Science.gov

Sample records for bony heterogeneity effects

  1. The effect of violin playing on the bony facial structures in adolescents.

    PubMed

    Kovero, O; Könönen, M; Pirinen, S

    1997-08-01

    Holding a violin between shoulder and chin needs a special kind of muscle function. The purpose of this investigation was to determine whether this kind of muscular activity is a modifying factor for facial growth in adolescence. The bony facial dimensions of 24 adolescent violin students attending colleges of music with a playing history of 5-11 years were measured from lateral and posteroanterior cephalograms and panoramic tomograms of the jaws. The dimensions were compared with those of sex- and age-matched controls. Significant differences were found between violin players and controls. The players had higher faces, especially on the right side of the lower face and in the right mandibular ramus. The players also had more proclined upper and lower incisors than the controls. It is concluded that the overall greater facial height in violinists reflects the increased face muscle activity and the higher bony dimensions of the right side of the face are due to the muscular activity produced on that side to balance the load caused by the violin on the left. The greater proclination of the incisors is the result of an altered balance of muscular activity between tongue and lip, and the pressure of the violin to the chin. PMID:9308257

  2. The effect of professional violin and viola playing on the bony facial structures.

    PubMed

    Kovero, O; Könönen, M; Pirinen, S

    1997-02-01

    Professional violin and viola playing involves a particular kind of asymmetric face, neck and shoulder muscle activity. The aim of this study was to find out whether players' facial morphology is influenced by this occupational orofacial muscle activity. Lateral and posteroanterior cephalograms and panoramic tomograms of 26 adult professional violin and viola players were evaluated and compared with those of age, sex and dentition matched controls. Significant differences were found between the players and the controls. The players had smaller facial heights, more proclined maxillary incisors and greater mandibular lengths. Thus, intense long-term violin/viola playing has the effect of modifying facial morphology. PMID:9071044

  3. Effective permeabilities for model heterogeneous porous media

    SciTech Connect

    Otevo, C.; Rusinek, I. ); Saez, A.E. )

    1990-01-01

    This paper presents a technique to evaluate effective absolute permeabilities for heterogeneous porous media. The technique is based on a perturbation analysis of the equations of motion of a slightly compressible fluid in a homogeneous porous medium at low Reynolds numbers. The effective permeabilities can be calculated once the local geometry of the heterogeneous medium is specified. The technique is used to evaluate two- and three-dimensional effective vertical permeabilities in porous media with shale intercalations, including the case in which the porous matrix is anisotropic.

  4. Seismoelectric effects due to mesoscopic heterogeneities

    NASA Astrophysics Data System (ADS)

    Jougnot, Damien; Rubino, J. GermáN.; Carbajal, Marina Rosas; Linde, Niklas; Holliger, Klaus

    2013-05-01

    While the seismic effects of wave-induced fluid flow due to mesoscopic heterogeneities have been studied for several decades, the role played by these types of heterogeneities on seismoelectric phenomena is largely unexplored. To address this issue, we have developed a novel methodological framework which allows for the coupling of wave-induced fluid flow, as inferred through numerical oscillatory compressibility tests, with the pertinent seismoelectric conversion mechanisms. Simulating the corresponding response of a water-saturated sandstone sample containing mesoscopic fractures, we demonstrate for the first time that these kinds of heterogeneities can produce measurable seismoelectric signals under typical laboratory conditions. Given that this phenomenon is sensitive to key hydraulic and mechanical properties, we expect that the results of this pilot study will stimulate further exploration on this topic in several domains of the Earth, environmental, and engineering sciences.

  5. Biochemical effect of a histidine phosphatase acid (phytase) of Aspergillus japonicus var. Saito on performance and bony characteristics of broiler.

    PubMed

    Maller, Alexandre; de Quadros, Thays Cristina Oliveira; Junqueira, Otto M; Graña, Alfredo Lora; de Lima Montaldi, Ana Paula; Alarcon, Ricardo Fernandes; Jorge, João Atílio; de Lourdes T M Polizeli, Maria

    2016-01-01

    Phytases are enzymes that hydrolyze the ester linkage of phytic acid, releasing inositol and inorganic phosphate. The phytic acid (phytate) is a major form of phosphorus in plant foods. Knowing that diet for animal of production has the cereal base (corn and soybean), primarily, broilers need for an alternative to use of the phosphate present in these ingredients, since it does not naturally produce the enzyme phytase, which makes it available. The aims of this work was studding the safe supplementation of Aspergillus japonicus var. Saito crude phytase in feeding broilers and check the biochemical effect on performance and bones of these animals. The enzymatic extract did not have aflatoxins B1, B2, G2 and G1 and zearalenone and ochratoxin, and low concentrations of this extract did not have cytotoxic effects on cells derived from lung tissue. The in vivo experiments showed that the phytase supplied the available phosphate reduction in the broiler feed formulation, with a live weight, weight gain, feed intake, feed conversion, viability, productive efficiency index and carcass yield similar to the control test. Furthermore, the phytase supplementation favored the formation of bone structure and performance of the broilers. The results show the high biotechnological potential of A. japonicus phytase on broiler food supplementation to reduce phosphorus addition in the food formulation. So, this enzyme could be used as a commercial alternative to animal diet supplementation. PMID:27625972

  6. Seismoelectric effects caused by mesoscopic heterogeneities

    NASA Astrophysics Data System (ADS)

    Germán Rubino, J.; Jougnot, Damien; Rosas Carbajal, Marina; Linde, Niklas; Holliger, Klaus

    2013-04-01

    When a seismic wave propagates through a fluid saturated porous medium, it produces a relative motion between the fluid phase and the rock matrix. In the presence of an electric double layer at the fluid-solid interface, this movement introduces a separation of electrical charges which in turn generates a time-varying electrical source current and a resulting distribution of electrical potential. The presence of mesoscopic heterogeneities, that is, heterogeneities having sizes larger than the typical pore size but smaller than the prevailing wavelength, can induce a significant oscillatory fluid flow in response to the propagation of seismic waves. Indeed, the energy dissipation related to this phenomenon is considered to be one of the most common and important seismic attenuation mechanisms operating in the shallow part of the crust. Given that the amount of fluid flow produced by this phenomenon can be significant, a potentially important seismoelectric signal is also expected in such media. However, to the best of the authors' knowledge, the role played by mesoscopic wave-induced fluid flow on seismoelectric phenomenon is so far largely unexplored. In this work, we propose a numerical approach for computing seismoelectric signals related to the presence of mesoscopic heterogeneities. To this end, we consider a two-dimensional representative rock sample containing mesoscopic heterogeneities and apply an oscillatory compression on its top boundary. The solid phase is neither allowed to move on the bottom boundary nor to have horizontal displacements on the lateral boundaries and the fluid is not allowed to flow into or out of the sample. The fluid velocity field is determined by solving the quasi-static poroelastic equations in the space-frequency domain under the governing boundary conditions. Next, the seismoelectric conversion is calculated using the so-called effective electrical excess charge approach, which has been recently developed in streaming potential

  7. Recursive partitioning for heterogeneous causal effects

    PubMed Central

    Athey, Susan; Imbens, Guido

    2016-01-01

    In this paper we propose methods for estimating heterogeneity in causal effects in experimental and observational studies and for conducting hypothesis tests about the magnitude of differences in treatment effects across subsets of the population. We provide a data-driven approach to partition the data into subpopulations that differ in the magnitude of their treatment effects. The approach enables the construction of valid confidence intervals for treatment effects, even with many covariates relative to the sample size, and without “sparsity” assumptions. We propose an “honest” approach to estimation, whereby one sample is used to construct the partition and another to estimate treatment effects for each subpopulation. Our approach builds on regression tree methods, modified to optimize for goodness of fit in treatment effects and to account for honest estimation. Our model selection criterion anticipates that bias will be eliminated by honest estimation and also accounts for the effect of making additional splits on the variance of treatment effect estimates within each subpopulation. We address the challenge that the “ground truth” for a causal effect is not observed for any individual unit, so that standard approaches to cross-validation must be modified. Through a simulation study, we show that for our preferred method honest estimation results in nominal coverage for 90% confidence intervals, whereas coverage ranges between 74% and 84% for nonhonest approaches. Honest estimation requires estimating the model with a smaller sample size; the cost in terms of mean squared error of treatment effects for our preferred method ranges between 7–22%. PMID:27382149

  8. Recursive partitioning for heterogeneous causal effects.

    PubMed

    Athey, Susan; Imbens, Guido

    2016-07-01

    In this paper we propose methods for estimating heterogeneity in causal effects in experimental and observational studies and for conducting hypothesis tests about the magnitude of differences in treatment effects across subsets of the population. We provide a data-driven approach to partition the data into subpopulations that differ in the magnitude of their treatment effects. The approach enables the construction of valid confidence intervals for treatment effects, even with many covariates relative to the sample size, and without "sparsity" assumptions. We propose an "honest" approach to estimation, whereby one sample is used to construct the partition and another to estimate treatment effects for each subpopulation. Our approach builds on regression tree methods, modified to optimize for goodness of fit in treatment effects and to account for honest estimation. Our model selection criterion anticipates that bias will be eliminated by honest estimation and also accounts for the effect of making additional splits on the variance of treatment effect estimates within each subpopulation. We address the challenge that the "ground truth" for a causal effect is not observed for any individual unit, so that standard approaches to cross-validation must be modified. Through a simulation study, we show that for our preferred method honest estimation results in nominal coverage for 90% confidence intervals, whereas coverage ranges between 74% and 84% for nonhonest approaches. Honest estimation requires estimating the model with a smaller sample size; the cost in terms of mean squared error of treatment effects for our preferred method ranges between 7-22%. PMID:27382149

  9. Biology of Bony Fish Macrophages

    PubMed Central

    Hodgkinson, Jordan W.; Grayfer, Leon; Belosevic, Miodrag

    2015-01-01

    Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation. PMID:26633534

  10. The Effect of Class Heterogeneity on Scholastic Achievement in Israel.

    ERIC Educational Resources Information Center

    Lavy, Victor

    This study examines the relationship between class heterogeneity and scholastic performance in Israel's primary schools. The effect of school integration on academic achievement is explained via two main effects: (1) the "peer" effect, namely externalities that are induced by the composition of the teaching and learning environments; and (2) the…

  11. [Latest pain management for painful bony metastases].

    PubMed

    Ikenaga, Masayuki

    2006-04-01

    Pain management for painful bony metastases is the most important problem for symptom relief of terminally-ill cancer patients. Pathological fractures often decrease the activity of daily life (ADL) of patients, and cause deterioration of the quality of life (QOL) and prognosis. Basically pharmacological therapies of the World Health Organization (WHO) method are essential for symptom relief from cancer pain. This article provides the latest pain managements (palliative irradiation, bisphosphonate, orthopedic surgery, percutaneous vertebroplasty and radiopharmaceutical therapy) of bony metastases, and mentions the indications and the problems of these interventions. In consideration to prognosis, the QOL and patient's needs, medical staffs have to perform multidisciplinary approach for providing suitable palliative care. PMID:16582515

  12. Estimation of effective hydrogeological parameters in heterogeneous and anisotropic aquifers

    NASA Astrophysics Data System (ADS)

    Lin, Hsien-Tsung; Tan, Yih-Chi; Chen, Chu-Hui; Yu, Hwa-Lung; Wu, Shih-Ching; Ke, Kai-Yuan

    2010-07-01

    SummaryObtaining reasonable hydrological input parameters is a key challenge in groundwater modeling. Analysis of temporal evolution during pump-induced drawdown is one common approach used to estimate the effective transmissivity and storage coefficients in a heterogeneous aquifer. In this study, we propose a Modified Tabu search Method (MTM), an improvement drawn from an alliance between the Tabu Search (TS) and the Adjoint State Method (ASM) developed by Tan et al. (2008). The latter is employed to estimate effective parameters for anisotropic, heterogeneous aquifers. MTM is validated by several numerical pumping tests. Comparisons are made to other well-known techniques, such as the type-curve method (TCM) and the straight-line method (SLM), to provide insight into the challenge of determining the most effective parameter for an anisotropic, heterogeneous aquifer. The results reveal that MTM can efficiently obtain the best representative and effective aquifer parameters in terms of the least mean square errors of the drawdown estimations. The use of MTM may involve less artificial errors than occur with TCM and SLM, and lead to better solutions. Therefore, effective transmissivity is more likely to be comprised of the geometric mean of all transmissivities within the cone of depression based on a precise estimation of MTM. Further investigation into the applicability of MTM shows that a higher level of heterogeneity in an aquifer can induce an uncertainty in estimations, while the changes in correlation length will affect the accuracy of MTM only once the degree of heterogeneity has also risen.

  13. Effects of Heterogeneous Diffuse Fibrosis on Arrhythmia Dynamics and Mechanism

    PubMed Central

    Kazbanov, Ivan V.; ten Tusscher, Kirsten H. W. J.; Panfilov, Alexander V.

    2016-01-01

    Myocardial fibrosis is an important risk factor for cardiac arrhythmias. Previous experimental and numerical studies have shown that the texture and spatial distribution of fibrosis may play an important role in arrhythmia onset. Here, we investigate how spatial heterogeneity of fibrosis affects arrhythmia onset using numerical methods. We generate various tissue textures that differ by the mean amount of fibrosis, the degree of heterogeneity and the characteristic size of heterogeneity. We study the onset of arrhythmias using a burst pacing protocol. We confirm that spatial heterogeneity of fibrosis increases the probability of arrhythmia induction. This effect is more pronounced with the increase of both the spatial size and the degree of heterogeneity. The induced arrhythmias have a regular structure with the period being mostly determined by the maximal local fibrosis level. We perform ablations of the induced fibrillatory patterns to classify their type. We show that in fibrotic tissue fibrillation is usually of the mother rotor type but becomes of the multiple wavelet type with increase in tissue size. Overall, we conclude that the most important factor determining the formation and dynamics of arrhythmia in heterogeneous fibrotic tissue is the value of maximal local fibrosis. PMID:26861111

  14. Effects of Heterogeneous Diffuse Fibrosis on Arrhythmia Dynamics and Mechanism.

    PubMed

    Kazbanov, Ivan V; ten Tusscher, Kirsten H W J; Panfilov, Alexander V

    2016-01-01

    Myocardial fibrosis is an important risk factor for cardiac arrhythmias. Previous experimental and numerical studies have shown that the texture and spatial distribution of fibrosis may play an important role in arrhythmia onset. Here, we investigate how spatial heterogeneity of fibrosis affects arrhythmia onset using numerical methods. We generate various tissue textures that differ by the mean amount of fibrosis, the degree of heterogeneity and the characteristic size of heterogeneity. We study the onset of arrhythmias using a burst pacing protocol. We confirm that spatial heterogeneity of fibrosis increases the probability of arrhythmia induction. This effect is more pronounced with the increase of both the spatial size and the degree of heterogeneity. The induced arrhythmias have a regular structure with the period being mostly determined by the maximal local fibrosis level. We perform ablations of the induced fibrillatory patterns to classify their type. We show that in fibrotic tissue fibrillation is usually of the mother rotor type but becomes of the multiple wavelet type with increase in tissue size. Overall, we conclude that the most important factor determining the formation and dynamics of arrhythmia in heterogeneous fibrotic tissue is the value of maximal local fibrosis. PMID:26861111

  15. Heterogeneous Treatment Effects: What Does a Regression Estimate?

    ERIC Educational Resources Information Center

    Rhodes, William

    2010-01-01

    Regressions that control for confounding factors are the workhorse of evaluation research. When treatment effects are heterogeneous, however, the workhorse regression leads to estimated treatment effects that lack behavioral interpretations even when the selection on observables assumption holds. Regressions that use propensity scores as weights…

  16. Advances in genomics of bony fish

    PubMed Central

    Jansen, Hans J.; Dirks, Ron P.

    2014-01-01

    In this review, we present an overview of the recent advances of genomic technologies applied to studies of fish species belonging to the superclass of Osteichthyes (bony fish) with a major emphasis on the infraclass of Teleostei, also called teleosts. This superclass that represents more than 50% of all known vertebrate species has gained considerable attention from genome researchers in the last decade. We discuss many examples that demonstrate that this highly deserved attention is currently leading to new opportunities for answering important biological questions on gene function and evolutionary processes. In addition to giving an overview of the technologies that have been applied for studying various fish species we put the recent advances in genome research on the model species zebrafish and medaka in the context of its impact for studies of all fish of the superclass of Osteichthyes. We thereby want to illustrate how the combined value of research on model species together with a broad angle perspective on all bony fish species will have a huge impact on research in all fields of fundamental science and will speed up applications in many societally important areas such as the development of new medicines, toxicology test systems, environmental sensing systems and sustainable aquaculture strategies. PMID:24291769

  17. Computing effective properties of random heterogeneous materials on heterogeneous parallel processors

    NASA Astrophysics Data System (ADS)

    Leidi, Tiziano; Scocchi, Giulio; Grossi, Loris; Pusterla, Simone; D'Angelo, Claudio; Thiran, Jean-Philippe; Ortona, Alberto

    2012-11-01

    In recent decades, finite element (FE) techniques have been extensively used for predicting effective properties of random heterogeneous materials. In the case of very complex microstructures, the choice of numerical methods for the solution of this problem can offer some advantages over classical analytical approaches, and it allows the use of digital images obtained from real material samples (e.g., using computed tomography). On the other hand, having a large number of elements is often necessary for properly describing complex microstructures, ultimately leading to extremely time-consuming computations and high memory requirements. With the final objective of reducing these limitations, we improved an existing freely available FE code for the computation of effective conductivity (electrical and thermal) of microstructure digital models. To allow execution on hardware combining multi-core CPUs and a GPU, we first translated the original algorithm from Fortran to C, and we subdivided it into software components. Then, we enhanced the C version of the algorithm for parallel processing with heterogeneous processors. With the goal of maximizing the obtained performances and limiting resource consumption, we utilized a software architecture based on stream processing, event-driven scheduling, and dynamic load balancing. The parallel processing version of the algorithm has been validated using a simple microstructure consisting of a single sphere located at the centre of a cubic box, yielding consistent results. Finally, the code was used for the calculation of the effective thermal conductivity of a digital model of a real sample (a ceramic foam obtained using X-ray computed tomography). On a computer equipped with dual hexa-core Intel Xeon X5670 processors and an NVIDIA Tesla C2050, the parallel application version features near to linear speed-up progression when using only the CPU cores. It executes more than 20 times faster when additionally using the GPU.

  18. TRAPEZE: a randomised controlled trial of the clinical effectiveness and cost-effectiveness of chemotherapy with zoledronic acid, strontium-89, or both, in men with bony metastatic castration-refractory prostate cancer.

    PubMed Central

    James, Nicholas; Pirrie, Sarah; Pope, Ann; Barton, Darren; Andronis, Lazaros; Goranitis, Ilias; Collins, Stuart; McLaren, Duncan; O'Sullivan, Joe; Parker, Chris; Porfiri, Emilio; Staffurth, John; Stanley, Andrew; Wylie, James; Beesley, Sharon; Birtle, Alison; Brown, Janet; Chakraborti, Prabir; Russell, Martin; Billingham, Lucinda

    2016-01-01

    BACKGROUND: Bony metastatic castration-refractory prostate cancer is associated with a poor prognosis and high morbidity. TRAPEZE was a two-by-two factorial randomised controlled trial of zoledronic acid (ZA) and strontium-89 (Sr-89), each combined with docetaxel. All have palliative benefits, are used to control bone symptoms and are used with docetaxel to prolong survival. ZA, approved on the basis of reducing skeletal-related events (SREs), is commonly combined with docetaxel in practice, although evidence of efficacy and cost-effectiveness is lacking. Sr-89, approved for controlling metastatic pain and reducing need for subsequent bone treatments, is generally palliatively used in patients unfit for chemotherapy. Phase II analysis confirmed the safety and feasibility of combining these agents. TRAPEZE aimed to determine the clinical effectiveness and cost-effectiveness of each agent. METHODS: Patients were randomised to receive six cycles of docetaxel plus prednisolone: alone, with ZA, with a single Sr-89 dose after cycle 6, or with both. Primary outcomes were clinical progression-free survival (CPFS: time to pain progression, SRE or death) and cost-effectiveness. Secondary outcomes were SRE-free interval (SREFI), total SREs, overall survival (OS) and quality of life (QoL). Log-rank test and Cox regression modelling were used to determine clinical effectiveness. Cost-effectiveness was assessed from the NHS perspective and expressed as cost per additional quality-adjusted life-year (QALY). An additional analysis was carried out for ZA to reflect the availability of generic ZA. RESULTS: PATIENTS: 757 randomised (median age 68.7 years; Eastern Cooperative Oncology Group scale score 0, 40%; 1, 52%; 2, 8%; prior radiotherapy, 45%); median prostate-specific antigen 143.78 ng/ml (interquartile range 50.8-353.9 ng/ml). Stratified log-rank analysis of CPFS was statistically non-significant for either agent (Sr-89, p = 0.11; ZA, p = 0.45). Cox regression

  19. The Value of Heterogeneity for Cost-Effectiveness Subgroup Analysis

    PubMed Central

    Manca, Andrea; Claxton, Karl; Sculpher, Mark J.

    2014-01-01

    This article develops a general framework to guide the use of subgroup cost-effectiveness analysis for decision making in a collectively funded health system. In doing so, it addresses 2 key policy questions, namely, the identification and selection of subgroups, while distinguishing 2 sources of potential value associated with heterogeneity. These are 1) the value of revealing the factors associated with heterogeneity in costs and outcomes using existing evidence (static value) and 2) the value of acquiring further subgroup-related evidence to resolve the uncertainty given the current understanding of heterogeneity (dynamic value). Consideration of these 2 sources of value can guide subgroup-specific treatment decisions and inform whether further research should be conducted to resolve uncertainty to explain variability in costs and outcomes. We apply the proposed methods to a cost-effectiveness analysis for the management of patients with acute coronary syndrome. This study presents the expected net benefits under current and perfect information when subgroups are defined based on the use and combination of 6 binary covariates. The results of the case study confirm the theoretical expectations. As more subgroups are considered, the marginal net benefit gains obtained under the current information show diminishing marginal returns, and the expected value of perfect information shows a decreasing trend. We present a suggested algorithm that synthesizes the results to guide policy. PMID:24944196

  20. Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media.

    PubMed

    Caspari, E; Gurevich, B; Müller, T M

    2013-10-01

    The determination of the transport properties of heterogeneous porous rocks, such as an effective hydraulic conductivity, arises in a range of geoscience problems, from groundwater flow analysis to hydrocarbon reservoir modeling. In the presence of formation-scale heterogeneities, nonstationary flows, induced by pumping tests or propagating elastic waves, entail localized pressure diffusion processes with a characteristic frequency depending on the pressure diffusivity and size of the heterogeneity. Then, on a macroscale, a homogeneous equivalent medium exists, which has a frequency-dependent effective conductivity. The frequency dependence of the conductivity can be analyzed with Biot's equations of poroelasticity. In the quasistatic frequency regime of this framework, the slow compressional wave is a proxy for pressure diffusion processes. This slow compressional wave is associated with the out-of-phase motion of the fluid and solid phase, thereby creating a relative fluid-solid displacement vector field. Decoupling of the poroelasticity equations gives a diffusion equation for the fluid-solid displacement field valid in a poroelastic medium with spatial fluctuations in hydraulic conductivity. Then, an effective conductivity is found by a Green's function approach followed by a strong-contrast perturbation theory suggested earlier in the context of random dielectrics. This theory leads to closed-form expressions for the frequency-dependent effective conductivity as a function of the one- and two-point probability functions of the conductivity fluctuations. In one dimension, these expressions are consistent with exact solutions in both low- and high-frequency limits for arbitrary conductivity contrast. In 3D, the low-frequency limit depends on the details of the microstructure. However, the derived approximation for the effective conductivity is consistent with the Hashin-Shtrikman bounds. PMID:24229128

  1. Tailgut cyst accompanied with bony defect

    PubMed Central

    Oh, Jae-Sang; Lee, Kyeong-Seok; Doh, Jae-Won

    2016-01-01

    Retro-rectal cystic hamartoma (tailgut cyst), is an uncommon congenital developmental lesion, generally located in the retro-rectal space. Its diagnosis and approach is challenging because the retropelvic space is not familiar. We report a 51-year-old woman who presented with paresthesia and pain in perianal area. The magnetic resonance image showed high signal intensity on the T1-weighted image and iso to high signal intensity on the T2-weighted image of the retropelvic space and CT showed sacral bony defect. We chose the posterior approach for removal of the tailgut cyst. Histopathology exam of the retropelvic cyst revealed a multiloculated cyst containing abundant mucoid material lined by both squamous and glandular mucinous epithelium. The patient has recovered nicely with no recurrence. Tailgut cyst needs complete surgical excision for good prognosis. So, a preoperative high-resolution image and co-operation between neurosurgen and general surgeon would help to make safe and feasible diagnosis and surgical access. PMID:27073796

  2. Dosimetric effect of tissue heterogeneity for 125I prostate implants

    PubMed Central

    Oliveira, Susana Maria; Teixeira, Nuno José; Fernandes, Lisete; Teles, Pedro; Vaz, Pedro

    2014-01-01

    Aim To use Monte Carlo (MC) together with voxel phantoms to analyze the tissue heterogeneity effect in the dose distributions and equivalent uniform dose (EUD) for 125I prostate implants. Background Dose distribution calculations in low dose-rate brachytherapy are based on the dose deposition around a single source in a water phantom. This formalism does not take into account tissue heterogeneities, interseed attenuation, or finite patient dimensions effects. Tissue composition is especially important due to the photoelectric effect. Materials and methods The computed tomographies (CT) of two patients with prostate cancer were used to create voxel phantoms for the MC simulations. An elemental composition and density were assigned to each structure. Densities of the prostate, vesicles, rectum and bladder were determined through the CT electronic densities of 100 patients. The same simulations were performed considering the same phantom as pure water. Results were compared via dose–volume histograms and EUD for the prostate and rectum. Results The mean absorbed doses presented deviations of 3.3–4.0% for the prostate and of 2.3–4.9% for the rectum, when comparing calculations in water with calculations in the heterogeneous phantom. In the calculations in water, the prostate D90 was overestimated by 2.8–3.9% and the rectum D0.1cc resulted in dose differences of 6–8%. The EUD resulted in an overestimation of 3.5–3.7% for the prostate and of 7.7–8.3% for the rectum. Conclusions The deposited dose was consistently overestimated for the simulation in water. In order to increase the accuracy in the determination of dose distributions, especially around the rectum, the introduction of the model-based algorithms is recommended. PMID:25337412

  3. Civic Returns to Higher Education: A Note on Heterogeneous Effects

    PubMed Central

    Brand, Jennie E.

    2011-01-01

    American educational leaders and philosophers have long valued schooling for its role in preparing the nation’s youth to be civically engaged citizens. Numerous studies have found a positive relationship between education and subsequent civic participation. However, little is known about possible variation in effects by selection into higher education, a critical omission considering education’s expressed role as a key mechanism for integrating disadvantaged individuals into civic life. I disaggregate effects and examine whether civic returns to higher education are largest for disadvantaged low likelihood or advantaged high likelihood college goers. I find evidence for significant effect heterogeneity: civic returns to college are greatest among individuals who have a low likelihood for college completion. Returns decrease as the propensity for college increases. PMID:22223924

  4. An effective medium theory for three-dimensional elastic heterogeneities

    NASA Astrophysics Data System (ADS)

    Jordan, Thomas H.

    2015-11-01

    A second-order Born approximation is used to formulate a self-consistent theory for the effective elastic parameters of stochastic media with ellipsoidal distributions of small-scale heterogeneity. The covariance of the stiffness tensor is represented as the product of a one-point tensor variance and a two-point scalar correlation function with ellipsoidal symmetry, which separates the statistical properties of the local anisotropy from those of the geometric anisotropy. The spatial variations can then be rescaled to an isotropic distribution by a simple metric transformation; the spherical average of the strain Green's function in the transformed space reduces to a constant Kneer tensor, and the second-order corrections to the effective elastic parameters are given by the contraction of the rescaled Kneer tensor against the single-point variance of the stiffness tensor. Explicit results are derived for stochastic models in which the heterogeneity is transversely isotropic and its second moments are characterized by a horizontal-to-vertical aspect ratio η. If medium is locally isotropic, the expressions for the anisotropic effective moduli reduce in the limit η → ∞ to Backus's second-order expressions for a 1-D stochastic laminate. Comparisons with the exact Backus theory show that the second-order approximation predicts the effective anisotropy for non-Gaussian media fairly well for relative rms fluctuations in the moduli smaller than about 30 per cent. A locally anisotropic model is formulated in which the local elastic properties have hexagonal symmetry, guided by a Gaussian random vector field that is transversely isotropic and specified by a horizontal-to-vertical orientation ratio ξ. The self-consistent theory provides closed-form expressions for the dependence of the effective moduli on 0 < ξ < ∞ and 0 < η < ∞. The effective-medium parametrizations described here appear to be suitable for incorporation into tomographic modelling.

  5. Hydrological effects of within-catchment heterogeneity of drainage density

    NASA Astrophysics Data System (ADS)

    Di Lazzaro, Michele; Zarlenga, Antonio; Volpi, Elena

    2015-02-01

    Local drainage density (dd) has been traditionally defined as the inverse of twice the distance one has to walk before encountering a channel. This formalization easily allows to derive raster-based maps of dd extracted straight off from digital elevation model data. Maps of local dd, which are continuous in space, are able to reveal the appearance of strong heterogeneities in the geological and geomorphological properties of natural landscapes across different scales. In this work we employ the information provided by these spatial maps to study the potential effects of the within-catchment variability of dd on the hydrologic response. A simple power law relationship between runoff yield at the local scale and the value of dd has been adopted; the hypothesis is supported by a large number of past empirical observations and modeling. The novel framework proposed (ddRWF) embeds this spatially variable runoff weight in the well-known Rescaled Width Function (RWF) framework, based on the more general geomorphological theory of the hydrologic response. The model is applied to four sub-basins in the Cascade Range Region (Oregon, USA) where strong contrasts in dissection patterns due the underlain geology have been broadly addressed in previous literature. The ddRWF approach is compared with the classic RWF in terms of shape, moments and peak of the simulated hydrograph response. Results hint that the variability of runoff yield due to the heterogeneity of dd (i.e. of hillslope lengths) determines a more rapid concentration of runoff, which implies shorter lag times, larger skewness and higher peak floods, especially in the case hillslope velocity is much smaller than channel velocity. The potential of the proposed framework relies on accounting for spatially variable losses related to geomorphologic heterogeneity in lumped rainfall-runoff models, still keeping the simple and robust structure of the IUH approach.

  6. Effects of incomplete mixing on chemical reactions under flow heterogeneities.

    NASA Astrophysics Data System (ADS)

    Perez, Lazaro; Hidalgo, Juan J.; Dentz, Marco

    2016-04-01

    Evaluation of the mixing process in aquifers is of primary importance when assessing attenuation of pollutants. In aquifers different hydraulic and chemical properties can increase mixing and spreading of the transported species. Mixing processes control biogeochemical transformations such as precipitation/dissolution reactions or degradation reactions that are fast compared to mass transfer processes. Reactions are local phenomena that fluctuate at the pore scale, but predictions are often made at much larger scales. However, aquifer heterogeities are found at all scales and generates flow heterogeneities which creates complex concentration distributions that enhances mixing. In order to assess the impact of spatial flow heterogeneities at pore scale we study concentration profiles, gradients and reaction rates using a random walk particle tracking (RWPT) method and kernel density estimators to reconstruct concentrations and gradients in two setups. First, we focus on a irreversible bimolecular reaction A+B → C under homogeneous flow to distinguish phenomena of incomplete mixing of reactants from finite-size sampling effects. Second, we analise a fast reversible bimolecular chemical reaction A+B rightleftharpoons C in a laminar Poiseuille flow reactor to determine the difference between local and global reaction rates caused by the incomplete mixing under flow heterogeneities. Simulation results for the first setup differ from the analytical solution of the continuum scale advection-dispersion-reaction equation studied by Gramling et al. (2002), which results in an overstimation quantity of reaction product (C). In the second setup, results show that actual reaction rates are bigger than the obtained from artificially mixing the system by averaging the concentration vertically. - LITERATURE Gramling, C. M.,Harvey, C. F., Meigs, and L. C., (2002). Reactive transport in porous media: A comparison of model prediction with laboratory visualization, Environ. Sci

  7. Investigating the effects of target heterogeneity on the cratering process.

    NASA Astrophysics Data System (ADS)

    Barnouin, O. S.

    2012-12-01

    momentum using a second order multi-material Eulerian methodology. This code possesses an adaptive mesh refinement that allows investigating the effects of fine-scale target heterogeneity on the cratering process, through the use of a simple microscopic model with complex but resolvable heterogeneous geometries, rather than a complex macroscopic model. Both approaches provide insights on how the thickness of the shock front relative to the average dimension of any pre-exiting structure could be a controlling factor during impact cratering.

  8. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    NASA Astrophysics Data System (ADS)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  9. DIAGNOSTIC CRITERIA FOR PROLIFERATIVE THYROID LESIONS IN BONY FISHES

    EPA Science Inventory

    Criteria for distinguishing hyperplastic thyroid lesions from thyroid neoplasia in bony fishes have long been debated by scientists. Confusion exists because the thyroid tissue in most teleosts is unencapsulated, is occasionally found in ectopic sites, and is frequently predispos...

  10. DIAGNOSTIC CRITERIA FOR PROLIFERATIVE THYROID LESIONS IN BONY FISHES

    EPA Science Inventory

    Thyroid proliferative lesions are rather common in bony fishes but disagreement exists in the fish pathology community concerning diagnostic criteria for hyperplastic versus neoplastic lesions. To simplify the diagnosis of proliferative thyroid lesions and to reduce confusion reg...

  11. Effects of Dipole Potential Modifiers on Heterogenic Lipid Bilayers.

    PubMed

    Efimova, Svetlana S; Malev, Valery V; Ostroumova, Olga S

    2016-04-01

    In this work, we examine the ability of dipole modifiers, flavonoids, and RH dyes to affect the dipole potential (φ d) and phase separation in membranes composed of ternary mixtures of POPC with different sphingolipids and sterols. Changes in the steady-state conductance induced by cation-ionophore complexes have been measured to evaluate the changes in dipole potential of planar lipid bilayers. Confocal fluorescence microscopy has been employed to investigate lipid segregation in giant unilamellar vesicles. The effects of flavonoids on φ d depend on lipid composition and dipole modifier type. The effectiveness of RH dyes to increase φ d depends on sphingolipid type but is not influenced by sterol content. Tested modifiers lead to partial or complete disruption of gel domains in bilayers composed of POPC, sphingomyelin, and cholesterol. Substitution of cholesterol to ergosterol or 7-dehydrocholesterol leads to a loss of fluidizing effects of modifiers except phloretin. This may be due to various compositions of gel domains. The lack of influence of modifiers on phase scenario in vesicles composed of ternary mixtures of POPC, cholesterol, and phytosphingosine or sphinganine is related to an absence of gel-like phase. It was concluded that the membrane lateral heterogeneity affects the dipole-modifying abilities of the agents that influence the magnitude of φ d by intercalation into the bilayer and orientation of its own large dipole moments (phloretin and RH dyes). The efficacy of modifiers that do not penetrate deeply and affect φ d through water adsorption (phlorizin, quercetin, and myricetin) is not influenced by lateral heterogeneity of membrane. PMID:26454655

  12. Multiple bony overgrowths in the mouth - report of two cases

    PubMed Central

    Kannan, Sathya; Muthusamy, Senthilkumar; Muthu, Kavitha; Sidhu, Preena

    2015-01-01

    Summary Tori and exostoses are benign bony protuberances that arise from bone surfaces in the oral cavity. The etiology of these growths has been implicated as multifactorial, but no consensus has been reached so far. These painless overgrowths seldom present as a complaint in the dental office unless functional or esthetic complications set in, and there is a fear for cancer. Here we discuss two rare cases where bony overgrowths present in the mouth were extensive and multiple. PMID:26811708

  13. Elastic and plastic effects on heterogeneous nucleation and nanowire formation

    NASA Astrophysics Data System (ADS)

    Boussinot, G.; Schulz, R.; Hüter, C.; Brener, E. A.; Spatschek, R.

