Science.gov

Sample records for boom clay formation

  1. Numerical investigation of the seismic detectability of carbonate thin beds in the Boom Clay formation

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Gei, Davide

    2016-07-01

    The present study evaluates the capacity of the Boom Clay as a host rock for disposal purposes, more precisely its seismic characterization, which may assess its long-term performance to store radioactive wastes. Although the formation is relatively uniform and homogeneous, there are embedded thin layers of septaria (carbonates) that may affect the integrity of the Boom Clay. Therefore, it is essential to locate these geobodies. The seismic data to characterize the Boom Clay has been acquired at the Kruibeke test site. The inversion, which allowed us to obtain the anisotropy parameters and seismic velocities of the clay, is complemented with further information such as log and laboratory data. The attenuation properties have been estimated from equivalent formations (having similar composition and seismic velocities). The inversion yields quite consistent results although the symmetry of the medium is unusual but physically possible, since the anisotropy parameter ɛ is negative. According to a time-domain calculation of the energy velocity at four frequency bands up to 900 Hz, velocity increases with frequency, a behaviour described by the Zener model. Then, we use this model to describe anisotropy and anelasticity that are implemented into the equation of motion to compute synthetic seismograms in the space-time domain. The technique is based on memory variables and the Fourier pseudospectral method. We have computed reflection coefficients of the septaria thin layer. At normal incidence, the P-wave coefficient vanishes at specific thicknesses of the layer and there is no conversion to the S wave. For example, calculations at 600 Hz show that for thicknesses of 1 m the septarium can be detected more easily since the amplitudes are higher (nearly 0.8). Converted PS waves have a high amplitude at large offsets (between 30° and 80°) and can be useful to identify the target on this basis. Moreover, we have investigated the effect of septaria embedded in the Boom

  2. Numerical investigation of the seismic detectability of carbonate thin beds in the Boom Clay formation

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Gei, Davide

    2016-04-01

    The present study evaluates the capacity of the Boom Clay as a host rock for disposal purposes, more precisely its seismic characterization, which may assess its long-term performance to store radioactive wastes. Although the formation is relatively uniform and homogeneous, there are embedded thin layers of septaria (carbonates) that may affect the integrity of the Boom Clay. Therefore, it is essential to locate these geobodies. The seismic data to characterise the Boom Clay has been acquired at the Kruibeke test site. The inversion, which allowed us to obtain the anisotropy parameters and seismic velocities of the clay, is complemented with further information such as log and laboratory data. The attenuation properties have been estimated from equivalent formations (having similar composition and seismic velocities). The inversion yields quite consistent results although the symmetry of the medium is unusual but physically possible, since the anisotropy parameter ɛ is negative. According to a time-domain calculation of the energy velocity at four frequency bands up to 900 Hz, velocity increases with frequency, a behaviour described by the Zener model. Then, we use this model to describe anisotropy and anelasticity that are implemented into the equation of motion to compute synthetic seismograms in the space-time domain. The technique is based on memory variables and the Fourier pseudospectral method. We have computed reflection coefficients of the septaria thin layer. At normal incidence, the P-wave coefficient vanishes at specific thicknesses of the layer and there is no conversion to the S wave. For example, calculations at 600 Hz show that for thicknesses of 1 m the septarium can be detected more easily since the amplitudes are higher (nearly 0.8). Converted PS waves have a high amplitude at large offsets (between 30 and 80 degrees) and can be useful to identify the target on this basis. Moreover, we have investigated the effect of septaria embedded in the

  3. Mössbauer study of the Boom clay, a geological formation for the storage of radioactive wastes in Belgium

    NASA Astrophysics Data System (ADS)

    Ladrière, J.; Dussart, F.; Dabi, J.; Haulotte, O.; Verhaeghe, S.; Regout, J.

    2009-06-01

    In this work, Mössbauer spectroscopy has been used to characterize all the iron-containing phases in the Boom clay and to analyze their physico-chemical transformations induced by thermolysis and gamma radiolysis (60-Co). It is shown that sulfuric acid is produced by the oxidation of the pyrite present in the clay by the oxidizing species resulting from the gamma radiolysis of the interstitial water. The pH of the interstitial water decreases from 8.6 to 2.2 after complete oxidation of the pyrite, in agreement with the disappearance of this component as well as the siderite in the Mössbauer spectra.

  4. The study of abiotic reduction of nitrate and nitrite in Boom Clay

    NASA Astrophysics Data System (ADS)

    Mariën, A.; Bleyen, N.; Aerts, S.; Valcke, E.

    In Belgium, Boom Clay is studied as a reference host rock for the geological disposal of high-level and intermediate-level radioactive waste. Compatibility studies at the SCK•CEN aim at investigating a perturbation of the capacity of Boom Clay to retard the migration of radionuclides to the biosphere, after disposal of Eurobitum bituminized radioactive waste in the clay ( Valcke et al., 2009; Aertsens et al., 2009; Bleyen et al., 2010). One of the geo-chemical perturbations is the possible oxidation of Boom Clay by the large amounts of nitrate that will be released by Eurobitum. A more oxidised Boom Clay could have a lower reducing capacity towards redox sensitive radionuclides, possibly enhancing their migration. As the conditions in the Boom Clay formation around a disposal gallery for Eurobitum are far from optimal for the growth of prokaryotes (limited space in the far-field, high pH in the near-field, gamma radiation by the waste during the first ∼300 years (effect limited to the primary and secondary waste package)), the impact of microbially mediated reduction of nitrate and nitrite is unclear. Therefore, batch tests are performed at the SCK•CEN to study whether nitrate and nitrite can directly oxidise the main redoxactive components of Boom Clay (dissolved organic matter, kerogen, pyrite) without the mediation of prokaryotes. In a first series of batch tests, which are reported in this paper, the activity of denitrifying and nitrate reducing prokaryotes was inhibited by the addition of NaN 3. NaN 3 revealed to be an efficient inhibitor for these prokaryotes without affecting considerably the geochemistry of Boom Clay and/or Boom Clay pore water. Neither in batch tests with the Boom Clay slurries (with NaNO 3 (0.1 and 1 M) or NaNO 2 (0.1 M)) and with Boom Clay water (with 0.05 and 0.2 M NaNO 3) a pure chemical nitrate or nitrite reduction was observed after respectively 3, 7 and 17 weeks and 1 year (Boom Clay slurries) and about 2 years (Boom Clay

  5. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  6. Dissolution Behaviour of UO{sub 2} in Anoxic Conditions: Comparison of Ca-Bentonite and Boom Clay

    SciTech Connect

    Mennecart, Thierry; Cachoir, Christelle; Lemmens, Karel

    2007-07-01

    In order to determine in how far the clay properties influence the dissolution of spent fuel, experiments were carried out with depleted UO{sub 2} in the presence of either compacted dry Ca-bentonite with Boom Clay groundwater (KB-BCW) or compacted dry Boom Clay with Boom Clay groundwater (BC-BCW). The leach tests were performed at 25 deg. C in anoxic atmosphere for 2 years. The U concentrations in the clay water were followed during these 2 years, and the amount of U in the clay was determined after 2 years in order to determine the UO{sub 2} dissolution rate. The uranium concentration after 0.45 {mu}m filtration was 50 times higher in the Boom Clay with Boom Clay water (2.0 x 10{sup -7} mol.L{sup -1}) than in Ca-bentonite with Boom Clay water (6.5 x 10{sup -9} mol.L{sup -1}), probably due to colloid formation in the Boom Clay system. Most released uranium was found in the clay. The fraction of uranium, dissolved from the UO{sub 2} pellet and found on the clay represents about 42 % of total uranium release in the system BC-BCW and more than 76 % in the system KB-BCW. The higher uranium retention of Boom Clay goes together with a higher dissolution rate. Global dissolution rates were estimated at about 2.0 x 10{sup -2} {mu}g.cm{sup -2}.d{sup -1} for the BCBCW system and 3.4 x 10{sup -3} {mu}g.cm{sup -2}.d{sup -1} for the KB-BCW system. This is not much lower than for similar tests with spent fuel, reported in literature. (authors)

  7. Conceptual model analysis of interaction at a concrete-Boom Clay interface

    NASA Astrophysics Data System (ADS)

    Liu, Sanheng; Jacques, Diederik; Govaerts, Joan; Wang, Lian

    In many concepts for deep disposal of high-level radioactive waste, cementitious materials are used in the engineered barriers. For example, in Belgium the engineered barrier system is based on a considerable amount of cementitious materials as buffer and backfill in the so-called supercontainer embedded in the hosting geological formation. A potential hosting formation is Boom Clay. Insight in the interaction between the high-pH pore water of the cementitious materials and neutral-pH Boom Clay pore water is required. Two problems are quite common for modeling of such a system. The first one is the computational cost due to the long timescale model assessments envisaged for the deep disposal system. Also a very fine grid (in sub-millimeter), especially at interfaces has to be used in order to accurately predict the evolution of the system. The second one is whether to use equilibrium or kinetic reaction models. The objectives of this paper are twofold. First, we develop an efficient coupled reactive transport code for this diffusion-dominated system by making full use of multi-processors/cores computers. Second, we investigate how sensitive the system is to chemical reaction models especially when pore clogging due to mineral precipitation is considered within the cementitious system. To do this, we selected two portlandite dissolution models, i.e., equilibrium (fastest) and diffusion-controlled model with precipitation of a calcite layer around portlandite particles (diffusion-controlled dissolution). The results show that with shrinking core model portlandite dissolution and calcite precipitation are much slower than with the equilibrium model. Also diffusion-controlled dissolution smooths out dissolution fronts compared to the equilibrium model. However, only a slight difference with respect to the clogging time can be found even though we use a very small diffusion coefficient (10-20 m2/s) in the precipitated calcite layer.

  8. Hollow Cylinder Tests on Boom Clay: Modelling of Strain Localization in the Anisotropic Excavation Damaged Zone

    NASA Astrophysics Data System (ADS)

    François, Bertrand; Labiouse, Vincent; Dizier, Arnaud; Marinelli, Ferdinando; Charlier, Robert; Collin, Frédéric

    2014-01-01

    Boom Clay is extensively studied as a potential candidate to host underground nuclear waste disposal in Belgium. To guarantee the safety of such a disposal, the mechanical behaviour of the clay during gallery excavation must be properly predicted. In that purpose, a hollow cylinder experiment on Boom Clay has been designed to reproduce, in a small-scale test, the Excavation Damaged Zone (EDZ) as experienced during the excavation of a disposal gallery in the underground. In this article, the focus is made on the hydro-mechanical constitutive interpretation of the displacement (experimentally obtained by medium resolution X-ray tomography scanning). The coupled hydro-mechanical response of Boom Clay in this experiment is addressed through finite element computations with a constitutive model including strain hardening/softening, elastic and plastic cross-anisotropy and a regularization method for the modelling of strain localization processes. The obtained results evidence the directional dependency of the mechanical response of the clay. The softening behaviour induces transient strain localization processes, addressed through a hydro-mechanical second grade model. The shape of the obtained damaged zone is clearly affected by the anisotropy of the materials, evidencing an eye-shaped EDZ. The modelling results agree with experiments not only qualitatively (in terms of the shape of the induced damaged zone), but also quantitatively (for the obtained displacement in three particular radial directions).

  9. A Laboratory Experimental Study of the Hydromechanical Behavior of Boom Clay

    NASA Astrophysics Data System (ADS)

    Bésuelle, Pierre; Viggiani, Gioacchino; Desrues, Jacques; Coll, Cécile; Charrier, Pascal

    2014-01-01

    This paper reports some results of a large experimental program on Boom Clay conducted in Grenoble in the framework of the European project SELFRAC. The program included isotropic compression up to relatively high stress, drained triaxial compression tests at different cell pressures, as well as permeability measurements under isotropic and deviatoric stress. Local measurement of axial and radial displacements allowed the detection of strain localization during deviatoric loading. The permeability of Boom Clay is found to depend on the mean effective stress. The response of Boom Clay during deviatoric loading appears to be strongly affected by the swelling experienced during the isotropic stage preceding triaxial compression. The rate of swelling decreases with isotropic stress. The longer the swelling before shear, more the response under shear becomes ductile and the lower the initial stiffness. Permeability depends on the mean effective stress and it is found to decrease of about two orders of magnitude when the mean stress increases from 1 to 32 MPa. Permeability during shear loading is essentially constant and does not seem to be affected by strain localization. These results are complemented by a few observations obtained using X-ray microtomography in the framework of the more recent European project TIMODAZ. These findings illustrate the impact of pre-existing inclusions and fissures on specimen deformation upon deviatoric loading in the laboratory.

  10. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  11. Palaeoceanographic approach to the Kimmeridge Clay Formation

    SciTech Connect

    Miller, R.G. )

    1988-08-01

    The Upper Jurassic/Lower Cretaceous Kimmeridge Clay Formation (KCF) is northern Europe's premier source rock and can be understood using a new but relatively simple oceanographic model. This explains or accommodates most current observations about the KCF and its depositional environment and draws upon paleogeographic, paleoclimatic, geochemical, sedimentological, and paleontological evidence.

  12. Clay mineral formation and transformation in rocks and soils

    USGS Publications Warehouse

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  13. Selecting brines and clay stabilizers to prevent formation damage

    SciTech Connect

    Evans, B.; Ali, S.

    1997-05-01

    Although many technical reports have been written about formation damage caused by brine/formation interactions, this article discusses the effects brines and chemical clay stabilizers have on pure samples of kaolinite, smectite, illite and chlorite clays. Analytical chemistry and geochemical models were not employed in this study; instead, capillary suction time tests were used to empirically compare clay migration and swelling characteristics when samples were exposed to certain brine/clay stabilizer combinations. Objective of the study was to determine which type of clay was most damaging in reservoir rocks, and whether one brine or chemical stabilizer could meet the needs of stabilizing all clay types. This information is provided with well completion operations in mind, especially when fluid cost/performance is a major concern. This article compares the unique brine/chemical stabilizer reaction characteristics of each clay type common to oil and gas reservoirs.

  14. Ground-Recorded Sonic Boom Signatures of F-18 Aircraft in Formation Flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1996-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the tail shock of the upper F-18 (called tail-canopy). The second formation had the canopy of the lower F- 18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft . An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  15. Ground-recorded sonic boom signatures of F-18 aircraft formation flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1995-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  16. Impact-Induced Clay Mineral Formation and Distribution on Mars

    NASA Technical Reports Server (NTRS)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  17. Alteration of the molecular-size-distribution of Boom Clay dissolved organic matter induced by Na+ and Ca2 +

    NASA Astrophysics Data System (ADS)

    Durce, D.; Maes, N.; Bruggeman, C.; Van Ravestyn, L.

    2016-02-01

    In porous media, the extent of dissolved organic matter (DOM)-facilitated contaminant transport depends on the concentration, conformation and the size of the dissolved organic species. Yet, these parameters are highly sensitive to the ionic strength (IS) and the ionic composition of the solution. Boom Clay (BC) which is considered in Belgium as a potential host rock for nuclear waste disposal contains polydisperse DOM that might associate with radionuclide and increase their mobility. To get more insight into the effect of IS on DOM structure and into its impact on the solid/solution partitioning of OM in BC is essential for safety assessment. In a first set, we investigated the influence of NaCl and CaCl2 content on the concentration, the MW distribution and UV spectral parameters of DOM collected from BC. With an increase in IS two main mechanisms were identified: a compaction and/or dissociation of the DOM molecules and an aggregation. We showed that the sensitivity of the DOM species to these two mechanisms was size/MW dependent and that the presence of Ca2 + promotes the aggregation. The largest species are more prone to aggregation which at the extreme leads to their transfer to particulate OM. On the contrary, small DOM species hardly aggregate but compact or dissociate with an increase of IS. These observations were confirmed in the second experimental set in which we followed the release of DOM from BC rock in various electrolytes. The increase of IS and multivalent cations content reduces the amount, the degree of aromaticity and the MW of DOM released from BC which limit the extent of DOM-facilitated contaminant transport in BC.

  18. Alteration of the molecular-size-distribution of Boom Clay dissolved organic matter induced by Na(+) and Ca(2.).

    PubMed

    Durce, D; Maes, N; Bruggeman, C; Van Ravestyn, L

    2016-01-01

    In porous media, the extent of dissolved organic matter (DOM)-facilitated contaminant transport depends on the concentration, conformation and the size of the dissolved organic species. Yet, these parameters are highly sensitive to the ionic strength (IS) and the ionic composition of the solution. Boom Clay (BC) which is considered in Belgium as a potential host rock for nuclear waste disposal contains polydisperse DOM that might associate with radionuclide and increase their mobility. To get more insight into the effect of IS on DOM structure and into its impact on the solid/solution partitioning of OM in BC is essential for safety assessment. In a first set, we investigated the influence of NaCl and CaCl2 content on the concentration, the MW distribution and UV spectral parameters of DOM collected from BC. With an increase in IS two main mechanisms were identified: a compaction and/or dissociation of the DOM molecules and an aggregation. We showed that the sensitivity of the DOM species to these two mechanisms was size/MW dependent and that the presence of Ca(2+) promotes the aggregation. The largest species are more prone to aggregation which at the extreme leads to their transfer to particulate OM. On the contrary, small DOM species hardly aggregate but compact or dissociate with an increase of IS. These observations were confirmed in the second experimental set in which we followed the release of DOM from BC rock in various electrolytes. The increase of IS and multivalent cations content reduces the amount, the degree of aromaticity and the MW of DOM released from BC which limit the extent of DOM-facilitated contaminant transport in BC. PMID:26788872

  19. Transport of Organic Solutes in Clay Formations

    EPA Science Inventory

    The research is a pilot investigation for the SERDP (Strategic Environmental Research and Development Program, DoD) founded project, Impact of Clay-DNAPL Interactions on Transport and Storage of Chlorinated Solvents in Low Permeability Zones, from 2010-2012. The report tries to s...

  20. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    NASA Astrophysics Data System (ADS)

    Verstricht, J.; Areias, L.; Bastiaens, W.; Li, X. L.

    2010-06-01

    Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure), or it can be an indirect technique, deriving the stress from related quantities such as strain (changes) in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter). Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  1. Freeze-agglomeration: An alternative mechanism for clay film formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oriented clay coatings (argillans, clay cutans, clay films, lamellae) are often interpreted to be caused by illuviation (pervection, lessivage) of fine clay particles. In montane meadow soils (Typic Humaquepts) of the northern Sierra Nevada Range, prominent clay cutans occur on ped faces of a paleos...

  2. Sonic boom

    NASA Astrophysics Data System (ADS)

    Maglieri, Domenic J.; Plotkin, Kenneth J.

    1991-08-01

    A status of the knowledge of sonic booms is provided, with emphasis on their generation, propagation and prediction. For completeness, however, material related to the potential for sonic boom alleviation and the response to sonic booms is also included. The material is presented in the following sections: (1) nature of sonic booms; (2) review and status of theory; (3) measurements and predictions; (4) sonic boom minimization; and (5) responses to sonic booms.

  3. Biogenic smectite clay formation in subsurface granitic environments

    NASA Astrophysics Data System (ADS)

    Tuck, V.; Edyvean, R.; West, J.; Bateman, K.; Coombs, P.; Milodowski, A.

    2003-04-01

    Many bacteria and biofilms in groundwater environments are able to adsorb and accumulate soluble components from an aqueous environment and exert a strong influence on the attenuation and transport of a significant range of dissolved species including many pollutants. They can also act as catalysts or nucleation sites for authigenic mineral phases such as metal sulphides or complex silicates. The processes involved are not well defined, but appear to range from large-scale interactions altering bulk groundwater chemistry to very small-scale interactions involving geochemical and physical alterations within biofilms and at the mineral surface. The purpose of this research program is to investigate biologically-induced and unusually rapid formation of smectite and chlorite clays. The work expands on experiments conducted by the British Geological Survey designed to simulate rock-water/microbial interactions, radionuclide mobility and groundwater redox-buffering capacity in the vicinity of the Äspö Underground Research Laboratory (URL) in Sweden. Packed-columns were set up containing crushed Äspö granodiorite, saline groundwater (simulating Äspö’s) and either single or combined inoculations of two bacteria species isolated from the Äspö URL, an iron-reducer Shewanella putrefaciens and a sulphate-reducer Desulfovibrio aespoeensis. Flow was maintained at 12ml/day to mimic that in the Äspö region, and strict anaerobic/reducing conditions were maintained throughout the experiments. Results showed that the iron-reducing bacteria S. putrefaciens quickly attached to surfaces and formed extensive filamentous biofilm meshes across porespaces. Neoformed smectite and chlorite clays also appeared on or near the biofilaments along with a calcium sulphate precipitate. Both of these processes (clay formation and the production of a mesh-like biofilm) served to cause total blockage of the pores, rendering the aggregate impermeable and thus cutting off the flow of

  4. Diagenesis and clay mineral formation at Gale Crater, Mars

    SciTech Connect

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-18

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  5. Diagenesis and clay mineral formation at Gale Crater, Mars

    DOE PAGESBeta

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-18

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO₂-poor and oxidizing, dilute aqueous solution (Gale Portage Water)more » in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ~7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.« less

  6. Diagenesis and clay mineral formation at Gale Crater, Mars

    PubMed Central

    Bridges, J C; Schwenzer, S P; Leveille, R; Westall, F; Wiens, R C; Mangold, N; Bristow, T; Edwards, P; Berger, G

    2015-01-01

    The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of ∽7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component. PMID:26213668

  7. Diagenesis and clay mineral formation at Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2015-01-01

    Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10-50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100-1000, pH of ~7.5-12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  8. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    NASA Astrophysics Data System (ADS)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  9. Zip Boom

    NASA Technical Reports Server (NTRS)

    Swan, Scott; Smallcombe, Richard

    1995-01-01

    Lightweight deployable structural elements combined in stiff geometry. Three ribbons of spring material joined at edges to form triangular boom. Flexible case zips around extending boom to keep it triangular.

  10. Mechanisms of clay smear formation in 3D - a field study

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; Tronberens, Sebastian; Urai, Janos; Asmus, Sven

    2016-04-01

    Clay smears in sedimentary basins are important factors defining the sealing properties of faults. However, as clay smears are highly complex 3D structures, processes involved in the formation and deformation of clay smears are not well identified and understood. To enhance the prediction of sealing properties of clay smears extensive studies of these structures are necessary including the 3D information. We present extraordinary outcrop data from an open cast lignite mine (Hambach) in the Lower Rhine Embayment, Germany. The faults formed at a depth of 150 m, and have Shale Gouge Ratios between 0.1 and 0.3. Material in the fault zones is layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. We studied the 3D thickness distribution of clay smear from a series of thin-spaced incremental cross-sections and several cross-sections in larger distances along the fault. Additionally, we excavated two large clay smear surfaces. Our observations show that clay smears are strongly affected by R- and R'-shears, mostly at the footwall side of our outcrops. These shears can locally cross and offset clay smears, forming holes. Thinnest parts of the clay smears are often located close to source layer cutoffs. Investigating the 3D thickness of the clay smears shows a heterogeneous distribution, rather than a continuous thinning of the smear with increasing distance to the source layers. We found two types of layered clay smears: one with continuous sheared sand between two clay smears providing vertical pathways for fluid flow, and one which consists of overlapping clay patches separated by sheared sand that provide a tortuous pathway across the clay smear. On smaller scale we identified grain-scale mixing as an important process for the formation of clay smears. Sand can be entrained into the clay smear by mixing from the surrounding host rock as well as due to intense shearing of sand lenses that were incorporated into the smear. This causes clay smears

  11. Clay and Magnetite Formation at Yellowknife Bay, Mars

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.

    2014-09-01

    Sheepbed mudstone contains a clay-magnetite assemblage formed by dissolution of approximately 70% amorphous phase, 20% olivine, 10% host rock mixture, by a pore fluid at moderate W/R ratio. The clay is similar to Lafayette's ferric saponite and gel.

  12. Formation of stable nanocomposite clays from small peptides reacted with montmorillonite and illite-smectite mixed layer clays

    NASA Astrophysics Data System (ADS)

    Block, K. A.; Katz, A.; LeBlanc, J.; Peña, S.; Gottlieb, P.

    2015-12-01

    at the clay platelet edges to induce exfoliation and subsequent formation of stable nanocomposite clays.

