keratoconus with cone epithelium-specific gene expression levels. Corneal epithelium was obtained from 35 eyes that underwent accelerated CXL (KXLII, 9 mW/cm for 10 min). Using corneal topography, epithelium over the cone and periphery was obtained separately from each subject. The ratio of gene expression for lysyl oxidase (LOX), matrix metalloproteinase 9 (MMP9), bone morphogenic protein 7, tissue inhibitor of metalloproteinase 1, collagen, type I, alpha 1, and collagen, type IV, alpha 1 (COL IVA1) from the cone and peripheral cornea was correlated with the outcome of cross-linking surgery. Patients were assessed for visual acuity, keratometry, refraction, and corneal densitometry before and 6 months after surgery. Based on the change in corneal flattening indicated by ΔKmax, the outcomes were classified as a higher response or lower response. Reduction in keratometric indices correlated with improved spherical equivalent after CXL. Preoperative levels of cone-specific LOX expression in cases with a higher response were significant (P = 0.001). COL IVA1, bone morphogenic protein 7, and tissue inhibitor of metalloproteinase 1 gene expressions were reduced in the cones of the subjects with a lower response. MMP9 levels were relatively lower in cases with a higher response compared with those with a lower response. Our study demonstrates that preoperative levels of molecular factors such as LOX, MMP9, and COL IVA1 aid in understanding CXL outcomes at the tissue level.

  6. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair.

    PubMed

    Paiva, Katiucia B S; Granjeiro, José M

    2017-01-01

    Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering. © 2017 Elsevier Inc. All rights reserved.

  7. Mutant CCL2 Protein Coating Mitigates Wear Particle-Induced Bone Loss in a Murine Continuous Polyethylene Infusion Model

    PubMed Central

    Nabeshima, Akira; Pajarinen, Jukka; Lin, Tzu-hua; Jiang, Xinyi; Gibon, Emmanuel; Córdova, Luis A.; Loi, Florence; Lu, Laura; Jämsen, Eemeli; Egashira, Kensuke; Yang, Fan; Yao, Zhenyu; Goodman, Stuart B

    2016-01-01

    Wear particle-induced osteolysis limits the long-term survivorship of total joint replacement (TJR). Monocyte/macrophages are the key cells of this adverse reaction. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) is the most important chemokine regulating trafficking of monocyte/macrophages in particle-induced inflammation. 7ND recombinant protein is a mutant of CCL2 that inhibits CCL2 signaling. We have recently developed a layer-by-layer (LBL) coating platform on implant surfaces that can release biologically active 7ND. In this study, we investigated the effect of 7ND on wear particle-induced bone loss using the murine continuous polyethylene (PE) particle infusion model with 7ND coating of a titanium rod as a local drug delivery device. PE particles were infused into hollow titanium rods with or without 7ND coating implanted in the distal femur for 4 weeks. Specific groups were also injected with RAW 264.7 as the reporter macrophages. Wear particle-induced bone loss and the effects of 7ND were evaluated by microCT, immunohistochemical staining, and bioluminescence imaging. Local delivery of 7ND using the LBL coating decreased systemic macrophage recruitment, the number of osteoclasts and wear particle-induced bone loss. The development of a novel orthopaedic implant coating with anti-CCL2 protein may be a promising strategy to mitigate peri-prosthetic osteolysis. PMID:27918885

  8. Do vegetarians have a normal bone mass?

    PubMed

    New, Susan A

    2004-09-01

    Public health strategies targeting the prevention of poor bone health on a population-wide basis are urgently required, with particular emphasis being placed on modifiable factors such as nutrition. The aim of this review was to assess the impact of a vegetarian diet on indices of skeletal integrity to address specifically whether vegetarians have a normal bone mass. Analysis of existing literature, through a combination of observational, clinical and intervention studies were assessed in relation to bone health for the following: lacto-ovo-vegetarian and vegan diets versus omnivorous, predominantly meat diets, consumption of animal versus vegetable protein, and fruit and vegetable consumption. Mechanisms of action for a dietary "component" effect were examined and other potential dietary differences between vegetarians and non-vegetarians were also explored. Key findings included: (i) no differences in bone health indices between lacto-ovo-vegetarians and omnivores; (ii) conflicting data for protein effects on bone with high protein consumption (particularly without supporting calcium/alkali intakes) and low protein intake (particularly with respect to vegan diets) being detrimental to the skeleton; (iii) growing support for a beneficial effect of fruit and vegetable intake on bone, with mechanisms of action currently remaining unclarified. The impact of a "vegetarian" diet on bone health is a hugely complex area since: 1) components of the diet (such as calcium, protein, alkali, vitamin K, phytoestrogens) may be varied; 2) key lifestyle factors which are important to bone (such as physical activity) may be different; 3) the tools available for assessing consumption of food are relatively weak. However, from data available and given the limitations stipulated above, "vegetarians" do certainly appear to have "normal" bone mass. What remains our challenge is to determine what components of a vegetarian diet are of particular benefit to bone, at what levels and under

  9. Binding of integrin α1 to bone morphogenetic protein receptor IA suggests a novel role of integrin α1β1 in bone morphogenetic protein 2 signalling.

    PubMed

    Zu, Yan; Liang, Xudong; Du, Jing; Zhou, Shuai; Yang, Chun

    2015-11-05

    Here, we observed that integrin α1β1 and bone morphogenetic protein receptor (BMPR) IA formed a complex and co-localised in several cell types. However, the molecular interaction between these two molecules was not studied in detail to date and the role of the interaction in BMPR signalling remains unknown; thus, these were investigated here. In a steered molecular dynamics (SMD) simulation, the observed development of the rupture force related to the displacement between the A-domain of integrin α1 and the extracellular domain of BMPR IA indicated a strong molecular interaction within the integrin-BMPR complex. Analysis of the intermolecular forces revealed that hydrogen bonds, rather than salt bridges, are the major contributors to these intermolecular interactions. By using Enzyme-linked immunosorbent assay (ELISA) and co-immunoprecipitation (co-IP) experiments with site-directed mutants, we found that residues 85-89 in BMPR IA play the most important role for BMPR IA binding to integrin α1β1. These residues are the same as those responsible for bone morphogenetic protein 2 (BMP-2)/BMPR IA binding. In our experiments, we also found that the interference of integrin α1β1 up regulated the level of phosphorylated Smad1, 5, 8, which is the downstream of BMP/BMPR signalling. Therefore, our results suggest that integrin α1β1/BMPR IA may block BMP-2/BMPR IA complex information and interfere with the BMP-2 signalling pathway in cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effectiveness of recombinant human bone morphogenetic protein-7 in the management of congenital pseudoarthrosis of the tibia: a randomised controlled trial.

    PubMed

    Das, Sakti Prasad; Ganesh, Shankar; Pradhan, Sudhakar; Singh, Deepak; Mohanty, Ram Narayan

    2014-09-01

    Despite the popularity and an increased use of bone morphogenetic protein to improve bone healing in patients with congenital pseudoarthrosis of the tibia (CPT), no previous study has compared its efficacy against any other procedure. We randomised 20 consecutive patients (mean age 4.1 years) with CPT (Crawford type IV) associated with neurofibromatosis type 1(NF1) and no previous history of surgery into two groups. Group 1 received recombinant human bone morphogenetic protein-7 (rhBMP-7) along with intramedullary Kirschner (K)-wire fixation and autologous bone grafting; group 2 received only K wire and grafting. Outcome measures were time to achieve union, Johnston grade, tibial length and the American Orthopaedic Foot and Ankle Society (AOFAS) score, which were evaluated preoperatively and at five year follow-up. Study results showed that patients in group 1 achieved primary bone union at a mean of 14.5 months [standard error (SE) 5.2], whereas group 2 took a mean of 17.11 months (SE 5.0). However, the log-rank test showed no difference in healing times between groups at all time points (P = 0.636). There was a statistically significant pre- to post operative improvement (P < 0.05) within groups for the other outcome measures. In a five year follow-up, these results suggest that rh-BMP-7 and autologous bone grafting is no better than autologous grafting alone.

  11. Morphogenes bolA and mreB mediate the photoregulation of cellular morphology during complementary chromatic acclimation in Fremyella diplosiphon.

    PubMed

    Singh, Shailendra P; Montgomery, Beronda L

    2014-07-01

    Photoregulation of pigmentation during complementary chromatic acclimation (CCA) is well studied in Fremyella diplosiphon; however, mechanistic insights into the CCA-associated morphological changes are still emerging. F. diplosiphon cells are rectangular under green light (GL), whereas cells are smaller and spherical under red light (RL). Here, we investigate the role of morphogenes bolA and mreB during CCA using gene expression and gene function analyses. The F. diplosiphon bolA gene is essential as its complete removal from the genome was unsuccessful. Depletion of bolA resulted in slow growth, morphological defects and the accumulation of high levels of reactive oxygen species in a partially segregated ΔbolA strain. Higher expression of bolA was observed under RL and was correlated with lower expression of mreB and mreC genes in wild type. In a ΔrcaE strain that lacks the red-/green-responsive RcaE photoreceptor, the expression of bolA and mre genes was altered under both RL and GL. Observed gene expression relationships suggest that mreB and mreC expression is controlled by RcaE-dependent photoregulation of bolA expression. Expression of F. diplosiphon bolA and mreB homologues in Escherichia coli demonstrated functional conservation of the encoded proteins. Together, these studies establish roles for bolA and mreB in RcaE-dependent regulation of cellular morphology. © 2014 John Wiley & Sons Ltd.

  12. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    NASA Astrophysics Data System (ADS)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  13. Mice transgenic for HTLV-I LTR-tax exhibit tax expression in bone, skeletal alterations, and high bone turnover.

    PubMed

    Ruddle, N H; Li, C B; Horne, W C; Santiago, P; Troiano, N; Jay, G; Horowitz, M; Baron, R

    1993-11-01

    HTLV-I infection can result in adult T cell leukemia with accompanying hypercalcemia and increased bone resorption. A viral etiology has also been invoked for Paget's disease, a disease of high bone turnover. Delineation of pathogenetic mechanisms of viral-associated bone diseases has been impeded by the complexity of viral and host factors. In order to consider the relationship of HTLV-I infection to skeletal changes we have evaluated the role of a single viral gene in mice transgenic for HTLV-I tax under the control of the viral promoter. Tax mice exhibited severe skeletal abnormalities characterized by high bone turnover, increases in osteoblast and osteoclast numbers and activity, and myelofibrosis. These changes were apparent as early as two months of age. Tax mRNA and protein were highly expressed in bone but not in bone marrow nor in any other tissues except, as previously reported, salivary gland and neurofibromas when they did develop. Within bone, tax protein was detected in only two cell types, mature osteoclasts and spindle-shaped cells within the endosteal myelofibrosis. These observations suggest that local expression of the tax gene, which encodes a viral regulatory protein known to influence host gene expression, can induce within the bone environment marked changes in bone cell activity, resulting in profound skeletal alterations.

  14. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats

    NASA Technical Reports Server (NTRS)

    Cavolina, J. M.; Evans, G. L.; Harris, S. A.; Zhang, M.; Westerlind, K. C.; Turner, R. T.

    1997-01-01

    A 14-day orbital spaceflight was performed using ovariectomized Fisher 344 rats to determine the combined effects of estrogen deficiency and near weightlessness on tibia radial bone growth and cancellous bone turnover. Twelve ovariectomized rats with established cancellous osteopenia were flown aboard the space shuttle Columbia (STS-62). Thirty ovariectomized rats were housed on earth as ground controls: 12 in animal enclosure modules, 12 in vivarium cages, and 6 killed the day of launch for baseline measurements. An additional 18 ovary-intact rats were housed in vivarium cages as ground controls: 8 rats were killed as baseline controls and the remaining 10 rats were killed 14 days later. Ovariectomy increased periosteal bone formation at the tibia-fibula synostosis; cancellous bone resorption and formation in the secondary spongiosa of the proximal tibial metaphysis; and messenger RNA (mRNA) levels for the prepro-alpha2(1) subunit of type 1 collagen, osteocalcin, transforming growth factor-beta, and insulin-like growth factor I in the contralateral proximal tibial metaphysis and for the collagen subunit in periosteum pooled from tibiae and femora and decreased cancellous bone area. Compared to ovariectomized weight-bearing rats, the flight group experienced decreases in periosteal bone formation, collagen subunit mRNA levels, and cancellous bone area. The flight rats had a small decrease in the cancellous mineral apposition rate, but no change in the calculated bone formation rate. Also, spaceflight had no effect on cancellous osteoblast and osteoclast perimeters or on mRNA levels for bone matrix proteins and signaling peptides. On the other hand, spaceflight resulted in an increase in bone resorption, as ascertained from the diminished retention of a preflight fluorochrome label. This latter finding suggests that osteoclast activity was increased. In a follow-up ground-based experiment, unilateral sciatic neurotomy of ovariectomized rats resulted in cancellous

  15. New activators and inhibitors in the hair cycle clock: targeting stem cells’ state of competence

    PubMed Central

    Plikus, Maksim V.

    2014-01-01

    Summary The timing mechanism of the hair cycle remains poorly understood. However, it has become increasingly clear that the telogen-to-anagen transition is controlled jointly by at least the bone morphogenic protein (BMP), WNT, fibroblast growth factor (FGF), and transforming growth factor (TGF)-β signaling pathways. New research shows that Fgf18 signaling in hair follicle stem cells synergizes BMP-mediated refractivity, whereas Tgf-β2 signaling counterbalances it. Loss of Fgf18 signaling markedly accelerates anagen initiation, whereas loss of Tgf-β2 signaling significantly delays it, supporting key roles for these pathways in hair cycle timekeeping. PMID:22499035

  16. Site-Directed Immobilization of Bone Morphogenetic Protein 2 to Solid Surfaces by Click Chemistry.

    PubMed

    Siverino, Claudia; Tabisz, Barbara; Lühmann, Tessa; Meinel, Lorenz; Müller, Thomas; Walles, Heike; Nickel, Joachim

    2018-03-29

    Different therapeutic strategies for the treatment of non-healing long bone defects have been intensively investigated. Currently used treatments present several limitations that have led to the use of biomaterials in combination with osteogenic growth factors, such as bone morphogenetic proteins (BMPs). Commonly used absorption or encapsulation methods require supra-physiological amounts of BMP2, typically resulting in a so-called initial burst release effect that provokes several severe adverse side effects. A possible strategy to overcome these problems would be to covalently couple the protein to the scaffold. Moreover, coupling should be performed in a site-specific manner in order to guarantee a reproducible product outcome. Therefore, we created a BMP2 variant, in which an artificial amino acid (propargyl-L-lysine) was introduced into the mature part of the BMP2 protein by codon usage expansion (BMP2-K3Plk). BMP2-K3Plk was coupled to functionalized beads through copper catalyzed azide-alkyne cycloaddition (CuAAC). The biological activity of the coupled BMP2-K3Plk was proven in vitro and the osteogenic activity of the BMP2-K3Plk-functionalized beads was proven in cell based assays. The functionalized beads in contact with C2C12 cells were able to induce alkaline phosphatase (ALP) expression in locally restricted proximity of the bead. Thus, by this technique, functionalized scaffolds can be produced that can trigger cell differentiation towards an osteogenic lineage. Additionally, lower BMP2 doses are sufficient due to the controlled orientation of site-directed coupled BMP2. With this method, BMPs are always exposed to their receptors on the cell surface in the appropriate orientation, which is not the case if the factors are coupled via non-site-directed coupling techniques. The product outcome is highly controllable and, thus, results in materials with homogeneous properties, improving their applicability for the repair of critical size bone defects.

  17. Mitogen-Activated Protein Kinase 2 Signaling Shapes Macrophage Plasticity in Aggregatibacter actinomycetemcomitans-Induced Bone Loss

    PubMed Central

    Herbert, Bethany A.; Steinkamp, Heidi M.; Gaestel, Matthias

    2016-01-01

    ABSTRACT Aggregatibacter actinomycetemcomitans is associated with aggressive periodontal disease, which is characterized by inflammation-driven alveolar bone loss. A. actinomycetemcomitans activates the p38 mitogen-activated protein kinase (MAPK) and MAPK-activated protein kinase 2 (MK2) stress pathways in macrophages that are involved in host responses. During the inflammatory process in periodontal disease, chemokines are upregulated to promote recruitment of inflammatory cells. The objective of this study was to determine the role of MK2 signaling in chemokine regulation during A. actinomycetemcomitans pathogenesis. Utilizing a murine calvarial model, Mk2+/+ and Mk2−/− mice were treated with live A. actinomycetemcomitans bacteria at the midsagittal suture. MK2 positively regulated the following macrophage RNA: Emr1 (F4/80), Itgam (CD11b), Csf1r (M-CSF Receptor), Itgal (CD11a), Tnf, and Nos2. Additionally, RNA analysis revealed that MK2 signaling regulated chemokines CCL3 and CCL4 in murine calvarial tissue. Utilizing the chimeric murine air pouch model, MK2 signaling differentially regulated CCL3 and CCL4 in the hematopoietic and nonhematopoietic compartments. Bone resorption pits in calvaria, observed by micro-computed tomography, and osteoclast formation were decreased in Mk2−/− mice compared to Mk2+/+ mice after A. actinomycetemcomitans treatment. In conclusion, these data suggest that MK2 in macrophages contributes to regulation of chemokine signaling during A. actinomycetemcomitans-induced inflammation and bone loss. PMID:27795356

  18. The ratio of animal protein intake to potassium intake is a predictor of bone resorption in space flight analogues and in ambulatory subjects

    NASA Technical Reports Server (NTRS)

    Zwart, Sara R.; Hargens, Alan R.; Smith, Scott M.

    2004-01-01

    BACKGROUND: Bone loss is a critical concern for space travelers, and a dietary countermeasure would be of great benefit. Dietary protein and potassium-associated bicarbonate precursors may have opposing effects on the acid-base balance in the body and therefore on bone loss. OBJECTIVE: In 2 studies, we examined the ability of dietary protein and potassium to predict markers of bone metabolism. DESIGN: In the first study, 8 pairs of male identical twins were assigned to 1 of 2 groups: bed rest (sedentary, or SED, group) or bed rest with supine treadmill exercise in a lower-body negative pressure chamber (EX group). In a second study, groups of 4 subjects lived in a closed chamber for 60 or 91 d, and dietary data were collected for two or three 5-d sessions. Urinary calcium, N-telopeptide, and pyridinium cross-links were measured before bed rest; on bed rest days 5-6, 12-13, 19-20, and 26-27; and daily during the chamber studies. Data were analyzed by Pearson's correlation (P < 0.05). RESULTS: The ratio of animal protein intake to potassium intake was significantly correlated with N-telopeptide in the SED group during bed rest weeks 3 and 4 (r = 0.77 and 0.80) and during the 91-d chamber study (r = 0.75). The ratio of animal protein intake to potassium intake was positively correlated with pyridinium cross-links before bed rest in the EX group (r = 0.83), in the EX group during bed rest week 1 (r = 0.84), and in the SED group during bed rest week 2 (r = 0.72) but not during either chamber study. In both studies, these relations were not significant with the ratio of vegetable protein intake to potassium intake. CONCLUSIONS: The ratio of animal protein intake to potassium intake may affect bone in ambulatory and bed-rest subjects. Changing this ratio may help to prevent bone loss on Earth and during space flight.

  19. An effective delivery vehicle of demineralized bone matrix incorporated with engineered collagen-binding human bone morphogenetic protein-2 to accelerate spinal fusion at low dose.

    PubMed

    Zhu, Weiguo; Qiu, Yong; Sheng, Fei; Yuan, Xinxin; Xu, Leilei; Bao, Hongda; Dai, Jianwu; Zhu, Zezhang

    2017-12-01

    The aim of this study was to investigate the feasibility and efficacy of a new delivery matrix using demineralized bone matrix (DBM) incorporated with collagen-binding bone morphogenetic protein-2 (CBD-BMP-2) in the rat inter-transverse spinal fusion model. Sixty rats undergoing posterolateral (inter-transverse) spinal fusion were divided into 3 groups according to the fusion materials containing different components (n = 20 per group). Group A were implanted with DBM, Group B with combination of DBM and BMP-2 and Group C with combination of DBM and CBD-BMP-2. After surgery, the spinal fusion of all the rats was assessed by plain radiography, CT + 3D reconstruction, manual palpation and histological evaluation. Significant difference was found in terms of solid fusion rate among the three groups, with 95% in Group C, 65% in Group B and 0% in Group A (P < 0.001). Compared with Groups B and A, new bone formation was observed earlier and was obvious larger, trabecular bone microarchitecture assessment was better and bone mineral density was statistically larger in Group C. In addition, more newly woven bone and osteocytes were shown by histological evaluation in Group C at 4 weeks post-operation. The present study showed CBD domain could help BMP-2 to improve the efficiency of posterolateral spinal fusion. DBM scaffold activated by collagen-binding BMP-2 was a feasible and promising bone repair vehicle. The present study showed better results in terms of plain radiography, CT + 3D reconstruction, manual palpation and histological evaluation in the rat inter-transverse spinal fusion model using DBM+CBD-BMP-2, compared with DBM+BMP-2 and DBM alone, indicating DBM scaffold activated by collagen-binding BMP-2 was a feasible and promising bone repair vehicle.

  20. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects.

    PubMed

    Usui, Yuki; Aoki, Kaoru; Narita, Nobuyo; Murakami, Narumichi; Nakamura, Isao; Nakamura, Koichi; Ishigaki, Norio; Yamazaki, Hiroshi; Horiuchi, Hiroshi; Kato, Hiroyuki; Taruta, Seiichi; Kim, Yoong Ahm; Endo, Morinobu; Saito, Naoto

    2008-02-01

    Carbon nanotubes (CNTs) have been used in various fields as composites with other substances or alone to develop highly functional materials. CNTs hold great interest with respect to biomaterials, particularly those to be positioned in contact with bone such as prostheses for arthroplasty, plates or screws for fracture fixation, drug delivery systems, and scaffolding for bone regeneration. Accordingly, bone-tissue compatibility of CNTs and CNT influence on bone formation are important issues, but the effects of CNTs on bone have not been delineated. Here, it is found that multi-walled CNTs adjoining bone induce little local inflammatory reaction, show high bone-tissue compatibility, permit bone repair, become integrated into new bone, and accelerate bone formation stimulated by recombinant human bone morphogenetic protein-2 (rhBMP-2). This study provides an initial investigational basis for CNTs in biomaterials that are used adjacent to bone, including uses to promote bone regeneration. These findings should encourage development of clinical treatment modalities involving CNTs.

  1. What Is Breast in the Bone?

    PubMed

    Shemanko, Carrie S; Cong, Yingying; Forsyth, Amanda

    2016-10-22

    The normal developmental program that prolactin generates in the mammary gland is usurped in the cancerous process and can be used out of its normal cellular context at a site of secondary metastasis. Prolactin is a pleiotropic peptide hormone and cytokine that is secreted from the pituitary gland, as well as from normal and cancerous breast cells. Experimental and epidemiologic data suggest that prolactin is associated with mammary gland development, and also the increased risk of breast tumors and metastatic disease in postmenopausal women. Breast cancer spreads to the bone in approximately 70% of cases with advanced breast cancer. Despite treatment, new bone metastases will still occur in 30%-50% of patients. Only 20% of patients with bone metastases survive five years after the diagnosis of bone metastasis. The breast cancer cells in the bone microenvironment release soluble factors that engage osteoclasts and/or osteoblasts and result in bone breakdown. The breakdown of the bone matrix, in turn, enhances the proliferation of the cancer cells, creating a vicious cycle. Recently, it was shown that prolactin accelerated the breast cancer cell-mediated osteoclast differentiation and bone breakdown by the regulation of breast cancer-secreted proteins. Interestingly, prolactin has the potential to affect multiple proteins that are involved in both breast development and likely bone metastasis, as well. Prolactin has normal bone homeostatic roles and, combined with the natural "recycling" of proteins in different tissues that can be used for breast development and function, or in bone function, increases the impact of prolactin signaling in breast cancer bone metastases. Thus, this review will focus on the role of prolactin in breast development, bone homeostasis and in breast cancer to bone metastases, covering the molecular aspects of the vicious cycle.

  2. Feeding soy protein isolate and oils rich in omega-3 polyunsaturated fatty acids affected mineral balance, but not bone in a rat model of autosomal recessive polycystic kidney disease.

    PubMed

    Maditz, Kaitlin H; Smith, Brenda J; Miller, Matthew; Oldaker, Chris; Tou, Janet C

    2015-02-10

    Polycystic kidney disease (PKD), a genetic disorder characterized by multiple cysts and renal failure at an early age. In children, kidney disease is often accompanied by disordered mineral metabolism, failure to achieve peak bone mass, and reduced adult height. Optimizing bone health during the growth stage may preserve against bone loss associated with early renal dysfunction in PKD. Dietary soy protein and omega-3 polyunsaturated fatty acid (n-3 PUFA) have been reported to ameliorate PKD and to promote bone health. The study objective was to determine the bone effects of feeding soy protein and/or n-3 PUFAs in a rat model of PKD. Weanling female PCK rats (n = 12/group) were randomly assigned to casein + corn oil (Casein + CO), casein + soybean oil (Casein + SO), soy protein isolate + soybean oil (SPI + SO) or soy protein isolate + 1:1 soybean oil:salmon oil blend (SPI + SB) for 12 weeks. Rats fed SPI + SO diet had shorter (P = 0.001) femur length than casein-fed rats. Rats fed SPI + SO and SPI + SB diet had higher (P = 0.04) calcium (Ca) and phosphorus (P) retention. However, there were no significant differences in femur and tibial Ca, P or bone mass between diet groups. There were also no significant difference in bone microarchitecture measured by micro-computed tomography or bone strength determined by three-point bending test between diet groups. Early diet management of PKD using SPI and/or n-3 PUFAs influenced bone longitudinal growth and mineral balance, but neither worsened nor enhanced bone mineralization, microarchitecture or strength.

