Science.gov

Sample records for borate glasses doped

  1. Spectroscopic studies of tantalum doped borate glasses

    NASA Astrophysics Data System (ADS)

    Sharada, M.; Suresh Babu, D.

    2012-10-01

    Glasses with formula 30Li2O 60B2O3xTa2O5 (10-x) Bi2O3 for x=0, 2, 4, 6 and 8 were prepared via normal melt quenching technique and characterized by refractive index and MDSC. Refractive index (μ) and glass transition temperature (Tg) are found to increase with increase in dopant concentration. Impedance spectra of the samples were recorded in the frequency range 100 Hz-5 MHz in the temperature range 175-275 °C. The plots are typical of those recorded for disordered systems. Conductivities and relaxation times are found to follow Arrhenius type of relation and activation energies are calculated. Optical absorption spectra were recorded in the wavelength range 200-900 nm range from which cutoff wavelength (λc) and optical band gap energy (Eg) are evaluated. λc is found to decrease while Eg to increase with increase in composition. FTIR spectra of the samples were recorded in the frequency range 400-1500 cm-1 which exhibit characteristic bands corresponding to BO3, BO4 stretching vibrations and BO bending vibration. Tightening of the structure is indicated by increase in the vibration of BO3 at the cost of BO4 for 8 mol% of Ta2O5. This is in support of the highest value of Tg for this sample among the series. Raman spectra of the samples were recorded in the frequency range 200-1200 cm-1. With successive addition of Ta2O5, increase in the vibration of Ta-O groups TaO6 groups to be responsible for observed increase in μ and Tg. An attempt is made to prepare tantalum doped borate glasses and study them by spectroscopic techniques.

  2. Spectral down-conversion in Sm-doped borate glasses for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Dyrba, Marcel; Miclea, Paul T.; Schweizer, Stefan

    2010-05-01

    Borate glasses and borate glass ceramics are good candidates as a matrix material for fluorescent ions like samarium. The chosen network modifier influences the fluorescence efficiency of the incorporated rare earth ion. Sm3+-doped lithium, sodium, barium and lead borate glasses were examined with respect to their fluorescence properties and potential use as a down-converting top layer of a solar cell.

  3. Devitfrification Properties Of Bismuth Borate Glasses Doped With Trivalent Ions

    SciTech Connect

    Khanna, Atul; Bajaj, Anu

    2010-12-01

    Bismuth borate glasses and crystalline phases have outstanding luminescent and nonlinear optical properties; therefore there is lot of interest in their preparation and characterization. In this study we report the crystallization properties of bismuth borate glasses doped with trivalent ions. Glasses of the composition: xBi{sub 2}O{sub 3}-(100-x)B{sub 2}O{sub 3} (x = 20, 25, 30, 37.5, 40, 50, 60 and 66 mol %) and 40Bi{sub 2}O{sub 3}-1Tv{sub 2}O{sub 3}-59B{sub 2}O{sub 3}(where Tv = Al, Nd and Eu) were prepared by melt quench technique and devitrified by heat treatment above their glass transition temperatures for several hours. The crystalline phases produced were characterized by FTIR absorption spectroscopy, DTA and X-ray diffraction. Bi{sub 3}B{sub 5}O{sub 12} was found to be the predominant phase in all crystallized samples containing Bi{sub 2}O{sub 3} concentration of {<=}40 mol %, at higher Bi{sub 2}O{sub 3} concentration, we observed the formation of Bi{sub 4}B{sub 2}O{sub 9} phase. Glasses with Bi{sub 2}O{sub 3} concentration of {<=}37.5 mol % produced Bi{sub 2}B{sub 8}O{sub 15} phase on crystallization. The metastable BiBO{sub 3}-I phase was formed by short duration heat treatment (less than 5 hours) of the initial glass sample. Doping with rare earth ions like Eu{sup 3+} and Nd{sup 3+} promotes the formation of BiBO{sub 3}-II phase while Al{sup 3+} doping suppresses it.

  4. Synthesis and structural studies of praseodymium doped silver borate glasses

    SciTech Connect

    Jagadeesha Gowda, G. V.; Eraiah, B.

    2013-02-05

    Praseodymium doped silver borate glasses with nominal composition xPr{sub 6}O{sub 11}-(25-x)Ag{sub 2}O-75B{sub 2}O{sub 3} (x=0, 1, 2, 3, 4, 5) were prepared by melt quench technique. XRD pattern shows that there is no sharp peak it confirms the amorphous nature of the present glasses. The glass transition temperature (T{sub g}) of this glass system have been studied using the Matac MBS-8000 Digital Signal Processing and Conventional Thermal Analysis (DTA) method. The T{sub g} of these glasses increases with increase in concentration of Pr{sub 6}O{sub 11} except at 0.2 mol%, T{sub g} value is lower. {sup 11}B MAS-NMR shows the presence of sharp peak around 0.306 ppm. Chemical shift of these glasses decreases with mol% of rare earth oxide. FTIR spectra recorded in the region of 400 to 4000 cm{sup -1}. This studies revealed that the progressive addition Ag{sub 2}O and Pr{sub 6}O{sub 11} leads to modification of B{sub 2}O{sub 3} into BO{sub 4} groups. Raman measurements of these glasses support the proposed interpretations of the experimental results.

  5. Synthesis and structural studies of praseodymium doped silver borate glasses

    NASA Astrophysics Data System (ADS)

    Jagadeesha Gowda, G. V.; Eraiah, B.

    2013-02-01

    Praseodymium doped silver borate glasses with nominal composition xPr6O11-(25-x)Ag2O-75B2O3 (x=0, 1, 2, 3, 4, 5) were prepared by melt quench technique. XRD pattern shows that there is no sharp peak it confirms the amorphous nature of the present glasses. The glass transition temperature (Tg) of this glass system have been studied using the Matac MBS-8000 Digital Signal Processing and Conventional Thermal Analysis (DTA) method. The Tg of these glasses increases with increase in concentration of Pr6O11 except at 0.2 mol%, Tg value is lower. 11B MAS-NMR shows the presence of sharp peak around 0.306 ppm. Chemical shift of these glasses decreases with mol% of rare earth oxide. FTIR spectra recorded in the region of 400 to 4000 cm-1. This studies revealed that the progressive addition Ag2O and Pr6O11 leads to modification of B2O3 into BO4 groups. Raman measurements of these glasses support the proposed interpretations of the experimental results.

  6. Optical properties of Sm3+-doped cadmium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Sailaja, S.; Nageswara Raju, C.; Adinarayana Reddy, C.; Deva Prasad Raju, B.; Jho, Young-Dahl; Sudhakar Reddy, B.

    2013-04-01

    This article reports on the optical properties of cadmium bismuth borate (CdBiB) glasses doped with various concentrations of Sm3+ ions. FT-IR spectra of Sm3+:CdBiB glasses have been used to identify the functional groups present in the composition of the glasses. The emission spectra of Sm3+:CdBiB glasses have shown an intense reddish-orange emission at 600 nm (4G5/2 → 6H7/2). From the absorption spectrum, the experimental oscillator strengths were determined and have been used to calculate the Judd-Ofelt (J-O) intensity parameters. By using the J-O intensity parameters, various radiative properties have been studied and computed for the various transitions of Sm3+:CdBiB glasses. Based on the values of stimulated emission cross section, radiative transition rate and the branching ratio of the emission transition 4G5/2 → 6H7/2, it is suggested that 1.0 mol% of Sm3+:CdBiB glass is the promising luminescent material towards lasing applications. The nature of luminescence decay curves of 4G5/2 level with different concentrations of Sm3+:CdBiB glasses are also reported.

  7. Photoluminescent temperature sensor based on borate and phosphate glasses doped with copper clusters

    NASA Astrophysics Data System (ADS)

    Babkina, Anastasiia N.; Shirshnev, Pavel S.; Nikonorov, Nikolay V.; Sidorov, Alexander I.; Kolobkova, Elena V.

    2015-05-01

    The research of the luminescent properties of the inorganic glasses doped with copper molecular clusters that can be used as a sensitive medium of the temperature sensors is presented. The luminescent spectra of the borate and phosphate glasses in the temperature range 77-623 K are examined. The big luminescent thermochromism for borate glasses is observed: from 293K to 623K the luminescent band shift is found out to be 110nm.

  8. [Calculation of optical parameters and investigation of luminescence spectra in Sm3+ doped borate glasses].

    PubMed

    Yang, Dian-lai; Lin, Hai; Hou, Yan-yan; Xu, Long-quan; Zhai, Bin; Ban, Li-xia; Liu, Gui-shan; Tang, Nai-ling; Wang, Shu-chuan; Ma, Tie-cheng; Wang, Xiao-jun; Liu, Xing-ren

    2006-01-01

    In the present paper, Sm3+ doped borate glasses (LBLB) with high effective visible fluorescence emission have been synthesized. The absorption and fluorescence spectra of this glass were measured and analyzed. The absorption spectra were fitted by J-O theory, and the intensity parameters omega = (2, 4, 6) were found to be 6.81 x 10(-20), 4.43 x 10(-20), and 2.58 x 10(-20) cm2, respectively, then the relative intensity of spectral lines of every energy level transition, radiative transition probabilities, radiative lifetimes, and fluorescence branching ratio were calculated. Under the excitation of UV light, Sm3+ doped borate glasses (LBLB) emit bright salmon pink light. The excitation spectra indicate that argon laser is an effective excitation source in Sm3+ doped LBLB glasses. PMID:16827351

  9. Structural investigation of Zn doped sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Bhatia, V.; Kumar, D.; Singh, D.; Singh, S. P.

    2016-05-01

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na2O:15Bi2O3:70B2O3 (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained by these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO3 & BO4 structural units) have been observed.

  10. Fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses containing lithium, zinc and lead.

    PubMed

    Venkatramu, V; Babu, P; Jayasankar, C K

    2006-02-01

    The influence of glass composition on the fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses modified with Li+, Zn2+ and Pb2+ cations have been investigated. The magnitude of splittings of 7F1 levels are analyzed using crystal-field (CF) analysis. The relative intensities of 5D0 --> 7F2 to 5D0 --> 7F1 transitions, crystal-field strength parameters and decay times of the 5D0 level have been determined and are found to be lower for Pb based glasses than those of Zn/Li based glasses. The lifetimes of 5D0 level are found to increase when borate glasses are modified with pure fluorides than with oxides and oxyfluorides. The fluorescence decay of 5D0 level fits perfect single exponential in the Eu3+:glass systems studied which indicates the absence of energy transfer between Eu3+ ions in these glasses. PMID:15979397

  11. Tunable luminescence of Dy3+ single-doped and Dy3+/Tm3+ co-doped tungsten borate glasses

    NASA Astrophysics Data System (ADS)

    Hu, J.; Gong, X. H.; Chen, Y. J.; Huang, J. H.; Lin, Y. F.; Luo, Z. D.; Huang, Y. D.

    2014-12-01

    RE3+ (RE3+ = Tm3+, Dy3+) ion single and co-doped tungsten borate glasses for white light emitting diodes (LEDs) were prepared by melt quenching method. Emission and excitation spectra of the glasses were measured. The color of luminescence can be tuned by changing the composition of glass matrix or the concentrations of Tm3+ and Dy3+ ions. White light emission can be achieved from 0.5Dy3+ single-doped 15WO3-25La2O3-60B2O3 and 0.4Tm3+/1.5Dy3+ co-doped 50WO3-25La2O3-25B2O3 glasses. In addition, energy transfers between Tm3+ and Dy3+ were also analyzed. The Dy3+/Tm3+ co-doped tungsten borate glasses may be potential candidates for white LED application.

  12. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    NASA Astrophysics Data System (ADS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  13. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions

    NASA Astrophysics Data System (ADS)

    Sathish, K.; Thirumaran, S.

    2015-08-01

    The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  14. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    PubMed

    Sathish, K; Thirumaran, S

    2015-08-01

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs. PMID:25841150

  15. Spectroscopic study of neodymium doped lead-bismuth-borate glasses

    NASA Astrophysics Data System (ADS)

    Pasha, Altaf; Dayani, P.; Negalur, Mahesh; Swamy, Manjunatha; Abhiram, J.; Rajaramakrishna, R.

    2016-05-01

    This paper reports on different physical and optical properties of rare earth doped heavy metal oxide glasses. The glass composition of 10Bi2O3-30PbO-60B2O3-xNd2O3 where x = 0, 0.1, 0.2, 0.5 and 1 (in mol %) has been synthesized using melt-quenching technique. Refractive index measurements for these glasses were done and physical parameters were studied. Structural properties of these glasses were analysed through infrared spectra that was recorded between 1600cm-1 and 300cm-1 in transmission mode. The optical absorption spectra were recorded in the wavelength range from 300 to 700 nm. The transitions originated from ground state energy 4I9/2. The energy level analysis has been carried out by considering absorption spectral bands. The results thus obtained are comparable with reports on similar glasses, indicating that the prepared glasses may have potential laser applications.

  16. Effects of varying base glass composition on the optical properties of lead borate glasses doped with rare earth ions

    NASA Astrophysics Data System (ADS)

    Heidorn, William D.

    Rare Earth (RE) doped lead borate glasses are expected to exhibit a compositional dependence in their optical properties due to the changes induced by variations in the structure of the base glass with increasing lead oxide content. A series of lead borate glasses with the composition xPbO:(99.5 - x)B2O 3 (x = 29.5 to 69.5 in steps of 10 mol%) doped with 0.5 mol% Sm2O3, Er2O3, and Ho2O3 were prepared using the melt quench technique followed by 3 hours of annealing near the glass transition temperature. Optical absorption and fluorescence spectra of these RE doped lead borate glasses were analyzed using Judd-Ofelt theory. The compositional dependence of Judd-Ofelt intensity parameters, O t (t = 2, 4, 6), were determined and were then used to calculate the radiative transition probability of the excited states, the total radiative transition probability, branching ratios, and radiative lifetime of the glasses. From the fluorescence spectra the stimulated emission cross section, and Stark splitting of the excited states were calculated as a function of glass composition. A fourth set of samples with composition xPbO:(99 - x)B2O 3(x = 29 to 69 in steps of 10 mol%) co-doped with 0.5 mol% Er2 O3 and Ho2O3 were also prepared and the effects of co-doping on the absorption and fluorescence were analyzed. In all the glass systems studied, it was found that the optical properties are strongly influenced by structural changes arising from compositional variation. Er3+ transitions exhibit large stimulated cross section suggesting the possible utilization of these materials in laser applications. Keywords: Lead and bismuth borate glasses, fluorescence, optical absorption, Sm3+, Ho3+, Er3+ ions, Judd-Ofelt intensity parameters, stimulated emission cross section.

  17. Crystalline patterning in Sm-doped sodium borate glass by CW Nd:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Lim, Yusok; Lee, Myeongkyu

    2007-12-01

    Laser irradiation of glass materials has drawn much attention because this technique can offer a new processing method for spatially selected structural modification and/or crystallization in glass. Crystallized line and dot patterns at the micrometer scale were fabricated on the surface of Sm-doped sodium borate (Na 2O-B 2O 3) glass by irradiation of a continuous-wave Nd:YAG laser at λ = 1064 nm. The pattern sizes could be controlled by adjusting such parameters as scan rate, exposure time, and laser power. Analyses by Raman spectroscopy and X-ray diffraction revealed that the crystalline phase is Na 3Sm 2(BO 3) 3.

  18. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    NASA Astrophysics Data System (ADS)

    Omar, R. S.; Wagiran, H.; Saeed, M. A.

    2016-01-01

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B2O3 - 20 CaO - 10 MgO-(y) Dy2O3 with 0.05 mol % ≤ y ≤ 0.7 mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy2O3 concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  19. Optical spectroscopy of Dy3+ doped borate glasses for luminescence applications

    NASA Astrophysics Data System (ADS)

    Venkata Rao, K.; Babu, S.; Venkataiah, G.; Ratnakaram, Y. C.

    2015-08-01

    Dy3+ ion embedded in (50 - x)B2O3-20PbO-15MgF2-15NaCl-xDy2O3(x = 0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 mol%) borate glasses are prepared and investigated using Differential Thermal Analysis (DTA), X-ray Diffractometer (XRD), Raman spectra, optical absorption and photoluminescence (PL) as function of different concentrations. Thermal stability of borate glass has been calculated from DTA profiles. The amorphous nature of glass matrix is confirmed by XRD. Based on Raman spectra, the functional groups that are present in the glass matrices have been analyzed. Based on the Judd-Ofelt theory, three spectral intensity parameters Ωλ (λ = 2, 4, 6) are calculated from absorption spectra. These parameters are used to determine radiative transition probabilities (AR), radiative lifetimes (τR) and branching ratios (βR) of Dy3+ transitions from the excited state manifolds to corresponding lower laying multiplet manifolds. PL spectra show two intense and one weak band due to 4F9/2 → 6H15/2 (blue), 6H13/2 (yellow) and 6H11/2 (red) transitions respectively. For these transitions luminescence properties are studied. With the increase in the concentration of Dy3+ ions, intensity increases up to 0.8 mol% and then concentration quenching is observed. This is (0.8 mol%) the optimized concentration for the present prepared glasses. Lifetimes (τexp) are calculated for all the glass matrices from decay curve analysis. Spectroscopic and luminescence properties at 0.8 mol% doped dysprosium ion are compared with other reported glass matrices. From the above analysis suggest that 0.8 mol% of Dy3+ doped borate glasses can be useful for yellow lighting applications in the visible spectral region.

  20. Study of Relaxation Dynamics in Mixed Iodide Doped Silver-Vanado-Borate Superionic Glass System

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam; Kanchan, D. K.; Pant, Meenakshi; Gondaliya, Nirali; Jayswal, Manish S.

    2011-07-01

    Electrical conductivity and impedance measurements were carried out for a new mixed metal iodide salt doped silver vanado-borate i.e., [(PbI2-CuI)-Ag2O-V2O5-B2O3] super-ionic glass system. The impedance plots (Z″ vs. Z') for all the prepared glass samples were recorded and found to exhibit depressed semi circles over the studied temperature range. Frequency dependence of the imaginary part of impedance Z″ and the imaginary part of modulus M″ at different temperatures were also investigated. Also, relaxation dynamics in framework of modulus formalism has been discussed.