    2014-02-01

    We investigate theoretically the effects of elastic and plastic deformations on heterogeneous nucleation and nanowire formation. In the first case, the influence of the confinement of the critical nucleus between two parallel misfitting substrates is investigated using scaling arguments. We present phase diagrams giving the nature of the nucleation regime as a function of the driving force and the degree of confinement. We complement this analytical study by amplitude equations simulations. In the second case, the influence of a screw dislocation inside a nanowire on the development of the morphological surface instability of the wire, related to the Rayleigh-Plateau instability, is examined. Here the screw dislocation provokes a torsion of the wire known as Eshelby twist. Numerical calculations using the finite element method and the amplitude equations are performed to support analytical investigations. It is shown that the screw dislocation promotes the Rayleigh-Plateau instability.

  14. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates

    NASA Astrophysics Data System (ADS)

    Atchley, Adam L.; Navarre-Sitchler, Alexis K.; Maxwell, Reed M.

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb2 +) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb2 + concentrations within the plume. Dissimilarities between ensemble Pb2 + concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb2 + concentrations are the same for all three

  15. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates.

    PubMed

    Atchley, Adam L; Navarre-Sitchler, Alexis K; Maxwell, Reed M

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb(2+)) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb(2+) concentrations within the plume. Dissimilarities between ensemble Pb(2+) concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb(2+) concentrations are the same for all

  16. Effects of lung inflation on airway heterogeneity during histaminergic bronchoconstriction.

    PubMed

    Kaczka, David W; Mitzner, Wayne; Brown, Robert H

    2013-09-01

    Lung inflation has been shown to dilate airways by altering the mechanical equilibrium between opposing airway and parenchymal forces. However, it is not known how heterogeneously such dilation occurs throughout the airway tree. In six anesthetized dogs, we measured the diameters of five to six central airway segments using high-resolution computed tomography, along with respiratory input impedance (Zrs) during generalized aerosol histamine challenge, and local histamine challenge in which the agonist was instilled directly onto the epithelia of the imaged central airways. Airway diameters and Zrs were measured at 12 and 25 cmH2O. The Zrs spectra were fitted with a model that incorporated continuous distributions of airway resistances. Airway heterogeneity was quantified using the coefficient of variation for predefined airway distribution functions. Significant reductions in average central airway diameter were observed at 12 cmH2O for both aerosolized and local challenges, along with significant increases upon inflation to 25 cmH2O. No significant differences were observed for the coefficient of variation of airway diameters under any condition. Significant increases in effective airway resistance as measured by Zrs were observed only for the aerosolized challenge at 12 cmH2O, which was completely reversed upon inflation. We conclude that the lung periphery may be the most dominant contributor to increases in airway resistance and tissue elastance during bronchoconstriction induced by aerosolized histamine. However, isolated constriction of only a few central airway segments may also affect tissue stiffness via interdependence with their surrounding parenchyma. PMID:23813528

  17. A framework for the analysis of heterogeneity of treatment effect in patient-centered outcomes research

    PubMed Central

    Varadhan, Ravi; Segal, Jodi B.; Boyd, Cynthia M.; Wu, Albert W.; Weiss, Carlos O.

    2015-01-01

    Individuals vary in their response to a treatment. Understanding this heterogeneity of treatment effect is critical for evaluating how well a treatment can be expected to work for an individual or a subgroup of individuals. An overemphasis on hypothesis testing has resulted in a dichotomy of all heterogeneity of treatment effect analyses into confirmatory (hypothesis testing) and exploratory (hypothesis finding) analyses. This limited view of heterogeneity of treatment effect is inadequate for creating evidence that is useful for informing patient-centered decisions. An expanded framework for heterogeneity of treatment effect assessment is proposed. It recognizes four distinct goals of heterogeneity of treatment effect analyses: hypothesis testing, hypothesis finding, reporting subgroup effects for meta-analysis, and individual-level prediction. Accordingly, two new types of heterogeneity of treatment effect analyses are proposed: descriptive and predictive. Descriptive heterogeneity of treatment effect analyses report treatment effects for prespecified subgroups in accordance with prospectively specified analytic strategy. They need not be powered to detect heterogeneity of treatment effect. They emphasize estimation and reporting of subgroup effects rather than hypothesis testing. Sampling properties (e.g., standard error) of descriptive analysis can be characterized, thus facilitating meta-analysis of subgroup effects. Predictive heterogeneity of treatment effect analyses estimate probabilities of beneficial and adverse responses of individuals to treatments and facilitates optimal treatment decisions for different types of individuals. Procedures are also suggested to improve reliability of heterogeneity of treatment effect assessment from observational studies. Heterogeneity of treatment effect analysis should be identified as confirmatory, descriptive, exploratory, or predictive analysis. Evidence should be interpreted in a manner consistent with the analytic

  18. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport.

    PubMed

    Leung, Juliana Y; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  19. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    NASA Astrophysics Data System (ADS)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  20. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    SciTech Connect

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  1. The effect of soil heterogeneity on ATES performance

    NASA Astrophysics Data System (ADS)

    Sommer, W.; Rijnaarts, H.; Grotenhuis, T.; van Gaans, P.

    2012-04-01

    Due to an increasing demand for sustainable energy, application of Aquifer Thermal Energy Storage (ATES) is growing rapidly. Large-scale application of ATES is limited by the space that is available in the subsurface. Especially in urban areas, suboptimal performance is expected due to thermal interference between individual wells of a single system, or interference with other ATES systems or groundwater abstractions. To avoid thermal interference there are guidelines on well spacing. However, these guidelines, and also design calculations, are based on the assumption of a homogeneous subsurface, while studies report a standard deviation in logpermeability of 1 to 2 for unconsolidated aquifers (Gelhar, 1993). Such heterogeneity may create preferential pathways, reducing ATES performance due to increased advective heat loss or interference between ATES wells. The role of hydraulic heterogeneity of the subsurface related to ATES performance has received little attention in literature. Previous research shows that even small amounts of heterogeneity can result in considerable uncertainty in the distribution of thermal energy in the subsurface and an increased radius of influence (Ferguson, 2007). This is supported by subsurface temperature measurements around ATES wells, which suggest heterogeneity gives rise to preferential pathways and short-circuiting between ATES wells (Bridger and Allen, 2010). Using 3-dimensional stochastic heat transport modeling, we quantified the influence of heterogeneity on the performance of a doublet well energy storage system. The following key parameters are varied to study their influence on thermal recovery and thermal balance: 1) regional flow velocity, 2) distance between wells and 3) characteristics of the heterogeneity. Results show that heterogeneity at the scale of a doublet ATES system introduces an uncertainty up to 18% in expected thermal recovery. The uncertainty increases with decreasing distance between ATES wells. The

  2. Viscoelastic effective properties of two types of heterogeneous materials.

    NASA Astrophysics Data System (ADS)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel

    2015-04-01

    In the past, a lot of efforts have been put to describe two end cases of rock behaviors: elasticity and viscosity. In recent years, more focus has been brought on the intermediate viscoelastic cases which describe better the rheology of rocks such as shales. Shales are typically heterogeneous and the question arises as to how to derive their effective properties so that they can be approximated as homogeneous media. This question has already been dealt with at the elastic and viscous limit but still remains for some cases in between. Using MILAMIN, a fast finite element solver for large problems, we numerically investigate different approaches to derive the effective properties of several viscoelastic media. Two types of geometries are considered: layered and inclusion based media. We focus on two dimensional plane strain problems considering two phase composites deformed under pure shear. We start by investigating the case of transversely isotropic layered media made of two Maxwell materials. Using the Backus averaging method we discuss the degree of relevance of this averaging by considering some parameters as: layer periodicity, layer thickness and layer interface roughness. Other averaging methods are also discussed which provide a broader perspective on the performances of Backus averaging. In a second part we move on to inclusion based models. The advantage of these models compared to the previous one is that they provide a better approximation to real microstructures in rocks. The setup we consider in this part is the following: some viscous circular inclusions are embedded in an elastic matrix. Both the inclusions and the matrix are homogeneous but the inclusions are purely isotropic while the matrix can also be anisotropic. In order to derive the effective viscoelastic properties of the medium we use two approaches: the self-consistent averaging and the differential effective medium theory. The idea behind self-consistency is to assume that the inclusions

  3. Arthroscopic Repair of a Posterior Bony Bankart Lesion

    PubMed Central

    Poehling-Monaghan, Kirsten L.; Krych, Aaron J.; Dahm, Diane L.

    2015-01-01

    Posterior bony defects of the glenoid rim, particularly those associated with instability, are often a frustrating challenge for arthroscopists because of the defects' inaccessibility from standard portals. This challenge is enhanced when the lesion is chronic and fibrous malunion of the fragment makes mobilization difficult. We present our technique for arthroscopic repair of the relatively uncommon chronic posterior bony Bankart lesion. By use of lateral positioning and a standard anterior viewing portal and posterior working portal, as well as a strategically placed posterolateral accessory portal, the lesion is first freed from its malreduced position and ultimately repaired using suture anchor fixation of the bony fragment along with its associated labrum directly to the remaining glenoid rim. This technique, facilitated by precise portal placement, results in satisfactory fragment reduction, appropriate capsular tension, and restoration of anatomy. PMID:26870644

  4. Migration Effects of Parallel Genetic Algorithms on Line Topologies of Heterogeneous Computing Resources

    NASA Astrophysics Data System (ADS)

    Gong, Yiyuan; Guan, Senlin; Nakamura, Morikazu

    This paper investigates migration effects of parallel genetic algorithms (GAs) on the line topology of heterogeneous computing resources. Evolution process of parallel GAs is evaluated experimentally on two types of arrangements of heterogeneous computing resources: the ascending and descending order arrangements. Migration effects are evaluated from the viewpoints of scalability, chromosome diversity, migration frequency and solution quality. The results reveal that the performance of parallel GAs strongly depends on the design of the chromosome migration in which we need to consider the arrangement of heterogeneous computing resources, the migration frequency and so on. The results contribute to provide referential scheme of implementation of parallel GAs on heterogeneous computing resources.

  5. [Bony avulsions of the rotator cuff : Arthroscopic concepts].

    PubMed

    Greiner, S; Scheibel, M

    2011-01-01

    Bony avulsions of the rotator cuff and isolated greater or lesser tuberosity fractures are rare injuries and a clear consensus regarding classification and therapy does not yet exist. Conservative therapy is limited, especially in injuries with displaced fragments and in these cases surgical treatment is frequently indicated. The ongoing development of arthroscopic techniques has led to quite a number of reports about arthroscopically assisted or total arthroscopic techniques in the treatment of these injuries. The advantages and disadvantages of arthroscopic concepts for the treatment of bony avulsions of the rotator cuff are presented with reference to the current literature. PMID:21153534

  6. Circumferential Calcification of Silicone Implant Misunderstood as a Bony Substitute.

    PubMed

    Lee, Sae Bin; Min, Hyun Jin

    2016-01-01

    Silicone implant is known to be safe and easy to handle, and frequently used in Asian rhinoplasty. Compared with breast implant, complication studies about silicone calcification used in rhinoplasty are very limited. Recently, the authors experienced an interesting patient who underwent revision rhinoplasty in our institution. Based on preoperative images, previously inserted dorsal augmentation material was identified. It was circumferentially enclosed with bony material and hypertrophied bony lesion induced hump on the mid portion of nasal dorsum. During operation, the authors found it was the calcified capsule of silicone implant, and the calcification was surrounding the whole implant material. PMID:26703034

  7. Effects of Tidal Modulation in Heterogeneous Models of Slow Slip

    NASA Astrophysics Data System (ADS)

    Skarbek, R. M.; Rempel, A. W.; Thomas, A.

    2014-12-01

    Since their discovery, numerous models have been put forward to explain the occurance of slow slip and associated tremor. These models invoke a wide array of causal mechanisms and are all successful in reproducing the first-order behavior of slow-slip events. Discriminating amongst the various proposed models requires looking at second-order effects of slow slip and tremor. Here, we consider the effects of tidal modulation on slow slip in subduction zones. A great deal of observational evidence has established that slow-slip and associated tremor are modulated by the small stress perturbations associated with tides and teleseismic events. Recent modeling studies that have examined the influence of tidal stresses (<10 kPa) have focused either on the effects of tidally induced changes in shear stress, or on changes in shear and normal stress that coincide. However, along the Cascadia margin, the relative phase of the tidally induced fault-normal and shear stresses depends on position along the plate boundary fault, and can vary from being in phase, to completely out of phase. We report on the predictions of models designed to examine the sensitivity of slow-slip in subduction zones to the phase shift γ between tidally induced normal and shear stress perturbations. We consider both simple spring-slider and 1-D elastodynamic models that are designed to mimic the effects of geologic heterogeneity by allowing for variations in the rate-and-state frictional parameters. For a given slow-slip event, spring-slider results indicate that the phase lag γv between the peak slip rate and the tidally induced shear stress perturbation depends on both the phase shift γ, and the perturbation amplitude. Models parameterized for Cascadia are capable of producing phase lags γv within the range (15◦ to 30◦) of those reported by Royer et al. (JGR, 2014). Additionally, our models predict that the correlation between tidally induced shear stress perturbations and resultant slip also

  8. Effects of subsurface heterogeneity on large-scale hydrological predictions

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Gleeson, Tom; Wagener, Thorsten; Wada, Yoshihide

    2015-04-01

    Heterogeneity is abundant everywhere across the hydrosphere. It exists in the soil, the vadose zone and the groundwater producing preferential flow and complex threshold behavior. In large-scale hydrological models, subsurface heterogeneity is usually not considered. Instead average or representative values are chosen for each of the simulated grid cells, not incorporating any sub-grid variability. This may lead to unreliable predictions when the models are used for assessing future water resources availability, floods or droughts, or when they are used for recommendations for more sustainable water management. In this study we use a novel, large-scale model that takes into account sub-grid heterogeneity for the simulation of groundwater recharge by using statistical distribution functions. We choose all regions over Europe that are comprised by carbonate rock (~35% of the total area) because the well understood dissolvability of carbonate rocks (karstification) allows for assessing the strength of subsurface heterogeneity. Applying the model with historic data and future climate projections we show that subsurface heterogeneity results (1) in larger present-day groundwater recharge and (2) a greater vulnerability to climate in terms of long-term decrease and hydrological extremes.

  9. Effective parameters for two-phase flow in a porous medium with periodic heterogeneities

    NASA Astrophysics Data System (ADS)

    Ataie-Ashtiani, B.; Hassanizadeh, S. M.; Oostrom, M.; Celia, M. A.; White, M. D.

    2001-05-01

    Computational simulations of two-phase flow in porous media are used to investigate the feasibility of replacing a porous medium containing heterogeneities with an equivalent homogeneous medium. Simulations are performed for the case of infiltration of a dense nonaqueous phase liquid (DNAPL) in a water-saturated, heterogeneous porous medium. For two specific porous media, with periodic and rather simple heterogeneity patterns, the existence of a representative elementary volume (REV) is studied. Upscaled intrinsic permeabilities and upscaled nonlinear constitutive relationships for two-phase flow systems are numerically calculated and the effects of heterogeneities are evaluated. Upscaled capillary pressure-saturation curves for drainage are found to be distinctly different from the lower-scale curves for individual regions of heterogeneity. Irreducible water saturation for the homogenized medium is found to be much larger than the corresponding lower-scale values. Numerical simulations for both heterogeneous and homogeneous representations of the considered porous media are carried out. Although the homogenized model simulates the spreading behavior of DNAPL reasonably well, it still fails to match completely the results form the heterogeneous simulations. This seems to be due, in part, to the nonlinearities inherent to multiphase flow systems. Although we have focussed on a periodic heterogeneous medium in this study, our methodology is applicable to other forms of heterogeneous media. In particular, the procedure for identification of a REV, and associated upscaled constitutive relations, can be used for randomly heterogeneous or layered media as well.

  10. PROPOSED DIAGNOSTIC CRITERIA FOR PROLIFERATIVE THYROID LESIONS IN BONY FISHES

    EPA Science Inventory

    Distinguishing hyperplastic lesions from neoplasia in the thyroid of bony fishes has been debated by scientists for about one hundred years. As early as the first decade of the last century, the histological interpretation of some of the striking proliferative lesions observed in...

  11. DIAGNOSTIC CRITERIA FOR PROLIFERATIVE THYROID LESIONS IN BONY FISHES II

    EPA Science Inventory

    Thyroid proliferative lesions are rather common in bony fishes but diagnostic terminology and criteria for these lesions are inconsistent in the literature. The diagnosis of proliferative thyroid lesions is especially challenging in fish due to the fact that the thyroid is not a ...

  12. 1. GENERAL VIEW FROM BONY PILE LOOKING SOUTH. WASH HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW FROM BONY PILE LOOKING SOUTH. WASH HOUSE IN LEFT BACKGROUND. TIPPLE AND CLEANING PLANT TO RIGHT. IN CENTER IS A TANK USED FOR TREATING MINE REFUSE AND ACID RUNOFF. - Eureka No. 40, Tipple & Cleaning Plant, East of State Route 56, north of Little Paint Creek, Scalp Level, Cambria County, PA

  13. The Heterogeneous Effects of Income Changes on Happiness

    ERIC Educational Resources Information Center

    Becchetti, Leonardo; Corrado, Luisa; Rossetti, Fiammetta

    2011-01-01

    We investigate the relationship between money and happiness across the waves of the British Household Panel Study by using a latent class approach which accounts for slope heterogeneity. Our findings reveal the presence of a vast majority of "Easterlin-type" individuals with positive but very weak relationship between changes in income and changes…

  14. The Effect of Heterogeneity on Numerical Ordering in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Cantlon, Jessica F.; Brannon, Elizabeth M.

    2006-01-01

    We investigated how within-stimulus heterogeneity affects the ability of rhesus monkeys to order pairs of the numerosities 1 through 9. Two rhesus monkeys were tested in a touch screen task where the variability of elements within each visual array was systematically varied by allowing elements to vary in color, size, shape, or any combination of…

  15. Soil spatial heterogeneity effect on soil electrical resistivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrical resistivity (ER) is growing in popularity due to its ease of use and because of its non-invasive techniques, which are used to reveal and map soil heterogeneity. The objective of this work was to evaluate how differing soil properties affect the electric resistivity and to observe these e...

  16. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    SciTech Connect

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-04-15

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters ({alpha}=0.15 Gy{sup -1} and {alpha}/{beta}=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD{sub 2}) with respect to three effects: edema, RBE, and dose heterogeneity for {sup 125}I and {sup 103}Pd implants. The EUD{sub 2} analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V{sub 100} (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D{sub 90} (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for {sup 125}I and {sup 103}Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for {sup 125}I and 1.3-1.6 for {sup 103}Pd implants. These RBE values are consistent with the RBE data published in the

  17. The effect of heterogeneity and surface roughness on soil hydrophobicity

    NASA Astrophysics Data System (ADS)

    Hallin, I.; Bryant, R.; Doerr, S. H.; Douglas, P.

    2010-05-01

    Soil water repellency, or hydrophobicity, can develop under both natural and anthropogenic conditions. Forest fires, vegetation decomposition, microbial activity and oil spills can all promote hydrophobic behaviour in surrounding soils. Hydrophobicity can stabilize soil organic matter pools and decrease evapotranspiration, but there are many negative impacts of hydrophobicity as well: increased erosion of topsoil, an increasingly scarce resource; increased runoff, which can lead to flooding; and decreased infiltration, which directly affects plant health. The degree of hydrophobicity expressed by soil can vary greatly within a small area, depending partly on the type and severity of the disturbance as well as on temporal factors such as water content and microbial activity. To date, many laboratory investigations into soil hydrophobicity have focused on smooth particle surfaces. As a result, our understanding of how hydrophobicity develops on rough surfaces of macro, micro and nano-particulates is limited; we are unable to predict with certainty how these soil particles will behave on contact with water. Surface chemistry is the main consideration when predicting hydrophobic behaviour of smooth solids, but for particles with rough surfaces, hydrophobicity is believed to develop as a combination of surface chemistry and topography. Topography may reflect both the arrangement (aggregation) of soil particles and the distribution of materials adsorbed on particulate surfaces. Patch-wise or complete coverage of rough soil particles by hydrophobic material may result in solid/water contact angles ≥150° , at which point the soil may be classified as super-hydrophobic. Here we present a critical review of the research to date on the effects of heterogeneity and surface roughness on soil hydrophobicity in which we discuss recent advances, current trends, and future research areas. References: Callies, M., Y. Chen, F. Marty, A. Pépin and D. Quéré. 2005. Microfabricated

  18. More than superstition: differential effects of featural heterogeneity and change on subitizing and counting.

    PubMed

    Trick, Lana M

    2008-07-01

    This study investigates the effects of item heterogeneity (differences in color and shape) and moment-to-moment feature change as it relates to the issue of whether subitizing and counting involve different processes. Participants enumerated displays of up to eight items that were either homogeneous or heterogeneous. In situations where the heterogeneous displays always had approximately half of the items of one type and half of the other, heterogeneity significantly sped enumeration in the counting range (6-8 items) and significantly slowed enumeration in the subitizing range (1-3 items), a dissociation that suggests that subitizing and counting involve different operations. Moment-to-moment feature change had no effect on subitizing. However, feature change slowed counting, but only when participants were enumerating heterogeneous items that were half of one type and half of the other, as might be expected if participants were using differences in features to select items by type. PMID:18613623

  19. Capillary effects in drainage in heterogeneous porous media: Continuum modeling, experiments and pore network simulations

    SciTech Connect

    Xu, Baomin; Yortsos, Y.C.

    1993-04-01

    We investigate effects of capillary heterogeneity induced by variations in permeability in the direction of displacement in heterogeneous porous media under drainage conditions. The investigation is three-pronged and uses macroscopic simulation, based on the standard continuum equations, experiments with the use of an acoustic technique and pore network numerical models. It is found that heterogeneity affects significantly the saturation profiles, the effect being stronger at lower rates. A good agreement is found between the continuum model predictions and the experimental results based on which it can be concluded that capillary heterogeneity effects in the direction of displacement act much like a body force (e.g. gravity). A qualitative agreement is also found between the continuum approach and the pore network numerical models, which is expected to improve when finite size effects in the pore network simulations diminish. The results are interpreted with the use of invasion percolation concepts.

  20. Homogeneous-heterogeneous reaction effects in peristalsis through curved geometry

    SciTech Connect

    Hayat, Tasawar; Tanveer, Anum Alsaadi, Fuad; Alotaibi, Naif D.

    2015-06-15

    This paper looks at the influence of homogeneous-heterogeneous reactions on the peristaltic transport of non-Newtonian fluid in a curved channel with wall properties. Constitutive relations for thermodynamic third grade material are utilized in the problem development. An electrically conducting fluid in the presence of radial applied magnetic field is considered. The governing flow equations are developed in the presence of viscous heating. Mathematical computations are simplified employing long wavelength and low Reynolds number considerations. The solutions for velocity, temperature, concentration and heat transfer coefficient are obtained and examined. The features of sundry parameters are analyzed by plotting graphs.

  1. Homogeneous-heterogeneous reaction effects in peristalsis through curved geometry

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Tanveer, Anum; Alsaadi, Fuad; Alotaibi, Naif D.

    2015-06-01

    This paper looks at the influence of homogeneous-heterogeneous reactions on the peristaltic transport of non-Newtonian fluid in a curved channel with wall properties. Constitutive relations for thermodynamic third grade material are utilized in the problem development. An electrically conducting fluid in the presence of radial applied magnetic field is considered. The governing flow equations are developed in the presence of viscous heating. Mathematical computations are simplified employing long wavelength and low Reynolds number considerations. The solutions for velocity, temperature, concentration and heat transfer coefficient are obtained and examined. The features of sundry parameters are analyzed by plotting graphs.

  2. Effect of Heterogeneous Investments on the Evolution of Cooperation in Spatial Public Goods Game

    PubMed Central

    Huang, Keke; Wang, Tao; Cheng, Yuan; Zheng, Xiaoping

    2015-01-01

    Understanding the emergence of cooperation in spatial public goods game remains a grand challenge across disciplines. In most previous studies, it is assumed that the investments of all the cooperators are identical, and often equal to 1. However, it is worth mentioning that players are diverse and heterogeneous when choosing actions in the rapidly developing modern society and researchers have shown more interest to the heterogeneity of players recently. For modeling the heterogeneous players without loss of generality, it is assumed in this work that the investment of a cooperator is a random variable with uniform distribution, the mean value of which is equal to 1. The results of extensive numerical simulations convincingly indicate that heterogeneous investments can promote cooperation. Specifically, a large value of the variance of the random variable can decrease the two critical values for the result of behavioral evolution effectively. Moreover, the larger the variance is, the better the promotion effect will be. In addition, this article has discussed the impact of heterogeneous investments when the coevolution of both strategy and investment is taken into account. Comparing the promotion effect of coevolution of strategy and investment with that of strategy imitation only, we can conclude that the coevolution of strategy and investment decreases the asymptotic fraction of cooperators by weakening the heterogeneity of investments, which further demonstrates that heterogeneous investments can promote cooperation in spatial public goods game. PMID:25781345

  3. Numerical Simulations of Floodplain Heterogeneity Effects on Meanders Migration

    NASA Astrophysics Data System (ADS)

    Bogoni, M.; Lanzoni, S.; Putti, M.

    2014-12-01

    Floodplains and sinuous rivers have a close relationship with each other, mutually influencing their evolutions in time and space. The heterogeneity in erosional resistance has a crucial role on meander planform evolution. It depends on external factors, like land use and cover, but also on the composition of the floodplain, which is due to the ancient geological composition and to the processes associated to long-term river migration. In particular, banks erosion and deposition cause a variation of the superficial composition of the soil, therefore the river patterns are influenced by the previous trends. Based on some recent works, the aim of this contribution is to collect numerical information on the relations between meander migration and the heterogeneity of floodplains caused by oxbow lakes. Numerical simulations have been performed to analyze the temporal and spatial behavior of meanders with a range of values of the erosional resistance of the plain. These values are set as a function of some factors: the characteristic grain size of sediment transported by the flow, the deposition age of the sediments, the eventual presence of vegetation on the banks. The statistical analysis of characteristic geometrical quantities of meanders are able to show the dependence of the simulation results on the meander history. In particular we try to answer to the following questions: how do the rivers affect themselves during their spatial and temporal evolution, modifying the distribution of the floodplain erodibility? Do the migration history plays a main role on the meanders migration modeling?

  4. Charge Transfer and Support Effects in Heterogeneous Catalysis

    SciTech Connect

    Hervier, Antoine

    2011-12-21

    the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO2. With non-stoichiometric TiO2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O2 alone, and in

  5. The effect of spatial variation in potential energy on the diffusion in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Livshits, A. I.

    2016-05-01

    The standard equation of diffusion in heterogeneous media is found to be incomplete. The effect of heterogeneity on diffusion phenomena is commonly considered to be caused by only spatial variations of diffusion coefficient while the spatial difference in the potential energy of diffusing particles due to their interactions with the inhomogeneous medium is not taken into consideration. The possibility of new transport phenomena in heterogeneous media follows from the corrected equation. In particular the great increase of hydrogen permeability through the membranes of metallic alloy is turned out possible due to an optimization of spatial distribution of the alloy composition.

  6. Effect of Population Heterogenization on the Reproducibility of Mouse Behavior: A Multi-Laboratory Study

    PubMed Central

    Richter, S. Helene; Garner, Joseph P.; Zipser, Benjamin; Lewejohann, Lars; Sachser, Norbert; Touma, Chadi; Schindler, Britta; Chourbaji, Sabine; Brandwein, Christiane; Gass, Peter; van Stipdonk, Niek; van der Harst, Johanneke; Spruijt, Berry; Võikar, Vootele; Wolfer, David P.; Würbel, Hanno

    2011-01-01

    In animal experiments, animals, husbandry and test procedures are traditionally standardized to maximize test sensitivity and minimize animal use, assuming that this will also guarantee reproducibility. However, by reducing within-experiment variation, standardization may limit inference to the specific experimental conditions. Indeed, we have recently shown in mice that standardization may generate spurious results in behavioral tests, accounting for poor reproducibility, and that this can be avoided by population heterogenization through systematic variation of experimental conditions. Here, we examined whether a simple form of heterogenization effectively improves reproducibility of test results in a multi-laboratory situation. Each of six laboratories independently ordered 64 female mice of two inbred strains (C57BL/6NCrl, DBA/2NCrl) and examined them for strain differences in five commonly used behavioral tests under two different experimental designs. In the standardized design, experimental conditions were standardized as much as possible in each laboratory, while they were systematically varied with respect to the animals' test age and cage enrichment in the heterogenized design. Although heterogenization tended to improve reproducibility by increasing within-experiment variation relative to between-experiment variation, the effect was too weak to account for the large variation between laboratories. However, our findings confirm the potential of systematic heterogenization for improving reproducibility of animal experiments and highlight the need for effective and practicable heterogenization strategies. PMID:21305027

  7. Effect of population heterogenization on the reproducibility of mouse behavior: a multi-laboratory study.

    PubMed

    Richter, S Helene; Garner, Joseph P; Zipser, Benjamin; Lewejohann, Lars; Sachser, Norbert; Touma, Chadi; Schindler, Britta; Chourbaji, Sabine; Brandwein, Christiane; Gass, Peter; van Stipdonk, Niek; van der Harst, Johanneke; Spruijt, Berry; Võikar, Vootele; Wolfer, David P; Würbel, Hanno

    2011-01-01

    In animal experiments, animals, husbandry and test procedures are traditionally standardized to maximize test sensitivity and minimize animal use, assuming that this will also guarantee reproducibility. However, by reducing within-experiment variation, standardization may limit inference to the specific experimental conditions. Indeed, we have recently shown in mice that standardization may generate spurious results in behavioral tests, accounting for poor reproducibility, and that this can be avoided by population heterogenization through systematic variation of experimental conditions. Here, we examined whether a simple form of heterogenization effectively improves reproducibility of test results in a multi-laboratory situation. Each of six laboratories independently ordered 64 female mice of two inbred strains (C57BL/6NCrl, DBA/2NCrl) and examined them for strain differences in five commonly used behavioral tests under two different experimental designs. In the standardized design, experimental conditions were standardized as much as possible in each laboratory, while they were systematically varied with respect to the animals' test age and cage enrichment in the heterogenized design. Although heterogenization tended to improve reproducibility by increasing within-experiment variation relative to between-experiment variation, the effect was too weak to account for the large variation between laboratories. However, our findings confirm the potential of systematic heterogenization for improving reproducibility of animal experiments and highlight the need for effective and practicable heterogenization strategies. PMID:21305027

  8. Heterogeneous plastic deformation and Bauschinger effect in ultrafine-grained metals: atomistic simulations

    NASA Astrophysics Data System (ADS)

    Tsuru, Tomohito; Aoyagi, Yoshiteru; Kaji, Yoshiyuki; Shimokawa, Tomotsugu

    2016-03-01

    The effect of the dislocation density on yield strength and subsequent plastic deformation of ultrafine-grained metals was investigated in large-scale atomistic simulations. Polycrystalline models were constructed and uniaxial tension and compression were applied to elucidate the heterogeneous plastic deformation and the Bauschinger effect. The initial yield becomes heterogeneous as the dislocation density decreases owing to a wide range of Schmid factors of activated slip systems in each grain. A different mechanism of the Bauschinger effect was proposed, where the Bauschinger effect of ultrafine-grained metals is caused by the change in dislocation density in the process of forward and backward loadings.

  9. Treatment Effect Heterogeneity in a Science Professional Development Initiative: The Case for School Capacity

    ERIC Educational Resources Information Center

    Bruch, Sarah; Grigg, Jeffrey; Hanselman, Paul

    2010-01-01

    This study focuses on how the treatment effects of a teacher professional development initiative in science differed by school capacity. In other words, the authors are primarily concerned with treatment effect heterogeneity. As such, this paper complements ongoing evaluation of the average treatment effects of the initiative over time. The…

  10. Effect of spatial input data and landscape heterogeneity on performance and consistency of model structures

    NASA Astrophysics Data System (ADS)

    Euser, Tanja; Winsemius, Hessel; Hrachowitz, Markus; Fenicia, Fabrizio; Gharari, Shervan; Savenije, Huub

    2013-04-01

    The use of flexible hydrological model structures for hypothesis testing requires an objective and diagnostic method to identify whether a rainfall-runoff model structure is suitable for a certain catchment. To determine if a model structure is realistic, i.e. if it captures the relevant runoff processes, both performance and consistency are important. Performance describes the ability of a model structure to mimic a specific part of the hydrological behaviour in a specific catchment. Consistency describes the ability of a model structure to adequately reproduce several hydrological signatures simultaneously. FARM (Framework to Assess the Realism of Model structures can be used to evaluate this performance and consistency, using different hydrological signatures. Results from FARM presented previously are only qualitative and for lumped catchment models, therefore, the research question of this study is: What is the effect if FARM is applied to model structures if some kind of spatial input data or landscape heterogeneity is accounted for? For this study a case study is performed in the Ourthe catchment, a tributary of the Meuse. The effects of incorporating different sources of heterogeneity, such as precipitation and landscape heterogeneity, are tested. These sources of heterogeneity are added stepwise and FARM is used to investigate whether metrics of performance and consistency change. In addition, with FARM it can also be identified how the reproduction of different signatures changes with the incorporation of different sources of heterogeneity. In this way FARM can be used to investigate if accounting for heterogeneity really adds value to a model structure.

  11. Development of numerical framework to study microstructural effects on shock initiation in heterogeneous energetic materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Martin; Rai, Nirmal; Udaykumar, H. S.

    2015-06-01

    Heterogeneous energetic materials like plastic bonded explosives (PBX) have very detailed and non-uniform microstructure. The heterogeneity is mainly because of presence of HMX crystals embedded in a polymer binder matrix. Also, manufacturing defects often creates pores and cracks in the material. Shock interaction with these heterogeneities leads to local heated regions known as hot spots. It is widely accepted that these hot spots are predominantly the cause of triggering reaction and eventually ignition in these energetic materials. There are various physical phenomenon through which hot spot can be created such as pore collapse, inter-granular friction in HMX crystals, shock heating of HMX crystals and binder etc. Hence, microstructural heterogeneity can play a vital role for shock initiation in PBX. In the current work, a general framework has been established for performing mesoscale simulations on heterogeneous energetic material. In order to get an accurate representation of the microstructure, image processing algorithms have been employed on XCMT images of PBX microstructure. The image processing framework has been built up with massively parallel Eulerian code, SCIMITAR3D. Shock simulation on PBX microstructures has been performed and the effect of microstructure geometry has been studied for different shock strengths case. The simulation results have been shown to resolve hot spots created due to various heterogeneities present in the microstructure.

  12. Effects of capillary heterogeneity on vapor-liquid counterflow in porous media

    SciTech Connect

    Stubos, A.K.; Satik, C.; Yortsos, Y.C.

    1992-06-01

    Based on a continuum description, the effect of capillary heterogeneity, induced by variation in permeability, on the steady state, countercurrent, vapor-liquid flow in porous media is analyzed. It is shown that the heterogeneity acts as a body force, that may enhance or diminish gravity effects on heat pipes. Selection rules that determine the steady states reached in homogeneous, gravity-driven heat pipes are also formulated. It is shown that the ``infinite`` two-phase zone may terminate by a substantial change in the permeability somewhere in the medium. The two possible sequences, liquid - liquid dominated - dry, or liquid - vapor dominated - dry find applications in geothermal systems. Finally, it is shown that although weak heterogeneity affects only gravity controlled flows, stronger variations in permeability can give rise to significant capillary effects.