  13. Nanostructures and radionuclide transport in clay formations (Invited)

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2010-12-01

    Nanostructures are widely present in geologic materials and are expected to directly affect the interactions of these materials with geologic fluids. The study of mineral-water interface chemistry as controlled by nanostructures is a necessary step to bridge the existing gap between the molecular level understanding of a geochemical process and the macro-scale laboratory and field observations. In this presentation, I will review the recent progresses in nanoscience and provide a perspective on how these progresses can potentially impact geochemical studies. My presentation will be focused the following areas: (1) the characterization of nanostructures in natural systems, (2) the study of water and chemical species in nanoconfinement, (3) the effects of nanopores on geochemical reaction and mass transfers, and (4) the use nanostructured materials for environmental remediation and cleanup. Specifically, I will demonstrate that the nanopore confinement can significantly modify geochemical reactions in porous geologic media. As the pore size is reduced to a few nanometers, the difference between surface acidity constants (pK2 - pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined mineral-water interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on nanopore surfaces. This effect causes preferential enrichment of trace elements in nanopores and therefore directly impacts the bioavailability of these elements. The implication of these processes to radionuclide transport in clay formations will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  14. Universal scaling of the formation factor in clays: Example from the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Ghanbarian, Behzad; Henry, Pierre; Conin, Marianne

    2015-11-01

    Electrical conductivity is a fundamental characteristic describing how strongly a network opposes flow of electrical current. In fully water-saturated porous media the conductivity, represented by the formation factor, is mainly controlled by porosity, connectivity of the conducting phases, and the tortuosity of electrical current paths. Previous work has shown that universal scaling derived from percolation and effective medium theories accurately describes the relationship between formation factor and porosity when the percolation threshold is taken account, as well as the porosity value at which the scaling switches from percolation theory to effective medium theory. We determined the formation factor in clay-rich sediments based on cation exchange capacity measurements on samples from five scientific ocean drilling sites in the Nankai Trough. We then compared the results to predictions from universal scaling after determining the volume of clay-bound water and the percolation threshold. We found that the previously reported universal scaling relations hold in these clay-rich sediments once the corrections are made for the clay-bound water and that percolation scaling appears to be valid over the entire range of observed porosities, probably due to relatively broad pore size distributions or low pore system connectivity. Our results show that universal scaling can be applied to describe the porosity dependence of the formation factor in clay-rich sediments when appropriate corrections are made for the presence of clay-bound water.

  15. Clay mineral diagenesis in Westwater Canyon sandstone member of Morrison Formation, San Juan basin, New Mexico

    SciTech Connect

    Crossey, L.J. )

    1989-09-01

    The Westwater Canyon Sandstone Member and the Brushy Basin and Recapture Shale Members of the Morrison Formation are examined from core located on the southern flank of the San Juan basin, northwestern New Mexico. Clay mineralogy of fine-grained lithologies of the Westwater Canyon Sandstone Member is contrasted with that of coarse-grained lithologies. Two distinct mixed-layer clay populations are present: a high expandable mixed-layer illite/smectite associated with coarse-grained lithologies. Two distinct mixed-layer clay populations are present: a highly expandable mixed-layer illite/smectite associated with coarse-grained units (in addition to chlorite and kaolinite), and an illitic mixed-layer illite/smectite (in some cases ordered and accompanied by traces of chlorite) in the fine-grained units. The expandable component of the mixed-layer clay does not exhibit a trend with depth but is lithology dependent. Coarse-grained samples from the Westwater Canyon Sandstone Member contain numerous mudstone intraclasts. The clay mineralogy of selected clasts has been examined. These lithologic characteristics must be taken into account in interpreting clay mineral diagenesis within the Morrison Formation. Framework grain alternation within the Westwater Canyon Sandstone Member has been linked to lacustrine facies in the overlying Brushy Basin Shale Member. Authigenic clay minerals within the Westwater Canyon Sandstone Member may provide a record of downward-percolating lake fluids. Early diagenetic effects must be recognized in order to interpret the complete diagenetic history of the Westwater Canyon Sandstone Member.

  16. The formation of goethite and hydrated clay minerals on Mars

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.

    1974-01-01

    Laboratory studies reported by Huguenin (1973) on the kinetics and mechanism of the photostimulated oxidation of magnetic and preliminary laboratory data on the weathering of silicates, reported herein, are applied to Mars. Basalts in the Martian dark areas are predicted to alter to hydrated Fe(2 plus or minus) depleted clay minerals, minor goethite, and minor to trace amounts of transition metal oxides such as TiO2, MnO2, and Cr2O3 at a rate of 10 to the minus 1.5 plus or minus 1.5 micron/yr. Some Ca-Mg carbonates are also expected to be formed. The clay minerals are predicted to be more silica-rich than the silicate source material, SiO2 contents of 60% or higher being expected, and strongly depleted in Fe(2+). The oxygen, OH, and H2O contents of the bulk weathering product are predicted to be significantly greater than those of the dark-area source materials, whereas the relative bulk metal abundances should be the same.

  17. Quantitative clay typing and lithological evaluation of subsurface formations

    SciTech Connect

    Herron, M.M.

    1990-02-27

    This patent describes a method for investigating, through logging, an earth formation transversed by a borehole. It comprises: determining, by logging the the borehole, the indications of at least two indexers; determining a value for at least two dominant attributes, including at least one mineral, of the formation by operating with an indexer-to-attribute transform on the at least two indexers, wherein the dominant attributes are identified by a multivariate statistical analysis on data obtained from a formation; and generating a tangible record of the values of the dominant attributes.

  18. Enhancement of peptide bond formation by polyribonucleotides on clay surfaces in fluctuating environments

    NASA Technical Reports Server (NTRS)

    White, D. H.; Erickson, J. C.

    1981-01-01

    The selective effects of polyribonucleotides on the formation of glycine peptide bonds in glycine on clay surfaces are investigated as a model for a template mechanism for the effects of polynucleotides on peptide bond formation. Free oligoglycine yields were determined for the cycling reaction of glycine in the presence and absence of clay and polyribonucleotides or polydeoxyribonucleotides. The polyribonucleotides are observed to lead to increases of up to fourfold increases in oligoglycine formed, with greater enhancements for poly-G nucleotides than for poly-A, poly-U and poly-C, indicating a codonic bias. Polydeoxyribonucleotides are found to provide no enhancement in peptide formation rates, and yields were also greatly reduced in the absence of clay. A mechanism for peptide synthesis is proposed which involves the activation of glycine on the clay surface, followed by the formation of esters between glycine and the 2-prime OH groups of the polyribonucleotide and peptide bonds between adjacent amino acyl esters. It is pointed out that if this mechanism is correct, it may provide a basis for a direct template translation process, which would produce a singlet genetic code.

  19. Clay surface catalysis of formation of humic substances: potential role of maillard reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms of the formation of humic substances are poorly understood, especially the condensation of amino acids and reducing sugars products (Maillard reaction) in soil environments. Clay minerals behave as Lewis and Brönsted acids and catalyze several reactions and likely to catalyze the Mai...

  20. Nature of Mixed-Layer Clays and Mechanisms of their Formation and Alteration

    NASA Astrophysics Data System (ADS)

    Srodon, Jan

    Mixed-layer clay minerals are intermediate products of reactions involving pure end-member clays. They come from natural environments ranging from surface to low-grade metamorphic and hydrothermal conditions. Most often mixed layering is essentially two component, but more complicated interstratifications have also been documented. Variable tendency to form regular 1:1 interstratifications has been observed and explanations of this phenomenon have been proposed. Mixed-layer clays are either di- or trioctahedral; di/trioctahedral interstratifications are rare. Most mixed-layer clays contain smectite or vermiculte as a swelling component. Exceptions are all trioctahedral: serpentine/chlorite in low-temperature environments, and mica/chlorite and talc/chlorite at high temperatures. Solid state transformation and dissolution/crystallization are the two mechanisms responsible for the formation of different mixed-layer clays. In general, the weathering reactions that produce mixed layering are reversals of the corresponding high-temperature reactions, but the reaction paths are quite different. Weathering reactions alter smectite into kaolinite via mixed-layer kaolinite/smectite. Illite, chlorite, and micas react into mixed-layer clays involving vermiculite layer, then into vermiculite, and finally smectite. Interstratifications of smectite and glauconite, serpentine and chlorite, and smectite and talc are characteristic of early diagenesis and indicative of sedimentary environments. Three reactions involving mixed-layer clays-smectite to illite, smectite to chlorite, and serpentine/chlorite to chlorite-proceed gradually during burial diagenesis and are used for reconstructing maximum burial conditions, illite/smectite being the most useful tool. Rectorite, tosudite, talc/chlorite, and mica/chlorite are mixed-layer minerals indicative of temperatures higher than diagenetic, characteristic of low-temperature metamorphism or hydrothermal alteration.

  1. Subsurface water and clay mineral formation during the early history of Mars.

    PubMed

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-01

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface. PMID:22051674

  2. Bacterial interactions and transport in geological formation of alumino-silica clays.

    PubMed

    Vu, Kien; Yang, Guang; Wang, Boya; Tawfiq, Kamal; Chen, Gang

    2015-01-01

    Bacterial transport in the subsurface is controlled by their interactions with the surrounding environment, which are determined by the surface properties of the geological formation and bacterial surfaces. In this research, surface thermodynamic properties of Escherichia coli and the geological formation of alumino-silica clays were characterized based on contact angle measurements, which were utilized to quantify the distance-dependent interactions between E. coli and the geological formation according to the traditional and extended Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. E. coli attachment to alumino-silica clays was evaluated in laboratory columns under saturated and steady-state flow conditions. E. coli deposition coefficient and desorption coefficient were simulated using convection-dispersion transport models against E. coli breakthrough curves, which were then linked to interactions between E. coli and the geological formation. It was discovered that E. coli deposition was controlled by the long-ranged electrostatic interaction and E. coli desorption was attributed to the short-ranged Lifshitz-van der Waals and Lewis acid-base interactions. E. coli transport in three layers of different alumino-silica clays was further examined and the breakthrough curve was simulated using E. coli deposition coefficient and desorption coefficient obtained from their individual column experiments. The well-fitted simulation confirmed that E. coli transport observations were interaction-dependent phenomena between E. coli and the geological formation. PMID:25437062

  3. Investigating the behaviour of Mg isotopes during the formation of clay minerals

    NASA Astrophysics Data System (ADS)

    Wimpenny, Joshua; Colla, Christopher A.; Yin, Qing-Zhu; Rustad, James R.; Casey, William H.

    2014-03-01

    We present elemental and isotopic data detailing how the Mg isotope system behaves in natural and experimentally synthesized clay minerals. We show that the bulk Mg isotopic composition (δ26Mg) of a set of natural illite, montmorillonite and kaolinite spans a 2‰ range, and that their isotopic composition depends strongly on a balance between the relative proportions of structural and exchangeable Mg. After acid leaching, these natural clays become relatively enriched in isotopically heavy Mg by between 0.2‰ and 1.6‰. Results of exchange experiments indicate that the Mg that has adsorbed to interlayer spaces and surface charged sites is relatively enriched in isotopically light Mg compared to the residual clay. The isotopic composition of this exchangeable Mg (-1.49‰ to -2.03‰) is characteristic of the isotopic composition of Mg found in many natural waters. Further experiments with an isotopically characterized MgCl2 solution shows that the clay minerals adsorb this exchangeable Mg with little or no isotopic fractionation, although we cannot discount the possibility that the uptake of exchangeable Mg does so with a slight preference for 24Mg. To characterize the behaviour of Mg isotopes during clay mineral formation we synthesized brucite (Mg(OH)2), which we consider to be a good analogue for the incorporation of Mg into the octahedral sheet of Mg-rich clay minerals or into the brucitic layer of clays such as chlorite. In our experiment the brucite mineral becomes enriched in the heavy isotopes of Mg while the corresponding solution is always relatively enriched in isotopically light Mg. The system reaches a steady state after 10 days with a final fractionation factor (αsolid-solution) of 1.0005 at near-neutral pH. This result is consistent with the general consensus that secondary clay minerals preferentially take up isotopically heavy Mg during their formation. However our results also show that exchangeable Mg is an important component within bulk

  4. Mechanisms of clay smear formation in unconsolidated sediments - insights from 3-D observations of excavated normal faults

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; Thronberens, Sebastian; Juarez, Oscar; Lajos Urai, Janos; Ziegler, Martin; Asmus, Sven; Kruger, Ulrich

    2016-05-01

    Clay smears in normal faults can form seals for hydrocarbons and groundwater, and their prediction in the subsurface is an important problem in applied and basic geoscience. However, neither their complex 3-D structure, nor their processes of formation or destruction are well understood, and outcrop studies to date are mainly 2-D. We present a 3-D study of an excavated normal fault with clay smear, together with both source layers, in unlithified sand and clay of the Hambach open-cast lignite mine in Germany. The faults formed at a depth of 150 m, and have shale gouge ratios between 0.1 and 0.3. The fault zones are layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. The thickness of clay smears in two excavated fault zones of 1.8 and 3.8 m2 is approximately log-normal, with values between 5 mm and 5 cm, without holes. The 3-D thickness distribution is heterogeneous. We show that clay smears are strongly affected by R and R' shears, mostly at the footwall side. These shears can locally cross and offset clay smears, forming holes in the clay smear, while thinning of the clay smear by shearing in the fault core is less important. The thinnest parts of the clay smears are often located close to source layer cut-offs. Locally, the clay smear consists of overlapping patches of sheared clay, separated by sheared sand. More commonly, it is one amalgamated zone of sheared sand and clay. A microscopic study of fault-zone samples shows that grain-scale mixing can lead to thickening of the low permeability smears, which may lead to resealing of holes.

  5. Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks

    NASA Astrophysics Data System (ADS)

    Sun, Vivian Z.; Milliken, Ralph E.

    2015-12-01

    Clay minerals on Mars have commonly been interpreted as the remnants of pervasive water-rock interaction during the Noachian period (>3.7 Ga). This history has been partly inferred by observations of clays in central peaks of impact craters, which often are presumed uplifted from depth. However, combined mineralogical and morphological analyses of individual craters have shown that some central peak clays may represent post-impact, possibly authigenic processes. Here we present a global survey of 633 central peaks to assess their hydrous minerals and the prevalence of uplifted, detrital, and authigenic clays. Central peak regions are examined using high-resolution Compact Reconnaissance Imaging Spectrometer for Mars and High Resolution Imaging Science Experiment data to identify hydrous minerals and place their detections in a stratigraphic and geologic context. We find that many occurrences of Fe/Mg clays and hydrated silica are associated with potential impact melt deposits. Over 35% of central peak clays are not associated with uplifted rocks; thus, caution must be used when inferring deeper crustal compositions from surface mineralogy of central peaks. Uplifted clay-bearing rocks suggest the Martian crust hosts clays to depths of at least 7 km. We also observe evidence for increasing chloritization with depth, implying the presence of fluids in the upper portions of the crust. Our observations are consistent with widespread Noachian/Early Hesperian clay formation, but a number of central peak clays are also suggestive of clay formation during the Amazonian. These results broadly support current paradigms of Mars' aqueous history while adding insight to global crustal and diagenetic processes associated with clay mineral formation and stability.

  6. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    NASA Astrophysics Data System (ADS)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  7. Bacterial diversity in a deep-subsurface clay environment.

    PubMed Central

    Boivin-Jahns, V; Ruimy, R; Bianchi, A; Daumas, S; Christen, R

    1996-01-01

    The presence of bacteria in a deep clay sediment was analyzed in a 20-m-long core horizontally drilled from a mine gallery at a depth of 224 m in the Boom clay formation (Mol, Belgium). This clay deposit is the result of a marine sedimentary process that occurred 35 million years ago. Bacterial activities were estimated by measuring respiration on [14C]glucose. Using the same samples, universal primers for the genes coding for eubacterial 16S rRNA were used to amplify extracted DNA. PCR products were then cloned, sequenced, and analyzed by molecular phylogeny. Our data showed a decrease in bacterial densities as a function of distance from the gallery, with few bacteria detectable by culture at more than 80 cm from the gallery wall. PCR experiments showed the presence of bacteria in all samples, and phylogenetic analyses were then used to tentatively identify these organisms. Because of low bacterial densities in deep clay samples, direct counts and enumeration of viable bacteria on diverse culture media remained negative. All experiments, both cultures and PCR, demonstrated the difficulty of analyzing samples that contain only a few poorly active bacteria as it is difficult to avoid a small contamination by active bacteria during sampling. Since the porosity of the Boom clay formation is less than the expected size of bacteria, it is possible that some of the bacteria present in this 35-million-year-old deep clay deposit derive from cells initially trapped during the sedimentation process. PMID:8795233

  8. Clay formation and metal fixation during weathering of coal fly ash

    SciTech Connect

    Zevenbergen, C.; Bradley, J.P.; Reeuwijk, L.P. Van; Shyam, A.K.; Hjelmar, O.; Comans, R.N.J.

    1999-10-01

    The enormous and worldwide production of coal fly ash cannot be durably isolated from the weathering cycle, and the weathering characteristics of fly ash must be known to understand the long-term environmental impact. The authors studied the weathering of two coal fly ashes and compared them with published data from weathered volcanic ash, it's closest natural analogue. Both types of ash contain abundant aluminosilicate glass, which alters to noncrystalline clay. However, this study reveals that the kinetics of coal fly ash weathering are more rapid than those of volcanic ash because the higher pH of fresh coal fly ash promotes rapid dissolution of the glass. After about 10 years of weathering, the noncrystalline clay content of coal fly ash is higher than that of 250-year-old volcanic ash. The observed rapid clay formation together with heavy metal fixation imply that the long-term environmental impact of coal fly ash disposal may be less severe and the benefits more pronounced than predicted from previous studies on unweathered ash. Their findings suggest that isolating coal fly ash from the weathering cycle may be counterproductive because, in the long-term under conditions of free drainage, fly ash is converted into fertile soil capable of supporting agriculture.

  9. Clay mineralogy of Atokan Formation from the north western shelf basin, Eddy County, New Mexico

    SciTech Connect

    Sivalingam, S. )

    1993-03-01

    The typical clay minerals in the Atokan shales consists of randomly mixed illite/smectite (I/S) layers with minor amounts of kaolinite, chlorite and illite. However, in the sandstones authigenic kaolinite and Fe-rich chlorites are the predominant clay type. The illite/smectite mixed layers are composed of a mixture of R0 and R1 types with about 40% to 65% illite. The majority of the negative charges in the I/S particles are due to Al substitution for Si in the tetrahedra. The octahedral population is dominated by Al, ranging from 1.76 to 1.71 ions, the remainder of the octahedra is filled by Mg and Fe. Interlayer K ranges from 0.32 to 0.42 ions. The cation exchange capacity (CEC) of shales ranges from 30 to 50 meq/100 gm. Shales with the highest amount of total clays showed the highest CEC. Under transmission electron microscopy, the clay particles occur as surrounded lamellar aggregates with some early stages of discrete domain formation and overgrowths. High resolution lattice images of the I/S mixed layers appear as wavy, anastomising layers. Edge dislocations are common and lattice thickness ranges from 10.08[angstrom] to 30[angstrom], indicating the existence of a wide range of mixed layering. Some discrete packets of illite are observed within the stacks of I/S layers. Electron diffraction patterns observed from the I/S particles showed a combination of continuous and semi-continuous rings, spots and arced patterns, indicating turbostratic stacking sequence.

  10. Uncertainty in the reactive transport model response to analkaline perturbation in a clay formation

    SciTech Connect

    Burnol, A.; Blanc, P.; Xu, T.; Spycher, N.; Gaucher, E.C.

    2006-03-15

    The mineral alteration in the concrete barrier and in the clay formation around long-lived intermediate-level radioactive waste in the French deep geological disposal concept is evaluated using numerical modeling. There are concerns that the mineralogical composition of the surrounded clay will not be stable under the high alkaline pore fluid conditions caused by concrete (pH {approx} 12). Conversely, the infiltration of CO{sub 2}-rich groundwater from the clay formation into initially unsaturated concrete, at the high temperature (T {approx} 70 C) produced from the decay of radionuclides, could cause carbonation, thereby potentially affecting critical performance functions of this barrier. This could also lead to significant changes in porosity, which would affect aqueous diffusive transport of long-lived radionuclides. All these processes are therefore intimately coupled and advanced reactive transport models are required for long-term performance assessment. The uncertainty in predictions of these models is one major question that must be answered. A mass-transfer model response to an alkaline perturbation in clay with standard model values is first simulated using the two-phase non-isothermal reactive transport code TOUGHREACT. The selection of input parameters is thereafter designed to sample uncertainties in a wide range of physico-chemical processes without making a priori assumptions about the relative importance of different feedbacks. This 'base-case' simulation is perturbed by setting a parameter to a minimum, intermediate or maximum value or by switching on/off a process. This sensitivity analysis is conducted using grid computing facilities of BRGM (http://iggi.imag.fr). Our evaluation of the preliminary results suggests that the resaturation and the heating of the near-field will be of long enough duration to cause a limited carbonation through all the width of the concrete barrier. Another prediction is the possibility of self-sealing at the concrete/clay

  11. Acyl silicates and acyl aluminates as activated intermediates in peptide formation on clays

    NASA Technical Reports Server (NTRS)

    White, D. H.; Kennedy, R. M.; Macklin, J.

    1984-01-01

    Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. The proposed mechanism has been confirmed by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespead, geologically realistic setting for prebiotic peptide formation via in situ activation.

  12. Pedogenic formation of montmorillonite from a 2:1-2:2 intergrade clay mineral

    USGS Publications Warehouse

    Malcolm, R.L.; Nettleton, W.D.; McCracken, R.J.

    1969-01-01

    Montmorillonite was found to be the dominant clay mineral in surface horizons of certain soils of the North Carolina Coastal Plain whereas a 2:1-2:2 intergrade clay mineral was dominant in subjacent horizons. In all soils where this clay mineral sequence was found, the surface horizon was low in pH (below 4??5) and high in organic matter content. In contrast, data from studies of other soils of this region (Weed and Nelson, 1962) show that: (1) montmorillonite occurs infrequently; (2) maximum accumulation of the 2:1-2:2 intergrade normally occurs in the surface horizon and decreases with depth in the profile; (3) organic matter contents are low; and (4) pH values are only moderately acid (pH 5-6). It is theorized that the montmorillonite in the surface horizon of the soils studied originated by pedogenic weathering of the 2:1-2:2 intergrade clay mineral. The combined effects of low pH (below 4??5) and high organic matter content in surface horizons are believed to be the agents responsible for this mineral transformation. The protonation and solubilization (reverse of hydrolysis) of Al-polymers in the interlayer of expansible clay minerals will occur at or below pH 4??5 depending on the charge and steric effects of the interlayer. A low pH alone may cause this solubilization and thus mineral transformation, but in the soils studied the organic matter is believed to facilitate and accelerage the transformation. The intermediates of organic matter decomposition provide an acid environment, a source of protons, and a source of watersoluble mobile organic substances (principally fulvic acids) which have the ability to complex the solubilized aluminum and move it down the profile. This continuous removal of solubilized aluminum would provide for a favorable gradient for aluminum solubilization. The drainage class or position in a catena is believed to be less important than the chemical factors in formation of montmorillonite from 2:1-2:2 intergrade, because

  13. Clay mineralogy of the Boda Claystone Formation (Mecsek Mts., SW Hungary)

    NASA Astrophysics Data System (ADS)

    Németh, Tibor; Máthé, Zoltán; Pekker, Péter; Dódony, István; Kovács-Kis, Viktória; Sipos, Péter; Cora, Ildikó; Kovács, Ivett

    2016-04-01

    Boda Claystone Formation (BCF) is the host rock of the planned site for high level nuclear waste repository inHungary. Samples representing the dominant rock types of BCF were studied: albitic claystone, claystone with high illite content, and analcime bearing claystone. Clay minerals in these three rock types were characterized by Xray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal analysis (DTA-TG), and the results were discussed from the point of view of the radionuclide sorption properties being studied in the future. Mineral compositions of bulk BCF samples vary in wide ranges. In the albitic sample, besides the dominant illite, few percent of chlorite represents the layer silicates in the clay fraction. Illite is the dominating phase in the illitic sample, with a few percent of chlorite. HRTEM study revealed that the thickness of illite particles rarely reaches 10 layers, usually are of 5-6 TOT layer thick. Illite crystals are generally thicker in the albitic sample than in the illitic one. The significant difference between the clay mineral characterisitics of the analcimous and the other two samples is that the former contains regularly interstratified chlorite/smectite beside the dominant illite. Based on the structural and chemical data two illite type minerals are present in the BCF samples: 1M polytype containing octahedral Fe and Mg besides Al, 2M polytype illite generally is free of Fe andMg. Close association of very thin illite plates and nanosized hematite crystals is typical textural feature for BCF. The goal of this study is to provide solid mineralogical basis for further studies focusing on radionuclide sorption properties.

  14. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    NASA Astrophysics Data System (ADS)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  15. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    PubMed Central

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  16. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles.