  1. Physical, structural, and luminescence studies of Nd3+ doped MgO-ZnO borate glass

    NASA Astrophysics Data System (ADS)

    Razali, W. A. W.; Azman, K.; Hashim, S.; Alajerami, Yasser Saleh Mustafa; Syamsyir, S. A.; Mardhiah, A.; Ridzwan, M. H. J.

    2013-11-01

    A series of borate glass of the system xNd2O3-5MgO-20ZnO-(75 - x)B2O3, where x = 0.5, 1.0,1.5, 2.0, and 2.5 was successfully fabricated using melt quench method. The properties of the glass were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), absorption and luminescence spectra. The upconversion properties of Nd3+ doped borate glass were observed by using 574 nm excitation wavelength corresponding to 4 I 15/2 → 2 H 114/2 transition. The emission bands centered at 460, 500 and 620 nm which corresponding to the Nd3+ transitions, 4 F 7/2 → 4 I 15/2, 2 H 11/2 → 4 I 15/2, and 4 F 9/2 → 4 I 15/2 respectively were observed at room temperature. The presence of Nd3+ in borate based glass could intensify the upconversion luminescence spectra as it can potentially be used as host materials for upconversion lasers.

  2. Rare earth-doped lead borate glasses and transparent glass-ceramics: structure-property relationship.

    PubMed

    Pisarski, W A; Pisarska, J; Mączka, M; Lisiecki, R; Grobelny, Ł; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W

    2011-08-15

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)↔BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis. PMID:21093353

  3. Structural, dielectric and AC conductivity properties of Co2+ doped mixed alkali zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Madhu, B. J.; Banu, Syed Asma; Harshitha, G. A.; Shilpa, T. M.; Shruthi, B.

    2013-02-01

    The Co2+ doped 19.9ZnO+5Li2CO3+25Na2CO3+50B2O3 (ZLNB) mixed alkali zinc borate glasses have been prepared by a conventional melt quenching method. The structural (XRD & FT-IR), dielectric and a.c. conductivity (σac) properties have been investigated. Amorphous nature of these glasses has been confirmed from their XRD pattern. The dielectric properties and electrical conductivity (σac) of these glasses have been studied from 100Hz to 5MHz at the room temperature. Based on the observed trends in the a.c. conductivities, the present glass samples are found to exhibit a non-Debye behavior.

  4. Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Suchand Sandeep, C. S.; Cha, Jaemine; Takebe, Hiromichi; Philip, Reji; Mohan, S.

    2008-05-01

    In this paper, we report the optical and ultrafast nonlinear optical properties of Yb3+ doped sodium borate and bismuthate glasses. The glasses have been prepared through the melt quench technique. Optical absorption measurements show compositional dependent absorption spectrum of Yb3+, which is due to the higher crystal field induced by Bi3+ ions. Local structure of the glasses has been identified by using Fourier transform infrared and Raman studies. From open aperture z-scan measurements done by using 100 fs laser pulses, the ultrafast optical nonlinearity in these materials is calculated at the nonresonant excitation wavelength of 800 nm. The measured three-photon absorption originates from the glass host, with contributions from the nonbridging oxygens and the nonlinear electronic polarization of the Bi3+ ions.

  5. Three-dimensional optical memory using photoluminescence change in Sm-doped sodium borate glass

    SciTech Connect

    Lim, Jinhyong; Lee, Myeongkyu; Kim, Eunkyoung

    2005-05-09

    The feasibility of three-dimensional (3D) optical memory has been demonstrated by utilizing the photoluminescence (PL) spectrum change in a Sm-doped fluoride glass [K. Miura, J. Qiu, S. Fujiwara, S. Sakasuchi, and K. Hirao, Appl. Phys. Lett. 80 2263 (2002)]. We here report on a femtosecond laser-induced PL change in a Sm-doped sodium borate glass that is easier to synthesize and its potential application to 3D memory. Irradiation with a femtosecond pulsed laser (800 nm, 1 kHz, 100 fs) induced a PL peak near 682 nm, resulting from the photoreduction of the Sm ions. A multilayer pattern (bit size=1 {mu}m,layer separation=8 {mu}m) formed by femtosecond laser irradiation was read out by a reflection-type fluorescent confocal microscope, which detected the emission at 682 nm as a signal. High-contrast pattern images were obtained without crosstalk.

  6. Elastic properties of silver borate glasses doped with praseodymium oxide

    SciTech Connect

    Gowda, G. V. Jagadeesha; Eraiah, B.

    2014-04-24

    A series of glasses xPr{sub 6}O{sub 11−}(35−x) Ag{sub 2}O−65B{sub 2}O{sub 3} with x=0, 0.1, 0.2, 0.3, 0.4 and 0.5 mol % were synthesized by melt quenching technique. Longitudinal and shear ultrasonic velocity were measured at 5 MHz frequency and at room temperature. Elastic moduli, Poisson's ratio and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses. The role of the Pr{sub 6}O{sub 11} inside the glass network was discussed.

  7. Optical Properties of Alkaline Earth Ions Doped Bismuth Borate Glasses

    SciTech Connect

    Kundu, Virender; Dhiman, R. L.; Maan, A. S.; Goyal, D. R.

    2011-07-15

    The optical properties of glasses with composition xLi{sub 2}O(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x = 0, 5, 10, 15 and 20 mol %, prepared by normal melt quench technique were investigated by means of UV-VIS measurement. It was observed that the optical band gap of the present glass system decreases with increasing Li{sub 2}O content up to 15 mol%, and with further increase in lithium oxide content i.e. x>15 mol% the optical band gap increases. It was also observed that the present glass system behaves as an indirect band gap semiconductor.

  8. Spectroscopic features of manganese doped tellurite borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Satyanarayana, T.; Valente, M. A.; Nagarjuna, G.; Veeraiah, N.

    2013-02-01

    Glass system of composition (50-x)TeO2-5Sb2O3-45B2O3: xMnO with ‘x’ ranging from 0.3 to 1.5 mol% has been prepared via melt quenching followed by controlled crystallization. Further, the samples were characterized by X-ray diffraction, scanning electron microscopy and DSC techniques. A number of studies viz., optical absorption, EPR, and luminescence of these glass ceramics have been carried out. The spectroscopic studies have confirmed the existence of manganese ions in trivalent state in addition to divalent. EPR spectra of all investigated glass ceramics exhibit resonance signals that are characteristic for Mn2+ ions. The changes found in all the properties as function of the crystallizing agent (MnO) have been discussed in detail.

  9. Optical properties of Nd3+ doped bismuth zinc borate glasses.

    PubMed

    Shanmugavelu, B; Venkatramu, V; Ravi Kanth Kumar, V V

    2014-03-25

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) -x Nd2O3 (where x=0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to (4)F3/2 to (4)I9/2, (4)I11/2 and (4)I13/2 transitions in the near infrared region. The emission intensity of the (4)F3/2 to (4)I11/2 transition increases with increase of Nd(3+) concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd(3+) concentration. The lifetimes for the (4)F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd(3+) exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process. PMID:24326260

  10. Optical and structural properties of lithium sodium borate glasses doped Dy3+ ions

    NASA Astrophysics Data System (ADS)

    Dawaud, Raghda Saeif Eddin Said; Hashim, Suhairul; Alajerami, Yasser Saleh Mustafa; Mhareb, M. H. A.; Tamchek, N.

    2014-10-01

    Absorption and emission spectra of lithium sodium borate glass doped with different concentrations of Dy3+ have been reported. The concentration of Dy3+ was varied from 0.3 to 1.3 mol%. The amorphous nature of the prepared samples was confirmed by the X-ray Diffraction (XRD). Fourier transforms infrared (FTIR) spectra, and other significant physical properties (energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance) have been analyzed in the light of the different oxidation states of the co-dopant ions. The absorption spectrum showed nine peaks with hypersensitive transition corresponding to 6F11/2 + 6H9/2 at 1256 nm. As a result of 380 nm excitation wavelength, the luminescence spectra showed two characteristic bands at 479 nm and 587 nm. These absorption bands were attributed to 6P15/2 → 6H15/2 and 6P15/2 → 6H13/2 transitions of trivalent Dy3+ ions. The current study indicates that Dy doped lithium sodium borate glasses are attractive for solid-state laser applications.

  11. Optical studies of Sm³⁺ ions doped zinc alumino bismuth borate glasses.

    PubMed

    Swapna, K; Mahamuda, Sk; Srinivasa Rao, A; Shakya, S; Sasikala, T; Haranath, D; Vijaya Prakash, G

    2014-05-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm(3+)) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm(3+) ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm(3+) ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the (4)G5/2 level of Sm(3+) ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm(3+) ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers. PMID:24530709

  12. Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Mahamuda, Sk.; Swapna, K.; Srinivasa Rao, A.; Jayasimhadri, M.; Sasikala, T.; Pavani, K.; Rama Moorthy, L.

    2013-09-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of neodymium are prepared by using the melt quenching technique to study their physical, absorption and luminescence properties to understand the lasing potentialities of these glasses. From the absorption spectra various spectroscopic parameters and Judd-Ofelt (JO) parameters are evaluated. These JO parameters are used to calculate the transition probability (A), radiative lifetime (τR), and branching ratios (βR) for most of the fluorescent levels of Nd3+. The emission spectra recorded for these glasses gives three prominent transitions 4F3/2→4I9/2, 4F3/2→4I11/2 and 4F3/2→4I13/2 for which effective band widths (ΔλP) and stimulated emission cross-sections (σse) are evaluated. Branching ratios and stimulated emission cross-sections measured for all these glasses show that the 4F3/2→4I11/2 transition under investigation has the potential for laser applications. The intensity of Nd3+ emission spectra increases with increasing concentrations of Nd3+ up to 1 mol% and beyond 1 mol% the concentration quenching is observed. The high stimulated emission cross-section and branching ratios from the present glasses suggests their potential for infrared lasers. From the absorption and emission spectral studies it was found that, 1 mol% of Nd3+ ion concentration is optimum for Zinc Alumino Bismuth Borate glasses to generate a strong laser emission at 1060 nm.

  13. Spectroscopic Study on Eu3+ Doped Borate Glasses Containing Ag Nanoparticles and Ag Aggregates.

    PubMed

    Fu, Shaobo; Zheng, Hui; Zhang, Jinsu; Li, Xiangping; Sun, Jiashi; Hua, Ruinian; Dong, Bin; Xia, Haiping; Chen, Baojiu

    2015-01-01

    Transparent Eu(3+)-doped borate glasses containing Ag nanoparticles and Ag aggregates with composition (40 - x) CaO-59.5B2O3-0.5Eu2O3-xAgNO3 were prepared by a simple one-step melt-quenching technique. The X-ray diffraction (XRD) patterns of the glasses reveal amorphous structural properties and no diffraction peaks belonging to metal Ag particles. Ag particles and Ag aggregates were observed from the absorption spectra. Effective energy transfers from the Ag aggregates to the Eu3+ ions were observed in the excitation spectra from monitoring the intrinsic emission of Eu3+x .5D0 --> 7F2. The glasses with higher Ag content can be effectively excited by light in a wide wavelength region, indicating that these glasses have potential application in the solid state lighting driven by semiconductor light emitting diodes (LEDs). The emission spectra of the samples with higher Ag contents exhibit plenteous spectral components covering the full visible region from violet to red, thus indicating that these glass materials possess an excellent and tunable color rendering index. The color coordinates for all the glass samples were calculated by using the intensity-corrected emission spectra and the standard data issued by the CIE (Commission International de l' Eclairage) in 1931. It was found that the color coordinates for most samples with higher Ag contents fall into the white region in the color space. PMID:26328363

  14. The Preparation and Characterization of Nd{sub 2}O{sub 3} Doped Borate Glass

    SciTech Connect

    Razali, Wan Aizuddin Wan; Kasim, Azman; Mohamed, Ruziana

    2010-07-07

    The Nd{sup 3+} doped borate glass of Nd{sub 2}O{sub 3}-MgO-ZnO-B{sub 2}O{sub 3} glass system is successfully been prepared by melt-quenched technique. Batches of 15g were prepared from certified reagent grades of B{sub 2}O{sub 3}(99.95% purity), MgO (97%), ZnO (98% purity), and Nd{sub 2}O{sub 3}(99.99%). The measured glass densities are found varies from 5683.2 kgm{sup -3} to 5724.0 kgm{sup -3}. The increment in density implies that an addition of Nd{sub 2}O{sub 3} with higher atomic masses than B{sub 2}O{sub 3} tend to increase the packing density of the glass structures since the atomic masses of B{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} are 69.62 and 336.42 respectively. From the density values obtained, the molar volume of glasses was calculated. From the results, it is found that the molar volume of these glasses decreases slightly from 22.50 cm{sup 3} to 27.54 cm{sup 3} with respect to Nd{sub 2}O{sub 3} content.

  15. Thermoluminescence Response of Copper-Doped Potassium Borate Glass Subjected to 6 Megavolt X-Ray Irradiation

    NASA Astrophysics Data System (ADS)

    Hossain, I.; Shekaili, N. K.; Wagiran, H.

    2015-03-01

    This study addresses the characteristics of Cu-doped and undoped potassium borate glass for use as ionizing radiation dosimeters by investigating and comparing the thermoluminescence responses, linearity, sensitivity and dose response s of the two types of glasses. A number of samples based on xK 2 CO 3 + (100 - x)H 3 BO 3 , where 10 ≤ x ≤ 30 mol.%, have been prepared using a melt quenching technique. The amorphous phases were identified using X-ray diffraction (XRD). The undoped potassium borate samples 20K 2 CO 3 + 80H 3 BO 3 (mol.%) and Cu-doped (0.5 mol.%) samples were placed in a solid phantom apparatus and irradiated with in X-ray tube under 6 MV accelerating voltage with doses ranging from 0.5 to 4.0 Gy. This beam was produced by the Primus MLC 3339 linear accelerator (LINAC) available at Hospital Sultan Ismail, Johor Bahru, Malaysia. The results clearly show the superiority of Cu-doped glass in terms of response and sensitivity to producing luminescence over undoped potassium borate glass. The sensitivity of Cu-doped glass is 6.75 times greater than that of undoped glass.

  16. Luminescence spectra and structure of Er3+ doped alkali borate and fluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Arul Rayappan, I.; Marimuthu, K.

    2013-11-01

    Trivalent erbium (Er3+) ion doped alkali borate and fluoroborate glasses were prepared and their structural and spectroscopic properties have been studied through XRD, FTIR, optical absorption and luminescence spectral measurements. The FTIR spectral studies reveal the presence of BO3, BO4 structural units and the strong OH- bonds in the title glasses. The absorption spectra were used to determine the bonding parameters (β¯,δ) of the prepared glasses. Judd—Ofelt intensity parameters (Ωλ, λ=2, 4 and 6) have been calculated from the optical absorption spectra and are used to predict the important radiative properties like radiative transition probability (A), stimulated emission cross-section (σPE) and branching ratios (βR) for the excited state transitions such as 2H9/2→4I15/2 and 4S3/2→4I15/2 of the Er3+ ions in the prepared glasses. Optical band gap energy (Eopt) values through direct, indirect allowed transitions and the Urbach energy (ΔE) values of the prepared Er3+ glasses have also been determined and compared with similar studies. The spectral characteristics of the Er3+ ions due to compositional changes have been examined and reported in the present work.

  17. Optical absorption and heating rate dependent glass transition in vanadyl doped calcium oxy-chloride borate glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, M. S.; Khasa, S.; Agarwal, A.

    2015-04-01

    Some important results pertaining to optical and thermal properties of vanadyl doped oxy-halide glasses in the chemical composition CaCl2-CaO-B2O3 are discussed. These glasses have been prepared by conventional melt quench technique. From X-ray diffraction (XRD) profiles the amorphous nature of the doped glasses has been confirmed. The electronic polarizability is calculated and found to increase with increase in chloride content. The optical absorption spectra have been recorded in the frequency range of 200-3200 nm. Recorded spectra are analyzed to evaluate cut-off wavelength (λcut-off), optical band gap (Eg), band tailing (B), Urbach energy (ΔE) and refractive index (n). Thermal analysis has been carried out for the prepared glasses at three different heating rates viz. 5, 10 and 20 °C/min. The glass transition temperature (Tg) along with thermal activation energy (Ea) corresponding to each heating rate are evaluated from differential scanning calorimetry (DSC) thermographs. It is found that Ea decrease and Tg increase with increase in heating rate. The variation in Tg is also observed with the substitution of calcium chloride in place of calcium oxide. The increasing and higher values of Ea suggest that prepared glasses have good thermal stability. Variation in Tg and Eg suggests that Cl- anions enter into the voids of borate network at low concentrations (<5.0%) and contribute to the network formation at high concentration (>5.0%).

  18. Spectroscopic investigations of Nd 3+ doped flouro- and chloro-borate glasses

    NASA Astrophysics Data System (ADS)

    Mohan, Shaweta; Thind, Kulwant Singh; Sharma, Gopi; Gerward, Leif

    2008-10-01

    Spectroscopic and physical properties of Nd 3+ doped sodium lead flouro- and chloro-borate glasses of the type 20NaX-30PbO-49.5B 2O 3-0.5Nd 2O 3 (X = F and Cl) have been investigated. Optical absorption spectra have been used to determine the Slater Condon ( F2, F4, and F6), spin orbit ξ4f and Racah parameters ( E1, E2, and E3). The oscillator strengths and the intensity parameters Ω2, Ω4 and Ω6 have been determined by the Judd-Ofelt theory, which in turn provide the radiative transition probability ( A), total transition probability ( AT), radiative lifetime ( τR) and branching ratio ( β) for the fluorescent level 4F 3/2. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor ( Ω4/ Ω6), the value of which is in the range of 0.2-1.5, typical for Nd 3+ in different laser hosts. Nephelauxetic effect results in a red shift in the energy levels of Nd 3+ for chloroborate glass. The radiative transition probability of the potential lasing transition 4F 3/2 → 4I 11/2 of Nd 3+ ions is found to be higher for flouroborate as compared to chloroborate glass.