  13. Characteristics of Supplemental Educational Services Providers That Explain Heterogeneity of Effects on Achievement

    ERIC Educational Resources Information Center

    Jones, Curtis J.

    2015-01-01

    This study used a mixed-methods approach to explore the heterogeneity of effectiveness between supplemental educational services (SES) providers in the Chicago Public Schools (CPS). Using surveys of schools and SES providers, and statistical modeling, providers using college graduates and teachers as tutors were found to be more effective than…

  14. Comparative testicular structure and spermatogenesis in bony fishes

    PubMed Central

    Uribe, Mari Carmen; Grier, Harry J; Mejía-Roa, Víctor

    2014-01-01

    In most bony fishes, testes are paired elongated organs that are attached to the dorsal wall of the body by a mesorchium. Histological examination of teleost testes, and also in all vertebrates, shows that the testes are formed of germ cells and somatic cells, comprising the germinal and interstitial compartments. Both compartments are separated by a basement membrane. The germ cells may be spermatogonia, meiotic spermatocytes and haploid spermatids that differentiate into spermatozoa. The process of spermatogenesis includes a sequence of morphological and physiological changes of germ cells that begin with the differentiation of spermatogonia that become meiotic spermatocytes. After the second meiotic division, through a process of spermiogenesis, these differentiate into spermatozoa. Spermatogonia associate with Sertoli cells to form spermatocysts or cysts. The cyst is the unit of spermatogenic function, composed of a cohort of isogenic germ cells surrounded by encompassing Sertoli cells. The teleost testis is organized morphologically into 3 types of testis: 1) tubular testis type, present in lower bony fishes as salmonids, cyprinids and lepisosteids; 2) unrestricted spermatogonial testis type, found in neoteleosts except Atherinomorpha; and 3) restricted spermatogonial testis type, characteristic of all Atherinomorpha. The morphology of the testicular germinal epithelium changes during the annual reproductive cycle, reflecting reproductive seasonality. PMID:26413405

  15. Giant Atretic Occipital Lipoencephalocele in an Adult with Bony Outgrowth

    PubMed Central

    Nimkar, Kshama; Sood, Dinesh; Soni, Pawan; Chauhan, Narvir; Surya, Mukesh

    2016-01-01

    Summary Background We present unique case of a giant extracranial atretic occipital lipoencephalocele in an adult patient with new bone formation within it which was not associated with any developmental malformation of brain. Resection of the lipoencephalocele was performed for esthetic reasons. Case Report 18 year old female patient presented to the surgery OPD with complains of a large mass in the occipital region present since birth. It was of size of a betel nut at the time of birth and gradually increased in size over a long period of time. It was painless and not associated with any other constitutional symptoms. On examination the rounded fluctuant mass was present in the midline in occipital region covered with alopecic skin with dimpling in the overlying skin. On MRI there was mass showing both T1 and T2 hyperintense signal area suggestive of fat component. Herniation of meninges and atretic brain parenchyma was also seen through a defect in the occipital bone in the midline. There was a Y shaped bony outgrowth seen arising from occipital bone into the mass which was quite unusual in association with an atretic lipoencephalocele. Conclusions A large lipoencephalocele with bony outgrowth in an adult patient is a rare presentation of atreic occipital encephalocele.

  16. Lingual mandibular bony defects: CT in the buccolingual plane

    SciTech Connect

    Slasky, B.S.; Bar-Ziv, J.

    1996-05-01

    Our goal was to record the appearance of lingular mandibular bony defects (LMBD) on CT imaging of the mandible in the buccolingual plane. During the CT evaluation of patients planning to undergo dental implant surgery, five cases of LMBD were found. Axial 1.2 x 1.00 mm overlapping CT sections of the mandible and the maxilla were obtained. Then with use of specific software (DentaCT; Elscint), panoramic and cross-sectional (buccolingual) images of the mandible and maxilla were reformatted. Five cases of posterior LMBD were identified; one patient had both a posterior as well as the much rarer anterior LMBD. All cases were incidental findings and all were asymptomatic. CT features of LMBD were displayed it axial, panoramic, and buccolingual planes. The characteristic opening of the bony defect in the lingual aspect of the mandible was clearly displayed on the axial as well as the buccolingual images; however, this key feature was not manifest on the panoramic images; however, this key feature was not manifest on the panoramic images of the mandible. CT features of LMBD in the buccolingual plane are added to the known radiologic description of this entity. 8 refs., 6 figs.

  17. Evaluating Heterogeneous Conservation Effects of Forest Protection in Indonesia

    PubMed Central

    Shah, Payal; Baylis, Kathy

    2015-01-01

    Establishing legal protection for forest areas is the most common policy used to limit forest loss. This article evaluates the effectiveness of seven Indonesian forest protected areas introduced between 1999 and 2012. Specifically, we explore how the effectiveness of these parks varies over space. Protected areas have mixed success in preserving forest, and it is important for conservationists to understand where they work and where they do not. Observed differences in the estimated treatment effect of protection may be driven by several factors. Indonesia is particularly diverse, with the landscape, forest and forest threats varying greatly from region to region, and this diversity may drive differences in the effectiveness of protected areas in conserving forest. However, the observed variation may also be spurious and arise from differing degrees of bias in the estimated treatment effect over space. In this paper, we use a difference-in-differences approach comparing treated observations and matched controls to estimate the effect of each protected area. We then distinguish the true variation in protected area effectiveness from spurious variation driven by several sources of estimation bias. Based on our most flexible method that allows the data generating process to vary across space, we find that the national average effect of protection preserves an additional 1.1% of forest cover; however the effect of individual parks range from a decrease of 3.4% to an increase of 5.3% and the effect of most parks differ from the national average. Potential biases may affect estimates in two parks, but results consistently show Sebangau National Park is more effective while two parks are substantially less able to protect forest cover than the national average. PMID:26039754

  18. Evaluating heterogeneous conservation effects of forest protection in Indonesia.

    PubMed

    Shah, Payal; Baylis, Kathy

    2015-01-01

    Establishing legal protection for forest areas is the most common policy used to limit forest loss. This article evaluates the effectiveness of seven Indonesian forest protected areas introduced between 1999 and 2012. Specifically, we explore how the effectiveness of these parks varies over space. Protected areas have mixed success in preserving forest, and it is important for conservationists to understand where they work and where they do not. Observed differences in the estimated treatment effect of protection may be driven by several factors. Indonesia is particularly diverse, with the landscape, forest and forest threats varying greatly from region to region, and this diversity may drive differences in the effectiveness of protected areas in conserving forest. However, the observed variation may also be spurious and arise from differing degrees of bias in the estimated treatment effect over space. In this paper, we use a difference-in-differences approach comparing treated observations and matched controls to estimate the effect of each protected area. We then distinguish the true variation in protected area effectiveness from spurious variation driven by several sources of estimation bias. Based on our most flexible method that allows the data generating process to vary across space, we find that the national average effect of protection preserves an additional 1.1% of forest cover; however the effect of individual parks range from a decrease of 3.4% to an increase of 5.3% and the effect of most parks differ from the national average. Potential biases may affect estimates in two parks, but results consistently show Sebangau National Park is more effective while two parks are substantially less able to protect forest cover than the national average. PMID:26039754

  19. Neighborhood Effect Heterogeneity by Family Income and Developmental Period.

    PubMed

    Wodtke, Geoffrey T; Harding, David J; Elwert, Felix

    2016-01-01

    Effects of disadvantaged neighborhoods on child educational outcomes likely depend on a family's economic resources and the timing of neighborhood exposures during the course of child development. This study investigates how timing of exposure to disadvantaged neighborhoods during childhood versus adolescence affects high school graduation and whether these effects vary across families with different income levels. It follows 6,137 children in the PSID from childhood through adolescence and overcomes methodological problems associated with the joint endogeneity of neighborhood context and family income by adapting novel counterfactual methods--a structural nested mean model estimated via two-stage regression with residuals--for time-varying treatments and time-varying effect moderators. Results indicate that exposure to disadvantaged neighborhoods, particularly during adolescence, has a strong negative effect on high school graduation and that this negative effect is more severe for children from poor families. PMID:27017709

  20. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-11-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model

  1. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-08-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River Basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow-paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW simulation environment, and the PEST tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop log-normally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model. Although aquifer heterogeneities are uncorrelated at local scales, they appear to induce

  2. Effect of Material Property Heterogeneity on Biomechanical Modeling of Prostate under Deformation

    PubMed Central

    Samavati, Navid; McGrath, Deirdre M.; Jewett, Michael A.S.; van der Kwast, Theo; Ménard, Cynthia; Brock, Kristy K.

    2015-01-01

    Biomechanical model based deformable image registration has been widely used to account for prostate deformation in various medical imaging procedures. Biomechanical material properties are important components of a biomechanical model. In this study, the effect of incorporating tumor-specific material properties in the prostate biomechanical model was investigated to provide insight into the potential impact of material heterogeneity on the prostate deformation calculations First, a simple spherical prostate and tumor model was used to analytically describe the deformations and demonstrate the fundamental effect of changes in the tumor volume and stiffness in the modeled deformation. Next, using clinical prostate model, a parametric approach was used to describe the variations in the heterogeneous prostate model by changing tumor volume, stiffness, and location, to show the differences in the modeled deformation between heterogeneous and homogeneous prostate models. Finally, five clinical prostatectomy examples were used in separately performed homogeneous and heterogeneous biomechanical model based registrations to describe the deformations between 3D reconstructed histopathology images and ex vivo Magnetic Resonance Imaging (MRI), and examine the potential clinical impact of modeling biomechanical heterogeneity of the prostate. The analytical formulation showed that increasing the tumor volume and stiffness could significantly increase the impact of heterogeneous prostate model in the calculated displacement differences compared to homogeneous model. The parametric approach using a single prostate model indicated up to 4.8 mm of displacement difference at the tumor boundary compared to a homogeneous model. . Such differences in the deformation of prostate could bepotentially clinically significant given the voxel size of the ex vivo MR images (0.3×0.3×0.3 mm). However, no significant changes in the registration accuracy were observed using heterogeneous models

  3. Scaling Effects of Cr(VI) Reduction Kinetics. The Role of Geochemical Heterogeneity

    SciTech Connect

    Wang, Li; Li, Li

    2015-10-22

    The natural subsurface is highly heterogeneous with minerals distributed in different spatial patterns. Fundamental understanding of how mineral spatial distribution patterns regulate sorption process is important for predicting the transport and fate of chemicals. Existing studies about the sorption was carried out in well-mixed batch reactors or uniformly packed columns, with few data available on the effects of spatial heterogeneities. As a result, there is a lack of data and understanding on how spatial heterogeneities control sorption processes. In this project, we aim to understand and develop modeling capabilities to predict the sorption of Cr(VI), an omnipresent contaminant in natural systems due to its natural occurrence and industrial utilization. We systematically examine the role of spatial patterns of illite, a common clay, in determining the extent of transport limitation and scaling effects associated with Cr(VI) sorption capacity and kinetics using column experiments and reactive transport modeling. Our results showed that the sorbed mass and rates can differ by an order of magnitude due to of the illite spatial heterogeneities and transport limitation. With constraints from data, we also developed the capabilities of modeling Cr(VI) in heterogeneous media. The developed model is then utilized to understand the general principles that govern the relationship between sorption and connectivity, a key measure of the spatial pattern characteristics. This correlation can be used to estimate Cr(VI) sorption characteristics in heterogeneous porous media. Insights gained here bridge gaps between laboratory and field application in hydrogeology and geochemical field, and advance predictive understanding of reactive transport processes in the natural heterogeneous subsurface. We believe that these findings will be of interest to a large number of environmental geochemists and engineers, hydrogeologists, and those interested in contaminant fate and transport

  4. The impact of breathing motion versus heterogeneity effects in lung cancer treatment planning

    SciTech Connect

    Rosu, Mihaela; Chetty, Indrin J.; Tatro, Daniel S.; Haken, Randall K. ten

    2007-04-15

    The purpose of this study is to investigate the effects of tissue heterogeneity and breathing-induced motion/deformation on conformal treatment planning for pulmonary tumors and to compare the magnitude and the clinical importance of changes induced by these effects. Treatment planning scans were acquired at normal exhale/inhale breathing states for fifteen patients. The internal target volume (ITV) was defined as the union of exhale and inhale gross tumor volumes uniformly expanded by 5 mm. Anterior/posterior opposed beams (AP/PA) and three-dimensional (3D)-conformal plans were designed using the unit-density exhale (''static'') dataset. These plans were further used to calculate (a) density-corrected (''heterogeneous'') static dose and (b) heterogeneous cumulative dose, including breathing deformations. The DPM Monte Carlo code was used for dose computations. For larger than coin-sized tumors, relative to unit-density plans, tumor and lung doses increased in the heterogeneity-corrected plans. In comparing cumulative and static plans, larger normal tissue complication probability changes were observed for tumors with larger motion amplitudes and uncompensated breathing-induced hot/cold spots in lung. Accounting for tissue heterogeneity resulted in average increases of 9% and 7% in mean lung dose (MLD) for the 6 MV and 15 MV photon beams, respectively. Breathing-induced effects resulted in approximately 1% and 2% average decreases in MLD from the static value, for the 6 and 15 MV photon beams, respectively. The magnitude of these effects was not found to correlate with the treatment plan technique, i.e., AP/PA versus 3D-CRT. Given a properly designed ITV, tissue heterogeneity effects are likely to have a larger clinical significance on tumor and normal lung treatment evaluation metrics than four-dimensional respiratory-induced changes.

  5. Effect of Heterogeneity on Decorrelation Mechanisms in Spiking Neural Networks: A Neuromorphic-Hardware Study

    NASA Astrophysics Data System (ADS)

    Pfeil, Thomas; Jordan, Jakob; Tetzlaff, Tom; Grübl, Andreas; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz

    2016-04-01

    High-level brain function, such as memory, classification, or reasoning, can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy-efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear subthreshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with nonlinear, conductance-based synapses. Emulations of these networks on the analog neuromorphic-hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm that shared-input correlations are actively suppressed by inhibitory feedback also in highly heterogeneous networks exhibiting broad, heavy-tailed firing

  6. The effect of material heterogeneity in curved composite beams for use in aircraft structures

    NASA Technical Reports Server (NTRS)

    Otoole, Brendan J.; Santare, Michael H.

    1992-01-01

    A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams for use in aircraft fuselage structures. Material heterogeneity can be induced during processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing a gradient in material properties in both the radial and tangential directions. The analysis procedure uses a separate two-dimensional elasticity solution for the stresses in the flanges and web sections of the beam. The separate solutions are coupled by requiring the forces and displacements match at the section boundaries. Analysis is performed for curved beams loaded in pure bending and uniform pressure. The beams can be of any general cross-section such as a hat, T-, I-, or J-beam. Preliminary results show that geometry of the beam dictates the effect of heterogeneity on performance. Heterogeneity plays a much larger role in beams with a small average radius to depth ratio, R/t, where R is the average radius of the beam and t is the difference between the inside and outside radius. Results of the analysis are in the form of stresses and displacements, and they are compared to both mechanics of materials and numerical solutions obtained using finite element analysis.

  7. Negative cooperativity in Root-effect hemoglobins: role of heterogeneity.

    PubMed

    Decker, Heinz; Nadja, Hellmann

    2007-10-01

    In some animals, the oxygen transport capacity of blood decreases when pH is lowered, yielding oxygen binding curves with Hill-coefficients smaller than unity. This so-called Root effect is observed in several fishes and is important for creating large oxygen partial pressures locally, for example in the swim bladder. While there is general agreement on the physiological advantages of this effect, its molecular basis remains ambiguous. Various studies show that isoforms of hemoglobins usually are present in the hemolymph, when the Root effect is observed. Here, we show that in such a case the mixture of these isoforms can exhibit apparent negative cooperativity, although each component taken separately can be described by the MWC model. In other cases, isolated isoforms exhibit true negative cooperativity. The well established MWC model describes many cooperative phenomena of enzymes and respiratory proteins but is not capable of describing negative cooperativity. In order to model negative cooperativity within a single molecular species a decoupling model might be employed, as pointed out previously. However, simulations show that it is not mandatory to have species with negative cooperativity, in order to obtain the binding curves typically seen for whole blood. These two aspects of the Root effect will be discussed on the basis of data from the literature. PMID:21672870

  8. Heterogeneous patterns on block copolymer thin film via solvent annealing: Effect on protein adsorption

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Zhu, Jintao; Liang, Haojun

    2015-03-01

    Heterogeneous patterns consisting of nanometer-scaled hydrophobic/hydrophilic domains were generated by self-assembly of poly(styrene)-block-poly(2-hydroxyethyl methacrylate) (PS-b-PHEMA) block copolymer thin film. The effect of the heterogeneity of the polymer film surface on the nonspecific adsorption of the protein human plasma fibrinogen (FBN, 5.0 × 5.0 × 47.5 nm3) was investigated. The kinetics of the FBN adsorption varies from a single-component Langmuir model on homogeneous hydrophilic PHEMA to a two-stage spreading relaxation model on homogeneous hydrophobic PS surface. On a heterogeneous PS-b-PHEMA surface with majority PS part, the initial FBN adsorption rate remains the same as that on the homogeneous PS surface. However, hydrophilic PHEMA microdomains on the heterogeneous surface slow down the second spreading stage of the FBN adsorption process, leading to a surface excess of adsorbed FBN molecules less than the presumed one simply calculated as adsorption onto multiple domains. Importantly, when the PS-b-PHEMA surface is annealed to form minority domelike PS domains (diameter: ˜50-100 nm) surrounded by a majority PHEMA matrix, such surface morphology proves to be strongly protein-repulsive. These interesting findings can be attributed to the enhancement of the spread FBN molecule in a mobile state by the heterogeneity of polymer film surface before irreversible adsorption occurs.

  9. Effect of protein crystal hydration on side chain conformational heterogeneity

    NASA Astrophysics Data System (ADS)

    Atakisi, Hakan; Moreau, David; Hopkins, Jesse; Thorne, Robert; Robert Thorne's group Team

    The structure of protein crystals is determined in part by water-mediated interactions involving both protein surface-ordered (hydration) and bulk water, and so is sensitive to the relative humidity of the environment. Monoclinic lysozyme provides a remarkable model for studying structural changes induced by dehydration, as it maintains excellent order for relative humidities (r.h.) down to 5%, corresponding to solvent content of 9% by volume, much smaller than the 88% (22% by volume) at which lysozyme loses its enzymatic activity. Although the main chain conformation does not change significantly, the effect of dehydration on side chain conformations has not been systematically studied. High resolution (1.1 to 1.7 A) structural data sets for monoclinic lysozyme at r.h. between 99% and 11% have been analyzed to identify major and minor side chain conformers at each humidity, and to map out how the side chain conformational ensemble evolves with hydration. Modest dehydration produces comparable overall effects to cooling to T =100 K, but with conformational changes largely confined to solvent-exposed residues. The largest side chain conformation changes occur at humidities that deplete water within the first two hydration shells.

  10. The heterogeneous world of congruency sequence effects: an update.

    PubMed

    Duthoo, Wout; Abrahamse, Elger L; Braem, Senne; Boehler, Carsten N; Notebaert, Wim

    2014-01-01

    Congruency sequence effects (CSEs) refer to the observation that congruency effects in conflict tasks are typically smaller following incongruent compared to following congruent trials. This measure has long been thought to provide a unique window into top-down attentional adjustments and their underlying brain mechanisms. According to the renowned conflict monitoring theory, CSEs reflect enhanced selective attention following conflict detection. Still, alternative accounts suggested that bottom-up associative learning suffices to explain the pattern of reaction times and error rates. A couple of years ago, a review by Egner (2007) pitted these two rivalry accounts against each other, concluding that both conflict adaptation and feature integration contribute to the CSE. Since then, a wealth of studies has further debated this issue, and two additional accounts have been proposed, offering intriguing alternative explanations. Contingency learning accounts put forward that predictive relationships between stimuli and responses drive the CSE, whereas the repetition expectancy hypothesis suggests that top-down, expectancy-driven control adjustments affect the CSE. In the present paper, we build further on the previous review (Egner, 2007) by summarizing and integrating recent behavioral and neurophysiological studies on the CSE. In doing so, we evaluate the relative contribution and theoretical value of the different attentional and memory-based accounts. Moreover, we review how all of these influences can be experimentally isolated, and discuss designs and procedures that can critically judge between them. PMID:25250005

  11. Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials

    SciTech Connect

    Liu, Chongxuan; Liu, Yuanyuan; Kerisit, Sebastien N.; Zachara, John M.

    2015-09-01

    This manuscript provides a review of pore-scale researches in literature including experimental and numerical approaches, and scale-dependent behavior of geochemical and biogeochemical reaction rates in heterogeneous porous media. A mathematical equation that can be used to predict the scale-dependent behavior of geochemical reaction rates in heterogeneous porous media has been derived. The derived effective rate expression explicitly links the effective reaction rate constant to the intrinsic rate constant, and to the pore-scale variations in reactant concentrations in porous media. Molecular simulations to calculate the intrinsic rate constants were provided. A few examples of pore-scale simulations were used to demonstrate the application of the equation to calculate effective rate constants in heterogeneous materials. The results indicate that the deviation of effective rate constant from the intrinsic rate in heterogeneous porous media is caused by the pore-scale distributions of reactants and their correlation, which are affected by the pore-scale coupling of reactions and transport.

  12. Effects of Constructivist and Computer-Facilitated Strategies on Achievement in Heterogeneous Secondary Biology.

    ERIC Educational Resources Information Center

    Duffy, Maryellen; Barowy, William

    This paper describes the effects of the implementation of constructivist techniques with interactive computer simulations on conceptual understanding of plant nutrition and critical thinking skills in heterogeneously grouped secondary biology classrooms. The study focused on three strategies for teaching plant nutrition: (1) traditional; (2)…

  13. The Effect of Population Heterogeneity on Statistical Power in the Design and Evaluation of Interventions

    ERIC Educational Resources Information Center

    Jiang, Depeng; Pepler, Debra; Yao, Hongxing

    2010-01-01

    Do interventions work and for whom? For this article, we examined the influence of population heterogeneity on power in designing and evaluating interventions. On the basis of Monte Carlo simulations in Study 1, we demonstrated that the power to detect the overall intervention effect is lower for a mixture of two subpopulations than for a…

  14. Effect of heterogeneous microvasculature distribution on drug delivery to solid tumour

    NASA Astrophysics Data System (ADS)

    Zhan, Wenbo; Gedroyc, Wladyslaw; Xu, Xiao Yun

    2014-11-01

    Most of the computational models of drug transport in vascular tumours assume a uniform distribution of blood vessels through which anti-cancer drugs are delivered. However, it is well known that solid tumours are characterized by dilated microvasculature with non-uniform diameters and irregular branching patterns. In this study, the effect of heterogeneous vasculature on drug transport and uptake is investigated by means of mathematical modelling of the key physical and biochemical processes in drug delivery. An anatomically realistic tumour model accounting for heterogeneous distribution of blood vessels is reconstructed based on magnetic resonance images of a liver tumour. Numerical simulations are performed for different drug delivery modes, including direct continuous infusion and thermosensitive liposome-mediated delivery, and the anti-cancer effectiveness is evaluated through changes in tumour cell density based on predicted intracellular concentrations. Comparisons are made between regions of different vascular density, and between the two drug delivery modes. Our numerical results show that both extra- and intra-cellular concentrations in the liver tumour are non-uniform owing to the heterogeneous distribution of tumour vasculature. Drugs accumulate faster in well-vascularized regions, where they are also cleared out more quickly, resulting in less effective tumour cell killing in these regions. Compared with direct continuous infusion, the influence of heterogeneous vasculature on anti-cancer effectiveness is more pronounced for thermosensitive liposome-mediated delivery.

  15. Facile Hydrothermal Preparation of ZNO/CO3O4 Heterogeneous Nanostructures and its Photovoltaic Effect

    NASA Astrophysics Data System (ADS)

    Wei, Fanan; Jiang, Minlin; Liu, Lianqing

    2015-07-01

    Photovoltaic technology offers great potential in the replacement of fossil fuel resources, but still suffers from high device fabrication cost. Herein, we attempted to provide a solution to these issues with heterogeneous nanostructures. Firstly, Zinc oxide (ZnO)/cobalt oxide (Co3O4) heterojunction nanowires are prepared through facile fabrication methods. By assembling Co(OH)2 nanoplates on ZnO nanowire arrays, the ZnO/Co3O4 heterogeneous nanostructures are uniformly synthesized on ITO coated glass and wafer. Current (I)-voltage (V) measurement through conductive atomic force microscope shows excellent photovoltaic effect. And, the heterojunction nanostructures shows unprecedented high open circuit voltage. Therefore, the potential application of the heterogeneous nanostructures in solar cells is demonstrated.

  16. On the effective permeability of a heterogeneous porous medium: the role of the geometric mean

    NASA Astrophysics Data System (ADS)

    Selvadurai, P. A.; Selvadurai, A. P. S.

    2014-07-01

    This paper uses experimental data derived from surface permeability tests conducted on a bench-scale 508 mm cuboidal sample of Indiana Limestone. These results are used in combination with computational modelling to test the hypothesis that the geometric mean is a good proxy to represent permeability when the spatial distribution of the permeability for the heterogeneous rock, with no evidence of hydraulic anisotropy or fractures, is log-normal. The predictive capabilities of the geometric mean as a measure of the effective permeability are further assessed by examining specific examples where three-dimensional flows are initiated in the heterogeneous domain and where the equivalent homogeneous problem gives rise to purely circular flows that have exact solutions. The approach is also applied to examine a hypothetical hydraulic pulse test that is conducted on a cuboidal region with sealed lateral boundaries, consisting of the experimentally measured heterogeneous distribution of permeability and an equivalent homogeneous region where the permeability corresponds to the geometric mean.

  17. Effect of secretin on release of heterogeneous forms of gastrin.

    PubMed Central

    Straus, E; Greenstein, A J; Yalow, R S

    1975-01-01

    The effect of an intravenous injection of secretin on plasma gastrin concentration is shown to be dependent upon the relative concentration of the major forms of immunoreactive gastrin present in the plasma at the time of injection. Secretin suppressed gastrin secretion in the fasting state in patients in whose plasma heptadecapeptide and big gastrins predominated and did not suppress when big big gastrin comprised more than 90% of plasma gastrin immunoreactivity. The post-secretin decrease in plasma gastrin was due entirely to the disappearance of the smaller, more rapidly degraded forms. Food-stimulated gastrin response was suppressed by secretin for the initial 40 minutes after a test meal but was greater than usual from 40 to 120 minutes. PMID:1218824

  18. Size and heterogeneity effects on the strength of fibrous composites

    NASA Astrophysics Data System (ADS)

    Mahesh, Sivasambu; Beyerlein, Irene J.; Phoenix, S. Leigh

    Probabilistic fiber composite strength distributions and size scalings depend heavily on both the stress redistribution mechanism around broken fibers and properties of the fiber strength distribution. In this study we perform large scale Monte Carlo simulations to study the fracture process in a fiber composite material in which fibers are arranged in parallel in a hexagonal array and their strengths are given by a two-parameter Weibull distribution function. To calculate the stress redistribution due to several broken fibers, a realistic 3D shear-lag theory is applied to rhombus-shaped domains with periodic boundary conditions. Empirical composite strength distributions are generated from several hundred Monte Carlo replications, particularly for much lower values of fiber Weibull modulus γ, and larger composite sizes than studied previously. Despite the localized stress enhancements due to fiber failures, predicted by the shear-lag model, composite response displays a transition to equal load sharing like behavior for approximately γ≤1. Accordingly, the results reveal distinct alterations in size effect, failure mode, and weak-link scaling behavior, associated with a transition from stress-driven to fiber strength-driven breakdown.

  19. Size effects in heterogeneous reactions using layered synthetic microstructures

    NASA Astrophysics Data System (ADS)

    Lu, Zhijian

    A lift-off process has been developed for fabrication of all kinds of Layered Synthetic Microstructures (LSM's) without resort to either wet etch or dry etch techniques. The activity of the silica-supported silver LSM's for ethylene epoxidation showed the same dependence on silver layer thickness as did supported clusters for both rate and selectivity. The oxidation of hydrogen on platinum LSM's exhibited no size dependence in excess oxygen, and a size dependence in excess hydrogen, in accord with the observations using traditional supported cluster catalysts. Hydrogenolysis of ethane on rhodium LSM's demonstrated a strong size dependence again as on traditional cluster-supported catalysts. Combined with the results from Zuburtikudis and Libby (41,43), it can be concluded that the one-dimensional nanoscale aspect of the LSM catalyst is a sufficient condition for the size effects to be exhibited. It was also found that by normalizing rates to metal-oxide interface length, classical structure-sensitive reactions can be divided into two categories: truly size-dependent reactions occurring on metal surfaces, such as ethane hydrogenolysis on rhodium LSM's; and "fake" size-dependent reactions or size independent reactions, which predominantly take place at the metal-support interface and are independent of metal surface area, such as ethane hydrogenolysis on silica or alumina-supported iridium LSM's.

  20. Effects of heterogeneity on earthquake location at ISC

    NASA Astrophysics Data System (ADS)

    Adams, R. D.

    1992-12-01

    Earthquake location at the International Seismological Centre is carried out by routine least-squares analysis using Jeffreys-Bullen travel times. It is impossible to examine every earthquake in detail, but when obvious discrepancies in location become apparent, adjustments can be made by analysts, usually in phase identification or the restraint of depth. Such discrepancies often result from inappropriateness of the Jeffreys-Bullen model. The effect is most apparent in subduction zones, where it is often difficult to reconcile local and teleseismic observations, and differences from the standard model can result in substantial mislocations. Large events, located by steeply descending teleseismic phases, may be only slightly misplaced, with large residuals at close stations giving a true indication of velocity anomalies. Small events, however, are often significantly misplaced, although giving small residuals at a few close stations. These apparently well located events give compensating misinformation about velocities and location. In other areas, especially mid-oceanic ridges, difficulties in depth determination are likely to be related to deviations from a laterally homogeneous velocity model.

  1. The Heterogeneity of the Cigarette Price Effect on Body Mass Index

    PubMed Central

    Courtemanche, Charles J.

    2012-01-01

    Previous studies estimate the average effect of cigarette price on body mass index (BMI), with recent research showing that their different methodologies all point to a negative effect after several years. This literature, however, ignores the possibility that the effect could vary throughout the BMI distribution or across socioeconomic and demographic groups due to differences in underlying obesity risks or preferences for health. We evaluate heterogeneity in the long-run impact of cigarette price on BMI by performing quantile regressions and stratifying the sample by race, education, age, and sex. Cigarette price has a highly heterogeneous negative effect that is more than three times as strong at high BMI levels – where weight loss is most beneficial for health – than at low levels. The effects are also strongest for blacks, college graduates, middle-aged adults, and women. We also assess the implications for disparities, conduct robustness checks, and evaluate potential mechanisms. PMID:22842751

  2. Effects of three-dimensional geometric field focusing on concentration polarization in a heterogeneous permselective system

    NASA Astrophysics Data System (ADS)

    Green, Yoav; Yossifon, Gilad

    2014-01-01

    The current study extends previous two-dimensional (2D) analysis of concentration polarization to account for three-dimensional effects in realistic heterogeneous ion-permselective systems, e.g., microchamber-nanoslot devices. An analytical solution of the electrodiffusive problem, decoupled from electroconvection along with the local electroneutrality approximation, was obtained using the separation of variables technique. It is able to account for the previously neglected effects of microchamber and nanoslot heights on concentration polarization in terms of concentration profiles, limiting current, and current-voltage curves. The resultant heterogeneity in the third dimension adds to that already existing in the 2D in plane problem to further increase geometric field-focusing effects. As a result the currents no longer scale linearly with the nanoslot area, but rather depend on its shape and relative size compared to that of the nonconducting region (i.e., level of heterogeneity). This is turn leads to pronounced current density intensification with increased system heterogeneity found to be in qualitative agreement with previously reported experiments in which both microchamber and nanoslot geometries were varied.

  3. The effect of small intestine heterogeneity on irreversible electroporation treatment planning.

    PubMed

    Phillips, Mary

    2014-09-01

    Nonthermal irreversible electroporation (NTIRE) is an ablation modality that utilizes microsecond electric fields to produce nanoscale defects in the cell membrane. This results in selective cell death while preserving all other molecules, including the extracellular matrix. Here, finite element analysis and experimental results are utilized to examine the effect of NTIRE on the small intestine due to concern over collateral damage to this organ during NTIRE treatment of abdominal cancers. During previous studies, the electrical treatment parameters were chosen based on a simplified homogeneous tissue model. The small intestine, however, has very distinct layers, and a more realistic model is needed to further develop this technology for precise clinical applications. This study uses a two-dimensional finite element solution of the Laplace and heat conduction equations to investigate how small intestine heterogeneities affect the electric field and temperature distribution. Experimental results obtained by applying NTIRE to the rat small intestine in vivo support the heterogeneous effect of NTIRE on the tissue. The numerical modeling indicates that the electroporation parameters chosen for this study avoid thermal damage to the tissue. This is supported by histology obtained from the in vivo study, which showed preservation of extracellular structures. The finite element model also indicates that the heterogeneous structure of the small intestine has a significant effect on the electric field and volume of cell ablation during electroporation and could have a large impact on the extent of treatment. The heterogeneous nature of the tissue should be accounted for in clinical treatment planning. PMID:24907451

  4. Minimally Invasive Surgery Combined with Regenerative Biomaterials in Treating Intra-Bony Defects: A Meta-Analysis

    PubMed Central

    Zhang, Yuanyuan; Li, Wenyang; Song, Jinlin

    2016-01-01

    Background With the popularity of minimally invasive surgery (MIS) in periodontics, numerous publications have evaluated the benefits of MIS with or without various regenerative biomaterials in the treatment of periodontal intra-bony defects. However, it is unclear if it is necessary to use biomaterials in MIS. Thus, we conducted a meta-analysis of randomized clinical trials in patients with intra-bony defects to compare the clinical outcomes of MIS with regenerative biomaterials for MIS alone. Methods The authors retrieved English publications on relevant studies from Cochrane CENTRAL, PubMed, Medline, Embase, Clinical Evidence, and ClinicalTrails.gov (up to June 30, 2015). The main clinical outcomes were the reduction of probing pocket depths (PPDs), gain of clinical attachment level (CAL), recession of gingival margin (REC) and radiographic bone fill. Review Manager 5.2 (Cochrane Collaboration, Oxford, England) was used to calculate the heterogeneity and mean differences of the main clinical outcomes. Results In total, 464 studies in the literature were identified but only four were ultimately feasible. The results showed no significant difference regarding CAL gain (P = 0.32) and PPD reduction (P = 0.40) as well as REC increase (P = 0.81) and radiographic bone fill (P = 0.64) between the MIS plus biomaterials group and the MIS alone group. Conclusions The meta-analysis suggested no significant difference in treatment of intra-bony defects between the MIS plus biomaterials group and the MIS alone group, indicating that it is important to take costs and benefits into consideration when a decision is made about a therapeutic approach. There needs to be an in-depth exploration of the induction of intrinsic tissue healing of MIS without biomaterials to achieve optimal outcomes. PMID:26785405

  5. On the effect of grain size on shock sensitivity of heterogeneous high explosives

    NASA Astrophysics Data System (ADS)

    Khasainov, B. A.; Ermolaev, B. S.; Presles, H.-N.; Vidal, P.