    PubMed

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10(-18) J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  17. Acyl Silicates and Acyl Aluminates as Activated Intermediates in Peptide Formation on Clays

    NASA Astrophysics Data System (ADS)

    White, David H.; Kennedy, Robert M.; Macklin, John

    1984-12-01

    Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate (i.e., the anhydride of a carboxylic acid with Si-OH or Al-OH), analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. We confirmed the proposed mechanism by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespread, geologically realistic setting for prebiotic peptide formation via in situ activation.

  18. Detection and cultivation of indigenous microorganisms in Mesozoic claystone core samples from the Opalinus Clay Formation (Mont Terri Rock Laboratory)

    NASA Astrophysics Data System (ADS)

    Mauclaire, L.; McKenzie, J. A.; Schwyn, B.; Bossart, P.

    Although microorganisms have been isolated from various deep-subsurface environments, the persistence of microbial activity in claystones buried to great depths and on geological time scales has been poorly studied. The presence of in-situ microbial life in the Opalinus Clay Formation (Mesozoic claystone, 170 million years old) at the Mont Terri Rock Laboratory, Canton Jura, Switzerland was investigated. Opalinus Clay is a host rock candidate for a radioactive waste repository. Particle tracer tests demonstrated the uncontaminated nature of the cored samples, showing their suitability for microbiological investigations. To determine whether microorganisms are a consistent and characteristic component of the Opalinus Clay Formation, two approaches were used: (i) the cultivation of indigenous micoorganisms focusing mainly on the cultivation of sulfate-reducing bacteria, and (ii) the direct detection of molecular biomarkers of bacteria. The goal of the first set of experiments was to assess the presence of cultivable microorganisms within the Opalinus Clay Formation. After few months of incubation, the number of cell ranged from 0.1 to 2 × 10 3 cells ml -1 media. The microorganisms were actively growing as confirmed by the observation of dividing cells, and detection of traces of sulfide. To avoid cultivation bias, quantification of molecular biomarkers (phospholipid fatty acids) was used to assess the presence of autochthonous microorganisms. These molecules are good indicators of the presence of living cells. The Opalinus Clay contained on average 64 ng of PLFA g -1 dry claystone. The detected microbial community comprises mainly Gram-negative anaerobic bacteria as indicated by the ratio of iso/anteiso phospholipids (about 2) and the detection of large amount of β-hydroxy substituted fatty acids. The PLFA composition reveals the presence of specific functional groups of microorganisms in particular sulfate-reducing bacteria ( Desulfovibrio, Desulfobulbus, and

  19. Lithologic Control on Secondary Clay Mineral Formation in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Caylor, E.; Rasmussen, C.; Dhakal, P.

    2015-12-01

    Understanding the transformation of rock to soil is central to landscape evolution and ecosystem function. The objective of this study was to examine controls on secondary mineral formation in a forested catchment in the Catalina-Jemez CZO. We hypothesized landscape position controls the type of secondary minerals formed in that well-drained hillslopes favor Si-poor secondary phases such as kaolinite, whereas poorly drained portions of the landscape that collect solutes from surrounding areas favor formation of Si-rich secondary phases such as smectite. The study focused on a catchment in Valles Caldera in northern New Mexico where soils are derived from a mix of rhyolitic volcanic material, vegetation includes a mixed conifer forest, and climate is characterized by a mean annual precipitation of ~800 mm yr-1 and mean annual temperature of 4.5°C. Soils were collected at the soil-saprolite boundary from three landscape positions, classified as well drained hillslope, poorly drained convergent area, and poorly drained hill slope. Clay fractions were isolated and analyzed using a combination of quantitative and qualitative x-ray diffraction (XRD) analyses and thermal analysis. Quantitative XRD of random powder mounts indicated the presence of both primary phases such as quartz, and alkali and plagioclase feldspars, and secondary phases that include illite, Fe-oxyhydroxides including both goethite and hematite, kaolinite, and smectite. The clay fractions were dominated by smectite ranging from 36-42%, illite ranging from 21-35%, and kaolinite ranging from 1-8%. Qualitative XRD of oriented mounts confirmed the presence of smectite in all samples, with varying degrees of interlayering and interstratification. In contrast to our hypothesis, results indicated that secondary mineral assemblage was not strongly controlled by landscape position, but rather varied with underlying variation in lithology. The catchment is underlain by a combination of porphorytic rhyolite and

  20. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life

    USGS Publications Warehouse

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-01-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  1. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life.

    PubMed

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D; Sears, S Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-06-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth. PMID:22794298

  2. GEOS axial booms

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.

    1979-01-01

    A booms and mechanisms subsystem was designed, developed, and qualified for the geostationary scientific satellite GEOS. Part of this subsystem consist of four axial booms consisting of one pair of 1 m booms and one pair of 2.5 m booms. Each of these booms is carrying one bird cage electric field sensor. Alignment accuracy requirements led to a telescopic type solution. Deployment is performed by pressurized nitrogen. At deployment in orbit two of these booms showed some anomalies and one of these two deployed only about 80%. Following this malfunction a detailed failure investigation was performed resulting in a design modification of some critical components as release mechanism, guide sleeves of the telescopic elements, and pressure system.

  3. Trepostome and cystoporate bryozoans from the Lexington Limestone and the Clays Ferry Formation (Middle and Upper Ordovician) of Kentucky

    USGS Publications Warehouse

    Karklins, O.L.

    1984-01-01

    The Lexington Limestone and the Clays Ferry Formation of Kentucky contain an abundant and diversified fossil invertebrate fauna. This report is concerned with the trepostome and cystoporate bryozoans that constitute a major part of that fauna. The Lexington Limestone, largely a biofragmental fossiliferous limestone, rests disconformably on the Tyrone Limestone (Middle Ordovician). The Clays Ferry Formation consists of approximately equal amounts of biofragmentallimestone and shale, and it overlies conformably, or intertongues with, the upper part of the Lexington Limestone. The Clays Ferry Formation is overlain by the Garrard Siltstone (Upper Ordovician) in central Kentucky and intertongues with the Kope Formation (Upper Ordovician) in northern Kentucky. The MiddleUpper Ordovician boundary falls within the upper part of the Lexington Limestone and laterally equivalent strata of the Clays Ferry Formation. The Lexington Limestone has been divided into 12 members, consisting of calcarenites, calcisiltites, calcilutites, nodular limestones, and shales in various amounts, that intertongue complexly. Because of the great abundance of bryozoans this study is generally limited to bryozoans recovered from, in ascending order, the Grier Limestone Member, the Perryville Limestone Member, the Brannon Member, the Tanglewood Limestone Member, and the Millersburg Member of the Lexington Limestone and from the Clays Ferry Formation and its Point Pleasant Tongue. The trepostome and cystoporate bryozoans discussed are referred to 36 species belonging to 22 genera. The trepostome component includes 29 species belonging to 16 genera: Amplexopora, Atactoporella, Balticopora, Batostoma, Cyphotrypa, Dekayia, Eridotrypa, Hetero-_ trypa, Homotrypa, Homotrypella, Mesotrypa, Parvohallopora, Peronopora, Prasopora, Stigmatella, and Tarphophragma, a new genus. Five of the trepostome species are new: Balticopora arcuatilis, Cyphotrypa switzeriensis, Dekayia epetrima, Eridotrypa sadievillensis

  4. Clays as possible catalysts for peptide formation in the prebiotic era

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1976-01-01

    From the point of view of prebiotic synthesis, clays might have performed functions of concentration, catalysis, and protection of molecules. The degrees of polymerization obtained, when amino acid adenylates are added to montmorillonite suspensions in water, are much higher than those obtained by polymerization in the absence of such a clay. In addition, they are of a discrete spectrum, usually multiples of 6 or 7, and reach values of up to 40 mers. In the absence of clay a continuous spectrum of degrees of polymerization is obtained, and usually up to 4-6 mers only. Copolymerization in the absence of clays yields mostly random copolymers, in their presence mostly block copolymers are obtained. Optical density measurements show that after adsorption has taken place on the clay, stacking of its layers occurs. Polymerization starts only after these stacked layers have been formed

  5. Climatic implications of alternating clay and carbonate formation in semiarid soils of South-Central Montana

    USGS Publications Warehouse

    Reheis, M.C.

    1987-01-01

    Evidence for climatic change is found in petrographic thin sections from soils formed on glaciofluvial deposits of Rock Creek and the lower Clarks Fork, Montana. These soils, presently in a semiarid climate, range from late Pliocene to Holocene in age, and have undergone periodic fluctuations in soil moisture caused by climatic changes. In the lower parts of soil B horizons, accretion of illuvial layers of clay (argillans) occurs mainly during wet (glacial) climatic periods, whereas carbonate precipitates mainly during dry (interglacial) climatic periods. Thin-section studies of the argillan and carbonate layers show that: (1) post-Pinedale soils that have formed only in the present interglacial climate contain areas of secondary carbonate unrelated to argillans, (2) soils formed on outwash of successively older glaciations contain proportionately more alternating layers of argillans and carbonate, and (3) the maximum number and sequence of layers in a soil correspond to the number of local cycles of glacial-outwash deposition and subsequent stream incision that followed the beginning of soil formation. These cycles are inferred to correspond to local glacial-interglacial fluctuations. The correspondence between the microscopic record and the glacial-outwash record for Rock Creek suggests that some of the climatic changes seen in the marine oxygen-isotope record did not strongly affect the study area. ?? 1987.

  6. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  7. Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay.

    PubMed

    Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N; Dellinger, Barry; Cook, Robert

    2016-01-01

    Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom. PMID:26647158

  8. Poly(N-isopropylacrylamide)-clay based hydrogels controlled by the initiating conditions: evolution of structure and gel formation.

    PubMed

    Strachota, Beata; Matějka, Libor; Zhigunov, Alexander; Konefał, Rafał; Spěváček, Jiří; Dybal, Jiří; Puffr, Rudolf

    2015-12-28

    The formation of the hydrogel poly(N-isopropylacrylamide)-clay (LAPONITE®) by redox polymerization was investigated, and the main factors governing the gel build-up were determined. The significant effect of the redox initiating system ammonium peroxodisulfate (APS) and tetramethylethylenediamine (TEMED) on gel formation and structure was established, making it possible to control the structure of the gel. Moreover, the pre-reaction stage involving the quality of the clay exfoliation in an aqueous suspension and the interaction of reaction components with the clay play a role in controlling the polymerization and gel structure. The molecular and phase structure evolution during polymerization was followed in situ by the following independent techniques: Fourier transform infrared spectroscopy (FTIR), chemorheology, small-angle X-ray scattering (SAXS) and ultraviolet-visible spectroscopy (UV/Vis). The combination of these methods enabled us to describe in detail particular progress stages during the gel formation and determine the correlation of the corresponding processes on a time and conversion scale. The mechanism of gel formation was refined based on these experimental results. PMID:26428943

  9. A Compilation of Space Shuttle Sonic Boom Measurements - Supplemental STS Sonic Boom Files

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Henderson, Herbert R.; Massey, Steven J.; Stansbery, Eugene G.

    2011-01-01

    Supplemental STS Sonic Boom Files for NASA/CR-2011-217080. Data files included on CDROM formatted to ISO 9660 standards. Sonic boom measurements have been obtained on 26 flights of the Space Shuttle system beginning with the launch of STS-1 on April 12, 1981, to the reentry-descent of STS-41 into EAFB on Oct. 10, 1990. A total of 23 boom measurements were acquired within the focus region off the Florida coast during 3 STS launch-ascents and 113 boom measurements were acquired during 23 STS reentry-descent to landing into Florida and California. Sonic boom measurements were made under, and lateral to, the vehicle ground track and cover the Mach-altitude range of about 1.3 to 23 and 54,000 feet to 243,000 feet, respectively. Vehicle operational data, flight profiles and weather data were also gathered during the flights. This STS boom database is contained in 26 documents, some are formal and referenceable but most internal documents. Another 38 documents, also non-referenceable, contain predicted sonic boom footprints for reentry-descent flights on which no measurements were made. The purpose of this report is to provide an overview of the STS sonic boom database and summarize the main findings.

  10. Sonic boom configuration minimization

    NASA Technical Reports Server (NTRS)

    Sohn, Robert A.

    1992-01-01

    The topics covered include the following: the sonic boom 'big picture'; current low boom technology; Mach number impact on gross weight; equal loudness equivalent areas; performance and sizing results; potential configuration modifications; equivalent area matching; and impact of nose bluntness on aerodynamic characteristics.

  11. Echo Boom Impact

    ERIC Educational Resources Information Center

    Dordai, Phillipe; Rizzo, Joseph

    2006-01-01

    Like their baby-boomer parents, the echo-boom generation is reshaping the college and university landscape. At 80 million strong, this group of children and young adults born between 1980 and 1995 now is flooding the college and university system, spurring a college building boom. According to Campus Space Crunch, a Hillier Architecture survey of…

  12. HYDRODYNAMICS OF DIVERSIONARY BOOMS

    EPA Science Inventory

    The failure of booms to contain floating oil in currents above 0.5 m/s appears to be well established. A method suggested to surmount this limitation is to use the boom in a diversionary mode to move the oil into regions of low currents where containment and removal can be accomp...

  13. Oil containment booms

    SciTech Connect

    Teasdale, R.G.

    1982-04-20

    A design of an oil containment boom suitable particularly for stowage on a reel is disclosed. The boom, in its inflated condition, is of ''t'' section having double buoyancy chambers and a central skirt member. The boom utilizes a tension wire in its lower skirt region and an air pressurizing hose in its upper skirt region above the buoyancy chambers. The geometry of the panels making up the chambers is arranged, together with the joints, to give a substantially flat deflated form. The air pressurizing hose and the tension wire are of comparable diameter each being of larger diameter than the maximum thickness of the deflated boom whereby undesirable folding and puckering of the boom material when wound up is accommodated in the lateral space between the hose and the wire.

  14. Oil containment booms

    SciTech Connect

    Teasdale, R.G.

    1983-09-13

    The invention concerns the design of an oil containment boom suitable particularly for stowage on a reel. The boom in its inflated condition, is of ''T'' section having double buoyancy chambers and a central skirt member. The boom utilizes a tension wire in its lower skirt region and an air pressurizing hose in its upper skirt above the buoyancy chambers. The geometry of the panels making up the chambers is arranged, together with the joints, to give a substantially flat deflated form. The air pressurizing hose and the tension wire are of comparable diameter each being of larger diameter than the maximum thickness of the deflated boom whereby undesirable folding and puckering of the boom material when wound up is accommodated in the lateral space between the hose and the wire.

  15. Electron microscopy and pyrolysis of kerogens from the Kimmeridge Clay Formation, UK: Source organisms, preservation processes, and origin of microcycles

    SciTech Connect

    Boussafir, M.; Lallier-Verges, E.; Bertrand, P.

    1995-09-01

    Recent studies revealed short-term cyclic variations (microcycles) in total organic carbon (TOC) and the hydrogen index (HI) in the Kimmeridge Clay Formation, an organic-rich deposit considered to be a lateral equivalent of the main source rocks of the North Sea. The nature and the relative abundances of the products generated by Curie-point Py-GC-MS and off-line pyrolyses of isolated kerogens were also determined for two selected samples corresponding to the beginning and the top of the microcycle. Combination of such ultrastructural observations, including some semiquantitative studies, and the analysis of pyrolysis products allowed (1) determination of the ultrastructural features of the three AOM types thus providing what we believe to be the first example of correlations between light microscopy (palynofacies, in situ maceral analysis) and TEM observations on {open_quotes}amorphous{close_quotes} fossil materials; (2) identification of the source organisms and elucidation of the mode of formation of the different AOM types in the Kimmeridge Clay; (3) explanation of the variations in their relative abundances taking place along a microcycle and establishment of tight correlations with TOC and HI changes; and (4) explanation of the origin of the microcyclic variations in kerogen quantity (TOC) and quality (HI) occurring in the Kimmeridge Clay Formation.

  16. Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  17. Formation of hydrocarbons from acid-Clay suspensions by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Cruz-Castañeda, J.; Negron-Mendoza, A.; Ramos-Bernal, S.

    2013-07-01

    The adsorption of certain organic compounds by clays gives rise to the transformation of the adsorbate through the action of the clays. This phenomenon can be enhanced using ionizing radiation. In this context, these kinds of reactions play an important role in many natural and industrial processes. For example, in oil and gas exploration, the source and trap of petroleum hydrocarbons is frequently clay-rich rocks. Clay-water-based muds are also seen as environmentally friendly alternatives to toxic oil-based fluids. The principal processes that occur in sediments are usually held to be of bacterial action and thermal transformation, which may include thermally induced catalytic alteration of the organic debris. On the other hand, radioactive materials are widely distributed throughout Earth. They were more abundant in the past, but are present in petroleum reservoirs. Their presence induced radioactive bombardment, which may have altered these sediments. This important subject has not been extensively studied. The aim of this work is to study the behavior of fatty acids—like behenic acid—and dicarboxylic acids—like fumaric acid—as model compounds, which are adsorbed in a clay mineral (Na-montmorillonite) and exposed to gamma radiation. The results show that the radiation-induced decomposition of the clay-acid system goes along a definitive path (oxidation), rather than following several modes of simultaneous decomposition, as happens in radiolysis without clay or by heating the system. The main radiolytic products for fatty acids are their corresponding hydrocarbons, with one C-atom less than the original acid.

  18. Formation of hydrocarbons from acid-Clay suspensions by gamma irradiation

    SciTech Connect

    Cruz-Castaneda, J.; Negron-Mendoza, A.; Ramos-Bernal, S.

    2013-07-03

    The adsorption of certain organic compounds by clays gives rise to the transformation of the adsorbate through the action of the clays. This phenomenon can be enhanced using ionizing radiation. In this context, these kinds of reactions play an important role in many natural and industrial processes. For example, in oil and gas exploration, the source and trap of petroleum hydrocarbons is frequently clay-rich rocks. Clay-water-based muds are also seen as environmentally friendly alternatives to toxic oil-based fluids. The principal processes that occur in sediments are usually held to be of bacterial action and thermal transformation, which may include thermally induced catalytic alteration of the organic debris. On the other hand, radioactive materials are widely distributed throughout Earth. They were more abundant in the past, but are present in petroleum reservoirs. Their presence induced radioactive bombardment, which may have altered these sediments. This important subject has not been extensively studied. The aim of this work is to study the behavior of fatty acids-like behenic acid-and dicarboxylic acids-like fumaric acid-as model compounds, which are adsorbed in a clay mineral (Na-montmorillonite) and exposed to gamma radiation. The results show that the radiation-induced decomposition of the clay-acid system goes along a definitive path (oxidation), rather than following several modes of simultaneous decomposition, as happens in radiolysis without clay or by heating the system. The main radiolytic products for fatty acids are their corresponding hydrocarbons, with one C-atom less than the original acid.

  19. Fractionation of Stable Si Isotopes During in-situ Dissolution of Feldspars and Formation of Secondary Clay Minerals

    NASA Astrophysics Data System (ADS)

    Georg, R. B.; Reynolds, B. C.; Halliday, A. N.; Zhu, C.

    2005-12-01

    It has been proposed that weathering of igneous silicate minerals may fractionate Si isotopes (Douthitt 1982, de la Rocha et al. 2000). This is supported by the observation that clays yield δ30Si compositions between +0.5‰ and -2.5‰ compared to the igneous range for δ30Si between +0.1‰ and -1‰ respectively (Douthitt 1982). The difference may relate to a discrimination against heavier Si isotopes during clay mineral formation. However, no study has yet shown a direct Si isotope fractionation between coexisting primary igneous and secondary clay mineral phases. We have measured the stable Si isotope fractionation during in-situ feldspar dissolution and formation of secondary clay minerals in the Navajo Sandstone, Black Mesa, Arizona. The Jurassic Navajo Sandstone is composed of about 94% quartz and 2-4% K-feldspar. The K-feldspar grains are covered with kaolinite, and both quartz and feldspars are covered with a mantle of smectite coating. Petrographic studies demonstrate that the clay minerals formed in situ as alteration products of feldspar, and the smectite is of a low-temperature variety (Zhu, 2005). Therefore, the Si isotope fractionation at low temperature (15-35°C) can be evaluated - something that is difficult to replicate in the laboratory. For the Si isotope analyses we used 20-30 mg of 5 separated clay samples, and 0.36 mg of hand picked feldspars. The silicates were fused with an alkaline flux and dissolved in a weak HCl acid. The dissolved Si was then separated by ion-exchange chromatography. The relative Si isotope compositions were measured using a high-resolution MC-ICP-MS (The Nu1700 at ETH Zurich) and are reported in δ notation relative to the international Si standard NBS 28. The bulk rock and separated feldspar fraction have Si isotope compositions are -0.09 ± 0.03‰ and -0.15 ±0.03 ‰ (±2σSEM) δ30Si, respectively. The clay samples have δ30Si values of -0.24 ±0.05‰, -0.16 ±0.03‰, -0.30 ±0.03‰, -0.42 ±0.03‰ and -0

  20. The Kimmeridge Clay Formation (Upper Jurassic-Lower Cretaceous) of the Norwegian continental shelf and Dorset, UK: a chemostratigraphical correlation

    NASA Astrophysics Data System (ADS)

    Turner, Holly; Gale, Andy; Gradstein, Felix

    2016-04-01

    The type section of the Kimmeridge Clay Formation (KCF) at Dorset, (UK) stands at the forefront in multidisciplinary research on climatic cyclicity, orbital forcing, sea level change and the productivity vs. preservation controversy. In economic terms, it is a prime source rock of the North Sea hydrocarbon province containing up to 35% total organic carbon. Lateral equivalents of the KCF occur widely in the North, Norwegian and Barents Sea regions of north-western Europe under other names: the Draupne, Mandal, Spekk, Hekkingen and Agardhfjellet (Svalbard) formations. Carbon isotopes and clay mineralogy have been extensively studied from the KCF type section at Dorset. However, between the North Sea and Western Barents Sea, little is known of these records. Correlation using both clay mineral and δ13Corg profiles across these areas would provide insights for our understanding of Late Jurassic climatic developments in north-western Europe. New chemostratigraphical records through the KCF of five Norwegian exploration wells of Lundin Petroleum and one of Statoil, are compared with the Kimmeridgian of Sub-Boreal Dorset, along with a correlation between Svalbard records with the Tithonian cores sampled in this project. Dinoflagellate biostratigraphy accompanies isotope stratigraphy in the placement of each core in time. Initial results show a strong overall correlation. On a smaller timescale, several events are described from Dorset, including a distinct mid-Eudoxus positive isotope peak reflecting a sea level rise, and the Hudlestoni aridity peak as recorded by low kaolinite/illite ratios. Off the Norwegian Continental Shelf, how are these events recorded, if recorded at all, in a δ13Corg and clay mineralogical profile? Such events are useful tools in correlation, and their identification regionally reduces the likelihood of local influence on oceanographical conditions, such as palaeoproductivity response to nutrient influxes, and instead reflects changes in the

  1. Sonic boom research

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1978-01-01

    It is demonstrated that a supersonic airplane configuration weighing over half a million pounds while creating a maximum sonic boom of less than 1 p.s.f. can be designed. New experimental techniques are developed in the wind tunnel and experiments for the sonic boom measurements were carried out. Theoretical analyses were performed for the effects of sonic boom on structures and pollution problems associated with supersonic flights were investigated. Numerical programs were generated for the sonic boom propagations from the near field of an airplane in supersonic flight at high altitude to the ground, taking into account the nonlinear effects and the asymmetric effects due to lift and the spacewise distributions of lift and volume.

  2. The Voyager magnetometer boom

    NASA Technical Reports Server (NTRS)

    Miller, D. C.

    1979-01-01

    The Voyager spacecraft magnetometer experiment utilizes two sensors on a deployable boom. The boom is an Astromast. The implementation of the Astromast into the Voyager design is described along with the hardware used to hold, latch, and deploy the mast and the tests to demonstrate damping, deployment, and alignments. Several problems encountered are discussed and their solutions are given. Flight deployment and preliminary alignment results are presented. Finally, the design is evaluated in retrospect.

  3. Sonic boom acceptability studies

    NASA Astrophysics Data System (ADS)

    Shepherd, Kevin P.; Sullivan, Brenda M.; Leatherwood, Jack D.; McCurdy, David A.

    1992-04-01

    The determination of the magnitude of sonic boom exposure which would be acceptable to the general population requires, as a starting point, a method to assess and compare individual sonic booms. There is no consensus within the scientific and regulatory communities regarding an appropriate sonic boom assessment metric. Loudness, being a fundamental and well-understood attribute of human hearing was chosen as a means of comparing sonic booms of differing shapes and amplitudes. The figure illustrates the basic steps which yield a calculated value of loudness. Based upon the aircraft configuration and its operating conditions, the sonic boom pressure signature which reaches the ground is calculated. This pressure-time history is transformed to the frequency domain and converted into a one-third octave band spectrum. The essence of the loudness method is to account for the frequency response and integration characteristics of the auditory system. The result of the calculation procedure is a numerical description (perceived level, dB) which represents the loudness of the sonic boom waveform.