  19. Spectroscopic investigations of Nd3+ doped flouro- and chloro-borate glasses.

    PubMed

    Mohan, Shaweta; Thind, Kulwant Singh; Sharma, Gopi; Gerward, Leif

    2008-10-01

    Spectroscopic and physical properties of Nd3+ doped sodium lead flouro- and chloro-borate glasses of the type 20NaX-30PbO-49.5B2O3-0.5Nd2O3 (X=F and Cl) have been investigated. Optical absorption spectra have been used to determine the Slater Condon (F2, F4, and F6), spin orbit xi4f and Racah parameters (E1, E2, and E3). The oscillator strengths and the intensity parameters Omega2, Omega4 and Omega6 have been determined by the Judd-Ofelt theory, which in turn provide the radiative transition probability (A), total transition probability (A(T)), radiative lifetime (tauR) and branching ratio (beta) for the fluorescent level 4F3/2. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Omega4/Omega6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. Nephelauxetic effect results in a red shift in the energy levels of Nd3+ for chloroborate glass. The radiative transition probability of the potential lasing transition 4F3/2-->4I11/2 of Nd3+ ions is found to be higher for flouroborate as compared to chloroborate glass. PMID:18068421

  20. Ho3+-doped strontium-aluminium-bismuth-borate glasses for green light emission.

    PubMed

    Rajesh, D; Dhamodhara Naidu, M; Ratnakaram, Y C; Balakrishna, A

    2014-11-01

    Strontium-aluminium-bismuth-borate glasses (SAlBiB) doped with different concentrations of Ho(3+) were prepared using conventional melt quenching technique and their structural and optical properties investigated. X-ray diffraction and scanning electron microscopy analysis were used to study the structural properties. Optical properties were studied by measuring the optical absorption and visible luminescence spectra. The Judd-Ofelt (J-O) theory was applied to evaluate J-O intensity parameters, Ω(λ) (λ = 2, 4 and 6). Using J-O intensity parameters, radiative properties such as spontaneous transition probabilities (A(R)), branching ratios (β(R)) and radiative lifetimes (τ(R)) were determined. From the emission spectra, a strong green emission nearly at 549 nm corresponding to the transition, (5)S2 ((5)F4)→(5)I(8) was observed. Emission peak positions (λ(P)), effective bandwidths (Δλ(eff)) and stimulated emission cross-sections (σ(p)) were calculated for the observed emission transitions, (5)F3 →(5)I(8), (5)S2((5)F4)→(5)I(8) and (5)F5 →(5)I(8) of Ho(3+) in all the glass matrices. Chromaticity color coordinates were calculated using the emission spectra. The experimental results suggest that SAlBiB glass matrix with 1.5 mol% of Ho(3+) has better emission properties. PMID:24519914

  1. Structural and optical properties of lithium sodium borate glasses doped with Sm3+ ions

    NASA Astrophysics Data System (ADS)

    Dawaud, R. S. E. S.; Hashim, S.; Alajerami, Y. S. M.; Mhareb, M. H. A.; Maqableh, M. M.; Tamchek, N.

    2014-07-01

    Absorption and emission spectra of Sm3+ doped lithium sodium borate (LNB) have been reported. The samples were prepared by the melt-quenching technique and characterized by X-ray diffraction (XRD), diffraction thermal analysis (DTA), Fourier transforms infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). From the thermo-grams spectrum, glass transition (Tg), crystallization (Tc) and melting temperatures (Tm) have been evaluated. Direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. These glasses have shown strong nine absorption bands with hypersensitive transition at 1221 nm (6H5/2→4H3/2) and five emission bands for the transition at 4I7/2→6H13/2 (green color), 4I7/2→6H7/2 (orange color), 4I7/2→6H9/2 (orange color), 4I7/2→6H11/2 (red color) and 4I7/2→6H13/2 (red color) with performing an excitation of 400 nm. The oscillator strengths, refractive index, ions concentration, polaron radius and other parameters have been calculated for each dopant.

  2. Thermoluminescence properties of the Cu-doped lithium potassium borate glass.

    PubMed

    Aboud, Haydar; Wagiran, H; Hussin, R; Ali, Hassan; Alajerami, Yasser; Saeed, M A

    2014-08-01

    Characteristics of lithium potassium borate glasses with various copper concentrations are reported. The glasses were prepared by the melt quenching method and irradiated with photons to doses in the 0.5-4.0 Gy range. Glowing curves, dose response curves, reproducibility of the response, dose threshold, thermal fading and optical bleaching were studied. PMID:24681645

  3. Random lasing in Eu3+ doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation

    NASA Astrophysics Data System (ADS)

    Xu, Xuhui; Zhang, Wenfei; Jin, Limin; Qiu, Jianbei; Yu, Siu Fung

    2015-10-01

    We report the observation of random lasing from Eu3+ doped borate glass ceramic films embedded with Ag nanoparticles through three-photon absorption at room temperature. Under 1179 nm ultrashort femtosecond pulse excitation, discrete sharp peaks with linewidth ~0.4 nm emerge randomly from a broad emission band with peak wavelength at ~612 nm. In addition, the number of sharp peaks increases with the increase of excitation power. We also show that the emission spectrum varies with different observation angles and the corresponding lasing threshold is dependent on the excitation area. Hence, we verify unambiguously that the Eu3+ doped borate glass ceramic film supports random lasing action via three-photon absorption excitation. In addition, Ag nanoparticles, which act as light scatterers, allow the formation of random microcavities inside the bulk film.

  4. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    PubMed

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. PMID:24983922

  5. Waveguides and nonlinear index of refraction of borate glass doped with transition metals

    NASA Astrophysics Data System (ADS)

    Almeida, Juliana M. P.; Fonseca, Ruben D.; De Boni, Leonardo; Diniz, Andre Rosa S.; Hernandes, Antonio C.; Ferreira, Paulo H. D.; Mendonca, Cleber R.

    2015-04-01

    The ability to write 3D waveguides by femtosecond laser micromachining and the nonlinear refractive index (n2) spectrum of a new borate glass matrix, containing zinc and lead oxides - (BZP) have been investigated. The transparent matrix was doped with transition metals (CdCl2, Fe2O3, MnO2 and CoO) in order to introduce electronic transitions in visible spectrum, aiming to evaluate their influence on the waveguides and n2 spectrum. We observed that n2 is approximately constant from 600 to 1500 nm, exhibiting an average value of 4.5 × 10-20 m2/W, which is about twice larger than the one for fused silica. The waveguide profile is influenced by the self-focusing effect of the matrix owing to its positive nonlinear index of refraction in the wavelength used for micromachining. A decrease in the waveguide loss of approximately four times was observed for the sample doped with Fe in comparison to the other ones, which may be associated with the change in the optical gap energy.

  6. Optical properties of Lead bismuth borate glasses doped with neodymium oxide.

    PubMed

    Farouk, M; Abd El-Maboud, A; Ibrahim, M; Ratep, A; Kashif, I

    2015-10-01

    Neodymium doped Lead bismuth borate glasses with the composition of 25PbO-25Bi2O3-50B2O3:xNd2O3, where x=0.5, 1, 1.5 and 2 mol%, have been prepared by melt quenching technique. The behavior of the density and molar volume allows concluding that, addition of Nd2O3 leads to the formation of non-bridging oxygen. Rare earth ion parameters have been calculated and studied. The optical band gap (Eg), and band tails (Ee) were determined. Judd-Ofelt theory for the intensity analysis of induced electric dipole transitions has been applied to the measured oscillator strengths of the absorption bands to determine the three phenomenological intensity parameters Ω2, Ω4 and Ω6 for glass. It was observed that the deviation parameters, rms, was found to be 0.56:0.58(×10(-6)). The estimated Judd-Ofelt parameters were found to be Nd2O3concentration dependent. The hypersensitive transition, (4)I9/2→(4)G5/2+(2)G7/2, is closely related to Ω2 parameter. PMID:25965518

  7. Molecular dynamic simulation of EuT -doped sodium borate glasses and their fluorescence spectra

    SciTech Connect

    Hirao, K.; Soga, N.

    1985-10-01

    A molecular dynamic simulation was performed for sodium borate glasses containing a small amount of Eu2O3 to investigate the local structures of cations in glass. A new potential V /SUB B-B/ in the form -A exp (-C(r - 0.239)S) was added to the regular modified Born-Mayer-Huggins-type potentials, /PHI/ /SUB B-B/ , /PHI/ /SUB B-O/ , and /PHI/ /SUB O-O/ , to account for the directional tendency of the borate network structure. With this potential added, both the radial distribution of sodium borate glasses observed by smallangle X-ray diffraction and the change in coordination number of boron with sodium content obtained by NMR agreed well with the simulation. The average coordination number of EuT ions in the simulated glasses varied from 7.5 to 8.6, depending on the composition of the host sodium borate glasses. The inhomogeneous line width of the VD0-XF2 emission peak also changed, depending on the sodium content, with a maximum at 18 mol % Na2O content; this result agrees well with experimental data obtained from laser-induced fluorescence spectra.

  8. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    NASA Astrophysics Data System (ADS)

    Tengku Kamarul Bahri, T. N. H.; Wagiran, H.; Hussin, R.; Saeed, M. A.; Hossain, I.; Ali, H.

    2014-10-01

    Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5-4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.

  9. Spectroscopic investigations on Pr³+ and Nd³+ doped strontium-lithium-bismuth borate glasses.

    PubMed

    Rajesh, D; Balakrishna, A; Seshadri, M; Ratnakaram, Y C

    2012-11-01

    Spectroscopic investigations on different concentrations (0.1, 0.5, 1.0, 1.5 and 2.0mol%) of Pr(3+) and Nd(3+) doped strontium lithium bismuth borate glasses have been done. X-ray diffraction, SEM with EDS, absorption and luminescence spectra were recorded for all the glass matrices and analyzed. X-ray diffraction profiles and SEM images conformed amorphous nature of investigated glass samples. EDS spectra of host glass and Pr(3+)doped glass matrices gave information about the chemical composition of glass samples. From the absorption spectra of Pr(3+) and Nd(3+) ions, Judd-Ofelt (J-O) intensity parameters (Ω(λ),λ=2, 4 and 6) have been calculated and compared with other glass matrices. The emission characteristics such as radiative lifetimes (τ(R)), measured and calculated branching ratios (β) and stimulated emission cross-sections (σ(P)) have been obtained for the observed emission transitions of Pr(3+) and Nd(3+) ions in the above glass matrix for all the concentrations. From the emission spectra of Pr(3+) and Nd(3+) doped glass matrices, the effect of concentration on the quenching of intensity of (1)D(2)→(3)H(4) transition of Pr(3+) ion and (4)F(3/2)→(4)I(9/2), (4)I(11/2) and (4)I(13/2) transitions of Nd(3+) have been studied and discussed. PMID:22925972

  10. Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications

    NASA Astrophysics Data System (ADS)

    Ottomeyer, Megan

    Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

  11. One-photon band gap engineering of borate glass doped with ZnO for photonics applications

    SciTech Connect

    Abdel-Baki, Manal; Abdel-Wahab, Fathy A.; El-Diasty, Fouad

    2012-04-01

    Lithium tungsten borate glass of the composition (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0 {<=}x{<=} 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B{sub 2}O{sub 3} by ZnO.

  12. Extended X-ray Absorption Fine Structure (EXAFS) Analysis of Zirconium-Doped Lithium Silicate/Borate Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Yoo, Changhyeon; Marasinghe, Kanishka; Segre, Carlo; Brow, Richard K.

    2015-03-01

    Results of Zr K-edge Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy analysis of a series of Zr-doped (~ 3-10 mol% Zr and atomic ratio Li/Si ~ 0.8) lithium silicate glass ceramics (ZLS) and their parent glasses and a series of Zr-doped (~ 2-6 mol% Zr and atomic ratio Li/B ~ 0.25-0.18) lithium borate (ZLB) glasses are presented. Immediate coordination environment of all ZLS samples, i.e. the parent glasses and glass ceramics prepared via two different techniques, are remarkably similar. This observation suggests that zirconium ions may remain in the glass phase during nucleation and crystallization process. In contrast, immediate coordination environment of ZLB glasses appear to change markedly with the Zr concentration. These results also suggest that the structural role of Zr ions in ZLS and ZLB glasses may be significantly different. Details of analysis and results will be presented. Support was provised by NSF (UND) and DoE (argonne Natl. Lab).

  13. Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides.

    PubMed

    Hashim, S; Alajerami, Y S M; Ramli, A T; Ghoshal, S K; Saleh, M A; Abdul Kadir, A B; Saripan, M I; Alzimami, K; Bradley, D A; Mhareb, M H A

    2014-09-01

    Lithium potassium borate (LKB) glasses co-doped with TiO2 and MgO were prepared using the melt quenching technique. The glasses were cut into transparent chips and exposed to gamma rays of (60)Co to study their thermoluminescence (TL) properties. The TL glow curve of the Ti-doped material featured a single prominent peak at 230 °C. Additional incorporation of MgO as a co-activator enhanced the TL intensity threefold. LKB:Ti,Mg is a low-Z material (Z(eff)=8.89) with slow signal fading. Its radiation sensitivity is 12 times lower that the sensitivity of TLD-100. The dose response is linear at doses up to 10(3) Gy. The trap parameters, such as the kinetics order, activation energy, and frequency factor, which are related to the glow peak, were determined using TolAnal software. PMID:24929526

  14. Precipitation of ZnO in Al 2O 3-doped zinc borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Masai, Hirokazu; Ueno, Takahiro; Takahashi, Yoshihiro; Fujiwara, Takumi

    2011-10-01

    Crystallization behavior of the oxide semiconductor ZnO in zinc borate glass was investigated. The precipitated crystalline phase of glass ceramics containing a small amount of Al 2O 3 was α-Zn 3B 2O 6 whereas that of the glass ceramics containing a large amount of Al 2O 3 was ZnO. It was found that the c-oriented precipitation of ZnO in a glass ceramic was brought about by the in-plane crystal growth of needle-like ZnO crystallites along the a-axis. Amount of Al 2O 3 that can make glass network affected the coordination state of B 2O 3 in the glass, and a three-coordinated BO 3 unit was preferentially formed in the glass containing a higher amount of Al 2O 3. The present results suggest that crystallization of ZnO from multi-component glass is dominated by the local coordination state of the mother glass.

  15. Photon Interaction Parameters for Some Borate Glasses

    SciTech Connect

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir; Sharma, J. K.; Singh, Parjit S.

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  16. Photon Interaction Parameters for Some Borate Glasses

    NASA Astrophysics Data System (ADS)

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir; Sharma, J. K.; Singh, Parjit S.

    2010-11-01

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  17. Role of oxygen on the optical properties of borate glass doped with ZnO

    SciTech Connect

    Abdel-Baki, Manal; El-Diasty, Fouad

    2011-10-15

    Lithium tungsten borate glass (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0{<=}x{<=}0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B{sub 2}O{sub 3} the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density, which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B{sub 2}O{sub 3}, which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: > New borate glass for photonic application is prepared. > The dispersion property of the glass is effectively controlled using small amounts of ZnO. > ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. > Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.

  18. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    SciTech Connect

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-03-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu{sup 3+} ions to Eu{sup 2+} ions is presented in this material. • The intensity of Ag{sup +} luminescence. • The introduction of Eu ions accelerated the reaction between Eu{sup 2+} ions and silver ions inducing the silver clusters formation. - Abstract: Ag{sup +} doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag{sup +} decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu{sup 3+} to Eu{sup 2+} in our glass system, it revealed that Ag{sup +} has been reduced by the neighboring Eu{sup 2+} which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag{sup +}/Ag aggregates to the Eu{sup 3+} was investigated for the enhancement of Eu{sup 3+} luminescence.

  19. Role of oxygen on the optical properties of borate glass doped with ZnO

    NASA Astrophysics Data System (ADS)

    Abdel-Baki, Manal; El-Diasty, Fouad

    2011-10-01

    Lithium tungsten borate glass (0.56- x)B 2O 3-0.4Li 2O- xZnO-0.04WO 3 (0≤ x≤0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B 2O 3 the glass molar polarizability increased due to an enhanced unshared oxide ion 2 p electron density, which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1 s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B 2O 3, which increase the UV glass transmission window and transmittance.

  20. Optical absorption and photoluminescence properties of Dy3+ doped heavy metal borate glasses - Effect of modifier oxides

    NASA Astrophysics Data System (ADS)

    Sasi kumar, M. V.; Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-06-01

    The present paper aims at reporting the optical absorption and emission properties of Dy3+ doped alkali (Li, Na, K) and mixed alkali (Li-Na, Li-K, Na-K) heavy metal borate glasses. For these glasses X-ray diffraction (XRD), differential scanning calorimetry (DSC), optical absorption, emission and lifetime decay measurements were carried out. Glass transition temperatures are obtained from the DSC spectra. Judd-Ofelt theory has been used to derive the spectral intensities (f), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) and certain radiative properties. Using the Judd-Ofelt intensity parameters, radiative lifetimes (τR), branching ratios (β), integrated absorption cross-sections (Σ) and emission cross-sections (σP) were obtained. The variations in these parameters with the variation of glass matrix are discussed in detail. The decay lifetime of the 4F9/2 level has been measured from the decay profiles and compared with calculated lifetimes. From the emission spectra, chromacity color coordinates are calculated and indicated the white light emission for potassium glass matrices. It was observed that among various glass matrices, potassium glass matrix has exhibited large emission cross-section for 6F9/2 → 6H13/2 transition.

  1. FTIR studies of some vanadyl ion doped calcium oxychloride borate glasses

    NASA Astrophysics Data System (ADS)

    Khasa, S.; Dahiya, M. S.; Agarwal, A.