    Analysis of available data on dependence of the critical detonation diameter dcr of various heterogeneous condensed explosives on mean size of grains and voids demonstrated that in many cases surprising correlations between dcr and the initial specific surface area of heterogeneous explosives Ao exist, namely, dcr=α 1+α 2/A_o or 1/dcr=β 1+β 2A_o. The run distance to detonation in wedge test with sustained strong shock of constant amplitude also linearly correlates with 1/Ao, i.e. L{P= Const}=γ 1+γ 2/A_o. At the same time, the shock sensitivity reversal effect is often observed when grain size of HE is reduced. Apart from that Moulard (1989) found that detonation critical diameter of plastic bonded explosive with mono- and bimodal RDX grain size distribution depends nonmonotonously on mean grain size. Complicated dependence of shock sensitivity of heterogeneous explosives on their specific surface area can be explained based on comparison of the critical hot spot size a*(P) at given characteristic pressure behind shock wave P with the mean heterogeneity size /line{a}. At high characteristic pressure (relative to the critical ignition pressure) a* is small compared with /line{a} and all specific surface area of heterogeneous explosive is available for the hot spot growth process in accordance with the grain burn concept. However, when characteristic pressure of shock wave decreases, a*(P) increases and can become comparable with /line{a}. In this case only relatively large potential hot spots (with size a>a*) can result in self-supported hot spot growth process and shock sensitivity is controlled by the specific surface area which corresponds to only larger heterogeneities and can be significantly smaller than initial specific surface area.

  6. Effects of heterogeneity on active spreading strategies to remediate contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Kasprzyk, J. R.; Piscopo, A. N.; Neupauer, R.

    2015-12-01

    The effectiveness of in situ chemical oxidation (ISCO) to remediate contaminated aquifers is constrained by the amount of contact between the groundwater contaminant and the injected oxidant. Contaminant degradation during ISCO can be enhanced using innovative active spreading strategies, which involve injecting and extracting water at wells in the vicinity of the plume to generate flow fields that spread the contaminant and oxidant plumes in a manner that increases their contact. Because aquifer heterogeneity affects the transport of the contaminant and oxidant during injection and extraction, aquifer heterogeneity also affects the amount of contact and the degree of contaminant degradation achieved using active spreading strategies during ISCO. Consequently, we can improve the effectiveness of active spreading strategies by generating sequences of injection and extraction that take the aquifer heterogeneity into account. In this study, we optimize sequences of injections and extractions to maximize contaminant degradation in aquifers with zonal and spatially-correlated heterogeneity for three contaminant-oxidant pairings with different reaction kinetics. Analysis of the transport and degradation corresponding to the optimal sequences of injection and extraction demonstrates that the underlying aquifer and contaminant properties are reflected by the optimal sequences.

  7. On the validity of effective formulations for transport through heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    de Dreuzy, J.-R.; Carrera, J.

    2015-11-01

    Geological heterogeneity enhances spreading of solutes, and causes transport to be anomalous (i.e., non-Fickian), with much less mixing than suggested by dispersion. This implies that modeling transport requires adopting either stochastic approaches that model heterogeneity explicitly or effective transport formulations that acknowledge the effects of heterogeneity. A number of such formulations have been developed and tested as upscaled representations of enhanced spreading. However, their ability to represent mixing has not been formally tested, which is required for proper reproduction of chemical reactions and which motivates our work. We propose that, for an effective transport formulation to be considered a valid representation of transport through Heterogeneous Porous Media (HPM), it should honor mean advection, mixing and spreading. It should also be flexible enough to be applicable to real problems. We test the capacity of the Multi-Rate Mass Transfer (MRMT) to reproduce mixing observed in HPM, as represented by the classical multi-Gaussian log-permeability field with a Gaussian correlation pattern. Non-dispersive mixing comes from heterogeneity structures in the concentration fields that are not captured by macrodispersion. These fine structures limit mixing initially, but eventually enhance it. Numerical results show that, relative to HPM, MRMT models display a much stronger memory of initial conditions on mixing than on dispersion because of the sensitivity of the mixing state to the actual values of concentration. Because MRMT does not restitute the local concentration structures, it induces smaller non-dispersive mixing than HPM. However long-lived trapping in the immobile zones may sustain the deviation from dispersive mixing over much longer times. While spreading can be well captured by MRMT models, non-dispersive mixing cannot.

  8. On the validity of effective formulations for transport through heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    de Dreuzy, Jean-Raynald; Carrera, Jesus

    2016-04-01

    Geological heterogeneity enhances spreading of solutes and causes transport to be anomalous (i.e., non-Fickian), with much less mixing than suggested by dispersion. This implies that modeling transport requires adopting either stochastic approaches that model heterogeneity explicitly or effective transport formulations that acknowledge the effects of heterogeneity. A number of such formulations have been developed and tested as upscaled representations of enhanced spreading. However, their ability to represent mixing has not been formally tested, which is required for proper reproduction of chemical reactions and which motivates our work. We propose that, for an effective transport formulation to be considered a valid representation of transport through heterogeneous porous media (HPM), it should honor mean advection, mixing and spreading. It should also be flexible enough to be applicable to real problems. We test the capacity of the multi-rate mass transfer (MRMT) model to reproduce mixing observed in HPM, as represented by the classical multi-Gaussian log-permeability field with a Gaussian correlation pattern. Non-dispersive mixing comes from heterogeneity structures in the concentration fields that are not captured by macrodispersion. These fine structures limit mixing initially, but eventually enhance it. Numerical results show that, relative to HPM, MRMT models display a much stronger memory of initial conditions on mixing than on dispersion because of the sensitivity of the mixing state to the actual values of concentration. Because MRMT does not restitute the local concentration structures, it induces smaller non-dispersive mixing than HPM. However long-lived trapping in the immobile zones may sustain the deviation from dispersive mixing over much longer times. While spreading can be well captured by MRMT models, in general non-dispersive mixing cannot.

  9. Spatial Heterogeneity in the Effects of Immigration and Diversity on Neighborhood Homicide Rates

    PubMed Central

    Graif, Corina; Sampson, Robert J.

    2010-01-01

    This paper examines the connection of immigration and diversity to homicide by advancing a recently developed approach to modeling spatial dynamics—geographically weighted regression. In contrast to traditional global averaging, we argue on substantive grounds that neighborhood characteristics vary in their effects across neighborhood space, a process of “spatial heterogeneity.” Much like treatment-effect heterogeneity and distinct from spatial spillover, our analysis finds considerable evidence that neighborhood characteristics in Chicago vary significantly in predicting homicide, in some cases showing countervailing effects depending on spatial location. In general, however, immigrant concentration is either unrelated or inversely related to homicide, whereas language diversity is consistently linked to lower homicide. The results shed new light on the immigration-homicide nexus and suggest the pitfalls of global averaging models that hide the reality of a highly diversified and spatially stratified metropolis. PMID:20671811

  10. Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical CO2

    NASA Astrophysics Data System (ADS)

    Agartan, Elif; Trevisan, Luca; Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin; Illangasekare, Tissa H.

    2015-03-01

    Dissolution trapping is one of the primary mechanisms that enhance the storage security of supercritical carbon dioxide (scCO2) in saline geologic formations. When scCO2 dissolves in formation brine produces an aqueous solution that is denser than formation brine, which leads to convective mixing driven by gravitational instabilities. Convective mixing can enhance the dissolution of CO2 and thus it can contribute to stable trapping of dissolved CO2. However, in the presence of geologic heterogeneities, diffusive mixing may also contribute to dissolution trapping. The effects of heterogeneity on mixing and its contribution to stable trapping are not well understood. The goal of this experimental study is to investigate the effects of geologic heterogeneity on mixing and stable trapping of dissolved CO2. Homogeneous and heterogeneous media experiments were conducted in a two-dimensional test tank with various packing configurations using surrogates for scCO2 (water) and brine (propylene glycol) under ambient pressure and temperature conditions. The results show that the density-driven flow in heterogeneous formations may not always cause significant convective mixing especially in layered systems containing low-permeability zones. In homogeneous formations, density-driven fingering enhances both storage in the deeper parts of the formation and contact between the host rock and dissolved CO2 for the potential mineralization. On the other hand, for layered systems, dissolved CO2 becomes immobilized in low-permeability zones with low-diffusion rates, which reduces the risk of leakage through any fault or fracture. Both cases contribute to the permanence of the dissolved plume in the formation.

  11. The Effects of Landscape Heterogeneity on Brightness Temperature and Soil Moisture Retrieval

    NASA Astrophysics Data System (ADS)

    Neelam, M.; Mohanty, B.

    2013-12-01

    Soil moisture is a key variable to describe energy-water budgets at land surface. Passive remote sensing has played a crucial role in monitoring soil moisture from space. However, due to technical constrains and gaps in scientific understanding, the goal of 4% soil moisture accuracy are not obtained yet. With the advancement of technology and integration of radar/radiometer measurements, some of the measurement errors can be reduced. Nevertheless, the scientific understanding of the effects of landscape heterogeneity and its error contribution to soil moisture retrieval is lacking. In this paper, we have performed a synthetic study using tau-omega model, to understand the effects of within pixel heterogeneity in terms of different land cover types. This work focuses on understanding the effects of land cover type such as fresh/saline, vegetation density and type, percentage of clay on accuracy of soil moisture retrieval. Heterogeneous pixels cannot be characterized through simple averaging of contributing parameters, as these parameters exhibit non-linear behavior. For example, the brightness temperature observed for total VWC < 4.5 kg/m2 of mixed pixel with different vegetation types is far less than the average brightness temperature observed for individual vegetation types summing to total VWC. Such analysis is extended to different landcover types, to better address the effects of heterogeneity on soil moisture retrieval. Thus an attempt to develop an effective averaging technique to address the effect of nonlinear behavior on brightness temperature is made. The technique is tested by determining soil moisture accuracy obtained using retrieval algorithm.

  12. Effect of Size and Heterogeneity of Samples on Biomarker Discovery: Synthetic and Real Data Assessment

    PubMed Central

    Di Camillo, Barbara; Sanavia, Tiziana; Martini, Matteo; Jurman, Giuseppe; Sambo, Francesco; Barla, Annalisa; Squillario, Margherita; Furlanello, Cesare; Toffolo, Gianna; Cobelli, Claudio

    2012-01-01

    Motivation The identification of robust lists of molecular biomarkers related to a disease is a fundamental step for early diagnosis and treatment. However, methodologies for the discovery of biomarkers using microarray data often provide results with limited overlap. These differences are imputable to 1) dataset size (few subjects with respect to the number of features); 2) heterogeneity of the disease; 3) heterogeneity of experimental protocols and computational pipelines employed in the analysis. In this paper, we focus on the first two issues and assess, both on simulated (through an in silico regulation network model) and real clinical datasets, the consistency of candidate biomarkers provided by a number of different methods. Methods We extensively simulated the effect of heterogeneity characteristic of complex diseases on different sets of microarray data. Heterogeneity was reproduced by simulating both intrinsic variability of the population and the alteration of regulatory mechanisms. Population variability was simulated by modeling evolution of a pool of subjects; then, a subset of them underwent alterations in regulatory mechanisms so as to mimic the disease state. Results The simulated data allowed us to outline advantages and drawbacks of different methods across multiple studies and varying number of samples and to evaluate precision of feature selection on a benchmark with known biomarkers. Although comparable classification accuracy was reached by different methods, the use of external cross-validation loops is helpful in finding features with a higher degree of precision and stability. Application to real data confirmed these results. PMID:22403633

  13. Effective parameters for two-phase flow in a porous medium with periodic heterogeneities

    SciTech Connect

    Ataie-Ashtiani, B; Hassanizadeh, S M.; Oostrom, Martinus ); Celia, M A.; White, Mark D. )

    2000-12-01

    The study of non-aqueous phase liquid (NAPL) transport in groundwater requires a correct description of multiphase flow in porous media. For the simulation of multiphase flow a number of material-dependent parameters have to be known. These include relationships between capillary pressure, relative permeability, and saturation. One of the major difficulties in characterizing a porous medium is the presence of small-scale heterogeneities, which have distinctly different multiphase flow properties than the main medium. Such heterogeneities can considerably affect the spreading behavior of non-aqueous liquids. They are often sources of localized pools of pollutants. For most practical purposes, the details of fluid distribution in such a medium are not of interest. It is also computationally not feasible to discretise a compositional multiphase model at such small scales. Even if a detailed numerical model is constructed, it is virtually impossible to obtain data for these heterogeneities. Thus, instead of modeling the subsurface at the scale of micro-heterogeneities, it is desirable to model it at a higher scale, as a homogenized medium, with effective properties.

  14. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget

    NASA Astrophysics Data System (ADS)

    Cuxart, Joan; Wrenger, Burkhard; Martínez-Villagrasa, Daniel; Reuder, Joachim; Jonassen, Marius O.; Jiménez, Maria A.; Lothon, Marie; Lohou, Fabienne; Hartogensis, Oscar; Dünnermann, Jens; Conangla, Laura; Garai, Anirban

    2016-07-01

    The effect of terrain heterogeneities in one-point measurements is a continuous subject of discussion. Here we focus on the order of magnitude of the advection term in the equation of the evolution of temperature as generated by documented terrain heterogeneities and we estimate its importance as a term in the surface energy budget (SEB), for which the turbulent fluxes are computed using the eddy-correlation method. The heterogeneities are estimated from satellite and model fields for scales near 1 km or broader, while the smaller scales are estimated through direct measurements with remotely piloted aircraft and thermal cameras and also by high-resolution modelling. The variability of the surface temperature fields is not found to decrease clearly with increasing resolution, and consequently the advection term becomes more important as the scales become finer. The advection term provides non-significant values to the SEB at scales larger than a few kilometres. In contrast, surface heterogeneities at the metre scale yield large values of the advection, which are probably only significant in the first centimetres above the ground. The motions that seem to contribute significantly to the advection term in the SEB equation in our case are roughly those around the hectometre scales.

  15. The effects of racial heterogeneity on mental health: A study of detained youth across multiple counties.

    PubMed

    Lau, Katherine S L; Aalsma, Matthew C; Holloway, Evan D; Wiehe, Sarah E; Vachon, David D

    2015-09-01

    A majority of detained adolescents experience mental health and substance use problems. Limited research has examined the interaction between the race/ethnicity of an individual youth and county-level racial heterogeneity on adolescent mental health outcomes. Participants were identified through a statewide mental health screening project that took place in detention centers across 11 different counties in a Midwestern state during January 1, 2008, to May 10, 2010. A total of 23,831 detained youth (ages 11-18 years), identified as non-Hispanic White (46.6%), Black (43.5%), or Hispanic (9.8%), completed a mental health screener that assessed problems in alcohol/drug use, depression-anxiety, anger-irritability, trauma, somatic complaints, and suicide ideation. Census data were gathered to determine the racial heterogeneity of each county and other county-level variables. Hierarchical linear regression analyses were used to test the independent and interactive effects of youth race/ethnicity and county-level variables (including racial heterogeneity of the county) on adolescent mental health. Independent of other community characteristics, as county-level racial heterogeneity increased, mental health problems among detained youth decreased. In future research on the development and persistence of mental health problems in detained youth, both community and individual-level factors should be considered. PMID:26460702

  16. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient.

    PubMed

    Yang, Zhiyong; Liu, Xueqi; Zhou, Mohua; Ai, Dexiecuo; Wang, Gang; Wang, Youshi; Chu, Chengjin; Lundholm, Jeremy T

    2015-01-01

    Environmental heterogeneity is among the most important factors governing community structure. Besides the widespread evidence supporting positive relationships between richness and environmental heterogeneity, negative and unimodal relationships have also been reported. However, few studies have attempted to test the role of the heterogeneity on species richness after removing the confounding effect of resource availability or environmental severity. Here we constructed an individual-based spatially explicit model incorporating a long-recognized tradeoff between competitive ability and stress-tolerance ability of species. We explored the impact of the level of resource availability (i.e. the position of the community along a gradient of environmental severity) on the heterogeneity-diversity relationship (HDR). The results indicate that the shape of HDR depends on the community position along the environmental gradient: at either end of the gradient of environmental severity, a positive HDR occurred, whereas at the intermediate levels of the gradient, a unimodal HDR emerged. Our exploration demonstrates that resource availability/environmental severity should be considered as a potential factor influencing the shape of the HDR. Our theoretical predictions represent hypotheses in need of further empirical study. PMID:26508413

  17. Evaluation of aquifer heterogeneity effects on river flow loss using a transition probability framework

    USGS Publications Warehouse

    Engdahl, N.B.; Vogler, E.T.; Weissmann, G.S.

    2010-01-01

    River-aquifer exchange is considered within a transition probability framework along the Rio Grande in Albuquerque, New Mexico, to provide a stochastic estimate of aquifer heterogeneity and river loss. Six plausible hydrofacies configurations were determined using categorized drill core and wetland survey data processed through the TPROGS geostatistical package. A base case homogeneous model was also constructed for comparison. River loss was simulated for low, moderate, and high Rio Grande stages and several different riverside drain stage configurations. Heterogeneity effects were quantified by determining the mean and variance of the K field for each realization compared to the root-mean-square (RMS) error of the observed groundwater head data. Simulation results showed that the heterogeneous models produced smaller estimates of loss than the homogeneous approximation. Differences between heterogeneous and homogeneous model results indicate that the use of a homogeneous K in a regional-scale model may result in an overestimation of loss but comparable RMS error. We find that the simulated river loss is dependent on the aquifer structure and is most sensitive to the volumetric proportion of fines within the river channel. Copyright 2010 by the American Geophysical Union.

  18. Bony fish and their contribution to marine inorganic carbon cycling

    NASA Astrophysics Data System (ADS)

    Salter, Michael; Perry, Chris; Wilson, Rod; Harborne, Alistair

    2016-04-01

    Conventional understanding of the marine inorganic carbon cycle holds that CaCO3 (mostly as low Mg-calcite and aragonite) precipitates in the upper reaches of the ocean and sinks to a point where it either dissolves or is deposited as sediment. Thus, it plays a key role controlling the distribution of DIC in the oceans and in regulating their capacity to absorb atmospheric CO2. However, several aspects of this cycle remain poorly understood and have long perplexed oceanographers, such as the positive alkalinity anomaly observed in the upper water column of many of the world's oceans, above the aragonite and calcite saturation horizons. This anomaly would be explained by extensive dissolution of a carbonate phase more soluble than low Mg-calcite or aragonite, but major sources for such phases remain elusive. Here we highlight marine bony fish as a potentially important primary source of this 'missing' high-solubility CaCO3. Precipitation of CaCO3 takes place within the intestines of all marine bony fish as part of their normal physiological functioning, and global production models suggest it could account for up to 45 % of total new marine CaCO3 production. Moreover, high Mg-calcite containing >25 % mol% MgCO3 - a more soluble phase than aragonite - is a major component of these precipitates. Thus, fish CaCO3 may at least partially explain the alkalinity anomaly in the upper water column. However, the issue is complicated by the fact that carbonate mineralogy actually varies among fish species, with high Mg-calcite (HMC), low Mg-calcite (LMC), aragonite, and amorphous calcium carbonate (ACC) all being common products. Using data from 22 Caribbean fish species, we have generated a novel production model that resolves phase proportions. We evaluate the preservation/dissolution potential of these phases and consider potential implications for marine inorganic carbon cycling. In addition, we consider the dramatic changes in fish biomass structure that have resulted

  19. Revisiting the Effect of Capture Heterogeneity on Survival Estimates in Capture-Mark-Recapture Studies: Does It Matter?

    PubMed Central

    Abadi, Fitsum; Botha, Andre; Altwegg, Res

    2013-01-01

    Recently developed capture-mark-recapture methods allow us to account for capture heterogeneity among individuals in the form of discrete mixtures and continuous individual random effects. In this article, we used simulations and two case studies to evaluate the effectiveness of continuously distributed individual random effects at removing potential bias due to capture heterogeneity, and to evaluate in what situation the added complexity of these models is justified. Simulations and case studies showed that ignoring individual capture heterogeneity generally led to a small negative bias in survival estimates and that individual random effects effectively removed this bias. As expected, accounting for capture heterogeneity also led to slightly less precise survival estimates. Our case studies also showed that accounting for capture heterogeneity increased in importance towards the end of study. Though ignoring capture heterogeneity led to a small bias in survival estimates, such bias may greatly impact management decisions. We advocate reducing potential heterogeneity at the sampling design stage. Where this is insufficient, we recommend modelling individual capture heterogeneity in situations such as when a large proportion of the individuals has a low detection probability (e.g. in the presence of floaters) and situations where the most recent survival estimates are of great interest (e.g. in applied conservation). PMID:23646131

  20. Effects of heterogeneity in aquifer permeability and biomass on biodegradation rate calculations - Results from numerical simulations

    USGS Publications Warehouse

    Scholl, M.A.

    2000-01-01

    Numerical simulations were used to examine the effects of heterogeneity in hydraulic conductivity (K) and intrinsic biodegradation rate on the accuracy of contaminant plume-scale biodegradation rates obtained from field data. The simulations were based on a steady-state BTEX contaminant plume-scale biodegradation under sulfate-reducing conditions, with the electron acceptor in excess. Biomass was either uniform or correlated with K to model spatially variable intrinsic biodegradation rates. A hydraulic conductivity data set from an alluvial aquifer was used to generate three sets of 10 realizations with different degrees of heterogeneity, and contaminant transport with biodegradation was simulated with BIOMOC. Biodegradation rates were calculated from the steady-state contaminant plumes using decreases in concentration with distance downgradient and a single flow velocity estimate, as is commonly done in site characterization to support the interpretation of natural attenuation. The observed rates were found to underestimate the actual rate specified in the heterogeneous model in all cases. The discrepancy between the observed rate and the 'true' rate depended on the ground water flow velocity estimate, and increased with increasing heterogeneity in the aquifer. For a lognormal K distribution with variance of 0.46, the estimate was no more than a factor of 1.4 slower than the true rate. For aquifer with 20% silt/clay lenses, the rate estimate was as much as nine times slower than the true rate. Homogeneous-permeability, uniform-degradation rate simulations were used to generate predictions of remediation time with the rates estimated from heterogeneous models. The homogeneous models were generally overestimated the extent of remediation or underestimated remediation time, due to delayed degradation of contaminants in the low-K areas. Results suggest that aquifer characterization for natural attenuation at contaminated sites should include assessment of the presence

  1. Heterogeneity and the Effect of Mental Health Parity Mandates on the Labor Market*

    PubMed Central

    Andersen, Martin

    2015-01-01

    Health insurance benefit mandates are believed to have adverse effects on the labor market, but efforts to document such effects for mental health parity mandates have had limited success. I show that one reason for this failure is that the association between parity mandates and labor market outcomes vary with mental distress. Accounting for this heterogeneity, I find adverse labor market effects for non-distressed individuals, but favorable effects for moderately distressed individuals and individuals with a moderately distressed family member. On net, I conclude that the mandates are welfare increasing for moderately distressed workers and their families, but may be welfare decreasing for non-distressed individuals. PMID:26210944

  2. The effect of heterogeneous dynamics of online users on information filtering

    NASA Astrophysics Data System (ADS)

    Chen, Bo-Lun; Zeng, An; Chen, Ling

    2015-11-01

    The rapid expansion of the Internet requires effective information filtering techniques to extract the most essential and relevant information for online users. Many recommendation algorithms have been proposed to predict the future items that a given user might be interested in. However, there is an important issue that has always been ignored so far in related works, namely the heterogeneous dynamics of online users. The interest of active users changes more often than that of less active users, which asks for different update frequency of their recommendation lists. In this paper, we develop a framework to study the effect of heterogeneous dynamics of users on the recommendation performance. We find that the personalized application of recommendation algorithms results in remarkable improvement in the recommendation accuracy and diversity. Our findings may help online retailers make better use of the existing recommendation methods.

  3. Detection of irrigation timing using MODIS and SAR: Effect of land cover heterogeneity

    NASA Astrophysics Data System (ADS)

    Seungtaek, J.; Keunchang, J.; Lee, H.; Seokyeong, H.; Kang, S.

    2010-12-01

    Rice is one of the world’s major staple foods. Paddy rice fields had unique biophysical characteristics that the rice is grown on flooded soils unlike other crops. Distribution and timing of irrigation of paddy rice fields are of importance to determine hydrological balance and efficiency of water resource. In this paper, we detected the distribution and timing of irrigation of paddy rice fields using the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the NASA EOS Aqua satellite. Previous researches demonstrated that MODIS data can be utilized to detect timing of irrigation by combining vegetation index and Land Surface Water Index (LSWI). Land cover heterogeneity, however, causes considerable uncertainty of the satellite-based detections. To evaluate and quantify the effect of land cover heterogeneity, Radarsat-1 Synthetic Aperture Radar (SAR) images were applied together with the MODIS images. Sub-pixel heterogeneity of MODIS image on land cover and irrigation was evaluated and quantified by using the Radarsat-1 SAR images. The degree of sub-pixel heterogeneity was related with detection of a threshold value of LSWI to determine the timing of irrigation. The threshold value with the degree of heterogeneity increased (R2=0.95), which was applied to detect the timing of irrigation over complex land cover areas. Reliable detecting of timing of irrigation could enhance reliability of MODIS-based estimation on evapotranspiration from paddy rice fields. In this presentation, we will demonstrate the enhancement of MODIS-based evapotranspiration by using our new algorithm on detection of timing of irrigation. Acknowledgement: This study was supported by National Academy of Agricultural Science, RDA, Republic of Korea.

  4. Flow and transport in unsaturated fractured rock: effects of multiscale heterogeneity of hydrogeologic properties.

    PubMed

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S; Oldenburg, Curtis M

    2003-01-01

    The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross-section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross-section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20% tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain. PMID:12498572

  5. Effect of heterogeneity on the quantitative determination of trace elements in concrete.

    PubMed

    Weritz, Friederike; Schaurich, Dieter; Taffe, Alexander; Wilsch, Gerd

    2006-05-01

    Laser-induced breakdown spectroscopy has been used for quantitative measurement of trace elements, e.g. sulfur and chlorine, in concrete. Chloride and sulfate ions have a large effect on the durability of concrete structures, and quantitative measurement is important for condition assessment and quality assurance. Concrete is a highly heterogeneous material in composition and grain-size distribution, i.e. the spatial distribution of elements. Calibration plots were determined by use of laboratory-made reference samples consisting of pressings of cement powder, hydrated cement, cement mortar, and concrete, in which the heterogeneity of the material is increasing because of the aggregates. Coarse aggregate and cement paste are distinguishable by the intensity of the Ca spectral lines. More advanced evaluation is necessary to account for the effect of the fine aggregate. The three series of reference samples enable systematic study of the effects of heterogeneity on spectral intensity, signal fluctuation, uncertainty, and limits of detection. Spatially resolved measurements and many spectra enable statistical evaluation of the data. The heterogeneity has an effect on measurement of the sulfur and chlorine content, because both occur mainly in the cement matrix. Critical chloride concentrations are approximately 0.04% (m/m). The chlorine spectral line at 837.6 nm is evaluated. The natural sulfur content of concrete is approximately 0.1% (m/m). The spectral line at 921.3 nm is evaluated. One future application may be simultaneous determination of the amount of damaging trace elements and the cement content of the concrete. PMID:16520935

  6. Ancient origin of lubricated joints in bony vertebrates.

    PubMed

    Askary, Amjad; Smeeton, Joanna; Paul, Sandeep; Schindler, Simone; Braasch, Ingo; Ellis, Nicholas A; Postlethwait, John; Miller, Craig T; Crump, J Gage

    2016-01-01

    Synovial joints are the lubricated connections between the bones of our body that are commonly affected in arthritis. It is assumed that synovial joints first evolved as vertebrates came to land, with ray-finned fishes lacking lubricated joints. Here, we examine the expression and function of a critical lubricating protein of mammalian synovial joints, Prg4/Lubricin, in diverse ray-finned fishes. We find that Prg4 homologs are specifically enriched at the jaw and pectoral fin joints of zebrafish, stickleback, and gar, with genetic deletion of the zebrafish prg4b gene resulting in the same age-related degeneration of joints as seen in lubricin-deficient mice and humans. Our data support lubricated synovial joints evolving much earlier than currently accepted, at least in the common ancestor of all bony vertebrates. Establishment of the first arthritis model in the highly regenerative zebrafish will offer unique opportunities to understand the aetiology and possible treatment of synovial joint disease. PMID:27434666

  7. Viral vaccines for bony fish: past, present and future.

    PubMed

    Salgado-Miranda, Celene; Loza-Rubio, Elizabeth; Rojas-Anaya, Edith; García-Espinosa, Gary

    2013-05-01

    Since 1970, aquaculture production has grown. In 2010, it had an annual average rate of 6.3% with 59.9 million tons of product and soon could exceed capture fisheries as a source of fishery products. However, the occurrence of viral diseases continues to be a significant limiting factor and its control is important for the development of this sector. In aquaculture farms, fish are reared under intensive culture conditions, and the use of viral vaccines has enabled an increase in production. Several types of vaccines and strategies of vaccination have been developed; however, this approach has not reached the expected goals in the most susceptible stage (fingerlings). Currently, there are inactivated and recombinant commercial vaccines, mainly for salmonids and cyprinids. In addition, updated genomic and proteomic technology has expedited the research and expansion of new vaccine models, such as those comprised of subunits or DNA. The objective of this review is to cover the various types of viral vaccines that have been developed and are available for bony fishes, as well as the advantages and challenges that DNA vaccines present for massive administration in a growing aquaculture, possible risks for the environment, the controversy regarding genetically modified organisms and possible acceptance by consumers. PMID:23659303

  8. The bony labyrinth of the early platyrrhine primate Chilecebus.

    PubMed

    Ni, Xijun; Flynn, John J; Wyss, André R

    2010-12-01

    We document the morphology of the bony labyrinth of Chilecebus carrascoensis, one of the best preserved early platyrrhines known, based on high resolution CT scanning and 3D digital reconstruction. The cochlea is low and conical in form, as in other anthropoids, but has only 2.5 spiral turns. When the allometric relationship with body mass is considered, cochlear size is similar to that in extant primates. The relative size of the semicircular canals, which is well within the range of other primates, indicates that Chilecebus carrascoensis was probably not as agile in its locomotion as other small-bodied platyrrhines such as Leontopithecus rosalia, Saguinus oedipus, and Callithrix jacchus, but it probably was not a suspensory acrobat or a slow climber. The proportion, shape, and orientation of the semicircular canals in Chilecebus carrascoensis also mirror that typically seen in extant primates. However, no single variable can be used for predicting the locomotor pattern in Chilecebus carrascoensis. Based on Principle Component Analysis (PCA) scores we calculated rescaled Euclidean distances for various taxa; primates with similar locomotor patterns tend to share shorter distances. Results for Chilecebus carrascoensis underscore its general resemblance to living quadrupedal primate taxa, but it is not positioned especially near any single living taxon. PMID:20952046

  9. Ancient origin of lubricated joints in bony vertebrates

    PubMed Central

    Askary, Amjad; Smeeton, Joanna; Paul, Sandeep; Schindler, Simone; Braasch, Ingo; Ellis, Nicholas A; Postlethwait, John; Miller, Craig T; Crump, J Gage

    2016-01-01

    Synovial joints are the lubricated connections between the bones of our body that are commonly affected in arthritis. It is assumed that synovial joints first evolved as vertebrates came to land, with ray-finned fishes lacking lubricated joints. Here, we examine the expression and function of a critical lubricating protein of mammalian synovial joints, Prg4/Lubricin, in diverse ray-finned fishes. We find that Prg4 homologs are specifically enriched at the jaw and pectoral fin joints of zebrafish, stickleback, and gar, with genetic deletion of the zebrafish prg4b gene resulting in the same age-related degeneration of joints as seen in lubricin-deficient mice and humans. Our data support lubricated synovial joints evolving much earlier than currently accepted, at least in the common ancestor of all bony vertebrates. Establishment of the first arthritis model in the highly regenerative zebrafish will offer unique opportunities to understand the aetiology and possible treatment of synovial joint disease. DOI: http://dx.doi.org/10.7554/eLife.16415.001 PMID:27434666

  10. Effective reactive surface area: An anisotropic property of physically and chemically heterogeneous porous media

    SciTech Connect

    Smith, R.W.; Schafer, A.L.

    1999-07-01

    Although transport calculations are often formulated in terms of mass-based isotropic distribution coefficients, it is the abundance of reactive surface areas of subsurface materials that controls contaminant adsorption. In water-saturated homogeneous systems devoid of advective fluxes (e.g., batch experiments), the available reactive surface area is similar to the total surface area (as measured by conventional methods such as BET gas adsorption). However, in physically and chemically heterogeneous systems with advective fluxes, the effective reactive surface area (i.e., the surface area that a packet of advecting water interacts with) is smaller than the laboratory measured surface area and is a complex function of advective velocity and the correlation structures of the physical and chemical heterogeneities. Theoretical derivations for an important but simple type of heterogeneity (fine-scale horizontal layering) suggest that the effective reactive surface area is an anisotropic property of the medium and is inversely correlated with the anisotropy in hydraulic conductivity. The implications of reactive transport anisotropy include the concept that the retardation factor should be treated as a directional property rather than being treated as a constant. Furthermore, because of the inverse relationship between effective reactive surface area and hydraulic conductivity, batch adsorption experiments tend to overestimate the retention of contaminants relative to intact natural materials.

  11. Effect of heterogeneity on radionuclide retardation in the alluvial aquifer near Yucca Mountain, Nevada.

    PubMed

    Painter, S; Cvetkovic, V; Turner, D R

    2001-01-01

    The U.S. Department of Energy is currently studying Yucca Mountain, Nevada, as a potential site for a geological high-level waste repository. In the current conceptual models of radionuclide transport at Yucca Mountain, part of the transport path to pumping locations would be through an alluvial aquifer. Interactions with minerals in the alluvium are expected to retard the downstream migration of radionuclides, thereby delaying arrival times and reducing ground water concentrations. We evaluate the effectiveness of the alluvial aquifer as a transport barrier using the stochastic Lagrangian framework. A transport model is developed to account for physical and chemical heterogeneities and rate-limited mass transfer between mobile and immobile zones. The latter process is caused by small-scale heterogeneity and is thought to control the macroscopic-scale retardation in some field experiments. A geostatistical model for the spatially varying sorption parameters is developed from a site-specific database created from hydrochemical measurements and a calibrated modeling approach (Turner and Pabalan 1999). Transport of neptunium is considered as an example. The results are sensitive to the rate of transfer between mobile and immobile zones, and to spatial variability in the hydraulic conductivity. Chemical heterogeneity has only a small effect, as does correlation between hydraulic conductivity and the neptunium distribution coefficient. These results illustrate how general sensitivities can be explored with modest effort within the Lagrangian framework. Such studies complement and guide the application of more detailed numerical simulations. PMID:11340997

  12. Effects of heterogeneity and friction on the deformation and strength of rock

    SciTech Connect

    Nihei, K.T.; Myer, L.R.; Liu, Z.; Cook, N.G.W.; Kemeny, J.M.

    1994-03-01

    Experimental observations of the evolution of damage in rocks during compressive loading indicate that macroscopic failure occurs predominantly by extensile crack growth parallel or subparallel to the maximum principal stress. Extensile microcracks initiate at grain boundaries and open pores by a variety of micromechanical processes which may include grain bending, Brazilian type fracture and grain boundary sliding. Microstructural heterogeneity in grain size, strength and shape determines the magnitude of the local tensile stresses which produce extensile microcracking and the stability with which these microcracks coalesce to form macrocracks. Friction at grain boundaries and between the surfaces of microcracks reduces the strain energy available for extensile crack growth and increases the stability of microcrack growth. In clastic rocks, frictional forces may improve the conditions for extensile microcrack growth by constraining the amount of sliding and rotation of individual grains. Micromechanical models are used to investigate the effects of heterogeneity and friction on the deformation and strength of crystalline and clastic rocks.