  4. Sonic boom acceptability studies

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Sullivan, Brenda M.; Leatherwood, Jack D.; Mccurdy, David A.

    1992-01-01

    The determination of the magnitude of sonic boom exposure which would be acceptable to the general population requires, as a starting point, a method to assess and compare individual sonic booms. There is no consensus within the scientific and regulatory communities regarding an appropriate sonic boom assessment metric. Loudness, being a fundamental and well-understood attribute of human hearing was chosen as a means of comparing sonic booms of differing shapes and amplitudes. The figure illustrates the basic steps which yield a calculated value of loudness. Based upon the aircraft configuration and its operating conditions, the sonic boom pressure signature which reaches the ground is calculated. This pressure-time history is transformed to the frequency domain and converted into a one-third octave band spectrum. The essence of the loudness method is to account for the frequency response and integration characteristics of the auditory system. The result of the calculation procedure is a numerical description (perceived level, dB) which represents the loudness of the sonic boom waveform.

  5. Three dimensional analysis of the pore space in fine-grained Boom Clay, using BIB-SEM (broad-ion beam scanning electron microscopy), combined with FIB (focused ion-beam) serial cross-sectioning, pore network modeling and Wood's metal injection

    NASA Astrophysics Data System (ADS)

    Hemes, Susanne; Klaver, Jop; Desbois, Guillaume; Urai, Janos

    2014-05-01

    The Boom Clay is, besides the Ypresian clays, one of the potential host rock materials for radioactive waste disposal in Belgium (Gens et al., 2003; Van Marcke & Laenen, 2005; Verhoef et al., 2011). To access parameters, which are relevant for the diffusion controlled transport of radionuclides in the material, such as porosity, pore connectivity and permeability, it is crucial to characterize the pore space at high resolution (nm-scale) and in 3D. Focused-ion-beam (FIB) serial cross-sectioning in combination with high resolution scanning electron microscopy (SEM), pore network modeling, Wood's metal injection and broad-ion-beam (BIB) milling, constitute a superior set of methods to characterize the 3D pore space in fine-grained, clayey materials, down to the nm-scale resolution. In the present study, we identified characteristic 3D pore space morphologies, determined the 3D volume porosity of the material and applied pore network extraction modeling (Dong and Blunt, 2009), to access the connectivity of the pore space and to discriminate between pore bodies and pore throats. Moreover, we used Wood's metal injection (WMI) in combination with BIB-SEM imaging to assess the pore connectivity at a larger scale and even higher resolution. The FIB-SEM results show a highly (~ 90 %) interconnected pore space in Boom Clay, down to the resolution of ~ 3E+03 nm³ (voxel-size), with a total volume porosity of ~ 20 %. Pore morphologies of large (> 5E+08 nm³), highly interconnected pores are complex, with high surface area to volume ratios (shape factors G ~ 0.01), whereas small (< 1E+06 nm³), often isolated pores are much more compact and show higher shape factors (G) up to 0.03. WMI in combination with BIB-SEM, down to a resolution of ~ 50 nm² pixel-size, indicates an interconnected porosity fraction of ~ 80 %, of a total measured 2D porosity of ~ 20 %. Determining and distinguishing between pore bodies and pore throats enables us to compare 3D FIB-SEM pore

  6. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays.

    PubMed

    Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Zhu, Yunqing; Wang, Chuanyi

    2016-06-21

    Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health. PMID:27224055

  7. Electrical well logging tool, having an expandable sleeve, for determining if clay is present in an earth formation

    SciTech Connect

    Wiley, B.F.

    1980-11-25

    An electrical well logging system is disclosed wherein the well logging tool is enclosed at least in part by an expandable sleeve having a band of electrodes located in the outer surface thereof. The band of electrodes is located in a plane which is perpendicular to the vertical axis of the well logging tool. When the well logging tool is in a desired position in the borehole, the expandable sleeve is expanded to place the electrodes located therein in contact with the adjacent sidewall surface of the borehole. Current is injected into the formation surrounding the borehole and the voltage induced by the current is measured. A phase comparison of the current injected into the formation and the voltage sensed in response to the injected current can be utilized to determine if clay is present in the formation.

  8. Peptide formation in the prebiotic era - Thermal condensation of glycine in fluctuating clay environments

    NASA Technical Reports Server (NTRS)

    Lahav, N.; White, D.; Chang, S.

    1978-01-01

    As geologically relevant models of prebiotic environments, systems consisting of clay, water, and amino acids were subjected to cyclic variations in temperature and water content. Fluctuations of both variables produced longer oligopeptides in higher yields than were produced by temperature fluctuations alone. The results suggest that fluctuating environments provided a favorable geological setting in which the rate and extent of chemical evolution would have been determined by the number and frequency of cycles.

  9. In situ clay formation : evaluation of a proposed new technology for stable containment barriers.

    SciTech Connect

    Nagy, Kathryn L.; DiGiovanni, Anthony Albert; Fredrich, Joanne T.

    2004-03-01

    Containment of chemical wastes in near-surface and repository environments is accomplished by designing engineered barriers to fluid flow. Containment barrier technologies such as clay liners, soil/bentonite slurry walls, soil/plastic walls, artificially grouted sediments and soils, and colloidal gelling materials are intended to stop fluid transport and prevent plume migration. However, despite their effectiveness in the short-term, all of these barriers exhibit geochemical or geomechanical instability over the long-term resulting in degradation of the barrier and its ability to contain waste. No technologically practical or economically affordable technologies or methods exist at present for accomplishing total remediation, contaminant removal, or destruction-degradation in situ. A new type of containment barrier with a potentially broad range of environmental stability and longevity could result in significant cost-savings. This report documents a research program designed to establish the viability of a proposed new type of containment barrier derived from in situ precipitation of clays in the pore space of contaminated soils or sediments. The concept builds upon technologies that exist for colloidal or gel stabilization. Clays have the advantages of being geologically compatible with the near-surface environment and naturally sorptive for a range of contaminants, and further, the precipitation of clays could result in reduced permeability and hydraulic conductivity, and increased mechanical stability through cementation of soil particles. While limited success was achieved under certain controlled laboratory conditions, the results did not warrant continuation to the field stage for multiple reasons, and the research program was thus concluded with Phase 2.

  10. Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: DFT and FTIR studies

    PubMed Central

    Gu, Cheng; Liu, Cun; Johnston, Cliff T.; Teppen, Brian J.; Li, Hui; Boyd, Stephen A.

    2011-01-01

    Octachlorodibenzodioxin (OCDD) forms spontaneously from pentachlorophenol (PCP) on the surfaces of Fe(III)-saturated smectite clay (1). Here, we used in situ FTIR methods and quantum mechanical calculations to determine the mechanism by which this reaction is initiated. As the clay was dehydrated, vibrational spectra showed new peaks that grew and then reversibly disappeared as the clay rehydrated. First principle DFT calculations of hydrated Fe-PCP clusters reproduced these transient FTIR peaks when inner-sphere complexation and concomitant electron transfer produced Fe(II) and PCP radical cations. Thus, our experimental (FTIR) and theoretical (quantum mechanical) results mutually support the hypothesis that OCDD formation on Fe-smectite surfaces is initiated by the reversible formation of metastable PCP radical cations via single electron transfer from PCP to Fe(III). The negatively charged clay surface apparently selects for this reaction mechanism by stabilizing PCP radical cations. PMID:21254769

  11. Method for rapidly determining the swelling-clay content in shales and shaly sandstone formations by high-frequency dielectric constant measurements

    SciTech Connect

    Kroeger, M.K.; Longo, J.M.; Steiger, R.P.; Leung, P.K.

    1989-10-24

    This patent describes a method for measuring the swelling-clay content of earth formations by dielectric measurements. It comprises: grinding a sample of the earth formation to a size suitable for testing; washing the sample with a fluid having a water activity substantially less than that of water; packing the washed sample into a sample cell suitable for dielectric measurement; measuring the dielectric constant of the washed sample at a preselected frequency; and comparing the measured dielectric constant of the rock sample to a calibration curve, to determine the swelling-clay content of the earth formation.

  12. HSCT design for reduced sonic boom

    NASA Technical Reports Server (NTRS)

    Haglund, George T.

    1992-01-01

    The topics covered include the following: low sonic boom design perspective; design approach for reduced sonic boom; target sonic boom waveforms; airplane design for reduced sonic boom loudness; design procedure for low sonic boom; wing design and nacelle lift effects; area distributions and F-functions due to volume; fuselage area distributions; low sonic boom design, configuration 3B; sonic boom characteristics; sizing, performance, and noise characteristics; a summary of phase 3 configurations; impact of sonic boom design constraints; and wing loading considerations.

  13. Clay catalysis of oligonucleotide formation: kinetics of the reaction of the 5'-phosphorimidazolides of nucleotides with the non-basic heterocycles uracil and hypoxanthine

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1999-01-01

    The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine of substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.

  14. Clay mineralogy and depositional history of the Frio Formation in two geopressured wells, Brazoria County, Texas

    SciTech Connect

    Freed, R.L.

    1982-01-01

    Twenty-three shale samples ranging in depth from 5194 ft to 13,246 ft from Gulf Oil Corporation No. 2 Texas State Lease 53034 well and 33 shale samples ranging in depth from 2185 ft to 15,592 ft from General Crude Oil Company/Department of Energy No. 1 Pleasant Bayou well were examined by x-ray techniques to determine the mineralogy of the geopressured zone in the Brazoria Fairway. Both wells have similar weight-percent trends with depth for a portion of the mineralogy. Calcite decreases, and plagioclase, quartz and total clay increase slightly. Within the clays, illite in mixed-layer illite/smectite (I/S) increases and smectite in mixed-layer I/S decreases. Four minerals have distinctly different trends with depth for each well. In the No. 2 Texas State Lease 53034 well, potassium feldspar and mixed-layer I/S decrease, kaolinite increases, and discrete illite is constant. In the No. 1 Pleasant Bayou well, potassium feldspar and kaolinite are constant, mixed-layer I/S increases, and discrete illite decreases.

  15. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    SciTech Connect

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-06-20

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  16. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  17. Clays in prebiological chemistry

    NASA Technical Reports Server (NTRS)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  18. Nature and genesis of clay minerals of the Rustler Formation in the vicinity of the Waste Isolation Pilot Plant in southeastern New Mexico

    SciTech Connect

    Sewards, T.; Brearley, A.; Glenn, R. ); MacKinnon, I.D.R. ); Siegel, M.D. )

    1992-08-01

    Detailed mineralogical studies of the matrix and fracture-fill materials of a large number of samples from the Rustler Formation have been carried out using x-ray diffraction, high-resolution transmission electron microscopy, electron microprobe analysis, x-ray fluorescence, and atomic absorption spectrophotometry. These analyses indicate the presence of four clay minerals: interstratified chlorite/saponite, illite, chlorite, and serpentine. Corrensite (regularly stratified chlorite/saponite) is the dominant clay mineral in samples from the Culebra dolomite and two shale layers of the lower unnamed member of the Rustler Formation. Within other layers of the Rustler Formation, disordered mixed chlorite/saponite is usually the most abundant clay mineral. Studies of the morphology and composition of clay crystallites suggest that the corrensite was formed by the alteration of detrital dioctahedral smectite in magnesium-rich pore fluids during early diagenesis of the Rustler Formation. This study provides initial estimates of the abundance and nature of the clay minerals in the Culebra dolomite in the vicinity of the Waste Isolation Pilot Plant.

  19. Composition, diagenesis, and morphology of chlorite and illite/smectite mixed-layer clays in the Cherry Canyon Formation, Delaware Mountain Group, Screwbean field, Reeves County, Texas

    SciTech Connect

    Thomerson, M.D.; Henderson, S.K. )

    1993-09-01

    Oil and gas production in the Screwbean field of Reeves County, Texas, is predominantly from the subarkosic Bell Canyon (Ramsey sand member) and upper Cherry Canyon sandstones of the Permian (Guadalupian) Delaware Mountain Group. Authigenic clays compromise up to 10% of the bulk rock and can seriously degrade the production potential and performance of reservoir rock. The chlorite and illite/smectite mixed-layer clays can have several effects on the reservoir: loss of permeability as a result of swelling, formation damage because of acid sensitivity, and high irreducible water saturations (bound water) caused by microporosity. Twenty-five powdered samples from whole core taken in the Cherry Canyon Formation from a well in Reeves County were analyzed by x-ray diffraction. The actual x-ray diffraction patterns from the powdered samples were compared to simulated x-ray diffraction patterns generated by a microcomputer. Once matched, the computer models give the fractional clay composition of that particular sample. The prominent morphology of the authigenic clays is also very important. Photomicrographs taken with a scanning electron microscope were employed to delineate the clay morphologies and illustrate the intergranular habits of these clay minerals. The failure to recognize the aforementioned problems can lead to prematurely abandoning and bypassing possible productive zones. The data generated by this study will allow us to better use these reservoirs and more effectively explore future zones.

  20. STANDARDIZING BOOM TEST PROCEDURES

    EPA Science Inventory

    The OHMSETT Interagency Technical Committee (OTIC) sponsored a combined series of in-tank and open-water tests of five booms that cover a wide range of sizes and design parameters. The tests were conducted at the United States Environmental Protection Agency's OHMSETT facility an...

  1. The Prep School Boom

    ERIC Educational Resources Information Center

    Stent, Angela

    1976-01-01

    Applications to preparatory schools have risen dramatically in the past five years, as much as 500 percent at some prestigious institutions. Most educators agree that the main reason for this boom is the growing disenchantment with vast, anomic public high schools, both urban and suburban. (LBH)

  2. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment

    NASA Technical Reports Server (NTRS)

    White, D. H.; Erickson, J. C.

    1980-01-01

    The condensation of glycine to form oligoglycines during wet-dry fluctuations on clay surfaces was enhanced up to threefold or greater by small amounts of histidyl-histidine. In addition, higher relative yields of the longer oligomers were produced. Other specific dipeptides tested gave no enhancement, and imidazole, histidine, and N-acetylhistidine gave only slight enhancements. Histidyl-histidine apparently acts as a true catalyst (in the sense of repeatedly catalyzing the reaction), since up to 52 nmol of additional glycine were incorporated into oligoglycine for each nmol of catalyst added. This is the first known instance of a peptide or similar molecule demonstrating a catalytic turnover number greater than unity in a prebiotic oligomer synthesis reaction, and suggests that histidyl-histidine is a model for a primitive prebiotic proto-enzyme. Catalysis of peptide bond synthesis by a molecule which is itself a peptide implies that related systems may be capable of exhibiting autocatalytic growth.

  3. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, four companies including H.C. Spinks Clay, Kentucky-Tennessee Clay, Old Hickory Clay and Unimin mined ball clay in four states. Based on a preliminary survey of the ball clay industry, production reached 1.32 Mt valued at $53.3 million. Tennessee was the leading ball clay producer state with 61% of domestic production, followed by Texas, Mississippi and Kentucky.

  4. Clays, specialty

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the specialty clay industry worldwide for 1997 is discussed. The specialty clays mined in the U.S. are ball clay, fuller's earth, bentonite, fire clay, and kaolin. Sales of specialty clays in the U.S. were around 17 Mt in 1997. Approximately 53 kt of specialty clays were imported.

  5. Theoretical investigation of the role of clay edges in prebiotic peptide bond formation. II - Structures and thermodynamics of the activated complex species

    NASA Technical Reports Server (NTRS)

    Collins, Jack R.; Loew, Gilda H.; Luke, Brian T.; White, David H.

    1988-01-01

    Molecular orbital calculations are used to study amino acid activation by anhydride formation in neutral phosphates and in tetrahedral silicate and aluminate sites on clay edges. The results agree with previous ab initio studies of Luke et al. (1984) on the reactant species. Relative heats of formation of the anhydrides indicate the extent of anhydride formation to be the greatest for Al and the least for phosphate, which is the same order as the stability of hydrolysis.

  6. Formation temperatures of clays from the volcaniclastic series of Site 841 ODP: an oxygen isotopic record of a paleothermal flux into the Tonga forearc

    NASA Astrophysics Data System (ADS)

    Vitali, Frédéric; Blanc, Gérard; Gauthier-Lafaye, François; France-Lanord, Christian

    Oxygen isotopic compositions of clay minerals were determined on representative samples of the volcano-sedimentary series from Site 841 ODP (Tonga forearc). This isotopic study has demonstrated an abnormally high crystallisation temperature of the clay minerals with respect to temperature expected in burial diagenesis. Formation temperatures obtained using 18O reach up to 200°C in a Fe-chlorite-corrensite paragenesis found in the vicinity of basaltic andesite sills intruded into the Miocene tuffs. The paleothermal flux resulting from the cooling of the sills has produced very low grade contact metamorphism in the Miocene Tonga forearc deposits. The consequence of this was the formation of a large amount of hydrous silicates characterised near the sills by a Fe-clays-analcime mineralogical association.

  7. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN

    1989-01-01

    The formation of oligomers from deoxynucleotides, catalyzed by Na(+)-montmorillonite, was investigated with special attention given to the effect of the monomer structure on the phosphodiester bond formation. It was found that adenine deoxynucleotides bind more strongly to montmorillonite than do the corresponding ribonucleotides and thymidine nucleotides. Tetramers of 2-prime-dpA were detected in the reaction of 2-prime-d-5-prime-AMP with a water-soluble carbodiimide EDAC in the presence of Na(+)-montmorillonite, illustrating the possible role of minerals in the formation of biopolymers on the primitive earth.

  8. The next boom

    SciTech Connect

    Gipe, P.

    1995-02-01

    In 1994, global windpower projects generated electricity valued at nearly $500 million. The 3,400 MW installed worldwide is split about evenly between the United States and Europe. Windpower`s growth continues as more companies expand and upgrade their product lines while pursuing broader markets. If capacity continues its upward growth - with the potential to double by 2000 - the remainder of the decade may look like the 1980s windpower boom.

  9. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  10. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  11. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2007-01-01

    The article offers information on ball clay. Among the companies that mine ball clay in the U.S. are H.C. Spinks Clay, Kentucky-Tennessee Clay and Old Hickory Clay. In 2006, an estimated 1.2 million tons of the mineral was sold or used domestically and exported. Forty-percent of the total sales is accounted for ceramic floor and wall tile followed by sanitaryware and miscellaneous ceramics. Its average value was $ 45 per ton in 2006.

  12. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  13. Pyromorphite Formation And Stability After Quick Lime Neutralisation In The Presence Of Soil And Clay Sorbents

    EPA Science Inventory

    Soluble Pb is immobilised in pure systems as pyromorphite by adding sources of P, but doubts remain about the efectiveness of this approach in natural soil systems, particularly given the ability of soil humic substances to interfere with Pb-mineral formation. In addition, recen...

  14. Sonic Boom Modeling Technical Challenge

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2007-01-01

    This viewgraph presentation reviews the technical challenges in modeling sonic booms. The goal of this program is to develop knowledge, capabilities and technologies to enable overland supersonic flight. The specific objectives of the modeling are: (1) Develop and validate sonic boom propagation model through realistic atmospheres, including effects of turbulence (2) Develop methods enabling prediction of response of and acoustic transmission into structures impacted by sonic booms (3) Develop and validate psychoacoustic model of human response to sonic booms under both indoor and outdoor listening conditions, using simulators.

  15. Mapping the Stratigraphy of Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, N. M.; Hunt, M. L.; Clayton, R. W.

    2008-12-01

    Booming dunes emit a loud rumbling sound after a man-made or natural sand avalanche is generated on the slip face of a large desert dune. The sound consist of one dominant frequency (70 - 105 Hz) with several higher harmonics. A recent publication (Vriend et al., 2007) presented a model of an internal, natural waveguide that propagates the booming emission, amplifies the sound, and sets the booming frequency. The mapping of the subsurface layering, which is necessary for the existence of a waveguide, prompted additional work on the dune structure and stratigraphy. The current work highlights geophysical measurements at Eureka Dunes in Death Valley National Park, CA and Dumont Dunes in the Mojave Desert, CA. Seismic refraction studies indicate strong layering with large velocity jumps across the interfaces. Ground Penetrating Radar (GPR) profiles, at frequencies of 100 MHz and 200 MHz, map out the stratigraphic structure of the dunes. Variations in the near surface layering are able to predict the seasonal variability in booming frequency both quantitatively and qualitatively. The Kirchhoff migrated GPR profiles are superimposed on the local topography obtained with a laser rangefinder. The complex dune structure is resolved to a depth of over 30 meters for the 100 MHz antenna. The GPR profiles of the longitudinal Eureka dune display complex internal structures from old dune crests. Both slopes have slip faces at 30 degrees with parallel layering (< 2m) at the near surface. At the transverse Dumont dune the GPR profile exhibits strong parallel layering on the booming leeward slipface only. The shallower windward face features a remarkable tilted repetitive layering that cuts through the surface. At Dumont Dunes the layering on the leeward face explains the change in booming frequency between 70 - 95 Hertz in the period 2005 - 2008. The tilted layering structure of the shallow windward face prevents the formation of a waveguide and is never able to sustain the

  16. Pyromorphite formation and stability after quick lime neutralisation in the presence of soil and clay sorbents

    SciTech Connect

    Chappell, Mark A.; Scheckel, Kirk G.

    2008-06-16

    Soluble Pb is immobilised in pure systems as pyromorphite by adding sources of P, but doubts remain about the effectiveness of this approach in natural soil systems, particularly given the ability of soil humic substances to interfere with Pb-mineral formation. In addition, recent thermodynamic modelling predicts that pyromorphite formed by the addition of phosphoric acid to Pb-contaminated soils, followed by neutralisation with quick lime (Ca(OH){sub 2}) will destabilise the mineral, reverting the Pb back to more soluble species such as cerussite or anglesite. In this paper, we describe experiments to form pyromorphite in the presence of two different sorbents: a reference smectite called Panther Creek Bentonite, and a commercially available, organically rich potting mixture. We present X-ray diffraction (XRD) evidence suggestive of pyromorphite formation, yet, like similar studies, the evidence is less than conclusive. Linear combination fits of Pb X-ray absorption fine-structure spectroscopy (XAFS) data collected at the Advanced Photon Source at Argonne National Laboratory show that pyromorphite is the major Pb species formed after the addition of phosphoric acid. Furthermore, XAFS data shows that neutralising with quick lime enhances (as opposed to reducing) pyromorphite content in these systems. These results call into question relying solely on XRD data to confirm or deny the existence of minerals like pyromorphite, whose complex morphology give less intense and more complicated diffraction patterns than some of the simpler Pb minerals.

  17. Stratigraphy and formation of clays, sulfates, and hydrated silica within a depression in Coprates Catena, Mars

    NASA Astrophysics Data System (ADS)

    Weitz, Catherine M.; Bishop, Janice L.

    2016-05-01

    We investigate the morphology, mineralogy, and stratigraphy of light-toned layered deposits within a trough of Coprates Catena, centered at -15°N, 300°E. One of the deposits in the eastern portion of the trough contains numerous hydrated minerals, including Al-phyllosilicates, Fe/Mg-phyllosilicates, hydrated silica, hydrated sulfates, jarosite and acid alteration products characterized by a spectral doublet between 2.2 and 2.3 µm, and weakly hydrated materials. The Al-phyllosilicates are observed both stratigraphically above and below the Fe/Mg-phyllosilicate unit, which is a rare and perhaps unique association on Mars. Most of the western light-toned layered deposit underlies a terraced fan. This deposit contains hydrated materials, including Al-phyllosilicates and Fe/Mg-phyllosilicates. Dip measurements indicate that both the eastern and western deposits dip toward the center of the trough, indicating that they postdate formation of the trough and are consequently Late Hesperian or younger in age. Volcanic ash, most likely erupted during formation of the pit crater in the eastern portion of the trough, seems to best explain our observations for several of the units. Valleys sourced from water along the plateau may have flowed into the trough and altered the sediments, with changing aqueous chemistries over time resulting in the diverse range of mineralogies now observed in the eastern light-toned deposit. Our results reveal a complex sedimentary and aqueous history within the Coprates Catena trough, indicating that localized habitable conditions were possible relatively late in Martian history at a time when colder, drier conditions likely dominated the majority of the planet.

  18. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  19. The Galeleo spacecraft magnetometer boom

    NASA Technical Reports Server (NTRS)

    Packard, D. T.; Benton, M. D.