    2013-06-01

    The borate glass system with composition xCaCl2ṡ(30-x)ṡCaOṡ70B2O3+2mol% of V2O5(x = 0,0.02,0.05,0.07,0.10,0.12,0.15,0.20,0.25,0.30) has been prepared with the traditional melt-quenching technique. The FTIR study has been carried out using Perkin Elmer Frontier FTIR with ATR accessory in the mid IR range. The density, molar theoretical optical basicity is calculated so as to determine the structure and covalency in the glass network so formed. The spectra reveal absence of boroxol ring and presence of absorption bands corresponding to the combined contributions of tri and tetra borate stretching vibrations. This confirms the network modifier nature of magnesium chloride. The increasing basicity reveals decrease in the covalence nature of oxygen and octahedral enhancement in the vanadyl ion nature as we replace the CaO content with CaCl2. The increase in molar volume may be due to the increase in openness of the network structure.

  2. X-ray absorption fine structure of samarium-doped borate glasses

    SciTech Connect

    Shimizugawa, Y.; Sawaguchi, N.; Kawamura, K.; Hirao, K.

    1997-05-01

    Samarium L{sub III} x-ray absorption fine structure spectra for both Sm{sup 2+} and Sm{sup 3+}-doped (100-X)B{sub 2}O{sub 3} XNa{sub 2}O (X=10,15,20) glasses and both Sm{sup 2+} and Sm{sup 3+}-doped 85B{sub 2}O{sub 3} (15-X)Al{sub 2}O{sub 3} XNa{sub 2}O (X=5,10) glasses were measured using synchrotron radiation. The oxygen coordination number of samarium in Sm{sup 2+}-doped glass is different from that of the Sm{sup 3+}-doped glass with the same composition while the nearest neighbor Sm{endash}O distances are closely the same. The change of coordination numbers with alkali or aluminum addition was related to the variation of the optical hole width of Sm{sup 2+}-doped glasses. {copyright} {ital 1997 American Institute of Physics.}

  3. Identification of ε-Fe2O3 nano-phase in borate glasses doped with Fe and Gd

    NASA Astrophysics Data System (ADS)

    Ivanova, O. S.; Ivantsov, R. D.; Edelman, I. S.; Petrakovskaja, E. A.; Velikanov, D. A.; Zubavichus, Y. V.; Zaikovskii, V. I.; Stepanov, S. A.

    2016-03-01

    A new type of magnetic nanoparticles was revealed in borate glasses co-doped with low contents of iron and gadolinium. Structure and magnetic properties of the particles differ essentially from that of the α-Fe2O3, γ-Fe2O3, or Fe3O4 nanoparticles which were detected earlier in similar glass matrices. Transmission electron microscopy including STEM-HAADF and EDX, synchrotron radiation-based XRD, static magnetic measurements, magnetic circular dichroism, and electron magnetic resonance studies allow referring the nanoparticles to the iron oxide phase-ε-Fe2O3. Analysis of the data set has shown that it is Gd atoms that govern the process of nanoparticles' nucleation and its incorporation into the particles in different proportions can be used to adjust their magnetic and magneto-optical characteristics.

  4. Spectroscopic properties and luminescence behaviour of europium doped lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Anjaiah, J.; Laxmikanth, C.; Veeraiah, N.

    2014-12-01

    Li2O-MO-B2O3 (MO=ZnO, CaO and CdO) glasses doped with europium are prepared by using the melt quenching technique to study their absorption and luminescence properties to understand their lasing potentialities. The XRD pattern of the glasses confirmed the amorphous nature and the IR spectra reveal the presence of BO3 and BO4 units in the glass network. Judd-Ofelt intensity parameters Ωλ (λ=2, 4, 6) are evaluated from the intensities of various absorption bands of optical absorption spectra. The J-O parameters have been used to calculate transition probabilities (A), lifetime (τR), branching ratios (βR) and stimulated emission cross-section (σP) for the 5D0→7FJ (J=1-4) transitions of the Eu3+ ions. The decay from the 5D0 level of Eu3+ ions in these glasses has been measured and analysed. Branching ratios and stimulated emission cross-sections measured for all these glasses show that the 5D0→7F1 transition under investigation has the potential for laser applications. The high stimulated emission cross-section and branching ratios from the present glasses suggests their potential for infra red lasers. The study of the thermoluminescence is also carried out and the data suggests that the CdBEu glass is suitable for thermoluminescence emission output among the three Eu3+ doped glasses.

  5. Visible red, NIR and Mid-IR emission studies of Ho3+ doped Zinc Alumino Bismuth Borate glasses

    NASA Astrophysics Data System (ADS)

    Mahamuda, Sk.; Swapna, K.; Packiyaraj, P.; Srinivasa Rao, A.; Vijaya Prakash, G.

    2013-12-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of Holmium were prepared by conventional melt quenching technique. The glassy nature of these glasses has been confirmed through the XRD spectral measurements. The FTIR spectra recorded for undoped glass revealed the information related to the functional groups involved in the host glass. Optical absorption, excitation and photoluminescence spectra of these glasses have been recorded at room temperature. The Judd-Ofelt theory has been applied successfully to characterize the absorption spectra of the ZnAlBiB glasses. From this theory various radiative properties such as radiative transition probability (AR), radiative lifetimes (τR), branching ratios (βR) and spectroscopic quality factor (χ) for the prominent emission levels 5F5 → 5I7, 5F5 → 5I8 and 5I7 → 5I8 have been evaluated. The photoluminescence spectra revealed the quenching of luminescence intensity beyond 1.0 mol% of Ho3+ ion concentration in ZnAlBiB glasses. To investigate the lasing potentiality of 5F5 → 5I7, 5F5 → 5I8 and 5I7 → 5I8 transitions, the effective band width (Δλp) and the stimulated emission cross-section (σse) were determined. The CIE chromaticity co-ordinates were also evaluated from the emission spectra for all the glasses to understand the suitability of these materials for visible red laser emission in principle.

  6. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    PubMed

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+) ) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+) . An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg ), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2 O-MgO-B2 O3 radiation dosimeters. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25828828

  7. Effect of co-doped SnO{sub 2} nanoparticles on photoluminescence of cu-doped potassium lithium borate glass

    SciTech Connect

    Namma, Haydar Aboud; Wagiran, H.; Hussin, R.; Ariwahjoedi, B.

    2012-09-26

    The SnO{sub 2} co-doped lithium potassium borate glasses doped with 0.05, 0.10, 0.25 and 0.50 mol% of Cu were synthesized by the melt quenching technique. The SnO{sub 2} co-dope was added to the compounds in the amounts of 0.05, 0.10, and 0.20 mol%. The photoluminescent spectrum for different concentrations of copper was studied. It was observed that the intensity of blue emission (450, 490 nm) varies with concentration mol%. In addition, with different concentration of SnO{sub 2} to 0.10 mol% Cu, the influence of the luminescence has been observed to enhance intensity and shifted to blue and red (490, 535 nm) emissions.

  8. Degradable borate glass polyalkenoate cements.

    PubMed

    Shen, L; Coughlan, A; Towler, M; Hall, M

    2014-04-01

    Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time. PMID:24435528

  9. Judd-Ofelt analysis and spectral properties of Dy3+ ions doped niobium containing tellurium calcium zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Ravi, O.; Reddy, C. Madhukar; Reddy, B. Sudhakar; Deva Prasad Raju, B.

    2014-02-01

    Niobium containing tellurium calcium zinc borate (TCZNB) glasses doped with different concentrations of Dy3+ ions were prepared by the melt quenching method and their optical properties have been studied. The Judd-Ofelt (J-O) intensity parameters Ωt (t=2, 4 and 6) were calculated using the least square fit method. Based on the magnitude of Ω2 parameter the hypersensitivity of 6H15/2→6F11/2 has also been discussed. From the evaluated J-O intensity parameters as well as from the emission and lifetime measurements, radiative transition properties such as radiative transition probability rates and branching ratios were calculated for 4F9/2 excited level. It is found that for Dy3+ ion, the transition 4F9/2→6H13/2 shows highest emission cross-section at 1.0 mol% TCZNB glass matrix. From the visible luminescence spectra, yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The TCZNB glasses exhibit good luminescence properties and are suitable for generation of white light.

  10. Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses

    NASA Astrophysics Data System (ADS)

    Agarwal, A.; Sheoran, A.; Sanghi, S.; Bhatnagar, V.; Gupta, S. K.; Arora, M.

    2010-03-01

    Glasses with compositions xNb 2O 5·(30 - x)M 2O·69B 2O 3 (where M = Li, Na, K; x = 0, 4, 8 mol%) doped with 1 mol% V 2O 5 have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm -1. The changes caused by the addition of Nb 2O 5 on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO 2+ ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V 4+ ions which exist as VO 2+ ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V 4+O 6 complex decreases with increasing concentration of Nb 2O 5. The 3d xy orbit contracts with increase in Nb 2O 5:M 2O ratio. Values of the theoretical optical basicity, Λ th, have also been reported.

  11. Luminescent properties of lithium-phosphate-borate glasses doped with Tb3+/ Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Valiev, D. T.; Stepanov, S. A.; Cong, Liu

    2016-02-01

    The luminescence of Li2O-B2O3-P2O5-CaF2 scintillation glass doped Tb3+, Eu3+ under different types of excitation sources are investigated. Changing the europium concentration of 0.5 to 1 wt% leads changes in luminescence intensity of Tb3+ ions. The luminescence spectrum of the Tb3+ ions are depend on the concentration of Eu3+. It was found, that the luminescence decay kinetics of terbium ion in the band 543 nm depending on the concentration of europium and from type of excitation. The difference in the nature of the luminescence decay kinetics of glasses under pulsed photo- and electronic excitation discussed.

  12. Random lasing in Eu³⁺ doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation.

    PubMed

    Xu, Xuhui; Zhang, Wenfei; Jin, Limin; Qiu, Jianbei; Yu, Siu Fung

    2015-10-21

    We report the observation of random lasing from Eu(3+) doped borate glass ceramic films embedded with Ag nanoparticles through three-photon absorption at room temperature. Under 1179 nm ultrashort femtosecond pulse excitation, discrete sharp peaks with linewidth ∼0.4 nm emerge randomly from a broad emission band with peak wavelength at ∼612 nm. In addition, the number of sharp peaks increases with the increase of excitation power. We also show that the emission spectrum varies with different observation angles and the corresponding lasing threshold is dependent on the excitation area. Hence, we verify unambiguously that the Eu(3+) doped borate glass ceramic film supports random lasing action via three-photon absorption excitation. In addition, Ag nanoparticles, which act as light scatterers, allow the formation of random microcavities inside the bulk film. PMID:26377118

  13. Optical and FTIR structural studies of CoO-doped sodium borate, sodium silicate and sodium phosphate glasses and effects of gamma irradiation-a comparative study

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; ElBatal, F. H.; ElBatal, H. A.; EzzElDin, F. M.

    2014-09-01

    Undoped and CoO-doped three binary glass systems, namely sodium borate, sodium silicate and sodium phosphate glasses were prepared by the melt annealing technique. Combined optical and FTIR spectral studies were carried out for the prepared samples before and after being subjected to a gamma dose of 8 Mrad (8 × 104 Gy). Optical spectra of the undoped samples before irradiation reveal strong UV absorption varying in depth with the type of glass and such strong UV spectra are related to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of these three basic glasses. CoO-doped (0.25%) glasses show additional visible absorption spectra which are related to the existence of cobalt in the divalent state (Co)2+ ions which are present in two coordination states, namely the octahedral and tetrahedral forms. The broad visible band of Co2+ ions shows in some instances obvious splitting to three component peaks. Gamma irradiation on undoped glasses causes obvious induced UV-visible bands and their extension depends on the type of glass system. Irradiation of CoO-doped glasses causes an obvious increase of absorption within the visible region. Infrared absorption spectra of the undoped three basic glasses reveal IR vibrational bands which are characteristics to the three specific characteristic structural building units within the borate, silicate and phosphate glasses. The introduction of CoO with the doping level causes minor variations of the IR spectra because of the low doping content together with the presence of cobalt ions in structural modifying sites. Gamma irradiation is observed to cause limited changes within the intensities of some bands in the IR spectra which are attributed to changes in bond lengths and/or bond angles of the structural building units by the irradiation process.

  14. Er3+-doped strontium lithium bismuth borate glasses for broadband 1.5 μm emission - optical properties

    NASA Astrophysics Data System (ADS)

    Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-02-01

    Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er3+ were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er3+ ions to evaluate J-O intensity parameters, Ωλ (λ = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (AR), branching ratios (β) and radiative lifetimes (τ) are estimated for certain transitions. From the emission spectra, peak emission-cross sections (σp) and products of stimulated emission cross-section and full width at half maximum (σp×FWHM) were calculated for the observed emission transition, 4I13/2→4I15/2.

  15. Physical, structural and spectroscopic investigations of Sm3+ doped ZnO mixed alkali borate glass

    NASA Astrophysics Data System (ADS)

    Sailaja, B.; Joyce Stella, R.; Thirumala Rao, G.; Jaya Raja, B.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.

    2015-09-01

    Glass of 20ZnO-15 Li2O-15 Na2O-49.9 B2O3 doped with 0.1 mol% of Sm3+ (ZLNB) was prepared by the melt quenching technique. Physical properties were studied and analysed. The XRD studies confirm the amorphous nature of sample. The FT-IR spectral investigation discloses the BO3, BO4 groups, H and OH bonds. Optical absorption and emission spectra were recorded and characterized. Judd-Ofelt theory was applied to f ↔ f transitions to evaluate Judd-Ofelt intensity parameters (Ωλ). The oscillator strengths and bonding parameters were determined from absorption spectra. The trend observed was Ω4 > Ω6 > Ω2. High value of Ω4 reveals higher rigidity and covalency around the Sm3+ ion. Low value of Ω2 implies ionic nature of ligands and site symmetry around Sm3+ ion. luminescence data and Judd-Ofelt parameters Ωλ (λ = 2, 4, and 6) were used to evaluate various radiative probabilities like spontaneous radiative emission probabilities (AR), radiative lifetime (τR) and branching ratios (βR) stimulated emission cross section (σe) and CIE colour coordinates were measured, CCT temperature evaluated and the values were used to ascertain potential laser transitions at the optimum mixed alkali effect observed for the glass sample prepared. The preparedness of the material as the efficient laser active material is examined.

  16. Glass composition and excitation wavelength dependence of the luminescence of Eu{sup 3+} doped lead borate glass

    SciTech Connect

    Wen Hongli; Duan, Chang-Kui; Jia Guohua; Tanner, Peter A.; Brik, Mikhail G.

    2011-08-01

    This work explores the relationship between the bandwidth of luminescence spectral features and their relative intensities, using glasses doped with europium, Eu{sup 3+}, over a wide composition range. Glasses of composition (B{sub 2}O{sub 3}){sub 70}(PbO){sub 29}(0.5Eu{sub 2}O{sub 3}){sub 1} and (B{sub 2}O{sub 3}){sub z}(PbO){sub 99.6-z}(0.5Eu{sub 2}O{sub 3}){sub 0.4}, (z = 20, 30, 40, 60, 70), were prepared by the melting-quenching technique. Variable-wavelength measurements by the prism-coupling method enabled interpolation of refractive index at selected wavelengths. Diffuse reflectance spectra confirmed the incorporation of Eu{sup 3+} into the glass, and scanning electron microscopy displayed that this was in a homogeneous manner. Vibrational spectra showed a change in boron coordination from BO{sub 3} to BO{sub 4} units with increase of PbO content in the glass. Multi-wavelength excited luminescence spectra were recorded for the glasses at temperatures down to 10 K and qualitative interpretations of spectral differences with change of B{sub 2}O{sub 3} content are given. The quantitative analysis of {sup 5}D{sub 0} luminescence intensity-bandwidth relations showed that although samples with higher boron content closely exhibit a simple proportional relationship with band intensity ratios, as expected from theory, the expression needs to be slightly modified for those with low boron content. The Judd-Ofelt intensity analysis of the {sup 5}D{sub 0} emission spectra under laser excitations at low temperature gives {Omega}{sub 2} values within the range from (3.9-6.5) x 10{sup -20} cm{sup 2}, and {Omega}{sub 4} in the range from (4.1-7.0) x 10{sup -20} cm{sup 2}, for different values of z. However, no clear monotonic relation was found between the parameter values and composition. The Judd-Ofelt parameters are compared with those from other systems doped with Eu{sup 3+} and are found to lie in the normal ranges for Eu{sup 3+}-doped glasses. The comparison of parameter values derived from the 10 K spectra with those from room temperature spectra for our glasses, which are fairly constant for different compositions, shows that site selection occurs at low temperature.

  17. Spectroscopy and energy transfer in lead borate glasses doubly doped with Dy3+-Tb3+ and Tb3+-Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Pisarska, Joanna; Kos, Agnieszka; Pisarski, Wojciech A.

    2014-08-01

    Lead borate glasses doubly doped with Dy3+-Tb3+ and Tb3+-Eu3+ were investigated using optical spectroscopy. Luminescence spectra of rare earths were detected under various excitation wavelengths. The main green emission band due to 5D4 → 7F5 transition of Tb3+ is observed under excitation of Dy3+, whereas the main red emission band related to 5D0 → 7F2 transition of Eu3+ is successfully observed under direct excitation of Tb3+. In both cases, the energy transfer processes from Dy3+ to Tb3+ and from Tb3+ to Eu3+ in lead borate glasses occur through a nonradiative processes with efficiencies up to 16% and 18%, respectively. The presence of energy transfer process was also confirmed by excitation spectra measurements.

  18. Spectroscopy and energy transfer in lead borate glasses doubly doped with Dy(3)(+)-Tb(3+) and Tb(3)(+)-Eu(3+) ions.

    PubMed

    Pisarska, Joanna; Kos, Agnieszka; Pisarski, Wojciech A

    2014-08-14

    Lead borate glasses doubly doped with Dy(3)(+)-Tb(3+) and Tb(3+)-Eu(3+) were investigated using optical spectroscopy. Luminescence spectra of rare earths were detected under various excitation wavelengths. The main green emission band due to (5)D4→(7)F5 transition of Tb(3+) is observed under excitation of Dy(3+), whereas the main red emission band related to (5)D0→(7)F2 transition of Eu(3+) is successfully observed under direct excitation of Tb(3+). In both cases, the energy transfer processes from Dy(3+) to Tb(3+) and from Tb(3+) to Eu(3+) in lead borate glasses occur through a nonradiative processes with efficiencies up to 16% and 18%, respectively. The presence of energy transfer process was also confirmed by excitation spectra measurements. PMID:24824577

  19. Crystallization of lithium borate glasses

    NASA Technical Reports Server (NTRS)

    Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.