  3. Skeleton and Glucose Metabolism: A Bone-Pancreas Loop

    PubMed Central

    Luce, Vincenza; Ventura, Annamaria; Colucci, Silvia; Cavallo, Luciano; Grano, Maria

    2015-01-01

    Bone has been considered a structure essential for mobility, calcium homeostasis, and hematopoietic function. Recent advances in bone biology have highlighted the importance of skeleton as an endocrine organ which regulates some metabolic pathways, in particular, insulin signaling and glucose tolerance. This review will point out the role of bone as an endocrine “gland” and, specifically, of bone-specific proteins, as the osteocalcin (Ocn), and proteins involved in bone remodeling, as osteoprotegerin, in the regulation of insulin function and glucose metabolism. PMID:25873957

  4. Anabolic activity of ursolic acid in bone: Stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo.

    PubMed

    Lee, Su-Ui; Park, Sang-Joon; Kwak, Han Bok; Oh, Jaemin; Min, Yong Ki; Kim, Seong Hwan

    2008-01-01

    In the field of osteoporosis, there has been growing interest in anabolic agents that enhance bone mass and improve bone architecture. In this study, we demonstrated that the ubiquitous plant triterpenoid, ursolic acid, enhances differentiation and mineralization of osteoblasts in vitro. We found that ursolic acid induced the expression of osteoblast-specific genes with the activation of mitogen-activated protein kinases, nuclear factor-kappaB, and activator protein-1. Additionally, noggin, an antagonist of bone morphogenetic proteins (BMPs), inhibited ursolic acid-induced osteoblast differentiation. Noggin also inhibited the activation of Smad and the induction of BMP-2 mRNA expression by ursolic acid in the late stage of osteoblast differentiation. Importantly, ursolic acid was shown to have bone-forming activity in vivo in a mouse calvarial bone formation model. A high proportion of positive immunostaining of BMP-2 was found in the nuclear region of woven bone formed by ursolic acid. These results suggested that ursolic acid has the anabolic potential to stimulate osteoblast differentiation and enhance new bone formation.

  5. Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein-2 on magnesium alloys for enhanced corrosion resistance and bone regeneration.

    PubMed

    Jiang, Yanan; Wang, Bi; Jia, Zhanrong; Lu, Xiong; Fang, Liming; Wang, Kefeng; Ren, Fuzeng

    2017-10-01

    Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In this study, we developed a novel functional and biocompatible coating strategy through polydopamine mediated assembly of hydroxyapatite nanoparticles and growth factor, bone morphogenetic protein-2 (BMP-2), onto the surface of AZ31 Mg alloys. Such functional coating has strong bonding with the substrate and can increase surface hydrophilicity of magnesium alloys. In vitro electrochemical corrosion and hydrogen evolution tests demonstrate that the coating can significantly enhance the corrosion resistance and therefore slow down the degradation of AZ31 Mg alloys. In vitro cell culture reveals that immobilization of HA nanoparticles and BMP-2 can obviously promote cell adhesion and proliferation. Furthermore, in vivo implantation tests indicate that with the synergistic effects of HA nanoparticles and BMP-2, the coating does not cause obvious inflammatory response and can significantly reduce the biodegradation rate of the magnesium alloys and induce the new bone formation adjacent to the implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2750-2761, 2017. © 2017 Wiley Periodicals, Inc.

  6. Two Variants of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) with Additional Protein Domains: Synthesis in an Escherichia coli Heterologous Expression System.

    PubMed

    Karyagina, A S; Boksha, I S; Grunina, T M; Demidenko, A V; Poponova, M S; Sergienko, O V; Lyashchuk, A M; Galushkina, Z M; Soboleva, L A; Osidak, E O; Bartov, M S; Gromov, A V; Lunin, V G

    2017-05-01

    Two variants of recombinant human bone morphogenetic protein-2 (rhBMP-2) with additional N-terminal protein domains were obtained by expression in E. coli. The N-terminal domains were s-tag (15-a.a. oligopeptide from bovine pancreatic ribonuclease A) and lz (leucine zipper dimerization domain from yeast transcription factor GCN4). The s-tag-BMP-2 and lz-BMP-2 were purified by a procedure that excluded a long refolding stage. The resulting dimeric proteins displayed higher solubility compared to rhBMP-2 without additional protein domains. Biological activity of both proteins was demonstrated in vitro by induction of alkaline phosphatase in C2C12 cells, and the activity of s-tag-BMP-2 in vivo was shown in various experimental animal models.

  7. Radiographic comparison of different concentrations of recombinant human bone morphogenetic protein with allogenic bone compared with the use of 100% mineralized cancellous bone allograft in maxillary sinus grafting.

    PubMed

    Froum, Stuart J; Wallace, Stephen; Cho, Sang-Choon; Khouly, Ismael; Rosenberg, Edwin; Corby, Patricia; Froum, Scott; Mascarenhas, Patrick; Tarnow, Dennis P

    2014-01-01

    The purpose of this study was to radiographically evaluate, then analyze, bone height, volume, and density with reference to percentage of vital bone after maxillary sinuses were grafted using two different doses of recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ACS) combined with mineralized cancellous bone allograft (MCBA) and a control sinus grafted with MCBA only. A total of 18 patients (36 sinuses) were used for analysis of height and volume measurements, having two of three graft combinations (one in each sinus): (1) control, MCBA only; (2) test 1, MCBA + 5.6 mL of rhBMP-2/ACS (containing 8.4 mg of rhBMP-2); and (3) test 2, MCBA + 2.8 mL of rhBMP-2/ACS (containing 4.2 mg of rhBMP-2). The study was completed with 16 patients who also had bilateral cores removed 6 to 9 months following sinus augmentation. A computer software system was used to evaluate 36 computed tomography scans. Two time points where selected for measurements of height: The results indicated that height of the grafted sinus was significantly greater in the treatment groups compared with the control. However, by the second time point, there were no statistically significant differences. Three weeks post-surgery bone volume measurements showed similar statistically significant differences between test and controls. However, prior to core removal, test group 1 with the greater dose of rhBMP-2 showed a statistically significant greater increase compared with test group 2 and the control. There was no statistically significant difference between the latter two groups. All three groups had similar volume and shrinkage. Density measurements varied from the above results, with the control showing statistically significant greater density at both time points. By contrast, the density increase over time in both rhBMP groups was similar and statistically higher than in the control group. There were strong associations between height and volume in all groups and

  8. PROGRESSIVE OSSIFYING FIBRODYSPLASIA: CASE REPORT

    PubMed Central

    Romani, Fabiana; de Menezes Karam, Simone

    2015-01-01

    Progressive ossifying fibrodysplasia is a rare genetic disease that affects one individual in every two million births. Its main consequence is heterotopic ossification, i.e. formation of additional bone in abnormal locations. It is an autosomal dominant disease, usually caused by a new mutation in the ACVR1 receptor gene, which is in the signaling pathway for bone morphogenic protein. This abnormality is not related to gender, ethnicity or consanguinity. The present study reports the case of A.C., a 17-year-old girl. Her clinical investigation began at the age of four years, but she was only diagnosed with FOP at the age of 15 years, after being evaluated by several specialists in different centers. The patient has two siblings, but her family history did not reveal any similar cases. PMID:27047836

  9. Fractalkine receptor is expressed in mature ovarian teratomas and required for epidermal lineage differentiation

    PubMed Central

    2013-01-01

    Background The goal of this study was to determine a predominant cell type expressing fractalkine receptor (CX3CR1) in mature ovarian teratomas and to establish functional significance of its expression in cell differentiation. Methods Specimens of ovarian teratoma and human fetal tissues were analyzed by immunohistochemistry for CX3CR1expression. Ovarian teratocarcinoma cell line PA-1 was used as a model for cell differentiation. Results We found that the majority of the specimens contained CX3CR1-positive cells of epidermal lineage. Skin keratinocytes in fetal tissues were also CX3CR1- positive. PA-1 cells with downregulated CX3CR1 failed to express a skin keratinocyte marker cytokeratin 14 when cultured on Matrigel in the presence of a morphogen, bone morphogenic protein 4 (BMP-4), as compared to those expressing scrambled shRNA. Conclusions Here we demonstrate that CX3CR1 is expressed in both normally (fetal skin) and abnormally (ovarian teratoma) differentiated keratinocytes and is required for cell differentiation into epidermal lineage. PMID:23958497

  10. Comparative expression analyses of bone morphogenetic protein 4 (BMP4) expressions in muscles of tilapia and common carp indicate that BMP4 plays a role in the intermuscular bone distribution in a dose-dependent manner.

    PubMed

    Su, Shengyan; Dong, Zaijie

    2018-01-01

    Intermuscular bones in fish negatively influence both meet processing and attractiveness to consumers. Tilapia (Oreochromis niloticus) and common carp (Cyprinus carpio) are both major farmed fish species globally, but whereas the former does not possess intermuscular bones, the latter does. Therefore, these two species might present a good model to study the genetic control of distribution of intermuscular bones in fish. Bone morphogenetic protein 4 (BMP4) gene is associated with tissue ossification and bone regeneration in mammals, but in fish its role in ossification remains understudied. To study the relationship between BMP4 and bone distribution in fish, we determined the expression of BMP4 in muscle tissues of common carp and tilapia on transcriptional and translational levels. As the gene has been merely predicted in silico from the genome of common carp, we have cloned and characterized it. The gene (GenBank: HQ446455) contains one intron and two exons, which encode a 400-amino acid protein with high homology to other known BMP4 protein sequences. Phylogenetic analysis showed that common carp clustered within the Cypriniformes clade (zebrafish was the closest ortholog) and tilapia within the Percomorpha clade. Using microCT scanning, we confirmed that intermuscular bones could be observed only in common carp (none in tilapia), but only in dorsal and caudal muscles (none in the ventral muscle). Expression levels of BMP4 in the muscles of common carp were in agreement with this observation both on transcriptional (qPCR) and translational (immunohistochemistry) level: higher in dorsal and caudal muscles, and lower in the ventral muscle. In tilapia, expression of BMP4 gene was also detectable in all three muscles, but expression levels in all three muscles were comparable to the one observed in the ventral muscle of carp, i.e., very low. Therefore, among the six studied muscles, the expression of BMP4 was high only in the two that possess intermuscular bones

  11. Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion.

    PubMed

    Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia

    2017-07-01

    Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Biomimetic Engineering of Nanofibrous Gelatin Scaffolds with Noncollagenous Proteins for Enhanced Bone Regeneration

    PubMed Central

    Sun, Yao; Jiang, Yong; Liu, Qilin; Gao, Tian; Feng, Jian Q.; Dechow, Paul; D'Souza, Rena N.; Qin, Chunlin

    2013-01-01

    Biomimetic approaches are widely used in scaffolding designs to enhance tissue regeneration. In this study, we integrated noncollagenous proteins (NCPs) from bone extracellular matrix (ECM) with three-dimensional nanofibrous gelatin (NF-Gelatin) scaffolds to form an artificial matrix (NF-Gelatin-NCPs) mimicking both the nano-structured architecture and chemical composition of natural bone ECM. Through a chemical coupling process, the NCPs were evenly distributed over all the surfaces (inner and outer) of the NF-gelatin-NCPs. The in vitro study showed that the number of osteoblasts (MC3T3-E1) on the NF-Gelatin-NCPs was significantly higher than that on the NF-Gelatin after being cultured for 14 days. Both the alkaline phosphatase (ALP) activity and the expression of osteogenic genes (OPN, BSP, DMP1, CON, and Runx2) were significantly higher in the NF-Gelatin-NCPs than in the NF-Gelatin at 3 weeks. Von Kossa staining, backscattered scanning electron microscopy, and microcomputed tomography all revealed a higher amount of mineral deposition in the NF-Gelatin-NCPs than in the NF-Gelatin after in vitro culturing for 3 weeks. The in vivo calvarial defect study indicated that the NF-Gelatin-NCPs recruited more host cells to the defect and regenerated a higher amount of bone than the controls after implantation for 6 weeks. Immunohistochemical staining also showed high-level mineralization of the bone matrix in the NF-Gelatin-NCPs. Taken together, both the in vitro and in vivo results confirmed that the incorporation of NCPs onto the surfaces of the NF-Gelatin scaffold significantly enhanced osteogenesis and mineralization. Biomimetic engineering of the surfaces of the NF-Gelatin scaffold with NCPs, therefore, is a promising strategy to enhance bone regeneration. PMID:23469769

  13. Effects of polycaprolactone-tricalcium phosphate, recombinant human bone morphogenetic protein-2 and dog mesenchymal stem cells on bone formation: pilot study in dogs.

    PubMed

    Kim, Sun-Jong; Kim, Myung-Rae; Oh, Jin-Sub; Han, Inho; Shin, Sang-Wan

    2009-12-31

    The aim of this study was to evaluate the survival, proliferation, and bone formation of dog mesenchymal stem cells (dMSCs) in the graft material by using Polycaprolactone-tricalcium phosphate (PCL-TCP), auto-fibrin glue (AFG), recombinant human bone morphogenetic protein-2 (rhBMP-2), and dMSCs after a transplantation to the scapula of adult beagle dogs. The subjects were two beagle dogs. Total dose of rhBMP-2 on each block was 10 microg with 50 microg/mg concentration. The cortical bone of the scapula of the dog was removed which was the same size of PCL-TCP block (Osteopore International Pte, Singapore; 5.0x5.0x8.0 mm in size), and the following graft material then was fixed with orthodontic mini-implant, Dual-top (Titanium alloy, Jeil Co. Seoul, Korea). Four experimental groups were prepared for this study, Group 1: PCL-TCP + aFG; Group 2: PCL-TCP + aFG + dMSCs; Group 3: PCL-TCP + aFG + dMSCs + rhBMP-2; Group 4: PCL-TCP + aFG + dMSCs + rhBMP-2 + PCL membrane. The survival or proliferation of dMSCs cells was identified with an extracted tissue through a fluorescence microscope, H-E staining and Von-Kossa staining in two weeks and four weeks after the transplantation. The survival and proliferation of dMSCs were identified through a fluorescence microscope from both Group 1 and Group 2 in two weeks and four weeks after the transplantation. Histological observation also found that the injected cells were proliferating well in the G2, G3, and G4 scaffolds. This study concluded that bone ingrowth occurred in PCL-TCP scaffold which was transplanted with rhBMP-2, and MSCs did not affect bone growth. More sufficient healing time would be needed to recognize effects of dMSCs on bone formation.

  14. Ex-vivo transduced autologous skin fibroblasts expressing human Lim Mineralization Protein-3 efficiently form new bone in animal models

    PubMed Central

    Lattanzi, Wanda; Parrilla, Claudio; Fetoni, Annarita; Logroscino, Giandomenico; Straface, Giuseppe; Pecorini, Giovanni; Stigliano, Egidio; Tampieri, Anna; Bedini, Rossella; Pecci, Raffaella; Michetti, Fabrizio; Gambotto, Andrea; Robbins, Paul D.; Pola, Enrico

    2012-01-01

    Local gene transfer of the human LIM Mineralization Protein (LMP), a novel intracellular positive regulator of the osteoblast differentiation program, can induce efficient bone formation in rodents. In order to develop a clinically relevant gene therapy approach to facilitate bone healing, we have used primary dermal fibroblasts transduced ex vivo with Ad.LMP3 and seeded on an hydroxyapatite/collagen matrix prior to autologous implantation. Here we demonstrate that genetically modified autologous dermal fibroblasts expressing Ad.LMP-3 are able to induce ectopic bone formation following implantation of the matrix into the mouse triceps and paravertebral muscles. Moreover, implantation of the Ad.LMP-3-modified dermal fibroblasts into a rat mandibular bone critical size defect model results in efficient healing as determined by X-ray, histology and three dimensional micro computed tomography (3DμCT). These results demonstrate the effectiveness of the non-secreted intracellular osteogenic factor LMP-3, in inducing bone formation in vivo. Moreover, the utilization of autologous dermal fibroblasts implanted on a biomaterial represents a promising approach for possible future clinical applications aimed at inducing new bone formation. PMID:18633445

  15. Pigment epithelium-derived factor upregulates collagen I and downregulates matrix metalloproteinase 2 in osteosarcoma cells, and colocalises to collagen I and heat shock protein 47 in fetal and adult bone.

    PubMed

    Alcantara, Marice B; Nemazannikova, Natalie; Elahy, Mina; Dass, Crispin R

    2014-11-01

    Pigment epithelium-derived factor (PEDF) has proven anti-osteosarcoma activity. However, the mechanism(s) underpinning its ability to reduce primary bone tumour (osteosarcoma) metastasis is unknown. Adult and fetal murine bone were immunostained for PEDF, collagen I (major protein in bone) and its processing proteins, heat shock protein 47 (HSP47, a chaperone protein for collagen I), membrane type I matrix metalloproteinase (MT1-MMP, a collagenase), and matrix metalloproteinase 2 (MMP-2, which is activated by MT1-MMP). Immunoblotting and immunocytochemistry were used to observe levels of the above biomarkers when human osteosarcoma cells were treated with PEDF. Immunohistochemical staining in adult and fetal bone mirrors collagen I. PEDF localised to ridges of trabecular bone in tibial cortex and to megakaryocytes within bone marrow. Second, we observed that PEDF upregulates collagen I, HSP47 and MT1-MMP, while downregulating MMP-2 in osteosarcoma cells in vitro. PEDF is a promising antagonist to osteosarcoma cell metastasis via downregulation of MMP-2, and can induce tumour cells to further adopt differentiative properties, thereby possibly reducing their aggressive growth in vitro and in vivo. © 2014 Royal Pharmaceutical Society.

  16. Bone morphogenetic protein 7 and autologous bone graft in revision surgery for non-union after lumbar interbody fusion.

    PubMed

    Werle, Stephan; AbuNahleh, Kais; Boehm, Heinrich

    2016-08-01

    Potential adverse and unknown long-term effects as well as additional costs limit the use of BMPs (Bone morphogenetic proteins) in primary fusion procedures. However, the proven osteoinductive properties render BMPs attractive for the attempt to reach fusion of symptomatic non-unions. The aim of this study is to evaluate the fusion rate and potential disadvantages of eptotermin alfa (rhBMP-7) used with autologous bone graft in revision procedures for lumbar pseudoarthrosis. At our institution, rhBMP-7 has been used to improve fusion rates in revision surgery for symptomatic pseudoarthrosis during the past 10 years. Eighty-four fusion procedures using rhBMP-7 between 08/2003 and 07/2011 were revisions due to symptomatic lumbar pseudoarthrosis. The surgical approach was posterior in three and combined anterior-posterior in 71 patients. Of those, 74 patients had either reached fusion or had follow-up of at least 39.5 months (range 21-80 months) in the case of pseudoarthrosis. These 74 patients have been included in a retrospective follow-up study. In 60 patients (81.1 %) the rhBMP-7 procedure was successful. In 14 patients, pseudoarthrosis persisted or fusion was questionable. Of those patients 12 accounted for persisting L5-S1 non-union. Persisting non-unions were found in 26.7 % of the study after four or more segment instrumentations compared to the 16.9 % after mono-, bi-, or three-segment instrumentation, and in four of 14 patients with spondylodesis of three or more levels above a pseudoarthrotic lumbosacral junction. Adverse effects related to the use of eptotermin alfa were rare in this group with symptomatic ectopic bone formation in one patient. Using rhBMP-7 with autologous bone graft in revisions for lumbar pseudoarthrosis via an anterior approach is safe and can lead to fusion even under unfavorable biomechanical conditions. However, successful outcome depends on the individual constellation. Treatment of non-unions of the lumbosacral junction

  17. Prospective evaluation of chronic pain associated with posterior autologous iliac crest bone graft harvest and its effect on postoperative outcome.

    PubMed

    Schwartz, Carolyn E; Martha, Julia F; Kowalski, Paulette; Wang, David A; Bode, Rita; Li, Ling; Kim, David H

    2009-05-29

    Autogenous Iliac Crest Bone Graft (ICBG) has been the "gold standard" for spinal fusion. However, bone graft harvest may lead to complications, such as chronic pain, numbness, and poor cosmesis. The long-term impact of these complications on patient function and well-being has not been established but is critical in determining the value of expensive bone graft substitutes such as recombinant bone morphogenic protein. We thus aimed to investigate the long-term complications of ICBG. Our second aim was to evaluate the psychometric properties of a new measure of ICBG morbidity that would be useful for appropriately gauging spinal surgery outcomes. Prospective study of patients undergoing spinal fusion surgery with autologous ICBG. The SF-36v2, Oswestry Disability Index, and a new 14-item follow-up questionnaire addressing persistent pain, functional limitation, and cosmesis were administered with an 83% response rate. Multiple regression analyses examined the independent effect of ICBG complications on physical and mental health and disability. The study population included 170 patients with a mean age of 51.1 years (SD = 12.2) and balanced gender (48% male). Lumbar fusion patients predominated (lumbar = 148; cervical n = 22). At 3.5 years mean follow-up, 5% of patients reported being bothered by harvest site scar appearance, 24% reported harvest site numbness, and 13% reported the numbness as bothersome. Harvest site pain resulted in difficulty with household chores (19%), recreational activity (18%), walking (16%), sexual activity (16%), work activity (10%), and irritation from clothing (9%). Multivariate regression analyses revealed that persistent ICBG complications 3.5 years post-surgery were associated with significantly worse disability and showed a trend association with worse physical health, after adjusting for age, workers' compensation status, surgical site pain, and arm or leg pain. There was no association between ICBG complications and mental health in

  18. Tissue engineering for lateral ridge augmentation with recombinant human bone morphogenetic protein 2 combination therapy: a case report.

    PubMed

    Mandelaris, George A; Spagnoli, Daniel B; Rosenfeld, Alan L; McKee, James; Lu, Mei

    2015-01-01

    This case report describes a tissue-engineered reconstruction with recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ ACS) + cancellous allograft and space maintenance via Medpor Contain mesh in the treatment of a patient requiring maxillary and mandibular horizontal ridge augmentation to enable implant placement. The patient underwent a previously unsuccessful corticocancellous bone graft at these sites. Multiple and contiguous sites in the maxilla and in the mandibular anterior, demonstrating advanced lateral ridge deficiencies, were managed using a tissue engineering approach as an alternative to autogenous bone harvesting. Four maxillary and three mandibular implants were placed 9 and 10 months, respectively, after tissue engineering reconstruction, and all were functioning successfully after 24 months of follow-up. Histomorphometric analysis of a bone core obtained at the time of the maxillary implant placement demonstrated a mean of 76.1% new vital bone formation, 22.2% marrow/cells, and 1.7% residual graft tissue. Tissue engineering for lateral ridge augmentation with combination therapy requires further research to determine predictability and limitations.

  19. Bone-Derived Growth Factors

    PubMed Central

    Capanna, R.; Campanacci, D.A.; De Biase, P.; Cuomo, P.; Lorenzoni, A.

    2010-01-01

    Bone regeneration is based on the synergy between osteconduction, osteoinduction and osteogenesis. In recent years, we have witnessed the birth and development of numerous osteoconductive substrates, created with the intention of replacing bone grafts, both autologous and homologous. Recently, attention has shifted to osteogenesis, in other words, to the study of mesenchymal cells and their differentiation into osteoblastic cell lines that can be cultured in vitro (as already seen with chondroblasts). Osteoinduction, too, has been shown to be equally important, ever since Urist’s 1967 study which drew attention to the demineralised bone matrix and its properties. The following twenty years led to the definition of bone morphogenetic protein (BMP) and finally to the marketing of the first ostegenic protein (OP-1) obtained by means of the gene recombination technique. The BMPs produced using this technique that, so far, have been shown to be most active are BMP-2 (Infuse) and BMP-7 (Osigraft). The BMPs are not the only molecules with osteoinductive capacity. Other molecules capable of influencing bone regeneration are: platelet-derived growth factors (PDGFs), the transforming growth factor-beta (TGF-β) family, insulin-like growth factor (IGF-I) and the acidic and basic fibroblast growth factors (FGFs). All these growth factors act in synergy with the BMPs, modulating their action and exerting an inductive and proliferative action on the cell lines responsible for regenerating the bone matrix. The literature has been literally invaded by studies, both experimental and preclinical, on these proteins (Termaat, 2005), and they have provided ample demonstration that the BMPs are effective in improving healing of fractures, pseudoarthrosis and spinal fusions. Important advantages of BMPs are the complete absence of risk of transmissible disease, given that they are produced using recombination technology; their purity, and thus absence of an immune response (although

  20. [Experimental study on repair of the defect of the pars interarticularis in rat with bone morphogenetic protein and fibrin glue].

    PubMed

    Nakamura, T

    1992-07-01

    The possibility of repairing the defect of the pars interarticularis (pars defect) with Bone Morphogenetic Protein (BMP) and fibrin glue was studied. The pars defect established in the 5th lumbar vertebra of Wistar rat was treated with surgical implantation of a composite consisting of BMP, fibrin glue and autologous cancellous bone. At 3, 6, 9 and 12 weeks after implantation, the osteoinductive activity in the pars defect was observed histologically and compared with that of other composite implants such as BMP with fibrin glue, autologous cancellous bone alone and autologous cancellous bone with fibrin glue. Although perfect bone fusion was not obtained with any of the composites employed, a significant increase in bone formation was seen in a composite of BMP, fibrin glue and autologous cancellous bone (p less than 0.01) as compared with that seen in the others. Consequently, implantation of BMP and fibrin glue combined with some biomaterials which support osteo-induction of BMP and stabilize the pars defect might be successfully applied to repair the pars defect.

  1. Makings of a brittle bone: Unexpected lessons from a low protein diet study of a mouse OI model

    PubMed Central

    Mertz, E.L.; Makareeva, E.; Mirigian, L.S.; Koon, K.Y.; Perosky, J.E.; Kozloff, K.M.; Leikin, S.