    1985-01-01

    The Galileo spacecraft utilizes a deployable lattice boom to position three science instruments at remote distances from the spacecraft body. An improved structure and mechanism to precisely control deployment of the boom, and the unique deployment of an outer protective cover are described.

  20. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the fire clay industry, particularly in the U.S., as of June 2011. It claims that the leading fire clay producer in the U.S. is the state of Missouri. The other major producers include California, Texas and Washington. It reports that the use of heavy clay products made of fire clay like brick, cement and lightweight aggregate has increased slightly in 2010.

  1. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  2. Clay Houses

    ERIC Educational Resources Information Center

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  3. Hybrid Finite-Discrete Element Simulation of the EDZ Formation and Mechanical Sealing Process Around a Microtunnel in Opalinus Clay

    NASA Astrophysics Data System (ADS)

    Lisjak, Andrea; Tatone, Bryan S. A.; Mahabadi, Omid K.; Grasselli, Giovanni; Marschall, Paul; Lanyon, George W.; Vaissière, Rémi de la; Shao, Hua; Leung, Helen; Nussbaum, Christophe

    2016-05-01

    The analysis and prediction of the rock mass disturbance around underground excavations are critical components of the performance and safety assessment of deep geological repositories for nuclear waste. In the short term, an excavation damaged zone (EDZ) tends to develop due to the redistribution of stresses around the underground openings. The EDZ is associated with an increase in hydraulic conductivity of several orders of magnitude. In argillaceous rocks, sealing mechanisms ultimately lead to a partial reduction in the effective hydraulic conductivity of the EDZ with time. The goal of this study is to strengthen the understanding of the phenomena involved in the EDZ formation and sealing in Opalinus Clay, an indurated claystone currently being assessed as a host rock for a geological repository in Switzerland. To achieve this goal, hybrid finite-discrete element method (FDEM) simulations are performed. With its explicit consideration of fracturing processes, FDEM modeling is applied to the HG-A experiment, an in situ test carried out at the Mont Terri underground rock laboratory to investigate the hydro-mechanical response of a backfilled and sealed microtunnel. A quantitative simulation of the EDZ formation process around the microtunnel is first carried out, and the numerical results are compared with field observations. Then, the re-compression of the EDZ under the effect of a purely mechanical loading, capturing the increase of swelling pressure from the backfill onto the rock, is considered. The simulation results highlight distinctive rock failure kinematics due to the bedded structure of the rock mass. Also, fracture termination is simulated at the intersection with a pre-existing discontinuity, representing a fault plane oblique to the bedding orientation. Simulation of the EDZ re-compression indicates an overall reduction of the total fracture area as a function of the applied pressure, with locations of ineffective sealing associated with self

  4. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies mined fire clay in three states in 2012. Production, based on a preliminary survey of the fire clay industry, was estimated to be 230 kt (254,000 st) valued at $6.98 million, an increase from 215 kt (237,000 st) valued at $6.15 million in 2011. Missouri was the leading producing state, followed by Colorado and Texas, in decreasing order by quantity. The number of companies mining fire clay declined in 2012 because several common clay producers that occasionally mine fire clay indicated that they did not do so in 2012.

  5. A Boom in Boomerangs

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ted Bailey, a highly-ranked international boomerang designer and thrower, used information from a variety of NASA technical reports on aerodynamics and low-speed airfoils to design more competitive boomerangs. Because the boomerang is essentially an airfoil like an airplane wing, the technology transferred effectively and even contributed to the 1981 American victory over Australian throwers. In 1985, using four NASA reports, Bailey designed a new MTA (maximum time aloft) boomerang that broke the one-minute barrier, enabled throwers to throw and catch in less than three minutes and allowed competitors to complete the difficult "Super Catch" - five throw/catch sequences after launching the original boom while it is still aloft. Bailey is now considering other boomerang applications.

  6. New western boom towns

    SciTech Connect

    Daneke, G.A.

    1980-09-30

    The Mountain West, particularly isolated rural communities, can expect rapid growth which cannot be accurately predicted by the usual population-forecasting techniques. Mining and defense projects, combined with a general population shift to the South and West, have already brought some anticipatory migration to areas that have not prepared an infrastructure to handle the social and economic demands of boom towns. The relationship between meeting the physical and human needs of a community are poorly understood, with the result that most local planners concentrate on the water, sewer, and street planning of traditional urban-sprawl patterns and contribute to community disintegration. A carefully planned infrastructure which incorporates social-service planning could anticipate many problems and introduce innovative environmental and energy-saving ideas. (DCK)

  7. Heat-initiated prebiotic formation of peptides from glycine/aspartic acid and glycine/valine in aqueous environment and clay suspension

    NASA Astrophysics Data System (ADS)

    Pant, Chandra Kala; Lata, Hem; Pathak, Hari Datt; Mehata, Mohan Singh

    2009-04-01

    The effect of heat on the reaction system of glycine/aspartic acid and glycine/valine in the aqueous environment as well as in montmorillonite clay suspension with or without divalent cations (Ca2+, Mg2+ and Ni2+) has been investigated at 85°C±5°C for varying periods under prebiotic drying and wetting conditions. The resulting products were analysed and characterized by chromatographic and spectroscopic methods. Peptide formation appears to depend on the duration of heat effect, nature of reactant amino acids and, to some extent, on montmorillonite clay incorporated with divalent cations. In the glycine/aspartic acid system, oligomerization of glycine was limited up to trimer level (Gly)3 along with the formation of glycyl-aspartic acid, while linear and cyclic peptides of aspartic acid were not formed, whereas the glycine/valine system preferentially elongated homo-oligopeptide of glycine up to pentamer level (Gly)5 along with formation of hetero-peptides (Gly-Val and Val-Gly). These studies are relevant in the context of the prebiotic origin of proteins and the role of clay and metal ions in condensation and oligomerization of amino acids. The length of the bio-oligomer chain depends upon the reaction conditions. However, condensation into even a small length seems significant, as the same process would have taken millions of years in the primitive era of the Earth, leading to the first proteins.

  8. Clays as prebiotic photocatalysts

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Lawless, J.; Lahav, N.; Sutton, S.; Sweeney, M.

    1981-01-01

    Clay minerals catalyze peptide bond formation in fluctuating environments. A number of plausible mechanisms have been proposed and tested. The possibility that clays may actually be energizing the reaction by means of electronic excitation, creating mobile or trapped holes and electrons in the lattice, is explored. It has been discovered that clays emit light upon dehydration. The correlation between dehydration-induced, or thermoluminescent, processes and the yield of glycine oligomers after treatments known to affect the luminescent yields is being tested, in an effort to understand the catalytic mechanism

  9. Loudness of shaped sonic booms

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Sullivan, Brenda M.

    1990-01-01

    A loudness model is adopted to study the feasibility of designing and operating a supersonic transport to produce minimized sonic booms. The loudness contours in this technique extend to a lower frequency (1 Hz) and thus are appropriate for sonic booms that contain significant low frequency energy. Input to the loudness calculation procedure is the power spectral density of the pressure-time signature. Calculations of loudness, for both indoor and outdoor conditions, demonstrate that shaped sonic booms are potentially more acceptable than N-waves possessing the same peak overpressure.

  10. NASA Ames Sonic Boom Testing

    NASA Technical Reports Server (NTRS)

    Durston, Donald A.; Kmak, Francis J.

    2009-01-01

    Multiple sonic boom wind tunnel models were tested in the NASA Ames Research Center 9-by 7-Foot Supersonic Wind Tunnel to reestablish related test techniques in this facility. The goal of the testing was to acquire higher fidelity sonic boom signatures with instrumentation that is significantly more sensitive than that used during previous wind tunnel entries and to compare old and new data from established models. Another objective was to perform tunnel-to-tunnel comparisons of data from a Gulfstream sonic boom model tested at the NASA Langley Research Center 4-foot by 4-foot Unitary Plan Wind Tunnel.

  11. Lightweight Boom For Rescue Helicopter

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A.

    1993-01-01

    Telescoping boom and associated mechanisms attached to helicopter aid rescue operations by extending lifeline beyond sweep of main rotor. Pilot observes rescuee and control position of helicopter more effectively than if rescuee directly below and hidden from pilot's view. Rescuee outside downdraft of rotor, which is often powerful enough to blow away or submerge someone in water. Used for marine or land operations. Boom thin and lightweight because it need not support weight of rescuee. Lifeline pulls away from boom after secured around rescuee, who is lifted directly into cabin by winch. Potential application for in situ erection of telescopic space structures.

  12. Dewatering of the Clayton Formation during construction of the Walter F George Lock and Dam, Fort Gaines, Clay County, Georgia

    USGS Publications Warehouse

    Stewart, J.W.

    1973-01-01

    Walter F. George Lock and Dam, the largest manmade structure in the South, extends over 2llz miles across the flood plain of the Chattahoochee River at Fort Gaines, Clay County, in southwest Georgia and in Henry County, in southeast Alabama. The multipurpose dam consists of two rolled-filled earth dikes, a concrete spillway, a single-stage lock with an 88-foot lift, and a 130,000 kilowatt capacity powerhouse. The foundation of the dam at the river is constructed in the Clayton Formation, and the earth dikes are constructed on river terraces at about 150 feet above msl (mean sea level). At the damsite, the top of the Clayton Formation consists of an "earthy" limestone, which is about 35 feet thick except in the river channel, where it is 12 to 15 feet thick; a "shell" limestone, which averages about 40 feet thick; and a basal "sandy" limestone, which averages about 35 feet thick. The Providence Sand underlies the "sandy" limestone and its thickness is about 175 feet at the damsite. These formations contain water under artesian conditions. The "shell" unit of the Clayton was the principal water-bearing formation pumped during construction of the lock and dam. The large yields of the wells from concentrated areas over extended periods of time indicate that in the vicinity of the Chattahoochee River, the Clayton Formation is a productive aquifer with transmissivity ranging from 48,000 to 77,000 gpd per ft. (gallons per day per foot) and storage coefficient ranging from 2.5 x 10?3 to 2.8 x 10?5. At the spillway site, pumpage ranged from an average of 1,700 to 8,400 gpm (gallons per minute) during the period April 1957 to July 1959; at the powerhouse site, pumpage ranged from 1,600 to 5,000 gpm during the period October 1957 to September 1961; and at the lock site, pumpage ranged from 4,000 to 5,000 gpm during the period July 1960 through December 1961. The large yields represent a source of large quantities of ground water available for industrial and other uses in an

  13. Lateral spread of sonic boom measurements from US Air Force boomfile flight tests

    NASA Technical Reports Server (NTRS)

    Downing, J. Micah

    1992-01-01

    A series of sonic boom flight tests were conducted by the US Air Force at Edwards AFB in 1987 with current supersonic DOD aircraft. These tests involved 43 flights by various aircraft at different Mach number and altitude combinations. The measured peak overpressures to predicted values as a function of lateral distance are compared. Some of the flights are combined into five groups because of the varying profiles and the limited number of sonic booms obtained during this study. The peak overpressures and the lateral distances are normalized with respect to the Carlson method predicted centerline overpressures and lateral cutoff distances, respectively, to facilitate comparisons between sonic boom data from similar flight profiles. It is demonstrated that the data agrees with sonic boom theory and previous studies and adds to the existing sonic boom database by including sonic boom signatures, tracking, and weather data in a digital format.

  14. Equilibrium aluminium hydroxo-oxalate phases during initial clay formation; H +-Al 3+-oxalic acid-Na + system

    NASA Astrophysics Data System (ADS)

    Bilinski, Halka; Horvath, Laszlo; Ingri, Nils; Sjöberg, Staffan

    1986-09-01

    The conditions necessary for initial clay formation have been studied in different model systems comprising different organic acids besides Si and Al. In the present paper the solid phases and the precipitation boundary characterizing the subsystem H +-Al 3+-oxalic acid (H 2L) are discussed. pH and tyndallometric measurements were performed in an ionic medium of 0.6 M Na(Cl) at 25 °C. The two phases Al 3(OH) 7(C 2O 4) · 3H 2O (phase I) and NaAl(OH) 2(C 2O 4) · 3H 2O (phase II) determine the precipitation boundary. The following formation constants for the two phases were deduced: lgβ1 = lg([ Al3+] -3[ H2C2O4] -1[ H+] 9 = -21.87 ± 0.08 and lgβ11 = lg([ Al3+] -1[ H2C2O4] -1[ H+] 4 = -5.61 ± 0.06. Phase I exists in the range [ Al] tot≥ 10 -4.4moldm-3,[ H2C2O4] tot ≥ 10 -4.9moldm-3 and at pH < 6.8, thus being a possible precipitate in oxalic-rich natural waters. The more soluble sodium phase is unlikely to exist in natural waters. The two phases are metastable relative to crystalline gibbsite and may be considered as the first precipitation step in the transition from aqueous Al oxalates down to stable Al hydroxide. Model calculations illustrating these competing hydrolysis-complexation reactions are discussed in terms of predominance and speciation diagrams. The solid phases have been characterized by X-ray analysis of powders, TGA and IR spectra, and tentative structures are proposed. Phase I seems to be an octahedral layer structure, in which 3/5 of the octahedral sites between two close packed oxygen sheets are occupied by Al 3+ and the oxalate ion acts as a bridge ligand between two aluminium atoms. Phase II forms a more open sheet structure and has ion exchange properties. Powder data for a phase crystallized from the studied solution after a year are also presented. This phase, Na 4Al 2(OH) 2(C 2O 4) 4 · 10H 2O, supports the results from the equilibrium analysis of recent solution data by SJöBERG and ÖHMAN (1985), who have found the dinuclear

  15. Palaeocopid and podocopid Ostracoda from the Lexington Limestone and Clays Ferry Formation (Middle and Upper Ordovician) of central Kentucky

    USGS Publications Warehouse

    Warshauer, S.M.; Berdan, J.M.

    1982-01-01

    The Middle through lower Upper Ordovician Lexington Limestone and lower part of the Clays Ferry Formation contain an abundant and diversified ostracode fauna. More than 10,000 specimens belonging to 39 genera and 53 species have been found in 73 collections made by members of the U.S. Geological Survey in cooperation with the Kentucky Geological Survey between 1961 and 1970. Five of the genera and 17 of the species are new. New taxa include the genera Gephyropsis, Ningulella, Phelobythocypris, Quasibollia, and Uninodobolba and the following species: Americoncha dubia, Ballardina millersburgia, Brevidorsa strodescreekensis, Ceratopsis asymme , trica C. fimbriata, Ctenobolbina ventrispinifera, Cystomatochilina reticulotiara, Easchmidtella sinuidorsata, Gephyropsis trachyreticulata, Jonesella gonyloba, Laccoprimitia claysferryensis, L. cryptomorphologica, Leperditella? perplexa, Ningulella paupera, Parenthatia sadievillensis, Silenis kentuckyensis, and Uninodobolba franklinensis. In addition, a new species, Quasibollia copelandi, is described from the Middle Ordovician of Ontario. The type specimens of ostracodes previously described from these formations but not represented in the recent collections are redescribed and refigured. The genus Warthinia Spivey, 1939, is reinstated for Ordovician bolliids with two to four nodes, and the genus Ceratopsis Ulrich, 1894, is reviewed with new figures of all known North American species of the genus. Forty-four collections included enough specimens to warrant quantitative analysis. The temporal and spatial distribution of the genera were defined by using Q-mode cluster analysis based on Sorensen's quantified coefficient of association. The resulting phenogram indicated the existence of eight clusters; these clusters were characterized by calculation of constancy and fidelity measures for each of the variables. Generic diversity, compound generic diversity, and lithologic associations were scanned in an attempt to delineate the

  16. Seismic detection of sonic booms.

    PubMed

    Cates, Joseph E; Sturtevant, Bradford

    2002-01-01

    The pressure signals from a sonic boom will produce a small, but detectable, ground motion. The extensive seismic network in southern California, consisting of over 200 sites covering over 50000 square kilometers, is used to map primary and secondary sonic boom carpets. Data from the network is used to analyze three supersonic overflights in the western United States. The results are compared to ray-tracing computations using a realistic model of the stratified atmospheric at the time of the measurements. The results show sonic boom ground exposure under the real atmosphere is much larger than previously expected or predicted by ray tracing alone. Finally, seismic observations are used to draw some inferences on the origin of a set of "mystery booms" recorded in 1992-1993 in southern California. PMID:11837967

  17. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    In 2005, six companies mined fire clay in Missouri, Ohio and South Carolina. Production was estimate to be 300 kt with a value of $8.3 million. Missouri was the leading producer state followed by Ohio and South Carolina. For the third consecutive year, sales and use of fire clays have been relatively unchanged. For the next few years, sales of fire clay is forecasted to remain around 300 kt/a.

  18. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  19. On site measurements of the redox and carbonate system parameters in the low-permeability Opalinus Clay formation at the Mont Terri Rock Laboratory

    NASA Astrophysics Data System (ADS)

    Fernández, A. M. a.; Turrero, M. J.; Sánchez, D. M.; Yllera, A.; Melón, A. M.; Sánchez, M.; Peña, J.; Garralón, A.; Rivas, P.; Bossart, P.; Hernán, P.

    An in situ water sampling experiment was performed in the Opalinus Clay formation (Switzerland), with the aim of obtaining undisturbed pore water samples for its characterization. The study was made from a dedicated borehole, named BDI-B1, drilled in March 2002 in the DI niche of the Mont Terri Rock Laboratory, located at the north-western part of the formation, a few meters away of the underlying Jurensis Marl formation. Five water sampling campaigns have been completed, and on site measurements of the key parameters of the water, such as pH, Eh, Fe(II), S 2- and alkalinity, were performed under controlled conditions inside an anoxic glove box. The chemical composition of the seepage waters obtained from the borehole is Na-Cl type, with an ionic strength of about 0.4 M. The Cl concentrations fit the concentration profile of the Opalinus Clay pore water obtained in previous experiments from boreholes and squeezed water samples. The highest salinity is found in this zone of the Opalinus Clay, with around 12 g/L of chloride. A perturbation of the rock system was produced during the first stages of the experiment due to a packer failure. As a consequence, the borehole was exposed to air during the first phase of the experiment. The main perturbations induced were: (1) pyrite oxidation that caused an increase of sulphate, calcium, magnesium and bicarbonate content in the waters; and (2) the inflow of 3H-bearing water vapour that could penetrate the EDZ. This fresh water infiltration could have mixed with the original formation water, and tritium contents of up to 3.8 TU were measured in the first water sampling campaigns. Nevertheless, after some time the hydrogeochemical conditions of the formation were recovered, and the long-term instrumentation and monitoring of the borehole made possible to obtain different parameters of the formation. Successive water sampling campaigns show a tendency to the stabilization of the main parameters of the water, such as sulphate and

  20. ANALYSIS OF A GAS-PHASE PARTITIONING TRACER TEST CONDUCTED IN AN UNSATURATED FRACTURED-CLAY FORMATION

    EPA Science Inventory

    The gas-phase partitioning tracer method was used to estimate non-aqueous phase liquid (NAPL), water, and air saturations in the vadose zone at a chlorinated-solvent contaminated field site in Tucson, AZ. The tracer test was conducted in a fractured-clay system that is the confin...

  1. Diffusion of ionic tracers in the Callovo-Oxfordian clay-rock using the Donnan equilibrium model and the formation factor

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Revil, A.; Leroy, P.

    2009-05-01

    The transient diffusion of cationic and anionic tracers through clay-rocks is usually modeled with parameters like porosity, tortuosity (and/or constrictivity), sorption coefficients, and anionic exclusion. Recently, a new pore scale model has been developed by Revil and Linde [Revil A. and Linde N. (2006) Chemico-electromechanical coupling in microporous media. J. Colloid Interface Sci.302, 682-694]. This model is based on a volume-averaging approach of the Nernst-Planck equation. The influence of the electrical diffuse layer is accounted for by a generalized Donnan equilibrium model through the whole connected pore space that is valid for a multicomponent electrolyte. This new model can be used to determine the composition of the pore water of the Callovo-Oxfordian clay-rock, the osmotic efficiency of bentonite as a function of salinity, the osmotic pressure, and the streaming potential coupling coefficient of clay-rocks. This pore scale model is used here to model the transient diffusion of ionic tracers ( 22Na +, 36Cl -, and 35SO42-) through the Callovo-Oxfordian clay-rock. Speciation of SO42- shows that ˜1/3 of the SO 4 is tied-up in different complexes. Some of these complexes are neutral and are therefore only influence by the tortuosity of the pore space. Using experimental data from the literature, we show that all the parameters required to model the flux of ionic tracers (especially the mean electrical potential of the pore space and the formation factor) are in agreement with independent evaluations of these parameters using the osmotic pressure determined from in situ pressure measurements and HTO diffusion experiments.

  2. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom

    USGS Publications Warehouse

    Fishman, Neil S.; Hackley, Paul C.; Lowers, Heather; Hill, Ronald J.; Egenhoff, Sven O.; Eberl, Dennis D.; Blum, Alex E.

    2012-01-01

    Analyses of organic-rich mudstones from wells that penetrated the Upper Jurassic Kimmeridge Clay Formation, offshore United Kingdom, were performed to evaluate the nature of both organic and inorganic rock constituents and their relation to porosity in this world-class source rock. The formation is at varying levels of thermal maturity, ranging from immature in the shallowest core samples to mature in the deepest core samples. The intent of this study was to evaluate porosity as a function of both organic macerals and thermal maturity. At least four distinct types of organic macerals were observed in petrographic and SEM analyses and they all were present across the study area. The macerals include, in decreasing abundance: 1) bituminite admixed with clays; 2) elongate lamellar masses (alginite or bituminite) with small quartz, feldspar, and clay entrained within it; 3) terrestrial (vitrinite, fusinite, semifusinite) grains; and 4) Tasmanites microfossils. Although pores in all maceral types were observed on ion-milled surfaces of all samples, the pores (largely nanopores with some micropores) vary as a function of maceral type. Importantly, pores in the macerals do not vary systematically as a function of thermal maturity, insofar as organic pores are of similar size and shape in both the immature and mature Kimmeridge rocks. If any organic pores developed during the generation of hydrocarbons, they were apparently not preserved, possibly because of the highly ductile nature of much of the rock constituents of Kimmeridge mudstones (clays and organic material). Inorganic pores (largely micropores with some nanopores) have been observed in all Kimmeridge mudstones. These pores, particularly interparticle (i.e., between clay platelets), and intraparticle (i.e., in framboidal pyrite, in partially dissolved detrital K-feldspar, and in both detrital and authigenic dolomite) are noteworthy because they compose much of the observable porosity in the shales in both

  3. The mineralogy of Fe/Mg-clays formed in low-temperature hydrothermal sea floor environments and possible formation mechanisms on Mars

    NASA Astrophysics Data System (ADS)

    Michalski, J. R.; Cuadros, J.; Glotch, T. D.

    2011-12-01

    that is similar to those observed at Mars - suggesting that talc could be more common on Mars than has been previously proposed. Interlayered clays in general might be the norm and not the exception in many Martian deposits. The samples display a range of variation in crystal order, but the notion of crystallinity depends greatly on the context within the technique that is being used. Certain infrared measurements are sensitive to chemical ordering within octahedral sheets only, whereas other infrared observations are sensitive to ordering in the tetrahedral sheets. XRD is sensitive to 1-, 2-, or 3-D ordering, depending on which peaks are considered. Some materials that appear poorly crystalline from their 00l x-ray peaks (highly disorder layer stack) may have well developed and chemically homogeneous octahedral domains that produce strong 0k0 peaks and IR spectral features. Other samples display poor hkl diffraction features and very sharp 00l peaks. Such considerations are important for interpreting clay formation mechanisms and will be essential for linking multiple observations of clays from existing IR instruments covering multiple wavelengths to the XRD data to be returned from Mars by the upcoming Mars Science Laboratory mission.

  4. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Five companies mined fire clay in four states in 2011. Production, based on a preliminary survey of the fire clay industry, was estimated to be 240 kt (265,000 st), valued at $7.68 million, an increase from 216 kt (238,000 st), valued at $6.12 million in 2010. Missouri was the leading producing state, followed by Texas, Washington and Ohio, in decreasing order by quantity.

  5. Elastic Properties of Clay Minerals

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Prasad, M.; Nur, A.