    1992-01-01

    The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.

  20. Structural study and DC conductivity of vanadyl doped zinc lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Seema, Khasa, S.; Dahiya, M. S.; Yadav, Arti; Agarwal, A.; Dahiya, S.

    2015-06-01

    Glasses with composition xZnOṡ(30 - x)ṡLi2Oṡ70B2O3 containing 2 mol% of V2O5 (x = 0, 2, 5, 7 and 10) were prepared by standard melt-quench technique. The amorphous nature of the glass samples was confirmed by using x-ray diffraction. The structural changes in these glasses have been investigated by employing IR spectroscopy in the mid-IR range. The infrared spectroscopic analysis confirms the presence of both triangular and tetraheldral coordinated boron units and absence of boroxol ring. It also shows that metal-oxide vibrations are present which are due to the bonding of lithium and zinc ions with oxygen. The dc conductivity was measured in the temperature range 353-523 K. The dc conductivity results show that conductivity decreases and activation energy increases when Li2O is replaced by ZnO, keeping the concentration of B2O3 constant. Decrease in conductivity and increase in activation energy shows that addition of ZnO to the glass matrix shows a "blocking effect" on the overall mobility of alkali ions, but at higher concentration the hopping effect was also observed.

  1. Structural and physical properties of vanadium doped copper bismuth borate glasses

    SciTech Connect

    Dhiman, R. L.; Kundu, Virender Singh; Arora, Susheel; Maan, A. S.

    2013-02-05

    The structural and physical properties of xCuO(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x= 0, 5, 10, 15, 20 and 25 mol % with 2 mol %V{sub 2}O{sub 5} glasses prepared by normal melt quench technique have been investigated by means of FT-IR and physical measurement techniques. With the addition of copper oxide (x{<=} 10 mol%), the frequency bands in the higher region shift towards lower wave number, suggest the conversion of BO{sub 3} to BO{sub 4} structural units, which in turn give rise to the formation of Non Bridging Oxygen's (NBOs). For further increase in CuO (i.e. for x{>=} 10 mol %), the frequency bands shift towards higher wave number, indicate the formation of Bridging Oxygen's (BOs). The FTIR analysis reveals that the present glass system is based on the BiO{sub 3} pyramidal, BiO{sub 6} octahedral units and also on BO{sub 3} and BO{sub 4} structural units. The systematic variation in density and molar volume in these glasses indicates the effect of CuO substitution.

  2. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model.

    PubMed

    Zhao, Shichang; Li, Le; Wang, Hui; Zhang, Yadong; Cheng, Xiangguo; Zhou, Nai; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-01-01

    There is a need for better wound dressings that possess the requisite angiogenic capacity for rapid in situ healing of full-thickness skin wounds. Borate bioactive glass microfibers are showing a remarkable ability to heal soft tissue wounds but little is known about the process and mechanisms of healing. In the present study, wound dressings composed of borate bioactive glass microfibers (diameter = 0.4-1.2 μm; composition 6Na2O, 8K2O, 8MgO, 22CaO, 54B2O3, 2P2O5; mol%) doped with 0-3.0 wt.% CuO were created and evaluated in vitro and in vivo. When immersed in simulated body fluid, the fibers degraded and converted to hydroxyapatite within ∼7 days, releasing ions such as Ca, B and Cu into the medium. In vitro cell culture showed that the ionic dissolution product of the fibers was not toxic to human umbilical vein endothelial cells (HUVECs) and fibroblasts, promoted HUVEC migration, tubule formation and secretion of vascular endothelial growth factor (VEGF), and stimulated the expression of angiogenic-related genes of the fibroblasts. When used to treat full-thickness skin defects in rodents, the Cu-doped fibers (3.0 wt.% CuO) showed a significantly better capacity to stimulate angiogenesis than the undoped fibers and the untreated defects (control) at 7 and 14 days post-surgery. The defects treated with the Cu-doped and undoped fibers showed improved collagen deposition, maturity and orientation when compared to the untreated defects, the improvement shown by the Cu-doped fibers was not markedly better than the undoped fibers at 14 days post-surgery. These results indicate that the Cu-doped borate glass microfibers have a promising capacity to stimulate angiogenesis and heal full-thickness skin defects. They also provide valuable data for understanding the role of the microfibers in healing soft tissue wounds. PMID:25890736

  3. [Ce3⁺/Tb3⁺ Doped Alkaline-Earth Borate Glasses Employed in Enhanced Solar Cells].

    PubMed

    Yang, Peng; Zhao, Xin; Wang, Zhi-qiang; Lin, Hai

    2015-12-01

    Ce³⁺ and Tb³⁺ doped alkaline earth borate (LKZBSB) glasses and the photoluminescence properties of glass system have been fabricated and investigated, and the observed violet and green fluorescences are originated from Ce³⁺ and Tb³⁺ emit- ting centers, respectively. Four emission bands peaked at 487, 543, 586 and 621 nm are attributed to the emission transitions ⁵D₄-->⁷F₆, ⁵D₄-->⁷F₅, ⁵D₄-->⁷F₄ and ⁵D₄-->⁷F₃ of Tb³⁺, respectively, and consists of a broad emission band peaking at 389 nm attributed to 5d--4ƒ electric dipole allowed transition of Ce³⁺. With the introduction of Ce³⁺, the effective excitation wavelength range of Tb³⁺ in LKZBSB glasses are remarkably expanded, and the enhanced factor of green fluorescence of Tb³⁺ in Ce³⁺/Tb³⁺ co-doped LKZBSB glasses is up to 73 times in medium-wavelength ultraviolet (UVB) excitation region, compared with that in Tb³⁺ single-doped case. The results show that the conversion from ultraviolet (UV) radiation to visible light is efficient in Ce³⁺/ Tb³⁺ doped LKZBSB glasses, demonstrating that the glasses have potential values in developing enhanced solar cell as a conver- sion layer. PMID:26964196

  4. Cooperative luminescence sensitisation and spontaneous Raman scattering in a borate glass doped with Pr{sup 3+} and Nd{sup 3+} ions

    SciTech Connect

    Chanturiya, G F; Kutaladze, L M; Tatarashvili, R A; Shchegolikhin, Aleksandr N

    2004-04-30

    Cooperative sensitisation of luminescence of Nd{sup 3+} ions at the {sup 4}F{sub 3/2} {yields} {sup 4}I{sub 13/2}, {sup 4}I{sub 9/2} transitions by Pr{sup 3+} ions was observed in a borate glass doped with Pr{sup 3+}-Nd{sup 3+} ion pairs. The luminescence was excited by a 800-mW, 1.064-{mu}m Nd{sup 3+}:YAG laser. Simultaneously, spontaneous Raman scattering was observed in glasses containing Pr{sup 3+}-Nd{sup 3+} ion pairs or only Pr{sup 3+} ions. The Stokes shift from the 9398-cm{sup -1} excitation line is 794 cm{sup -1}. The mechanism of nonradiative energy transfer is discussed. (laser applications and other topics in quantum electronics)

  5. Effect of ZnSe and CdSe nanoparticles on the fluorescence and optical band gap of Sm3+ doped lead borate glasses

    NASA Astrophysics Data System (ADS)

    Fatokun, Stephen O.

    For the first part of this work, we prepared a series of Sm-doped lead borate (PbO-B2O3) glasses containing zinc selenide (ZnSe) and cadmium selenide (CdSe) nanoparticles (NPs) and studied the Sm 3+ fluorescence by varying the glass composition and size of the NPs. We have chosen these heavy metal oxide glasses to incorporate Sm3+ ions because they have large glass forming region, high refractive index, and good physical and thermal stability. Lead borate glasses with the following compositions xPbO:(96.5-x)B2O 3:0.5Sm2O3:3ZnSe/CdSe, x=36.5 and 56.5 mol%) are prepared using the melt-quenching method. Transmission electron microscopy characterization was done to confirm both nucleation and growth of the NPs for different annealing times. Fluorescence spectra of these samples are obtained with the excitation wavelengths at 403 and 477nm. Three fluorescence transitions are observed at 563 nm, 598 nm and 646 nm. The transition at 646 nm is a electric dipole (ED) transition that strongly depends on the covalency of the Sm-O bond and the asymmetry of the crystal field at the Sm3+ site. The 646 nm/598 nm fluorescence intensity ratio has been studied for different annealing times and PbO concentration for both ZnSe and CdSe samples. Longer annealing times tend to make the crystal field at the Sm3+ site more symmetric in nature for these glasses. The presence of CdSe NPs is seen to produce the greatest influence on the fluorescence intensity ratio. This is believed to be due to the larger size of the CdSe nanoparticles and its stronger influence on Sm3+ ions. The second part of this work was dedicated to the understanding of the optical band gap of samarium doped lead borate glasses with and without ZnSe/CdSe NPs. Optical absorption spectra for all these glass samples show their absorption edge in the ultraviolet region. Detailed analysis of the absorption edge was carried out using the Mott-Davis model and the optical band gap and the width of the tail in the band gap (Urbach edge) were obtained. Our glass samples show both direct and indirect transitions. For samples without the NPs, the optical band gap decreases with increasing PbO concentration. The presence of ZnSe NPs shows a similar trend. The introduction of CdSe NPs, however, shows an increase in the optical band gap with increase in PbO contents. Our results indicate that CdSe NPs show markedly different effect on the optical properties of lead borate glasses compared to ZnSe NPs. TEM characterization shows that CdSe NPs are considerably larger than ZnSe NPs. These size differences could produce significant differences in the electronic properties of these NPs and their interaction with the glass matrices.

  6. Regulation of structure rigidity for improvement of the thermal stability of near-infrared luminescence in Bi-doped borate glasses.

    PubMed

    Guo, Qiangbing; Xu, Beibei; Tan, Dezhi; Wang, Juechen; Zheng, Shuhong; Jiang, Wei; Qiu, Jianrong; Zhou, Shifeng

    2013-11-18

    The effect of heat-treatment on the near-infrared (NIR) luminescence properties was studied in Bi-doped borate glasses. The luminescence intensity generally decreases with the increase of temperature, and the thermal stability can be improved by nearly 4.5 times with addition of 5 mol% La2O3. Collaborative studies by using steady photoluminescence (PL) and photoluminescence excitation (PLE) spectra, luminescence decay curve, differential thermal analysis (DTA), Raman spectra and X-ray diffraction (XRD) indicate that the luminescence decrement is associated with the agglomeration of Bi active centers during heat-treatment. The improvement of the thermal stability of NIR luminescence with the addition of La2O3 is benefited from the enhancement of structure rigidity due to the strong cationic field strength of La3+. The results not only provide valuable guidance for suppressing performance degradation of Bi-doped glass during fiber drawing process, but also present an effective way to control the luminescence properties of main group elements in glasses from the perspective of glass structure. PMID:24514300

  7. Effect of Li 2O content on physical and structural properties of vanadyl doped alkali zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Raghavendra Rao, T.; Rama Krishna, Ch.; Udayachandran Thampy, U. S.; Venkata Reddy, Ch.; Reddy, Y. P.; Sambasiva Rao, P.; Ravikumar, R. V. S. S. N.

    2011-05-01

    The effect of Li 2O content in vanadyl doped 20ZnO+ xLi 2O+(30- x)Na 2O+50B 2O 3 (5≤ x≥25) glasses has been studied with respect to their physical and structural properties. The absence of sharp peaks in XRD spectra of these glass samples confirms the amorphous nature. The physical parameters like density, refractive index, ionic concentration and electronic polarizability vary non-linearly with x mol% depending on the diffusivities of alkali ions. EPR and optical absorption spectra reveal that the resonance signals are characteristics of VO 2+ ions in tetragonally compressed octahedral site. Spin-Hamiltonian, crystal field, tetragonal field and bonding parameters are found to be in good agreement with the other reported glass systems. The tetragonal distortion ( g⊥- g∥) and Dt reveals that their values vary non-linearly with Li 2O content and reaches a minimum at x=10 mol%. An anomaly of character has been observed in all the properties of vanadyl doped glass systems, which gives a clear indication of mixed alkali effect.

  8. Optical Absorption and Structural Studies of Pr3+ Doped Cadmium Bismuth Borate Glasses in Visible and Near Infrared Regions

    NASA Astrophysics Data System (ADS)

    Pal, Inder; Agarwal, Ashish; Sanghi, Sujata; Sanjay; Bhardwaj, Sunil

    Glasses having composition 20CdOxBi2O3(79.5-x)B2O30.5Pr6O11 with x varying from 15 to 35 mol% have been synthesized. Optical absorption and fluorescence spectra were measured at ambient temperature. A close correlation is observed between the Bi2O3 content and the spectroscopic properties such as Judd-Ofelt intensity parameters Ωλ = (λ = 2, 4, 6), radiative and structural properties of prepared glasses doped with Pr3+ ion. The variation of Ω2 with Bi2O3 content has been attributed to changes in the asymmetry of the ligand field at the rare earth (RE) ion site (due to structural change) and to changes in RE-O covalency, whereas the variation of Ω6 has been related to the variation in RE-O covalency. Following the luminescence spectra, various radiative properties like transition probability (Arad), radiative lifetime (τr), branching ratio (βr) and stimulated emission cross section (σ) have been calculated. The branching ratio for 3P0 → 3F2 transition of Pr3+ glass system arrive at 41 to 40%, respectively, and the predicted spontaneous radiative transition probability rates are high and varies from 14032 to 14864 s-1. In addition, the glass stability is improved in which the substitution of B2O3 for Bi2O3 strengthens the glass network structure. The bismuth based glass as a host for Pr3+ ion doped suggesting their suitability for laser applications.

  9. Er{sup 3+}-doped strontium lithium bismuth borate glasses for broadband 1.5 {mu}m emission - optical properties

    SciTech Connect

    Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-02-05

    Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er{sup 3+} were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er{sup 3+} ions to evaluate J-O intensity parameters, {Omega}{lambda} ({lambda} = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (A{sub R}), branching ratios ({beta}) and radiative lifetimes ({tau}) are estimated for certain transitions. From the emission spectra, peak emission-cross sections ({sigma}{sub p}) and products of stimulated emission cross-section and full width at half maximum ({sigma}{sub p} Multiplication-Sign FWHM) were calculated for the observed emission transition, {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}.

  10. Comparative study of ion conducting pathways in borate glasses

    SciTech Connect

    Hall, Andreas; Swenson, Jan; Adams, Stefan

    2006-11-01

    The conduction pathways in metal-halide doped silver, lithium, and sodium diborate glasses have been examined by bond valence analysis of reverse Monte Carlo (RMC) produced structural models of the glasses. Although all glass compositions have basically the same short-range structure of the boron-oxygen network, it is evident that the intermediate-range structure is strongly dependent on the type of mobile ion. The topography of the pathways and the coordination of the pathway sites differ distinctly between the three glass systems. The mobile silver ions in the AgI-doped glass tend to be mainly iodine-coordinated and travel in homogeneously distributed pathways located in salt-rich channels of the borate network. In the NaCl-doped glass, there is an inhomogeneous spatial distribution of pathways that reflects the inhomogeneous introduction of salt ions into the glass. However, since the salt clusters are not connected, no long-range conduction pathways are formed without including also oxygen-rich regions. The pathways in the LiCl-doped glass are slightly more evenly distributed compared to the NaCl-doped glass (but not as ordered as in the AgI-doped glass), and the regions of mainly oxygen-coordinated pathway sites are of higher importance for the long-range migration. In order to more accurately investigate how these differences in the intermediate-range order of the glasses affect the ionic conductivity, we have compared the realistic structure models to more or less randomized structures. An important conclusion from this comparison is that we find no evidence that a pronounced intermediate-range order in the atomic structure or in the network of conduction pathways, as in the AgI-doped glass, is beneficial for the dc conductivity.

  11. Structural properties of Zinc Lithium borate glass

    NASA Astrophysics Data System (ADS)

    Saidu, A.; Wagiran, H.; Saeed, M. A.; Alajerami, Y. S. M.

    2014-09-01

    Zinc Lithium Borate glasses of different composition were prepared with the aim of using it for thermoluminescence dosimetry. Melt quenching method was adopted in this process. Fourier transform Infrared (FTIR) spectroscopy and UV-vis-NIR spectroscopy techniques were employed to investigate the infrared spectra and energy band gap of different composition of Zinc Lithium Borate glasses. X-ray diffraction analysis was used to confirm the amorphous nature of the glass samples. Glass forming ability and stability of the glass was checked using Differential thermal analysis (DTA). Density, molar volume, refractive index parameters have been analyzed in the light of different concentration of the modifier. The active vibrational modes of 1200-1600 cm-1 for B-O stretching of BO3 units, 800-1200 cm-1 for B-O stretching of BO4 units and 400-800 cm-1 for bending vibration of various borate segments were detected. Addition of ZnO to lithium borate shows its influence in converting the dominant BO3 group to BO4 group. BO4 are known for creating complex defects, a situation that established deep and stable traps good for thermoluminescence phenomena. From optical data, direct and indirect energy band gap has been calculated using the data obtained from UV-vis-NIR spectroscopy. Both direct and indirect band gaps decrease with the increase of modifier Li2CO3.

  12. Effect of WO 3 on the spectroscopic properties in Er 3+/Yb 3+ co-doped bismuth-borate glasses

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhou, Yaxun; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua

    2007-11-01

    The spectroscopic properties of Er 3+/Yb 3+ co-doped Bi 2O 3-B 2O 3-WO 3 (BBW) glasses were analyzed and discussed. The effect of WO 3 content on the absorption spectra, the Judd-Ofelt parameters Ω t ( t=2, 4, 6), emission spectra and the lifetime of the 4I 13/2 level and the quantum efficiency of Er 3+: 4I 13/2→ 4I 15/2 transition were also investigated. With the substitution of WO 3 for B 2O 3, the measured lifetime of the 4I 13/2 level and the quantum efficiency of Er 3+: 4I 13/2→ 4I 15/2 transition increase from 0.98 to 1.31 ms and from 38.2% to 49.2%, respectively. The effective width of emission band and the emission cross-section both decrease slightly. And the emission spectra is analyzed via the different curve ( σe- σa) of BBW glasses, the influence of OH - is also discussed.