    2016-01-01

    Glycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain. To stimulate degradation of misfolded collagen by autophagy, we utilized a low protein diet. The diet had beneficial effects on osteoblast differentiation and bone matrix mineralization, but it also affected bone modeling and suppressed overall animal growth. Our more important observations, however, were not related to the diet. They revealed how altered osteoblast function and deficient bone formation by each cell caused by the G610C mutation combined with increased osteoblastogenesis might make the bone more brittle, all of which are common OI features. In G610C mice, increased bone formation surface compensated for reduced mineral apposition rate, resulting in normal cortical area and thickness at the cost of altering cortical modeling process, retaining woven bone, and reducing the ability of bone to absorb energy through plastic deformation. Reduced collagen and increased mineral density in extracellular matrix of lamellar bone compounded the problem, further reducing bone toughness. The latter observations might have particularly important implications for understanding OI pathophysiology and designing more effective therapeutic interventions. PMID:27039252

  2. The Ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing

    PubMed Central

    Lu, Xuanyu; Li, Wenjin; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla; Diekwisch, Thomas G.H.; Luan, Xianghong

    2016-01-01

    The extracellular matrix (ECM) provides structural support, cell migration anchorage, cell differentiation cues, and fine-tuned cell proliferation signals during all stages of bone fracture healing, including cartilaginous callus formation, callus remodeling, and bony bridging of the fracture gap. In the present study we have defined the role of the extracellular matrix protein ameloblastin (AMBN) in fracture resistance and fracture healing of mouse long bones. To this end, long bones from WT and AMBNΔ5-6 truncation model mice were subjected to biomechanical analysis, fracture healing assays, and stem cell colony formation comparisons. The effect of exogenous AMBN addition to fracture sites was also determined. Our data indicate that lack of a functional AMBN in the bone matrix resulted in 31% decreased femur bone mass and 40% reduced energy to failure. On a cellular level, AMBN function inhibition diminished the proliferative capacity of fracture repair callus cells, as evidenced by a 58% reduction in PCNA and a 40% reduction in Cyclin D1 gene expression, as well as PCNA immunohistochemistry. In terms of fracture healing, AMBN truncation was associated with an enhanced and prolonged chondrogenic phase, resulting in delayed mineralized tissue gene expression and delayed ossification of the fracture repair callus. Underscoring a role of AMBN in fracture healing, there was a 6.9-fold increase in AMBN expression at the fracture site one week after fracture, and distinct AMBN immunolabeling in the fracture gap. Finally, application of exogenous AMBN protein to bone fracture sites accelerated callus formation and bone fracture healing (33% increase in bone volume and 19% increase in bone mineral density), validating the findings of our AMBN loss of function studies. Together, these data demonstrate the functional importance of the AMBN extracellular matrix protein in bone fracture prevention and rapid fracture healing. PMID:26899203

  3. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model.

    PubMed

    Yun, Pil-Young; Kim, Young-Kyun; Jeong, Kyung-In; Park, Ju-Cheol; Choi, Yeon-Jo

    2014-12-01

    The purpose of these two pilot studies using animal bony defect models was to evaluate the influence of bone morphogenetic protein (BMP) and proportion of hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP) in biphasic calcium phosphate (BCP) graft on new bone formation. In this study, four kinds of synthetic osteoconductive bone materials known for bone growth scaffold, OSTEON™II(HA:β-TCP 30:70), OSTEON™III (HA:β-TCP 20:80), OSTEON™II Collagen, and OSTEON™III Collagen, were prepared as BCP graft materials. In pilot study 1, three BCP materials (OSTEON™II, OSTEON™III, and OSTEON™II Collagen) were grafted in rabbit calvarial defects after impregnating in rhBMP-2. OSTEON™II without the rhBMP-2 impregnation was included in the study as the control. The amount of new bone was examined and measured histologically at 2, 4, and 8 weeks. In pilot study 2, four BCP materials (OSTEON™II, OSTEON™III, OSTEON™II Collagen, and OSTEON™III Collagen) were grafted in beagle dog mandibular defects after soaking in the rhBMP-2. The amount of total bone and new bone were measured three-dimensionally using microCT and healing process was examined histologically at 2, 4, and 8 weeks. In pilot study 1, rhBMP-2 impregnated groups showed more new bone formation than the rhBMP-2 free group. In pilot study 2, increased new bone formation was observed in time-dependent manner after graft of BCP and BCP-collagen (OSTEON™II, OSTEON™III, OSTEON™II Collagen, and OSTEON™III Collagen) impregnated with rhBMP-2. Also, BCP with a higher proportion of HA (30% HA) showed more favorable result in new bone formation and space maintenance, especially at the 8 weeks. From the results of the pilot studies, rhBMP-2 played positive roles in new bone formation and BCP could become a scaffold candidate for rhBMP-2 impregnation to induce new bone formation. Moreover, BCP with a higher proportion of HA (30% HA) could be considered more appropriate for rhBMP-2 carrier. Copyright

  4. Roles of leptin in bone metabolism and bone diseases.

    PubMed

    Chen, Xu Xu; Yang, Tianfu

    2015-09-01

    Adipose tissue has been more accepted as an active contributor to whole body homeostasis, rather than just a fat depot, since leptin, a 16 kDa protein, was discovered as the product of the obese gene in 1994. With more and more studies conducted on this hormone, it has been shown that there is a close relationship between adipose tissue and bone, which have important effects on each other. Bone is the source of many hormones, such as osteocalcin, that can affect energy metabolism and then the anabolism or catabolism of fat tissue. In contrast, the adipose tissue synthesizes and releases a series of adipokines, which are involved in bone metabolism through direct or indirect effects on bone formation and resorption. Interestingly, leptin, one of the most important cytokines derived from fat tissue, seems to account for the largest part of effects on bone, through direct or indirect involvement in bone remodeling and by playing a significant role in many bone diseases, such as osteoporosis, osteoarthritis, rheumatic arthritis, bone tumors and even fractures. In this review, we will discuss the progress in leptin research, particularly focusing on the roles of leptin in bone diseases.

  5. [Expression of mRNA and protein of p38, Osx, PI3K and Akt1 in rat bone with chronic fluorosis].

    PubMed

    Yu, Yan-ni; Yang, Dan; Zhu, Hai-zhen; Deng, Chao-nan; Guan, Zhi-zhong

    2012-09-01

    To investigate the expressions of mRNA and protein of p38, Osx, PI3K, Akt1 in the rats bone with chronic fluorosis. Dental fluorosis were observed and the fluoride contents in the urine and bone were detected by fluorin-ion selective electrode. The morphologic changes and ultrastructure of rats' bone were observed by light and electronic microscopy. The expressions of protein and mRNA of p38, Osx, PI3K and Akt1 were detected by immunohistochemistry and real-time PCR, respectively. The contents of BALP and BGP in serum were detected by ELISA. The rates of dental fluorosis in the fluorosis rats were increased, and the fluoride contents in bone and urine of the fluorosis rats were increased compared to the control group, the difference was statistically significant (P < 0.05). The bone trabeculae thickness and density and the thickness of bone cortex in fluorosis rats were remarkably increased, the space of bone trabeculae was reduced, and in accordance with the matching morphometrical indices, the difference was statistically significant (P < 0.05) as compared with the control rats. The contents of BALP [(54.61 ± 2.27) U/L] and BGP [(2.38 ± 0.16) µg/L]in the fluoride groups were higher than those in the control group, the difference was statistically significant (P < 0.05). Ultrastructurally, the broadening of the osseouslacuna was observed. The reduced protuberances of the osteocytes, the unclear organelle structure, pyknosis, karyotheca increasation and edged chromatin were also observed. Compared to the control group, the expressions of protein and its mRNA of p38, Osx, PI3K and Akt1 were higher in the fluorosis rats than those in the control rats, and the difference was statistically significant (P < 0.05). There is no any expression of p38, Osx, PI3K and Akt1 in the osteocytes in fluorosis rats. The over-expression of p38, Osx, PI3K and Akt1 in bone tissue of fluorosis rats may relate to the accumulation of fluorine in the body. The bone injury mainly occur

  6. Zoledronate promotes bone formation by blocking osteocyte-osteoblast communication during bone defect healing.

    PubMed

    Cui, Pingping; Liu, Hongrui; Sun, Jing; Amizuka, Norio; Sun, Qinfeng; Li, Minqi

    2018-01-01

    Nitrogen-containing bisphosphonates (N-BPs) are potent antiresorptive drugs and their actions on osteoclasts have been studied extensively. Recent studies have suggested that N-BPs also target bone-forming cells. However, the precise mechanism of N-BPs in osteoblasts is paradoxical, and the specific role of osteocytes is worthy of in-depth study. Here, we investigated the cellular mechanisms of N-BPs regulating bone defect healing by zoledronate (ZA). Bone histomorphometry confirmed an increase in new bone formation by systemic ZA administration. ZA induced more alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-positive osteoclasts residing on the bone surface. Inexplicably, ZA increased SOST expression in osteocytes embedded in the bone matrix, which was not compatible with the intense osteoblast activity on the bone surface. ZA induced heterogeneous osteocytes and disturbed the distribution of the osteocytic-canalicular system (OLCS). Furthermore, according to the degree of OLCS regularity, dentin matrix protein 1 reactivity had accumulated around osteocytes in the ZA group, but it was distributed evenly in the OLCS of the control group. The control group showed a dense array of the gap junction protein connexin 43. However, connexin 43 was extremely sparse after ZA administration. In summary, ZA treatment reduces gap junction connections and blocks cellular communication between osteocytes and osteoblasts. Retaining SOST expression in osteocytes leads to activation of the Wnt signaling pathway and subsequent bone formation.

  7. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis

    PubMed Central

    Lorenz-Depiereux, Bettina; Bastepe, Murat; Benet-Pagès, Anna; Amyere, Mustapha; Wagenstaller, Janine; Müller-Barth, Ursula; Badenhoop, Klaus; Kaiser, Stephanie M; Rittmaster, Roger S; Shlossberg, Alan H; Olivares, José L; Loris, César; Ramos, Feliciano J; Glorieux, Francis; Vikkula, Miikka; Jüppner, Harald; Strom, Tim M

    2018-01-01

    Hypophosphatemia is a genetically heterogeneous disease. Here, we mapped an autosomal recessive form (designated ARHP) to chromosome 4q21 and identified homozygous mutations in DMP1 (dentin matrix protein 1), which encodes a non-collagenous bone matrix protein expressed in osteoblasts and osteocytes. Intact plasma levels of the phosphaturic protein FGF23 were clearly elevated in two of four affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels and suggesting that DMP1 may regulate FGF23 expression. PMID:17033625

  8. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis.

    PubMed

    Lorenz-Depiereux, Bettina; Bastepe, Murat; Benet-Pagès, Anna; Amyere, Mustapha; Wagenstaller, Janine; Müller-Barth, Ursula; Badenhoop, Klaus; Kaiser, Stephanie M; Rittmaster, Roger S; Shlossberg, Alan H; Olivares, José L; Loris, César; Ramos, Feliciano J; Glorieux, Francis; Vikkula, Miikka; Jüppner, Harald; Strom, Tim M

    2006-11-01

    Hypophosphatemia is a genetically heterogeneous disease. Here, we mapped an autosomal recessive form (designated ARHP) to chromosome 4q21 and identified homozygous mutations in DMP1 (dentin matrix protein 1), which encodes a non-collagenous bone matrix protein expressed in osteoblasts and osteocytes. Intact plasma levels of the phosphaturic protein FGF23 were clearly elevated in two of four affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels and suggesting that DMP1 may regulate FGF23 expression.

  9. Silibinin promotes osteoblast differentiation of human bone marrow stromal cells via bone morphogenetic protein signaling.

    PubMed

    Ying, Xiaozhou; Sun, Liaojun; Chen, Xiaowei; Xu, Huazi; Guo, Xiaoshan; Chen, Hua; Hong, Jianjun; Cheng, Shaowen; Peng, Lei

    2013-12-05

    Silibinin is the major active constituent of the natural compound silymarin; several studies suggest that silibinin possesses antihepatotoxic properties and anticancer effects against carcinoma cells. However, no study has yet investigated the effect of silibinin on osteogenic differentiation of human bone marrow stem cells (hBMSCs). The aim of this study was to evaluate the effect of silibinin on osteogenic differentiation of hBMSCs. In this study, the hBMSCs were cultured in an osteogenic medium with 0, 1, 10 or 20 μmol/l silibinin respectively. hBMSCs viability was analyzed by cell number quantification assay and cells osteogenic differentiation was evaluated by alkaline phosphatas (ALP) activity assay, Von Kossa staining and real time-polymerase chain reaction (RT-PCR). We found that silibinin promoted ALP activity in hBMSCs without affecting their proliferation. The mineralization of hBMSCs was enhanced by treatment with silibinin. Silibinin also increased the mRNA expressions of Collagen type I (COL-I), ALP, Osteocalcin (OCN), Osterix, bone morphogenetic protein-2 (BMP-2) and Runt-related transcription factor 2 (RUNX2). The BMP antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated silibinin-promoted ALP activity. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by silibinin treatment. These results indicate that silibinin enhances osteoblast differentiation probably by inducing the expressions of BMPs and activating BMP and RUNX2 pathways. Thus, silibinin may play an important therapeutic role in osteoporosis patients by improving osteogenic differentiation of BMSCs. © 2013 Elsevier B.V. All rights reserved.

  10. Preferential preservation of noncollagenous protein during bone diagenesis: Implications for chronometric and stable isotopic measurements

    NASA Astrophysics Data System (ADS)

    Masters, Patricia M.

    1987-12-01

    Preferential preservation of noncollagenous proteins (NCP) in diagenetically altered bone will affect amino acid compositions, inflate D/L aspartic acid ratios, and increase C/N ratios. Human skeletal remains representing both well preserved (collagenous) and diagenetically altered (noncollagenous) bones were selected from several southern California coastal archaeological sites that date from 8400 to 4100 years B.P. Amino acid compositions of the poorly preserved samples resembled NCP, which are probably retained by adsorption to the hydroxyapatite mineral phase of bone whereas collagen is degraded and lost to the environment over time. Since the racemization rate of aspartic acid in NCP is an order of magnitude faster than in collagen, the conservation of NCP in diagenetically altered bone can explain the high D/L aspartic acid ratios, and the erroneous Upper Pleistocene racemization ages calculated from these ratios, for several California Indian burials. Amino acid compositional analyses also indicated a non-amino acid source of nitrogen in the poorly preserved samples, which may account for their lower C/N ratios despite the acidic amino acid profiles typical of NCP. Preservation of NCP rather than collagen also precludes the extraction of a gelatin residue for radiocarbon dating and stable isotope analyses, but remnant NCP can yield apparently accurate radiocarbon dates. As collagen and phosphoprotein purified from a sample of modern human dentin have the same δ 13C and δ 15N values, remnant NCP may also be useful for paleodiet reconstructions based on stable carbon and nitrogen isotope compositions. Dentin collagen appears to be more resistant to diagenetic changes than does bone collagen. Consequently, dentin promises to be a more reliable material than bone for chronometric and stable isotope measurements.

  11. Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2).

    PubMed

    Wong, David A; Kumar, Anant; Jatana, Sanjay; Ghiselli, Gary; Wong, Katherine

    2008-01-01

    Bone morphogenetic protein-2 (BMP-2) (Infuse) has been approved for use in anterior lumbar fusion in conjunction with an LT cage. However, off-label use is seen with anterior cervical fusion, posterior lumbar interbody fusion (PLIF), and transforaminal lumbar interbody fusion (TLIF). The Federal Food and Drug Administration trial of BMP-2 in a PLIF application was halted because of a high incidence of ectopic bone forming in the neural canal (75%). The authors did not find a correlation between ectopic bone and increased leg pain. They concluded that the ectopic bone was a radiographic phenomenon and not associated with clinical findings. Complications using BMP in the cervical spine have been reported. Heretofore, there has not been a similar warning voiced for use of BMP in a lumbar PLIF or TLIF. The purpose was to report five cases of ectopic bone in the canal associated with PLIF/TLIF off-label use of BMP-2 potentially contributing to abnormal neurologic findings. This is an observational cohort study of patients referred to a tertiary care private medical center. This was a retrospective chart review of patients referred to a tertiary spine institute with complications after surgery where BMP-2 had been used in an off-label PLIF or TLIF application. Patient demographics, operating room (OR) notes from the index BMP surgery, imaging studies, and current clinical status were reviewed. Five cases of ectopic bone in the spinal canal with potential neurologic compromise were identified. It does appear that ectopic bone in the spinal canal associated with BMP-2 use in PLIF or TLIF may contribute to symptomatic neurologic findings in rare cases. Revision surgeries are difficult. This article challenges a previous publication, which concluded that the high incidence of ectopic bone was of no clinical significance. Isolating BMP anteriorly in the disc space using layered barriers of bone graft between the BMP and the annular defect may reduce the incidence of ectopic

  12. Bone Regeneration Using N-Methyl-2-pyrrolidone as an Enhancer for Recombinant Human Bone Morphogenetic Protein-2 in a Rabbit Sinus Augmentation Model

    PubMed Central

    Thoma, Daniel S.

    2017-01-01

    The aim of this study was to determine whether N-methyl-2-pyrrolidone (NMP) can decrease the dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) in sinus augmentation of rabbits. In each of 15 rabbits, 2 sinuses were randomly grafted using 1 of 3 treatment modalities: (i) biphasic calcium phosphate (BCP; control), (ii) rhBMP-2-coated BCP (BMP), or (iii) rhBMP-2-coated BCP soaked in NMP solution (BMP/NMP). The rabbits were sacrificed 2 weeks postoperatively. Histologic and histomorphometric analyses were performed. Bone formation in all groups was predominantly located close to the access window and the lateral walls. Newly formed bone within the total augmented area (NBTA) was greatest in BMP/NMP (1.94 ± 0.69 mm2), followed by BMP (1.50 ± 0.72 mm2) and BCP (1.28 ± 0.52 mm2) (P > 0.05). In the center of the augmentation (NBROI_C) and the area close to the sinus membrane (NBROI_M), BMP/NMP produced the largest area of NB (NBROI_C: 0.10 ± 0.11 mm2; NBROI_M: 0.17 ± 0.08 mm2); the corresponding NB values for BCP were 0.05 ± 0.05 mm2 and 0.08 ± 0.09 mm2, respectively (P > 0.05 for all comparisons). The effect of NMP on bone regeneration was inconsistent between the specimens. Adding NMP as an adjunct to rhBMP-2-coated BCP produced inconsistent effects on bone regeneration, resulting in no significant benefit compared to controls. PMID:28680881

  13. Bone Regeneration Using N-Methyl-2-pyrrolidone as an Enhancer for Recombinant Human Bone Morphogenetic Protein-2 in a Rabbit Sinus Augmentation Model.

    PubMed

    Lim, Hyun-Chang; Thoma, Daniel S; Yoon, So-Ra; Cha, Jae-Kook; Lee, Jung-Seok; Jung, Ui-Won

    2017-01-01

    The aim of this study was to determine whether N-methyl-2-pyrrolidone (NMP) can decrease the dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) in sinus augmentation of rabbits. In each of 15 rabbits, 2 sinuses were randomly grafted using 1 of 3 treatment modalities: (i) biphasic calcium phosphate (BCP; control), (ii) rhBMP-2-coated BCP (BMP), or (iii) rhBMP-2-coated BCP soaked in NMP solution (BMP/NMP). The rabbits were sacrificed 2 weeks postoperatively. Histologic and histomorphometric analyses were performed. Bone formation in all groups was predominantly located close to the access window and the lateral walls. Newly formed bone within the total augmented area (NB TA ) was greatest in BMP/NMP (1.94 ± 0.69 mm 2 ), followed by BMP (1.50 ± 0.72 mm 2 ) and BCP (1.28 ± 0.52 mm 2 ) ( P > 0.05). In the center of the augmentation (NB ROI_C ) and the area close to the sinus membrane (NB ROI_M ), BMP/NMP produced the largest area of NB (NB ROI_C : 0.10 ± 0.11 mm 2 ; NB ROI_M : 0.17 ± 0.08 mm 2 ); the corresponding NB values for BCP were 0.05 ± 0.05 mm 2 and 0.08 ± 0.09 mm 2 , respectively ( P > 0.05 for all comparisons). The effect of NMP on bone regeneration was inconsistent between the specimens. Adding NMP as an adjunct to rhBMP-2-coated BCP produced inconsistent effects on bone regeneration, resulting in no significant benefit compared to controls.

  14. Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing.

    PubMed

    Han, Qianqian; Yang, Pishan; Wu, Yuwei; Meng, Shu; Sui, Lei; Zhang, Lan; Yu, Liming; Tang, Yin; Jiang, Hua; Xuan, Dongying; Kaplan, David L; Kim, Sung Hoon; Tu, Qisheng; Chen, Jake

    2015-08-01

    Epigenetic regulation of gene expression is a central mechanism that governs cell stemness, determination, commitment, and differentiation. It has been recently found that PHF8, a major H4K20/H3K9 demethylase, plays a critical role in craniofacial and bone development. In this study, we hypothesize that PHF8 promotes osteoblastogenesis by epigenetically regulating the expression of a nuclear matrix protein, special AT-rich sequence-binding protein 2 (SATB2) that plays pivotal roles in skeletal patterning and osteoblast differentiation. Our results showed that expression levels of PHF8 and SATB2 in preosteoblasts and bone marrow stromal cells (BMSCs) increased simultaneously during osteogenic induction. Overexpressing PHF8 in these cells upregulated the expression of SATB2, Runx2, osterix, and bone matrix proteins. Conversely, knockdown of PHF8 reduced the expression of these genes. Furthermore, ChIP assays confirmed that PHF8 specifically bound to the transcription start site (TSS) of the SATB2 promoter, and the expression of H3K9me1 at the TSS region of SATB2 decreased in PHF8 overexpressed group. Implantation of the BMSCs overexpressing PHF8 with silk protein scaffolds promoted bone regeneration in critical-sized defects in mouse calvaria. Taken together, our results demonstrated that PHF8 epigenetically modulates SATB2 activity, triggering BMSCs osteogenic differentiation and facilitating bone formation and regeneration in biodegradable silk scaffolds.

  15. Regulation of bone morphogenetic protein signalling and cranial osteogenesis by Gpc1 and Gpc3.

    PubMed

    Dwivedi, Prem P; Grose, Randall H; Filmus, Jorge; Hii, Charles S T; Xian, Cory J; Anderson, Peter J; Powell, Barry C

    2013-08-01

    From birth, the vault of the skull grows at a prodigious rate, driven by the activity of osteoblastic cells at the fibrous joints (sutures) that separate the bony calvarial plates. One in 2500 children is born with a medical condition known as craniosynostosis because of premature bony fusion of the calvarial plates and a cessation of bone growth at the sutures. Bone morphogenetic proteins (BMPs) are potent growth factors that promote bone formation. Previously, we found that Glypican-1 (GPC1) and Glypican-3 (GPC3) are expressed in cranial sutures and are decreased during premature suture fusion in children. Although glypicans are known to regulate BMP signalling, a mechanistic link between GPC1, GPC3 and BMPs and osteogenesis has not yet been investigated. We now report that human primary suture mesenchymal cells coexpress GPC1 and GPC3 on the cell surface and release them into the media. We show that they inhibit BMP2, BMP4 and BMP7 activities, which both physically interact with BMP2 and that immunoblockade of endogenous GPC1 and GPC3 potentiates BMP2 activity. In contrast, increased levels of GPC1 and GPC3 as a result of overexpression or the addition of recombinant protein, inhibit BMP2 signalling and BMP2-mediated osteogenesis. We demonstrate that BMP signalling in suture mesenchymal cells is mediated by both SMAD-dependent and SMAD-independent pathways and that GPC1 and GPC3 inhibit both pathways. GPC3 inhibition of BMP2 activity is independent of attachment of the glypican on the cell surface and post-translational glycanation, and thus appears to be mediated by the core glypican protein. The discovery that GPC1 and GPC3 regulate BMP2-mediated osteogenesis, and that inhibition of endogenous GPC1 and GPC3 potentiates BMP2 responsiveness of human suture mesenchymal cells, indicates how downregulation of glypican expression could lead to the bony suture fusion that characterizes craniosynostosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Activity of bone morphogenetic protein-7 after treatment at various temperatures: freezing vs. pasteurization vs. allograft.

    PubMed

    Takata, Munetomo; Sugimoto, Naotoshi; Yamamoto, Norio; Shirai, Toshiharu; Hayashi, Katsuhiro; Nishida, Hideji; Tanzawa, Yoshikazu; Kimura, Hiroaki; Miwa, Shinji; Takeuchi, Akihiko; Tsuchiya, Hiroyuki

    2011-12-01

    Insufficient bone union is the occasional complication of biomechanical reconstruction after malignant bone tumor resection using temperature treated tumor bearing bone; freezing, pasteurization, and autoclaving. Since bone morphogenetic protein (BMP) plays an important role in bone formation, we assessed the amount and activity of BMP preserved after several temperature treatments, including -196 and -73°C for 20 min, 60 and 100°C for 30 min, 60°C for 10h following -80°C for 12h as an allograft model, and 4°C as the control. The material extracted from the human femoral bone was treated, and the amount of BMP-7 was analyzed using an enzyme-linked immunosorbent assay. Then, the activity of recombinant human BMP-7 after the treatment was assessed using a bioassay with NIH3T3 cells and immunoblotting analysis to measure the amount of phospho-Smad, one of the signaling substrates that reflect the intracellular reaction of BMPs. Both experiments revealed that BMP-7 was significantly better preserved in the hypothermia groups. The percentages of the amount of BMP-7 in which the control group was set at 100% were 114%, 108%, 70%, 49%, and 53% in the -196, -73, 60, 100°C, and the allograft-model group, respectively. The percentages of the amount of phospho-Smad were 89%, 87%, 24%, 4.9%, and 14% in the -196, -73, 60, 100°C, and the allograft-model group, respectively. These results suggested that freezing possibly preserves osteoinductive ability than hyperthermia treatment. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells

    PubMed Central

    Hosogane, Naobumi; Huang, Zhiping; Rawlins, Bernard A.; Liu, Xia; Boachie-Adjei, Oheneba; Boskey, Adele L.; Zhu, Wei

    2010-01-01

    Stromal derived factor-1 (SDF-1) is a chemokine signaling molecule that binds to its transmembrane receptor CXC chemokine receptor-4 (CXCR4). While we previously detected that SDF-1 was co-required with bone morphogenetic protein 2 (BMP2) for differentiating mesenchymal C2C12 cells into osteoblastic cells, it is unknown whether SDF-1 is similarly involved in the osteogenic differentiation of mesenchymal stem cells (MSCs). Therefore, here we examined the role of SDF-1 signaling during BMP2-induced osteogenic differentiation of primary MSCs that were derived from human and mouse bone marrow. Our data showed that blocking of the SDF-1/CXCR4 signal axis or adding SDF-1 protein to MSCs significantly affected BMP2-induced alkaline phosphatase (ALP) activity and osteocalcin (OCN) synthesis, markers of preosteoblasts and mature osteoblasts, respectively. Moreover, disrupting the SDF-1 signaling impaired bone nodule mineralization during terminal differentiation of MSCs. Furthermore, we detected that blocking of the SDF-1 signaling inhibited the BMP2-induced early expression of Runt-related factor-2 (Runx2) and osterix (Osx), two “master” regulators of osteogenesis, and the SDF-1 effect was mediated via intracellular Smad and Erk activation. In conclusion, our results demonstrated a regulatory role of SDF-1 in BMP2-induced osteogenic differentiation of MSCs, as perturbing the SDF-1 signaling affected the differentiation of MSCs towards osteoblastic cells in response to BMP2 stimulation. These data provide novel insights into molecular mechanisms underlying MSC osteogenesis, and will contribute to the development of MSC therapies for enhancing bone formation and regeneration in broad orthopaedic situations. PMID:20362069

  18. Exploring the Bone Proteome to Help Explain Altered Bone Remodeling and Preservation of Bone Architecture and Strength in Hibernating Marmots.