    2001-12-01

    We present ultrasonic P- and S-waves velocity measurements on pure clay samples using three different experiment setups. These experiments provided petrophysical and acoustic properties of clay minerals as a function both of mineralogy and compaction. In the first experiment, acoustic measurements were performed on cold-pressed clay aggregates at ambient and at hydrostatic pressure conditions. Porosity and grain density values of the different clay mineralogy aggregates ranged from 4 to 43% and 2.13 to 2.83 g cm-3, respectively. In the second experiment, we measured P-wave velocity and attenuation in a kaolinite-water suspension in which clay concentration was increased up to 60%. In the third experiment, P- and S- wave velocities were measured during uniaxial stress compaction of clay powders. Results from all three experiments revealed low bulk (K) and shear (μ ) moduli for kaolinite, montmorillonite, and smectite; the values range between 6-12 GPa for K and 4-6 GPa for μ , respectively. Using these clay moduli values in effective medium and granular porous media models, velocity is predicted in saturated pure kaolinite samples, kaolinite suspension and shaly sandstones fairly well. Experimental results also showed that water interlayers play an important role in the compaction and strength of clay aggregates. Clay minerals carrying on water interlayers in their structure showed high compaction and strength. This study is relevant for a more reliable assessment of the seismic response in reservoirs and/or basins characterized by clay-bearing formations.

  6. K-Ar ages of illite clays of the Meade Peak Member of the Phosphoria Formation, Western Phosphate Field, southeastern Idaho

    USGS Publications Warehouse

    Elliott, W. Crawford; Ritter, Kristen; Wampler, J.; Grauch, Richard I.; Bauluz, Blanca

    2007-01-01

    The Meade Peak Phosphatic Shale Member of the Phosphoria Formation in the Western Phosphate Field, southeastern Idaho, is composed of carbonaceous mudstone and siltstone with beds of phosphorite and dark bioclastic limestone. An objective of this study has been to understand the timing of diagenetic illite formation in the Meade Peak and whether the Neogene passage of hydrothermal fluids had a significant role in forming diagenetic illite in these shales. Illite-smectite (I-S) is the predominant clay mineral within the shale samples. Smectite, apatite, and kaolinite were also found in some samples. A distinct second generation of diagenetic illite is present as thin, 90% for all samples, and the I-S exhibits a Kalkberg-type stacking order (IISI). The diagenetic conditions inferred from the stacking order and percentage of illite layers in I-S are consistent with published vitrinite reflectance data of the Meade Peak. The K-Ar apparent ages of I-S range from 186 Ma to 292 Ma. A decrease in K-Ar age of I-S with decreasing particle size is observed in clay sub-micron fractions and is consistent with an interpretation that the clay fraction contains a mixture of detrital illite (or I-S) and diagenetic I-S. The measured K-Ar ages of I-S also decrease with increasing stratigraphic distance above the base of the Meade Peak. The K-Ar age of the diagenetic illite rosettes is about 185 Ma. These results indicate that diagenetic illite was formed in the Meade Peak shales during the Jurassic Period, almost certainly in response to progressive burial over a prolonged duration . Additional heating in response to thrust sheet emplacement during the Cretaceous Period may be responsible for the decrease in K-Ar age upward within the member.

  7. On the aging of sonic booms

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.

    1994-01-01

    This paper presents view-graphs and notes on sonic boom aging. Topic covered include sonic boom propagation, George's minimized F-function, final minimum shock boom, amplitude and age parameters, off-track aging, scaling flight test experiments, the potential for thin shocks, and results of a Boomfile flight test that showed significant waveform distortion.

  8. Real Time Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  9. Clay Minerals

    SciTech Connect

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  10. A Nonconventional Model of Protocell-like Vesicles: Anionic Clay Surface-Mediated Formation from a Single-Tailed Amphiphile.

    PubMed

    Du, Na; Song, Ruiying; Li, Haiping; Song, Shue; Zhang, Renjie; Hou, Wanguo

    2015-11-24

    We report a novel model system of precursor cellular membranes, self-assembled from micellar solution of a common anionic single-tailed amphiphile (STA), including sodium dodecyl sulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS). The self-assembly process was mediated with solid surfaces of Mg2Al-CO3 hydrotalcite-like compound (HTlc), an anionic clay, in the absence of cosurfactants or any additives. The resultant STA vesicles were characterized using negative-staining and cryogenic transmission electron microscopies, as well as dynamic light scattering and steady state fluorescence techniques. Interestingly, the obtained STA vesicles displayed good stability even after the removal of the anionic clay surface (ACS), and a self-reproduction phenomenon was observed for the "preformed" STA vesicles when mixing with corresponding STA micellar solutions. More importantly, the micelle-to-vesicle transition for SDS could be still arisen in high-salinity artificial seawater under the ACS mediation. Instead of conventional fatty acid scenario, our finding provides another novel possible model for protocell-like vesicles, which are easily formed under the plausible prebiotic conditions. PMID:26524569

  11. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2012-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys Group, Old Hickory Clay Co., and Unimin Corp. — mined ball clay in four states in 2011. Production, on the basis of preliminary data, was 940 kt (1.04 million st) with an estimated value of $44.2 million. This is a 3-percent increase in tonnage from 912 kt (1.01 million st) with a value of $41.3 million that was produced in 2010. Tennessee was the leading producing state with 63 percent of domestic production, followed by Texas, Mississippi and Kentucky. About 69 percent of production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  12. Realism Assessment of Sonic Boom Simulators

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.; Davies, Patrica; Hodgdon, Kthleen K.; Salamone, Joseph A., III; Pilon, Anthony

    2008-01-01

    Developments in small supersonic aircraft design are predicted to result in low-intensity sonic booms. Booms generated by current aircraft are similar to those that led to the ban on commercial supersonic fli ght over the US, so are unsuitable for parametric studies of psychoac oustic response to low-intensity booms. Therefore, simulators have be en used to study the impact of predicted low-intensity sonic booms. H owever, simulators have been criticized because, when simulating conv entional-level booms, the sounds were observed to be unrealistic by p eople experienced in listening to sonic booms. Thus, two studies were conducted to measure the perceived realism of three sonic boom simul ators. Experienced listeners rated the realism of conventional sonic boom signatures when played in these simulators. The effects on percei ved realism of factors such as duration of post-boom noise, exclusion of very low frequency components, inclusion of ground reflections, a nd type of simulator were examined. Duration of post-boom noise was f ound to have a strong effect on perceived realism, while type of simu lator had a weak effect. It was determined that post-boom noise had t o be at least 1.5 seconds long for the sound to be rated very realist ic. Loudness level did not affect realism for the range of sounds pla yed in the tests (80-93 dB ASEL).

  13. Magnetic iron oxide/clay composites: effect of the layer silicate support on the microstructure and phase formation of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Szabó, Tamás; Bakandritsos, Aristides; Tzitzios, Vassilios; Papp, Szilvia; Korösi, László; Galbács, Gábor; Musabekov, Kuanyshbek; Bolatova, Didara; Petridis, Dimitris; Dékány, Imre

    2007-07-01

    Magnetic iron oxide nanoparticles were synthesized on two different clay supports: natural montmorillonite and synthetic laponite. The nanocomposites obtained, characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), x-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption, small-angle x-ray scattering (SAXS), vibrating sample magnetometry and Mössbauer spectroscopy, were found to exhibit highly different physicochemical properties despite their similar iron content. The observed size effect of the layered silicate support, resulting in the high abundance of very small particles (diameter of 1-5 nm) on laponite, was explained in terms of the difference between the surface charge densities and the lamellar dimensions of the clay substrates. Moreover, it was revealed that the nature of the layered support greatly affected the nanostructure (fractal dimensions, surface area, porosity) of the formed hybrid solids as well as the phase formation of iron oxide crystals. The high surface area laponite composites, due to the dominance of very small iron oxide particles, exhibited more pronounced superparamagnetic behaviour as compared to the montmorillonite samples prepared under identical conditions. The observed higher saturation magnetization of the laponite composites, attributed to their lower content in the antiferromagnetic hematite and to the onset of superferromagnetism in the aggregated particles, shows their excellent utility for adsorption/magnetic separation.

  14. Meteoric water-rock interaction and clay-gouge formation during higher temperature brittle faulting on the Silltal-Brenner Fault Zone, Eastern Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil; Zwingmann, Horst; Campani, Marion; Fügenschuh, Bernhard; Mulch, Andreas

    2015-04-01

    The Silltal Fault is the northern brittle continuation of the Brenner Fault Zone, with a normal, down-to-west sense of movement. It is marked by a narrow zone of cataclasis and, in three sampled locations, clay-rich fault gouges. The clay mineral composition of these gouges is dominated by higher temperature 2M1 polytype illite/muscovite, with no 1M/1Md illite or mixed layer illite/smectite detected. Smectite is limited to the northern samples from the Stephansbrücke location, whereas chlorite is present in all samples. New growth of 2M1 polytype illite in the finest size fractions indicates temperatures > 200-250° C and therefore fault gouge development at depths and temperatures close to the ductile-brittle transition in quartz rich rocks (~280-300° C). Hydrogen stable isotope (δD) analyses show that gouge formation was associated with the influx of meteoric water, which was strongly focused within the fault zone itself, without significant interchange with the adjacent footwall and hanging wall rocks. K-Ar ages from the different sample grain size fractions (< 0.1 to 6-10 μm and 'whole rock gouge') show a wide spread, from ca. 115 to 12 Ma, with ages consistently decreasing with grain size. Although the ranges overlap, ages from the northern Stephansbrücke samples are generally older (115-36 Ma) than those from the south near Matrei (55-12 Ma), possibly reflecting increasing regional metamorphic temperatures to the south. The well-defined linear relationship between apparent age and hydrogen stable isotope (δD) values establishes a direct correlation between rejuvenation of the K-Ar system and increased interaction with meteoric water. The dependence of both apparent age and δD on grain size also indicates that radiogenic and stable isotope exchange was controlled by grain size, reflecting new 2M1 illite growth, mechanical grinding of protolith muscovite during cataclastic faulting, or both. The results demonstrate the advantages of combining radiogenic

  15. Buffaloed by the energy boom

    SciTech Connect

    Morris, R.

    1981-11-01

    The western energy boom is producing the mineral wealth to restore the US economy and security as well as producing boom towns that should be getting more media and public attention. Accurate and more sensitive journalism is needed to record what is happening in the Rocky Mountain region beyond the headlines of confrontations and boosterism. The case of uranium mining and milling is one of a long cycle of land acquisition and development, but it produced little historical record until incidents happened and charges of negligence were made. There is no shortage of material for reporters who want to cover the story of strip mining, water resources, and other issues, but the public must appreciate the life cycle of a mine before it can fully grasp the significance of individual events. This requires aggressive and independent news gathering and sustained coverage. (DCK)

  16. Georgia Tech sonic boom simulator

    NASA Technical Reports Server (NTRS)

    Ahuja, Krish K.

    1992-01-01

    To examine the building and human response to sonic boom in the range 3 Hz to 30 Hz, Georgia Institute of Technology is building a special acoustic driver system to simulate sonic boom. To support the NASA LaRC program on building and human response, this simulator's capability has been extended to an upper frequency of 4 KHz. A residential test house was made available by Georgia Tech for these tests. At the time of preparation of this document, most of the acoustic drivers and the associated electronics have been built and assembled. The system has, however, not been fully tested. The following pages provide an overview of the progress to date. The acoustic driver systems, and the principle of their operation together with the test house are described. Future plans are also summarized.

  17. Potassium hydroxide clay stabilization process

    SciTech Connect

    Sydansk, R.

    1981-07-28

    An aqueous solution having potassium hydroxide dissolved therein is injected into a subterranean sandstone formation containing water-sensitive fine particles, including clays. Potassium hydroxide stabilizes the fine particles for a substantial period of time thereby substantially preventing formation permeability damage caused by encroachment of aqueous solutions having a distinct ionic makeup into the treated formation.

  18. Boom and chassis articulation joints

    NASA Technical Reports Server (NTRS)

    Murphy, Joel T., Jr.; Nguyen, Vien; Turner, Bonnie; Wheeler, Bobby; Williams, Kimberlyn

    1992-01-01

    The primary goal of our design project was to develop articulation joints for the chassis and boom of the proof-of-concept lunar vehicle. This is an ongoing project and the work of previous student groups was extensively reviewed. Some of the ideas generated are variations of past proposals. Although the project is funded by NASA/USRA, it is totally a student design effort.

  19. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil

    PubMed Central

    Meunier, Jean-François; Martins-Silva, Elisângela R.; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the

  20. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil.

    PubMed

    Barbiero, Laurent; Berger, Gilles; Rezende Filho, Ary T; Meunier, Jean-François; Martins-Silva, Elisângela R; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the

  1. Clay for Little Fingers.

    ERIC Educational Resources Information Center

    Koster, Joan Bouza

    1999-01-01

    Discusses the renewed interest in clay as a modeling compound in early childhood programs; describes the nature of clay and presents a working vocabulary. Suggests methods of working with clay, including introducing clay to children, discovering its uses, clean up, firing clay, and finishing baked clay. Includes activity suggestions and…

  2. Importance of thermo-osmosis for fluid flow and transport in clay formations hosting a nuclear waste repository

    NASA Astrophysics Data System (ADS)

    Gonçalvès, Julio; de Marsily, Ghislain; Tremosa, Joachim

    2012-07-01

    Three osmotic processes have been identified in clay-rich media. Electro- and chemo-osmosis - flows of water caused by salinity and electrical potential gradients - have so far attracted almost exclusive attention. But, despite the recurring concern about the importance of thermo-osmosis - a flow of water driven by a temperature gradient - in argillaceous media, it remains largely neglected. Here we propose a new formalism for estimating the thermo-osmotic permeability based on a theoretical analysis at the molecular and pore scale, then upscaled. We show that the thermo-osmotic permeability can be estimated only from surface-charge density, temperature, pore size and salinity. The possible prominent role of thermo-osmosis in compacted shale layers with a temperature gradient is then exemplified. This first general estimate of the thermo-osmotic permeability can be used to improve our understanding of the influence on fluid flow and pressure fields of the natural geothermal gradient in sedimentary basins, which is required, e.g., for safety assessments of nuclear-waste repositories in shale layers.

  3. Bryozoan fauna of the Upper Clays Ferry, Kope, and Lower Fairview formations (Edenian, Upper Ordovician) at Moffett Road, northern Kentucky

    USGS Publications Warehouse

    Karklins, Olgerts L.

    1983-01-01

    The geology, water movement, and sediment characteristics in the upstream part of the Spring River basin have been appraised, to assist the U.S. EPA in their study of dioxin contamination in the area. The U.S. Environmental Protection Agency has confirmed that the dioxin compound, TCDD (2,3,7 ,8-tetrachlorodibenzo-p-dioxin), is present in the soils, streambed sediments, and fish in the upstream part of the Spring River Basin. Although the solubility of dioxin is small, it may be moving through the hydrologic system, adsorbed on sediment particles. Water movement in the shallow aquifer generally follows the topography. In upland areas, precipitation recharges the shallow aquifer, then the shallow aquifer water discharges into larger streams. Sediment yields generally are small in the upstream part of the Spring River basin. Suspended sediment discharges for the Spring River at La Russell ranged from 3.0 tons/day at a flow of 79 cu ft/sec, 1.7 times the 7-day 2-yr low flow, to about 1240 tons/day at a flow of 1600 cu ft/sec, 6.7 times the long-term average. Suspended sediment particles in the Spring River and Honey Creek generally were silt and clay (smaller than 0.062 mm). Fine sediments with adsorbed dioxin may be transported out of the area by streamflow, or they may be deposited on flood plains or in downstream impoundments during periods of flooding. (Lantz-PTT)

  4. Stowage and Deployment of Slit Tube Booms

    NASA Technical Reports Server (NTRS)

    Adams, Larry (Inventor); Turse, Dana (Inventor); Richardson, Doug (Inventor)

    2016-01-01

    A system comprising a boom having a first end, a longitudinal length, and a slit that extends along the longitudinal length of the boom; a drum having an elliptic cross section and a longitudinal length; an attachment mechanism coupled with the first end of the boom and the drum such that the boom and the drum are substantially perpendicular relative to one another; an inner shaft having a longitudinal length, the inner shaft disposed within the drum, the longitudinal length of the inner shaft is aligned substantially parallel with the longitudinal length of the drum, the inner shaft at least partially rotatable relative to the drum, and the inner shaft is at least partially rotatable with the drum; and at least two cords coupled with the inner shaft and portions of the boom near the first end of the boom.

  5. Fire clay

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Seven companies mined fire clay in four states during 2003. From 1984 to 1992, production declined to 383 kt (422,000 st) from a high of 1.04 Mt (1.14 million st) as markets for clay-based refractories declined. Since 1992, production levels have been erratic, ranging from 383 kt (422,000 st) in 1992 and 2001 to 583 kt (642,000 st) in 1995. Production in 2003, based on preliminary data, was estimated to be around 450 kt (496,000 st) with a value of about $10.5 million. This was about the same as in 2002. Missouri remained the leading producer state, followed by South Carolina, Ohio and California.

  6. Unstructured grids for sonic-boom analysis

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1993-01-01

    A fast and efficient unstructured grid scheme is evaluated for sonic-boom applications. The scheme is used to predict the near-field pressure signatures of a body of revolution at several body lengths below the configuration, and those results are compared with experimental data. The introduction of the 'sonic-boom grid topology' to this scheme make it well suited for sonic-boom applications, thus providing an alternative to conventional multiblock structured grid schemes.

  7. Low Sonic Boom Design Activities at Boeing

    NASA Technical Reports Server (NTRS)

    Haglund, George T.

    1999-01-01

    Low sonic boom studies have continued during the last year with the goal of exploring the ability of practical airplane designs to achieve significantly reduced sonic boom-loudness with reasonable performance penalties. At the 1993 Sonic Boom Workshop, improvements to the low-boom design methods were described and early results of two low-boom configurations -935 and -936) were presented. Now that the low boom design methods are reasonably mature, recent design activities have broadened somewhat to explore refinements to the -935 and -936 designs. In this paper the results are reported of a detailed systems study and performance sizing of the -935 (Hybrid sonic boom waveform) and the -936 (Flat-top waveform). This analysis included a second design cycle for reduced cruise drag and balance considerations. Another design study was of a small-wing version of the -935. Finally, some preliminary results of the recent LARC UPWT test of the -935 configuration are given, along with a proposed alternative method for extrapolating wind tunnel pressure signatures to the ground. The various configurations studied is also summarized. The topics covered by this paper are as follows: Systems study results of the Baseline -939 and low boom configurations -935 and -936, Small wing derivative of the -935, Wind tunnel test results of the -935, Test-derived F-function and propagation to the ground, and Future considerations (boom-softened baseline, overwater issues, and operations).

  8. Arsenic-bearing pyrite and marcasite in the Fire Clay coal bed, Middle Pennsylvanian Breathitt Formation, eastern Kentucky

    USGS Publications Warehouse

    Ruppert, L.F.; Hower, J.C.; Eble, C.F.

    2005-01-01

    Arsenic concentrations determined on 11 lithotype samples from the Middle Pennsylvanian Breathitt Group Fire Clay coal bed, Leslie County, KY, range from 1 to 418 ppm (whole coal basis). The 11 lithotype samples, which vary in thickness from 4 to 18 cm, were sampled from a continuous 1.38 m channel sample, and were selected based on megascopic appearance (vitrain-rich versus attrital-rich). A lithotype that contains 418 ppm As is located near the top of the coal bed and is composed of 10.5 cm of bright clarain bands containing fusain that, within short distances, grade laterally into Fe sulfide bands. To determine the mode of occurrence of As in this lithotype, the coal was examined with scanning electron microscopy and analyzed by energy dispersive X-ray fluorescence. Massive, framboidal, cell filling, cell-wall replacement, and radiating forms of Fe sulfide were observed in the high As lithotype; many of the radiating Fe sulfide forms, and one of the cell-wall replacements contained As. Examination of the grains with optical light microscopy shows that the majority of radiating morphologies are pyrite, the remainder are marcasite. Selected Fe sulfide grains were also analyzed by electron microprobe microscopy. Arsenic concentrations within individual grains range from 0.0 wt.% to approximately 3.5 wt.%. On the basis of morphology, these Fe sulfides are presumed to be of syngenetic origin and would probably be removed from the coal during physical coal cleaning, thus eliminating a potential source of As from the coal combustion process. However, because the grains are radiating and have high surface area, dissolution and release of As could occur if the pyrite is oxidized in refuse ponds.

  9. Carbonate leaching processes in the Red Clay Formation, Chinese Loess Plateau: Fingerprinting East Asian summer monsoon variability during the late Miocene and Pliocene

    NASA Astrophysics Data System (ADS)

    He, Tong; Chen, Yang; Balsam, William; Qiang, Xiaoke; Liu, Lianwen; Chen, Jun; Ji, Junfeng

    2013-01-01

    High-resolution variations in carbonate minerals from the Jiaxian Red Clay section, located at the northern limit of the present East Asian summer monsoon (EASM) on Chinese Loess Plateau were quantified using Fourier transform infrared spectroscopy. We analyzed a large quantity of sediments dated from the late Miocene to Pliocene (8.2-2.6 Ma). The carbonates in this interval show high-frequency variations alternating between leached and calcareous horizons. The low carbonate contents and high values of magnetic susceptibility and high Rb/Sr ratios were found in the leached zones, a pattern that is consistent with that observed in the overlying Quaternary loess-paleosol sequences. This pattern suggests that East Asian Monsoon (EAM) rainwater enhanced leaching and accumulation processes of carbonate minerals in the Red Clay Formation in a way similar to the loess-paleosol sequence. Seven alternating leached and calcareous zones are identified, suggesting oscillations of the EASM and East Asian winter monsoon intervals. The calcareous zones were also found to have high Zr/Rb ratio. These indications of shifts from a strong EASM to East Asian winter monsoon dominance correlate well with the cooling transition indicated by deep sea δ18O isotopes. This evidence suggests that the EAM was active during the late Miocene and Pliocene and was similar to the Quaternary monsoon. The presence of a strong EAM during the Pliocene Warm Period also raises questions about the hypothesis that past and future warm climate conditions could produce a permanent El Niño-like state.

  10. An integrated multi-scale hydrogeological model for performance and safety assessment of French geological high level and long live radwaste disposal in clay formation

    NASA Astrophysics Data System (ADS)

    Benabderrahmane, H.; Cornaton, F. J.; Kerrou, J.

    2009-12-01

    A deep geological repository of high level and long live radwaste requires sound understanding of the far field and near field groundwater flow and transport properties. Andra, French National radioactive waste management Agency is developing since last 15 years, an integrated multi-scale hydrogeological model of whole Paris basin of 200'000 Km2 area (regional scale) to produce a regional flow field associated to groundwater behavior. It includes locally the Meuse / Haute Marne clay site of about 250 Km2 area in the eastern part of Paris basin that was chosen for the emplacement of a repository. Callovo-Oxfordian as host formation is a clay layer characterized by very low permeability, a mean thickness of 130 m at about 500 m depth and is embedded by calcareous formations as aquifers (Dogger and Oxfordian). The hydrogeological conceptual model is based on stratigraphic and petrophysic modeling of the Paris basin and is accounting for the sound structural, geological, hydrogeological and geochemical data in an integrated way. At Paris basin scale, the model is a multilayer system of 27 layers (hydrogeological units) from Trias to Tertiary. A refinement at local scale of the site defines 27 hydro-geological units from Trias to Portlandian within an area of 1800 Km2. Based on sound data acquisition from borehole and seismic campaigns performed by Andra, regional faults, minor and diffuse fractures are considered. A structural and petrophysical representation of the transition zone between the Paris basin scale and site scale, as well as a better handling of surface flow boundary conditions are considered. Finite element flow and transport simulator Ground Water code (GW) is used to solve for groundwater flow at steady-state in a 1.8 Million nodes model, considering current climatic conditions. The model is calibrated against about 1250 hydraulic head measurements, and results in maximum absolute hydraulic head differences of 20 meters at the regional scale and 5

  11. Elastic Properties of Clay Minerals

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Prasad, M.; Nur, A.

    We present ultrasonic P- and S-waves velocity measurements on pure clay samples us- ing three different experiment setups. These experiments provided petrophysical and acoustic properties of clay minerals as a function both of mineralogy and compaction. In the first experiment, acoustic measurements were performed on cold-pressed clay aggregates at ambient and at hydrostatic pressure conditions. Porosity and grain den- sity values of the different clay mineralogy aggregates ranged from 4 to 43% and 2.13 to 2.83 g cm-3, respectively. In the second experiment, we measured P-wave velocity and attenuation in a kaolinite-water suspension in which clay concentration was in- creased up to 60%. In the third experiment, P- and S- wave velocities were measured during uniaxial stress compaction of clay powders. Results from all three experiments revealed low bulk (K) and shear (µ) moduli for kaolinite, montmorillonite, and smec- tite; the values range between 6-12 GPa for K and 4-6 GPa for µ, respectively. Using these clay moduli values in effective medium and granular porous media (theories) models, velocity is predicted in saturated pure kaolinite samples, kaolinite suspension and shaly sandstone fairly well. Experimental results also showed that water interlay- ers play an important role in the compaction and strength of clay aggregates. Clay minerals carrying on water interlayers in their structure showed high compaction and strength. This study is relevant for a more reliable assessment of the seismic response in reservoirs and/or basins characterized by clay-bearing formations.