  13. Perceived Disagreement and Heterogeneity in Social Networks: Distinct Effects on Political Participation.

    PubMed

    Guidetti, Margherita; Cavazza, Nicoletta; Graziani, Anna Rita

    2016-01-01

    Although the coexistence of conflicting opinions in society is the very core of democracy, people's tendency to avoid conflict could keep them away from political discussion and participation. On the other hand, being exposed to diverse political views could motivate citizens to participate. We conducted secondary analyses on two 2013 ITANES (Italian National Election Studies) probability samples in order to test the hypotheses that perceived network disagreement (between an individual and her/his discussion partners) and heterogeneity (among discussants holding different political opinions) exert independent and opposite effects on political participation through motivation and knowledge. Results converged in showing that disagreement dampened, while heterogeneity encouraged, political participation (voting, propensity to abstain in future, offline and online activism, and timing of vote decision) by decreasing or increasing, respectively, political interest and, in turn, knowledge. PMID:26390803

  14. Heterogeneous Suppression of Sequential Effects in Random Sequence Generation, but Not in Operant Learning

    PubMed Central

    Shteingart, Hanan; Loewenstein, Yonatan

    2016-01-01

    There is a long history of experiments in which participants are instructed to generate a long sequence of binary random numbers. The scope of this line of research has shifted over the years from identifying the basic psychological principles and/or the heuristics that lead to deviations from randomness, to one of predicting future choices. In this paper, we used generalized linear regression and the framework of Reinforcement Learning in order to address both points. In particular, we used logistic regression analysis in order to characterize the temporal sequence of participants’ choices. Surprisingly, a population analysis indicated that the contribution of the most recent trial has only a weak effect on behavior, compared to more preceding trials, a result that seems irreconcilable with standard sequential effects that decay monotonously with the delay. However, when considering each participant separately, we found that the magnitudes of the sequential effect are a monotonous decreasing function of the delay, yet these individual sequential effects are largely averaged out in a population analysis because of heterogeneity. The substantial behavioral heterogeneity in this task is further demonstrated quantitatively by considering the predictive power of the model. We show that a heterogeneous model of sequential dependencies captures the structure available in random sequence generation. Finally, we show that the results of the logistic regression analysis can be interpreted in the framework of reinforcement learning, allowing us to compare the sequential effects in the random sequence generation task to those in an operant learning task. We show that in contrast to the random sequence generation task, sequential effects in operant learning are far more homogenous across the population. These results suggest that in the random sequence generation task, different participants adopt different cognitive strategies to suppress sequential dependencies when

  15. Heterogeneous Suppression of Sequential Effects in Random Sequence Generation, but Not in Operant Learning.

    PubMed

    Shteingart, Hanan; Loewenstein, Yonatan

    2016-01-01

    There is a long history of experiments in which participants are instructed to generate a long sequence of binary random numbers. The scope of this line of research has shifted over the years from identifying the basic psychological principles and/or the heuristics that lead to deviations from randomness, to one of predicting future choices. In this paper, we used generalized linear regression and the framework of Reinforcement Learning in order to address both points. In particular, we used logistic regression analysis in order to characterize the temporal sequence of participants' choices. Surprisingly, a population analysis indicated that the contribution of the most recent trial has only a weak effect on behavior, compared to more preceding trials, a result that seems irreconcilable with standard sequential effects that decay monotonously with the delay. However, when considering each participant separately, we found that the magnitudes of the sequential effect are a monotonous decreasing function of the delay, yet these individual sequential effects are largely averaged out in a population analysis because of heterogeneity. The substantial behavioral heterogeneity in this task is further demonstrated quantitatively by considering the predictive power of the model. We show that a heterogeneous model of sequential dependencies captures the structure available in random sequence generation. Finally, we show that the results of the logistic regression analysis can be interpreted in the framework of reinforcement learning, allowing us to compare the sequential effects in the random sequence generation task to those in an operant learning task. We show that in contrast to the random sequence generation task, sequential effects in operant learning are far more homogenous across the population. These results suggest that in the random sequence generation task, different participants adopt different cognitive strategies to suppress sequential dependencies when

  16. Effect of crustal heterogeneities and effective rock strength on the formation of HP and UHP rocks.

    NASA Astrophysics Data System (ADS)

    Reuber, Georg; Kaus, Boris; Schmalholz, Stefan; White, Richard

    2015-04-01

    next step, we performed several hundred numerical simulations to understand the effects of km-scale heterogeneities and material parameters on pressure magnitudes, using a model setup that is otherwise very similar to the one of Li et al. (2010). Results show that significant non-lithostatic pressures occur if (lower) crustal rocks are dry or if km-scale (nappe-sized) heterogeneities with dryer rocks are present within the crust. Overpressure magnitudes can be up to 1 GPa or 100% and in some cases rock assemblages are temporarily in the coesite stability field at a depth of only 40 km, followed by rapid exhumation to the surface. Tectonic overpressures can vary strongly in magnitude versus time, but peak pressures are present sufficiently long for metamorphic reactions to occur. The presence of heterogeneities can affect the crustal-scaled deformation pattern, and the effective friction angle of crustal-scale rocks (or the dryness of these rocks) is a key parameter that determines the magnitude of non-lithostatic pressures. Our results thus reconcile previous findings and highlight the importance of having an accurate knowledge of the fluid-pressure, initial crustal structure and rock composition during continental collision. If rocks are dry by the time they enter a subduction zone, or are stronger/dryer than surrounding rocks, they are likely to develop significantly higher pressures than nearby rocks. This might explain the puzzling observation that some nappes have very high peak pressures, while juxtaposed nappes have much lower values, without clear structural evidence for deep burial and exhumation along a subduction channel of the high-pressure nappe. Our models might also give a partial explanation of why the reported timescales for high and ultra-high pressure stages of peak metamorphism are often very short. References: Burov, E., Francois, T., Agard, P., Le Pourhiet, L., Meyer, B., Tirel, C., Lebedev, S., Yamato, P., Brun, J.-P., 2014. Tectonophysics

  17. A heterogeneous chemistry model for acid rain`s effect on ozone

    SciTech Connect

    Ye, Tao

    1995-11-01

    A computer model for simulating heterogeneous reactions in cloud is developed to determine the S(IV) species` effect on ozone. Crutzen claims that NO{sub x}, HO{sub x} families and H{sub 2}CO in the troposphere can decrease ozone by 5 to 10%. However, is this claim valid for a SO{sub x} polluted atmosphere? The SO{sub x} family reacts with the ozone destroyers. These reactions seem to be significant enough to reduce the H{sub 2}CO`s destructive effect on ozone.

  18. Effects of the heterogeneous landscape on a predator-prey system

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee

    2010-01-01

    In order to understand how a heterogeneous landscape affects a predator-prey system, a spatially explicit lattice model consisting of predators, prey, grass, and landscape was constructed. The predators and preys randomly move on the lattice space and the grass grows in its neighboring site according to its growth probability. When predators and preys meet at the same site at the same time, a number of prey, equal to the number of predators are eaten. This rule was also applied to the relationship between the prey and grass. The predator (prey) could give birth to an offspring when it ate prey (grass), with a birth probability. When a predator or prey animal was initially introduced, or newly born, its health state was set at a given high value. This health state decreased by one with every time step. When the state of an animal decreased to less than zero, the animal died and was removed from the system. The heterogeneous landscape was characterized by parameter H, which controlled the heterogeneity according to the neutral model. The simulation results showed that H positively or negatively affected a predator’s survival, while its effect on prey and grass was less pronounced. The results can be understood by the disturbance of the balance between the prey and predator densities in the areas where the animals aggregated.

  19. Disease Spread and Its Effect on Population Dynamics in Heterogeneous Environment

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ranjit Kumar; Roy, Parimita

    In this paper, an eco-epidemiological model in which both species diffuse along a spatial gradient has been shown to exhibit temporal chaos at a fixed point in space. The proposed model is a modification of the model recently presented by Upadhyay and Roy [2014]. The spatial interactions among the species have been represented in the form of reaction-diffusion equations. The model incorporates the intrinsic growth rate of fish population which varies linearly with the depth of water. Numerical results show that diffusion can drive otherwise stable system into aperiodic behavior with sensitivity to initial conditions. We show that spatially induced chaos plays an important role in spatial pattern formation in heterogeneous environment. Spatiotemporal distributions of species have been simulated using the diffusivity assumptions realistic for natural eco-epidemic systems. We found that in heterogeneous environment, the temporal dynamics of both the species are drastically different and show chaotic behavior. It was also found that the instability observed in the model is due to spatial heterogeneity and diffusion-driven. Cumulative death rate of predator has an appreciable effect on model dynamics as the spatial distribution of all constituent populations exhibit significant changes when this model parameter is changed and it acts as a regularizing factor.

  20. Accounting for Heterogeneity in Relative Treatment Effects for Use in Cost-Effectiveness Models and Value-of-Information Analyses.

    PubMed

    Welton, Nicky J; Soares, Marta O; Palmer, Stephen; Ades, Anthony E; Harrison, David; Shankar-Hari, Manu; Rowan, Kathy M

    2015-07-01

    Cost-effectiveness analysis (CEA) models are routinely used to inform health care policy. Key model inputs include relative effectiveness of competing treatments, typically informed by meta-analysis. Heterogeneity is ubiquitous in meta-analysis, and random effects models are usually used when there is variability in effects across studies. In the absence of observed treatment effect modifiers, various summaries from the random effects distribution (random effects mean, predictive distribution, random effects distribution, or study-specific estimate [shrunken or independent of other studies]) can be used depending on the relationship between the setting for the decision (population characteristics, treatment definitions, and other contextual factors) and the included studies. If covariates have been measured that could potentially explain the heterogeneity, then these can be included in a meta-regression model. We describe how covariates can be included in a network meta-analysis model and how the output from such an analysis can be used in a CEA model. We outline a model selection procedure to help choose between competing models and stress the importance of clinical input. We illustrate the approach with a health technology assessment of intravenous immunoglobulin for the management of adult patients with severe sepsis in an intensive care setting, which exemplifies how risk of bias information can be incorporated into CEA models. We show that the results of the CEA and value-of-information analyses are sensitive to the model and highlight the importance of sensitivity analyses when conducting CEA in the presence of heterogeneity. The methods presented extend naturally to heterogeneity in other model inputs, such as baseline risk. PMID:25712447

  1. Assessing the heterogeneity of treatment effects via potential outcomes of individual patients

    PubMed Central

    Zhang, Zhiwei; Wang, Chenguang; Nie, Lei; Soon, Guoxing

    2014-01-01

    Summary There is growing interest in understanding the heterogeneity of treatment effects (HTE), which has important implications in treatment evaluation and selection. The standard approach to assessing HTE (i.e. subgroup analyses based on known effect modifiers) is informative about the heterogeneity between subpopulations but not within. It is arguably more informative to assess HTE in terms of individual treatment effects, which can be defined by using potential outcomes. However, estimation of HTE based on potential outcomes is challenged by the lack of complete identifiability. The paper proposes methods to deal with the identifiability problem by using relevant information in baseline covariates and repeated measurements. If a set of covariates is sufficient for explaining the dependence between potential outcomes, the joint distribution of potential outcomes and hence all measures of HTE will then be identified under a conditional independence assumption. Possible violations of this assumption can be addressed by including a random effect to account for residual dependence or by specifying the conditional dependence structure directly. The methods proposed are shown to reduce effectively the uncertainty about HTE in a trial of human immunodeficiency virus. PMID:25506088

  2. Heterogeneous Effects of Fructose on Blood Lipids in Individuals With Type 2 Diabetes

    PubMed Central

    Sievenpiper, John L.; Carleton, Amanda J.; Chatha, Sheena; Jiang, Henry Y.; de Souza, Russell J.; Beyene, Joseph; Kendall, Cyril W.C.; Jenkins, David J.A.

    2009-01-01

    OBJECTIVE Because of blood lipid concerns, diabetes associations discourage fructose at high intakes. To quantify the effect of fructose on blood lipids in diabetes, we conducted a systematic review and meta-analysis of experimental clinical trials investigating the effect of isocaloric fructose exchange for carbohydrate on triglycerides, total cholesterol, LDL cholesterol, and HDL cholesterol in type 1 and 2 diabetes. RESEARCH DESIGN AND METHODS We searched MEDLINE, EMBASE, CINAHL, and the Cochrane Library for relevant trials of ≥7 days. Data were pooled by the generic inverse variance method and expressed as standardized mean differences with 95% CI. Heterogeneity was assessed by χ2 tests and quantified by I2. Meta-regression models identified dose threshold and independent predictors of effects. RESULTS Sixteen trials (236 subjects) met the eligibility criteria. Isocaloric fructose exchange for carbohydrate raised triglycerides and lowered total cholesterol under specific conditions without affecting LDL cholesterol or HDL cholesterol. A triglyceride-raising effect without heterogeneity was seen only in type 2 diabetes when the reference carbohydrate was starch (mean difference 0.24 [95% CI 0.05–0.44]), dose was >60 g/day (0.18 [0.00–0.37]), or follow-up was ≤4 weeks (0.18 [0.00–0.35]). Piecewise meta-regression confirmed a dose threshold of 60 g/day (R2 = 0.13)/10% energy (R2 = 0.36). A total cholesterol–lowering effect without heterogeneity was seen only in type 2 diabetes under the following conditions: no randomization and poor study quality (−0.19 [−0.34 to −0.05]), dietary fat >30% energy (−0.33 [−0.52 to −0.15]), or crystalline fructose (−0.28 [−0.47 to −0.09]). Multivariate meta-regression analyses were largely in agreement. CONCLUSIONS Pooled analyses demonstrated conditional triglyceride-raising and total cholesterol–lowering effects of isocaloric fructose exchange for carbohydrate in type 2 diabetes. Recommendations

  3. A Comparative Dosimetric Analysis of the Effect of Heterogeneity Corrections Used in Three Treatment Planning Algorithms

    NASA Astrophysics Data System (ADS)

    Herrick, Andrea Celeste

    Successful treatment in radiation oncology relies on the evaluation of a plan for each individual patient based on delivering the maximum dose to the tumor while sparing the surrounding normal tissue (organs at risk) in the patient. Organs at risk (OAR) typically considered include the heart, the spinal cord, healthy lung tissue, and any other organ in the vicinity of the target that is not affected by the disease being treated. Depending on the location of the tumor and its proximity to these OARs, several plans may be created and evaluated in order to assess which "solution" most closely meets all of the specified criteria. In order to successfully review a treatment plan and take the correct course of action, a physician needs to rely on the computer model (treatment planning algorithm) of dose distribution to reconstruct CT scan data to proceed with the plan that best achieves all of the goals. There are many available treatment planning systems from which a Radiation Oncology center can choose from. While the radiation interactions considered are identical among clinics, the way the chosen algorithm handles these interactions can vary immensely. The goal of this study was to provide a comparison between two commonly used treatment planning systems (Pinnacle and Eclipse) and their associated dose calculation algorithms. In order to this, heterogeneity correction models were evaluated via test plans, and the effects of going from heterogeneity uncorrected patient representation to a heterogeneity correction representation were studied. The results of this study indicate that the actual dose delivered to the patient varies greatly between treatment planning algorithms in areas of low density tissue such as in the lungs. Although treatment planning algorithms are attempting to come to the same result with heterogeneity corrections, the reality is that the results depend strongly on the algorithm used in the situations studied. While the Anisotropic Analytic Method

  4. Line-tension effects on heterogeneous nucleation on a spherical substrate and in a spherical cavity.

    PubMed

    Iwamatsu, Masao

    2015-04-01

    The line-tension effects on heterogeneous nucleation are considered when a spherical lens-shaped nucleus is nucleated on top of a spherical substrate and on the bottom of the wall of a spherical cavity. The effect of line tension on the nucleation barrier can be separated from the usual volume term. As the radius of the substrate increases, the nucleation barrier decreases and approaches that of a flat substrate. However, as the radius of the cavity increases, the nucleation barrier increases and approaches that of a flat substrate. A small spherical substrate is a less active nucleation site than a flat substrate, and a small spherical cavity is a more active nucleation site than a flat substrate. In contrast, the line-tension effect on the nucleation barrier is maximum when the radii of the nucleus and the substrate or cavity become comparable. Therefore, by tuning the size of the spherical substrate or spherical cavity, the effect of the line tension can be optimized. These results will be useful in broad range of applications from material processing to understanding of global climate, where the heterogeneous nucleation plays a vital role. PMID:25775383

  5. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling.

    PubMed

    Demirtas, Ahmet; Curran, Erin; Ural, Ani

    2016-10-01

    The recent reports of atypical femoral fracture (AFF) and its possible association with prolonged bisphosphonate (BP) use highlighted the importance of a thorough understanding of mechanical modifications in bone due to bisphosphonate treatment. The reduced compositional heterogeneity is one of the modifications in bone due to extensive suppression of bone turnover. Although experimental evaluations suggested that compositional changes lead to a reduction in the heterogeneity of elastic properties, there is limited information on the extent of influence of reduced heterogeneity on fracture resistance of cortical bone. As a result, the goal of the current study is to evaluate the influence of varying the number of unique elastic and fracture properties for osteons, interstitial bone, and cement lines on fracture resistance across seven different human cortical bone specimens using finite element modeling. Fracture resistance of seven human cortical bone samples under homogeneous and three different heterogeneous material levels was evaluated using a compact tension test setup. The simulation results predicted that the crack volume was the highest for the models with homogeneous material properties. Increasing heterogeneity resulted in a lower amount of crack volume indicating an increase in fracture resistance of cortical bone. This reduction was observed up to a certain level of heterogeneity after which further beneficial effects of heterogeneity diminished suggesting a possible optimum level of heterogeneity for the bone tissue. The homogeneous models demonstrated limited areas of damage with extensive crack formation. On the other hand, the heterogeneity in the material properties led to increased damage volume and a more variable distribution of damage compared to the homogeneous models. This resulted in uncracked regions which tended to have less damage accumulation preventing extensive crack propagation. The results also showed that the percent osteonal area

  6. Time-resolved diffused optical characterization of key tissue constituents of human bony prominence locations

    NASA Astrophysics Data System (ADS)

    Konugolu Venkata Sekar, Sanathana; Farina, Andrea; Martinenghi, Edoardo; Dalla Mora, Alberto; Taroni, Paola; Pifferi, Antonio; Negredo, Eugènia; Puig, Jordi; Escrig, Roser; Rosales, Quim; Lindner, Claus; Pagliazzi, Marco; Durduran, Turgut

    2015-07-01

    We report a broadband time-resolved characterization of selected bony prominence locations of the human body. A clinical study was performed at six different bony prominence locations of 53 subjects. A portable broadband time-resolved system equipped with pulse drift and distortion compensation strategy was used for absorption and scattering measurements. Key tissue constituents were quantified as a pilot step towards non-invasive optical assessment of bone pathologies.

  7. The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy.

    PubMed

    Young, P A; Clendenon, S G; Byars, J M; Dunn, K W

    2011-05-01

    Although multiphoton fluorescence excitation microscopy has improved the depth at which useful fluorescence images can be collected in biological tissues, the reach of multiphoton fluorescence excitation microscopy is nonetheless limited by tissue scattering and spherical aberration. Scattering can be reduced in fixed samples by mounting in a medium whose refractive index closely matches that of the fixed material. Using optical 'clearing', the effects of refractive index heterogeneity on signal attenuation with depth are investigated. Quantitative measurements show that by mounting kidney tissue in a high refractive index medium, less than 50% of signal attenuates in 100 μm of depth. PMID:21118239

  8. Cementless Titanium Mesh Fixation of Osteoporotic Burst Fractures of the Lumbar Spine Leads to Bony Healing: Results of an Experimental Sheep Model.

    PubMed

    Eschler, Anica; Roepenack, Paula; Roesner, Jan; Herlyn, Philipp Karl Ewald; Martin, Heiner; Reichel, Martin; Rotter, Robert; Vollmar, Brigitte; Mittlmeier, Thomas; Gradl, Georg

    2016-01-01

    Introduction. Current treatment strategies for osteoporotic vertebral compression fractures (VCFs) focus on cement-associated solutions. Complications associated with cement application are leakage, embolism, adjacent fractures, and compromise in bony healing. This study comprises a validated VCF model in osteoporotic sheep in order to (1) evaluate a new cementless fracture fixation technique using titanium mesh implants (TMIs) and (2) demonstrate the healing capabilities in osteoporotic VCFs. Methods. Twelve 5-year-old Merino sheep received ovariectomy, corticosteroid injections, and a calcium/phosphorus/vitamin D-deficient diet for osteoporosis induction. Standardized VCFs (type AO A3.1) were created, reduced, and fixed using intravertebral TMIs. Randomly additional autologous spongiosa grafting (G1) or no augmentation was performed (G2, n = 6 each). Two months postoperatively, macroscopic, micro-CT and biomechanical evaluation assessed bony consolidation. Results. Fracture reduction succeeded in all cases without intraoperative complications. Bony consolidation was proven for all cases with increased amounts of callus development for G2 (58.3%). Micro-CT revealed cage integration. Neither group showed improved results with biomechanical testing. Conclusions. Fracture reduction/fixation using TMIs without cement in osteoporotic sheep lumbar VCF resulted in bony fracture healing. Intravertebral application of autologous spongiosa showed no beneficial effects. The technique is now available for clinical use; thus, it offers an opportunity to abandon cement-associated complications. PMID:27019848

  9. Cementless Titanium Mesh Fixation of Osteoporotic Burst Fractures of the Lumbar Spine Leads to Bony Healing: Results of an Experimental Sheep Model

    PubMed Central

    Roepenack, Paula; Roesner, Jan; Herlyn, Philipp Karl Ewald; Martin, Heiner; Reichel, Martin; Rotter, Robert; Vollmar, Brigitte; Mittlmeier, Thomas; Gradl, Georg

    2016-01-01

    Introduction. Current treatment strategies for osteoporotic vertebral compression fractures (VCFs) focus on cement-associated solutions. Complications associated with cement application are leakage, embolism, adjacent fractures, and compromise in bony healing. This study comprises a validated VCF model in osteoporotic sheep in order to (1) evaluate a new cementless fracture fixation technique using titanium mesh implants (TMIs) and (2) demonstrate the healing capabilities in osteoporotic VCFs. Methods. Twelve 5-year-old Merino sheep received ovariectomy, corticosteroid injections, and a calcium/phosphorus/vitamin D-deficient diet for osteoporosis induction. Standardized VCFs (type AO A3.1) were created, reduced, and fixed using intravertebral TMIs. Randomly additional autologous spongiosa grafting (G1) or no augmentation was performed (G2, n = 6 each). Two months postoperatively, macroscopic, micro-CT and biomechanical evaluation assessed bony consolidation. Results. Fracture reduction succeeded in all cases without intraoperative complications. Bony consolidation was proven for all cases with increased amounts of callus development for G2 (58.3%). Micro-CT revealed cage integration. Neither group showed improved results with biomechanical testing. Conclusions. Fracture reduction/fixation using TMIs without cement in osteoporotic sheep lumbar VCF resulted in bony fracture healing. Intravertebral application of autologous spongiosa showed no beneficial effects. The technique is now available for clinical use; thus, it offers an opportunity to abandon cement-associated complications. PMID:27019848

  10. Investigating the Effect of Hydraulic Data and Heterogeneity on Stochastic Inversion of a Physically Based Groundwater Model

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, Y.

    2014-12-01

    This research explores the interactions between data quantity, data quality and heterogeneity resolution on stochastic inversion of a physically based model. To further investigate aquifer heterogeneity, simulations are used to examine the impact of geostatistical models on inversion quality, as well as the spatial sensitivity to heterogeneity using local and global methods. The model domain is a two-dimensional steady-state confined aquifer with lateral flows through two hydrofacies with alternating patterns.To examine general effects, the control variable method was adopted to reveal the impact of three factors on estimated hydraulic conductivity (K) and hydraulic head boundary conditions (BCs): (1) data availability, (2) data error, and (3) characterization of heterogeneity. Results show that fewer data increase model sensitivity to measurement error and heterogeneity. Extremely large data errors can cause severe model deterioration, regardless of sufficient data availability or high resolution representation of heterogeneity. Smaller data errors can alleviate the bias caused by the limited observations. For heterogeneity resolution, once general patterns of geological structures are captured, its influence is minimal compared to the other factors.Next, two geostatistical models (spherical and exponential variograms), were used to explore the representation of heterogeneity under the same nugget effects. The results show that stochastic inversion based on the exponential variogram improves both the precision and accuracy of the inverse model, as compared to the spherical variogram. This difference is particularly important for determining accurate BCs through stochastic inversion.Last, sensitivity analysis was conducted to further investigate the effect of varying the K of each hydrofacies on model inversion. Results from the partial local method show that the inversion is more sensitive to perturbations of K in regions with high heterogeneity. Using the

  11. Measurement of cryogenic moderator temperature effects in a small heterogeneous thermal reactor

    SciTech Connect

    Hoovler, G.S.; Ball, R.M.; Lewis, R.H.

    1994-12-31

    Past papers have described a critical experiment (CX) built at Sandia National Laboratories to investigate the neutronic behavior of the particle-bed reactor (PBK). Among the experiments previously reported were tests to measure the reactivity effect of uniform temperature variations between 20 and 80{degree}C. This paper describes additional experiments designed to examine the effects of cryogenic moderator temperatures on core reactivity and neutron spectrum. The general importance of temperature effects to the design of the PBR have been previously discussed. A unique feature of the PBR is that the moderator may be at cryogenic temperatures during reactor startup. Because temperature effects in small, heterogeneous thermal reactors can be significant and because we found no integral measurements with cryogenic moderators in such systems, an experiment with a cryogenic moderator was designed and performed in the CX as an extension to the isothermal measurements previously reported.

  12. Bony wall damage in the region of the middle and posterior cranial fossa observed during otosurgery

    PubMed Central

    Wiatr, Maciej; Składzień, Jacek; Tomik, Jerzy; Stręk, Paweł; Przeklasa-Muszyńska, Anna

    2012-01-01

    Summary Background Bony wall damages in the region of the middle and posterior cranial fossa are usually observed in cases of chronic otitis media. These defects can also be congenital, post-traumatic, iatrogenic or due to tumors. They can potentially lead to the development of intracranial complications. Material/Methods We analyzed patients who were diagnosed as having bony wall damage in the region of the middle and/or posterior cranial fossa. We also discuss methods of reconstruction during otosurgery. The analysis involves patients who underwent middle ear operations in the Department of Otolaryngology at the Jagiellonian University of Krakow between 2004 and 2008; 495 otosurgeries were performed during this period of time. Results In 70% of patients the reason for otosurgery was chronic otitis media. In 20%, bone defects occurred simultaneously with otosclerosis. Less than 10% underwent otosurgery for other reasons. Bony wall damage in the region of the middle and posterior cranial fossa were diagnosed in 46 patients who underwent surgery. In patients with bony wall damage, otogenic intracranial complications were described in 14 cases. Conclusions The performed reconstruction methods for bony wall damage, which used the fascia, strengthened with the pedicle muscle flap for larger defects and with either bone lamella or cartilage in specific cases, proved successful. Nearly 80% of bony wall damages in the region of the middle and posterior cranial fossa remain asymptomatic and are discovered incidentally during middle ear surgery. The above observations emphasize the significant role of pre-operative imaging diagnostics. PMID:22648242

  13. Effects of Chemical Aging on the Heterogeneous Freezing of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Collier, K.; Brooks, S. D.

    2014-12-01

    Organic aerosols are emitted into the atmosphere from a variety of sources and display a wide range of effectiveness in promoting the nucleation of ice in clouds. Soot and polycyclic aromatic hydrocarbons (PAHS) arise from incomplete combustion and other pollutant sources. Hydrocarbon compounds in diesel motor oil and other fuel blends include compounds such as octacosane (a straight saturated alkane), squalane (a branched saturated alkane) and squalene (an unsaturated branched alkene). At temperatures above -36°C, the formation of ice crystals in the atmosphere is facilitated by heterogeneous freezing processes in which atmospheric aerosols act as ice nuclei (IN). The variability in ability of organic particles to facilitate heterogeneous ice nucleation causes major uncertainties in predictions of aerosol effects on climate. Further, atmospheric aerosol composition and ice nucleation ability can be altered via chemical aging and reactions with atmospheric oxidants such as ozone. In this study, we take a closer look at the role of chemical oxidation on the efficiency of specific IN during contact freezing laboratory experiments. The freezing temperatures of droplets in contact with representative organic aerosols are determined through the use of an optical microscope apparatus equipped with a cooling stage and a digital camera. Chemical changes at the surface of aerosols due to ozone exposure are characterized using Raman Microspectroscopy and Fourier Transform Infrared Spectroscopy with Horizontal Attenuated Total Reflectance. Our results indicate that oxidation of certain atmospheric organics (soot and PAHS) enhances their ice nucleation ability. In this presentation, results of heterogeneous nucleation on various types of organic aerosols will be presented, and the role of structure in promoting freezing will be discussed.

  14. Effects of heterogeneous traffic with speed limit zone on the car accidents

    NASA Astrophysics Data System (ADS)

    Marzoug, R.; Lakouari, N.; Bentaleb, K.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-06-01

    Using the extended Nagel-Schreckenberg (NS) model, we numerically study the impact of the heterogeneity of traffic with speed limit zone (SLZ) on the probability of occurrence of car accidents (Pac). SLZ in the heterogeneous traffic has an important effect, typically in the mixture velocities case. In the deterministic case, SLZ leads to the appearance of car accidents even in the low densities, in this region Pac increases with increasing of fraction of fast vehicles (Ff). In the nondeterministic case, SLZ decreases the effect of braking probability Pb in the low densities. Furthermore, the impact of multi-SLZ on the probability Pac is also studied. In contrast with the homogeneous case [X. Li, H. Kuang, Y. Fan and G. Zhang, Int. J. Mod. Phys. C 25 (2014) 1450036], it is found that in the low densities the probability Pac without SLZ (n = 0) is low than Pac with multi-SLZ (n > 0). However, the existence of multi-SLZ in the road decreases the risk of collision in the congestion phase.

  15. Modeling electrostatic and heterogeneity effects on proton dissociation from humic substances

    USGS Publications Warehouse

    Tipping, E.; Reddy, M.M.; Hurley, M.A.

    1990-01-01

    The apparent acid dissociation constant of humic substances increases by 2-4 pK units as ionization of the humic carboxylate groups proceeds. This change in apparent acid strength is due in part to the increase in electrical charge on the humic molecules as protons are shed. In addition, proton dissociation reactions are complicated because humic substances are heterogeneous with respect to proton dissociating groups and molecular size. In this paper, we use the Debye-Hu??ckel theory to describe the effects of electrostatic interactions on proton dissociation of humic substances. Simulations show that, for a size-heterogeneous system of molecules, the weight-average molecular weight is preferable to the number-average value for averaging the effects of electrostatic interactions. Analysis of published data on the proton dissociation of fulvic acid from the Suwannee River shows that the electrostatic interactions can be satisfactorily described by a hypothetical homogeneous compound having a molecular weight of 1000 (similar to the experimentally determined weight-average value). Titration data at three ionic strengths, for several fulvic acid concentrations, and in the pH range from 2.9 to 6.4 can be fitted with three adjustable parameters (pK??int values), given information on molecular size and carboxylate group content. ?? 1990 American Chemical Society.

  16. Effect of distance-related heterogeneity on population size estimates from point counts

    USGS Publications Warehouse

    Efford, M.G.; Dawson, D.K.

    2009-01-01

    Point counts are used widely to index bird populations. Variation in the proportion of birds counted is a known source of error, and for robust inference it has been advocated that counts be converted to estimates of absolute population size. We used simulation to assess nine methods for the conduct and analysis of point counts when the data included distance-related heterogeneity of individual detection probability. Distance from the observer is a ubiquitous source of heterogeneity, because nearby birds are more easily detected than distant ones. Several recent methods (dependent double-observer, time of first detection, time of detection, independent multiple-observer, and repeated counts) do not account for distance-related heterogeneity, at least in their simpler forms. We assessed bias in estimates of population size by simulating counts with fixed radius w over four time intervals (occasions). Detection probability per occasion was modeled as a half-normal function of distance with scale parameter sigma and intercept g(0) = 1.0. Bias varied with sigma/w; values of sigma inferred from published studies were often 50% for a 100-m fixed-radius count. More critically, the bias of adjusted counts sometimes varied more than that of unadjusted counts, and inference from adjusted counts would be less robust. The problem was not solved by using mixture models or including distance as a covariate. Conventional distance sampling performed well in simulations, but its assumptions are difficult to meet in the field. We conclude that no existing method allows effective estimation of population size from point counts.

  17. Effects of small-scale heterogeneities on the bulk mechanical properties of sea ice

    NASA Astrophysics Data System (ADS)

    Song, A.

    2015-12-01

    The Arctic ice cover is riddled with cracks, ridges, and melt ponds leading to spatial heterogeneities that manifest as sharp transitions in thickness, porosity, salinity, etc., that in turn affect the bulk mechanical behavior of the ice pack. In regions within and near the marginal ice zone, where ice survives the summer melt and break-up as discrete floes with length scales on the order of hundreds of meters to a kilometer, the freeze up subsequent to the melt season forms a patchwork of thick perennial ice bound together by thinner and smoother first-year ice with a coherence of varying length scales. Remote sensing has shown that the fracture patterns in these patchy ice regions, which may be more representative of marginal ice zone and coastal areas, tend to form in preferential pathways in the thinner ice, therefore modifying the rhomboidal pattern that is characteristic of more homogeneous ice. Using a sea ice model based on the discrete element method (DEM) and remotely sensed images, we examine the effect that heterogeneities in the ice cover have on the derivation of constitutive behavior at scales relevant to climate models by representing the observed heterogeneities explicitly. This model allows us to not only measure the mechanical response of a sample domain, but to also look at the break-up behavior for regions of varying melt pond coverage, thickness, etc. Our hope is that our results can be used to extend existing sea ice rheologies that already incorporate the spatial discontinuities of the ice cover due to lead formation [Moritz & Ukita, 2000; Schreyer et al., 2006; Wilchinsky & Feltham, 2004; Sedlacek et al., 2007].