  13. Effect of MoO3 on electron paramagnetic resonance spectra, optical spectra and dc conductivity of vanadyl ion doped alkali molybdo-borate glasses

    NASA Astrophysics Data System (ADS)

    Agarwal, A.; Khasa, S.; Seth, V. P.; Sanghi, S.; Arora, M.

    2014-02-01

    Alkali molybdo-borate glasses having composition xMoO3·(30 - x)M2O·70B2O3 and xMoO3·(70 - x)B2O3·30M2O (M = Li, Na, K) with 0 ⩽ x ⩽ 15 (mol%) doped with 2.0 mol% of V2O5 have been prepared in order to study the influence of MoO3 on electrical conductivity, electron paramagnetic resonance (EPR) and optical spectra. From EPR studies it is observed that V4+ ions in these samples exist as VO2+ ions in octahedral coordination with a tetragonal compression and belong to C4V symmetry. The tetragonal nature and octahedral symmetry of V4+O6 complex increase as well as decrease depending upon the composition of glasses with increase in MoO3 but 3dxy orbit of unpaired electron in the VO2+ ion expands in all the glasses. The decrease in optical band gap suggests that there is an increase in the concentration of non-bridging oxygen's. From the study of optical transmission spectra it is observed that for all the glasses the degree of covalency of the σ-bonding decreases with increase in MoO3 content and the degree of covalency of the π-bonding also varies. These results based on optical spectroscopy are in agreement with EPR findings. It is found that dc conductivity decreases and activation energy increases with increase in MoO3:M2O (M = Li, Na, K) ratio in MoO3·M2O·B2O3 glasses, whereas the conductivity increases and activation energy decreases with increase in MoO3:B2O3 ratio in xMoO3·B2O3·M2O glasses, which is governed by the increase in nonbridging oxygen's. The variation in theoretical optical basicity, Λth is also studied.

  14. Interfacial reactions between titanium and borate glass

    SciTech Connect

    Brow, R.K.; Saha, S.K.; Goldstein, J.I.

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  15. Borates

    USGS Publications Warehouse

    Angulo, M.A.

    2011-01-01

    The article discusses the latest developments in the borates industry, particularly in the U.S., as of June 2011. It claims that the biggest economically feasible deposits of borates are seen in the U.S.' Mojave Desert, the Alpide belt in southern Asia and the Andean belt of South America. Turkish state-owned mining firm Eti Maden AS reported that borates were mainly used in the manufacture of glass, ceramics, fertilizer and detergent in 2009.

  16. Towards modeling gadolinium-lead-borate glasses

    SciTech Connect

    Rada, S.; Ristoiu, T.; Rada, M.; Coroiu, I.; Maties, V.; Culea, E.

    2010-01-15

    Infrared spectra of gadolinium-lead-borate glasses of the xGd{sub 2}O{sub 3}.(100 - x)[3B{sub 2}O{sub 3}.PbO] system, where x = 0, 5, 10, 15, 25, 35 and 50 mol.%, have been recorded to explore the role of content of gadolinium ions behaving as glass modifier. The FTIR spectroscopy data for the xGd{sub 2}O{sub 3}.(1 - x)[3B{sub 2}O{sub 3}.PbO] glasses show the structural role of lead ions as a network-formers and of the gadolinium ions network modifiers. Adding of the rare earth ion up to 35 mol.% into the glass matrix, the IR bands characteristic to the studied glasses become sharper and more pronounced. Structural changes, as recognized by analyzing band shapes of IR spectra, revealed that Gd{sub 2}O{sub 3} causes a change from the continuous borate network to the continuous lead-borate network interconnected through Pb-O-B and B-O-B bridges and the transformation of some tetrahedral [BO{sub 4}] units into trigonal [BO{sub 3}] units. Then, gadolinium ions have affinity towards [BO{sub 3}] structural units which contain non-bridging oxygens necessary for the charge compensation because the more electronegative [BO{sub 3}] structural units were implied in the formation of B-O-Gd bonds and the transformation of glass network into a glass ceramic. We propose a possible structural model of building blocks for the formation of continuous random 3B{sub 2}O{sub 3}.PbO network glass used by density functional theory (DFT) calculations. DFT calculations show that lead atoms occupy three different sites in the proposed model. The first is coordinated with six oxygen atoms forming distorted octahedral geometries. The second lead atom has an octahedral oxygen environment and the five longer Pb-O bonds are considered as participating in the metal coordination scheme. The third lead atom has ionic character. In agreement with the results offered by the experimental FTIR data, the theoretical IR data confirm that our proposed structure is highly possible.

  17. Vibrational spectra and the structure of alkali borate glasses

    SciTech Connect

    Kolesova, V.A.

    1986-11-01

    This paper presents systematic data on the IR-absorption spectra of lithium borate glasses. Lithium borate glasses were synthesized from Li/sub 2/CO/sub 3/ and H/sub 3/BO/sub 3/ in Pt crucibles at temperatures from 800 to 1050 C. It was possible in the lithium borate system to obtain glasses continuing significantly more M/sub 2/O than the glasses in the sodium or potassium borate system. An analysis of the data on Raman spectra of alkali borate glasses suggests that the addition of M/sub 2/O to a B/sub 2/O/sub 3/ glass produces network disorder, the replacement of the boroxyl rings by rings of another configuration and the formation of BO/sub 4/ tetrahedra.

  18. Variation of photoluminescence features in Pr3+ doped lithium-fluoro-borate glass by changing different modifier oxides (MgO, CaO, CdO and PbO)-Judd-Ofelt theory application

    NASA Astrophysics Data System (ADS)

    Balakrishna, A.; Rajesh, D.; Babu, S.; Ratnakaram, Y. C.

    2015-06-01

    Pr3+ (1.0 mol%) doped different modifier oxide based six lithium-fluoro-borate glasses with chemical composition of 49Li2B4O7-20BaF2-10NaF-20MO (where M= Mg, Ca, Cd and Pb), 49Li2B4O7-20BaF2-10NaF-10MgO-10CaO and 49Li2B4O7-20BaF2-10NaF-10CdO-10PbO were prepared by conventional melt quenching technique. Judd-Ofelt theory has been applied for evaluating the Judd-Ofelt intensity parameters for Pr3+ ion in these glass compositions and are in turn to used to predict radiative properties such as radiative transition probabilities (AT), branching ratios (β) and stimulated emission cross-section (σP). Stimulated emission cross-section (σp) of prominent emission transitions, 3P0→3H4 and 1D2→3H4 of Pr3+ ion in all lithium-fluoro-borate glasses were calculated. Among all the emission transitions, 3P0→3H4 posseses higher branching ratio and stimulated emission cross-section in Mg-Ca glass, which leads to the best laser excitation at 487 nm wavelength.

  19. The effect of Ce3+ ions on the spectral and decay characteristics of luminescence phosphate-borate glasses doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Valiev, D. T.; Polisadova, E. F.; Belikov, K. N.; Egorova, N. L.

    2014-05-01

    The luminescent characteristics of Li2O-B2O3-P2O5-CaF2 (LBPC) glasses doped with Gd3+ and Tb3+ ions and codoped with Ce3+ are studied by pulsed optical spectrometry under electron beam excitation. It is found that in glass with Ce3+ and Gd3+ ions a decrease in the decay time of gadolinium luminescence in the 312-nm band (6 P J → 8 S 7/2) was observed. It is shown that in the glass LBPC: Tb, Ce, an increase in the emission intensity in the main radiative transitions in terbium ion was observed. In the kinetics of luminescence band 545 nm of LBPC: Tb, Ce glasses, is present stage of buildup, the character of which changes with the doped of Ce3+ ions. The mechanism of energy transfer in LBP glasses doped with rare elements is discussed.

  20. The effect of modifiers on the fluorescence and life-time of Gd3+ ions doped in borate glasses.

    PubMed

    Kumar, A; Rai, D K; Rai, S B

    2001-11-01

    The effect of glass modifiers on the fluorescence and life time of the 6P(7/2) energy state of the Gd3+ ion has been investigated. A shift in the energy of maximum of the fluorescence has been observed. The results are explained on the basis of the relative cation and anion field strengths due to modifiers. A variation in the life-time of the 6P7.2 energy state of the Gd3 ion has also been noted. PMID:11765785

  1. Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide

    NASA Astrophysics Data System (ADS)

    Khalil, M. M. I.

    2007-03-01

    The effect of electric field strength on conduction in lithium borate glasses doped with CuO with different concentration was studied and the value of the jump distance of charge carrier was calculated. The conductivity measurements indicate that the conduction is due to non-adiabatic hopping of polarons and the activation energies are found to be temperature and concentration dependent. Lithium borate glasses are subjected to carefully-programmed thermal treatments which cause the nucleation and growth of crystalline phases. X-ray diffraction analysis confirmed the amorphous nature for the investigated glass sample and the formation of crystalline phase for annealed samples at 650 °C. The main separated crystalline phase is Li2B8O13. The scanning electron micrographs of some selected glasses showed a significant change in the morphology of the films investigated due to heat treatment of the glass samples. It was found that the dc-conductivity decreases with an increase of the HT temperature. The decrease of dc conductivity, with an increase of the HT temperature, can be related to the decrease in the number of free ions in the glass matrix. There is deviation from linearity at high temperature regions in the logσ-1/T plots for all investigated doped samples at a certain temperature at which the transition from polaronic to ionic conduction occurs. The hopping of small polarons is dominant at low temperatures, whereas the hopping of Li+ ions dominates at high temperatures.

  2. Nearly constant loss effects in borate glasses.

    PubMed

    Laughman, David M; Banhatti, Radha D; Funke, Klaus

    2009-05-01

    Different nearly constant loss phenomena are investigated in borate glasses with compositions xNa(2)O.(1-x)B(2)O(3), for 0 < or =x< or = 0.3. The ionic conductivities caused by these effects are studied in wide ranges of temperature and frequency, spanning 4.3 K to 573 K and 100 mHz to 1 MHz, respectively. In a first step, we show how to identify the nearly constant loss (NCL) in 0.3Na(2)O.0.7B(2)O(3) glass. In the procedure, the scaling property of the conductivity caused by ordinary hopping is used to remove this component from the total conductivity as measured as a function of temperature at fixed frequency. The resulting NCL component is seen to be proportional to frequency and to display no temperature dependence. In a second step, a broad-band relaxation process is shown to exist in amorphous boron oxide and in sodium borate glasses with x< or = 0.1. It is most probably due to the presence of traces of water, with hydrogen ions behaving as reorienting and interacting local dipoles. In a third step, we propose a simple formal treatment of the NCL phenomenon, tracing it back to a large number of interacting ions, each of them moving locally. The key aspect is a "see-saw-type" time dependence of their individual single-particle double-well potentials, which is due to their Coulomb interactions. The individual ion does, therefore, not require thermal activation and is thus kept in motion even at cryogenic temperatures. PMID:19370211

  3. Angiogenic effects of borate glass microfibers in a rodent model.

    PubMed

    Lin, Yinan; Brown, Roger F; Jung, Steven B; Day, Delbert E

    2014-12-01

    The primary objective of this research was to evaluate the use of bioactive borate-based glass microfibers for angiogenesis in soft tissue repair applications. The effect of these fibers on growth of capillaries and small blood vessels was compared to that of 45S5 silica glass microfibers and sham implant controls. Compressed mats of three types of glass microfibers were implanted subcutaneously in rats and tissues surrounding the implant sites histologically evaluated 2-4 weeks post surgery. Bioactive borate glass 13-93B3 supplemented with 0.4 wt % copper promoted extensive angiogenesis as compared to silica glass microfibers and sham control tissues. The angiogenic responses suggest the copper-containing 13-93B3 microfibers may be effective for treating chronic soft tissue wounds. A second objective was to assess the possible systemic cytotoxicity of dissolved borate ions and other materials released from implanted borate glass microfibers. Cytotoxicity was assessed via histological evaluation of kidney tissue collected from animals 4 weeks after subcutaneously implanting high amounts of the borate glass microfibers. The evaluation of the kidney tissue from these animals showed no evidence of chronic histopathological changes in the kidney. The overall results indicate the borate glass microfibers are safe and effective for soft tissue applications. PMID:24677635

  4. Spectroscopic analysis of Ho3+ transitions in different modifier oxide based lithium-fluoro-borate glasses

    NASA Astrophysics Data System (ADS)

    Balakrishna, A.; Rajesh, D.; Ratnakaram, Y. C.

    2014-10-01

    In recent investigations it was observed that the presence of different structural groups in borate glasses was favorable for spectroscopic investigations of rare earth doped borate glasses. Consequent to these observations, the heavy metal fluoride glasses doped with Ho3+ ions received much attention due to their wide transparency in the ultraviolet to infrared region. Keeping these observations in view, the present paper makes an attempt to present spectral investigations of Ho3+ doped lithium-fluoro-borate glasses of the compositions Li2B4O7-BaF2-NaF-MO (where M=Mg, Ca, Cd and Pb), Li2B4O7-BaF2-NaF-MgO-CaO and Li2B4O7-BaF2-NaF-CdO-PbO. These rare earth doped glasses were synthesized by melt quenching technique and an investigation was carried out to observe the structural (SEM and FT-IR) and optical (absorption and luminescence) properties. The paper also aims at the determination of three phenomenological Judd-Ofelt intensity parameters and special attention was paid to study the emission properties by employing the J-O intensity parameters. The visible emission spectra of Ho3+ ion in different lithium-fluoro-borate glasses were recorded by exciting the samples at 409 nm. The results revealed that among all the glass matrices, cadmium glass matrix have shown higher stimulated emission cross-section, which indicates that this is a good lasing material at this wavelength and highly useful for laser excitation.

  5. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  6. Impact of vanadium ions in barium borate glass

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Hammad, Ahmed H.

    2015-02-01

    Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data.

  7. Effect of silver nanoparticles on the spectral properties of rare-earth ions in a sodium borate glass

    NASA Astrophysics Data System (ADS)

    Obadina, Victor O.; Reddy, B. Rami

    2012-03-01

    Silver doped sodium borate glass was made by the melt quenching technique. As made glass, did not reveal any absorption transitions in the visible or ultraviolet region. Differential scanning calorimeter was used to measure glass transition temperature. Heat treated glass revealed absorption peak at 410 nm due to surface plasmon resonance. Under violet laser excitation the glass revealed emission at 450 - 620 nm, whose lifetimes are more than 30μs. Under near resonant excitation it revealed intense Raman scattering. We also made multielement oxide glasses co-doped with silver and Er3+ and performed spectroscopic studies. Energy upconversion was observed from Er3+ at 415 nm in a 2% Ag co-doped oxide glass but not in other glasses. Infrared to visible upconversion studies were performed in all these glasses under near-infrared laser excitation. 2% Ag doped glass exhibited enhanced upconversion signals from erbium than that of other glasses.

  8. Interpretation of the IR spectra of alkali borate glasses

    SciTech Connect

    Chekhovskii, V.G.

    1985-11-01

    This paper describes methods of interpretation of the IR spectra of alkali borate glasses. In view of the difficulties which are encountered in a strict interpretation of the IR spectra of crystalline oxygen-containing compounds with complex anions, semiempirical methods of interpretation are commonly used. The existence of glasses of groups with an atomic (ionic) arrangement close to that in the crystalline compounds makes it possible to a certain extent to use the spectra of crystalline compounds in the interpretation of the IR spectra of glasses. The alkali borate glass systems were chosen for this study because the information on their structure is the most detailed by comparison with other borate glasses. IR spectrospcopy showed that the spectral regions in which fundamental asymmetrical stretching vibrations in BO/sub 3/ and BO/sub 4/ polyhedra occur, in most cases, are fairly clearly defined independently of the combined or separate presence of these polyhedra. It is proposed that the bands in the IR spectra of sodium and lithium borate glasses be assigned to vibrations mostly localized on specific fragments of polyborate groups present in the glasses. The data from IR spectroscopy confirms that tetraborate groups are present in lithium borate glasses.

  9. Synthesis and characterization of rare-earth doped SrBi{sub 2}Nb{sub 2}O{sub 9} phase in lithium borate based nanocrystallized glasses

    SciTech Connect

    Harihara Venkataraman, B.; Fujiwara, Takumi; Komatsu, Takayuki

    2009-06-15

    Glass composites comprising of un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites are fabricated in the glass system 16.66SrO-16.66[(1-x)Bi{sub 2}O{sub 3}-xSm{sub 2}O{sub 3}]-16.66Nb{sub 2}O{sub 5}-50Li{sub 2}B{sub 4}O{sub 7} (0<=x<=0.5, in mol%) via the melt quenching technique. The glassy nature of the as-quenched samples is established by differential thermal analyses. Transmission electron microscopic studies reveal the presence of about 15 nm sized spherical crystallites of the fluorite-like SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} phase in the samples heat treated at 530 deg. C. The formation of layered perovskite-type un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites with an orthorhombic structure through the intermediate fluorite phase is confirmed by X-ray powder diffraction and micro-Raman spectroscopic studies. The influence of samarium doping on the lattice parameters, lattice distortions, and the Raman peak positions of SrBi{sub 2}Nb{sub 2}O{sub 9} perovskite phase is clarified. The dielectric constants of the perovskite SrBi{sub 2}Nb{sub 2}O{sub 9} and SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} nanocrystals are relatively larger than those of the corresponding fluorite-like phase and the precursor glass. - Graphical Abstract: This figure shows the XRD patterns at room temperature for the as-quenched and heat treated samples in Sm{sub 2}O{sub 3}-doped (x=0.1) glass. Based on these results, it is concluded that the formation of samarium-doped perovskite SBN phase takes place via an intermediate fluorite-like phase in the crystallization of this glass.

  10. [Effect of Eu ions on the Ag nanoparticles precipitation and their optical properties in borate glasses].