  12. Research at NASA on Human Response to Sonic Booms

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2008-01-01

    NASA used its sonic boom simulator to study human response to shaped sonic booms and concluded that a loudness metric, such as Perceived Level, predicts human reaction to outdoor booms more accurately than overpressure. To investigate the importance of indoor phenomena (rattle, reverberation) under controlled laboratory conditions, NASA is building an "indoor sonic boom simulator." The intention is to develop a psychoacoustic model that describes human response as a function of boom shape (spectrum), boom intensity, reverberation, and varying rattle characteristics.

  13. Community Response to an Oil Boom.

    ERIC Educational Resources Information Center

    Copp, James H.

    A study of the process of a 1977-1983 oil and gas boom in Caldwell, Texas, disproved the assumption that local social effects of rapid energy development are severe and negative. Using interviews, surveys, observation, local newspapers, and other writings as data sources, researchers determined that during the boom, Caldwell's population grew…

  14. 33 CFR 401.8 - Landing booms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Landing booms. 401.8 Section 401.8 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Condition of Vessels § 401.8 Landing booms. (a)...

  15. Status of sonic boom methodology and understanding

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.; Powell, Clemans A.; Hayes, Wallace D.; George, Albert R.; Pierce, Allan D.

    1989-01-01

    In January 1988, approximately 60 representatives of industry, academia, government, and the military gathered at NASA-Langley for a 2 day workshop on the state-of-the-art of sonic boom physics, methodology, and understanding. The purpose of the workshop was to assess the sonic boom area, to determine areas where additional sonic boom research is needed, and to establish some strategies and priorities in this sonic boom research. Attendees included many internationally recognized sonic boom experts who had been very active in the Supersonic Transport (SST) and Supersonic Cruise Aircraft Research Programs of the 60's and 70's. Summaries of the assessed state-of-the-art and the research needs in theory, minimization, atmospheric effects during propagation, and human response are given.

  16. Experimental device for chemical osmosis measurement on natural clay-rock samples maintained at in situ conditions: implications for formation pressure interpretations.

    PubMed

    Rousseau-Gueutin, Pauline; de Greef, Vincent; Gonçalvès, Julio; Violette, Sophie; Chanchole, Serge

    2009-09-01

    In order to characterize the so-called coupled processes occurring in compacted clay rocks, the coupling coefficients must be identified. For this purpose, an original device which allows such measurement for undisturbed (natural) samples in their in situ conditions was developed. The present experimental device minimizes the fluid leaks improving the accuracy of the coupling parameter determination. Three chemical osmotic tests were performed on a cylindrical sample of Callovo-Oxfordian argilite. Room temperature variations during the chemical osmosis experiments required the implementation of temperature effects in the numerical model used for the interpretations. These variations offered the opportunity of an alternative method to estimate the compressibility of the fluid in the circuit connected to a measurement chamber located in the center of the sample. An osmotic efficiency of almost 0.2 for a concentration of 0.094 mol L(-1) is obtained for the Callovo-Oxfordian argilite. This value would explain only some part (approximately 0.10-0.15 MPa) of the overpressures (0.5-0.6 MPa) relative to the surrounding reservoirs measured in this formation. Others processes, such as thermo-osmosis, hydrodynamic boundary condition changes due to climate variations or creep behavior of the shale, could explain the remainder of the overpressures. PMID:19527907

  17. Boron Enrichment in Martian Clay

    PubMed Central

    Nagashima, Kazuhide; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  18. Boron enrichment in martian clay.

    PubMed

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  19. Numerical model of sonic boom in 3D kinematic turbulence

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François; Luquet, David; Marchiano, Régis

    2015-10-01

    Sonic boom is one of the key issues to be considered in the development of future supersonic or hypersonic civil aircraft concepts. The classical sonic boom, typical for Concorde with an N-wave shape and a ground amplitude of the order of 100 Pa, prevents overland flight. Future concepts target carefully shaped sonic booms with low amplitude weak shocks. However, sonic boom when perceived at the ground level is influenced not only by the aircraft characteristics, but also by atmospheric propagation. In particular, the effect of atmospheric turbulence on sonic boom propagation near the ground is not well characterized. Flight tests performed as early as the 1960s demonstrated that classical sonic booms are sensitive to atmospheric turbulence. However, this sensitivity remains only partially understood. This is related to the fact that i) turbulence is a random process that requires a statistical approach, ii) standard methods used to predict sonic booms, mainly geometrical acoustics based on ray tracing, are inadequate within the turbulent planetary boundary layer. Moreover, the ray theory fails to predict the acoustical field in many areas of interest, such as caustics or shadow zones. These zones are of major interest for sonic boom acceptability (highest levels, lateral extent of zone of impact). These limitations outline the need for a numerical approach that is sufficiently efficient to perform a large number of realizations for a statistical approach, but that goes beyond the limitations of ray theory. With this in view, a 3D one-way numerical method solving a nonlinear scalar wave equation established for heterogeneous, moving and absorbing atmosphere, is used to assess the effects of a 3D kinematic turbulence on sonic boom in various configurations. First, a plane N-wave is propagated in the free field through random realizations of kinematic fluctuations. Then the case of a more realistic Atmospheric Boundary Layer (ABL) is investigated, with a mean

  20. Sonic boom interaction with turbulence

    NASA Technical Reports Server (NTRS)

    Rusak, Zvi; Giddings, Thomas E.

    1994-01-01

    A recently developed transonic small-disturbance model is used to analyze the interactions of random disturbances with a weak shock. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. It shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed-type elliptic hyperbolic flows around the shock wave is presented. Numerical calculations of shock wave interactions with various deterministic vorticity and temperature disturbances result in complicate shock wave structures and describe peaked as well as rounded pressure signatures behind the shock front, as were recorded in experiments of sonic booms running through atmospheric turbulence.

  1. Sonic Boom: Six Decades of Research

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Bobbitt, Percy J.; Plotkin, Kenneth J.; Shepherd, Kevin P.; Coen, Peter G.; Richwine, David M.

    2014-01-01

    Sonic booms generated by aircraft traveling at supersonic speeds have been the subject of extensive aeronautics research for over 60 years. Hundreds of papers have been published that document the experimental and analytical research conducted during this time period. The purpose of this publication is to assess and summarize this work and establish the state-of-the-art for researchers just entering the field, or for those interested in a particular aspect of the subject. This publication consists of ten chapters that cover the experimental and analytical aspects of sonic boom generation, propagation and prediction with summary remarks provided at the end of each chapter. Aircraft maneuvers, sonic boom minimization, simulation techniques and devices as well as human, structural, and other responses to sonic booms are also discussed. The geometry and boom characteristics of various low-boom concepts, both large civil transports and smaller business-jet concepts, are included. The final chapter presents an assessment of civilian supersonic overland flight and highlights the need for continued research and a low-boom demonstrator vehicle. Summary remarks are provided at the end of each chapter. The studies referenced in this publication have been drawn from over 500 references.

  2. HSCT designs for reduced sonic boom

    NASA Technical Reports Server (NTRS)

    Haglund, George T.

    1991-01-01

    The versatility of High Speed Civil Transports (HSCT) will be operationally limited by regulations that prohibit overland supersonic flight. This limitation gives impetus to the study of aerodynamic designs for reduced sonic boom. An HSCT design with an 'acceptable' sonic boom can allow routine overland supersonic cruise that would provide increased productivity and economic viability. During this four-year NASA-sponsored study, several configurations were designed for reduced sonic boom. An iterative technique was used in which the standard linear supersonic and Whitham sonic boom methods are extended. For the most severe sonic boom constraint of 72 dBA sonic boom loudness and 0.75 lb/sq ft shock strength at the ground, an economic benefit for operating at Mach 1.7 overland was not realized because of a decrease in the ratio of payload to takeoff gross weight. Additional design work is required to develop the best compromise between the low-boom requirements and optimum cruise performance.

  3. Killer clays! Natural antibacterial clay minerals

    USGS Publications Warehouse

    Williams, L.B.; Holland, M.; Eberl, D.D.; Brunet, T.; De Courrsou, L. B.

    2004-01-01

    The clay chemical properties that may be important in medicine were investigated. It was found that natural clay minerals can have striking and very specific effects on microbial populations. The effects can range from potentially enhanced microbial growth to complete sterilization. This paper presents evidence that natural clay minerals can be effective antimicrobial agents.

  4. CLAY AND CLAY-SUPPORTED REAGENTS IN ORGANIC SYNTHESES

    EPA Science Inventory

    CLAY AND CLAY-SUPPORTED REAGENTS HAVE BEEN USED EXTENSIVELY FOR SYNTHETIC ORGANIC TRANSFORMATIONS. THIS OVERVIEW DESCRIBES THE SALIENT STRUCTURAL PROPERTIES OF VARIOUS CLAY MATERIALS AND EXTENDS THE DISCUSSION TO PILLARED CLAYS AND REAGENTS SUPPORTED ON CLAY MATERIALS. A VARIET...

  5. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  6. What is that mysterious booming sound?

    USGS Publications Warehouse

    Hill, David P.

    2011-01-01

    The residents of coastal North Carolina are occasionally treated to sequences of booming sounds of unknown origin. The sounds are often energetic enough to rattle windows and doors. A recent sequence occurred in early January 2011 during clear weather with no evidence of local thunder storms. Queries by a local reporter (Colin Hackman of the NBC affiliate WETC in Wilmington, North Carolina, personal communication 2011) seemed to eliminate common anthropogenic sources such as sonic booms or quarry blasts. So the commonly asked question, “What's making these booming sounds?” remained (and remains) unanswered.

  7. Experimental studies of loudness and annoyance response to sonic booms

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.; Leatherwood, Jack D.

    1994-01-01

    The purpose of this paper is to summarize the most recent sonic boom laboratory studies performed at NASA-LaRC using the Sonic Boom Simulator. The first used synthesized idealized outdoor boom shapes which were filtered to represent booms heard inside a house. The test explored the efficacy of various metrics in assessing both loudness and annoyance responses to these booms. The second test investigated the effects of adding single reflections to idealized boom signatures, and the third compared booms recorded from real aircraft with idealized boom signatures to determine if subjects rated the real booms differently. In these studies, as in previous studies performed at NASA-LaRC, there was a continuing effort to evaluate metrics for predicting the subjective effects of sonic booms.

  8. The colloidal chemistry of ceramic clays

    NASA Technical Reports Server (NTRS)

    Phelps, G. W.

    1984-01-01

    The colloidal chemistry and mineralogy of two argil minerals were studied. Deposits of kaolin and of ceramic clays in the United States and England are discussed for the probable mechanism of formation. The structural modifications of the bed, original material associated with the clays and the proper use of flocculants are discussed.

  9. Sonic Boom Prediction Exercise: Experimental Comparisons

    NASA Technical Reports Server (NTRS)

    Tu, Eugene; Cheung, Samson; Edwards, Thomas

    1999-01-01

    The success of a future High Speed Civil Transport (HSCT) depends on the ability to accurately assess and, possibly, modify the sonic boom signatures of potential designs. In 1992, the Sonic Boom Steering Committee initiated a prediction exercise to assess the current computational capabilities for the accurate and efficient prediction of sonic boom signatures and loudness levels. A progress report of this effort was given at the Sonic Boom Workshop held at NASA Ames Research Center in 1993 where predictions from CFD and Modified Linear Theory (MLT) methods were given. Comparisons between the methods were made at near-, mid- and far-field locations. However, at that time, experimental data from wind-tunnel tests were not available. The current paper presents a comparison of computational results with the now available experimental data. Further comparisons between the computational methods and analyses of the discrepancies in the results are presented.

  10. NASA Engineer Larry Cliatt: Softening Sonic Booms

    NASA Video Gallery

    A sudden sonic boom can startle persons unfamiliar with the phenomenon. As a result, supersonic flight over the United States is currently prohibited, except in several restricted testing areas. La...

  11. Was There Really a Popular Science "Boom"?

    ERIC Educational Resources Information Center

    Lewenstein, Bruce V.

    1987-01-01

    Traces the major developments and trends in contemporary popular science. Identifies magazines, television shows, and newspaper sections devoted to popular science and discusses their status and impact. Comments on the rise, fall, and future of the "science boom." (ML)

  12. PERFORMANCE TESTING OF SELECTED SORBENT BOOMS

    EPA Science Inventory

    Performance tests on three commercially available sorbent booms were conducted at the U.S. Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tank (OHMSETT) test facility. Test variables included wave condition, tow speed, and quantity of o...

  13. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  14. Activities of the Boom and Chassis Group

    NASA Technical Reports Server (NTRS)

    Dell, Jason Scott; Meeks, Thomas Bayne; Merkel, Kelly; Nelson, Brent; Winchell, Tom

    1992-01-01

    Group One of the NASA Lunar Enabler Project has designed the primary chassis and boom structures for the lunar vehicle. Both components also feature V-clamps that were adapted to interface connections within the structure. The chassis features a front end, rear end section, middle cross-section, and face plate. The rear section contains an extra compartment for the engine, hydraulic pump, fuel bottles, and oil reservoir necessary for the wheel drives. Each section consists of tubular aluminum 6061-T6. The boom features four degrees of freedom system, where the minimum factor of safety of any part is 1.5 (but, normally much higher). It consists of a tapered upper boom, lower boom, and three elbows that complement the articulation joints. Each section of the boom has been constructed from aluminum 6061-T6. There are four joints and eight V-clamps in the boom assembly. The V-clamps feature support rings that prevent axial rotation. They provide easy adaptability and assembly.

  15. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.

  16. Sleipner mishap jolts booming Norway

    SciTech Connect

    Not Available

    1991-09-02

    This paper reports on Norway's buoyant offshore industry that was stunned when the concrete substructure for Sleipner natural gas field's main production platform sank in the Grandsfjord off Stavanger late last month. The accident, a blow to Norway's gas sales program in Europe, came with offshore activity in the Norwegian North Sea moving into a new boom period. Currently, 10 oil and gas fields are under development, and several projects are on the drawing board. Aker Oil and Gas, a leading offshore firm, says the country's construction industry will be working at capacity for the next 4 years. Norwegian oil production has been hovering just below 2 million b/d since the beginning of this year, making Norway the North Sea's largest producer, a position formerly held by the U.K. Gas production averages about 3 bcfd. With European gas demand sharply increasing, Norway is under pressure to increase output from new fields in the mid to late 1990s. The Sleipner setback forces state owned Den norske stats oljeselskap AS (Statoil) to cast around for supplies. Sleipner was to have begun deliveries to a consortium of continental gas companies in October 1993. Statoil believes it can fill the gap from existing fields in Norwegian waters.

  17. Boom Rendezvous Alternative Docking Approach

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph A.

    2006-01-01

    Space rendezvous and docking has always been attempted with primarily one philosophic methodology. The slow matching of one vehicle's orbit by a second vehicle and then a final closing sequence that ends in matching the orbits with perfect precision and with near zero relative velocities. The task is time consuming, propellant intensive, risk inherent (plume impingement, collisions, fuel depletion, etc.) and requires substantial hardware mass. The historical background and rationale as to why this approach is used is discussed in terms of the path-not-taken and in light of an alternate methodology. Rendezvous and docking by boom extension is suggested to have inherent advantages that today s technology can readily exploit. Extension from the primary spacecraft, beyond its inherent large inertia, allows low inertia connections to be made rapidly and safely. Plume contamination issues are eliminated as well as the extra propellant mass and risk required for the final thruster (docking) operations. Space vehicle connection hardware can be significantly lightened. Also, docking sensors and controls require less fidelity; allowing them to be more robust and less sensitive. It is the potential safety advantage and mission risk reduction that makes this approach attractive, besides the prospect of nominal time and mass savings.

  18. Green Clay Minerals

    NASA Astrophysics Data System (ADS)

    Velde, B.

    2003-12-01

    in the silicate (clay mineral in our case) structure, the specific bonding of these ions, and other factors. In fact, the reasons for coloration are not known completely, but it is certain that a combination of Fe2+ and Fe3+ ions is necessary to give a nice green color to clays. In the green clay minerals discussed here, the colors vary greatly as seen under the optical microscope (not always the same as the one seen in hand specimen). Yellow to blue-green hues can be found. However, for the moment, no clear relation between iron content, iron valence ratio, or other factors such as minor transition element concentrations can be found to explain the greenness of green clay minerals. The fact that a clay is green just indicates a combination of the two oxidation states of iron. The color, however, indicates the key to the formation in nature of green clay minerals.Green clay minerals are in general the product of "mixed valence" conditions of formation, most often in a situation where some iron is reduced from Fe3+ and enters into a silicate mineral structure. In general, iron would rather be an oxide when it is in the trivalent state. The moment iron is reduced to a divalent state under surface or near-surface conditions, it looks for a silicate, sulfide, or carbonate to hide in. The reverse is also true, of course. When a silicate is oxidized, Fe2+ becoming Fe3+, the iron begins to group together in oxide clumps and eventually exits the silicate structure. This is seen in thin section in altered rocks (weathering or hydrothermal action). The production of trivalent, oxidized iron usually results in a brownish or orange mineral.If the geology of the formation of green silicate minerals is relatively well defined, especially at near surface or surface conditions, the question remains how much of the iron is in a reduced oxidation state and how? In the case of reduction of iron in surface environments: if most of the iron goes to Fe2+, one mineral is formed; if only

  19. Distribution, fate and formation of non-extractable residues of a nonylphenol isomer in soil with special emphasis on soil derived organo-clay complexes.

    PubMed

    Riefer, Patrick; Klausmeyer, Timm; Schäffer, Andreas; Schwarzbauer, Jan; Schmidt, Burkhard

    2011-01-01

    Anthropogenic contaminants like nonylphenols (NP) are added to soil, for instance if sewage-sludge is used as fertilizer in agriculture. A commercial mixture of NP consists of more than 20 isomers. For our study, we used one of the predominate isomers of NP mixtures, 4-(3,5-dimethylhept-3-yl)phenol, as a representative compound. The aim was to investigate the fate and distribution of the isomer within soil and soil derived organo-clay complexes. Therefore, (14)C- and (13)C-labeled NP was added to soil samples and incubated up to 180 days. Mineralization was measured and soil samples were fractionated into sand, silt and clay; the clay fraction was further separated in humic acids, fulvic acids and humin. The organo-clay complexes pre-incubated for 90 or 180 days were re-incubated with fresh soil for 180 days, to study the potential of re-mobilization of incorporated residues. The predominate incorporation sites of the nonylphenol isomer in soil were the organo-clay complexes. After 180 days of incubation, 22 % of the applied (14)C was mineralized. The bioavailable, water extractable portion was low (9 % of applied (14)C) and remained constant during the entire incubation period, which could be explained by an incorporation/release equilibrium. Separation of organo-clay complexes, after extraction with solvents to release weakly incorporated, bioaccessible portions, showed that non-extractable residues (NER) were preferentially located in the humic acid fraction, which was regarded as an effect of the chemical composition of this fraction. Generally, 27 % of applied (14)C was incorporated into organo-clay complexes as NER, whereas 9 % of applied (14)C was bioaccessible after 180 days of incubation. The re-mobilization experiments showed on the one hand, a decrease of the bioavailability of the nonylphenol residues due to stronger incorporation, when the pre-incubation period was increased from 90 to 180 days. On the other hand, a shift of these residues from the

  20. Mars, clays and the origins of life

    NASA Technical Reports Server (NTRS)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  1. Graphite Composite Booms with Integral Hinges

    NASA Technical Reports Server (NTRS)

    Alexander, Wes; Carlos, Rene; Rossoni, Peter; Sturm, James

    2006-01-01

    A document discusses lightweight instrument booms under development for use aboard spacecraft. A boom of this type comprises a thin-walled graphite fiber/ matrix composite tube with an integral hinge that can be bent for stowage and later allowed to spring back to straighten the boom for deployment in outer space. The boom design takes advantage of both the stiffness of the composite in tubular geometry and the flexibility of thin sections of the composite. The hinge is formed by machining windows in the tube at diametrically opposite locations so that there remain two opposing cylindrical strips resembling measuring tapes. Essential to the design is a proprietary composite layup that renders the hinge tough yet flexible enough to be bendable as much as 90 in either of two opposite directions. When the boom is released for deployment, the torque exerted by the bent hinge suffices to overcome parasitic resistance from harnesses and other equipment, so that the two sections of the hinge snap to a straight, rigid condition in the same manner as that of measuring tapes. Issues addressed in development thus far include selection of materials, out-of-plane bending, edge cracking, and separation of plies.

  2. Boom and Bust Cycles in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Meinke, B. K.; Sremcevic, M.; Albers, N.

    2010-12-01

    Cassini UVIS occultation data show clumping in Saturn’s F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations perturbed by Mimas and Prometheus. Timescales range from hours to months. The maximum clumping lags the moon by roughly π in the forcing frame. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator-prey system: the aggregate mean size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. For realistic values of the parameters this creates a limit cycle behavior, as for the ecology of foxes and hares or the boom-bust economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag roughly consistent with the UVIS occultation measurements. We conclude that the agitation by the moons at both these locations in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material allows fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. These more persistent objects would then orbit at the Kepler rate. Such processes can create the equinox objects seen at the B ring edge and in the F ring, explain the ragged nature of those ring regions and allow for rare events to aggregate ring particles into solid objects, recycling the ring material and extending the ring lifetime.

  3. Boom and Bust Cycles in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Meinke, B. K.; Sremcevic, M.; Albers, N.

    2010-10-01

    7/16/10 12:23 PM UVIS occultation data show clumping in Saturn's F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations perturbed by Mimas and Prometheus. Timescales range from hours to months. The maximum clumping lags the moon by π in the forcing frame. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator-prey system: the aggregate mean size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. For realistic values of the parameters this creates a limit cycle behavior, as for the ecology of foxes and hares or the boom-bust economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag consistent with the UVIS occultation measurements. We conclude that the agitation by the moons at both these locations in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material allows fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. These more persistent objects would then orbit at the Kepler rate. Such processes can create the equinox objects seen at the B ring edge and in the F ring, explain the ragged nature of those ring regions and allow for rare events to aggregate ring particles into solid objects, recycling the ring material and extending the ring lifetime. 7/16/10 12:23 PM 7/16/10 12:23 PM

  4. Experimental and Computational Sonic Boom Assessment of Lockheed-Martin N+2 Low Boom Models

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Durston, Donald A.; Elmiligui, Alaa A.; Walker, Eric L.; Carter, Melissa B.

    2015-01-01

    Flight at speeds greater than the speed of sound is not permitted over land, primarily because of the noise and structural damage caused by sonic boom pressure waves of supersonic aircraft. Mitigation of sonic boom is a key focus area of the High Speed Project under NASA's Fundamental Aeronautics Program. The project is focusing on technologies to enable future civilian aircraft to fly efficiently with reduced sonic boom, engine and aircraft noise, and emissions. A major objective of the project is to improve both computational and experimental capabilities for design of low-boom, high-efficiency aircraft. NASA and industry partners are developing improved wind tunnel testing techniques and new pressure instrumentation to measure the weak sonic boom pressure signatures of modern vehicle concepts. In parallel, computational methods are being developed to provide rapid design and analysis of supersonic aircraft with improved meshing techniques that provide efficient, robust, and accurate on- and off-body pressures at several body lengths from vehicles with very low sonic boom overpressures. The maturity of these critical parallel efforts is necessary before low-boom flight can be demonstrated and commercial supersonic flight can be realized.

  5. Measured N-wave sonic boom events and sensitivity in sonic boom metrics

    NASA Astrophysics Data System (ADS)

    Palmer, Joshua; Sparrow, Victor W.

    2015-10-01

    Various sonic boom noise metrics have been calculated for a number of sonic boom, N-wave signatures. The newly computed metrics dataset utilized high-quality recordings from the Superboom Caustic Analysis and Measurement Program (SCAMP) experiment conducted by NASA. With this signature dataset comprised of microphone measurements by long linear arrays, one can assess the waveform variability due to atmospheric turbulence influences across the arrays. Preferred boom events from these NASA datasets were then chosen after review of the flight conditions, flight objectives and actual waveforms generated in order to study only the non-focused, N-wave sonic boom signatures. The sonic boom noise metrics calculated for the preferred boom events include Stevens Mark VII Perceived Level (PLdB), un-weighted Sound Exposure Level (SELz) as well as Sound Exposure Level with A, B, C, D, and E weightings applied to the waveforms. The results show, for example, that the A-weighted sound exposure levels and Steven's Mark VII Perceived Levels had standard deviations in the range of 1.4 dB to 6.1 dB for the SCAMP measurements. Such sensitivity results should be helpful in assessing the applicability of sonic boom metrics for use in future en-route certification standards for civilian supersonic aircraft.