    PubMed

    Doherty, Alison H; Roteliuk, Danielle M; Gookin, Sara E; McGrew, Ashley K; Broccardo, Carolyn J; Condon, Keith W; Prenni, Jessica E; Wojda, Samantha J; Florant, Gregory L; Donahue, Seth W

    2016-01-01

    Periods of physical inactivity increase bone resorption and cause bone loss and increased fracture risk. However, hibernating bears, marmots, and woodchucks maintain bone structure and strength, despite being physically inactive for prolonged periods annually. We tested the hypothesis that bone turnover rates would decrease and bone structural and mechanical properties would be preserved in hibernating marmots (Marmota flaviventris). Femurs and tibias were collected from marmots during hibernation and in the summer following hibernation. Bone remodeling was significantly altered in cortical and trabecular bone during hibernation with suppressed formation and no change in resorption, unlike the increased bone resorption that occurs during disuse in humans and other animals. Trabecular bone architecture and cortical bone geometrical and mechanical properties were not different between hibernating and active marmots, but bone marrow adiposity was significantly greater in hibernators. Of the 506 proteins identified in marmot bone, 40 were significantly different in abundance between active and hibernating marmots. Monoaglycerol lipase, which plays an important role in fatty acid metabolism and the endocannabinoid system, was 98-fold higher in hibernating marmots compared with summer marmots and may play a role in regulating the changes in bone and fat metabolism that occur during hibernation.

  19. Immunoexpression of PPAR-γ and osteocalcin proteins for bone repair of critical-size defects treated with fragmented autogenous abdominal adipose tissue graft.

    PubMed

    Deliberador, Tatiana Miranda; Giovanini, Allan Fernando; Lopes, Tertuliano Ricardo; Zielak, João César; Moro, Alexandre; Baratto Filho, Flares; Santos, Felipe Rychuv; Storrer, Carmen L Mueller

    2014-01-01

    Immunoexpression of PPAR-γ and osteocalcin proteins was evaluated for bone repair of critical-size defects (CSDs), created in rat calvaria (n=42) and treated with fragmented abdominal autogenous adipose tissue graft. Three groups (n=14) were formed: C (control - blood clot), AB (autogenous bone) and AT (fragmented adipose tissue). The groups were divided into subgroups (n=7) for euthanasia at 30 and 90 days. Histological and immunohistochemical analyses were performed. Data were subjected to descriptive statistics (mode). A complete bone closure was observed in Group AB 90 days after surgery. In Group C, repair was achieved by the formation of collagen fiber bundles oriented parallel to the wound surface at both post-surgery periods. In Group AT the type of healing was characterized by dense connective tissue containing collagen fiber bundles arranged amidst the remaining adipose tissue, with rare heterotopic bone formation associated with fibrosis and different types of tissue necrosis. Immunostaining of PPAR-γ was not observed in any specimen from Groups C and AB. In Group AT, the immunostaining of PPAR-γ was more evident 30 days after surgery. Immunostaining of osteocalcin was present in all groups and at both postoperative periods. The fragmented autogenous abdominal adipose tissue graft did not favor the repair of critical-size bone defects created surgically in rat calvaria as evidenced by the positive immunostaining of PPAR-γ protein and the negative immunostaining of osteocalcin in the osteoblast-like cells and bone matrix.

  20. Contributions of Raman spectroscopy to the understanding of bone strength.

    PubMed

    Mandair, Gurjit S; Morris, Michael D

    2015-01-01

    Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum of bone not only contains information on bone mineral crystallinity that is related to bone hardness but also provides information on the orientation of mineral crystallites with respect to the collagen fibril axis. Indirect information on collagen cross-links is also available and will be discussed. After a short introduction to bone Raman spectroscopic parameters and collection methodologies, advances in in vivo Raman spectroscopic measurements for animal and human subject studies will be reviewed. A discussion on the effects of aging, osteogenesis imperfecta, osteoporosis and therapeutic agents on bone composition and mechanical properties will be highlighted, including genetic mouse models in which structure-function and exercise effects are explored. Similarly, extracellular matrix proteins, proteases and transcriptional proteins implicated in the regulation of bone material properties will be reviewed.

  1. [The biological role of exosomes in bone remodeling and bone diseases.

    PubMed

    Urabe, Fumihiko; Yoshioka, Yusuke; Ochiya, Takahiro

    Exosomes are about 100nm membrane vesicles, and released from almost all cell types. They carry and transfer a wide variety of molecules, such as mRNAs, microRNAs, proteins, and lipids, as modulators of intercellular communication. Various studies have shown that this exosome-mediated intercellular communication lead to proliferation, invasion and metastasis of cancer cells. In addition to that, emerging data suggest that exosomes are also involved in physiological processes of bone remodeling and bone diseases. Increasing understanding of the working mechanism of exosomes will provide us with new therapeutic and diagnostic opportunities. Here we summarize the current research on exosomes in bone remodeling and bone diseases.

  2. Concentration of platelets and growth factors in platelet-rich plasma from Goettingen minipigs.

    PubMed

    Jungbluth, Pascal; Grassmann, Jan-Peter; Thelen, Simon; Wild, Michael; Sager, Martin; Windolf, Joachim; Hakimi, Mohssen

    2014-01-01

    In minipigs little is known about the concentration of growth factors in plasma, despite their major role in several patho-physiological processes such as healing of fractures. This prompted us to study the concentration of platelets and selected growth factors in plasma and platelet-rich plasma (PRP) preparation of sixteen Goettingen minipigs. Platelet concentrations increased significantly in PRP in comparison to native blood plasma. Generally, significant increase in the concentration of all growth factors tested was observed in the PRP in comparison to the corresponding plasma or serum. Five of the plasma samples examined contained detectable levels of bone morphogenic protein 2 (BMP-2) whereas eleven of the plasma or serum samples contained minimal amounts of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-bb) respectively. On the other hand variable concentrations of bone morphogenic protein 7 (BMP-7) and transforming growth factor β1 (TGF-β1) were measured in all plasma samples. In contrast, all PRP samples contained significantly increased amounts of growth factors. The level of BMP-2, BMP-7, TGF-β1, VEGF and PDGF-bb increased by 17.6, 1.5, 7.1, 7.2 and 103.3 fold, in comparison to the corresponding non-enriched preparations. Moreover significant positive correlations were found between platelet count and the concentrations of BMP-2 (r=0.62, p<0.001), TGF-β1 (r=0.85, p<0.001), VEGF (r=0.46, p<0.01) and PDGF-bb (r=0.9, p<0.001). Our results demonstrate that selected growth factors are present in the platelet-rich plasma of minipigs which might thus serve as a source of autologous growth factors.

  3. [Diet, nutrition and bone health].

    PubMed

    Miggiano, G A D; Gagliardi, L

    2005-01-01

    Nutrition is an important "modifiable" factor in the development and maintenance of bone mass and in the prevention of osteoporosis. The improvement of calcium intake in prepuberal age translates to gain in bone mass and, with genetic factor, to achievement of Peak Bone Mass (PBM), the higher level of bone mass reached at the completion of physiological growth. Individuals with higher PBM achieved in early adulthood will be at lower risk for developing osteoporosis later in life. Achieved the PBM, it is important maintain the bone mass gained and reduce the loss. This is possible adopting a correct behaviour eating associated to regular physical activity and correct life style. The diet is nutritionally balanced with caloric intake adequate to requirement of individual. This is moderate in protein (1 g/kg/die), normal in fat and the carbohydrates provide 55-60% of the caloric intake. A moderate intake of proteins is associated with normal calcium metabolism and presumably does'nt alter bone turnover. An adequate intake of alkali-rich foods may help promote a favorable effect of dietary protein on the skeleton. Lactose intolerance may determinate calcium malabsorption or may decrease calcium intake by elimination of milk and dairy products. Omega3 fatty acids may "down-regulate" pro-inflammatory cytokines and protect against bone loss by decreasing osteoclast activation and bone reabsorption. The diet is characterized by food containing high amount of calcium, potassium, magnesium and low amount of sodium. If it is impossible to reach the requirement with only diet, it is need the supplement of calcium and vitamin D. Other vitamins (Vit. A, C, E, K) and mineral (phosphorus, fluoride, iron, zinc, copper and boron) are required for normal bone metabolism, thus it is need adequate intake of these dietary components. It is advisable reduce ethanol, caffeine, fibers, phytic and ossalic acid intake. The efficacy of phytoestrogens is actually under investigation. Some

  4. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    PubMed

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway. © 2014 Wiley Periodicals, Inc.

  5. Monocyte recruitment and expression of monocyte chemoattractant protein-1 are developmentally regulated in remodeling bone in the mouse.

    PubMed Central

    Volejnikova, S.; Laskari, M.; Marks, S. C.; Graves, D. T.

    1997-01-01

    Tooth eruption is defined as the movement of a tooth from its site of development within the alveolar bone to its position of function in the oral cavity. It represents an excellent model to examine osseous metabolism as bone resorption and bone formation occur simultaneously and are spatially separated. Bone resorption occurs in the coronal (occlusal) area, whereas bone formation occurs in the basal area. Monocytes are thought to have a significant role in the regulation of osseous metabolism. The goal of this study was to examine the recruitment of monocytes to bone in C57BL/6J mice that are undergoing developmentally regulated bone remodeling. Monocytes were detected by immunohistochemistry and osteoclasts were counted as bone-associated multi-nucleated, tartrate-resistant acid phosphatase (TRAP)-positive cells. Cell numbers were obtained from histological sections of animals sacrificed daily for 14 days after birth; an image analysis system was used for quantification. The results demonstrated that, immediately after birth, there were relatively few monocytic cells. In the area of bone resorption, the number of monocytes increased with time, reaching peaks at 5 and 9 days, and decreased thereafter. A similar pattern was observed for osteoclasts. In the area of bone formation, there was a time-dependent increase in the number of monocytes. In contrast, the number of osteoclasts in this area was highest at the earliest time points and decreased after day 3. To investigate potential mechanisms for the recruitment of monocytes, expression of monocyte chemoattractant protein (MCP)-1 was assessed. The number of MCP-1-positive cells increased with time and was generally proportional to the recruitment of mononuclear phagocytes. Osteoblasts were the principal bone cell type expressing MCP-1. The results demonstrate that the recruitment of mononuclear cells in the occlusal area is associated with bone resorption. In contrast, recruitment of monocytes in the basal area

  6. Complications of Anterior Cervical Fusion using a Low-dose Recombinant Human Bone Morphogenetic Protein-2

    PubMed Central

    Kukreja, Sunil; Ahmed, Osama I; Haydel, Justin; Nanda, Anil

    2015-01-01

    Objective There are several reports, which documented a high incidence of complications following the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in anterior cervical fusions (ACFs). The objective of this study is to share our experience with low-dose rhBMP-2 in anterior cervical spine. Methods We performed a retrospective analysis of 197 patients who underwent anterior cervical fusion (ACF) with the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) during 2007-2012. A low-dose rhBMP-2 (0.7mg/level) sponge was placed exclusively within the cage. In 102 patients demineralized bone matrix (DBM) was filled around the BMP sponge. Incidence and severity of dysphagia was determined by 5 points SWAL-QOL scale. Results Two patients had prolonged hospitalization due to BMP unrelated causes. Following the discharge, 13.2%(n=26) patients developed dysphagia and 8.6%(n=17) patients complained of neck swelling. More than half of the patients (52.9%, n=9) with neck swelling also had associated dysphagia; however, only 2 of these patients necessitated readmission. Both of these patients responded well to the intravenous dexamethasone. The use of DBM did not affect the incidence and severity of complications (p>0.05). Clinico-radiological evidence of fusion was not observed in 2 patients. Conclusion A low-dose rhBMP-2 in ACFs is not without risk. However, the incidence and severity of complications seem to be lower with low-dose BMP placed exclusively inside the cage. Packing DBM putty around the BMP sponge does not affect the safety profile of rhBMP-2 in ACFs. PMID:26217385

  7. The ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing.

    PubMed

    Lu, Xuanyu; Li, Wenjin; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Tom; Luan, Xianghong

    2016-01-01

    The extracellular matrix (ECM) provides structural support, cell migration anchorage, cell differentiation cues, and fine-tuned cell proliferation signals during all stages of bone fracture healing, including cartilaginous callus formation, callus remodeling, and bony bridging of the fracture gap. In the present study we have defined the role of the extracellular matrix protein ameloblastin (AMBN) in fracture resistance and fracture healing of mouse long bones. To this end, long bones from WT and AMBN(Δ5-6) truncation model mice were subjected to biomechanical analysis, fracture healing assays, and stem cell colony formation comparisons. The effect of exogenous AMBN addition to fracture sites was also determined. Our data indicate that lack of a functional AMBN in the bone matrix resulted in 31% decreased femur bone mass and 40% reduced energy to failure. On a cellular level, AMBN function inhibition diminished the proliferative capacity of fracture repair callus cells, as evidenced by a 58% reduction in PCNA and a 40% reduction in Cyclin D1 gene expression, as well as PCNA immunohistochemistry. In terms of fracture healing, AMBN truncation was associated with an enhanced and prolonged chondrogenic phase, resulting in delayed mineralized tissue gene expression and delayed ossification of the fracture repair callus. Underscoring a role of AMBN in fracture healing, there was a 6.9-fold increase in AMBN expression at the fracture site one week after fracture, and distinct AMBN immunolabeling in the fracture gap. Finally, application of exogenous AMBN protein to bone fracture sites accelerated callus formation and bone fracture healing (33% increase in bone volume and 19% increase in bone mineral density), validating the findings of our AMBN loss of function studies. Together, these data demonstrate the functional importance of the AMBN extracellular matrix protein in bone fracture prevention and rapid fracture healing. Copyright © 2016 International Society of

  8. Flexoelectricity in Bones.

    PubMed

    Vasquez-Sancho, Fabian; Abdollahi, Amir; Damjanovic, Dragan; Catalan, Gustau

    2018-03-01

    Bones generate electricity under pressure, and this electromechanical behavior is thought to be essential for bone's self-repair and remodeling properties. The origin of this response is attributed to the piezoelectricity of collagen, which is the main structural protein of bones. In theory, however, any material can also generate voltages in response to strain gradients, thanks to the property known as flexoelectricity. In this work, the flexoelectricity of bone and pure bone mineral (hydroxyapatite) are measured and found to be of the same order of magnitude; the quantitative similarity suggests that hydroxyapatite flexoelectricity is the main source of bending-induced polarization in cortical bone. In addition, the measured flexoelectric coefficients are used to calculate the (flexo)electric fields generated by cracks in bone mineral. The results indicate that crack-generated flexoelectricity is theoretically large enough to induce osteocyte apoptosis and thus initiate the crack-healing process, suggesting a central role of flexoelectricity in bone repair and remodeling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A chondroitin sulfate chain attached to the bone dentin matrix protein 1 NH2-terminal fragment.

    PubMed

    Qin, Chunlin; Huang, Bingzhen; Wygant, James N; McIntyre, Bradley W; McDonald, Charles H; Cook, Richard G; Butler, William T

    2006-03-24

    Dentin matrix protein 1 (DMP1) is an acidic noncollagenous protein shown by gene ablations to be critical for the proper mineralization of bone and dentin. In the extracellular matrix of these tissues DMP1 is present as fragments representing the NH2-terminal (37 kDa) and COOH-terminal (57 kDa) portions of the cDNA-deduced amino acid sequence. During our separation of bone noncollagenous proteins, we observed a high molecular weight, DMP1-related component (designated DMP1-PG). We purified DMP1-PG with a monoclonal anti-DMP1 antibody affinity column. Amino acid analysis and Edman degradation of tryptic peptides proved that the core protein for DMP1-PG is the 37-kDa fragment of DMP1. Chondroitinase treatments demonstrated that the slower migration rate of DMP1-PG is due to the presence of glycosaminoglycan. Quantitative disaccharide analysis indicated that the glycosaminoglycan is made predominantly of chondroitin 4-sulfate. Further analysis on tryptic peptides led us to conclude that a single glycosaminoglycan chain is linked to the core protein via Ser74, located in the Ser74-Gly75 dipeptide, an amino acid sequence specific for the attachment of glycosaminoglycans. Our findings show that in addition to its existence as a phosphoprotein, the NH2-terminal fragment from DMP1 occurs as a proteoglycan. Amino acid sequence alignment analysis showed that the Ser74-Gly75 dipeptide and its flanking regions are highly conserved among a wide range of species from caiman to the Homo sapiens, indicating that this glycosaminoglycan attachment domain has survived an extremely long period of evolution pressure, suggesting that the glycosaminoglycan may be critical for the basic biological functions of DMP1.

  10. Dilatational band formation in bone

    PubMed Central

    Poundarik, Atharva A.; Diab, Tamim; Sroga, Grazyna E.; Ural, Ani; Boskey, Adele L.; Gundberg, Caren M.; Vashishth, Deepak

    2012-01-01

    Toughening in hierarchically structured materials like bone arises from the arrangement of constituent material elements and their interactions. Unlike microcracking, which entails micrometer-level separation, there is no known evidence of fracture at the level of bone’s nanostructure. Here, we show that the initiation of fracture occurs in bone at the nanometer scale by dilatational bands. Through fatigue and indentation tests and laser confocal, scanning electron, and atomic force microscopies on human and bovine bone specimens, we established that dilatational bands of the order of 100 nm form as ellipsoidal voids in between fused mineral aggregates and two adjacent proteins, osteocalcin (OC) and osteopontin (OPN). Laser microdissection and ELISA of bone microdamage support our claim that OC and OPN colocalize with dilatational bands. Fracture tests on bones from OC and/or OPN knockout mice (OC−/−, OPN−/−, OC-OPN−/−;−/−) confirm that these two proteins regulate dilatational band formation and bone matrix toughness. On the basis of these observations, we propose molecular deformation and fracture mechanics models, illustrating the role of OC and OPN in dilatational band formation, and predict that the nanometer scale of tissue organization, associated with dilatational bands, affects fracture at higher scales and determines fracture toughness of bone. PMID:23129653

  11. Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing

    PubMed Central

    Han, Qianqian; Yang, Pishan; Wu, Yuwei; Meng, Shu; Sui, Lei; Zhang, Lan; Yu, Liming; Tang, Yin; Jiang, Hua; Xuan, Dongying; Kaplan, David L.; Kim, Sung Hoon

    2015-01-01

    Epigenetic regulation of gene expression is a central mechanism that governs cell stemness, determination, commitment, and differentiation. It has been recently found that PHF8, a major H4K20/H3K9 demethylase, plays a critical role in craniofacial and bone development. In this study, we hypothesize that PHF8 promotes osteoblastogenesis by epigenetically regulating the expression of a nuclear matrix protein, special AT-rich sequence-binding protein 2 (SATB2) that plays pivotal roles in skeletal patterning and osteoblast differentiation. Our results showed that expression levels of PHF8 and SATB2 in preosteoblasts and bone marrow stromal cells (BMSCs) increased simultaneously during osteogenic induction. Overexpressing PHF8 in these cells upregulated the expression of SATB2, Runx2, osterix, and bone matrix proteins. Conversely, knockdown of PHF8 reduced the expression of these genes. Furthermore, ChIP assays confirmed that PHF8 specifically bound to the transcription start site (TSS) of the SATB2 promoter, and the expression of H3K9me1 at the TSS region of SATB2 decreased in PHF8 overexpressed group. Implantation of the BMSCs overexpressing PHF8 with silk protein scaffolds promoted bone regeneration in critical-sized defects in mouse calvaria. Taken together, our results demonstrated that PHF8 epigenetically modulates SATB2 activity, triggering BMSCs osteogenic differentiation and facilitating bone formation and regeneration in biodegradable silk scaffolds. PMID:25923143

  12. Identification of Proteins and Peptide Biomarkers for Detecting Banned Processed Animal Proteins (PAPs) in Meat and Bone Meal by Mass Spectrometry.

    PubMed

    Marbaix, Hélène; Budinger, Dimitri; Dieu, Marc; Fumière, Olivier; Gillard, Nathalie; Delahaut, Philippe; Mauro, Sergio; Raes, Martine

    2016-03-23

    The outbreak of bovine spongiform encephalopathy (BSE) in the United Kingdom in 1986, with processed animal proteins (PAPs) as the main vector of the disease, has led to their prohibition in feed. The progressive release of the feed ban required the development of new analytical methods to determine the exact origin of PAPs from meat and bone meal. We set up a promising MS-based method to determine the species and the source (legal or not) present in PAPs: a TCA-acetone protein extraction followed by a cleanup step, an in-solution tryptic digestion of 5 h (with a 1:20 protein/trypsin ratio), and mass spectrometry analyses, first without any a priori, with a Q-TOF, followed by a targeted triple-quadrupole analysis. Using this procedure, we were able to overcome some of the major limitations of the official methods to analyze PAPs, detecting and identifying prohibited animal products in feedstuffs by the monitoring of peptides specific for cows, pigs, and sheep in PAPs.

  13. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    PubMed

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  14. Low bone mineral mass is associated with decreased bone formation and diet in girls with Rett syndrome.

    PubMed

    Motil, Kathleen J; Barrish, Judy O; Neul, Jeffrey L; Glaze, Daniel G

    2014-09-01

    The aim of the present study was to characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of girls with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Total body bone mineral content (BMC) and bone mineral density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and sex, showed significant positive associations with total body BMD z scores. The present study suggests decreased bone formation instead of increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium, and phosphorus intakes may offer an opportunity to improve bone health in RTT.

  15. N-methyl pyrrolidone/bone morphogenetic protein-2 double delivery with in situ forming implants.

    PubMed

    Karfeld-Sulzer, Lindsay S; Ghayor, Chafik; Siegenthaler, Barbara; de Wild, Michael; Leroux, Jean-Christophe; Weber, Franz E

    2015-04-10

    Bone morphogenetic proteins (BMPs) are growth and differentiation factors involved during development in morphogenesis, organogenesis and later mainly in regeneration processes, in particular in bone where they are responsible for osteoinduction. For more than a decade, recombinant human (rh)BMP-2 has been used in the clinic for lumbar spinal fusion at non-physiological high dosages that appear to be causative for side effects, like male sterility. A possible strategy to reduce the effective amount of rhBMP-2 in the clinic is the co-delivery with an enhancer of BMPs' activity. In an earlier study, we showed that N-methylpyrrolidone (NMP) enhances BMP activity in vitro and in vivo. Here we report on the development of a slow and sustained double delivery of rhBMP-2 and NMP via an in situ forming implant based on poly(lactide-co-glycolide). The results showed that the release of NMP can be adjusted by varying the lactide/glycolide ratio and the polymer's molecular weight. The same applied to rhBMP-2, with release rates that could be sustained from two to three weeks. In the in vivo model of a critical size defect in the calvarial bone of rabbits, the implant containing 50mol% lactide performed better than the one having 75mol% lactide in terms of defect bridging and extent of bony regenerated area. In situ forming implants for the double delivery of the BMP enhancer NMP and rhBMP-2 appear to be promising delivery systems in bone regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ectopic bone formation cannot occur by hydroxyapatite/β-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    NASA Astrophysics Data System (ADS)

    Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong

    2012-12-01

    Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.

  17. The ventralizing activity of Radar, a maternally expressed bone morphogenetic protein, reveals complex bone morphogenetic protein interactions controlling dorso-ventral patterning in zebrafish.

    PubMed

    Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F

    2000-12-01

    In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.

  18. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype

    PubMed Central

    Kato, Satoshi; Tomita, Katsuro; Titus, Louisa; Boden, Scott D.

    2011-01-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1−/− knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored. PMID:21110071

  19. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype.