    PubMed

    Liu, Zhi-liang; Jiao, Qing; Qiu, Jian-bei

    2014-08-01

    Eu-Ag co-doped borate glasses were prepared by the high temperature solid method in the present work. Absorption and emission spectra were employed to investigate the precipitation of Ag nanoparticles, which is influenced by the network form B2O3 and the co-doped Eu ions. It was found in the absorption spectra of Eu-Ag co-doped sample that a broad band centered at about 410 nm emerged and their intensity decreased with the increase in the BZ 03 concentration. Meanwhile, under the excitation of 340 nm, a broad emission band was observed in the wavelength range of 350-600 nm, which belongs to the blue-green light of Ag aggregates. The intensity of the Ag aggregates presented an increasing tendency with the increase in the B2O3 contents. The weak characteristic emission of Ag aggregates and Eu3+ was observed respectively in their singly doped samples. It is concluded that both their emissions get significant enhancement when Eu ions and Ag ions are used for co-doping the sample. In addition, the increased absorption of Ag nanoparticles was detected with the increase in the Eu ions concentration. Herein, the mechanism behind Eu3+ contribution to the precipitation of Ag nanoparticles is discussed in detail. The luminescence properties of borate glasses can be controlled by the microstructure of the borate glasses. Therefore, the white emission can be realized by the adjustment of glass structure and Eu ions concentration, owing to the red light from Eu3+ : (5)D0-->(7)Fj electronic transition and the blue-green light form the broad emission of Ag aggregates. The borate glasses are expected to be the candidates for the light-emission diode (LED) luminescent materials. PMID:25474935

  11. [Effect of Eu ions on the Ag nanoparticles precipitation and their optical properties in borate glasses].

    PubMed

    Liu, Zhi-liang; Jiao, Qing; Qiu, Jian-bei

    2014-08-01

    Eu-Ag co-doped borate glasses were prepared by the high temperature solid method in the present work. Absorption and emission spectra were employed to investigate the precipitation of Ag nanoparticles, which is influenced by the network form B2O3 and the co-doped Eu ions. It was found in the absorption spectra of Eu-Ag co-doped sample that a broad band centered at about 410 nm emerged and their intensity decreased with the increase in the BZ 03 concentration. Meanwhile, under the excitation of 340 nm, a broad emission band was observed in the wavelength range of 350-600 nm, which belongs to the blue-green light of Ag aggregates. The intensity of the Ag aggregates presented an increasing tendency with the increase in the B2O3 contents. The weak characteristic emission of Ag aggregates and Eu3+ was observed respectively in their singly doped samples. It is concluded that both their emissions get significant enhancement when Eu ions and Ag ions are used for co-doping the sample. In addition, the increased absorption of Ag nanoparticles was detected with the increase in the Eu ions concentration. Herein, the mechanism behind Eu3+ contribution to the precipitation of Ag nanoparticles is discussed in detail. The luminescence properties of borate glasses can be controlled by the microstructure of the borate glasses. Therefore, the white emission can be realized by the adjustment of glass structure and Eu ions concentration, owing to the red light from Eu3+ : (5)D0-->(7)Fj electronic transition and the blue-green light form the broad emission of Ag aggregates. The borate glasses are expected to be the candidates for the light-emission diode (LED) luminescent materials. PMID:25508714

  12. Spectroscopic studies of lead halo borate glasses

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.

    2015-06-01

    Glasses in the system xPbF2-(30-x) PbO-69B2O3-1CuO (x=5, 10, 15, 20, & 25 mole %) were prepared by melt quenching method and they are characterized by XRD to confirm the glassy nature. Electron Paramagnetic Resonance (EPR) studies at room temperature in the X-band frequencies and FTIR studies on prepared glass systems were reported. The non-linear variation of spin-Hamiltonian parameters with PbF2 content indicated the change in the ligand field strength around Cu2+ ions in the host glass. The ground state of Cu2+ ions in the glass is designated as dx2-y2 orbital (2B1g) while the observed symmetry around it is tetragonally distorted octahedral. The molecular orbital coefficients α2, β2 and β12 are evaluated for Cu2+ doped samples. From the FTIR studies it was observed that the glass made up of BO3 and BO4 units.

  13. Topological phases in Ba-Borate glasses

    NASA Astrophysics Data System (ADS)

    Holbrook, Chad; Czaja, Andrew; Boolchand, Punit

    2015-03-01

    Twelve compositions in the (BaO)x(B2O3)100-x pseudo binary, in the 15% Borates2. Modes near 808 cm-1, 770 cm-1, 740 cm-1 and 705 cm-1 are observed, and identified with breathing modes of pure and mixed rings from characteristic structural groupings2. These preliminary results suggest that glasses at x <24% are in the stressed-rigid phase, in the 24% 30% in the flexible phase. Supported by NSF Grant DMR 08-53957.

  14. Coordination and valence state of transition metal ions in alkali-borate glasses

    NASA Astrophysics Data System (ADS)

    Terczyńska-Madej, A.; Cholewa-Kowalska, K.; Łączka, M.

    2011-10-01

    Borate glasses of the 20R 2O·80B 2O 3 type, where R = Li, Na and K, were colored by doping with transition metal ions (Co, Ni, Cr and Mn). The glasses were obtained by melting at the temperature of 1150 °C. For these glasses optical absorption in UV-VIS-NIR range were recorded. Analysis of the spectra allows to be determined the coordination and oxidation states of the doping transition metal ions. Changes of their coordination or oxidation are presented as a function of the optical basicity Λ after Duffy. Cobalt and nickel are present in examined borate glasses as divalent ions (Co 2+, Ni 2+) in octahedral coordination mainly, but the tetrahedral coordination state of cobalt is also possible. Chromium and manganese are present in the borate glasses in various oxidation state, though Cr 3+ and Mn 3+ ions in the octahedral coordination are probably dominant. A decrease of the electronegativity of the modifiers (Li → Na → K) and an increase of the glass matrix basicity cause a shift of the oxidation/reduction equilibrium towards higher valences of the transition metals (Cr 6+, Mn 3+).

  15. Relationship between Eu3+ reduction and glass polymeric structure in Al2O3-modified borate glasses under air atmosphere

    NASA Astrophysics Data System (ADS)

    Jiao, Qing; Yu, Xue; Xu, Xuhui; Zhou, Dacheng; Qiu, Jianbei

    2013-06-01

    The reduction of Eu3+ to Eu2+ is realized efficiently in Eu2O3-doped borate glasses prepared under air condition by melting-quenching method. Luminescent spectra show an increasing tendency of Eu2+ emission with increasing Al2O3 concentration in B2O3-Na2O glasses. It is interesting that significant enhancement appeared of Eu2+ luminescence in the Al2O3-rich sample comparing to the samples of Al2O3 less than 6 mol%. FTIR and Raman scattering measurements indicated that some new vibration modes assigned to the low-polymerized structure groups decomposed from the slight Al2O3 dopant samples. These results demonstrated that the polymerization of the glass structure decreased with increasing incorporation of Al2O3 into the borate glasses, linking to the efficiency of Eu3+ self-reduction in air at high temperature.

  16. Optical properties of Tm 3+ ions in lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Jayasankar, C. K.; Renuka ^Devi, A.

    1996-09-01

    Optical properties of Tm 3+ ions are investigated in the following lithium borate (LBO) glasses: Li 2CO 3 + H 3BO 3 and MCO 3 + Li 2CO 3 + H 3BO 3 (M = Mg, Ca, Sr and Ba). The assigned energy level data of Tm 3+ (4f 12) in these borate glasses as well as the data that are available for some other systems in the literature are analysed in terms of a parametrized Hamiltonian model that includes 14 free-ion parameters. The absorption linestrengths are measured for Tm 3+:LBO glasses. Using these data, intensity parameters (Ω λ, λ = 2, 4, 6), radiative transition probabilities, radiative lifetimes, fluorescence branching ratios and integrated absorption cross-sections for fluorescent levels of Tm 3+:LBO glasses are calculated by applying Judd-Ofelt theory. The effect of glass network formers and glass modifiers on the optical properties of Tm 3+:glasses are discussed.

  17. A crystallographic guide to the structure of borate glasses

    SciTech Connect

    Wright, A.C.; Vedishcheva, N.M.; Shakhmatkin, B.A.

    1997-12-31

    Borate glasses are an enigma in that there is now increasing evidence that their structures are dominated by superstructural units, which comprise well defined arrangements of the basic BO{sub 3} and BO{sub 4} structural units, with no internal degrees of freedom in the form of variable bond or torsion angles. In the present paper, it is shown that considerable insight into the structure of borate glasses can be gained from a study of the corresponding crystalline polymorphs. A simple, model is proposed to predict the fraction, x{sub 4}, of 4-fold coordinated boron atoms in vitreous borate networks and the topological criteria for the formation of such networks are discussed, taking into account the degrees of freedom necessary for conventional glass formation.

  18. Thermographic investigation of luminescent barium borate glasses for white-LED applications

    NASA Astrophysics Data System (ADS)

    Wagner, Florian; Nolte, Peter W.; Steudel, Franziska; Schweizer, Stefan

    2015-05-01

    A method to analyze the heat generation in luminescent barium borate glasses under continuous optical excitation is presented. The heat development is monitored by infrared thermography. Experimental surface temperature data are used as input for the differential heat equation to evaluate the volumetric heat rate from the spatial and temporal development of the temperature distribution. Having determined the volumetric heat rate in the glass, the heat generation under optical excitation can be estimated without further knowledge of optical parameters. Experiments on barium borate glasses with different doping levels are performed. For comparison, the heat generation is also estimated on the basis of optical parameters only to confirm the accuracy and validity of the presented method via infrared thermography. The experimentally determined total heat generation is in good agreement with those calculated from optical properties.

  19. Strontium borate glass: potential biomaterial for bone regeneration

    PubMed Central

    Pan, H. B.; Zhao, X. L.; Zhang, X.; Zhang, K. B.; Li, L. C.; Li, Z. Y.; Lam, W. M.; Lu, W. W.; Wang, D. P.; Huang, W. H.; Lin, K. L.; Chang, J.

    2010-01-01

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones. PMID:20031984

  20. Broadband copper luminescence in potassium-aluminum borate glasses

    NASA Astrophysics Data System (ADS)

    Nikonorov, N. V.; Sidorov, A. I.; Tsekhomskii, V. A.; Shakhverdov, T. A.

    2013-03-01

    Broadband luminescence in the visible spectral range has been investigated for copper-containing potassium-aluminum borate glasses. It is shown that the luminescence in initial glasses (before their heat treatment) is due to the presence of molecular clusters Cu n ( n < 10) in them. Chemical reactions during heat treatment lead to the formation of Cu n Cl x and Cu n O x clusters with luminescence bands lying in the spectral range of 450-600 nm.

  1. High-temperature relaxation spectra of borate glasses

    SciTech Connect

    Lomovskoi, V.A.; Bartenev, G.M.

    1993-07-01

    A critical analysis of a method for calculating the spectrum characteristics of mechanical relaxation in glass melts is given. The analysis of changes in the spectrum characteristics (in the Kohlrausch function approximation) for B{sub 2}O{sub 3} and sodium borate glasses within a broad temperature and frequency range allows us to ascertain the specific features of these changes due to structural factors.

  2. Impact of vanadium ions in barium borate glass.

    PubMed

    Abdelghany, A M; Hammad, Ahmed H

    2015-02-25

    Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data. PMID:25194319

  3. A comparison of HLW-glass and PWR-borate waste glass

    NASA Astrophysics Data System (ADS)

    Luo, Shanggeng; Sheng, Jiawei; Tang, Baolong

    2001-09-01

    Glass can incorporate a wide variety of wastes ranging from high level wastes (HLW) to low and intermediate level wastes (LILW). A comparison of HLW-Glass and PWR-borate waste glass is given in this paper. The HLW glass formulation named GC-12/9B and 90-19/U can incorporate 16-20 wt% HLW at 1100°C or 1150°C. The borate waste glass named SL-1 can incorporate 45 wt% borate waste generated from PWR. Their physical properties, characteristic temperatures, chemical durability and leach behavior are summarized here. The comparison indicates: the PWR-glass SL-1 can incorporate up to 45 wt% waste oxides at lower melting temperature (1000°C) in agreement with minimum additive waste stabilization (MAWS) approach; owing to the PWR-borate glass contain less Si and more B and Na, its mass loss is higher than HWR-glass; both HLW-glass and PWR-borate glass have favorable chemical durability and the same leaching phenomena, i.e., Na is mostly depleted, but Ca, Mg, Al and Ti are enriched in the leached surface layer.

  4. The leaching behavior of borate waste glass SL-1

    SciTech Connect

    Sheng, J.; Luo, S.; Tang, B.

    1999-11-01

    Vitrification is an attractive approach for treatment of the borate waste from nuclear power plants. SL-1 glass is a suitable borosilicate glass form to solidify the borate waste containing relatively high quantities of B and Na. The leaching behavior of SL-1 glass in deionized water has been investigated. Compared to the HLW-glass, the network structure of SL-1 glass is weak. It was found that the ion-exchange reactions dominated the glass corrosion process with water in low temperature leading conditions. The ion-exchange and network hydrolysis reactions together controlled the glass dissolution in high temperature leaching conditions. There was a peak in leach rate at about 70 C and a valley at about 100 C. The surface layer thickness was about 25 {micro}m. Na was almost totally depleted in the surface layer. At low temperature, the glass corrosion increases with leaching time. The glass corrosion remains about constant with leaching time at 90 C. The surface layer formed at 90 C is protective, which is less porous than the surface layer formed at 40 and 70 C.

  5. The leaching behavior of borate waste glass SL-1

    SciTech Connect

    Sheng, J. ); Luo, S.; Tang, B. )

    1999-01-01

    Vitrification is an attractive approach for treatment of the borate waste from nuclear power plants. SL-1 glass is a suitable borosilicate glass form to solidify the borate waste containing relatively high quantities of B and Na. The leaching behavior of SL-1 glass in deionized water has been investigated. Compared to the HLW-glass, the network structure of SL-1 glass is weak. It was found that the ion-exchange reactions dominated the glass corrosion process with water in low temperature leading conditions. The ion-exchange and network hydrolysis reactions together controlled the glass dissolution in high temperature leaching conditions. There was a peak in leach rate at about 70 C and a valley at about 100 C. The surface layer thickness was about 25 [micro]m. Na was almost totally depleted in the surface layer. At low temperature, the glass corrosion increases with leaching time. The glass corrosion remains about constant with leaching time at 90 C. The surface layer formed at 90 C is protective, which is less porous than the surface layer formed at 40 and 70 C.

  6. FTIR of binary lead borate glass: Structural investigation

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  7. Crystal nucleation in lithium borate glass

    NASA Technical Reports Server (NTRS)

    Smith, Gary L.; Neilson, George F.; Weinberg, Michael C.

    1988-01-01

    Crystal nucleation measurements were made on three lithium borate compositions in the vicinity of Li2O-2Br2O3. All nucleation measurements were performed at 500 C. Certain aspects of the nucleation behavior indicated (tentatively) that it proceeded by a homogeneous mechanism. The steady state nucleation rate was observed to have the largest value when the Li2O concentration was slightly in excess of the diborate composition. The change in nucleation rate with composition is controlled by the variation of viscosity as well as the change in free energy with composition. The variation of nucleation rate is explained qualitatively in these terms.

  8. Optical properties of down-shifting barium borate glass for CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Loos, Sebastian; Steudel, Franziska; Ahrens, Bernd; Schweizer, Stefan

    2015-03-01

    CdTe thin film solar cells have a poor response in the ultraviolet and blue spectral range, mainly due to absorption and thermalization losses in the CdS buffer layer. To overcome this efficiency drop in the short wavelength range trivalent rare-earth doped barium borate glass is investigated for its potential as frequency down-shifting cover glass on top of the cell. The glass is doped with either Tb3+ or Eu3+ up to a level of 2.5 at.% leading to strong absorption in the ultraviolet/blue spectral range. Tb3+ shows intense emission bands in the green spectral range while Eu3+ emits in the orange/red spectral range. Based on rare-earth absorption and luminescence quantum efficiency the possible gain in short-circuit current density is calculated.

  9. Temperature dependence of elastic properties in alkali borate binary glasses

    NASA Astrophysics Data System (ADS)

    Kawashima, Mitsuru; Matsuda, Yu; Kojima, Seiji

    2011-05-01

    The elastic properties of alkali borate glasses, xM 2O·(100 - x)B 2O 3 (M = Li, Na, K, Rb, Cs, x = 14, 28), have been investigated by Brillouin scattering spectroscopy from room temperature up to 1100 °C. Above the glass transition temperature, Tg, the longitudinal sound velocity, VL, decreases markedly on heating. Such significant changes of the elastic properties result from the breakdown of the glass network above Tg. Alkali borate family with the same x shows the similar behavior in the temperature variations of VL up to around Tg. The absorption coefficient, αL, increases gradually above Tg. With the increase of the size of an alkali ion, the slope of VL just above Tg decreases. Since the fragility is related to the slope, the present results suggest that the fragility of alkali borate glasses increases as the size of alkali ion decreases. Such an alkali dependence of the fragility is discussed on the basis of the fluctuation of the boron coordination number.