  18. Assessing the anatomical variations of lingual foramen and its bony canals with CBCT taken from 102 patients in Isfahan

    PubMed Central

    Sheikhi, Mahnaz; Mosavat, Farzaneh; Ahmadi, Ahura

    2012-01-01

    Background: Some studies have been performed on assessing the anatomical variations of lingual foramen and its bony canals, in many different countries but no study has been performed in Iran yet. The purpose of this study is to assess the anatomical variations of lingual foramen and its bony canals with cone-beam computed tomography (CBCT) imaging in Isfahan. Materials and Methods: This was a cross-sectional study in which CBCT images taken from 102 patients referred to the Radiology Department of Head and Neck in Esfahan (Iran) University between 2010 and 2011. The presence of the lingual foramen and its bony canals, the locations, sizes, and length were assessed. The distances between the terminal end of lingual canal at the buccal and lingual side from the inferior border of the mandible and alveolar crest were measured. We also evaluated the effect of patient age and gender on the dimensional measurements of the anatomical landmark mentioned above t test, analysis of variance (ANOVA), and pearson's correlation were used for statistical analysis and P value lower than 0.05 was considered significant. Result: All of the CBCT images taken showed the presence of lingual foramen. Of all the participants, 52% of them had two foramens in their images. The mean diameters of the upper and lower lingual foramen were 1.12 and 0.9 mm, respectively. Conclusion: These anatomical landmarks in Isfahan population vary from previous studies. All of the images had at least one lingual foramen which demonstrates high prevalence of this anatomy among Isfehanian population. Therefore, it is recommended to use CBCT imaging for preoperative evaluation prior to installing dental implants. PMID:23814561

  19. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    SciTech Connect

    Quan, Jiannong; Liu, Yangang; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) both significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly

  20. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events

    DOE PAGESBeta

    Quan, Jiannong; Liu, Yangang; Liu, Quan; Li, Xia; Gao, Yang; Jia, Xingcan; Sheng, Jiujiang

    2015-09-30

    In this study, the effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events was investigated by analysis of comprehensive measurements of aerosol composition and concentrations [e.g., particular matters (PM2.5), nitrate (NO3), sulfate (SO4), ammonium (NH4)], gas-phase precursors [e.g., nitrogen oxides (NOx), sulfur dioxide (SO2), and ozone (O3)], and relevant meteorological parameters [e.g., visibility and relative humidity (RH)]. The measurements were conducted in Beijing, China from Sep. 07, 2012 to Jan. 16, 2013. The results show that the conversion ratios of N from NOx to nitrate (Nratio) and S from SO2 to sulfate (Sratio) bothmore » significantly increased in haze events, suggesting enhanced conversions from NOx and SO2 to their corresponding particle phases in the late haze period. Further analysis shows that Nratio and Sratio increased with increasing RH, with Nratio and Sratio being only 0.04 and 0.03, respectively, when RH < 40%, and increasing up to 0.16 and 0.12 when RH reached 60–80%, respectively. The enhanced conversion ratios of N and S in the late haze period is likely due to heterogeneous aqueous reactions, because solar radiation and thus the photochemical capacity are reduced by the increases in aerosols and RH. This point was further affirmed by the relationships of Nratio and Sratio to O3: the conversion ratios increase with decreasing O3 concentration when O3 concentration is lower than <15 ppb but increased with increasing O3 when O3 concentration is higher than 15 ppb. The results suggest that heterogeneous aqueous reactions likely changed aerosols and their precursors during the haze events: in the beginning of haze events, the precursor gases accumulated quickly due to high emission and low reaction rate; the occurrence of heterogeneous aqueous reactions in the late haze period, together with the accumulated high concentrations of precursor gases such as SO2 and NOx, accelerated the

  1. Accounting for strong localized heterogeneities and local transport effect in core calculations

    SciTech Connect

    Ruggieri, J.M.; Doriath, J.Y.; Finck, P.J.; Boyer, R.

    1996-09-01

    Two methods based on the variational nodal transport method have been developed to account for localized heterogeneities and local transport effects in full core calculations. A local mesh refinement technique relies on using the projected partial ingoing surface currents produced during coarse-mesh iterations as boundary conditions for fine-mesh calculations embedded within the coarse-mesh calculations. The outgoing fine-mesh partial currents are averaged to serve in the coarse-mesh iterations. Then, a mixed transport-diffusion method using two levels of angular approximations for the surface partial currents depending on the node considered has been implemented to account for local transport effects in full core diffusion calculations. These methods have been tested for a model of the Superphenix complementary shutdown rods.

  2. Dynamic effective properties of heterogeneous geological formations with spherical inclusions under periodic time variations

    NASA Astrophysics Data System (ADS)

    Rabinovich, A.; Dagan, G.; Miloh, T.

    2013-04-01

    In unsteady groundwater flow (or similar processes of heat/electrical conduction), the heterogeneous medium structure is characterized by two random properties, the conductivity K and the specific storativity S. The average head field ⟨H ⟩and the associated effective properties Kef, Sef are determined for a layer with a periodic head drop between boundaries, such that H is periodic in time, and a medium made up of a matrix with a dilute concentration of spherical inclusions. In the common quasi-steady approximation, Kef is equal to the classical steady solution while Sef = SA, the arithmetic mean. We derive expressions for the frequency dependent Kef, Sef, which are generally complex, i.e., dynamic. The main result is the delineation of the ranges of the parameters: dimensionless frequency (ω) and contrasts of conductivity (κ) and storativity (s) between the matrix and the inclusions, for which dynamic effects are significant.

  3. Understanding heterogeneity in the effects of birth weight on adult cognition and wages.

    PubMed

    Justin Cook, C; Fletcher, Jason M

    2015-05-01

    A large economics literature has shown long term impacts of birth weight on adult outcomes, including IQ and earnings that are often robust to sibling or twin fixed effects. We examine potential mechanisms underlying these effects by incorporating findings from the genetics and neuroscience literatures. We use a sample of siblings combined with an "orchids and dandelions hypothesis", where the IQ of genetic dandelions is not affected by in utero nutrition variation but genetic orchids thrive under advantageous conditions and wilt in poor conditions. Indeed, using variation in three candidate genes related to neuroplasticity (APOE, BDNF, and COMT), we find substantial heterogeneity in the associations between birth weight and adult outcomes, where part of the population (i.e., "dandelions") is not affected by birth weight variation. Our results help uncover why birth weight affects adult outcomes. PMID:25770970

  4. Heterogeneous effects of oil shocks on exchange rates: evidence from a quantile regression approach.

    PubMed

    Su, Xianfang; Zhu, Huiming; You, Wanhai; Ren, Yinghua

    2016-01-01

    The determinants of exchange rates have attracted considerable attention among researchers over the past several decades. Most studies, however, ignore the possibility that the impact of oil shocks on exchange rates could vary across the exchange rate returns distribution. We employ a quantile regression approach to address this issue. Our results indicate that the effect of oil shocks on exchange rates is heterogeneous across quantiles. A large US depreciation or appreciation tends to heighten the effects of oil shocks on exchange rate returns. Positive oil demand shocks lead to appreciation pressures in oil-exporting countries and this result is robust across lower and upper return distributions. These results offer rich and useful information for investors and decision-makers. PMID:27516925

  5. Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ruiz, B.; Cabrita, I.; Mestre, A. S.; Parra, J. B.; Pires, J.; Carvalho, A. P.; Ania, C. O.

    2010-06-01

    The removal of a compound with therapeutic activity (paracetamol) from aqueous solutions using chemically modified activated carbons has been investigated. The chemical nature of the activated carbon material was modified by wet oxidation, so as to study the effect of the carbon surface chemistry and composition on the removal of paracetamol. The surface heterogeneity of the carbon created upon oxidation was found to be a determinant in the adsorption capability of the modified adsorbents, as well as in the rate of paracetamol removal. The experimental kinetic data were fitted to the pseudo-second order and intraparticle diffusion models. The parameters obtained were linked to the textural and chemical features of the activated carbons. After oxidation the wettability of the carbon is enhanced, which favors the transfer of paracetamol molecules to the carbon pores (smaller boundary layer thickness). At the same time the overall adsorption rate and removal efficiency are reduced in the oxidized carbon due to the competitive effect of water molecules.

  6. Understanding Heterogeneity in the Effects of Birth Weight on Adult Cognition and Wages

    PubMed Central

    Cook, C. Justin; Fletcher, Jason M.

    2015-01-01

    A large economics literature has shown long term impacts of birth weight on adult outcomes, including IQ and earnings that are often robust to sibling or twin fixed effects. We examine potential mechanisms underlying these effects by incorporating findings from the genetics and neuroscience literatures. We use a sample of siblings combined with an “orchids and dandelions hypothesis”, where the IQ of genetic dandelions is not affected by in utero nutrition variation but genetic orchids thrive under advantageous conditions and wilt in poor conditions. Indeed, using variation in three candidate genes related to neuroplasticity (APOE, BDNF, and COMT), we find substantial heterogeneity in the associations between birth weight and adult outcomes, where part of the population (i.e., “dandelions”) is not affected by birth weight variation. Our results help uncover why birth weight affects adult outcomes. PMID:25770970

  7. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    SciTech Connect

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong; Yang, Xiaofan; Zachara, John M.

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale rates of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however

  8. Response function theories that account for size distribution effects - A review. [mathematical models concerning composite propellant heterogeneity effects on combustion instability

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.

    1980-01-01

    The paper presents theoretical models developed to account for the heterogeneity of composite propellants in expressing the pressure-coupled combustion response function. It is noted that the model of Lengelle and Williams (1968) furnishes a viable basis to explain the effects of heterogeneity.

  9. Effects of Porous Medium Heterogeneity on Vadose Zone Desiccation: Intermediate-scale Laboratory Experiments and Simulations

    SciTech Connect

    Oostrom, Martinus; Freedman, Vicky L.; Wietsma, Thomas W.; Dane, Jacob H.; Truex, Michael J.

    2012-11-01

    Soil desiccation (drying), involving water evaporation induced by dry gas injection, is a potentially robust vadose zone remediation process to limit contaminant transport through the vadose zone. A series of four intermediate-scale flow cell experiments was conducted in homogeneous and simple layered heterogeneous porous medium systems to investigate the effects of heterogeneity on desiccation of unsaturated porous media. The permeability ratios of porous medium layers ranged from about five to almost two orders of magnitude. The insulated flow cell was equipped with twenty humidity and temperature sensors and a dual-energy gamma system was used to determine water saturations at various times. The multiphase code STOMP was used to simulate the desiccation process. Results show that injected dry gas flowed predominantly in the higher permeability layer and delayed water removal from the lower permeability material. For the configurations tested, water vapor diffusion from the lower to the higher permeability zone was considerable over the duration of the experiments, resulting in much larger relative humidity values of the outgoing air than based on permeability ratios alone. Acceptable numerical matches with the experimental data were obtained when an extension of the saturation-capillary pressure relation below the residual water saturation was used. The agreements between numerical and experimental results suggest that the correct physics are implemented in the simulator and that the thermal and hydraulic properties of the porous media, flow cell wall and insulation materials were properly represented.

  10. Modeling of nanoparticle transport and deposition in a porous medium: Effects of pore surface heterogeneity

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc; Papavassiliou, Dimitrios

    2014-11-01

    Pore surface charge heterogeneity has been found to affect particle retention in flow through porous media. In this study, retention of nanoparticles under different surface blocking conditions is numerically investigated. Micro-CT scanning is used to reconstruct the 3D geometry of sandstone and image-based analysis is used to characterize the pore space and the mineral composition of the rock. Flow of water through the sample is simulated with the lattice Boltzmann method. The motion of nanoparticles is modeled by injection of particles moving under convection and molecular diffusion and recording their trajectories in time. When interacting with the pore surface, particles can be retained onto the surface with a particular deposition rate. As deposited particles hinder the retention of other particles by blocking occupied sites, the deposition is considered to be a second order process. Particle breakthrough under different modeled and real distributions of surface heterogeneity as a function of various surface blocking conditions is investigated. The effect is stronger when parts of the surface are much more favorable for deposition than others. Acknowledgements: Advanced Energy Consortium (AEC BEG08-022) & XSEDE (CTS090017).

  11. Nanoparticle-enhanced spectral photoacoustic tomography: effect of oxygen saturation and tissue heterogeneity

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2016-03-01

    Molecular imaging for breast cancer detection, infectious disease diagnostics and preclinical animal research may be achievable through combined use of targeted exogenous agents - such as nanoparticles - and spectral Photoacoustic Tomography (PAT). However, tissue heterogeneity can alter fluence distributions and acoustic propagation, corrupting measured PAT absorption spectra and complicating in vivo nanoparticle detection and quantitation. Highly absorptive vascular structures represent a common confounding factor, and variations in vessel hemoglobin saturation (SO2) may alter spectral content of signals from adjacent/deeper regions. To evaluate the impact of this effect on PAT nanoparticle detectability, we constructed heterogeneous phantoms with well-characterized channel-inclusion geometries and biologically relevant optical and acoustic properties. Phantoms contained an array of tubes at several depths filled with hemoglobin solutions doped with varying concentrations of gold nanorods with an absorption peak at 780 nm. Both overlying and target network SO2 was tuned using sodium dithionite. Phantoms were imaged from 700 to 900 nm using a custom PAT system comprised of a tunable pulsed laser and a research-grade ultrasound system. Recovered nanoparticle spectra were analyzed and compared with results from both spectrophotometry and PAT data from waterimmersed tubes containing blood and nanoparticle solutions. Results suggested that nanoparticle selection for a given PAT application should take into account expected oxygenation states of both target blood vessel and background tissue oxygenation to achieve optimal performance.

  12. Effects of geographical heterogeneity in species interactions on the evolution of venom genes

    PubMed Central

    Chang, Dan; Olenzek, Amy M.; Duda, Thomas F.

    2015-01-01

    Geographical heterogeneity in the composition of biotic interactions can create a mosaic of selection regimes that may drive the differentiation of phenotypes that operate at the interface of these interactions. Nonetheless, little is known about effects of these geographical mosaics on the evolution of genes encoding traits associated with species interactions. Predatory marine snails of the family Conidae use venom, a cocktail of conotoxins, to capture prey. We characterized patterns of geographical variation at five conotoxin genes of a vermivorous species, Conus ebraeus, at Hawaii, Guam and American Samoa, and evaluated how these patterns of variation are associated with geographical heterogeneity in prey utilization. All populations show distinct patterns of prey utilization. Three ‘highly polymorphic’ conotoxin genes showed significant geographical differences in allelic frequency, and appear to be affected by different modes of selection among populations. Two genes exhibited low levels of diversity and a general lack of differentiation among populations. Levels of diversity of ‘highly polymorphic’ genes exhibit a positive relationship with dietary breadth. The different patterns of evolution exhibited by conotoxin genes suggest that these genes play different roles in prey capture, and that some genes are more greatly affected by differences in predator–prey interactions than others. Moreover, differences in dietary breadth appear to have a greater influence on the differentiation of venoms than differences in the species of prey. PMID:25788600

  13. Methods for exploring treatment effect heterogeneity in subgroup analysis: an application to global clinical trials.

    PubMed

    Schou, I Manjula; C Marschner, Ian

    2015-01-01

    Multi-country randomised clinical trials (MRCTs) are common in the medical literature, and their interpretation has been the subject of extensive recent discussion. In many MRCTs, an evaluation of treatment effect homogeneity across countries or regions is conducted. Subgroup analysis principles require a significant test of interaction in order to claim heterogeneity of treatment effect across subgroups, such as countries in an MRCT. As clinical trials are typically underpowered for tests of interaction, overly optimistic expectations of treatment effect homogeneity can lead researchers, regulators and other stakeholders to over-interpret apparent differences between subgroups even when heterogeneity tests are insignificant. In this paper, we consider some exploratory analysis tools to address this issue. We present three measures derived using the theory of order statistics, which can be used to understand the magnitude and the nature of the variation in treatment effects that can arise merely as an artefact of chance. These measures are not intended to replace a formal test of interaction but instead provide non-inferential visual aids, which allow comparison of the observed and expected differences between regions or other subgroups and are a useful supplement to a formal test of interaction. We discuss how our methodology differs from recently published methods addressing the same issue. A case study of our approach is presented using data from the Study of Platelet Inhibition and Patient Outcomes (PLATO), which was a large cardiovascular MRCT that has been the subject of controversy in the literature. An R package is available that implements the proposed methods. PMID:25376518

  14. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    USGS Publications Warehouse

    Green, C.T.; Böhlke, J.K.; Bekins, B.A.; Phillips, S.P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field-scale (apparent) estimated reaction rates and isotopic fractionations and local-scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O 2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample-based estimates of "apparent" parameters with "true" (intrinsic) values. For this aquifer, non-Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2 threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport. ?? 2010 by the American Geophysical Union.

  15. Person Heterogeneity of the BDI-II-C and Its Effects on Dimensionality and Construct Validity: Using Mixture Item Response Models

    ERIC Educational Resources Information Center

    Wu, Pei-Chen; Huang, Tsai-Wei

    2010-01-01

    This study was to apply the mixed Rasch model to investigate person heterogeneity of Beck Depression Inventory-II-Chinese version (BDI-II-C) and its effects on dimensionality and construct validity. Person heterogeneity was reflected by two latent classes that differ qualitatively. Additionally, person heterogeneity adversely affected the…

  16. Distance-to-Agreement Investigation of Tomotherapy's Bony Anatomy-Based Autoregistration and Planning Target Volume Contour-Based Optimization

    SciTech Connect

    Suh, Steve; Schultheiss, Timothy E.

    2013-03-01

    Purpose: To compare Tomotherapy's megavoltage computed tomography bony anatomy autoregistration with the best achievable registration, assuming no deformation and perfect knowledge of planning target volume (PTV) location. Methods and Materials: Distance-to-agreement (DTA) of the PTV was determined by applying a rigid-body shift to the PTV region of interest of the prostate from its reference position, assuming no deformations. Planning target volume region of interest of the prostate was extracted from the patient archives. The reference position was set by the 6 degrees of freedom (dof)—x, y, z, roll, pitch, and yaw—optimization results from the previous study at this institution. The DTA and the compensating parameters were calculated by the shift of the PTV from the reference 6-dof to the 4-dof—x, y, z, and roll—optimization. In this study, the effectiveness of Tomotherapy's 4-dof bony anatomy–based autoregistration was compared with the idealized 4-dof PTV contour-based optimization. Results: The maximum DTA (maxDTA) of the bony anatomy-based autoregistration was 3.2 ± 1.9 mm, with the maximum value of 8.0 mm. The maxDTA of the contour-based optimization was 1.8 ± 1.3 mm, with the maximum value of 5.7 mm. Comparison of Pearson correlation of the compensating parameters between the 2 4-dof optimization algorithms shows that there is a small but statistically significant correlation in y and z (0.236 and 0.300, respectively), whereas there is very weak correlation in x and roll (0.062 and 0.025, respectively). Conclusions: We find that there is an average improvement of approximately 1 mm in terms of maxDTA on the PTV going from 4-dof bony anatomy-based autoregistration to the 4-dof contour-based optimization. Pearson correlation analysis of the 2 4-dof optimizations suggests that uncertainties due to deformation and inadequate resolution account for much of the compensating parameters, but pitch variation also makes a statistically significant

  17. Effects of lung ventilation–perfusion and muscle metabolism–perfusion heterogeneities on maximal O2 transport and utilization

    PubMed Central

    Cano, I; Roca, J; Wagner, P D

    2015-01-01

    Previous models of O2 transport and utilization in health considered diffusive exchange of O2 in lung and muscle, but, reasonably, neglected functional heterogeneities in these tissues. However, in disease, disregarding such heterogeneities would not be justified. Here, pulmonary ventilation–perfusion and skeletal muscle metabolism–perfusion mismatching were added to a prior model of only diffusive exchange. Previously ignored O2 exchange in non-exercising tissues was also included. We simulated maximal exercise in (a) healthy subjects at sea level and altitude, and (b) COPD patients at sea level, to assess the separate and combined effects of pulmonary and peripheral functional heterogeneities on overall muscle O2 uptake ( and on mitochondrial (). In healthy subjects at maximal exercise, the combined effects of pulmonary and peripheral heterogeneities reduced arterial () at sea level by 32 mmHg, but muscle by only 122 ml min−1 (–3.5%). At the altitude of Mt Everest, lung and tissue heterogeneity together reduced by less than 1 mmHg and by 32 ml min−1 (–2.4%). Skeletal muscle heterogeneity led to a wide range of potential among muscle regions, a range that becomes narrower as increases, and in regions with a low ratio of metabolic capacity to blood flow, can exceed that of mixed muscle venous blood. For patients with severe COPD, peak was insensitive to substantial changes in the mitochondrial characteristics for O2 consumption or the extent of muscle heterogeneity. This integrative computational model of O2 transport and utilization offers the potential for estimating profiles of both in health and in diseases such as COPD if the extent for both lung ventilation–perfusion and tissue metabolism–perfusion heterogeneity is known. PMID:25640017

  18. Modelling the effect of chemical heterogeneity on acidification and solute leaching in overburden mine spoils

    NASA Astrophysics Data System (ADS)

    Gerke, Horst H.; Molson, John W.; Frind, Emil O.

    1998-08-01

    The generation of acid mine drainage from overburden spoil piles at open-pit lignite mines is impacting the quality of groundwater and surface water bodies in large parts of the Lusatian mining area in Germany. Values of pH as low as 1 have been observed in the groundwater. After decommissioning, mine pits are generally converted to lakes which may also be acidic owing to the acidic groundwater discharge. The acidic effluent is generated by sulphide oxidation in the unsaturated zone of the spoil pile which generally extends to large depths as a result of dewatering. The long-term evolution of the acidification is still largely unknown. Our research focuses on the effects of physical and chemical heterogeneity caused by mixing of soil materials that may have already been oxidized to different degrees during the deposition of the spoil pile. Processes considered include variably saturated groundwater flow, oxygen diffusion in the soil gas, kinetic pyrite oxidation and acidic effluent generation, advective-dispersive transport of the aqueous components, equilibrium geochemical reactions between the chemical components and the soil minerals, and possible buffering and acid neutralization. Several existing numerical codes were coupled to represent the complete set of processes. Simulations were carried out in one- and two dimensions using representative characteristics of mine spoil piles, with the two-dimensional representation being based on spatially heterogeneous random fields of hydraulic conductivity and sulphide mineral fractions. Results show the long-term evolution of the oxidation front, the mass flux of oxidation products and the effects of system heterogeneity. Under conditions of constant flow, the system is found to return to neutral conditions over a time period on the order of several decades. Further work, including sensitivity analyses with respect to the controlling parameters and model calibration using site-specific field data, will be necessary to

  19. Bony injuries in homicide cases (1994-2014). A retrospective study.

    PubMed

    Flieger, Alexander; Kölzer, Sarah C; Plenzig, Stefanie; Heinbuch, Sara; Kettner, Mattias; Ramsthaler, Frank; Verhoff, Marcel A

    2016-09-01

    Even when human skeletal remains are found in contexts indicative of body disposal after homicide, none of the bones may manifest injuries. When skeletons are incomplete, there are two possibilities, the injured bones are missing or none were injured. This leads to the question how frequently bones are injured during homicide, where the injuries tend to be placed, and whether the frequency of injury is related to the type of homicide. To answer these questions, the postmortem reports from all autopsies performed for homicide victims at the Institute of Legal Medicine at the University Hospital in Frankfurt am Main, Germany, between 1994 and 2014, were retrospectively evaluated for bony injuries discovered during autopsy. In 90 cases, a preliminary postmortem computed tomography (pmCT) examination had been performed. The cases were categorized into the following five groups by type of fatal trauma: blunt force, sharp force, gunshot injury, strangulation, or other. In total, the postmortem reports for 897 homicides (527 male, 370 female) were evaluated. The number of victims per trauma category were sharp force, 309; blunt force, 179; gunshot injury, 242; strangulation, 92; and other, 75. Bony injuries had been reported in 70.9 % of the homicides. The "gunshot" category contained the highest proportion of victims with bony injuries (92.6 %). With 80.4 %, the second-highest proportion of victims with bony injuries was in the "blunt force" category, followed by 66.3 % of victims in the "sharp force" group. In contrast, with 53.3 %, the second-lowest proportion of victims with bony injuries was in the "strangulation" category, which contained a preponderance of female victims, followed by 17.3 % of victims with bony injuries in the "other" category. Bony injuries thus occurred in the majority of homicides. Forensic osteological analysis should, therefore, always be performed on badly decomposed human remains. Where necessary, the additional use of visualization

  20. Bony labyrinth shape variation in extant Carnivora: a case study of Musteloidea.

    PubMed

    Grohé, Camille; Tseng, Z Jack; Lebrun, Renaud; Boistel, Renaud; Flynn, John J

    2016-03-01

    The bony labyrinth provides a proxy for the morphology of the inner ear, a primary cognitive organ involved in hearing, body perception in space, and balance in vertebrates. Bony labyrinth shape variations often are attributed to phylogenetic and ecological factors. Here we use three-dimensional (3D) geometric morphometrics to examine the phylogenetic and ecological patterns of variation in the bony labyrinth morphology of the most species-rich and ecologically diversified traditionally recognized superfamily of Carnivora, the Musteloidea (e.g. weasels, otters, badgers, red panda, skunks, raccoons, coatis). We scanned the basicrania of specimens belonging to 31 species using high-resolution X-ray computed micro-tomography (μCT) to virtually reconstruct 3D models of the bony labyrinths. Labyrinth morphology is captured by a set of six fixed landmarks on the vestibular and cochlear systems, and 120 sliding semilandmarks, slid at the center of the semicircular canals and the cochlea. We found that the morphology of this sensory structure is not significantly influenced by bony labyrinth size, in comparisons across all musteloids or in any of the individual traditionally recognized families (Mephitidae, Procyonidae, Mustelidae). PCA (principal components analysis) of shape data revealed that bony labyrinth morphology is clearly distinguishable between musteloid families, and permutation tests of the Kmult statistic confirmed that the bony labyrinth shows a phylogenetic signal in musteloids and in most mustelids. Both the vestibular and cochlear regions display morphological differences among the musteloids sampled, associated with the size and curvature of the semicircular canals, angles between canals, presence or absence of a secondary common crus, degree of lateral compression of the vestibule, orientation of the cochlea relative to the semicircular canals, proportions of the cochlea, and degree of curvature of its turns. We detected a significant ecological signal

  1. Volumetric Changes in the Bony External Auditory Canal in Unilateral Chronic Otitis Media

    PubMed Central

    Park, Jae Hong; Noh, MinHo; Park, Seung Bum; Park, Kye Hoon; Han, Jong Kyu; Kim, Hyun Jeong

    2016-01-01

    Background and Objectives Pneumatization of air cells in the mastoid bone is decreased in chronic otitis media (COM). A decrease in the size of the external auditory canal (EAC) is also found frequently in patients with COM, but this has been little studied. We compared the size of affected bony EACs and the contralateral side in patients with single-side COM using high-resolution computed tomography. Subjects and Methods In total, 99 patients with single-side COM were included. Four indicators related to the size of the bony EAC and IAC were measured using high-resolution computed tomography: the axial and coronal lengths of the tympanic membrane, the length of the isthmus, and the area of the bony ear canal. We also compared both internal auditory canals as negative controls. These assessments were made by radiologists who were blinded to the objective of this study. Results In patients with single-side COM, the axial length of the tympanic membrane was significantly shorter than normal, and the volume of the EAC was also significantly smaller. The length of the isthmus of the EAC was shorter on the affected side, but the difference was not significant. The IAC volume showed no difference between the two sides. Conclusions COM affects general temporal bony development, including the bony EAC and mastoid bone. Therefore, whether to correct this should be considered when preparing for COM surgery. PMID:27144233

  2. Cortical tibial osteoperiosteal flap technique to achieve bony bridge in transtibial amputation: experience in nine adult patients.

    PubMed

    Mongon, Mauricio Leal; Piva, Felipe Alberto; Mistro Neto, Sylvio; Carvalho, Jose Andre; Belangero, William Dias; Livani, Bruno

    2013-04-01

    Amputation, especially of the lower limbs, is a surgical procedure that gives excellent results when conducted under the appropriate conditions. In 1949 Ertl developed a technique for transtibial osteomyoplastic amputation which restored the intraosseous pressure through canal obliteration and expanded the area of terminal support through a bony bridge between the fibula and distal tibia. The aim of this study was to investigate the effectiveness of a modification of the original Ertl's technique in which a cortical osteoperiosteal flap created from the tibia is used to form a bony bridge during transtibial amputation in adults. Nine patients underwent leg amputations with the cortical tibial osteoperiosteal flap technique for reconstruction of the stump. The average duration of follow-up was 30.8 (range, 18-41) months. The post-surgery examination included a clinical examination and radiography. A 6-min walk test (Enright in Respir Care 48(8):783-785, 2003) was performed in the 32nd week after amputation. At 24th week post-surgery, all patients had stumps that were painless and able to bear full weight through the end. The creation of a cortical osteoperiosteal flap from the tibia to the fibula during transtibial amputation is a safe and effective technique that provides a strong and painless terminal weight-bearing stump. This constitutes a useful option for young patients, athletes, and patients with high physical demands. PMID:23371841

  3. Geometric effects of global lateral heterogeneity on long-period surface wave propagation

    NASA Technical Reports Server (NTRS)

    Lay, T.; Kanamori, H.

    1985-01-01

    The present investigation has the objective to document examples of anomalous long-period surface wave amplitude behavior and to provide a preliminary appraisal of the effects of global lateral heterogeneity on surface wave propagation from a ray theory perspective. Attention is given to remarkable long-period surface wave anomalies described in literature, an equidistance azimuthal plot centered on the Iranian source region, Rayleigh wave and Love wave spectra for the 256-s period arrivals for the Tabas earthquake, constrained moment tensor and fault model inversion solutions ofr Iranian earthquakes, aspects of surface wave ray tracing, and a table of Rayleigh wave amplitude anomalies for Iranian earthquakes. Surface wave ray-tracing calculations for models of global phase velocity variations proposed by Nakanishi and Anderson (1984) are found to show that large-amplitude anomalies will be observed for Love and Rayleigh waves with periods of 100-250 s.

  4. The Effects of Subsurface Heterogeneity on Detectability of CO2 Leakage to Shallow Groundwater Aquifers

    NASA Astrophysics Data System (ADS)

    Wolaver, B. D.; Sun, A. Y.; Nicot, J.; Hovorka, S. D.; Nuñez-Lopez, V.; Young, M.

    2011-12-01

    Numerical simulations of CO2 storage reservoir leakage can be used to assess risks of shallow groundwater aquifer contamination during monitoring network design. Improperly plugged and abandoned wells are well known to represent one of the greatest risks to successful containment at geologic carbon sequestration sites. Casing and cement seal failure of wells penetrating the confining layer may create fast-flow pathways for CO2 and brine migration from the storage reservoir into the shallow subsurface. To protect drinking water aquifers from possible leaks, injection permits require identification of artificial penetrations and evaluation that wells are adequately plugged and abandoned. However, assumptions made during well evaluation may overlook the likelihood of well failure leading to a leak into an aquifer. We present a monitoring approach that provides quick and accurate detection in the event of a leak to an aquifer. Sand and shale facies are classified to simulate aquifer heterogeneity using representative borehole geophysical data from Texas, U.S.A. Gulf Coast Aquifer System wells. Numerical models simulate pressure perturbations in response to a leak to an aquifer overlying a storage reservoir. Candidate monitoring well locations for a possible leak of randomly selected location are chosen from a suite of possible wells based on the detectability of CO2 leakage from the groundwater model. We first show that the locations and magnitudes of leakage can be identified for homogeneous aquifers by using an inversion procedure and pressure observations. We then consider the effects of conceptual model uncertainty, pressure measurement error, and background noise on detectability of leaky wells. While substantial previous work quantified pressure perturbations caused by leaky wells using analytical solutions or simple numerical model configurations, the effects of formation heterogeneity on pressure perturbation and other uncertain factors are not well examined

  5. Antral bony wall erosion, trigeminal nerve injury, and enophthalmos after root canal surgery

    PubMed Central

    Ferreira, Eduardo; Antunes, Luís; Dinis, Paulo Borges

    2016-01-01

    Introduction: The frequently used irrigant in dental surgery, sodium hypochlorite, is occasionally the cause of minor, usually circumscribed, adverse effects. Severe, extensive complications, with lasting sequelae, however, also can occur, as in the case we report herein. Case Report: A 55-year-old woman underwent an endodontic procedure on a maxillary molar, whose roots, unknown to the surgeon, were protruding into the maxillary sinus. After sodium hypochlorite root canal irrigation, the patient immediately developed intense facial pain, facial edema, and periorbital cellulitis. An emergency department evaluation diagnosed an intense inflammatory disease of the maxillary sinus, with significant destruction of its bony walls, accompanied by midface paraesthesia due to infraorbital nerve injury. In the following weeks, the patient slowly developed enophthalmos due to bone erosion of the orbit floor. Treatment, besides prolonged oral steroids, required the endoscopic endonasal opening of the maxillary sinus for profuse irrigation. Two years later, the patient maintained a complete loss of function of the maxillary sinus, anesthesia-paraesthesia of the midface, and inferior dystonia of the eye with an enophthalmos. Conclusion: Dentists, maxillofacial surgeons, and otorhinolaryngologists should all be aware of the whole spectrum of complications of even the simplest dental work. Sodium hypochlorite irrigations should be used cautiously in root canal surgery, with the full awareness of its potential for causing soft-tissue damage. PMID:27465790

  6. Effective surface and boundary conditions for heterogeneous surfaces with mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Guo, Jianwei; Veran-Tissoires, Stéphanie; Quintard, Michel

    2016-01-01

    To deal with multi-scale problems involving transport from a heterogeneous and rough surface characterized by a mixed boundary condition, an effective surface theory is developed, which replaces the original surface by a homogeneous and smooth surface with specific boundary conditions. A typical example corresponds to a laminar flow over a soluble salt medium which contains insoluble material. To develop the concept of effective surface, a multi-domain decomposition approach is applied. In this framework, velocity and concentration at micro-scale are estimated with an asymptotic expansion of deviation terms with respect to macro-scale velocity and concentration fields. Closure problems for the deviations are obtained and used to define the effective surface position and the related boundary conditions. The evolution of some effective properties and the impact of surface geometry, Péclet, Schmidt and Damköhler numbers are investigated. Finally, comparisons are made between the numerical results obtained with the effective models and those from direct numerical simulations with the original rough surface, for two kinds of configurations.

  7. Low effect of young afforestations on bird communities inhabiting heterogeneous Mediterranean cropland

    PubMed Central

    Rey Benayas, José M.; Carrascal, Luis M.

    2015-01-01

    Afforestation programs such as the one promoted by the EU Common Agricultural Policy have spread tree plantations on former cropland. These afforestations attract generalist forest and ubiquitous species but may cause severe damage to open habitat species, especially birds of high conservation value. We investigated the effects of young (<20 yr) tree plantations dominated by pine P. halepensis on bird communities inhabiting the adjacent open farmland habitat in central Spain. We hypothesize that pine plantations located at shorter distances from open fields and with larger surface would affect species richness and conservation value of bird communities. Regression models controlling for the influence of land use types around plantations revealed positive effects of higher distance to pine plantation edge on community species richness in winter, and negative effects on an index of conservation concern (SPEC) during the breeding season. However, plantation area did not have any effect on species richness or community conservation value. Our results indicate that the effects of pine afforestation on bird communities inhabiting Mediterranean cropland are diluted by heterogeneous agricultural landscapes. PMID:26664801

  8. Low effect of young afforestations on bird communities inhabiting heterogeneous Mediterranean cropland.

    PubMed

    Sánchez-Oliver, Juan S; Rey Benayas, José M; Carrascal, Luis M

    2015-01-01

    Afforestation programs such as the one promoted by the EU Common Agricultural Policy have spread tree plantations on former cropland. These afforestations attract generalist forest and ubiquitous species but may cause severe damage to open habitat species, especially birds of high conservation value. We investigated the effects of young (<20 yr) tree plantations dominated by pine P. halepensis on bird communities inhabiting the adjacent open farmland habitat in central Spain. We hypothesize that pine plantations located at shorter distances from open fields and with larger surface would affect species richness and conservation value of bird communities. Regression models controlling for the influence of land use types around plantations revealed positive effects of higher distance to pine plantation edge on community species richness in winter, and negative effects on an index of conservation concern (SPEC) during the breeding season. However, plantation area did not have any effect on species richness or community conservation value. Our results indicate that the effects of pine afforestation on bird communities inhabiting Mediterranean cropland are diluted by heterogeneous agricultural landscapes. PMID:26664801

  9. Allocating Sample Sizes to Reduce Budget for Fixed-Effect 2×2 Heterogeneous Analysis of Variance

    ERIC Educational Resources Information Center

    Luh, Wei-Ming; Guo, Jiin-Huarng

    2016-01-01

    This article discusses the sample size requirements for the interaction, row, and column effects, respectively, by forming a linear contrast for a 2×2 factorial design for fixed-effects heterogeneous analysis of variance. The proposed method uses the Welch t test and its corresponding degrees of freedom to calculate the final sample size in a…

  10. Isolating Effects of Water Table Dynamics, Terrain, and Soil Moisture Heterogeneity on the Atmospheric Boundary Layer Using Coupled Models

    NASA Astrophysics Data System (ADS)

    Rihani, J. F.; Maxwell, R. M.; Katopodes Chow, F.