    PubMed

    Kato, Satoshi; Sangadala, Sreedhara; Tomita, Katsuro; Titus, Louisa; Boden, Scott D

    2011-03-01

    There is an urgent need to develop methods that lower costs of using recombinant human bone morphogenetic proteins (BMPs) to promote bone induction. In this study, we demonstrate the osteogenic effect of a low-molecular weight compound, SVAK-12, that potentiated the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. Here, we report a specific compound, SVAK-12, which was selected based on in silico screenings of small-molecule databases using the homology modeled interaction motif of Smurf1-WW2 domain. The enhancement of BMP-2 activity by SVAK-12 was characterized by evaluating a BMP-specific reporter activity and by monitoring the BMP-2-induced expression of mRNA for osteocalcin and alkaline phosphatase (ALP), which are widely accepted marker genes of osteoblast differentiation. Finally, we confirmed these results by also measuring the enhancement of BMP-2-induced activity of ALP. Smurf1 is an E3 ligase that targets osteogenic Smads for ubiquitin-mediated proteasomal degradation. Smurf1 is an interesting potential target to enhance bone formation based on the positive effects on bone of proteins that block Smurf1-binding to Smad targets or in Smurf1-/- knockout mice. Since Smads bind Smurf1 via its WW2 domain, we performed in silico screening to identify compounds that might interact with the Smurf1-WW2 domain. We recently reported the activity of a compound, SVAK-3. However, SVAK-3, while exhibiting BMP-potentiating activity, was not stable and thus warranted a new search for a more stable and efficacious compound among a selected group of candidates. In addition to being more stable, SVAK-12 exhibited a dose-dependent activity in inducing osteoblastic differentiation of myoblastic C2C12 cells even when multiple markers of the osteoblastic phenotype were parallelly monitored.

  20. Bone sialoprotein and its transcriptional regulatory mechanism.

    PubMed

    Ogata, Y

    2008-04-01

    Bone sialoprotein is a mineralized tissue-specific noncollagenous protein that is glycosylated, phosphorylated and sulfated. The temporo-spatial deposition of bone sialoprotein into the extracellular matrix of bone, and the ability of bone sialoprotein to nucleate hydroxyapatite crystal formation, indicates a potential role for bone sialoprotein in the initial mineralization of bone, dentin and cementum. Bone sialoprotein is also expressed in breast, lung, thyroid and prostate cancers. We used osteoblast-like cells (rat osteosarcoma cell lines ROS17/2.8 and UMR106, rat stromal bone marrow RBMC-D8 cells and human osteosarcoma Saos2 cells), and breast and prostate cancer cells to investigate the transcriptional regulation of bone sialoprotein. To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene, we conducted northern hybridization, transient transfection analyses with chimeric constructs of the bone sialoprotein gene promoter linked to a luciferase reporter gene and gel mobility shift assays. Bone sialoprotein transcription is regulated by hormones, growth factors and cytokines through tyrosine kinase, mitogen-activated protein kinase and cAMP-dependent pathways. Microcalcifications are often associated with human mammary lesions, particularly with breast carcinomas. Expression of bone sialoprotein by cancer cells could play a major role in the mineral deposition and in preferred bone homing of breast cancer cells. Bone sialoprotein protects cells from complement-mediated cellular lysis, activates matrix metalloproteinase 2 and has an angiogenic capacity. Therefore, regulation of the bone sialoprotein gene is potentially important in the differentiation of osteoblasts, bone matrix mineralization and tumor metastasis. This review highlights the function and transcriptional regulation of bone sialoprotein.

  1. Open tibial fractures grade IIIC treated successfully with external fixation, negative-pressure wound therapy and recombinant human bone morphogenetic protein 7.

    PubMed

    Babiak, Ireneusz

    2014-10-01

    The aim of the therapy in open tibial fractures grade III was to cover the bone with soft tissue and achieve healed fracture without persistent infection. Open tibial fractures grade IIIC with massive soft tissue damage require combined orthopaedic, vascular and plastic-reconstructive procedures. Negative-pressure wound therapy (NPWT), used in two consecutive cases with open fracture grade IIIC of the tibia diaphysis, healed extensive soft tissue defect with exposure of the bone. NPWT eventually allowed for wound closure by split skin graft within 21-25 days. Ilizarov external fixator combined with application of recombinant human bone morphogenetic protein-7 at the site of delayed union enhanced definitive bone healing within 16-18 months. © 2012 The Authors. International Wound Journal © 2012 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  2. Effect of Escherichia coli-produced recombinant human bone morphogenetic protein 2 on the regeneration of canine segmental ulnar defects.

    PubMed

    Harada, Yasuji; Itoi, Takamasa; Wakitani, Shigeyuki; Irie, Hiroyuki; Sakamoto, Michiko; Zhao, Dongwei; Nezu, Yoshinori; Yogo, Takuya; Hara, Yasushi; Tagawa, Masahiro

    2012-07-01

    Because bone morphogenetic protein 2 gene transfected Escherichia coli (E-BMP-2) produce recombinant human BMP-2 (rhBMP-2) more efficiently than mammalian cells (Chinese hamster ovary [CHO]-BMP-2), they may be a more cost-effective source of rhBMP-2 for clinical use. However, use of E-BMP-2 for regenerating long bones in large animals has not been reported. In the current study, we evaluated the healing efficacy of E-BMP-2 in a canine model. We created 2.5-cm critical-size segmental ulnar defects in test animals, then implanted E-BMP-2 and 700 mg of artificial bone (beta-tricalcium phosphate; β-TCP) into the wounds. We examined the differential effects of 5 E-BMP-2 treatments (0, 35, 140, 560, and 2240 μg) across 5 experimental groups (control, BMP35, BMP140, BMP560, and BMP2240). Radiography and computed tomography were used to observe the regeneration process. The groups in which higher doses of E-BMP-2 were administered (BMP560 and BMP2240) displayed more pronounced bone regeneration; the regenerated tissues connected to the host bone, and the cross-sectional areas of the regenerated bone were larger than those of the originals. The groups in which lower doses of E-BMP-2 were administered (BMP35 and BMP140) experienced relatively less bone regeneration; furthermore, the regenerated tissues failed to connect to the host bone. In these groups, the cross-sectional areas of the regenerated bone were equal to or smaller than those of the originals. No regeneration was observed in the control group. These findings suggest that, like CHO-BMP-2, E-BMP-2 can be used for the regeneration of large defects in long bones and that its clinical use might decrease the cost of bone regeneration treatments.

  3. Bone sialoprotein keratan sulfate proteoglycan (BSP-KSPG) and FGF-23 are important physiological components of medullary bone.

    PubMed

    Hadley, Jill A; Horvat-Gordon, Maria; Kim, Woo-Kyun; Praul, Craig A; Burns, Dennis; Leach, Roland M

    2016-04-01

    Medullary bone is a specialized bone found in the marrow cavity of laying birds. It provides a significant contribution to the calcium supply for egg shell formation. Medullary bone is distinguished from cortical bone by the presence of large amounts of a keratan sulfate proteoglycan (KSPG). The aims of the present experiment are to confirm the identity of the core protein of KSPG, identify a marker of medullary bone metabolism, and determine whether changes in keratan sulfate (KS) concentration in blood are associated with the egg-laying cycle. Using two different isolation techniques- one specific for bone and another for blood- we have identified bone sialoprotein (BSP) to be the core protein of this KSPG. We also determined that the amount of keratan sulfate (KS) in laying hen blood fluctuates in synchrony with the egg-laying cycle, and thus can serve as a specific marker for medullary bone metabolism. During the course of this investigation, we also found FGF-23 (phosphatonin) to be expressed in medullary bone, in synchrony with the egg-laying cycle. Western blotting was used to demonstrate the presence of this peptide in both laying hen blood and medullary bone extracts. The importance of FGF-23 (phosphatonin) and parathyroid hormone in normalizing the dramatic changes in plasma calcium and phosphorus during the 24h egg-laying cycle is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Localized bone regeneration around dental implants using recombinant bone morphogenetic protein-2 and platelet-derived growth factor-BB in the canine.

    PubMed

    Thoma, Daniel S; Cha, Jae-Kook; Sapata, Vitor M; Jung, Ronald E; Hüsler, Juerg; Jung, Ui-Won

    2017-11-01

    To test whether or not one of two biological mediators (recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human platelet-derived growth factor (rhPDGF-BB)) is superior to the other and compared with control groups for bone regeneration around implants based on histomorphometrical outcome measures. Box-type defects (10 × 5 × 5 mm) were prepared on the buccal sides of the left and right edentulous ridge in ten mongrel dogs. Implants were placed at each site, the defects either received (i) bovine-derived particulated bone mineral (DBBM) mixed with rhBMP-2 and a collagen membrane (CM) (DBBM/BMP-2), (ii) DBBM mixed with rhPDGF-BB and CM (DBBM/PDGF), (iii) DBBM and CM (DBBM) and (iv) empty control (control). Animals were euthanized post-surgery at 8 weeks and 16 weeks. Histomorphometrical analyses were performed. The mean percentages of regenerated area within total defect area amounted to 56.95% for DBBM/BMP-2, 48.86% for DBBM/PDFG, 33.44% for DBBM and 1.59% for control at 8 weeks, and 26.79% for DBBM/BMP-2, 23.78% for DBBM/PDFG, 30.21% for DBBM and 5.07% for control at 16 weeks with no statistically significant differences between the groups (P > 0.05). The mean amount of regenerated bone was 26.97% for DBBM/BMP-2, 22.02% for DBBM/PDFG, 5.03% for DBBM and 1.25% for control at 8 weeks, and at 16 weeks, these values were lower in the two groups with biological mediators (DBBM/BMP-2 = 13.35%; DBBM/PDGF = 6.96%) and only slightly increased in group DBBM (10.68%) and the control group (4.95%) compared with 8 weeks. The first bone-to-implant contact values on the buccal side were minimal for DBBM/BMP-2 (0.57 mm) and maximal for control (3.72 mm) at 8 weeks. The use of biological mediators (rhBMP-2 and rhPDGF-BB) can increase the amount of bone regeneration at dehiscence-type defects compared with controls at 8 weeks, but not at 16 weeks due to enhanced hard tissue remodeling processes. © 2016 John Wiley & Sons A/S. Published by John

  5. Alteration of Bone Mineral Density Differs Between Genders in Obese Subjects After Laparoscopic Sleeve Gastrectomy: Bone Morphogenetic Protein 4 May Count.

    PubMed

    Wang, Xingchun; Li, Liang; Zhu, Cuiling; Gao, Jingyang; Qu, Shen

    2018-05-12

    Laparoscopic sleeve gastrectomy (LSG) has proven to be successful in weight reduction but with potential loss of bone mass. Previous studies indicated that bone morphogenetic protein 4 (BMP4) plays an important role in both bone formation and glucose-lipid metabolism. This study aimed to investigate the changes in bone mineral density (BMD), bone metabolic parameters, and serum BMP4 levels in obese Chinese subjects after LSG. Seventy-one obese patients (34 males, age 31.70 ± 9.61 years and 37 females, age 32.80 ± 11.45 years) were enrolled. BMD (at the right hip, femoral neck, and lumbar spine 1-4 (L1-L4)) was measured by dual-energy X-ray absorptiometry, bone metabolic markers, and routine anthropometric/laboratory biochemical parameters at baseline, 3, 6, and 12 months after LSG (abbreviated as 3, 6, and 12 M post-LSG, respectively) were recorded. Serum BMP4 levels were measured by enzyme-linked immunosorbent assay. LSG led to dramatic weight loss with improved glucose-lipid metabolism in all patients. In females, BMD was significantly decreased at the right hip at all time points studied and at the femoral neck at 6 and 12 M post-LSG (P < 0.05 or P < 0.01). In males, BMD was not significantly changed (all P > 0.05). Intriguingly, serum BMP4 levels were reduced slightly at 3 M post-LSG (P = 0.463) and were significantly at 6 M post-LSG (from 75.51 ± 16.54 to 65.40 ± 10.51 pg/mL, P = 0.048) in females, but unchanged in males (all P > 0.05). Vitamin D and 25-hydroxy vitamin D were increased in males at 12 M post-LSG (all P < 0.05). Osteocalcin was increased in males at all time points studied and in females at 3 and 6 M post-LSG (all P < 0.05). Type I collagen was increased in males at 3 and 6 M post-LSG and in females at all the time points studied (all P < 0.05). The effect of LSG on BMD differs between genders, decreasing significantly in females while remaining unchanged in males. Moreover

  6. Bone morphogenetic protein 4 and bone morphogenetic protein receptor expression in the pituitary gland of adult dogs in healthy condition and with ACTH-secreting pituitary adenoma.

    PubMed

    Sato, A; Ochi, H; Harada, Y; Yogo, T; Kanno, N; Hara, Y

    2017-01-01

    The purpose of this study was to investigate the expression of bone morphogenetic protein 4 (BMP4) and its receptors, bone morphogenetic protein receptor I (BMPRI) and BMPRII, in the pituitary gland of healthy adult dogs and in those with ACTH-secreting pituitary adenoma. Quantitative polymerase chain reaction analysis showed that the BMP4 messenger RNA expression level in the ACTH-secreting pituitary adenoma samples was significantly lower than that in the normal pituitary gland samples (P = 0.03). However, there were no statistically significant differences between samples with respect to the messenger RNA expression levels of the receptors BMPRIA, BMPRIB, and BMPRII. Double-immunofluorescence analysis of the normal canine pituitary showed that BMP4 was localized in the thyrotroph (51.3 ± 7.3%) and not the corticotroph cells. By contrast, BMPRII was widely expressed in the thyrotroph (19.9 ± 5.2%) and somatotroph cells (94.7 ± 3.6%) but not in the corticotroph cells (P < 0.001, thyrotroph cells vs somatotroph cells). Similarly, in ACTH-secreting pituitary adenoma, BMP4 and BMPRII were not expressed in the corticotroph cells. Moreover, the percentage of BMP4-positive cells was also significantly reduced in the thyrotroph cells of the surrounding normal pituitary tissue obtained from the resected ACTH-secreting pituitary adenoma (8.3 ± 7.9%) compared with that in normal canine pituitary (P < 0.001). BMP4 has been reported to be expressed in corticotroph cells in the human pituitary gland. Therefore, the results of this study reveal a difference in the cellular pattern of BMP4-positive staining in the pituitary gland between humans and dogs and further revealed the pattern of BMPRII-positive staining in the dog pituitary gland. These species-specific differences regarding BMP4 should be considered when using dogs as an animal model for Cushing's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo.

    PubMed

    Mendes, L F; Katagiri, H; Tam, W L; Chai, Y C; Geris, L; Roberts, S J; Luyten, F P

    2018-02-21

    Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units.

  8. Low Bone Mineral Mass Is Associated with Decreased Bone Formation and Diet in Females with Rett Syndrome

    PubMed Central

    Motil, Kathleen J.; Barrish, Judy O.; Neul, Jeffrey L.; Glaze, Daniel G.

    2014-01-01

    Objective To characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of females with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. Methods Total body bone mineral content (BMC) and density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. Results Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z-scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and gender, showed significant positive associations with total body BMD z-scores. Conclusion This study suggests decreased bone formation rather than increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium and phosphorus intakes may offer an opportunity to improve bone health in RTT. PMID:25144778

  9. Reconstruction of segmental bone defect of long bones after tumor resection by devitalized tumor-bearing bone.

    PubMed

    Qu, Huayi; Guo, Wei; Yang, Rongli; Li, Dasen; Tang, Shun; Yang, Yi; Dong, Sen; Zang, Jie

    2015-09-24

    The reconstruction of an intercalary bone defect after a tumor resection of a long bone remains a challenge to orthopedic surgeons. Though several methods have been adopted to enhance the union of long segmental allografts or retrieved segmental autografts to the host bones, still more progresses are required to achieve a better union rate. Several methods have been adopted to devitalize tumor bone for recycling usage, and the results varied. We describe our experiences of using devitalized tumor-bearing bones for the repairing of segmental defects after tumor resection. Twenty-seven eligible patients treated from February 2004 to May 2012 were included. The segmental tumor bone (mean length, 14 cm) was resected, and then devitalized in 20% sterile saline at 65 °C for 30 min after the tumor tissue was removed. The devitalized bone was implanted back into the defect by using nails or plates. Complete healing of 50 osteotomy ends was achieved at a median time of 11 months (interquartile range (IQR) 9-13 months). Major complications included bone nonunion in four bone junctions (7.4%), devitalized bone fracture in one patient (3.7%), deep infection in three patients (11.1%), and fixation failure in two patients (7.4%). The bone union rates at 1 and 2 years were 74.1 and 92.6%, respectively. The average functional score according to the Musculoskeletal Tumor Society (MSTS) 93 scoring system was 93 % (IQR 80-96.7%). Incubation in 20% sterile saline at 65 °C for 30 min is an effective method of devitalization of tumor-bearing bone. The retrieved bone graft may provide as a less expensive alternative for limb salvage. The structural bone and the preserved osteoinductivity of protein may improve bone union.

  10. Improving Bone Formation in a Rat Femur Segmental Defect by Controlling Bone Morphogenetic Protein-2 Release

    DTIC Science & Technology

    2011-04-01

    tissue and polymer: mineralized tissue stained dark green, osteoid and collagen bright red, soft tissue pink to light green, and erythrocytes bright...of bone, soft tissue , and polymer, high-resolution digital images were acquired at 1.25 · or 20 · . The area of interest comprising the bone defect...bone, soft tissue , and polymer (when present) within the defect were quantified using Metamorph software (Molecular Devices, Inc.) and were calculated

  11. The Crosstalk of RAS with the TGF-β Family During Carcinoma Progression and its Implications for Targeted Cancer Therapy

    PubMed Central

    Grusch, M.; Petz, M.; Metzner, T.; Öztürk, D.; Schneller, D.; Mikulits, W.

    2010-01-01

    Both RAS and transforming growth factor (TGF)-β signaling cascades are central in tumorigenesis and show synergisms depending on tumor stage and tissue context. In this review we focus on the interaction of RAS subeffector proteins with signaling components of the TGF-β family including those of TGF-βs, activins and bone morphogenic proteins. Compelling evidence indicates that RAS signaling is essentially involved in the switch from tumor-suppressive to tumor-promoting functions of the TGF-β family leading to enhanced cancer growth and metastatic dissemination of primary tumors. Thus, the interface of these signaling cascades is considered as a promising target for the development of novel cancer therapeutics. The current pharmacological anti-cancer concepts combating the molecular cooperation between RAS and TGF-β family signaling during carcinoma progression are critically discussed. PMID:20718708

  12. Rad GTPase is essential for the regulation of bone density and bone marrow adipose tissue in mice.

    PubMed

    Withers, Catherine N; Brown, Drew M; Byiringiro, Innocent; Allen, Matthew R; Condon, Keith W; Satin, Jonathan; Andres, Douglas A

    2017-10-01

    The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca 2+ channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad -/- calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Absence of bone sialoprotein (BSP) impairs cortical defect repair in mouse long bone.

    PubMed

    Malaval, Luc; Monfoulet, Laurent; Fabre, Thierry; Pothuaud, Laurent; Bareille, Reine; Miraux, Sylvain; Thiaudiere, Eric; Raffard, Gerard; Franconi, Jean-Michel; Lafage-Proust, Marie-Hélène; Aubin, Jane E; Vico, Laurence; Amédée, Joëlle

    2009-11-01

    Matrix proteins of the SIBLING family interact with bone cells and with bone mineral and are thus in a key position to regulate bone development, remodeling and repair. Within this family, bone sialoprotein (BSP) is highly expressed by osteoblasts, hypertrophic chondrocytes and osteoclasts. We recently reported that mice lacking BSP (BSP-/-) have very low trabecular bone turnover. In the present study, we set up an experimental model of bone repair by drilling a 1 mm diameter hole in the cortical bone of femurs in both BSP-/- and +/+ mice. A non-invasive MRI imaging and bone quantification procedure was designed to follow bone regeneration, and these data were extended by microCT imaging and histomorphometry on undecalcified sections for analysis at cellular level. These combined approaches revealed that the repair process as reflected in defect-refilling in the cortical area was significantly delayed in BSP-/- mice compared to +/+ mice. Concomitantly, histomorphometry showed that formation, mineralization and remodeling of repair (primary) bone in the medulla were delayed in BSP-/- mice, with lower osteoid and osteoclast surfaces at day 15. In conclusion, the absence of BSP delays bone repair at least in part by impairing both new bone formation and osteoclast activity.

  14. RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties

    NASA Astrophysics Data System (ADS)

    Li, Cuidi; Jiang, Chuan; Deng, Yuan; Li, Tao; Li, Ning; Peng, Mingzheng; Wang, Jinwu

    2017-01-01

    A major limitation in the development of effective scaffolds for bone regeneration has been the limited vascularization of the regenerating tissue. Here, we propose the development of a novel calcium phosphate cement (CPC)-based scaffold combining the properties of mesoporous silica (MS) with recombinant human bone morphogenic protein-2 (rhBMP-2) to facilitate vascularization and osteogenesis. Specifically, the development of a custom MS/CPC paste allowed the three-dimensional (3D) printing of scaffolds with a defined macroporous structure and optimized silicon (Si) ions release profile to promote the ingrowth of vascular tissue at an early stage after implantation in support of tissue viability and osteogenesis. In addition, the scaffold microstructure allowed the prolonged release of rhBMP-2, which in turn significantly stimulated the osteogenesis of human bone marrow stromal cells in vitro and of bone regeneration in vivo as shown in a rabbit femur defect repair model. Thus, the combination MS/CPC/rhBMP-2 scaffolds might provide a solution to issues of tissue necrosis during the regeneration process and therefore might be able to be readily developed into a useful tool for bone repair in the clinic.

  15. Role of RANKL in bone diseases.

    PubMed

    Anandarajah, Allen P

    2009-03-01

    Bone remodeling is a tightly regulated process of osteoclast-mediated bone resorption, balanced by osteoblast-mediated bone formation. Disruption of this balance can lead to increased bone turnover, resulting in excessive bone loss or extra bone formation and consequent skeletal disease. The receptor activator of nuclear factor kappaB ligand (RANKL) (along with its receptor), the receptor activator of nuclear factor kappaB and its natural decoy receptor, osteoprotegerin, are the final effector proteins of osteoclastic bone resorption. Here, I provide an overview of recent studies that highlight the key role of RANKL in the pathophysiology of several bone diseases and discuss the novel therapeutic approaches afforded by the modulation of RANKL.

  16. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation.

    PubMed

    Schwartz, Z; Mellonig, J T; Carnes, D L; de la Fontaine, J; Cochran, D L; Dean, D D; Boyan, B D

    1996-09-01

    Demineralized freeze-dried bone allograft (DFDBA) has been used extensively in periodontal therapy. The rationale for use of DFDBA includes the fact that proteins capable of inducing new bone; i.e., bone morphogenetic proteins, can be isolated from bone grafts. Commercial bone banks have provided DFDBA to the dental practitioner for many years; however, these organizations have not verified the osteoinductive capacity of their DFDBA preparations. The aim of this study was to determine the ability of commercial DFDBA preparations to induce new bone formation. DFDBA with particle sizes ranging from 200 to 500 microns was received from six bone banks using various bone production methods. Different lots of DFDBA from the same tissue bank were sometimes available. A total of 14 lots were examined. The surface area of bone particles in each sample was measured morphometrically and the pH of a solution containing the particles after suspension in distilled water determined. Samples from each DFDBA lot were implanted intramuscularly (10 mg) or subcutaneously (20 mg) into three different animals and tissue biopsies harvested after 4 weeks. One sample from each tissue bank was implanted and harvested after 8 weeks. At harvest, each area where DFDBA had been implanted was excised and examined by light microscopy. The ability of DFDBA to produce new bone was evaluated and the amount of residual bone particles measured. The results show that bone particles from all tissue banks had a variety of shapes and sizes, both before implantation and after 1 or 2 months of implantation. The pH of particle suspensions also varied between batches, as well as between tissue banks. None of the DFDBA induced new bone formation when implanted subcutaneously. Intramuscular implants from three banks induced new bone formation after 1 and 2 months. DFDBA from two banks caused new bone formation only after 2 months. However, DFDBA from one bank did not induce new bone at all. Particle size before

  17. Phelligridin D-loaded oral nanotube titanium implant enhances osseointegration and prevents osteolysis in rat mandible.

    PubMed

    Kim, Ji-Eun; Takanche, Jyoti Shrestha; Kim, Jeong-Seok; Lee, Min-Ho; Jeon, Jae-Gyu; Park, Il-Song; Yi, Ho-Keun

    2018-04-12

    Poor bone quality and osteolysis are the major causes of implant failure in dentistry. Here, this study tested the effect of phelligridin D-loaded nanotubes titanium (Ti) for bone formation around the dental implants. The purpose of this study was to enhance osseointegration of phelligridin D-loaded implant into the bone for bone formation and prevention of osteolysis. Cell viability, crystal violet staining, Western blot, alizarin red S staining, alkaline phosphatase activity, tartrate-resistant acid phosphatase staining, micro-computed tromography (μ-CT), hematoxylin and eosin (H&E) and immunohistochemical staining were used in vitro and in vivo to test the biocompatibility of phelligridin D. Phelligridin D enhanced osteoblast differentiation and mineralization by increasing bone morphogenic protein-2/7 (BMP-2/7), Osterix, Runx-2, osteoprotegerin (OPG), alkaline phosphatase and inhibited osteoclast differentiation by decreasing receptor activator of nuclear factor kappa-B ligand (RANKL) in MC-3T3 E1 cells. Further, phelligridin D promoted bone regeneration around nanotube Ti implant surface by increasing the levels of BMP-2/7 and OPG in a rat model. Phelligridin D also inhibited osteolysis by suppressing the expression of RANKL. These findings strongly suggest that phelligridin D is a new compound representing a potential therapeutic candidate for implant failure caused by osteolysis and poor bone quality of teeth.

  18. Bone morphogenetic protein antagonist gene NOG is involved in myeloproliferative disease associated with myelofibrosis.