  6. Disturbance of sleep by sonic booms.

    PubMed

    Griefahn, B; Jansen, G

    1975-05-01

    After a pilot study (2 subjects, 19 nights) we tested two different subjects during 57 nights, administering sonic booms (1 mb, 300 ms; sound level of sonic boom in the bedroom 80-85 dB (A) and recording EEG and peripheral blood volume. After 7 nights without noise, 30 nights with either 2 or 4 sonic booms (alternately) were applied. After 10 more nights without noise, four nights with 8 and 16 bangs followed alternately. The last 6 nights were used as a comparison phase. Results showed that distrubance was obvious during all periods of noise. No adaptation could be observed during any of the experiments. On the contrary, during the night with 4 bangs there was a tendency for compensation, e.g., in the last two thirds of nights with 4 bangs, the total time of deep sleep was comparable with the nights without any noise. PMID:1145178

  7. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  8. Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Meyers, Stew; Sturm, James

    2004-01-01

    The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25 kilogram micro class spacecraft in formation through the Earth s magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25 kg "Micosat" resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state of the art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper, This paper describes the development efforts and resulting self-deploying magnetometer boom.

  9. Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Meyers, Stew; Sturm, James

    2004-01-01

    The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25-kilogram micro-class spacecraft in formation through the Earth's magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25-kg Micosat resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state-of-the-art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper. This paper describes the development efforts and resulting self-deploying magnetometer boom.

  10. NASA Researches the 'FaINT' Side of Sonic Booms

    NASA Video Gallery

    As the latest in a continuing progression of NASA supersonics research projects aimed at reducing or mitigating the effect of sonic booms, the Farfield Investigation of No Boom Threshold, or FaINT,...

  11. DEPLOYMENT CONFIGURATIONS FOR IMPROVED OIL CONTAINMENT WITH SELECTED SORBENT BOOMS

    EPA Science Inventory

    Performance tests on three catenary oil containment configurations using sorbent booms sections alone and in conjunction with a conventional containment boom, were conducted at the U.S. Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tan...

  12. NASA Studies Sonic Booms' Effect on Big Structures

    NASA Video Gallery

    NASA recently conducted flight experiments at Edwards Air Force Base in Southern California to examine the effect of low-amplitude sonic booms on large office buildings. As part of the Sonic Booms ...

  13. 53. VIEW OF PASSENGER SPEEDER 04 IN FOREGROUND, BOOM SPEEDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW OF PASSENGER SPEEDER 04 IN FOREGROUND, BOOM SPEEDER 75 IN BACKGROUND LEFT, AND BOOM SPEEDER 59 IN BACKGROUND RIGHT - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  14. Communicating with Clay.

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2000-01-01

    Presents a unit on clay that is centered around sign language in which students explore the slab method of working with clay. States that each student picks a letter of the sign language alphabet and fashions a clay hand to depict the letter. (CMK)

  15. Status and capabilities of sonic boom simulators

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Powell, C. A.

    1986-01-01

    The current status and capabilities of sonic boom simulators which might be used in future studies of the effects of sonic boom on people, animals, or structures is summarized. The list of candidate simulators is based on a literature search which was confined to the United States and Canada. Some of the simulators are fully operational, others could be made operational with a modest investment, and still others would require a major investment. For the sake of the completeness, some simulators which were the subject of a previous review, but which no longer exist, are also included herein.

  16. A Mystery Unraveled: Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, N. M.; Hunt, M. L.; Clayton, R. W.

    2007-12-01

    "Booming" sand dunes have intrigued travelers and scientist for centuries. These dunes emit a persistent, low-frequency sound during a slumping event or a natural avalanche on the leeward face of the dune. The sound can last for several minutes and be audible from miles away. The resulting acoustic emission is characterized by a dominant audible frequency (70 - 105 Hz) and several higher harmonics. In the work of Vriend et al. (2007), seismic refraction experiments proved the existence of a multi-layer internal structure in the dune that acts as a waveguide for the acoustic energy. Constructive interference between the reflecting waves enables the amplification and sets the frequency of each boom. A relationship was established that correctly predicts the measured frequency in terms of the thickness (~ 2.0 m) and the seismic body wave velocity of the loose, dry surficial layer (~ 240 m/s) and the substrate half-space (~ 350 m/s). The current work highlights additional measurements and simulations supporting the waveguide model for booming sand dunes. Experiments with ground penetrating radar continuously display the subsurface features which confirm the layered subsurface structure within the dune. Cross-correlation analysis shows that the booming sound propagates at speeds close to the measured body wave velocity. Squeaking sounds, which are generated during the onset of the slide and precede the sustained booming emission, have been found to have distinctly different characteristics. These short bursts of sound are emitted at a lower frequency (50 - 65 Hz) and propagate at a lower propagation speed (125 m/s) than the booming emission. The acoustic and elastic wave propagation in the dune has been simulated with a finite difference code. The interaction between the air and the ground produces a coupling wave along the surface. The reflections in the surficial layer propagate in a dispersive band at a group velocity that is slower than the phase velocity of the

  17. A practical low-boom overpressure signature based on minimum sonic boom theory

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Haglund, George T.

    1992-01-01

    A brief resume of sonic boom minimization methods is given to provide a background for a new, empirical modification of the Seebass and George minimum-nose-shock sonic boom F-function and signature. The new 'hybrid' F-function has all the inherent flexibility of application found with the Darden-modified Seebass and George F-function. In addition, it has enhanced this flexibility and applicability with neglegible increase in nose and/or tail shock strength. A description of this 'hybrid' F-function and signature is provided, and the benefits of using them to design high-performance, low-boom aircraft are discussed.

  18. 14 CFR 91.817 - Civil aircraft sonic boom.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Civil aircraft sonic boom. 91.817 Section....817 Civil aircraft sonic boom. (a) No person may operate a civil aircraft in the United States at a... sonic boom to reach the surface within the United States; and (2) The operator complies with the...

  19. 14 CFR 91.817 - Civil aircraft sonic boom.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil aircraft sonic boom. 91.817 Section....817 Civil aircraft sonic boom. (a) No person may operate a civil aircraft in the United States at a... sonic boom to reach the surface within the United States; and (2) The operator complies with the...

  20. 14 CFR 91.817 - Civil aircraft sonic boom.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil aircraft sonic boom. 91.817 Section....817 Civil aircraft sonic boom. (a) No person may operate a civil aircraft in the United States at a... sonic boom to reach the surface within the United States; and (2) The operator complies with the...

  1. 14 CFR 91.817 - Civil aircraft sonic boom.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Civil aircraft sonic boom. 91.817 Section....817 Civil aircraft sonic boom. (a) No person may operate a civil aircraft in the United States at a... sonic boom to reach the surface within the United States; and (2) The operator complies with the...

  2. CLAY MINERALOGY OF INSOLUBLE RESIDUES IN MARINE EVAPORITES.

    USGS Publications Warehouse

    Bodine, Marc W., Jr.

    1985-01-01

    Insoluble residues from three sequences of Paleozoic marine evaporites (Retsof salt bed in western New York, Salado Formation in south-eastern New Mexico, and Paradox Member of the Hermosa Formation in southeastern Utah) are rich in trioctahedral clays. Chlorite (clinochlore), corrensite (mixed-layer chlorite-trioctahedral smectite), talc, and illite (the only dioctahedral clay) are the dominant clay minerals; serpentine, discrete trioctahedral smectite (saponite), and interstratified talc-trioctahedral smectite are sporadically abundant. These clay-mineral assemblages differ chemically and mineralogically from those observed in most continental and normal marine rocks, which commonly contain kaolinite, dioctahedral smectite (beidellite-montmorillonite), illite, mixed-layer illite-dioctahedral smectite, and, in most cases, no more than minor quantities of trioctahedral clay minerals. The distinctive clay mineralogy in these evaporite sequences suggests a largely authigenic origin. These clay minerals are thought to have formed during deposition and early diagenesis through interaction between argillaceous detritus and Mg-rich marine evaporite brines.

  3. Subjective loudness response to simulated sonic booms

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1992-01-01

    A series of laboratory studies were conducted at LaRC to: (1) quantify the effects of sonic boom signature shaping on subjective loudness; (2) evaluate candidate loudness metrics; (3) quantify the effects of signature asymmetry on loudness; and (4) document sonic boom acceptability within the laboratory. A total of 212 test subjects evaluated a wide range of signatures using the NASA Langley Research Center's sonic boom simulator. Results indicated that signature shaping via front-shock minimization was particularly effective in reducing subjective loudness without requiring reductions in peak overpressure. Metric evaluations showed that A-weighted sound exposure level, Perceived Level (Stevens Mark 7), and Zwicker's Loudness level were effective descriptors of the loudness of symmetrical shaped signatures. The asymmetrical signatures were generally rated as being quieter than symmetrical signatures of equal calculated metric level. The magnitude of the loudness reductions were observed to increase as the degree of asymmetry increased and to be greatest when the rear half of the signature was loudest. This effect was not accounted for by the loudness metrics. Sonic boom acceptability criteria were determined within the laboratory. These agreed well with results previously obtained in more realistic situations.

  4. Variability of measured sonic boom signatures

    NASA Technical Reports Server (NTRS)

    Elmer, K. R.; Joshi, M. C.

    1994-01-01

    The topics discussed include the following: atmospheric turbulence; BOOMFILE Database description; BOOMFILE flight conditions; XB-70 Database descriptions; analysis progression; extended database; prediction method; overpressure variability dependence on flight conditions; loudness variability on flight conditions; sonic boom variability in repeat flights; and statistical distributions.

  5. Babies Bottom Out--A 'Maybe Boom'

    ERIC Educational Resources Information Center

    Science News, 1977

    1977-01-01

    Data for the period September 1976 through April 1977 indicate a rise in the United States birth rate; however, the rate is still below the replacement level. It is speculated that the increase is an "echo" effect to the post-World War II baby boom which peaked in 1957. (SL)

  6. Structural evaluation of deployable aerodynamic spike booms

    NASA Technical Reports Server (NTRS)

    Richter, B. J.

    1975-01-01

    An extendable boom consisting of a series of telescopic cylindrical tube segments and overlapping lock joints developed for use as an aerodynamic spike mounted atop a missile is described. Two candidate design concepts differing mainly in the particular overlapping lock joint designs are undergoing a combined analytical/experimental evaluation. Some of the results of this evaluation are presented.

  7. The Baby Boom--Entering Midlife.

    ERIC Educational Resources Information Center

    Bouvier, Leon F.; De Vita, Carol J.

    1991-01-01

    The U.S. baby-boom generation, born between 1946 and 1964, is the largest generation in the nations's history. Numbering over 80 million people in 1990, this giant generation has indelibly changed U.S. society, requiring adjustments in schools, labor markets, housing markets, and government programs. Perhaps more than any other institution,…

  8. Modeling of Coupled Thermo-Hydro-Mechanical Processes with Links to Geochemistry Associated with Bentonite-Backfilled Repository Tunnels in Clay Formations

    NASA Astrophysics Data System (ADS)

    Rutqvist, Jonny; Zheng, Liange; Chen, Fei; Liu, Hui-Hai; Birkholzer, Jens

    2014-01-01

    This paper presents simulation results related to coupled thermal-hydraulic-mechanical (THM) processes in engineered barrier systems (EBS) and clay host rock, in one case considering a possible link to geochemistry. This study is part of the US DOE Office of Nuclear Energy's used fuel disposition campaign, to investigate current modeling capabilities and to identify issues and knowledge gaps associated with coupled THMC processes and EBS-rock interactions associated with repositories hosted in clay rock. In this study, we simulated a generic repository case assuming an EBS design with waste emplacement in horizontal tunnels that are back-filled with bentonite-based swelling clay as a protective buffer and heat load, derived for one type of US reactor spent fuel. We adopted the Barcelona basic model (BBM) for modeling of the geomechanical behavior of the bentonite, using properties corresponding to the FEBEX bentonite, and we used clay host rock properties derived from the Opalinus clay at Mont Terri, Switzerland. We present results related to EBS host-rock interactions and geomechanical performance in general, as well as studies related to peak temperature, buffer resaturation and thermally induced pressurization of host rock pore water, and swelling pressure change owing to variation of chemical composition in the EBS. Our initial THM modeling results show strong THM-driven interactions between the bentonite buffer and the low-permeability host rock. The resaturation of the buffer is delayed as a result of the low rock permeability, and the fluid pressure in the host rock is strongly coupled with the temperature changes, which under certain circumstances could result in a significant increase in pore pressure. Moreover, using the BBM, the bentonite buffer was found to have a rather complex geomechanical behavior that eventually leads to a slightly nonuniform density distribution. Nevertheless, the simulation shows that the swelling of the buffer is functioning to

  9. Experimental Sonic Boom Measurements on a Mach 1.6 Cruise Low-Boom Configuration

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa, A.; Wayman, Thomas R.; Waithe, Kenrick A.; Howe, Donald C.; Bangert, Linda S.

    2012-01-01

    A wind tunnel test has been conducted by Gulfstream Aerospace Corporation (GAC) to measure the sonic boom pressure signature of a low boom Mach 1.6 cruise business jet in the Langley Unitary Plan Wind Tunnel at Mach numbers 1.60 and 1.80. Through a cooperative agreement between GAC and the National Aeronautics and Space Administration (NASA), GAC provided NASA access to some of the experimental data and NASA is publishing these data for the sonic boom research community. On-track and off-track near field sonic boom pressure signatures were acquired at three separation distances (0.5, 1.2, and 1.7 reference body lengths) and three angles of attack (-0.26deg, 0.26deg, and 0.68deg). The model was blade mounted to minimize the sting effects on the sonic boom signatures. Although no extensive data analysis is provided, selected data are plotted to illustrate salient features of the data. All of the experimental sonic boom pressure data are tabulated. Schlieren images of the configuration are also included.

  10. Sonic-boom research: Selected bibliography with annotation

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Maglieri, D. J.; Stephens, D. G.

    1986-01-01

    Citations of selected documents are included which represent the state of the art of technology in each of the following subject areas: prediction, measurement, and minimization of steady-flight sonic booms; prediction and measurement of accelerating-flight sonic booms; sonic-boom propagation; the effects of sonic booms on people, communities, structures, animals, birds, and terrain; and sonic-boom simulator technology. Documents are listed in chronological order in each section of the paper, with key documents and associated annotation listed first. The sources are given along with acquisition numbers, when available, to expedite the acquisition of copies of the documents.

  11. Conceptual analyses of extensible booms to support a solar sail

    NASA Technical Reports Server (NTRS)

    Crawford, R. F.; Benton, M. D.

    1977-01-01

    Extensible booms which could function as the diagonal spars and central mast of an 800 meter square, non-rotating Solar Sailing Vehicle were conceptually designed and analyzed. The boom design concept that was investigated is an extensible lattice boom which is stowed and deployed by elastically coiling and uncoiling its continuous longerons. The seven different free-span lengths in each spar which would minimize the total weights of the spars and mast were determined. Boom weights were calculated by using a semi-empirical formulation which related the overall weight of a boom to the weight of its longerons.

  12. Subjective response to simulated sonic booms with ground reflections

    NASA Technical Reports Server (NTRS)

    Sullivan, B. M.; Leatherwood, J. D.

    1993-01-01

    The Sonic Boom Simulator at NASA LaRC was used for the following: (1) quantify subjective loudness of simulated composite sonic booms, each of which was comprised of a simulated direct (non-reflected) boom combined with a simulated reflection of the direct boom; and (2) evaluate several metrics as estimators of loudness for these composite booms. The direct booms consisted of selected N-wave and minimized signatures having front-shock rise times of 3, 6, and 9 milliseconds and durations of 300 milliseconds. Delay times of the reflected booms ranged from 0 to 12 milliseconds. Subjective loudness results indicated that composite booms formed using reflections with non-zero delay times were generally rated as being less loud than composite booms containing non-delayed reflections. The largest reductions in loudness occurred when delay times were equal to the front shock rise times of the direct booms and were, in some cases, equivalent to reductions in Perceived Level of 6 to 7 dB. Results also showed Perceived Level to be an effective metric for assessing subjective loudness effects for the composite signatures. This was confirmed by statistical analysis, which showed that, for equal Perceived Level, no significant differences existed between the subjective loudness responses to composite booms containing reflections with zero delay and those containing reflections with non-zero delays.

  13. Recent Progress on Sonic Boom Research at NASA

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra

    2012-01-01

    Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.

  14. Evidence and characteristics of a diverse and metabolically active microbial community in deep subsurface clay borehole water.

    PubMed

    Wouters, Katinka; Moors, Hugo; Boven, Patrick; Leys, Natalie

    2013-12-01

    The Boom Clay in Belgium is investigated in the context of geological nuclear waste disposal, making use of the High Activity Disposal Experimental Site (HADES) underground research facility. This facility, located in the Boom Clay at a depth of 225 m below the surface, offers a unique access to a microbial community in an environment, of which all geological and geochemical characteristics are being thoroughly studied. This study presents the first elaborate description of a microbial community in water samples retrieved from a Boom Clay piezometer (borehole water). Using an integrated approach of microscopy, metagenomics, activity screening and cultivation, the presence and activity of this community are disclosed. Despite the presumed low-energy environment, microscopy and molecular analyses show a large bacterial diversity and richness, tending to correlate positively with the organic matter content of the environment. Among 10 borehole water samples, a core bacterial community comprising seven bacterial phyla is defined, including both aerobic and anaerobic genera with a range of metabolic preferences. In addition, a corresponding large fraction of this community is found cultivable and active. In conclusion, this study shows the possibility of a microbial community of relative complexity to persist in subsurface Boom Clay borehole water. PMID:23802615

  15. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  16. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  17. Geochemical and technological characterization of clays of Corumbataí Formation, Paraná Basin, in the state of São Paulo, Brazil for the application in the ceramic industry.

    NASA Astrophysics Data System (ADS)

    Christofoletti, Sergio Ricardo; Torres Moreno, Maria Margarita; Batezelli, Alessandro; Zanardo, Antenor

    2014-05-01

    The Corumbataí Formation is a geological unit of the Paraná Basin comprises a range of predominantly argillaceous facies. These clays are important from an economic point of view, because they represent important mineral deposits suppliers of raw materials for the ceramic industry in the production of ceramic tiles.The study presents preliminary results of a research that aims to study the clays municipalities Tambaú, Ferreira and Santa Rosa of Viterbo in the State of São Paulo for their application and diversification of ceramic products. The methodology used was based on a detailed description of facies using the methodology in principles of analysis of Basin Miall (1984), followed by mineralogical identification by X-ray Diffraction, chemical analysis of major elements by X-ray Fluorescence and technological tests ceramic. According to the geological surveys of mines studied through columnar sections were identified the following lithofacies from base to top: Massive, Laminated, Intercalated and Altered. The mineralogy present on these lithofacies is composed by minerals: quartz, microclineo, albite, calcite, dolomite and hematite and by clay minerals illite, kaolinite and montmorillonite. The quartz represents the mineral more present in diffraction and occurs with d001 of 3.33Å in all lithofacies studied. The illite clay mineral represents the most frequent in studied samples presenting d 001 10Å in three conditions (natural, heated and treated with ethylene glycol) in which the blade was subjected to the analysis of X-ray diffraction, the presence of kaolinite or montmorillonite occurs or not in samples. It was observed a increased frequency of some minerals in the lithofacies studied, carbonates (calcite and dolomite), hematite and feldspar occurring in the intermediate portions of the profile with a predominance in lithofacies Intercalated. The illita clay mineral occurs throughout the profile, but with greater frequency in the lithofacies Massive and

  18. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  19. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  20. Concorde sonic booms as an atmospheric probe.

    PubMed

    Balachandran, N K; Donn, W L; Rind, D H

    1977-07-01

    Infrasound generated by the sonic boom from the inbound Concorde supersonic transport is recorded at Palisades, New York (Lamont-Doherty Geological Observatory), as a series of impulses from distances varying from 165 to about 1000 kilometers. Refraction effects determined by temperature and wind conditions return the signal to the surface from both stratospheric (40 to 50 kilometers) and thermospheric (100 to 130 kilometers) levels. The frequency of the recorded signal is a function of the level of reflection; the frequency decreases from impulse stretching as the atmosphere becomes more rarified relative to the sound pressure. The horizontal trace velocity of the signal across the array of instruments is equal to the acoustic velocity at the reflection level. The sonic boom can thus be used to provide temperature-wind parameters at reflection levels estimated from the signal frequency. Daily observed signal variations have indicated significant variations in these parameters. PMID:17828888

  1. High-Quality Seismic Observations of Sonic Booms

    NASA Astrophysics Data System (ADS)

    Wurman, G.; Haering, E. A.; Price, M.

    2011-12-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  2. High-Quality Seismic Observations of Sonic Booms

    NASA Technical Reports Server (NTRS)

    Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.

    2011-01-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  3. Phosphates in some missouri refractory clays

    USGS Publications Warehouse

    Hall, R.B.; Foord, E.E.; Keller, D.J.; Keller, W.D.

    1997-01-01

    This paper describes in detail phosphate minerals occurring in refractory clays of Missouri and their effect on the refractory degree of the clays. The minerals identified include carbonate-fluorapatite (francolite), crandallite, goyazite, wavellite, variscite and strengite. It is emphasized that these phosphates occur only in local isolated concentrations, and not generally in Missouri refractory clays. The Missouri fireclay region comprises 2 districts, northern and southern, separated by the Missouri River In this region, clay constitutes a major part of the Lower Pennsylvanian Cheltenham Formation. The original Cheltenham mud was an argillic residue derived from leaching and dissolution of pre-Pennsylvanian carbonates. The mud accumulated on a karstic erosion surface truncating the pre-Cheltenham rocks. Fireclays of the northern district consist mainly of poorly ordered kaolinite, with variable but minor amounts of illite, chlorite and fine-grained detrital quartz. Clays of the southern district were subjected to extreme leaching that produced well-ordered kaolinite flint clays. Local desilication formed pockets of diaspora, or more commonly, kaolinite, with oolite-like nubs or burls of diaspore ("burley" clay). The phosphate-bearing materials have been studied by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectral analysis (SEM-EDS) and chemical analysis. Calcian goyazite was identified in a sample of diaspore, and francolite in a sample of flint clay. A veinlet of wavellite occurs in flint clay at one locality, and a veinlet of variscite-strengite at another locality. The Missouri flint-clay-hosted francolite could not have formed in the same manner as marine francolite The evidence suggests that the Cheltenham francolite precipitated from ion complexes in pore water nearly simultaneously with crystallization of kaolinite flint clay from an alumina-silica gel. Calcian goyazite is an early diagenetic addition to its diaspore host

  4. Recent advances in clay mineral-containing nanocomposite hydrogels.

    PubMed

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications. PMID:26435008

  5. Clay Mineral: Radiological Characterization

    NASA Astrophysics Data System (ADS)

    Cotomácio, J. G.; Silva, P. S. C.; Mazzilli, B. P.

    2008-08-01

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and 40K in these clay minerals. The objective of this work is to determine the concentrations of 238U, 232Th, 226Ra, 228Ra, 210Pb and 40K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay. Measurement for the determination of 238U and 232Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for 226Ra, 228Ra, 210Pb and 40K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906±340 Bq kg-1 for 40K, 40±9 Bq kg-1 for 226Ra, 75±9 Bq kg-1 for 228Ra, 197±38 Bq kg-1 for 210Pb, 51±26 Bq kg-1 for 238U and 55±24 Bq kg-1 for 232Th, considering both kinds of clay.

  6. The Science of Clay

    ERIC Educational Resources Information Center

    Warwick, Sharon

    2005-01-01

    Students' natural curiosity provides a rich opportunity for teachers to make meaningful scientific connections between art and ceramics that will enhance the understanding of both natural forces and scientific aspects at work in the creation of clay artworks. This article discusses the scientific areas of study related to clay, which include…

  7. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  8. Finicky clay divers

    NASA Astrophysics Data System (ADS)

    Cordry, Sean M.

    1998-02-01

    Clay spheres dropped into a dilute vinegar/baking-soda solution accumulate CO2 bubbles on their surfaces. Spheres below a certain size will then float, otherwise they remain sunken. Students must determine the maximum size that will float by considering the net density of the clay/bubble system.

  9. Clay Portrait Boxes

    ERIC Educational Resources Information Center

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  10. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2003-01-01

    Part of the 2002 industrial minerals review. The production, consumption, and price of shale and common clay in the U.S. during 2002 are discussed. The impact of EPA regulations on brick and structural clay product manufacturers is also outlined.