    2008-12-01

    There is a growing body of literature recognizing the connection between atmospheric boundary layer processes and surface and subsurface heterogeneity and flow, but much remains unknown about the nature of these hydrologic feedbacks. In recent work, the three-dimensional, variably saturated groundwater model ParFlow (PF) was coupled to the three-dimensional mesoscale atmospheric model ARPS (Advanced Regional Prediction System). The coupled model, PF.ARPS, was used to demonstrate atmosphere-land surface-subsurface interactions for a watershed in Oklahoma. In the current work, this coupled model is used to study effects of water table dynamics and soil moisture heterogeneity on the development and behavior of the atmospheric boundary layer for a set of idealized test cases. Numerical experiments that isolate the effects of subsurface heterogeneity, terrain, soil moisture initialization, and atmospheric conditions are performed. Detailed soil moisture distributions from offline spinups using ParFlow coupled to the Common Land Model (PF.CLM) are used to initialize idealized PF.ARPS runs. Results indicate that the water table becomes more dynamic as subsurface heterogeneity increases. This is reflected in soil moisture profiles and thus energy fluxes and evaporation at the land surface. Our results also illustrate the role of terrain in inducing differential land surface heating and cooling which stimulates the development of convective circulations in addition to those induced from heterogeneous soil moisture. Subsequent effects on atmospheric boundary layer development are discussed.

  11. Microvascular reanastomozed allogenous iliac crest transplants for the reconstruction of bony defects of the mandible in miniature pigs.

    PubMed

    Schmelzeisen, R; Schön, R

    1998-10-01

    The effects of immunosuppression with cyclosporin A and prednisolone regimens for allogenous iliac crest bone grafts used for mandibular reconstruction were investigated in 40 miniature pigs, for periods of 2, 4 and 16 weeks. Autogenous and allogenous bone grafts without immunosuppression served as controls. Specimens were evaluated by routine histology, direct magnified radiography and fluorescence microradiography. Four out of five autogenous transplants showed a preserved vascular architecture and bony union. None of the allogenous transplants without immunosuppression survived. Primary bone healing of the allografts was noted after short-term immunosuppression. However, occlusion of the nutrient vessels was noted ten days postoperatively. The allografts were not rejected after cessation of the immunosuppressive therapy within an observation period of 4-12 weeks. Revascularization of all areas of the allografts and creeping substitution of the transplanted bone were noted after seven weeks. Infection of the allografts, with failure of bony union, was noted in nine animals, but primary healing of allografts with short-term immunosuppression was demonstrated. PMID:9804204

  12. Peripheral Dose Heterogeneity Due to the Thread Effect in Total Marrow Irradiation With Helical Tomotherapy

    SciTech Connect

    Takahashi, Yutaka; Verneris, Michael R.; Dusenbery, Kathryn E.; Wilke, Christopher T.; Storme, Guy; Weisdorf, Daniel J.; Hui, Susanta K.

    2013-11-15

    Purpose: To report potential dose heterogeneity leading to underdosing at different skeletal sites in total marrow irradiation (TMI) with helical tomotherapy due to the thread effect and provide possible solutions to reduce this effect. Methods and Materials: Nine cases were divided into 2 groups based on patient size, defined as maximum left-to-right arm distance (mLRD): small mLRD (≤47 cm) and large mLRD (>47 cm). TMI treatment planning was conducted by varying the pitch and modulation factor while a jaw size (5 cm) was kept fixed. Ripple amplitude, defined as the peak-to-trough dose relative to the average dose due to the thread effect, and the dose–volume histogram (DVH) parameters for 9 cases with various mLRD was analyzed in different skeletal regions at off-axis (eg, bones of the arm or femur), at the central axis (eg, vertebrae), and planning target volume (PTV), defined as the entire skeleton plus 1-cm margin. Results: Average ripple amplitude for a pitch of 0.430, known as one of the magic pitches that reduce thread effect, was 9.2% at 20 cm off-axis. No significant differences in DVH parameters of PTV, vertebrae, or femur were observed between small and large mLRD groups for a pitch of ≤0.287. Conversely, in the bones of the arm, average differences in the volume receiving 95% and 107% dose (V95 and V107, respectively) between large and small mLRD groups were 4.2% (P=.016) and 16% (P=.016), respectively. Strong correlations were found between mLRD and ripple amplitude (rs=.965), mLRD and V95 (rs=−.742), and mLRD and V107 (rs=.870) of bones of the arm. Conclusions: Thread effect significantly influences DVH parameters in the bones of the arm for large mLRD patients. By implementing a favorable pitch value and adjusting arm position, peripheral dose heterogeneity could be reduced.

  13. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  14. Osteochondroma-Related Pressure Erosions in Bony Rings Below the Waist

    PubMed Central

    Davis, Derik L.; Mulligan, Michael E.

    2015-01-01

    This article investigates the clinical and radiological features of four cases of osteochondroma-related bony pressure erosion in adults. Rare imaging features of extrinsic pressure erosions on adjacent bones caused by solitary and familial forms of osteochondroma are presented. Although described to occur uncommonly in the paired bones of the lower leg, pressure erosion in the pelvic girdle is poorly understood. In this article, we discuss clinical contexts for management of osteochondroma-related bony pressure erosion in the mature skeleton. PMID:26664496

  15. Bony expansion in skeletal metastases from carcinoma of the prostate as seen by bone scintigraphy

    SciTech Connect

    Resnik, C.S.; Garver, P.; Resnick, D.

    1984-10-01

    Carcinoma of the prostate often metastasizes to the skeletal system, the usual radiologic pattern being widespread patchy areas of increased density without change in the contour of the involved bones. Radionuclide correlation generally shows multiple foci of increased tracer activity. Less commonly, there is bony sclerosis with expansion of the diameter of the involved bone. Several cases of expansile skeletal metastases from carcinoma of the prostate have appeared in the literature but we know of no published descriptions of the radionuclide findings. We present three patients with carcinoma of the prostate who had skeletal metastases with evidence of bony expansion on both roentgenographic and radionuclide examination. 15 references, 8 figures.

  16. FE analysis of stress and displacements occurring in the bony chain of leg

    PubMed Central

    Filardi, Vincenzo

    2014-01-01

    Aims The aim of this study was to assess how the stress shielding can influence the integrity and resistance of bones. Methods With this purpose a complete FE model of the human leg was realised. A load of 700 N has been applied at the top of pelvis and the feet, at the tip, was rigidly fixed. Results Obtained results reveal interesting consequences deriving by taking into account the complete bony chain. Conclusion A comparison among the literature data and our models can furnish a complete vision of the global spreading of the forces along the various bony components. PMID:25561749

  17. The dosimetric effects of tissue heterogeneities in intensity-modulated radiation therapy (IMRT) of the head and neck.

    PubMed

    Al-Hallaq, H A; Reft, C S; Roeske, J C

    2006-03-01

    The dosimetric effects of bone and air heterogeneities in head and neck IMRT treatments were quantified. An anthropomorphic RANDO phantom was CT-scanned with 16 thermoluminescent dosimeter (TLD) chips placed in and around the target volume. A standard IMRT plan generated with CORVUS was used to irradiate the phantom five times. On average, measured dose was 5.1% higher than calculated dose. Measurements were higher by 7.1% near the heterogeneities and by 2.6% in tissue. The dose difference between measurement and calculation was outside the 95% measurement confidence interval for six TLDs. Using CORVUS' heterogeneity correction algorithm, the average difference between measured and calculated doses decreased by 1.8% near the heterogeneities and by 0.7% in tissue. Furthermore, dose differences lying outside the 95% confidence interval were eliminated for five of the six TLDs. TLD doses recalculated by Pinnacle3's convolution/superposition algorithm were consistently higher than CORVUS doses, a trend that matched our measured results. These results indicate that the dosimetric effects of air cavities are larger than those of bone heterogeneities, thereby leading to a higher delivered dose compared to CORVUS calculations. More sophisticated algorithms such as convolution/superposition or Monte Carlo should be used for accurate tailoring of IMRT dose in head and neck tumours. PMID:16481684

  18. The dosimetric effects of tissue heterogeneities in intensity-modulated radiation therapy (IMRT) of the head and neck

    NASA Astrophysics Data System (ADS)

    Al-Hallaq, H. A.; Reft, C. S.; Roeske, J. C.

    2006-03-01

    The dosimetric effects of bone and air heterogeneities in head and neck IMRT treatments were quantified. An anthropomorphic RANDO phantom was CT-scanned with 16 thermoluminescent dosimeter (TLD) chips placed in and around the target volume. A standard IMRT plan generated with CORVUS was used to irradiate the phantom five times. On average, measured dose was 5.1% higher than calculated dose. Measurements were higher by 7.1% near the heterogeneities and by 2.6% in tissue. The dose difference between measurement and calculation was outside the 95% measurement confidence interval for six TLDs. Using CORVUS' heterogeneity correction algorithm, the average difference between measured and calculated doses decreased by 1.8% near the heterogeneities and by 0.7% in tissue. Furthermore, dose differences lying outside the 95% confidence interval were eliminated for five of the six TLDs. TLD doses recalculated by Pinnacle3's convolution/superposition algorithm were consistently higher than CORVUS doses, a trend that matched our measured results. These results indicate that the dosimetric effects of air cavities are larger than those of bone heterogeneities, thereby leading to a higher delivered dose compared to CORVUS calculations. More sophisticated algorithms such as convolution/superposition or Monte Carlo should be used for accurate tailoring of IMRT dose in head and neck tumours.

  19. The Effect of Preferential Flow on Colloidal Transport in Unsaturated Heterogeneous Sand

    NASA Astrophysics Data System (ADS)

    Mishurov, M.; Yakirevich, A.; Weisbrod, N.; Kuznetsov, M.

    2006-12-01

    Transport of colloids may be greatly enhanced by the presence of preferential flow pathways (PF). The impact of PF on the overall colloid transport was investigated in unsaturated heterogeneous sand under steady-state flow conditions. The experiments were conducted in a 30 cm column, with 11.5 cm internal diameter. Two types of acid-cleaned sand were used to pack the column: coarse (d50 = 1.2 mm) and fine (d50 = 0.36 mm). Heterogeneity created by three continuous bodies of fine sand (within a column of coarse sand) comprised 3.7% of the total sand volume. Water content and pressure head in the coarse sand were monitored with three pairs of TDR probes and tensiometers, respectively, evenly spaced along the column length. Experiments were performed under three different flow rates applied at the top of the column using a rain simulator. Negative pressure (-8, -6, and -5.5 cm corresponding to flow rates of 0.1, 0.2 and 0.4 cm/min, respectively) was maintained at the bottom of the column to produce a constant water content profile (11, 12 and 14% by volume, respectively) in coarse sand. Numerical simulations that were carried out using a double porosity, double permeability model and the Hydrus-2D model, showed higher water content, hydraulic conductivity and, as a result, greater flux in fine sand compared with the bulk of coarse sand. Three sizes of fluorescent latex microspheres were used: 1, 0.2 and 0.02 μm in a mixture with conservative tracers (LiBr). A pulse injection of one water column volume (corresponding to a prescribed water content) of solution was followed by flushing with artificial rainwater. The main features of the breakthrough curves (BTCs) obtained from the heterogeneously packed column were earlier arrival of tracer concentration front (as early as 0.25 water column volume) and tailing. Colloid arrival occurred at effectively the same time as that of conservative tracers, with the exception of the smallest colloids (0.02 μm), which arrived with

  20. Heterogeneity in the Effect of Common Shocks on Healthcare Expenditure Growth.

    PubMed

    Hauck, Katharina; Zhang, Xiaohui

    2016-09-01

    Healthcare expenditure growth is affected by important unobserved common shocks such as technological innovation, changes in sociological factors, shifts in preferences, and the epidemiology of diseases. While common factors impact in principle all countries, their effect is likely to differ across countries. To allow for unobserved heterogeneity in the effects of common shocks, we estimate a panel data model of healthcare expenditure growth in 34 OECD countries over the years 1980 to 2012, where the usual fixed or random effects are replaced by a multifactor error structure. We address model uncertainty with Bayesian model averaging, to identify a small set of robust expenditure drivers from 43 potential candidates. We establish 16 significant drivers of healthcare expenditure growth, including growth in GDP per capita and in insurance premiums, changes in financing arrangements and some institutional characteristics, expenditures on pharmaceuticals, population ageing, costs of health administration, and inpatient care. Our approach allows us to provide robust evidence to policy makers on the drivers that were most strongly associated with the growth in healthcare expenditures over the past 32 years. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26940606

  1. Applicability of the effective-medium approximation to heterogeneous aerosol particles

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li

    2016-07-01

    The effective-medium approximation (EMA) is based on the assumption that a heterogeneous particle can have a homogeneous counterpart possessing similar scattering and absorption properties. We analyze the numerical accuracy of the EMA by comparing superposition T-matrix computations for spherical aerosol particles filled with numerous randomly distributed small inclusions and Lorenz-Mie computations based on the Maxwell-Garnett mixing rule. We verify numerically that the EMA can indeed be realized for inclusion size parameters smaller than a threshold value. The threshold size parameter depends on the refractive-index contrast between the host and inclusion materials and quite often does not exceed several tenths, especially in calculations of the scattering matrix and the absorption cross section. As the inclusion size parameter approaches the threshold value, the scattering-matrix errors of the EMA start to grow with increasing the host size parameter and/or the number of inclusions. We confirm, in particular, the existence of the effective-medium regime in the important case of dust aerosols with hematite or air-bubble inclusions, but then the large refractive-index contrast necessitates inclusion size parameters of the order of a few tenths. Irrespective of the highly restricted conditions of applicability of the EMA, our results provide further evidence that the effective-medium regime must be a direct corollary of the macroscopic Maxwell equations under specific assumptions.

  2. Effect of methacholine on peripheral lung mechanics and ventilation heterogeneity in asthma.

    PubMed

    Downie, Sue R; Salome, Cheryl M; Verbanck, Sylvia; Thompson, Bruce R; Berend, Norbert; King, Gregory G

    2013-03-15

    The forced oscillation technique (FOT) and multiple-breath nitrogen washout (MBNW) are noninvasive tests that are potentially sensitive to peripheral airways, with MBNW indexes being especially sensitive to heterogeneous changes in ventilation. The objective was to study methacholine-induced changes in the lung periphery of asthmatic patients and determine how changes in FOT variables of respiratory system reactance (Xrs) and resistance (Rrs) and frequency dependence of resistance (Rrs5-Rrs19) can be linked to changes in ventilation heterogeneity. The contributions of air trapping and airway closure, as extreme forms of heterogeneity, were also investigated. Xrs5, Rrs5, Rrs19, Rrs5-Rrs19, and inspiratory capacity (IC) were calculated from the FOT. Ventilation heterogeneity in acinar and conducting airways, and trapped gas (percent volume of trapped gas at functional residual capacity/vital capacity), were calculated from the MBNW. Measurements were repeated following methacholine. Methacholine-induced airway closure (percent change in forced vital capacity) and hyperinflation (change in IC) were also recorded. In 40 mild to moderate asthmatic patients, increase in Xrs5 after methacholine was predicted by increases in ventilation heterogeneity in acinar airways and forced vital capacity (r(2) = 0.37, P < 0.001), but had no correlation with ventilation heterogeneity in conducting airway increase or IC decrease. Increases in Rrs5 and Rrs5-Rrs19 after methacholine were not correlated with increases in ventilation heterogeneity, trapped gas, hyperinflation, or airway closure. Increased reactance in asthmatic patients after methacholine was indicative of heterogeneous changes in the lung periphery and airway closure. By contrast, increases in resistance and frequency dependence of resistance were not related to ventilation heterogeneity or airway closure and were more indicative of changes in central airway caliber than of heterogeneity. PMID:23372144

  3. Effect of small-scale heterogeneities on interpretation of crustal compositions exemplified by a layered anorthosite

    NASA Astrophysics Data System (ADS)

    Semprich, J.; Vrijmoed, J. C.

    2015-02-01

    The composition of the lower crust has a significant effect on geodynamic processes because it influences physical rock properties such as densities and seismic velocities. Compositional differences in lower crustal rocks are potentially large and exist on the scales of centimeters up to kilometers resulting in non-unique seismic and gravity data. While larger heterogeneities can be detected as reflections on seismic profiles, irregular small-scale compositional variations are not likely to be discovered, but will influence the averaged seismic velocities and densities of an area. The extent and effects of such small-scale heterogeneities are explored on an exposed high-grade layered anorthositic body by providing a detailed field map, petrological descriptions, pycnometry measurements as well as whole rock and mineral analyses combined with thermodynamic phase equilibria calculations. To evaluate the results of our thermodynamic calculations, densities and mineral modes obtained from the modeled phase equilibria are compared to measured densities and estimated mineral modes from rock samples. The proportion of mafic to ultramafic (plagioclase-poor) rocks in the mapped field area amounts to 10-15% but higher proportions of these rock types in the lower crust are feasible. To further study the effects of compositional variations, we have generated mixtures of mafic to ultramafic and anorthositic/intermediate rocks until the average properties of these mixtures are comparable to those of mafic granulites (3000-3100 kg/m3; 7.1-7.3 km/s). Mixtures of anorthosite with 40-45% and of tonalite with 50-60% high-grade mafic to ultramafic rocks yield average densities and seismic velocities similar to mafic granulites although they still contain 50-60 vol.% plagioclase. Hence small-scale mixing of certain rock types may result in the overestimation of the proportion of mafic (garnet) granulites in the lithologic interpretation of crustal compositions from seismic data. Since

  4. Necessity of using heterogeneous ellipsoidal Earth model with terrain to calculate co-seismic effect

    NASA Astrophysics Data System (ADS)

    Cheng, Huihong; Zhang, Bei; Zhang, Huai; Huang, Luyuan; Qu, Wulin; Shi, Yaolin

    2016-04-01

    Co-seismic deformation and stress changes, which reflect the elasticity of the earth, are very important in the earthquake dynamics, and also to other issues, such as the evaluation of the seismic risk, fracture process and triggering of earthquake. Lots of scholars have researched the dislocation theory and co-seismic deformation and obtained the half-space homogeneous model, half-space stratified model, spherical stratified model, and so on. Especially, models of Okada (1992) and Wang (2003, 2006) are widely applied in the research of calculating co-seismic and post-seismic effects. However, since both semi-infinite space model and layered model do not take the role of the earth curvature or heterogeneity or topography into consideration, there are large errors in calculating the co-seismic displacement of a great earthquake in its impacted area. Meanwhile, the computational methods of calculating the co-seismic strain and stress are different between spherical model and plane model. Here, we adopted the finite element method which could well deal with the complex characteristics (such as anisotropy, discontinuities) of rock and different conditions. We use the mash adaptive technique to automatically encrypt the mesh at the fault and adopt the equivalent volume force replace the dislocation source, which can avoid the difficulty in handling discontinuity surface with conventional (Zhang et al., 2015). We constructed an earth model that included earth's layered structure and curvature, the upper boundary was set as a free surface and the core-mantle boundary was set under buoyancy forces. Firstly, based on the precision requirement, we take a testing model - - a strike-slip fault (the length of fault is 500km and the width is 50km, and the slippage is 10m) for example. Because of the curvature of the Earth, some errors certainly occur in plane coordinates just as previous studies (Dong et al., 2014; Sun et al., 2012). However, we also found that: 1) the co

  5. The effects of laser welding on heterogeneous immunoassay performance in a microfluidic cartridge.

    PubMed

    Mäntymaa, Anne; Halme, Jussi; Välimaa, Lasse; Kallio, Pasi

    2011-12-01

    Sealing of a microfluidic cartridge is a challenge, because the cartridge commonly contains heat-sensitive biomolecules that must also be protected from contamination. In addition, the objective is usually to obtain a sealing method suitable for mass production. Laser welding is a rapid technique that can be accomplished with low unit costs. Even though the technique has been widely adopted in industry, the literature on its use in microfluidic applications is not large. This paper is the first to report the effects of laser welding on the performance of the heterogeneous immunoassay in a polystyrene microfluidic cartridge in which biomolecules are immobilized into the reaction surface of the cartridge before sealing. The paper compares the immunoassay performance of microfluidic cartridges that are sealed either with an adhesive tape or by use of laser transmission welding. The model analyte used is thyroid stimulating hormone (TSH). The results show that the concentration curves in the laser-welded cartridges are very close to the curves in the taped cartridges. This indicates, first, that laser welding does not cause any significant reduction in immunoassay performance, and second, that the polystyrene cover does not have significant effect on the signal levels. Interestingly, the coefficients of variance between parallel samples were lower in the laser-welded cartridges than in the taped cartridges. PMID:22685505

  6. The effects of laser welding on heterogeneous immunoassay performance in a microfluidic cartridge

    PubMed Central

    Mäntymaa, Anne; Halme, Jussi; Välimaa, Lasse; Kallio, Pasi

    2011-01-01

    Sealing of a microfluidic cartridge is a challenge, because the cartridge commonly contains heat-sensitive biomolecules that must also be protected from contamination. In addition, the objective is usually to obtain a sealing method suitable for mass production. Laser welding is a rapid technique that can be accomplished with low unit costs. Even though the technique has been widely adopted in industry, the literature on its use in microfluidic applications is not large. This paper is the first to report the effects of laser welding on the performance of the heterogeneous immunoassay in a polystyrene microfluidic cartridge in which biomolecules are immobilized into the reaction surface of the cartridge before sealing. The paper compares the immunoassay performance of microfluidic cartridges that are sealed either with an adhesive tape or by use of laser transmission welding. The model analyte used is thyroid stimulating hormone (TSH). The results show that the concentration curves in the laser-welded cartridges are very close to the curves in the taped cartridges. This indicates, first, that laser welding does not cause any significant reduction in immunoassay performance, and second, that the polystyrene cover does not have significant effect on the signal levels. Interestingly, the coefficients of variance between parallel samples were lower in the laser-welded cartridges than in the taped cartridges. PMID:22685505

  7. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    NASA Astrophysics Data System (ADS)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  8. The Community College Effect Revisited: The Importance of Attending to Heterogeneity and Complex Counterfactuals*

    PubMed Central

    Brand, Jennie E.; Pfeffer, Fabian T.; Goldrick-Rab, Sara

    2015-01-01

    Community colleges are controversial educational institutions, often said to simultaneously expand college opportunities and diminish baccalaureate attainment. We assess the seemingly contradictory functions of community colleges by attending to effect heterogeneity and to alternative counterfactual conditions. Using data on postsecondary outcomes of high school graduates of Chicago Public Schools, we find that enrolling at a community college penalizes more advantaged students who otherwise would have attended four-year colleges, particularly highly selective schools; however, these students represent a relatively small portion of the community college population, and these estimates are almost certainly biased. On the other hand, enrolling at a community college has a modest positive effect on bachelor's degree completion for disadvantaged students who otherwise would not have attended college; these students represent the majority of community college goers. We conclude that discussions among scholars, policymakers, and practitioners should move beyond considering the pros and cons of community college attendance for students in general to attending to the implications of community college attendance for targeted groups of students. PMID:25825705

  9. Effects of farm heterogeneity and methods for upscaling on modelled nitrogen losses in agricultural landscapes.

    PubMed

    Dalgaard, T; Hutchings, N; Dragosits, U; Olesen, J E; Kjeldsen, C; Drouet, J L; Cellier, P

    2011-11-01

    The aim of this study is to illustrate the importance of farm scale heterogeneity on nitrogen (N) losses in agricultural landscapes. Results are exemplified with a chain of N models calculating farm-N balances and distributing the N-surplus to N-losses (volatilisation, denitrification, leaching) and soil-N accumulation/release in a Danish landscape. Possible non-linearities in upscaling are assessed by comparing average model results based on (i) individual farm level calculations and (ii) averaged inputs at landscape level. Effects of the non-linearities that appear when scaling up from farm to landscape are demonstrated. Especially in relation to ammonia losses the non-linearity between livestock density and N-loss is significant (p > 0.999), with around 20-30% difference compared to a scaling procedure not taking this non-linearity into account. A significant effect of farm type on soil N accumulation (p > 0.95) was also identified and needs to be included when modelling landscape level N-fluxes and greenhouse gas emissions. PMID:21458123

  10. Effects of Spatially Heterogeneous Porosity on Matrix-Diffusion as Investigated by X ray Absorption Imaging

    SciTech Connect

    Boney, C.; Christian-Frear, T.; Meigs, L.C.; Tidwell, V.C.

    1998-10-20

    Laboratory experiments were performed to investigate the effects of spatial variation in porosity on matrix-diffusion processes. Four centimeter-scale slabs of Culebra dolomite taken from the Waste Isolation Pilot Plant site were used in the tests. Experiments involved the simple diffusion of iodine into a single edge of each rock slab while X ray absorption imaging was used to measure the resulting two-dmensional solute concentration field as a function of time. X ray imaging was also used to quantify the two-dimensional porosity field of each rock slab. Image analysis provided a unique opportunity to both visuake and quantifj the effects of the spatially variable porosi~ on matrixdMusion. Four key results were obtained. First, significant variation in rates of diffusion were realized over the relatively small length (centimeter) and time scales (months) investigated. Second, clear evidence of diffusion preferentially following zones of relatively higher porosity was noted. Third, rate of difhion was found to vary as tracer diffused into the rock slabs encountering changing porosity conditions. Fourth, strong correlation between porosi~ and the calculated diffusion coefficients was found. In fact, the nature of the correlation can be related to the geometry, position, and orientation of the heterogeneous porosity features populating each rock slab.

  11. Bayesian analysis of nonlinear mixed-effects mixture models for longitudinal data with heterogeneity and skewness.

    PubMed

    Lu, Xiaosun; Huang, Yangxin

    2014-07-20

    It is a common practice to analyze complex longitudinal data using nonlinear mixed-effects (NLME) models with normality assumption. The NLME models with normal distributions provide the most popular framework for modeling continuous longitudinal outcomes, assuming individuals are from a homogeneous population and relying on random-effects to accommodate inter-individual variation. However, the following two issues may standout: (i) normality assumption for model errors may cause lack of robustness and subsequently lead to invalid inference and unreasonable estimates, particularly, if the data exhibit skewness and (ii) a homogeneous population assumption may be unrealistically obscuring important features of between-subject and within-subject variations, which may result in unreliable modeling results. There has been relatively few studies concerning longitudinal data with both heterogeneity and skewness features. In the last two decades, the skew distributions have shown beneficial in dealing with asymmetric data in various applications. In this article, our objective is to address the simultaneous impact of both features arisen from longitudinal data by developing a flexible finite mixture of NLME models with skew distributions under Bayesian framework that allows estimates of both model parameters and class membership probabilities for longitudinal data. Simulation studies are conducted to assess the performance of the proposed models and methods, and a real example from an AIDS clinical trial illustrates the methodology by modeling the viral dynamics to compare potential models with different distribution specifications; the analysis results are reported. PMID:24623529

  12. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment.

    PubMed

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42%. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments. PMID:25796204

  13. The Effect of Heterogeneity on Invasion in Spatial Epidemics: From Theory to Experimental Evidence in a Model System

    PubMed Central

    Neri, Franco M.; Bates, Anne; Füchtbauer, Winnie S.; Pérez-Reche, Francisco J.; Taraskin, Sergei N.; Otten, Wilfred; Bailey, Douglas J.; Gilligan, Christopher A.

    2011-01-01

    Heterogeneity in host populations is an important factor affecting the ability of a pathogen to invade, yet the quantitative investigation of its effects on epidemic spread is still an open problem. In this paper, we test recent theoretical results, which extend the established “percolation paradigm” to the spread of a pathogen in discrete heterogeneous host populations. In particular, we test the hypothesis that the probability of epidemic invasion decreases when host heterogeneity is increased. We use replicated experimental microcosms, in which the ubiquitous pathogenic fungus Rhizoctonia solani grows through a population of discrete nutrient sites on a lattice, with nutrient sites representing hosts. The degree of host heterogeneity within different populations is adjusted by changing the proportion and the nutrient concentration of nutrient sites. The experimental data are analysed via Bayesian inference methods, estimating pathogen transmission parameters for each individual population. We find a significant, negative correlation between heterogeneity and the probability of pathogen invasion, thereby validating the theory. The value of the correlation is also in remarkably good agreement with the theoretical predictions. We briefly discuss how our results can be exploited in the design and implementation of disease control strategies. PMID:21980273

  14. The effect of coolant orificing on the core performance of a heterogeneous liquid-metal fast breeder reactor

    SciTech Connect

    Mamoru, K.; Shigehiro, A.; Yoshiaki, O.

    1983-04-01

    The effect of orificing on the core performance of a commercial-size heterogeneous liquid-metal fast breeder reactor was studied analytically. The thermal power output was flattened at beginning of life, and the coolant flow rate was chosen such that the maximum inner cladding temperature of a driver fuel and a blanket fuel was less than or equal to 620/sup 0/C at both beginning of equilibrium life (BOEL) and end of equilibrium life (EOEL). The difference between reactor outlet temperatures at BOEL and EOEL was then calculated for six core configurations: one homogeneous core configuration and five heterogeneous ones. The results showed that the core outlet temperature variation due to the change of the power profile of the radial heterogeneous core configurations is similar to that of the homogeneous one, even when a single type of orificing is used in each core zone, and it will not be necessary to use the more detailed orificing in each zone of a heterogeneous core configuration. The study concludes that for the present design, especially the thermal design, of some heterogeneous core configurations, it is feasible to control the change of the reactor outlet temperature with burnup, even when a single type of orificing is used in each core zone.

  15. Expanding the Scope of Mindfulness-Based Cognitive Therapy: Evidence for Effectiveness in a Heterogeneous Psychiatric Sample

    ERIC Educational Resources Information Center

    Green, Sheryl M.; Bieling, Peter J.

    2012-01-01

    Mindfulness-based interventions (e.g., MBSR; Kabat-Zinn, 1990; MBCT; Segal, Williams, & Teasdale, 2002) have demonstrated effectiveness in a number of distinct clinical populations. However, few studies have evaluated MBCT within a heterogeneous group of psychiatric adult outpatients. This study examined whether a wider variety of patients…

  16. The Effect of Incorporation of HNO(sub 3) Into Liquid Sulfuric Acid on Heterogeneous Reaction Probabilities

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Leu, M-T.; Keyser, L.

    1994-01-01

    Using a fast-flow reactor coupled to a quadrupole mass spectrometer, the heterogeneous reactions of C1ONO2 + HCl and HOCl + HCl as well as hydrolysis of N2O5 and C1ONO2 were investigated on liquid sulfuric acid, with particular emphasis on the effect of incorporation of HNO3 on the reaction probabilities.

  17. Similarity and heterogeneity effects in visual search are mediated by "segmentability".

    PubMed

    Utochkin, Igor S; Yurevich, Maria A

    2016-07-01

    The heterogeneity of our visual environment typically reduces the speed with which a singleton target can be found. Visual search theories explain this phenomenon via nontarget similarities and dissimilarities that affect grouping, perceptual noise, and so forth. In this study, we show that increasing the heterogeneity of a display can facilitate rather than inhibit visual search for size and orientation singletons when heterogeneous features smoothly fill the transition between highly distinguishable nontargets. We suggest that this smooth transition reduces the "segmentability" of dissimilar items to otherwise separate subsets, causing the visual system to treat them as a near-homogenous set standing apart from a singleton. (PsycINFO Database Record PMID:26784002

  18. An Evaluation of Land-Surface Heterogeneity Effects on Atmospheric Boundary Layer Processes at Various Scales

    NASA Astrophysics Data System (ADS)

    Bolch, M. A.; Avissar, R.

    2010-12-01

    Land-surface heterogeneity (LSH) at different scales has significant influence on atmospheric boundary layer (ABL) buoyant and shear turbulence generation and transfers of water, carbon and heat. The extent of proliferation of this influence into larger-scale circulations and atmospheric structures is a topic continually investigated in experimental and numerical studies, in many cases with the hopes of improving land-atmosphere parameterizations for modeling purposes. The blending height is a potential measure for the vertical propagation of LSH effects into the ABL, and has been the subject of study for several decades. Its potential as a powerful metric and the lack of combined efforts of modeling and observations are the motivations for this study. The central goal of this project is to assess how blending height estimates compare with observed and modeled vertical propagation of heterogeneity. To accomplish this, a Helicopter Observation Platform (HOP) will provide in-situ atmospheric observations at a range of different altitudes, especially in the lower ABL, where the effects of LSH are expected to be the strongest. Empirical Mode Decomposition (EMD) will be used to filter noise and unwanted trends from the HOP data and to assess possible LSH correlations. An Ocean-Land-Atmosphere-Model (OLAM), a state-of-the-art numerical model will provide high horizontal resolution mesh refinement to resolve large-eddy scale turbulence throughout the observation area. And the modeling and observations are linked through the Cloud and Land Surface Interaction Campaign (CLASIC) field campaign sites, which supply a host of additional data as well as sites with varying LSH regimes. The patchwork of different crops at the Central Facility (CF) provides a relatively small LSH scale, the forest site at Okmulgee (FS) has vegetated, bare and water areas aggregated at a larger LSH scale, and the Fort Cobb watershed (FC) is dominated by the Fort Cobb Lake, giving the largest scale

  19. Development of kink bands in granodiorite: Effect of mechanical heterogeneities, fault geometry, and friction

    NASA Astrophysics Data System (ADS)

    Chheda, T. D.; Nevitt, J. M.; Pollard, D. D.

    2014-12-01

    The formation of monoclinal right-lateral kink bands in Lake Edison granodiorite (central Sierra Nevada, CA) is investigated through field observations and mechanics based numerical modeling. Vertical faults act as weak surfaces within the granodiorite, and vertical granodiorite slabs bounded by closely-spaced faults curve into a kink. Leucocratic dikes are observed in association with kinking. Measurements were made on maps of Hilgard, Waterfall, Trail Fork, Kip Camp (Pollard and Segall, 1983b) and Bear Creek kink bands (Martel, 1998). Outcrop scale geometric parameters such as fault length andspacing, kink angle, and dike width are used to construct a representative geometry to be used in a finite element model. Three orders of fault were classified, length = 1.8, 7.2 and 28.8 m, and spacing = 0.3, 1.2 and 3.6 m, respectively. The model faults are oriented at 25° to the direction of shortening (horizontal most compressive stress), consistent with measurements of wing crack orientations in the field area. The model also includes a vertical leucocratic dike, oriented perpendicular to the faults and with material properties consistent with aplite. Curvature of the deformed faults across the kink band was used to compare the effects of material properties, strain, and fault and dike geometry. Model results indicate that the presence of the dike, which provides a mechanical heterogeneity, is critical to kinking in these rocks. Keeping properties of the model granodiorite constant, curvature increased with decrease in yield strength and Young's modulus of the dike. Curvature increased significantly as yield strength decreased from 95 to 90 MPa, and below this threshold value, limb rotation for the kink band was restricted to the dike. Changing Poisson's ratio had no significant effect. The addition of small faults between bounding faults, decreasing fault spacing or increasing dike width increases the curvature. Increasing friction along the faults decreases slip, so

  20. The Effect of Point-spread Function Interaction with Radiance from Heterogeneous Scenes on Multitemporal Signature Analysis. [soybean stress

    NASA Technical Reports Server (NTRS)

    Duggin, M. J.; Schoch, L. B.

    1984-01-01

    The point-spread function is an important factor in determining the nature of feature types on the basis of multispectral recorded radiance, particularly from heterogeneous scenes and particularly from scenes which are imaged repetitively, in order to provide thematic characterization by means of multitemporal signature. To demonstrate the effect of the interaction of scene heterogeneity with the point spread function (PSF)1, a template was constructed from the line spread function (LSF) data for the thematic mapper photoflight model. The template was in 0.25 (nominal) pixel increments in the scan line direction across three scenes of different heterogeneity. The sensor output was calculated by considering the calculated scene radiance from each scene element occurring between the contours of the PSF template, plotted on a movable mylar sheet while it was located at a given position.