    PubMed

    Andrieux, Joris; Roche-Lestienne, Catherine; Geffroy, Sandrine; Desterke, Christophe; Grardel, Nathalie; Plantier, Isabelle; Selleslag, Dominik; Demory, Jean-Loup; Laï, Jean-Luc; Leleu, Xavier; Le Bousse-Kerdiles, Caroline; Vandenberghe, Peter

    2007-10-01

    In a case with secondary myelofibrosis occurring after essential thrombocythemia, cytogenetic analysis revealed an isolated translocation t(X;17)(q27;q22) in all cells. We found that a bacterial artificial chromosome (BAC) encompassing the breakpoint on chromosome 17 long arm contained only one gene, NOG. We therefore investigated the occurrence of this rare breakpoint in myeloproliferative disorders (MPDs). We identified three more patients with a 17q abnormality in MPDs: myelofibrosis with myeloid metaplasia (MMM); chronic myeloid leukemia positive for t(9;22)(q34;q11) with additional t(4;17)(p15;q22) at diagnosis; and myelofibrosis complicating polycythemia vera. All three cases exhibited a split of BACs containing NOG. The protein encoded by NOG, noggin, acts as an antagonist to bone morphogenetic secreted protein 2 and 4 (BMP2 and BMP4). A comparative analysis of gene expression on Agilent 22K oligonucleotide microarrays in purified CD34+ cells from the blood of MMM patients showed significant downregulation of BMPR2, BMPR1B, BMP2, and BMP8; upregulation of BMP3 and BMP10; and a trend to lower expression of NOG. Thus, given that expression and release of BMPs are important in the induction of osteosclerosis and angiogenic activity, the observed BMP deregulations could be triggered by potential NOG genetic alterations in the four cases here described, and may contribute to the myelofibrotic process characterized by bone marrow stromal reaction including collagen fibrosis, osteosclerosis, and angiogenesis.

  19. Chemical composition and biological value of spray dried porcine blood by-products and bone protein hydrolysate for young chickens.

    PubMed

    Jamroz, D; Wiliczkiewicz, A; Orda, J; Skorupińska, J; Słupczyńska, M; Kuryszko, J

    2011-10-01

    The chemical composition of spray dried porcine blood by-products is characterised by wide variation in crude protein contents. In spray dried porcine blood plasma (SDBP) it varied between 670-780 g/kg, in spray dried blood cells (SDBC) between 830-930 g/kg, and in bone protein hydrolysate (BPH) in a range of 740-780 g/kg. Compared with fish meal, these feeds are poor in Met and Lys. Moreover, in BPH deep deficits of Met, Cys, Thr and other amino acids were found. The experiment comprised 7 dietary treatments: SDBP, SDBC, and BPH, each at an inclusion rate of 20 or 40 g/kg diet, plus a control. The addition of 20 or 40 g/kg of the analysed meals into feeds for very young chickens (1-28 d post hatch) significantly decreased the body weight (BW) of birds. Only the treatments with 40 g/kg of SDBP and SDBC showed no significant difference in BW as compared with the control. There were no significant differences between treatments and type of meal for feed intake, haematocrit and haemoglobin concentrations in blood. Addition of bone protein and blood cell meals to feed decreased the IgG concentration in blood and caused shortening of the femur and tibia bones. However, changes in the mineral composition of bones were not significantly affected by the type of meal used. The blood by-products, which are rich in microelements, improved retention of Ca and Cu only. In comparison to control chickens, significantly better accretion of these minerals was found in treatments containing 20 g/kg of SDBP or 40 g/kg of SDBC. Great variability in apparent ileal amino acid digestibility in chickens was determined. In this respect, some significant differences related to the type of meal fed were confirmed for Asp, Pro, Val, Tyr and His. In general, the apparent ileal digestibility of amino acids was about 2-3 percentage units better in chickens fed on diets containing the animal by products than in control birds.

  20. The effect of locally delivered recombinant human bone morphogenetic protein-2 with hydroxyapatite/tri-calcium phosphate on the biomechanical properties of bone in diabetes-related osteoporosis.

    PubMed

    Liporace, Frank A; Breitbart, Eric A; Yoon, Richard S; Doyle, Erin; Paglia, David N; Lin, Sheldon

    2015-06-01

    Recombinant human bone morphogenetic protein-2 (rhBMP-2) is particularly effective in improving osteogenesis in patients with diminished bone healing capabilities, such as individuals with type 1 diabetes mellitus (T1DM) who have impaired bone healing capabilities and increased risk of developing osteoporosis. This study measured the effects of rhBMP-2 treatment on osteogenesis by observing the dose-dependent effect of localized delivery of rhBMP-2 on biomechanical parameters of bone using a hydroxyapatite/tri-calcium phosphate (HA/TCP) carrier in a T1DM-related osteoporosis animal model. Two different doses of rhBMP-2 (LD low dose, HD high dose) with a HA/TCP carrier were injected into the femoral intramedullary canal of rats with T1DM-related osteoporosis. Two more diabetic rat groups were injected with saline alone and with HA/TCP carrier alone. Radiographs and micro-computed tomography were utilized for qualitative assessment of bone mineral density (BMD). Biomechanical testing occurred at 4- and 8-week time points; parameters tested included torque to failure, torsional rigidity, shear stress, and shear modulus. At the 4-week time point, the LD and HD groups both exhibited significantly higher BMD than controls; at the 8-week time point, the HD group exhibited significantly higher BMD than controls. Biomechanical testing revealed dose-dependent, higher trends in all parameters tested at the 4- and 8-week time points, with minimal significant differences. Groups treated with rhBMP-2 demonstrated improved bone mineral density at both 4 and 8 weeks compared to control saline groups, in addition to strong trends towards improvement of intrinsic and extrinsic biomechanical properties when compared to control groups. Data revealed trends toward dose-dependent increases in peak torque, torsional rigidity, shear stress, and shear modulus 4 weeks after rhBMP-2 treatment. Not applicable.

  1. An in vitro study of fibrin sealant as a carrier system for recombinant human bone morphogenetic protein (rhBMP)-9 for bone tissue engineering.

    PubMed

    Fujioka-Kobayashi, Masako; Mottini, Matthias; Kobayashi, Eizaburo; Zhang, Yufeng; Schaller, Benoit; Miron, Richard J

    2017-01-01

    In the craniofacial bone field, fibrin sealants are used as coagulant and adhesive tools to stabilize grafts during surgery. Despite this, their exact role in osteogenesis is poorly characterized. In the present study, we aimed to characterize the osteogenic potential of TISSEEL fibrin sealant and used its technology to incorporate growth factors within its matrix. We focused on recombinant human bone morphogenetic protein (rhBMP)-9, which has previously been characterized as one of the strongest osteogenetic inducers in the BMP family. TISSEEL displayed an excellent ability to retain rhBMP9, which was gradually released over a 10-day period. Although TISSEEL decreased bone stromal ST2 cell attachment at 8 h, it displayed normal cell proliferation at 1, 3, and 5 days when compared to tissue culture plastic. Interestingly, TISSEEL had little influence on osteoblast differentiation; however its combination with rhBMP9 significantly increased ALP activity at 7 days, Alizarin Red staining at 14 days, and mRNA levels of osteoblast differentiation markers ALP, bone sialoprotein, and osteocalcin. In summary, although fibrin sealants were shown to have little influence on osteogenesis, their combination with bone-inducing growth factors such as rhBMP9 may serve as an attractive carrier/scaffold for future bone regenerative strategies. Future animal studies are now necessary. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. MiRNAs in bone diseases.

    PubMed

    Moore, Benjamin T; Xiao, Peng

    2013-01-01

    MicroRNAs (miRNAs), which mainly inhibit protein expression by targeting the 3'UTR (untranslated region) of mRNAs, are known to play various roles in the pathogenesis of many different types of diseases. Specifically, in bone diseases, recent emphasis has been placed on the involvement of miRNAs in the differentiation and proliferation of bone and cartilage cells, particularly with regards to how these mechanisms contribute to bone homeostasis. In this review, we summarize miRNAs that are important in the differentiation and proliferation of bone cells, and specific miRNAs associated with bone diseases, such as osteoporosis, osteoarthritis and rheumatoid arthritis. This review also provides the perspective that miRNA studies will identify not only new mechanisms in basic bone research, but also potential novel diagnostic biomarkers and drug targets for bone diseases.

  3. Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive G{sub s}–G protein signaling in osteoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wattanachanya, Lalita, E-mail: lalita_md@yahoo.com; Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok; Wang, Liping, E-mail: lipingwang05@yahoo.com

    G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active G{sub s}-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced G{sub s} signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated G{sub s} G protein-coupled receptor signaling, at the cellularmore » level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of G{sub s}-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of G{sub s} signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to G{sub s} signaling in mature OBs. - Highlights: • OB expression of an engineered G{sub s}-coupled receptor dramatically increases bone mass. • We investigated the changes in gene expression in vivo in enhanced OB G{sub s} signaling. • Genes in cell cycle and transcription were

  4. Influence of surface features of hydroxyapatite on the adsorption of proteins relevant to bone regeneration.

    PubMed

    Fernández-Montes Moraleda, Belén; San Román, Julio; Rodríguez-Lorenzo, Luís M

    2013-08-01

    Protein-surface interaction may determine the success or failure of an implanted device. Not much attention have been paid to the specific surface parametes of hydroxyapatite (OHAp) that modulates and determines the formation and potential activity of the layer of proteins that is first formed when the material get in contact with the host tissue. the influence of specific surface area (SSA), crystallite size (CS) and particle size (PS) of OHAp on the adsorption of proteins relevant for bone regeneration is evaluated in this article. OHAp have been prepared by a wet chemical reaction of Ca(OH)2 with H3PO4. One set of reactions included poly acrylic acid in the reactant solution to modify the properties of the powder. Fibrinogen (Fg) Fraction I, type I: from Human plasma, (67% Protein), and Fibronectin (Fn) from Human plasma were selected to perform the adsorption experiments. The analysis of protein adsorption was carried out by UV/Vis spectrometry. A lower SSA and a different aspect ratio are obtained when the acrylic acid is included in the reaction badge. The deconvolution of the amide I band on the Raman spectra of free and adsorbed proteins reveals that the interaction apatite-protein happens through the carboxylate groups of the proteins. The combined analysis of CS, SSA and PS should be considered on the design of OHAp materials intended to interact with proteins. Copyright © 2013 Wiley Periodicals, Inc.

  5. Computational segmentation of collagen fibers in bone matrix indicates bone quality in ovariectomized rat spine.

    PubMed

    Daghma, Diaa Eldin S; Malhan, Deeksha; Simon, Paul; Stötzel, Sabine; Kern, Stefanie; Hassan, Fathi; Lips, Katrin Susanne; Heiss, Christian; El Khassawna, Thaqif

    2018-05-01

    Bone loss varies according to disease and age and these variations affect bone cells and extracellular matrix. Osteoporosis rat models are widely investigated to assess mechanical and structural properties of bone; however, bone matrix proteins and their discrepant regulation of diseased and aged bone are often overlooked. The current study considered the spine matrix properties of ovariectomized rats (OVX) against control rats (Sham) at 16 months of age. Diseased bone showed less compact structure with inhomogeneous distribution of type 1 collagen (Col1) and changes in osteocyte morphology. Intriguingly, demineralization patches were noticed in the vicinity of blood vessels in the OVX spine. The organic matrix structure was investigated using computational segmentation of collagen fibril properties. In contrast to the aged bone, diseased bone showed longer fibrils and smaller orientation angles. The study shows the potential of quantifying transmission electron microscopy images to predict the mechanical properties of bone tissue.

  6. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.

    PubMed

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-07-15

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  7. Combination therapy of canine osteosarcoma with canine bone marrow stem cells, bone morphogenetic protein and carboplatin in an in vivo model.

    PubMed

    Rici, R E G; Will, S E A L; Luna, A C L; Melo, L F; Santos, A C; Rodrigues, R F; Leandro, R M; Maria, D A

    2018-05-20

    Osteosarcoma (OSA) is the most common malignant bone cancer in children and dogs. The therapeutic protocols adopted for dogs and humans are very similar, involving surgical options such as amputation. Besides surgical options, radiotherapy and chemotherapy also are adopted. However, hematologic, gastrointestinal and renal toxicity may occur because of chemotherapy treatments. Recent study clearly showed that mesenchymal stem cells (MSCs) combined with recombinant human bone morphogenetic protein (rhBMP-2) may be associated with decreases of the tumorigenic potential of canine OSA. The aim of this study was to analyse the efficacy of chemotherapy with carboplatin and rhBMP-2 with MSCs in a canine OSA in vivo model. Canine OSA cells were implanted in mice Balb-c/nude with MSCs, rhBMP-2 and carboplatin. Flow cytometry and PCR for markers involved in tumour suppression pathways were analysed. Results showed that the combination of MSCs and rhBMP-2 reduced tumour mass and infiltration of neoplastic cells in tissues more efficiently than carboplatin alone. Thus it was demonstrated that the use of rhBMP-2 and MSCs, in combination with conventional antineoplastic, may be an efficient treatment strategy. © 2018 John Wiley & Sons Ltd.

  8. The effect of gastrostomy tube feeding on body protein and bone mineralization in children with quadriplegic cerebral palsy.

    PubMed

    Arrowsmith, Fiona; Allen, Jane; Gaskin, Kevin; Somerville, Helen; Clarke, Samantha; O'Loughlin, Edward

    2010-11-01

    The aim of this study was to investigate the effect of gastrostomy tube feeding on body protein and bone mineralization in malnourished children with cerebral palsy (CP). Children aged between 4 and 18 years with spastic quadriplegic CP (Gross Motor Function Classification System level V) were recruited from the Children's Hospital at Westmead to participate in this prospective cohort study. The children had measurements of anthropometry (weight, height, and skinfold), bone mineral content (BMC) by dual-energy X-ray absorptiometry, and total body protein (TBP) by neutron activation analysis before and after gastrostomy tube feeding. Comparison data were collected prospectively from age-matched healthy children and extracted from databases for this study. A total of 21 children (nine females, 12 males) participated in the study (median age 8 y 5 mo; interquartile range [IQR] 6 y 9 mo-11 y 10 mo). The median length of time of gastrostomy feeding was 19.4 months (IQR 7.7-29.9 mo). Significant (p<0.05) improvements were found in the median values for weight (15.4-23.3 kg), weight standard deviation scores (SDS; -4.8 to -3.0), height (105.4-118.3 cm), per cent body fat (10.7-16.3), TBP (2.4-3.4 kg), TBP per cent predicted for height (83.4-99.0), and BMC (469-626 g). No significant increases were found in height SDS, TBP per cent predicted for age, or BMC SDS for age or height. Malnourished children with quadriplegic CP showed significant increases in body fat and protein with gastrostomy tube feeding. No significant change in bone mineralization predicted for age or height was observed. © The Authors. Journal compilation © Mac Keith Press 2010.

  9. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring.

    PubMed

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2016-04-01

    The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure. © 2016 John Wiley & Sons Australia, Ltd.

  10. Transdifferentiation of myoblasts into osteoblasts - possible use for bone therapy.

    PubMed

    Lin, Daphne P L; Carnagarin, Revathy; Dharmarajan, Arun; Dass, Crispin R

    2017-12-01

    Transdifferentiation is defined as the conversion of one cell type to another and is an ever-expanding field with a growing number of cells found to be capable of such a process. To date, the fact remains that there are limited treatment options for fracture healing, osteoporosis and bone repair post-destruction by bone tumours. Hence, this review focuses on the transdifferentiation of myoblast to osteoblast as a means to further understand the transdifferentiation process and to investigate a potential therapeutic option if successful. The potent osteoinductive effects of the bone morphogenetic protein-2 are largely implicated in the transdifferentiation of myoblast to osteoblast. Bone morphogenetic protein-2-induced activation of the Smad1 protein ultimately results in JunB synthesis, the first transcriptional step in myoblast dedifferentiation. The upregulation of the activating protein-1 binding activity triggers the transcription of the runt-related transcription factor 2 gene, a transcription factor that plays a major role in osteoblast differentiation. This potential transdifferentiation treatment may be utilised for dental implants, fracture healing, osteoporosis and bone repair post-destruction by bone tumours. © 2017 Royal Pharmaceutical Society.

  11. Randomized, controlled clinical two-centre study using xenogeneic block grafts loaded with recombinant human bone morphogenetic protein-2 or autogenous bone blocks for lateral ridge augmentation.

    PubMed

    Thoma, Daniel S; Payer, Michael; Jakse, Norbert; Bienz, Stefan P; Hüsler, Jürg; Schmidlin, Patrick R; Jung, Ui-Won; Hämmerle, Christoph H F; Jung, Ronald E

    2018-02-01

    To test whether or not the use of a xenogeneic block loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) results in different bone quantity and quality compared to an autogenous bone block. Twenty-four patients with insufficient bone volume for implant placement were randomly assigned to two treatment modalities: a xenogeneic bone block loaded with rhBMP-2 (test) and an autogenous bone block (control). The horizontal ridge width was evaluated prior to augmentation, after augmentation and at 4 months. Patient-reported outcome measures (PROMs) were assessed at suture removal and at 4 months. Biopsies were obtained at 4 months and histologically evaluated. Intergroup comparisons were tested by a two-sided Wilcoxon-Mann-Whitney test, intra-group comparisons were performed with Wilcoxon-signed rank test, and all categorical variables were tested with Chi-squared tests. One autogenous bone block failed. This patient was replaced, and in all subsequently treated 24 patients, implant placement was possible 4 months later. The median ridge width increased from 4.0 mm (Q1 = 2.0; Q3 = 4.0) (test) and 2.0 mm (Q1 = 2.0; Q3 = 3.0) (control) to 7.0 mm (Q1 = 6.0; Q3 = 8.0) (test) and 7.0 mm (Q1 = 6.0; Q3 = 8.0) (control) at 4 months (intergroup p > .05). A higher morbidity was reported at the augmented site in the control group during surgery. Sensitivity was more favourable in the test than that in the control group at 4 months. The biopsies revealed more mineralized tissue in the control group (p < .0043). Both treatment modalities were successful in regenerating bone to place dental implants. PROMs did not reveal any significant differences between the groups except for pain during surgery at the recipient site (in favour of the test group). Histologically, a higher amount of mineralized tissue was observed for the control group at 4 months. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Immunohistochemical localization of bone morphogenetic proteins and the receptors in epiphyseal growth plate.

    PubMed

    Yazaki, Y; Matsunaga, S; Onishi, T; Nagamine, T; Origuchi, N; Yamamoto, T; Ishidou, Y; Imamura, T; Sakou, T

    1998-01-01

    The expression of bone morphogenetic proteins (BMPs) and BMP receptors (BMPRs) in the epiphyseal growth plate has not been clarified. In this study, we studied immunohistochemically the spatial and temporal localization of BMP-2/4, osteogenic protein-1 (OP-1, or BMP-7), and BMP receptors (BMPR-IA, BMPR-IB, and BMPR-II) in the epiphyseal plate of growing rats. The proximal parts of tibia in growing rats were observed. At 12 weeks after birth, BMP-2/4 and OP-1 were expressed markedly in proliferating and maturing chondrocytes. BMPR-IA, IB and II were clearly co-expressed in proliferating and maturing chondrocytes, and the expression was decreased in hypertrophic chondrocytes. At 24 weeks, the expression of BMP-2/4 and OP-1 was decreased, but BMPRs were still well-expressed in proliferating chondrocytes. The temporal and spatial expression of BMP and BMPR suggests that BMP and BMP receptors play roles in the multistep cascade of enchondral ossification in the epiphyseal growth plate.

  13. Repulsive Guidance Molecule is a structural bridge between Neogenin and Bone Morphogenetic Protein

    PubMed Central

    Healey, Eleanor G.; Bishop, Benjamin; Elegheert, Jonathan; Bell, Christian H.; Padilla-Parra, Sergi; Siebold, Christian

    2015-01-01

    Repulsive guidance molecules (RGMs) control crucial processes spanning cell motility, adhesion, immune cell regulation and systemic iron metabolism. RGMs signal via two fundamental signaling cascades: the Neogenin (NEO1) and the Bone Morphogenetic Protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a novel protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the ternary BMP2–RGM–NEO1 complex crystal structure, which combined with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM–NEO1 complex. Our results show how RGM acts as the central hub linking BMP and NEO1 and physically connecting these fundamental signaling pathways. PMID:25938661

  14. Kinetic characterization of the deproteinization of trabecular and cortical bovine femur bones.

    PubMed

    Castro-Ceseña, Ana B; Sánchez-Saavedra, M Pilar; Novitskaya, Ekaterina E; Chen, Po-Yu; Hirata, Gustavo A; McKittrick, Joanna

    2013-12-01

    The present study proposes an interpretation of the mechanism of bone deproteinization. Cortical and trabecular bovine femur bones were deproteinized using 6% NaOCl (37, 50, 60°C). The kinetic parameters (rate constant and activation energy) were calculated, and the surface area of each type of bone was considered. A statistical analysis of the rate constants shows that cortical bone deproteinizes at a lower rate than trabecular. The activation energy is higher for trabecular than cortical bone, and no significant differences are found in the protein concentration values for both bones. Therefore, although trabecular bone deproteinizes at a higher rate than cortical, trabecular bone requires more energy for the deproteinization reaction to take place. Considering that both types of bones are constituted by mineral, protein, and water; the present work shows that the individual inner matrix architecture of trabecular and cortical bones, along with characteristics such as the mineral concentration and its bonding with collagen fibers, may be the responsible factors that control protein depletion. © 2013.

  15. Recombinant human bone morphogenetic protein-2 for grade III open segmental tibial fractures from combat injuries in Iraq.

    PubMed

    Kuklo, T R; Groth, A T; Anderson, R C; Frisch, H M; Islinger, R B

    2008-08-01

    This is a retrospective consecutive case series of 138 Gustillo-Anderson type IIIB and IIIC segmental tibial fractures treated at Walter Reed Army Medical Center in soldiers injured in Iraq between March 2003 and March 2005. Five patients with a head injury and four who were lost to follow-up were excluded. The patients were treated definitively with either a ringed external fixator or a reamed intramedullary nail, evaluated in terms of supplementary bone grafting with either autogenous bone (group 1, 67 patients) or recombinant human bone morphogenetic protein-2 at 1.50 mg/ml applied to an absorbable collagen sponge (group 2, 62 patients). The mechanism of injury, defect size and classification, associated injuries, presence of infection, preliminary treatment/fixation, number of procedures before definitive management, time to and details of definitive management, subsequent infection, re-operation, smoking history and other complications were noted. Radiographs were assessed for union, delayed union or nonunion by an independent investigator. All the patients were male. Their mean age was 26.6 years (20 to 42) and the mean follow-up was for 15.6 months (12 to 32). Group 2 had a slightly higher profile of concomitant injuries and a slightly worse fracture classification, but these were not significant. The rate of union was 76% (51 of 67) for group 1 and 92% for group 2 (57 of 62; p = 0.015). There was also a higher rate of subsequent infection in group 1 (14.9%) compared with group 2 (3.2%; p = 0.001) and a higher rate of re-operation (28%) in group 1 (p = 0.003). There were no observed hypersensitivity reactions to the recombinant human bone morphogenetic protein-2 implant.

  16. Effect of Daily Exposure to an Isolated Soy Protein Supplement on Body Composition, Energy and Macronutrient Intake, Bone Formation Markers, and Lipid Profile in Children in Colombia.

    PubMed

    Mejía, Wilson; Córdoba, Diana; Durán, Paola; Chacón, Yersson; Rosselli, Diego

    2018-01-16

    A soy protein-based supplement may optimize bone health, support physical growth, and stimulate bone formation. This study aimed to assess the effect of a daily soy protein supplement (SPS) on nutritional status, bone formation markers, lipid profile, and daily energy and macronutrient intake in children. One hundred seven participants (62 girls), ages 2 to 9, started the study and were randomly assigned to lunch fruit juice with (n = 57, intervention group) or without (n = 50, control group) addition of 45 g (230 Kcal) of a commercial SPS during 12 months; 84 children (51 girls, 33 boys) completed the study (45 and 39 intervention and control, respectively). Nutritional assessment included anthropometry and nutrient intakes; initial and final blood samples were taken; insulin-like growth factor-I (IGF-I), osteocalcin, bone specific alkaline phosphatase (BAP), insulin-like growth factor binding protein-3 (IGFBP-3), cholesterol, triglycerides, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were analyzed. Statistically significant changes (p < .05) in body mass index and weight for age Z scores were observed between groups while changes in body composition were not. Changes in energy, total protein, and carbohydrate intakes were significantly higher in the intervention group (p < .01). Calorie intake changes were statistically significant between groups (p < .001), and BAP decreased in both groups, with values within normal ranges. Osteocalcin, IGFBP-3, and lipid profile were not different between groups. IGF-I levels and IGF/IGFBP-3 ratio increased significantly in both groups. In conclusion, changes in macronutrient and energy intake and nutritional status in the intervention group compared to control group may ensure harmonious and adequate bone health and development.

  17. Orthobiologics in the augmentation of osteoporotic fractures.

    PubMed

    Watson, J Tracy; Nicolaou, Daemeon A

    2015-02-01

    Many orthobiologic adjuvants are available and widely utilized for general skeletal restoration. Their use for the specific task of osteoporotic fracture augmentation is less well recognized. Common conductive materials are reviewed for their value in this patient population including the large group of allograft adjuvants categorically known as the demineralized bone matrices (DBMs). Another large group of alloplastic materials is also examined-the calcium phosphate and sulfate ceramics. Both of these materials, when used for the proper indications, demonstrate efficacy for these patients. The inductive properties of bone morphogenic proteins (BMPs) and platelet concentrates show no clear advantages for this group of patients. Systemic agents including bisphosphonates, receptor activator of nuclear factor κβ ligand (RANKL) inhibitors, and parathyroid hormone augmentation all demonstrate positive effects with this fracture cohort. Newer modalities, such as trace ion bioceramic augmentation, are also reviewed for their positive effects on osteoporotic fracture healing.

  18. Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients.

    PubMed

    Alonso, Nivaldo; Tanikawa, Daniela Yukie Sakai; Freitas, Renato da Silva; Canan, Lady; Ozawa, Terumi Okada; Rocha, Diógenes Laércio

    2010-10-01

    A resorbable collagen matrix with recombinant human bone morphogenetic protein (rhBMP-2) was compared with traditional iliac crest bone graft for the closure of alveolar defects during secondary dental eruption. Sixteen patients with unilateral cleft lip and palate, aged 8 to 12 years, were selected and randomly assigned to group 1 (rhBMP-2) or group 2 (iliac crest bone graft). Computed tomography was performed to assess both groups preoperatively and at months 6 and 12 postoperatively. Bone height and defect volume were calculated through Osirix Dicom Viewer (Pixmeo, Apple Inc.). Overall morbidity was recorded. Preoperative and follow-up examinations revealed progressive alveolar bone union in all patients. For group 1, final completion of the defect with a 65.0% mean bone height was detected 12 months postoperatively. For group 2, final completion of the defect with an 83.8% mean bone height was detected 6 months postoperatively. Dental eruption routinely occurred in both groups. Clinical complications included significant swelling in three group 1 patients (37.5%) and significant donor-site pain in seven group 2 patients (87.5%). For this select group of patients with immature skeleton, rhBMP-2 therapy resulted in satisfactory bone healing and reduced morbidity compared with traditional iliac crest bone grafting.

  19. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children

    PubMed Central

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata

    2018-01-01

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers—bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)—were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP (p = 0.002) and CTX-I (p = 0.027), and slightly lower spine BMC (p = 0.067) and BMD (p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities. PMID:29414859

  20. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children.

    PubMed

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna

    2018-02-07

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers-bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)-were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP ( p = 0.002) and CTX-I ( p = 0.027), and slightly lower spine BMC ( p = 0.067) and BMD ( p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities.

  1. Bone Tissue Engineering with Premineralized Silk Scaffolds

    PubMed Central

    Kim, Hyeon Joo; Kim, Ung-Jin; Kim, Hyun Suk; Li, Chunmei; Wada, Masahisa; Leisk, Gary G.; Kaplan, David L.

    2009-01-01

    Silks fibroin biomaterials are being explored as novel protein-based systems for cell and tissue culture. In the present study, biomimetic growth of calcium phosphate on porous silk fibroin polymeric scaffolds was explored to generate organic/inorganic composites as scaffolds for bone tissue engineering. Aqueous-derived silk fibroin scaffolds were prepared with the addition of polyaspartic acid during processing, followed by the controlled deposition of calcium phosphate by exposure to CaCl2 and Na2HPO4. These mineralized protein-composite scaffolds were subsequently seeded with human bone marrow stem cells (hMSC) and cultured in vitro for 6 weeks under osteogenic conditions with or without BMP-2. The extent of osteoconductivity was assessed by cell numbers, alkaline phosphatase and calcium deposition, along with immunohistochemistry for bone related outcomes. The results suggest increased osteoconductive outcomes with an increase in initial content of apatite and BMP-2 in the silk fibroin porous scaffolds. The premineralization of these highly porous silk fibroin protein scaffolds provided enhanced outcomes for the bone tissue engineering. PMID:18387349

  2. A poly(lactide-co-glycolide) film loaded with abundant bone morphogenetic protein-2: A substrate-promoting osteoblast attachment, proliferation, and differentiation in bone tissue engineering.

    PubMed

    Qu, Xiangyang; Cao, Yujiang; Chen, Cong; Die, Xiaohong; Kang, Quan

    2015-08-01

    We explored a novel biodegradable poly(lactide-co-glycolide) (PLGA) film loaded with over 80 wt % bone morphogenetic protein (BMP)-2, which was regarded as a substrate-promoting osteoblast attachment, proliferation, and differentiation for application of bone tissue engineering. Using phospholipid as a surfactant, BMP-2 was modified as a complex (PBC) for dispersing in PLGA/dichloromethane solution. The PLGA film loaded with BMP-2 and phospholipid complex (PBC-PF) showed rough and draped morphology with high entrapment efficiency exceeding 80% and good hydrophilicity, respectively. The in vitro release study of BMP-2 showed that about 50% BMP-2 was slowly and continuously released from PBC-PF within 5 weeks and had a short initial burst release only in the last 1.5 days, which was better than serious burst release of PLGA film loaded with pure BMP-2 without phospholipid (BMP-PF) as control. By comparison with other PLGA films and tissue culture plates, it was confirmed that PBC-PF significantly promoted the attachment, proliferation, and differentiation of osteoblasts with higher entrapment efficiency and better sustained release. These advantages illustrated that PBC-PF could be a potential substrate providing long-term requisite growth factors for osteoblasts, which might be applied in bone tissue engineering. © 2015 Wiley Periodicals, Inc.

  3. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    NASA Technical Reports Server (NTRS)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  4. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering.

    PubMed

    Bastami, Farshid; Paknejad, Zahrasadat; Jafari, Maissa; Salehi, Majid; Rezai Rad, Maryam; Khojasteh, Arash

    2017-03-01

    Fabrication of an ideal scaffold having proper composition, physical structure and able to have sustained release of growth factors still is challenging for bone tissue engineering. Current study aimed to design an appropriate three-dimensional (3-D) scaffold with suitable physical characteristics, including proper compressive strength, degradation rate, porosity, and able to sustained release of bone morphogenetic protein-2 (BMP2), for bone tissue engineering. A highly porous 3-D β-tricalcium phosphate (β-TCP) scaffolds, inside of which two perpendicular canals were created, was fabricated using foam-casting technique. Then, scaffolds were coated with gelatin layer. Next, BMP2-loaded chitosan (CS) nanoparticles were dispersed into collagen hydrogel and filled into the scaffold canals. Physical characteristics of fabricated constructs were evaluated. Moreover, the capability of given construct for bone regeneration has been evaluated in vitro in interaction with human buccal fat pad-derived stem cells (hBFPSCs). The results showed that gelatin-coated TCP scaffold with rhBMP2 delivery system not only could act as a mechanically and biologically compatible framework, but also act as an osteoinductive graft by sustained delivering of rhBMP2 in a therapeutic window for differentiation of hBFPSCs towards the osteoblast lineage. The proposed scaffold model can be suggested for delivering of cells and other growth factors such as vascular endothelial growth factor (VEGF), alone or in combination, for future investigations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Survey of the Effectiveness of Internet Information on Patient Education for Bone Morphogenetic Protein.

    PubMed

    Huang, Meng; Briceño, Valentina; Lam, Sandi K; Luerssen, Thomas G; Jea, Andrew

    2016-03-01

    In light of recent reports of potential short- and long-term complications of bone morphogenetic protein (BMP) and increasing "off-label" use among spine surgeons, we wished to analyze online information on BMP and its controversial uses, as patients frequently search the Internet for medical information, even though the quality and accuracy of available information are highly variable. Between December 2014 and January 2015, we conducted a Google search to identify the 50 most accessed websites providing BMP information using the search phrase "bone morphogenetic protein." Websites were classified based on authorship. Each website was examined for the provision of appropriate patient inclusion and exclusion criteria, surgical and nonsurgical treatment alternatives, purported benefits, disclosure of common and potential complications, peer-reviewed literature citations, and discussion of off-label use. Two percent of websites were authored by private medical groups, 2% by academic medical groups, 10% by insurance companies, 16% by biomedical industries, 4% by news sources, 0% by lawyers, and 66% by others. Sixty-two percent referenced peer-reviewed literature. Benefits and complications were reported in 44% and 26% of websites, respectively. Surgical and nonsurgical treatment alternatives were mentioned in 16% and 4% of websites, respectively. Discussion of off-label BMP use occurred in 18% of websites. Our study showed the ineffectiveness of the Internet in reporting quality information on BMP use. We found that websites authored by insurance companies provide an acceptable foundation for patient education. This, however, cannot replace the need for a thorough dialogue between doctor and patient about risks, benefits, and indications. Copyright © 2016. Published by Elsevier Inc.

  6. Effects of Resistive Vibration Exercise Combined with Whey Protein and KHCO3 on Bone Tturnover Markers in Head-down Tilt Bed Rest (MTBR-MNX Study)

    NASA Technical Reports Server (NTRS)

    Graf, Sonja; Baecker, Natalie; Buehlmeier, Judith; Fischer, Annelie; Smith, Scott M.; Heer, Martina

    2014-01-01

    High protein intake further increases bone resorption markers in head-down tilt bed rest (HDBR), most likely induced by low-grade metabolic acidosis. Adding an alkaline salt to a diet with high protein content prevents this additional rise of bone resorption markers in HDBR. In addition, high protein intake, specifically whey protein, increases muscle protein synthesis and improves glucose tolerance, which both are affected by HDBR. Resistive vibration exercise (RVE) training counteracts the inactivity-induced bone resorption during HDBR. To test the hypothesis that WP plus alkaline salt (KHCO3) together with RVE during HDBR will improve bone turnover markers, we conducted a randomized, three-campaign crossover design study with 12 healthy, moderately fit male subjects (age 34+/-8 y, body mass [BM] 70 +/- 8 kg). All study campaigns consisted of a 7-d ambulatory period, 21days of -6 deg. head-down tilt bed rest (HDBR), and a 6-d recovery period. Diet was standardized and identical across phases. In the control (CON) campaign, subjects received no supplement or RVE. In the intervention campaigns, subjects received either RVE alone or combined with WP and KHCO3 (NEX). WP was applied in 3 doses per day of 0.6 g WP/kg BM together with 6 doses of 15 mmol KHCO3 per day. Eleven subjects completed the RVE and CON campaign, 8 subjects completed all three campaigns. On day 21 of HDBR excretion of the bone resorption marker C-telopeptide (CTX) was 80+/-28% (p<0.001) higher than baseline, serum calcium concentrations increased by 12 +/- 29% (p<0.001) and serum osteocalcin concentrations decreased by 6+/-12% (p=0.001). Urinary CTX excretion was 11+/- 25% (p=0.02) lower on day 21 of HDBR in the RVE- and tended to decrease by 3+/- 22% (p=0.06) in the NEX campaign compared to CON. Urinary calcium excretion was higher on day 21 in HDBR in the RVE and NEX (24+/- 43% p=0.01; 25+/- 37% p=0.03) compared to the CON campaign. We conclude that combination of RVE with WP/KHCO3 was not

  7. Crestal Sinus Augmentation with Recombinant Human Bone Morphogenetic Protein 2: Clinical and Radiographic Outcomes of 2-Year Pilot Trial.

    PubMed

    Kuchler, Ulrike; Rudelstorfer, Claudia M; Barth, Barbara; Tepper, Gabor; Lidinsky, Dominika; Heimel, Patrick; Watzek, Georg; Gruber, Reinhard

    Recombinant human bone morphogenetic protein 2 (rhBMP-2) together with an absorbable collagen carrier (ACS) was approved for augmentation of the maxillary sinus prior to implant placement. The original registration trial was based on a lateral window approach. Clinical outcomes of crestal sinus augmentation with rhBMP-2 have not been reported so far. An uncontrolled pilot trial in which seven patients with a residual maxillary height below 5 mm were enrolled to receive crestal sinus augmentation with rhBMP-2/ACS was conducted. Elevation of the sinus mucosa was performed by gel pressure. Primary endpoints were the gain in augmentation height and volume measured by computed tomography after 6 months. Evaluation of bone quality at the time of implant placement was based on histology. Secondary endpoints were the clinical and radiologic evaluation of the implants and patient satisfaction by visual analog scale (VAS) at the 2-year follow-up. Median gain in augmentation height was 7.2 mm (range 0.0 to 17.5 mm). Five patients gained at least 5 mm of bone height. Two patients with a perforation of the sinus mucosa failed to respond to rhBMP-2/ACS and underwent lateral window augmentation. The median gain in augmentation volume of the five patients was 781.3 mm³ (range 426.9 to 1,242.8 mm³). Biopsy specimens showed a cancellous network consisting of primary plexiform bone with little secondary lamellar bone. After 2 years, implants were in function with no signs of inflammation or peri-implant bone loss. Patients were satisfied with the esthetic outcomes and chewing function. This pilot clinical trial supports the original concept that rhBMP-2/ACS supports bone formation, also in crestal sinus augmentation, and emphasizes the relevance of the integrity of the sinus mucosa to predict the bone gain.

  8. Appliance-induced osteopenia of dentoalveolar bone in the rat: effect of reduced bone strains on serum bone markers and the multifunctional hormone leptin.

    PubMed

    Vinoth, Jayaseelan K; Patel, Kaval J; Lih, Wei-Song; Seow, Yian-San; Cao, Tong; Meikle, Murray C

    2013-12-01

    To understand, in greater detail, the molecular mechanisms regulating the complex relationship between mechanical strain and alveolar bone metabolism during orthodontic treatment, passive cross-arch palatal springs were bonded to the maxillary molars of 6-wk-old rats, which were killed after 4 and 8 d. Outcome measures included serum assays for markers of bone formation and resorption and for the multifunctional hormone leptin, and histomorphometry of the inter-radicular bone. The concentration of the bone-formation marker alkaline phosphatase (ALP) was significantly reduced at both time points in the appliance group, accompanied by a 50% reduction in inter-radicular bone volume; however, osteocalcin (bone Gla protein) levels remained unaffected. Bone collagen deoxypyridinoline (DPD) crosslinks increased 2.3-fold at 4 d only, indicating a transient increase in bone resorption; in contrast, the level of the osteoclast-specific marker, tartrate-resistant acid phosphatase 5b (TRACP 5b), was unchanged. Leptin levels closely paralleled ALP reductions at both time points, suggesting an important role in the mechanostat negative-feedback loop required to normalize bone mass. These data suggest that an orthodontic appliance, in addition to remodeling the periodontal ligament (PDL)-bone interface, may exert unexpected side-effects on the tooth-supporting alveolar bone, and highlights the importance of recognizing that bone strains can have negative, as well as positive, effects on bone mass. © 2013 Eur J Oral Sci.

  9. 3D printed hyperelastic "bone" scaffolds and regional gene therapy: A novel approach to bone healing.

    PubMed

    Alluri, Ram; Jakus, Adam; Bougioukli, Sofia; Pannell, William; Sugiyama, Osamu; Tang, Amy; Shah, Ramille; Lieberman, Jay R

    2018-04-01

    The purpose of this study was to evaluate the viability of human adipose-derived stem cells (ADSCs) transduced with a lentiviral (LV) vector to overexpress bone morphogenetic protein-2 (BMP-2) loaded onto a novel 3D printed scaffold. Human ADSCs were transduced with a LV vector carrying the cDNA for BMP-2. The transduced cells were loaded onto a 3D printed Hyperelastic "Bone" (HB) scaffold. In vitro BMP-2 production was assessed using enzyme-linked immunosorbent assay analysis. The ability of ADSCs loaded on the HB scaffold to induce in vivo bone formation in a hind limb muscle pouch model was assessed in the following groups: ADSCs transduced with LV-BMP-2, LV-green fluorescent protein, ADSCs alone, and empty HB scaffolds. Bone formation was assessed using radiographs, histology and histomorphometry. Transduced ADSCs BMP-2 production on the HB scaffold at 24 hours was similar on 3D printed HB scaffolds versus control wells with transduced cells alone, and continued to increase after 1 and 2 weeks of culture. Bone formation was noted in LV-BMP-2 animals on plain radiographs at 2 and 4 weeks after implantation; no bone formation was noted in the other groups. Histology demonstrated that the LV-BMP-2 group was the only group that formed woven bone and the mean bone area/tissue area was significantly greater when compared with the other groups. 3D printed HB scaffolds are effective carriers for transduced ADSCs to promote bone repair. The combination of gene therapy and tissue engineered scaffolds is a promising multidisciplinary approach to bone repair with significant clinical potential. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1104-1110, 2018. © 2018 Wiley Periodicals, Inc.

  10. Synergistic effects of fibronectin and bone morphogenetic protein on the bioactivity of titanium metal.

    PubMed

    Biao, M N; Chen, Y M; Xiong, S B; Wu, B Y; Yang, B C

    2017-09-01

    To improve the biological properties of bioactive titanium metal, recombinant human bone morphogenetic protein 2(rhBMP-2) and fibronectin (Fn) were adsorbed on its surface solely or contiguously to modify the anodic oxidized titanium (AO-Ti), acid-alkali-treated titanium (AA-Ti), and polished titanium (P-Ti). It is found that the different bioactive titanium surface structures had great influence on protein adsorption. The adsorption amounts of BMP adsorbed solely and Fn/BMP adsorbed contiguously were AA-Ti > P-Ti > AO-Ti, and that for Fn adsorbed solely was AA-Ti ≈ P-Ti > AO-Ti. The conformation of proteins was changed remarkably after the adsorption. For BMP, the α-helix decreased on AA-Ti and stabilized on P-Ti and AO-Ti. For Fn, the β-sheet on PT-Ti and AA-Ti increased significantly. For Fn/BMP, the percentage of β-sheet on AA-Ti increased, and that of α-helix on all samples was stable. MSCs showed greater adhesion and spreading on Fn/BMP groups. MTT and Elisa tests showed that the synergistic effects of proteins made the cells proliferate and differentiate faster. It indicated both the surface structure and the synergistic effects of proteins could influence the biological properties of titanium metals. It provides research foundation for improving the biological properties of bioactive titanium metals by simultaneous application of several proteins. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2485-2498, 2017. © 2017 Wiley Periodicals, Inc.

  11. CHIP regulates bone mass by targeting multiple TRAF family members in bone marrow stromal cells.

    PubMed

    Wang, Tingyu; Li, Shan; Yi, Dan; Zhou, Guang-Qian; Chang, Zhijie; Ma, Peter X; Xiao, Guozhi; Chen, Di

    2018-01-01

    Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in different cellular functions. Our previous studies demonstrated that Chip deficient mice display bone loss phenotype due to increased osteoclast formation through enhancing TRAF6 activity in osteoclasts. In this study we provide novel evidence about the function of CHIP. We found that osteoblast differentiation and bone formation were also decreased in Chip KO mice. In bone marrow stromal (BMS) cells derived from Chip -/- mice, expression of a panel of osteoblast marker genes was significantly decreased. ALP activity and mineralized bone matrix formation were also reduced in Chip- deficient BMS cells. We also found that in addition to the regulation of TRAF6, CHIP also inhibits TNFα-induced NF-κB signaling through promoting TRAF2 and TRAF5 degradation. Specific deletion of Chip in BMS cells downregulated expression of osteoblast marker genes which could be reversed by the addition of NF-κB inhibitor. These results demonstrate that the osteopenic phenotype observed in Chip -/- mice was due to the combination of increased osteoclast formation and decreased osteoblast differentiation. Taken together, our findings indicate a significant role of CHIP in bone remodeling.

  12. Study of a novel three-dimensional scaffold to repair bone defect in rabbit.

    PubMed

    Chen, Yushu; Bai, Bo; Zhang, Shujiang; Ye, Jing; Zhai, Haohan; Chen, Yi; Zhang, Linlin; Zeng, Yanjun

    2014-05-01

    Both decalcified bone matrix (DBM) and fibrin gel possess good biocompatibility, so they are used as scaffolds to culture bone marrow mesenchymal stem cells (BMSCs). The feasibility and efficacy of using compound material being made of decalcified bone matrix and fibrin gel as a three-dimensional scaffold for bone growth were investigated. BMSCs were isolated from the femur of rabbit, then seeded in prepared scaffolds after incubation for 28 days in vitro. In vivo: 30 New Zealand White Rabbits received bone defect in left radius and divided three treatment groups randomly: (1) BMSCs/decalcified bone matrix/fibrin glue as experimental group; (2) decalcified bone matrix/fibrin glue without cells as control group; (3) nothing was implanted into the bone defects as blank group. The observation period of specimens was 12 weeks, and were analyzed bone formation in terms of serum proteomics (2D-PAGE and MALDI-TOF-TOF-MS), hematoxylin-eosin (HE) staining, ALP staining, and Osteopontin immunofluorescence detection. The experimental group present in three peculiar kinds of proteins, whose Geninfo identifier (GI) number were 136466, 126722803, and 126723746, respectively, correspond to TTR protein, ALB protein, RBP4 protein, and the histological inspections were superior to the other group. The content of osteopontin in experimental group was significantly higher than control group (p <  0.05). The overall results indicated that a combined material being made of BMSCs/decalcified bone matrix/fibrin glue can result in successful bone formation and decalcified bone matrix/fibrin glue admixtures can be used as a scaffold for bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.

  13. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  14. Atrophic Mandible Fractures: Are Bone Grafts Necessary? An Update.

    PubMed

    Castro-Núñez, Jaime; Cunningham, Larry L; Van Sickels, Joseph E

    2017-11-01

    The management of atrophic mandibular fractures poses a challenge because of anatomic variations and medical comorbidities associated with elderly patients. The purpose of this article is to review and update the literature regarding the management of atrophic mandible fractures using load-bearing reconstruction plates placed without bone grafts. We performed a review of the English-language literature looking for atrophic mandibular fractures with or without continuity defects and reconstruction without bone grafts. Included are 2 new patients from our institution who presented with fractures of their atrophic mandibles and had continuity defects and infections. Both patients underwent reconstruction with a combination of a reconstruction plate, recombinant human bone morphogenetic protein 2, and tricalcium phosphate. This study was approved as an "exempt study" by the Institutional Review Board at the University of Kentucky. This investigation observed the Declaration of Helsinki on medical protocol and ethics. Currently, the standard of care to manage atrophic mandibular fractures with or without a continuity defect is a combination of a reconstruction plate plus autogenous bone graft. However, there is a need for an alternative option for patients with substantial comorbidities. Bone morphogenetic proteins, with or without additional substances, appear to be a choice. In our experience, successful healing occurred in patients with a combination of a reconstruction plate, recombinant human bone morphogenetic protein 2, and tricalcium phosphate. Whereas primary reconstruction of atrophic mandibular fractures with reconstruction plates supplemented with autogenous bone graft is the standard of care, in selected cases in which multiple comorbidities may influence local and/or systemic outcomes, bone morphogenetic proteins and tricalcium phosphate can be used as a predictable alternative to autogenous grafts. Copyright © 2017 American Association of Oral and

  15. The hemoglobin receptor protein of porphyromonas gingivalis inhibits receptor activator NF-kappaB ligand-induced osteoclastogenesis from bone marrow macrophages.

    PubMed

    Fujimura, Yuji; Hotokezaka, Hitoshi; Ohara, Naoya; Naito, Mariko; Sakai, Eiko; Yoshimura, Mamiko; Narita, Yuka; Kitaura, Hideki; Yoshida, Noriaki; Nakayama, Koji

    2006-05-01

    Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent fashion. HbR markedly inhibited RANKL-induced osteoclastogenesis when present in the culture for the first 24 h after addition of RANKL, whereas no significant inhibition was observed when HbR was added after 24 h or later, implying that HbR might interfere with only the initial stage of RANKL-mediated differentiation. HbR tightly bound to bone marrow macrophages and had the ability to induce phosphorylation of ERK, p38, NF-kappaB, and Akt. RANKL-induced phosphorylation of ERK, p38, and NF-kappaB was not suppressed by HbR, but that of Akt was markedly suppressed. HbR inhibited RANKL-mediated induction of c-Fos and NFATc1. HbR could induce beta interferon (IFN-beta) from bone marrow macrophages, but the induction level of IFN-beta might not be sufficient to suppress RANKL-mediated osteoclastogenesis, implying presence of an IFN-beta-independent pathway in HbR-mediated inhibition of osteoclastogenesis. Since rapid and extensive destruction of the alveolar bone causes tooth loss, resulting in loss of the gingival crevice that is an anatomical niche for periodontal pathogens such as P. gingivalis, the suppressive effect of HbR on osteoclastogenesis may help the microorganism exist long in the niche.

  16. Multiscale imaging of bone microdamage

    PubMed Central

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone’s propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  17. Testosterone Delivered with a Scaffold Is as Effective as Bone Morphologic Protein-2 in Promoting the Repair of Critical-Size Segmental Defect of Femoral Bone in Mice

    PubMed Central

    Cheng, Bi-Hua; Chu, Tien-Min G.; Chang, Chawnshang; Kang, Hong-Yo; Huang, Ko-En

    2013-01-01

    Loss of large bone segments due to fracture resulting from trauma or tumor removal is a common clinical problem. The goal of this study was to evaluate the use of scaffolds containing testosterone, bone morphogenetic protein-2 (BMP-2), or a combination of both for treatment of critical-size segmental bone defects in mice. A 2.5-mm wide osteotomy was created on the left femur of wildtype and androgen receptor knockout (ARKO) mice. Testosterone, BMP-2, or both were delivered locally using a scaffold that bridged the fracture. Results of X-ray imaging showed that in both wildtype and ARKO mice, BMP-2 treatment induced callus formation within 14 days after initiation of the treatment. Testosterone treatment also induced callus formation within 14 days in wildtype but not in ARKO mice. Micro-computed tomography and histological examinations revealed that testosterone treatment caused similar degrees of callus formation as BMP-2 treatment in wildtype mice, but had no such effect in ARKO mice, suggesting that the androgen receptor is required for testosterone to initiate fracture healing. These results demonstrate that testosterone is as effective as BMP-2 in promoting the healing of critical-size segmental defects and that combination therapy with testosterone and BMP-2 is superior to single therapy. Results of this study may provide a foundation to develop a cost effective and efficient therapeutic modality for treatment of bone fractures with segmental defects. PMID:23940550

  18. Heparin Microparticle Effects on Presentation and Bioactivity of Bone Morphogenetic Protein-2

    PubMed Central

    Hettiaratchi, Marian H.; Miller, Tobias; Temenoff, Johnna S.; Guldberg, Robert E.; McDevitt, Todd C.