  1. Relationship between levator ani and bony pelvis morphology and clinical grade of prolapse in women.

    PubMed

    Li, Ran; Song, Yanfeng; Ma, Ming

    2015-09-01

    The aim of this study was to assess the morphological features of the levator ani and bony pelvis in women with different grades of prolapse. Ninety Chinese women with different grades of uterine prolapse were studied, 18 in each stage of prolapse from I to IV, and 18 asymptomatic nulliparous volunteers as normal controls. Three-dimensional (3D) models that included the pelvic bones, levator ani, pubic symphysis, sacrum, and coccyx were generated from magnetic resonance (MR) images. The width and length of the levator hiatus and levator symphysis gap, the width of the iliococcygeus, and the iliococcygeal angle were measured to quantify levator ani morphology; the intertuberous diameter, interspinous diameter, subpubic angle, and pubococcygeal line were measured to characterize the morphology of the bony pelvis. Four patterns of levator ani morphology among women with and without prolapse were distinguished. Among the bony pelvis parameters, no measurement differed significantly between the subjects with prolapse and normal controls, or among subjects with different grades of prolapse. There were significant differences in the width and length of the levator hiatus and levator symphysis gap between women with prolapse and normal controls. Our pilot data help to elucidate bony pelvis and levator ani morphology in women with and without pelvic organ prolapse. In contrast to the iliococcygeus muscle, changes in the morphological features of the pubovisceral muscle are more likely to accompany prolapse. PMID:25864568

  2. Shape variation and ontogeny of the ruminant bony labyrinth, an example in Tragulidae.

    PubMed

    Mennecart, Bastien; Costeur, Loïc

    2016-09-01

    Despite its growing use in anatomical and ecological studies, the morphological variability and ontogenetic development of the bony labyrinth have very rarely been investigated in ruminants. Here we study its morphology in 15 adult and 10 juvenile specimens in the three extant tragulid ruminant genera. Intraspecific and interspecific variability is quantified using morphometric and 3D geometric morphometrics analyses. The bony labyrinth of Tragulus, Hyemoschus, and Moschiola is strikingly different, clustering in clearly different morphospaces despite similar ecological adaptations. Although the bony labyrinths within two species of the same genus cannot be distinguished from each other based on the chosen semi-landmarks, discrete interspecific differences exist. We were able to show for the first time that an artiodactyl mammal in a late fetal stage possesses an almost fully formed bony labyrinth similar to that of adults. No significant change either occurs in size or morphology after ossification of the petrosal bone. Some intraspecific variation is observed on the shape of the lateral semi-circular canal, the size and shape of the common crus, the coil of the cochlea or the stapedial ratio. Variable structures are expected to be highly informative characters for a large cladistic analysis. They can be used for phylogenetic studies in ruminants. Incorporating juvenile specimens in studies is not problematic, as they fall within the morphological range of adults. PMID:27245372

  3. Systematic Analysis of the Effect of Small Scale Permeability Heterogeneity on Hyporheic Exchange Flux and Residence Times

    NASA Astrophysics Data System (ADS)

    Laube, G.; Schmidt, C.; Fleckenstein, J. H.

    2014-12-01

    The hyporheic zone (HZ) contributes significantly to whole stream biogeochemical cycling. Biogeochemical reactions within the HZ are often transport limited, thus, understanding these reactions requires knowledge about the magnitude of hyporheic fluxes (HF) and the residence time (RT) of these fluxes within the HZ. While the hydraulics of HF are relatively well understood, studies addressing the influence of permeability heterogeneity lack systematic analysis and have even produced contradictory results (e.g. [1] vs. [2]). In order to close this gap, this study uses a statistical numerical approach to elucidate the influence of permeability heterogeneity on HF and RT. We simulated and evaluated 3750 2D-scenarios of sediment heterogeneity by means of Gaussian random fields with focus on total HF and RT distribution. The scenarios were based on ten realizations of each of all possible combinations of 15 different correlation lengths, 5 dipping angles and 5 permeability variances. Roughly 500 hyporheic stream traces were analyzed per simulation, for a total of almost two million stream traces analyzed for correlations between permeability heterogeneity, HF, and RT. Total HF and the RT variance positively correlated with permeability variance while the mean RT negatively correlated with permeability variance. In contrast, changes in correlation lengths and dipping angles had little effect on the examined properties RT and HF. These results provide a possible explanation of the seemingly contradictory conclusions of recent studies, given that the permeability variances in these studies differ by several orders of magnitude. [1] Bardini, L., Boano, F., Cardenas, M.B, Sawyer, A.H, Revelli, R. and Ridolfi, L. "Small-Scale Permeability Heterogeneity Has Negligible Effects on Nutrient Cycling in Streambeds." Geophysical Research Letters, 2013. doi:10.1002/grl.50224. [2] Zhou, Y., Ritzi, R. W., Soltanian, M. R. and Dominic, D. F. "The Influence of Streambed Heterogeneity on

  4. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado.

    PubMed

    Li, Li; Steefel, Carl I; Kowalsky, Michael B; Englert, Andreas; Hubbard, Susan S

    2010-03-01

    Electron donor amendment for bioremediation often results in precipitation of secondary minerals and the growth of biomass, both of which can potentially change flow paths and the efficacy of bioremediation. Quantitative estimation of precipitate and biomass distribution has remained challenging, partly due to the intrinsic heterogeneities of natural porous media and the scarcity of field data. In this work, we examine the effects of physical and geochemical heterogeneities on the spatial distributions of mineral precipitates and biomass accumulated during a biostimulation field experiment near Rifle, Colorado. Field bromide breakthrough data were used to infer a heterogeneous distribution of hydraulic conductivity through inverse transport modeling, while the solid phase Fe(III) content was determined by assuming a negative correlation with hydraulic conductivity. Validated by field aqueous geochemical data, reactive transport modeling was used to explicitly keep track of the growth of the biomass and to estimate the spatial distribution of precipitates and biomass. The results show that the maximum mineral precipitation and biomass accumulation occurs in the vicinity of the injection wells, occupying up to 5.4vol.% of the pore space, and is dominated by reaction products of sulfate reduction. Accumulation near the injection wells is not strongly affected by heterogeneities present in the system due to the ubiquitous presence of sulfate in the groundwater. However, accumulation in the down-gradient regions is dominated by the iron-reducing reaction products, whose spatial patterns are strongly controlled by both physical and geochemical heterogeneities. Heterogeneities can lead to localized large accumulation of mineral precipitates and biomass, increasing the possibility of pore clogging. Although ignoring the heterogeneities of the system can lead to adequate prediction of the average behavior of sulfate-reducing related products, it can also lead to an

  5. Treatment effect heterogeneity for univariate subgroups in clinical trials: Shrinkage, standardization, or else.

    PubMed

    Varadhan, Ravi; Wang, Sue-Jane

    2016-01-01

    Treatment effect heterogeneity is a well-recognized phenomenon in randomized controlled clinical trials. In this paper, we discuss subgroup analyses with prespecified subgroups of clinical or biological importance. We explore various alternatives to the naive (the traditional univariate) subgroup analyses to address the issues of multiplicity and confounding. Specifically, we consider a model-based Bayesian shrinkage (Bayes-DS) and a nonparametric, empirical Bayes shrinkage approach (Emp-Bayes) to temper the optimism of traditional univariate subgroup analyses; a standardization approach (standardization) that accounts for correlation between baseline covariates; and a model-based maximum likelihood estimation (MLE) approach. The Bayes-DS and Emp-Bayes methods model the variation in subgroup-specific treatment effect rather than testing the null hypothesis of no difference between subgroups. The standardization approach addresses the issue of confounding in subgroup analyses. The MLE approach is considered only for comparison in simulation studies as the "truth" since the data were generated from the same model. Using the characteristics of a hypothetical large outcome trial, we perform simulation studies and articulate the utilities and potential limitations of these estimators. Simulation results indicate that Bayes-DS and Emp-Bayes can protect against optimism present in the naïve approach. Due to its simplicity, the naïve approach should be the reference for reporting univariate subgroup-specific treatment effect estimates from exploratory subgroup analyses. Standardization, although it tends to have a larger variance, is suggested when it is important to address the confounding of univariate subgroup effects due to correlation between baseline covariates. The Bayes-DS approach is available as an R package (DSBayes). PMID:26485117

  6. Heterogenous effects of bryostatin on human myeloid leukemia clonogenicity: dose and time scheduling dependency.

    PubMed

    van der Hem, K G; Schuurhuis, G J; Dräger, A M; Odding, J H; Huijgens, P C

    1996-09-01

    The potent anti-neoplastic actions displayed in vitro by bryostatins have led to the introduction of short-term bryostatin-1 infusions in phase I clinical trials. Because bryostatin (bryo) undergoes a rapid clearance in vivo, we were interested in its scheduling effects on acute myeloid leukemia (AML) clonogenicity. Therefore, we assessed the primary plating efficiency (PE1) of AML samples in response to several bryo concentrations after various preincubation periods in a semi-solid colony forming assay. Whereas continuous exposure to 10 nM bryo during the assay period reduced the PE1 in nearly all samples tested, preincubation of eight AML patients' specimens for 1, 2, 3 or 4 days with bryo in a dose range of 0.1-10 nM showed a heterogenous PE1 response. Stimulatory as well as inhibitory effects on leukemic clonogenic growth were seen within individual specimens depending on dose and preincubation time with no single incubation time or concentration that caused unequivocal common overall inhibition of clonogenic growth in most or all of the samples. Higher doses of bryo also failed to result in specific inhibition of leukemic cells: 4/8 samples showed an increased clonogenic response to 250 nM bryo whereas normal bone marrow progenitor cells were consistently inhibited in their clonogenicity at this dose. A marked similarity, i.e. undulatory effects with increasing bryo concentrations, was found for HL60 leukemic cells. In conclusion, the effects of bryo on clonogenic leukemia cell growth are strongly dependent on scheduling and dose varying between and within individual AML samples. These results caution against in vivo bryo pulse therapy, as currently applied, for treatment of AML. PMID:8947584

  7. The Effect of Methyl, Hydroxyl, and Ketone Functional Groups on the Heterogeneous Oxidation of Succinic Acid Aerosol by OH Radicals

    NASA Astrophysics Data System (ADS)

    Chan, M.; Zhang, H.; Wilson, K. R.

    2013-12-01

    The heterogeneous oxidation of atmospheric organic aerosols can influence their effects on climate, human health, and visibility. During oxidation, functionalization occurs when an oxygenated functional group is added to a molecule, leaving the carbon skeleton intact. Fragmentation involves carbon-carbon bond cleavage and produces two products with smaller carbon numbers than the parent compound. To gain better insights into how the molecular structure of more oxygenated organic compounds affects heterogeneous reactivity, succinic acid aerosols are photo-oxidized in an aerosol flow tube reactor, and the reaction products are analyzed using Direct Analysis in Real Time Mass Spectrometry for online chemical analysis. The effect of various functional groups (CH3, OH, C=O) along the carbon backbone on the heterogeneous reaction mechanisms are also investigated using model compounds. For this series of compounds, the formation of more oxygenated products through functionalization can be explained by well-known condensation-phase reactions such as Russell and Bennett and Summers. The number of fragmentation products is found to increase with the presence of OH and CH3 groups. This can be attributed to the increased number of tertiary carbons, enhancing the fragmentation after multiple oxidation steps. Smaller dicaids (oxalic acid and malonic acid) can be formed through the fragmentation processes in the heterogeneous oxidation of succinic acid. The effect of molecular structure on reaction kinetics, volatilization, and the relative importance of functionalization and fragmentation pathways will be discussed.

  8. Marginal bony changes in relation to different vertical positions of dental implants

    PubMed Central

    Yi, Jung-Myung; Lee, Jae-Kwan; Um, Heung-Sik; Lee, Min-Ku

    2010-01-01

    Purpose The purpose of this study was to radiographically evaluate marginal bony changes in relation to different vertical positions of dental implants. Methods Two hundred implants placed in 107 patients were examined. The implants were classified by the vertical positions of the fixture-abutment connection (microgap): 'bone level,' 'above bone level,' or 'below bone level.' Marginal bone levels were examined in the radiographs taken immediately after fixture insertion, immediately after second-stage surgery, 6 months after prosthesis insertion, and 1 year after prosthesis insertion. Radiographic evaluation was carried out by measuring the distance between the microgap and the most coronal bone-to-implant contact (BIC). Results Immediately after fixture insertion, the distance between the microgap and most coronal BIC was 0.06 ± 0.68 mm; at second surgery, 0.43 ± 0.83 mm; 6 months after loading, 1.36 ± 0.56 mm; and 1 year after loading, 1.53 ± 0.51 mm (mean ± SD). All bony changes were statistically significant but the difference between the second surgery and the 6-month loading was greater than between other periods. In the 'below bone level' group, the marginal bony change between fixture insertion and 1 year after loading was about 2.25 mm, and in the 'bone level' group, 1.47 mm, and in 'above bone level' group, 0.89 mm. Therefore, the marginal bony change was smaller than other groups in the 'above bone level' group and larger than other groups in the 'below bone level' group. Conclusions Our results demonstrated that marginal bony changes occur during the early phase of healing after implant placement. These changes are dependent on the vertical positions of implants. PMID:21072222

  9. First Record of Eocene Bony Fishes and Crocodyliforms from Canada’s Western Arctic

    PubMed Central

    Eberle, Jaelyn J.; Gottfried, Michael D.; Hutchison, J. Howard; Brochu, Christopher A.

    2014-01-01

    Background Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada’s High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early – middle Eocene (∼53–50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada’s easternmost Arctic – Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada’s westernmost Arctic Island – Banks Island, Northwest Territories – they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island. Principal Findings We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower – middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO). Conclusions/Significance These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early – middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence

  10. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    SciTech Connect

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim O.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.

  11. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    NASA Astrophysics Data System (ADS)

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim Ø.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-01

    We report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

  12. Effects of surface heterogeneity on the adsorption of CO₂ in microporous carbons.

    PubMed

    Liu, Yangyang; Wilcox, Jennifer

    2012-02-01

    Carbon capture combined with utilization and storage has the potential to serve as a near-term option for CO(2) emissions reduction. CO(2) capture by carbon-based sorbents and CO(2) storage in geologic formations such as coal and shale both require a thorough understanding of the CO(2) adsorption properties in microporous carbon-based materials. Complex pore structures for natural organic materials, such as coal and gas shale, in addition to general carbon-based porous materials are modeled as a collection of independent, noninterconnected, functionalized graphitic slit pores with surface heterogeneities. Electronic structure calculations coupled with van der Waals-inclusive corrections have been performed to investigate the electronic properties of functionalized graphitic surfaces. With Bader charge analysis, electronic structure calculations can provide the initial framework comprising both the geometry and corresponding charge information required to carry out statistical modeling. Grand canonical Monte Carlo simulations were carried out to determine the adsorption isotherms for a given adsorbent-adsorbate interaction at temperature/pressure conditions relevant to carbon capture applications to focus on the effect of the surface functionalities. On the basis of the current work, oxygen-containing functional groups were predicted to enhance CO(2) adsorption in microporous carbon materials in the absence of water vapor, and the hydrated graphite was found to hinder CO(2) adsorption. PMID:22216997

  13. Effect of the heterogeneity of metamaterials on the Casimir-Lifshitz interaction

    SciTech Connect

    Azari, Arash; Golestanian, Ramin; Miri, MirFaez

    2010-09-15

    The Casimir-Lifshitz interaction between metamaterials is studied using a model that takes into account the structural heterogeneity of the dielectric and magnetic properties of the bodies. A recently developed perturbation theory for the Casimir-Lifshitz interaction between arbitrary material bodies is generalized to include nonuniform magnetic permeability profiles and used to study the interaction between the magneto-dielectric heterostructures within the leading order. The metamaterials are modeled as two-dimensional arrays of domains with varying permittivity and permeability. In the case of two semi-infinite bodies with flat boundaries, the patterned structure of the material properties is found to cause the normal Casimir-Lifshitz force to develop an oscillatory behavior when the distance between the two bodies is comparable to the wavelength of the patterned features in the metamaterials. The nonuniformity also leads to the emergence of lateral Casimir-Lifshitz forces, which tend to strengthen as the gap size becomes smaller. Our results suggest that the recent studies on Casimir-Lifshitz forces between metamaterials, which have been performed with the aim of examining the possibility of observing the repulsive force, should be revisited to include the effect of the patterned structure at the wavelength of several hundred nanometers that coincides with the relevant gap size in the experiments.

  14. Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers

    NASA Astrophysics Data System (ADS)

    Ebrahim, Amani M.; Rodríguez-Castellón, Enrique; Montenegro, José María; Bandosz, Teresa J.

    2015-03-01

    Graphite oxide (GO) obtained using Hummers method was modified by hydrothermal treatment either with sulfanilic acid or polystyrene (3-ammonium) sulfonate at 100 °C or 85 °C, respectively. Both modifiers contain sulfur in the oxidized forms and nitrogen in the reduced forms. The materials were characterized using FTIR, XPS, thermal analysis, potentiometric titration and SEM. Their photoluminescent properties and their alteration with an addition of Ag+ were also measured. As a result of these modifications nitrogen was introduced to the graphene layers as amines, imides, amides, and sulfur as sulfones and sulfonic acids. Moreover, the presence of polyaniline was detected. This significantly affected the polarity, acid-base character, and conductivity of the materials. Apparently carboxylic groups of GO were involved in the surface reactions. The modified GOs lost their layered structure and the modifications resulted in the high degree of structural and chemical heterogeneity. Photoluminescence in visible light was recorded and linked to the presence of heteroatoms. For the polystyrene (3-ammonium) sulfonate modified sample addition of Ag+ quenched the photoluminescence at low wavelength showing sensitivity as a possible optical detector. No apparent effect was found for the sulfanilic acid modified sample.

  15. Scheduling in Heterogeneous Grid Environments: The Effects of DataMigration

    SciTech Connect

    Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Smith, Warren

    2004-01-01

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this goal can be fully realized. One problem critical to the effective utilization of computational grids is efficient job scheduling. Our prior work addressed this challenge by defining a grid scheduling architecture and several job migration strategies. The focus of this study is to explore the impact of data migration under a variety of demanding grid conditions. We evaluate our grid scheduling algorithms by simulating compute servers, various groupings of servers into sites, and inter-server networks, using real workloads obtained from leading supercomputing centers. Several key performance metrics are used to compare the behavior of our algorithms against reference local and centralized scheduling schemes. Results show the tremendous benefits of grid scheduling, even in the presence of input/output data migration - while highlighting the importance of utilizing communication-aware scheduling schemes.

  16. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations.

    PubMed

    Huang, Rixiang; Carney, Randy P; Ikuma, Kaoru; Stellacci, Francesco; Lau, Boris L T

    2014-06-24

    As nanoparticles (NPs) enter into biological systems, they are immediately exposed to a variety and concentration of proteins. The physicochemical interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of NP surface heterogeneity, the interactions between bovine serum albumin (BSA) and gold NPs (AuNPs) with similar chemical composition but different surface structures were investigated. Different interaction modes and BSA conformations were studied by dynamic light scattering, circular dichroism spectroscopy, fluorescence quenching and isothermal titration calorimetry (ITC). Depending on the surface structure of AuNPs, BSA seems to adopt either a "side-on" or an "end-on" conformation on AuNPs. ITC demonstrated that the adsorption of BSA onto AuNPs with randomly distributed polar and nonpolar groups was primarily driven by electrostatic interaction, and all BSA were adsorbed in the same process. The adsorption of BSA onto AuNPs covered with alternating domains of polar and nonpolar groups was a combination of different interactions. Overall, the results of this study point to the potential for utilizing nanoscale manipulation of NP surfaces to control the resulting NP-protein interactions. PMID:24882660

  17. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    DOE PAGESBeta

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim O.; et al

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicatesmore » minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.« less

  18. The Effect Of Hysteresis And Heterogeneity On Specific Yield And Fillable Porosity: Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    Patros, T.

    2011-12-01

    Specific yield, or drainable porosity, is an important component in estimating groundwater recharge (GWR) using the water table fluctuation (WTF) method. The use of soil fillable porosity instead of specific yield has been proposed due to the effect of hysteresis on the soil moisture characteristic curve (SMCC), which shows that the specific yield may be larger than the fillable porosity, resulting in larger estimation of GWR. Here, an attempt is made to compare the specific yield and the fillable porosity mathematically, using an equation(s) for the SMCC (including hysteresis) from the literature. The implication of using either the specific yield or the fillable porosity on GWR estimation in homogeneous and layered heterogeneous profiles for a variety of soil textural classes is presented. In addition, replacing soil residual volumetric water content with soil field capacity, or specific retention, as a lower limit of the SMCC, and the influence of that change on GWR estimation, is critically examined for both the specific yield and the fillable porosity.

  19. Simulations of Earthquake Cycles in Heterogeneous Media: the Effects of Sedimentary Basins on Rupture Mode

    NASA Astrophysics Data System (ADS)

    Allison, K. L.; Dunham, E. M.

    2014-12-01

    We have implemented a parallel code that simulates earthquake cycles on a strike-slip fault in two dimensions. The fault is governed by rate-and-state friction with depth-dependent parameters. The upper portion of the fault, above the seismogenic depth, is velocity-weakening, while the lower portion is velocity-strengthening. The method uses a spatial discretization that accommodates variable off-fault material properties. To simulate tectonic loading, the remote boundaries are driven at half the relative long-term slip rate. Preliminary results suggest that material heterogeneity significantly affects system behavior in certain parts of parameter space. In a homogeneous half-space, events that rupture the full seismogenic depth occur periodically. In contrast, the presence of a sedimentary basin, represented by an elliptic region of decreased shear modulus and density, results in a more complex sequence of events. Two types of rupture emerge: sub-basin and surface-rupturing events. All ruptures nucleate at the seismogenic depth, but for the sub-basin events the rupture fails to penetrate through the basin to the surface. Each sub-basin event leaves a stress concentration at the bottom of the basin, the presence of which enables the next event to rupture to the surface. For deeper and more compliant basins, the number of sub-basin events required before the occurrence of a surface-rupturing event increases. We have begun to explore this, focusing particularly on the effects of varying basin depth and shear modulus. We are also investigating the effects of incorporating a lithostatic normal stress gradient on the fault and velocity-strengthening within the basin. Additionally, previous work was limited to a state evolution distance Dc of 8~mm, several orders of magnitude greater than laboratory values. The parallel implementation allows us to investigate the effect of decreasing this value. Ultimately, this exploration will increase our understanding of how

  20. The confounding effects of source isotopic heterogeneity on consumer-diet and tissue-tissue stable isotope relationships.

    PubMed

    Codron, Daryl; Sponheimer, Matt; Codron, Jacqui; Newton, Ian; Lanham, John L; Clauss, Marcus

    2012-08-01

    Stable isotope analysis of consumer tissues document patterns of resource use because data are linearly related to isotope compositions of their source(s) (i.e., food, water, etc.). Deviations in parameters estimated for these relationships can arise from variations in consumer tissue-diet spacing (Δ(TS)) and the level of isotopic heterogeneity in the source(s). We present a set of simple hypotheses that distinguish between the effects of Δ(TS) and source isotope heterogeneity. The latter may arise via mixed diets, during tissue turnover, or by isotopic routing of dietary components. We apply these concepts to stable carbon and nitrogen isotope relationships between gut contents and body tissues of large mammal herbivores from mixed C(3)/C(4) South African savannas and test predictions based on the compound- and/or time-specific data archived within each material. Predicted effects of source isotope heterogeneity are readily detected in carbon isotope relationships between materials representing different time periods or comprising bulk versus protein-only diet components. Differences in Δ(TS) of carbon isotopes across mammal herbivore species with very different feeding niches (and diet isotope compositions) are likely to be small or non-existent in these habitats. Variations in Δ(TS) estimated for nitrogen isotopes are much greater, leading to inconsistencies that cannot be explained by diet or trophic level effects alone. The effects of source heterogeneity on isotopic relationships generate numerical artefacts that have been misinterpreted as variations in Δ(TS). We caution against generalized application of hypotheses based on assumptions of source isotopic homogeneity, even for single diets commonly used in laboratory studies. More careful consideration of how heterogeneity affects consumer-diet relationships is needed for many field and laboratory systems. PMID:22349754

  1. Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography

    SciTech Connect

    Wang, Jinguo; Zhao, Zhiqin Song, Jian; Chen, Guoping; Nie, Zaiping; Liu, Qing-Huo

    2015-05-15

    Purpose: An iterative reconstruction method has been previously reported by the authors of this paper. However, the iterative reconstruction method was demonstrated by solely using the numerical simulations. It is essential to apply the iterative reconstruction method to practice conditions. The objective of this work is to validate the capability of the iterative reconstruction method for reducing the effects of acoustic heterogeneity with the experimental data in microwave induced thermoacoustic tomography. Methods: Most existing reconstruction methods need to combine the ultrasonic measurement technology to quantitatively measure the velocity distribution of heterogeneity, which increases the system complexity. Different to existing reconstruction methods, the iterative reconstruction method combines time reversal mirror technique, fast marching method, and simultaneous algebraic reconstruction technique to iteratively estimate the velocity distribution of heterogeneous tissue by solely using the measured data. Then, the estimated velocity distribution is used subsequently to reconstruct the highly accurate image of microwave absorption distribution. Experiments that a target placed in an acoustic heterogeneous environment are performed to validate the iterative reconstruction method. Results: By using the estimated velocity distribution, the target in an acoustic heterogeneous environment can be reconstructed with better shape and higher image contrast than targets that are reconstructed with a homogeneous velocity distribution. Conclusions: The distortions caused by the acoustic heterogeneity can be efficiently corrected by utilizing the velocity distribution estimated by the iterative reconstruction method. The advantage of the iterative reconstruction method over the existing correction methods is that it is successful in improving the quality of the image of microwave absorption distribution without increasing the system complexity.

  2. The effects of acetaldehyde, glyoxal and acetic acid on the heterogeneous reaction of nitrogen dioxide on gamma-alumina.

    PubMed

    Sun, Zhenyu; Kong, Lingdong; Ding, Xiaoxiao; Du, Chengtian; Zhao, Xi; Chen, Jianmin; Fu, Hongbo; Yang, Xin; Cheng, Tiantao

    2016-04-14

    Heterogeneous reactions of nitrogen oxides on the surface of aluminium oxide result in the formation of adsorbed nitrite and nitrate. However, little is known about the effects of other species on these heterogeneous reactions and their products. In this study, diffuse reflectance infrared spectroscopy (DRIFTS) was used to analyze the process of the heterogeneous reaction of NO2 on the surface of aluminium oxide particles in the presence of pre-adsorbed organic species (acetaldehyde, glyoxal and acetic acid) at 298 K and reveal the influence of these organic species on the formation of adsorbed nitrite and nitrate. It was found that the pre-adsorption of organic species (acetaldehyde, glyoxal and acetic acid) on γ-Al2O3 could suppress the formation of nitrate to different extents. Under the same experimental conditions, the suppression of the formation of nitrate by the pre-adsorption of acetic acid is much stronger than that by pre-adsorption of acetaldehyde and glyoxal, indicating that the influence of acetic acid on the heterogeneous reaction of NO2 is different from that of acetaldehyde and glyoxal. Surface nitrite is formed and identified to be an intermediate product. For the heterogeneous reaction of NO2 on the surface of γ-Al2O3 with and without the pre-adsorption of acetaldehyde and glyoxal, it is firstly formed and then gradually disappears as the reaction proceeds, but for the reaction with the pre-adsorption of acetic acid, it is the final main product besides nitrate. This indicates that the pre-adsorption of acetic acid would promote the formation of nitrite, while the others would not change the trend of the formation of nitrite. The possible influence mechanisms of the pre-adsorption of acetaldehyde, glyoxal and acetic acid on the heterogeneous conversion of NO2 on γ-Al2O3 are proposed and atmospheric implications based on these results are discussed. PMID:26745767

  3. Endocrine and Local IGF-I in the Bony Fish Immune System.

    PubMed

    Franz, Anne-Constance; Faass, Oliver; Köllner, Bernd; Shved, Natallia; Link, Karl; Casanova, Ayako; Wenger, Michael; D'Cotta, Helena; Baroiller, Jean-François; Ullrich, Oliver; Reinecke, Manfred; Eppler, Elisabeth

    2016-01-01

    A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived), which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine) IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health. PMID:26821056

  4. Endocrine and Local IGF-I in the Bony Fish Immune System

    PubMed Central

    Franz, Anne-Constance; Faass, Oliver; Köllner, Bernd; Shved, Natallia; Link, Karl; Casanova, Ayako; Wenger, Michael; D’Cotta, Helena; Baroiller, Jean-François; Ullrich, Oliver; Reinecke, Manfred; Eppler, Elisabeth

    2016-01-01

    A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived), which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine) IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health. PMID:26821056

  5. Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical Reactions: A Case of U(VI) Desorption

    SciTech Connect

    Liu, Chongxuan; Shang, Jianying; Shan, Huimei; Zachara, John M.

    2014-02-04

    The effect of subgrid heterogeneity in sediment properties on the rate of uranyl[U(VI)] desorption was investigated using a sediment collected from the US Department of Energy Hanford site. The sediment was sieved into 7 grain size fractions that each exhibited different U(VI) desorption properties. Six columns were assembled using the sediment with its grain size fractions arranged in different spatial configurations to mimic subgrid heterogeneity in reactive transport properties. The apparent rate of U(VI) desorption varied significantly in the columns. Those columns with sediment structures leading to preferential transport had much lower rates of U(VI) desorption than those with relatively homogeneous transport. Modeling analysis indicated that the U(VI) desorption model and parameters characterized from well-mixed reactors significantly over-predicted the measured U(VI) desorption in the columns with preferential transport. A dual domain model, which operationally separates reactive transport properties into two subgrid domains improved the predictions significantly. A similar effect of subgrid heterogeneity, albeit at a less degree, was observed for denitrification, which also occurred in the columns. The results imply that subgrid heterogeneity is an important consideration in extrapolating reaction rates from the laboratory to field.

  6. Magnetic pyrite cinder as an efficient heterogeneous ozonation catalyst and synergetic effect of deposited Ce.

    PubMed

    Wu, Deli; Liu, Ying; He, Hongping; Zhang, Yalei

    2016-07-01

    Heterogeneous catalytic ozonation was emerged to be a promising alternative in the mineralization of various persistent organic pollutants in recent decades. Magnetic pyrite cinder (PyC), which was employed as the catalyst in our investigation, was further deposited by Ce (Ce-PyC) to enhance its catalytic activity in the degradation of aqueous reactive black 5 (RB5). The results showed that additional 17.39%, 42.12% mineralization efficiency was obtained by O3/PyC, O3/Ce-PyC, respectively, in the degradation of RB5 compared to that of O3 alone under identical experimental condition. The reaction mechanism involved the enhanced mineralization of aqueous RB5 at the catalyst-solution interface via hydroxyl radicals produced by the reaction between O3 and catalyst surface. Besides surface hydroxyl, surface Ce(Ⅲ) was crucial for Ce-PyC in the enhanced generation of hydroxyl radicals. More surprisingly, it was found that both PyC and Ce-PyC could exert quite stable catalytic activity in a wide pH range from 3 to 10, which was supposed to be combined with inherently comprised various metal oxide, such as Fe2O3, Fe3O4, MnO2 and CuO. Ozone utilization evaluation demonstrated that PyC and Ce-PyC facilitated effective ozone decomposition, as ozone utilization efficiency (mgTOC/mgO3) of O3/PyC and O3/Ce-PyC increased 64.0%, 155.0%, respectively, compared to that of O3 alone. This investigation provided an effective alternative in the resource utilization of PyC, which was traditionally characterized as a waste material. PMID:27108370

  7. Large-Eddy Simulations of Surface Heterogeneity Effects on the Convective Boundary Layer During the LITFASS-2003 Experiment

    NASA Astrophysics Data System (ADS)

    Maronga, Björn; Raasch, Siegfried

    2013-01-01

    We investigate the impact of observed surface heterogeneities during the LITFASS-2003 experiment on the convective boundary layer (CBL). Large-eddy simulations (LES), driven by observed near-surface sensible and latent heat fluxes, were performed for the diurnal cycle and compare well with observations. As in former studies of idealized one- and two-dimensional heterogeneities, secondary circulations developed that are superimposed on the turbulent field and that partly take over the vertical transport of heat and moisture. The secondary circulation patterns vary between local and roll-like structures, depending on the background wind conditions. For higher background wind speeds, the flow feels an effective surface heat-flux pattern that derives from the original pattern by streamwise averaging. This effective pattern generates a roll-like secondary circulation with roll axes along the mean boundary-layer wind direction. Mainly the upstream surface conditions control the secondary circulation pattern, where the fetch increases with increasing background wind speed. Unlike the entrainment flux that appears to be slightly decreased compared to the homogeneously-heated CBL, the vertical flux of sensible heat appears not to be modified in the mixed layer, while the vertical flux of latent heat shows different responses to secondary circulations. The study illustrates that sufficient time averaging and ensemble averaging is required to separate the heterogeneity-induced signals from the raw LES turbulence data. This might be an important reason why experiments over heterogeneous terrain in the past did not give any clear evidence of heterogeneity-induced effects.

  8. Combined effects of climatic gradient and domestic livestock grazing on reptile community structure in a heterogeneous agroecosystem.

    PubMed

    Rotem, Guy; Gavish, Yoni; Shacham, Boaz; Giladi, Itamar; Bouskila, Amos; Ziv, Yaron

    2016-01-01

    Grazing plays an important role in shaping ecological communities in human-related ecosystems. Although myriad studies have explored the joint effect of grazing and climate on plant communities, this interactive effect has rarely been studied in animals. We hypothesized that the effect of grazing on the reptile community varies along a climatic gradient in relation to the effect of grazing on habitat characteristics, and that grazing differentially affects reptiles of different biogeographic regions. We tested our hypotheses by collecting data on environmental characteristics and by trapping reptiles in four heterogeneous landscapes experiencing differing grazing intensities and distributed along a sharp climatic gradient. We found that while reptile diversity increased with grazing intensity at the mesic end of the gradient, it decreased with grazing intensity at the arid end. Moreover, the proportion of reptile species of differing biogeographic origins varied with the interactive effect of climate and grazing. The representation of species originating in arid biogeographic zones was highest at the arid end of the climatic gradient, and representation increased with grazing intensity within this area. Regardless of the climatic context, increased grazing pressure results in a reduction in vegetation cover and thus in changes in habitat characteristics. By reducing vegetation cover, grazing increased habitat heterogeneity in the dense mesic sites and decreased habitat heterogeneity in the arid sites. Thus, our results suggest that the same direction of habitat alteration caused by grazing may have opposite effects on biodiversity and community composition in different climatic contexts. PMID:26350785

  9. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats.

    PubMed

    Su, Yu-Wen; Chung, Rosa; Ruan, Chun-Sheng; Chim, Shek Man; Kuek, Vincent; Dwivedi, Prem P; Hassanshahi, Mohammadhossein; Chen, Ke-Ming; Xie, Yangli; Chen, Lin; Foster, Bruce K; Rosen, Vicki; Zhou, Xin-Fu; Xu, Jiake; Xian, Cory J

    2016-06-01

    Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016

  10. Transuranic Transmutation and Criticality Calculation Sensitivity to Heterogeneous Lattice Effects - 12391

    SciTech Connect

    Barbaras, Sean A.; Knight, Travis W.

    2012-07-01

    composition whereas U-238, Pu-242, and Pu-238 composition was not changed by taking into account the non-homogenous lattice effects. Heterogeneous lattice effects do change the calculated eigenvalue and transmutation rate in a non-uniform lattice of MOX fuel rods and UO{sub 2} fuel. However, the uncertainty in the ENDF data used by SCALE in these calculations is large enough that the infinite lattice assumption remains valid. (authors)