    2014-01-01

    Biomaterials capable of providing localized and sustained presentation of bioactive proteins are critical for effective therapeutic growth factor delivery. However, current biomaterial delivery vehicles commonly suffer from limitations that can result in low retention of growth factors at the site of interest or adversely affect growth factor bioactivity. Heparin, a highly sulfated glycosaminoglycan, is an attractive growth factor delivery vehicle due to its ability to reversibly bind positively charged proteins, provide sustained delivery, and maintain protein bioactivity. This study describes the fabrication and characterization of heparin methacrylamide (HMAm) microparticles for recombinant growth factor delivery. HMAm microparticles were shown to efficiently bind several heparin-binding growth factors (e.g. bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (FGF-2)), including a wide range of BMP-2 concentrations that exceeds the maximum binding capacity of other common growth factor delivery vehicles, such as gelatin. BMP-2 bioactivity was assessed on the basis of alkaline phosphatase (ALP) activity induced in skeletal myoblasts (C2C12). Microparticles loaded with BMP-2 stimulated comparable C2C12 ALP activity to soluble BMP-2 treatment, indicating that BMP-2-loaded microparticles retain bioactivity and potently elicit a functional cell response. In summary, our results suggest that heparin microparticles stably retain large amounts of bioactive BMP-2 for prolonged periods of time, and that presentation of BMP-2 via heparin microparticles can elicit cell responses comparable to soluble BMP-2 treatment. Consequently, heparin microparticles present an effective method of delivering and spatially retaining growth factors that could be used in a variety of systems to enable directed induction of cell fates and tissue regeneration. PMID:24881028

  19. Modulation of bone resorption by phosphorylation state of bone sialoprotein.

    PubMed

    Curtin, Paul; McHugh, Kevin P; Zhou, Hai-Yan; Flückiger, Rudolf; Goldhaber, Paul; Oppenheim, Frank G; Salih, Erdjan

    2009-07-28

    We have determined transmembrane protein tyrosine phosphorylation (outside-in signaling) in cultured osteoclasts and macrophages in response to added native purified bone sialoprotein (nBSP) and its dephosphorylated form (dBSP). There were selective/differential and potent inhibitory effects by dBSP and minimal effect by nBSP on intracellular tyrosine phosphorylation in macrophages and osteoclasts. Further studies on the downstream gene expression effects led to identification of a large number of differentially expressed genes in response to nBSP relative to dBSP in both macrophages and osteoclasts. These studies were extended to a bone resorption model using live mouse neonatal calvarial bone organ cultures stimulated by parathyroid hormone (PTH) to undergo bone resorption. Inclusion of nBSP in such cultures showed no effect on type I collagen telopeptide fragment release, hence overall bone resorption, whereas addition of dBSP abolished the PTH-induced bone resorption. The inhibition of bone resorption by dBSP was shown to be unique since in complementary experiments use of integrin receptor binding ligand, GRGDS peptide, offered only partial reduction on overall bone resorption. Quantitative RANKL analysis indicated that mechanistically the PTH-induced bone resorption was inhibited by dBSP via down-regulation of the osteoblastic RANKL production. This conclusion was supported by the RANKL analysis in cultured MC3T3-E1 osteoblast cells. Overall, these studies provided direct evidence for the involvement of covalently bound phosphates on BSP in receptor mediated "outside-in" signaling via transmembrane tyrosine phosphorylation with concurrent effects on downstream gene expressions. The use of a live bone organ culture system augmented these results with further evidence that links the observed in vivo variable state of phosphorylation with bone remodeling.

  20. A poly (lactide-co-glycolide) film loaded with abundant bone morphogenetic protein-2: A substrate promoting osteoblast attachment, proliferation and differentiation in bone tissue engineering.

    PubMed

    Qu, Xiangyang; Cao, Yujiang; Chen, Cong; Die, Xiaohong; Kang, Quan

    2014-12-10

    We explored a novel biodegradable poly (lactide-co-glycolide) (PLGA) film loaded with over 80 wt% bone morphogenetic protein (BMP-2), which was regarded as a substrate promoting osteoblast attachment, proliferation and differentiation for application of bone tissue engineering. Using phospholipid as a surfactant, BMP-2 was modified as a complex (PBC) for dispersing in PLGA/dichloromethane solution. The PLGA film loaded with BMP-2 and phospholipid complex (PBC-PF) showed rough and draped morphology with high entrapment efficiency exceeding 80% and good hydrophilicity respectively. The in-vitro release study of BMP-2 showed that about 50% BMP-2 was slowly and continuously released from PBC-PF within 5 weeks and had a short initial burst release only in the last 1.5 days, which was better than serious burst release of PLGA film loaded with pure BMP-2 without phospholipid (BMP-PF) controlling. By comparison with other PLGA films and tissue culture plates, it was confirmed that PBC-PF significantly promoted the attachment, proliferation and differentiation of osteoblasts with higher entrapment efficiency and better sustained release. These advantages illustrated that PBC-PF could be a potential substrate providing long-term requisite growth factors for osteoblasts, which might be applied in bone tissue engineering. This article is protected by copyright. All rights reserved. Copyright © 2014 Wiley Periodicals, Inc., A Wiley Company.

  1. Distinct characteristics of mandibular bone collagen relative to long bone collagen: relevance to clinical dentistry.

    PubMed

    Matsuura, Takashi; Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu

    2014-01-01

    Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  2. Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry

    PubMed Central

    Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu

    2014-01-01

    Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw. PMID:24818151

  3. Thermal processing of bone: in vitro response of mesenchymal cells to bone-conditioned medium.

    PubMed

    Sawada, K; Caballé-Serrano, J; Schuldt Filho, G; Bosshardt, D D; Schaller, B; Buser, D; Gruber, R

    2015-08-01

    The autoclaving, pasteurization, and freezing of bone grafts to remove bacteria and viruses, and for preservation, respectively, is considered to alter biological properties during graft consolidation. Fresh bone grafts release paracrine-like signals that are considered to support tissue regeneration. However, the impact of the autoclaving, pasteurization, and freezing of bone grafts on paracrine signals remains unknown. Therefore, conditioned medium was prepared from porcine cortical bone chips that had undergone thermal processing. The biological properties of the bone-conditioned medium were assessed by examining the changes in expression of target genes in oral fibroblasts. The data showed that conditioned medium obtained from bone chips that had undergone pasteurization and freezing changed the expression of adrenomedullin, pentraxin 3, BTB/POZ domain-containing protein 11, interleukin 11, NADPH oxidase 4, and proteoglycan 4 by at least five-fold in oral fibroblasts. Bone-conditioned medium obtained from autoclaved bone chips, however, failed to change the expression of the respective genes. Also, when bone-conditioned medium was prepared from fresh bone chips, autoclaving blocked the capacity of bone-conditioned medium to modulate gene expression. These in vitro results suggest that pasteurization and freezing of bone grafts preserve the release of biologically active paracrine signals, but autoclaving does not. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Influence of different modifications of a calcium phosphate bone cement on adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells.

    PubMed

    Vater, Corina; Lode, Anja; Bernhardt, Anne; Reinstorf, Antje; Heinemann, Christiane; Gelinsky, Michael

    2010-03-15

    Collagen and noncollagenous proteins of the extracellular bone matrix are able to stimulate bone cell activities and bone healing. The modification of calcium phosphate bone cements used as temporary bone replacement materials with these proteins seems to be a promising approach to accelerate new bone formation. In this study, we investigated adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells (hBMSC) on Biocement D/collagen composites which have been modified with osteocalcin and O-phospho-L-serine. Modification with osteocalcin was carried out by its addition to the cement precursor before setting as well as by functionalization of the cement samples after setting and sterilization. hBMSC were cultured on these samples for 28 days with and without osteogenic supplements. We found a positive impact especially of the phosphoserine-modifications but also of both osteocalcin-modifications on differentiation of hBMSC indicated by higher expression of the osteoblastic markers matrix metalloproteinase-13 and bone sialo protein II. For hBMSC cultured on phosphoserine-containing composites, an increased proliferation has been observed. However, in case of the osteocalcin-modified samples, only osteocalcin adsorbed after setting and sterilization of the cement samples was able to promote initial adhesion and proliferation of hBMSC. The addition of osteocalcin before setting results in a finer microstructure but the biological activity of osteocalcin might be impaired due to the sterilization process. Thus, our data indicate that the initial adhesion and proliferation of hBMSC is enhanced rather by the biological activity of osteocalcin than by the finer microstructure. (c) 2009 Wiley Periodicals, Inc.

  5. Coadministration of puerarin (low dose) and zinc attenuates bone loss and suppresses bone marrow adiposity in ovariectomized rats.

    PubMed

    Liu, Hao; Li, Wei; Ge, Xiyuan; Jia, Shengnan; Li, Binbin

    2016-12-01

    Puerarin is a phytoestrogen that shows osteogenic effects. Meanwhile, zinc stimulates bone formation and inhibits bone resorption. The study aims to investigate the effects of coadministration of puerarin (low dose) and zinc on bone formation in ovariectomized rats. Co-administration or use alone of puerarin (low dose) and/or zinc were gavaged in OVX rats. The estrogen-like effects were detected by the uterus weight, the histologic observation and the IGF-1 protein expression. The osteogenic effects were determined by bone histomorphometric and mechanical parameters, osteogenic and adipogenic blood markers, and so on. The results showed that oral administration of puerarin (low dose) plus zinc didn't significantly increase uterus weight. The glandular epithelial of endometrium had no proliferation and no protein expression of IGF-1. Moreover, co-administration attenuated bone loss and biomechanical decrease more than single use of puerarin or zinc (p<0.05). Next, combined administration of puerarin and zinc promoted the serological level of osteocalcin, bone marrow stromal cell (BMSC) proliferation, and the expression of alkaline phosphatase (ALP), and suppressed the serological level of adiponectin and adiposity in bone marrow (BM). In conclusion, co-administrated puerarin (low dose) and zinc can partially reverse OVX-induced bone loss and suppress the adiposity of BM in rats, which shed light on the potential use of puerarin and zinc in the treatment of osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Proteomic analysis of human dental cementum and alveolar bone

    PubMed Central

    Salmon, Cristiane R.; Tomazela, Daniela M.; Ruiz, Karina Gonzales Silvério; Foster, Brian L.; Leme, Adriana Franco Paes; Sallum, Enilson Antonio; Somerman, Martha J.; Nociti, Francisco H.

    2013-01-01

    Dental cementum (DC) is a bone-like tissue covering the tooth root and responsible for attaching the tooth to the alveolar bone (AB) via the periodontal ligament (PDL). Studies have unsuccessfully tried to identify factors specific to DC versus AB, in an effort to better understand DC development and regeneration. The present study aimed to use matched human DC and AB samples (n=7) to generate their proteomes for comparative analysis. Bone samples were harvested from tooth extraction sites, whereas DC samples were obtained from the apical root portion of extracted third molars. Samples were denatured, followed by protein extraction reduction, alkylation and digestion for analysis by nanoAcquity HPLC system and LTQ-FT Ultra. Data analysis demonstrated that a total of 318 proteins were identified in AB and DC. In addition to shared proteins between these tissues, 105 and 83 proteins exclusive to AB or DC were identified, respectively. This is the first report analyzing the proteomic composition of human DC matrix and identifying putative unique and enriched proteins in comparison to alveolar bone. These findings may provide novel insights into developmental differences between DC and AB, and identify candidate biomarkers that may lead to more efficient and predictable therapies for periodontal regeneration. PMID:24007660

  7. Correlating the nanoscale mechanical and chemical properties of knockout mice bones

    NASA Astrophysics Data System (ADS)

    Kavukcuoglu, Nadire Beril

    Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2

  8. The Hippo signaling pathway provides novel anti-cancer drug targets

    PubMed Central

    Bae, June Sung; Kim, Sun Mi; Lee, Ho

    2017-01-01

    The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy. PMID:28035075

  9. The Hippo signaling pathway provides novel anti-cancer drug targets.

    PubMed

    Bae, June Sung; Kim, Sun Mi; Lee, Ho

    2017-02-28

    The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy.

  10. Bone regeneration by polyhedral microcrystals from silkworm virus

    PubMed Central

    Matsumoto, Goichi; Ueda, Takayo; Shimoyama, Junko; Ijiri, Hiroshi; Omi, Yasushi; Yube, Hisato; Sugita, Yoshihiko; Kubo, Katsutoshi; Maeda, Hatsuhiko; Kinoshita, Yukihiko; Arias, Duverney Gaviria; Shimabukuro, Junji; Kotani, Eiji; Kawamata, Shin; Mori, Hajime

    2012-01-01

    Bombyx mori cypovirus is a major pathogen which causes significant losses in silkworm cocoon harvests because the virus particles are embedded in micrometer-sized protein crystals called polyhedra and can remain infectious in harsh environmental conditions for years. But the remarkable stability of polyhedra can be applied on slow-release carriers of cytokines for tissue engineering. Here we show the complete healing in critical-sized bone defects by bone morphogenetic protein-2 (BMP-2) encapsulated polyhedra. Although absorbable collagen sponge (ACS) safely and effectively delivers recombinant human BMP-2 (rhBMP-2) into healing tissue, the current therapeutic regimens release rhBMP-2 at an initially high rate after which the rate declines rapidly. ACS impregnated with BMP-2 polyhedra had enough osteogenic activity to promote complete healing in critical-sized bone defects, but ACS with a high dose of rhBMP-2 showed incomplete bone healing, indicating that polyhedral microcrystals containing BMP-2 promise to advance the state of the art of bone healing. PMID:23226833

  11. Lack of Association of Bone Morphogenetic Protein 2 Gene Haplotypes with Bone Mineral Density, Bone Loss, or Risk of Fractures in Men

    PubMed Central

    Varanasi, Satya S.; Tuck, Stephen P.; Mastana, Sarabjit S.; Dennison, Elaine; Cooper, Cyrus; Vila, Josephine; Francis, Roger M.; Datta, Harish K.

    2011-01-01

    Introduction. The association of bone morphogenetic protein 2 (BMP2) with BMD and risk of fracture was suggested by a recent linkage study, but subsequent studies have been contradictory. We report the results of a study of the relationship between BMP2 genotypes and BMD, annual change in BMD, and risk of fracture in male subjects. Materials and Methods. We tested three single-nucleotide polymorphisms (SNPs) across the BMP2 gene, including Ser37Ala SNP, in 342 Caucasian Englishmen, comprising 224 control and 118 osteoporotic subjects. Results. BMP2 SNP1 (Ser37Ala) genotypes were found to have similar low frequency in control subjects and men with osteoporosis. The major informative polymorphism, BMP2 SNP3 (Arg190Ser), showed no statistically significant association with weight, height, BMD, change in BMD at hip or lumbar spine, and risk of fracture. Conclusion. There were no genotypic or haplotypic effects of the BMP2 candidate gene on BMD, change in BMD, or fracture risk identified in this cohort. PMID:22013543

  12. Microfluidic-based patterning of embryonic stem cells for in vitro development studies.

    PubMed

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang

    2013-12-07

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.

  13. Microfluidic-based patterning of embryonic stem cells for in vitro development studies

    PubMed Central

    Suri, Shalu; Singh, Ankur; Nguyen, Anh H.; Bratt-Leal, Andres M.; McDevitt, Todd C.

    2013-01-01

    In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments. PMID:24113509

  14. Bioactive Molecule-loaded Drug Delivery Systems to Optimize Bone Tissue Repair.

    PubMed

    Oshiro, Joao Augusto; Sato, Mariana Rillo; Scardueli, Cassio Rocha; Lopes de Oliveira, Guilherme Jose Pimentel; Abucafy, Marina Paiva; Chorilli, Marlus

    2017-01-01

    Bioactive molecules such as peptides and proteins can optimize the repair of bone tissue; however, the results are often unpredictable when administered alone, owing to their short biological half-life and instability. Thus, the development of bioactive molecule-loaded drug delivery systems (DDS) to repair bone tissue has been the subject of intense research. DDS can optimize the repair of bone tissue owing to their physicochemical properties, which improve cellular interactions and enable the incorporation and prolonged release of bioactive molecules. These characteristics are fundamental to favor bone tissue homeostasis, since the biological activity of these factors depends on how accessible they are to the cell. Considering the importance of these DDS, this review aims to present relevant information on DDS when loaded with osteogenic growth peptide and bone morphogenetic protein. These are bioactive molecules that are capable of modulating the differentiation and proliferation of mesenchymal cells in bone tissue cells. Moreover, we will present different approaches using these peptide and protein-loaded DDS, such as synthetic membranes and scaffolds for bone regeneration, synthetic grafts, bone cements, liposomes, and micelles, which aim at improving the therapeutic effectiveness, and we will compare their advantages with commercial systems. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Nell-1-Induced Bone Regeneration in Calvarial Defects

    PubMed Central

    Aghaloo, Tara; Cowan, Catherine M.; Chou, Yu-Fen; Zhang, Xinli; Lee, Haofu; Miao, Steve; Hong, Nichole; Kuroda, Shun’ichi; Wu, Benjamin; Ting, Kang; Soo, Chia

    2006-01-01

    Many craniofacial birth defects contain skeletal components requiring bone grafting. We previously identified the novel secreted osteogenic molecule NELL-1, first noted to be overexpressed during premature bone formation in calvarial sutures of craniosynostosis patients. Nell-1 overexpression significantly increases differentiation and mineralization selectively in osteoblasts, while newborn Nell-1 transgenic mice significantly increase premature bone formation in calvarial sutures. In the current study, cultured calvarial explants isolated from Nell-1 transgenic newborn mice (with mild sagittal synostosis) demonstrated continuous bone growth and overlapping sagittal sutures. Further investigation into gene expression cascades revealed that fibroblast growth factor-2 and transforming growth factor-β1 stimulated Nell-1 expression, whereas bone morphogenetic protein (BMP)-2 had no direct effect. Additionally, Nell-1-induced osteogenesis in MC3T3-E1 osteoblasts through reduction in the expression of early up-regulated osteogenic regulators (OSX and ALP) but induction of later markers (OPN and OCN). Grafting Nell-1 protein-coated PLGA scaffolds into rat calvarial defects revealed the osteogenic potential of Nell-1 to induce bone regeneration equivalent to BMP-2, whereas immunohistochemistry indicated that Nell-1 reduced osterix-producing cells and increased bone sialoprotein, osteocalcin, and BMP-7 expression. Insights into Nell-1-regulated osteogenesis coupled with its ability to stimulate bone regeneration revealed a potential therapeutic role and an alternative to the currently accepted techniques for bone regeneration. PMID:16936265

  16. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis.

    PubMed

    De Fusco, Carolina; Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Moscatelli, Fiorenzo; Valenzano, Anna; Esposito, Teresa; Sergio, Chieffi; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  17. [Phytoestrogens role in bone functional structure protection in the ovariectomized rat].

    PubMed

    Mihalache, Gr; Mihalache, Gr D; Indrei, L L; Indrei, Anca; Hegsted, Maren

    2002-01-01

    Effects of soy protein diet on bone formation and density were evaluated in ovariectomized rats as a model for postmenopausal women. Twenty-seven 9-month-old rats were assigned to 3 treatment groups for the 9-week study: sham-surgery (Sh, n = 9); ovariectomy (Ovx, n = 9); ovariectomy + soy diet (OvxS, n = 9). Rats had free access to an AIN-93 M diet or AIN-93 M diet with 7% soy protein concentration and water. At sacrifice, rear legs were removed, and the right femur and tibia were cleaned manually. Serum alkaline phosphatase, a marker of bone formation, was measured colorimetrically. Bone density was measured using Archimedes' Principle. Alkaline phosphatase activity was greater in OvxS (114 +/- 19 U/L) and Ovx (128 +/- 26 U/L) compared to Sh (110 +/- 22 U/L). Femur bone density was greater for OvxS (1.520 +/- 0.02 g/cc) compared to Ovx (1.510 +/- 0.017 g/cc), but not to Sh (1532 +/- 0.025 g/cc). Tibia bone density was greater for OvxS (1.560 +/- 0.019 g/cc) compared to Ovx (1.553 +/- 0.015 g/cc), but not to Sh (1566 +/- 0.03 g/cc). In conclusion soy protein diet increased the rate of bone formation and bone density in some bones, suggesting that may help prevent bone loss in postmenopausal women.

  18. Insulin-like growth factor-I increases bone sialoprotein (BSP) expression through fibroblast growth factor-2 response element and homeodomain protein-binding site in the proximal promoter of the BSP gene.

    PubMed

    Nakayama, Youhei; Nakajima, Yu; Kato, Naoko; Takai, Hideki; Kim, Dong-Soon; Arai, Masato; Mezawa, Masaru; Araki, Shouta; Sodek, Jaro; Ogata, Yorimasa

    2006-08-01

    Insulin-like growth factor-I (IGF-I) promotes bone formation by stimulating proliferation and differentiation of osteoblasts. Bone sialoprotein (BSP), is thought to function in the initial mineralization of bone, is selectively expressed by differentiated osteoblast. To determine the molecular mechanism of IGF-I regulation of osteogenesis, we analyzed the effects of IGF-I on the expression of BSP in osteoblast-like Saos2 and in rat stromal bone marrow (RBMC-D8) cells. IGF-I (50 ng/ml) increased BSP mRNA levels at 12 h in Saos2 cells. In RBMC-D8 cells, IGF-I increased BSP mRNA levels at 3 h. From transient transfection assays, a twofold increase in transcription by IGF-I was observed at 12 h in pLUC3 construct that included the promoter sequence from -116 to +60. Effect of IGF-I was abrogated by 2-bp mutations in either the FGF2 response element (FRE) or homeodomain protein-binding site (HOX). Gel shift analyses showed that IGF-I increased binding of nuclear proteins to the FRE and HOX elements. Notably, the HOX-protein complex was supershifted by Smad1 antibody, while the FRE-protein complex was shifted by Smad1 and Cbfa1 antibodies. Dlx2 and Dlx5 antibodies disrupted the formation of the FRE- and HOX-protein complexes. The IGF-I effects on the formation of FRE-protein complexes were abolished by tyrosine kinase inhibitor herbimycin A (HA), PI3-kinase/Akt inhibitor LY249002, and MAP kinase kinase inhibitor U0126, while IGF-I effects on HOX-protein complexes were abolished by HA and LY249002. These studies demonstrate that IGF-I stimulates BSP transcription by targeting the FRE and HOX elements in the proximal promoter of BSP gene.

  19. Hypermineralization and High Osteocyte Lacunar Density in Osteogenesis Imperfecta Type V Bone Indicate Exuberant Primary Bone Formation.

    PubMed

    Blouin, Stéphane; Fratzl-Zelman, Nadja; Glorieux, Francis H; Roschger, Paul; Klaushofer, Klaus; Marini, Joan C; Rauch, Frank

    2017-09-01

    In contrast to "classical" forms of osteogenesis imperfecta (OI) types I to IV, caused by a mutation in COL1A1/A2, OI type V is due to a gain-of-function mutation in the IFITM5 gene, encoding the interferon-induced transmembrane protein 5, or bone-restricted interferon-inducible transmembrane (IFITM)-like protein (BRIL). Its phenotype distinctly differs from OI types I to IV by absence of blue sclerae and dentinogenesis imperfecta, by the occurrence of ossification disorders such as hyperplastic callus and forearm interosseous membrane ossification. Little is known about the impact of the mutation on bone tissue/material level in untreated and bisphosphonate-treated patients. Therefore, investigations of transiliac bone biopsy samples from a cohort of OI type V children (n = 15, 8.7 ± 4 years old) untreated at baseline and a subset (n = 8) after pamidronate treatment (2.6 years in average) were performed. Quantitative backscattered electron imaging (qBEI) was used to determine bone mineralization density distribution (BMDD) as well as osteocyte lacunar density. The BMDD of type V OI bone was distinctly shifted toward a higher degree of mineralization. The most frequently occurring calcium concentration (CaPeak) in cortical (Ct) and cancellous (Cn) bone was markedly increased (+11.5%, +10.4%, respectively, p < 0.0001) compared to healthy reference values. Treatment with pamidronate resulted in only a slight enhancement of mineralization. The osteocyte lacunar density derived from sectioned bone area was elevated in OI type V Ct and Cn bone (+171%, p < 0.0001; +183.3%, p < 0.01; respectively) versus controls. The high osteocyte density was associated with an overall immature primary bone structure ("mesh-like") as visualized by polarized light microscopy. In summary, the bone material from OI type V patients is hypermineralized, similar to other forms of OI. The elevated osteocyte lacunar density in connection with lack of regular bone

  20. Bone Morphogenetic Protein-2 Adsorption onto Poly-ɛ-caprolactone Better Preserves Bioactivity In Vitro and Produces More Bone In Vivo than Conjugation Under Clinically Relevant Loading Scenarios

    PubMed Central

    Patel, Janki J.; Flanagan, Colleen L.

    2015-01-01

    Background: One strategy to reconstruct large bone defects is to prefabricate a vascularized flap by implanting a biomaterial scaffold with associated biologics into the latissimus dorsi and then transplanting this construct to the defect site after a maturation period. This strategy, similar to all clinically and regulatory feasible biologic approaches to surgical reconstruction, requires the ability to quickly (<1 h within an operating room) and efficiently bind biologics to scaffolds. It also requires the ability to localize biologic delivery. In this study, we investigated the efficacy of binding bone morphogenetic protein-2 (BMP2) to poly-ɛ-caprolactone (PCL) using adsorption and conjugation as a function of time. Methods: BMP2 was adsorbed (Ads) or conjugated (Conj) to PCL scaffolds with the same three-dimensional printed architecture while altering exposure time (0.5, 1, 5, and 16 h), temperature (4°C, 23°C), and BMP2 concentration (1.4, 5, 20, and 65 μg/mL). The in vitro release was quantified, and C2C12 cell alkaline phosphatase (ALP) expression was used to confirm bioactivity. Scaffolds with either 65 or 20 μg/mL Ads or Conj BMP2 for 1 h at 23°C were implanted subcutaneously in mice to evaluate in vivo bone regeneration. Micro-computed tomography, compression testing, and histology were performed to characterize bone regeneration. Results: After 1 h exposure to 65 μg/mL BMP2 at 23°C, Conj and Ads resulted in 12.83±1.78 and 10.78±1.49 μg BMP2 attached, respectively. Adsorption resulted in a positive ALP response and had a small burst release; whereas conjugation provided a sustained release with negligible ALP production, indicating that the conjugated BMP2 may not be bioavailable. Adsorbed 65 μg/mL BMP2 solution resulted in the greatest regenerated bone volume (15.0±3.0 mm3), elastic modulus (20.1±3.0 MPa), and %bone ingrowth in the scaffold interior (17.2%±5.4%) when compared with conjugation. Conclusion: Adsorption