  10. Visible luminescence of dysprosium ions in oxyhalide lead borate glasses.

    PubMed

    Pisarska, Joanna; Żur, Lidia; Pisarski, Wojciech A

    2011-08-15

    Visible luminescence of Dy(3+) ions in oxyhalide lead borate glasses was examined. Luminescence spectra show two intense bands at 480 nm and 573 nm due to (4)F(9/2)→(6)H(15/2) (blue) and (4)F(9/2)→(6)H(13/2) (yellow) transitions of Dy(3+). Luminescence decays from (4)F(9/2) state and yellow-to-blue luminescence intensity ratios (Y/B) were analysed with PbX(2) (X=F, Cl) content. An introduction of PbX(2) to the borate glass results in the increasing of (4)F(9/2) lifetime and the decreasing of yellow-to-blue luminescence intensity ratio, which is due to reduction of covalency between Dy(3+) and O(2-)/X(-) ions. PMID:21036100

  11. Laser spectroscopy of Nd 3+ and Dy 3+ ions in lead borate glasses

    NASA Astrophysics Data System (ADS)

    Pisarska, Joanna; Pisarski, Wojciech A.; Ryba-Romanowski, Witold

    2010-07-01

    The spectroscopic and laser properties of Nd 3+ and Dy 3+ ions in lead borate glass were studied. Luminescence spectra recorded in the near-infrared and visible ranges correspond to 4F 3/2- 4I J/2 ( J=9, 11, 13) transitions of Nd 3+ and 4F 9/2- 6H J/2 ( J=11, 13, 15) transitions of Dy 3+, respectively. Luminescence decay curves were analyzed as a function of activator concentration. Luminescence quenching is observed, which is due to Ln-Ln interaction increasing. Several spectroscopic parameters relevant to laser potential of Ln 3+ ions (Ln=Nd, Dy) in lead borate glass were determined. The relatively large values of the quantum efficiency and the room-temperature emission cross-section for the 4F 3/2- 4I 11/2 transition of Nd 3+ at 1061 nm and the 4F 9/2- 6H 13/2 transition of Dy 3+ at 573 nm imply that Ln-doped lead borate glasses can be considered as promising solid-state materials for laser applications.

  12. Effect of copper oxide on structure and physical properties of lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Kashif, I.; Ratep, A.

    2015-09-01

    Copper-doped Lead lithium borate glass samples with the composition of (35- x) Pb3O4- xCuO-65Li2B4O7, where x = 5, 10, 15 or 20 mol%, have been prepared by melt quenching technique. Glass-forming ability, density, electrical conductivity, magnetic susceptibility and structural properties of lead lithium borate glasses have been investigated. IR spectroscopic data show that the copper ions play the role of glass modifier. Addition of CuO influences BO3 ↔ BO4 conversion. Density is expressed in terms of the structural modifications that take place in glass matrix. The increase in Tg reflects an increase in bond strength, and samples obtain more rigid glass structure. Electrical conductivity and magnetic susceptibility χ data show a variable behavior with the increase in the copper content in two valance states Cu+ and Cu+2. In addition, optical properties depend on the change of the role of copper ions in the samples' structure. Optical energy band gap E opt and Urbach energy E tail are determined. The increase in E opt and UV cutoff with an increase in CuO content is due to the decrease in non-bridging oxygen concentration. The decrease in E tail at higher concentrations is attributed to the copper ion accumulation in the interstitial positions and to the formation of orthoborate groups. These samples are suitable for the green light longpass filters.

  13. Wavelength interdependence assessment of all-optical switching in zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Abdel-Baki, Manal; Abdel-Wahab, Fathy; El-Diasty, Fouad

    2012-08-01

    Lithium tungsten borate photonic glass is prepared by the conventional melt-quench technique. Due to semiconductor-like behavior of zinc oxide, the glass is doped by ZnO to adapt its optical nonlinearity. Fresnel-based spectrophotometric measurements and Lorentz dispersion theory are applied to study (in a very wide range of photon energy from 0.5 to 6.2 eV) the dispersion of second-order refractive index, two-photon absorption coefficient, and third-order optical susceptibility of the glass. The figure of merit (FOM) needed for optical switching applications is estimated. We reveal the importance of determining the dispersion of the optical nonlinear parameters to find out the appropriate operating wavelength for optimum FOM of the glass.

  14. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system

    NASA Astrophysics Data System (ADS)

    Kashif, Ismail; Soliman, Ashia A.; Sakr, Elham M.; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7sbnd 10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made.

  15. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    PubMed

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. PMID:23708372

  16. Photoluminescence of a Te4+ center in zinc borate glass.

    PubMed

    Masai, Hirokazu; Yamada, Yasuhiro; Okumura, Shun; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-10-01

    Photoluminescent (PL) properties related to Te(4+) species in zinc borate glasses are examined. Broad emission was observed by the excitation of the PL excitation peak of Te(4+) present at the optical absorption edge. The emission intensity of Te(4+) in 5TeO(2)-50ZnO-45B(2)O(3) glass was thermally quenched in a temperature region over 100 K, suggesting that concentration quenching preferentially occurred. The lifetime of the emission was approximately 2.5 μs, which is characteristic of relaxation from the triplet excitation state of an ns(2)-type center. PMID:24081051

  17. Structural and optical properties of Nd3+ in lithium fluoro-borate glass with relevant modifier oxides

    NASA Astrophysics Data System (ADS)

    Balakrishna, A.; Rajesh, D.; Ratnakaram, Y. C.

    2013-10-01

    Modifier oxides (MgO, CaO, CdO and PbO) based Nd3+ doped lithium fluoro-borate glasses were prepared by using the conventional melt quenching technique. The structural and optical properties of all lithium fluoro-borate glasses were characterized by means of X-ray diffraction and SEM analysis (structural), optical absorption, near infrared luminescence and lifetime decay measurements(optical). Broad XRD spectra and smooth surface of SEM image analysis reveals that these glasses have amorphous nature. Judd-Ofelt intensity parameters were calculated and used to explain the structural properties and to determine the radiative properties (radiative transition probabilities, branching ratios and radiative lifetimes) of efficient meta stable states. By pumping with diode laser excitation source at 805 nm, a broader NIR emission transition, 4F3/2 → 4I11/2 was observed. This transition possesses large stimulated emission cross-section (σp) and branching ratio (β) values. These values are compared with another Nd3+ doped glass. The decay from the 4F3|2 level is found to be bi-exponential. The 4F3/2 level gives the highest quantum efficiency for all Nd3+ doped lithium fluoro-borate glasses. It indicates the efficient laser emission at 1.06 μm.

  18. Third order nonlinear optical properties of bismuth zinc borate glasses

    SciTech Connect

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.; Kuladeep, R.; Narayana Rao, D.

    2013-12-28

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due to dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.

  19. Raman and Infrared Spectroscopy of Yttrium Aluminum Borate Glasses and Glass-ceramics

    NASA Technical Reports Server (NTRS)

    Bradley, J.; Brooks, M.; Crenshaw, T.; Morris, A.; Chattopadhyay, K.; Morgan, S.

    1998-01-01

    Raman spectra of glasses and glass-ceramics in the Y2O3-Al2O3-B2O3 system are reported. Glasses with B2O3 contents ranging from 40 to 60 mole percent were prepared by melting 20 g of the appropriate oxide or carbonate powders in alumina crucibles at 1400 C for 45 minutes. Subsequent heat treatments of the glasses at temperatures ranging from 600 to 800 C were performed in order to induce nucleation and crystallization. It was found that Na2CO3 added to the melt served as a nucleating agent and resulted in uniform bulk crystallization. The Raman spectra of the glasses are interpreted primarily in terms of vibrations of boron - oxygen structural groups. Comparison of the Raman spectra of the glass-ceramic samples with spectra of aluminate and borate crystalline materials reveal that these glasses crystallize primarily as yttrium aluminum borate, YAl3(BO3)4.

  20. Conductivity and dielectric relaxation in niobium alkali borate glasses

    NASA Astrophysics Data System (ADS)

    Sanghi, Sujata; Sheoran, Anshu; Agarwal, Ashish; Khasa, Satish

    2010-12-01

    The frequency and temperature dependent conductivity investigations for alkali niobium borate glasses of composition xNb 2O 5·(30- x)M 2O·70B 2O 3 (where M=Li, Na; x=0, 4, 8 mol%) have been carried out using impedance spectroscopy (IS). The complex impedance data have been analyzed by using both the conductivity and the electric modulus formalisms. The conductivity decreases with the decrease in M 2O:Nb 2O 5 ratio. The effect of temperature on the scaling of dielectric modulus indicates that the conductivity relaxation mechanism is temperature independent. The overlapping of the normalized peaks corresponding to impedance and electric modulus and the identical values of thermal activation energy for conduction and relaxation suggest the single mechanism for the dynamic processes occurring in the present glasses. The variation of density, molar volume and glass transition temperature with glass composition has also been reported to supplement the conductivity results.

  1. Faraday effect of sodium borate glasses containing divalent europium ions

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsuhisa; Fujita, Koji; Soga, Naohiro; Qiu, Jianrong; Hirao, Kazuyuki

    1997-07-01

    Faraday effect measurements have been carried out at room temperature for some sodium borate glasses containing Eu2+ ions prepared under a reducing atmosphere. The wavelength dependence of the Verdet constant is analyzed in terms of a theory derived by Van Vleck and Hebb to obtain effective transition wavelength of the 4f7→4f65d transition which causes the Faraday effect of Eu2+ in the visible range. The effective transition wavelength increases with an increase in the optical basicity of glass. This phenomenon is explained in terms of the crystal field theory; because the splitting of 5d levels is larger in the glass with larger optical basicity, the energy required for the 4f7→4f65d transition decreases as the optical basicity of glass increases. The magnitude of Verdet constant increases with an increase in the effective transition wavelength when the concentration of EuO remains constant.

  2. Optical and FT Infrared spectral studies of vanadium ions in cadmium borate glass and effects of gamma irradiation.

    PubMed

    AbdelAziz, T D; EzzElDin, F M; El Batal, H A; Abdelghany, A M

    2014-10-15

    Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8×10(4) Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe(3+)). The V2O5-doped glasses reveal an extra band at 380nm and the high V2O5-content glass also shows a further band at about 420nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d(0) configuration). The surplus band at 420nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe(3+) ions by photochemical reactions with the presence of high content (45mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO. PMID:24840491

  3. Reaction of sodium calcium borate glasses to form hydroxyapatite.

    PubMed

    Han, Xue; Day, Delbert E

    2007-09-01

    This study investigated the transformation of two sodium calcium borate glasses to hydroxyapatite (HA). The chemical reaction was between either 1CaO . 2Na(2)O . 6B(2)O(3) or 2CaO . 2Na(2)O . 6B(2)O(3) glass and a 0.25 M phosphate (K(2)HPO(4)) solution at 37, 75 and 200 degrees C. Glass samples in the form of irregular particles (125-180 microm) and microspheres (45-90 and 125-180 microm) were used in order to understand the reaction mechanism. The effect of glass composition (calcium content) on the weight loss rate and reaction temperature on crystal size, crystallinity and grain shape of the reaction products were studied. Carbonated HA was made by dissolving an appropriate amount of carbonate (K(2)CO(3)) in the 0.25 M phosphate solution. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy were used to characterize the reaction products. The results show that sodium calcium borate glasses can be transformed to HA by reacting with a phosphate solution. It is essentially a process of dissolution of glass and precipitation of HA. The transformation begins from an amorphous state to calcium-deficient HA without changing the size and shape of the original glass sample. Glass with a lower calcium content (1CaO . 2Na(2)O . 6B(2)O(3)), or reacted at an elevated temperature (75 degrees C), has a higher reaction rate. The HA crystal size increases and grain shape changes from spheroidal to cylindrical as temperature increases from 37 to 200 degrees C. Increase in carbonate concentration can also decrease the crystal size and yield a more needle-like grain shape. PMID:17486301

  4. Structure-property relations in lanthanide borate glasses

    NASA Technical Reports Server (NTRS)

    Chakraborty, I. N.; Day, D. E.; Lapp, J. C.; Shelby, J. E.

    1985-01-01

    Glass formation in the system Ln2O3-B2O3 (Ln = Nd, Sm) was studied. Glasses could be formed in the range from 0 to 28 mol pct rare-earth oxide (Ln2O3), but liquid immiscibility in these systems limits the range of homogeneous glasses to 0 to 1.5 and 25 to 28 mol pct Ln2O3. The infrared spectra indicate that the rare-earth-rich glasses are structurally similar to rare-earth metaborates (LnB3O6) which contain (B3O6)-infinity chains. The variation in density, transformation temperature, thermal expansion coefficient, and transformation-range viscosity of these glasses with the size of the rare-earth ion is discussed. Glasses near the metaborate composition have a transformation temperature of about 700 C, which is high for binary borate glasses. Glasses could not be formed in the systems Eu2O3-, Gd2O3-, Ho2O3-, and Er2O3-B2O3, even by quenching at 1300 C/s. The sudden lack of glass formation in the system Ln2O3-B2O3 with Ln(3+) ions smaller than Sm(3+) is explained on the basis of the size effect of the Ln(3+) ion on the stability of (B3O6)-infinity chains in these metaborates.

  5. Formation and control of Au and Ag nanoparticles inside borate glasses using femtosecond laser and heat treatment

    NASA Astrophysics Data System (ADS)

    Shin, Jongho; Jang, Kyungsik; Lim, Ki-Soo; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Jongmin

    2008-12-01

    We report the spectroscopic properties of femtosecond laser-irradiated sodium-alumino-borate glass doped with silver and gold ions. We precipitated gold and silver nanoparticles by laser irradiation and annealing at 400°C for 30 min. The irradiation and annealing treatment produced different absorption and emission characteristics in Au3+ doped and Au3+, Ag+ codoped glasses, and the possible mechanisms of the observed results are discussed. The size of the nanoparticles was estimated by TEM and absorption band analysis.

  6. Luminescence properties of Sm{sup 3+} impurities in strontium lithium bismuth borate glasses

    SciTech Connect

    Rajesh, D.; Ratnakaram, Y. C.; Seshadri, M.; Balakrishna, A.

    2012-06-05

    In the present work, different concentrations of Sm{sup 3+}-doped strontium lithium bismuth borate glasses (SLBiB) were prepared by melt quench technique. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Using the J-O intensity parameters, emission and decay measurements various radiative properties are studied. The nature of decay curves of {sup 4}G{sub 5/2} level for different Sm{sup 3+} ion concentrations in SLBiB glasses has been analyzed. The intensities of observed emission peaks and measured lifetimes decrease with the increase of Sm{sup 3+} ion concentration which may be due to energy transfer between excited Sm{sup 3+} ions through cross-relaxations and resonant energy channels.

  7. Relationship between Eu{sup 3+} reduction and glass polymeric structure in Al{sub 2}O{sub 3}-modified borate glasses under air atmosphere

    SciTech Connect

    Jiao, Qing; Yu, Xue; Xu, Xuhui; Zhou, Dacheng; Qiu, Jianbei

    2013-06-15

    The reduction of Eu{sup 3+} to Eu{sup 2+} is realized efficiently in Eu{sub 2}O{sub 3}-doped borate glasses prepared under air condition by melting-quenching method. Luminescent spectra show an increasing tendency of Eu{sup 2+} emission with increasing Al{sub 2}O{sub 3} concentration in B{sub 2}O{sub 3}–Na{sub 2}O glasses. It is interesting that significant enhancement appeared of Eu{sup 2+} luminescence in the Al{sub 2}O{sub 3}-rich sample comparing to the samples of Al{sub 2}O{sub 3} less than 6 mol%. FTIR and Raman scattering measurements indicated that some new vibration modes assigned to the low-polymerized structure groups decomposed from the slight Al{sub 2}O{sub 3} dopant samples. These results demonstrated that the polymerization of the glass structure decreased with increasing incorporation of Al{sub 2}O{sub 3} into the borate glasses, linking to the efficiency of Eu{sup 3+} self-reduction in air at high temperature. - graphical abstract: A novel europium valence reduction phenomenon occurred in Al{sub 2}O{sub 3} modified borate glasses, FTIR and Raman measurements revealed that high polymeric groups were destroyed to low polymery structures with Al{sub 2}O{sub 3} addition. - Highlights: • The efficient reduction of Eu{sup 3+} to Eu{sup 2+} is observed in the B{sub 2}O{sub 3}–Na{sub 2}O glasses. • Eu{sup 2+} luminescence is significant enhanced in the Al{sub 2}O{sub 3}-rich glasses. • The introduction of Al{sub 2}O{sub 3} changed the network structure of the borate glasses. • High polymeric borate groups in the glass matrix may be destroyed to the lower ones.

  8. Optical constants, single-oscillator modal and refractive index dispersion analysis of lithium zinc bismuth borate glasses doped with Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Boda, Ramesh; Srinivas, G.; Komaraiah, D.; Srinivas, B.; Shareefuddin, Md.; Sayanna, R.

    2016-05-01

    The glasses of composition xLi2O-15ZnO- 20Bi2O3- (64 - x) B2O3- 1EuO (ZLB) (where x=0, 5, 10, 15, 20 mole %) prepared by melt-quenching technique. The amorphous nature of the prepared glasses was confirmed by XRD spectra. The UV-Vis optical absorption spectrum was recorded in the wave length range of 200-1000 nm. It is observed that the optical band gap is inversely changing with Urbach energy. The optical constants such as G (a constant proportional to the second-order deformation potential) and Ef (a constant that depends on local coordination and is called as free energy of the glass system). The most significant result of the present work is the refractive index dispersion curves of the ZLB glasses obey the single-oscillator model and oscillator parameters (Eo, Ed) changed with the Li2O content. the absorption edge, band gap and Urbach energy is changing nonlinearly with increasing content of Li2O, which can be used to calculate the optical, physical, and other constants.

  9. Luminescence, structural and dielectric properties of Sm3+ impurities in strontium lithium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2012-12-01

    In the present work, different concentrations of Sm3+doped strontium lithium bismuth borate glasses (SLBiB) have been prepared by melt quench technique and investigated their optical, structural and dielectric properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. The spectroscopic properties of these glasses were investigated by recording optical absorption, photoluminescence and decay curve analysis. Judd-Ofelt (J-O) theory has been applied for the f ↔ f transitions of Sm3+ ions to evaluate J-O intensity parameters, Ωλ (λ = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (AR), calculated branching ratios (β) and radiative lifetimes (τ) are estimated. From the emission spectra, effective bandwidths (Δλeff) and stimulated emission cross-sections (σp) have been obtained for observed emission levels. From the emission spectra, a strong reddish-orange emission corresponding to the transition, 4G5/2 → 6H7/2 was observed. The nature of decay curves of 4G5/2 level for different Sm3+concentrations in SLBiB glass has been analyzed. FTIR spectra were recorded to analyze the functional groups present in the glass matrix. From the dielectric properties, variation of dielectric constant, dielectric loss and ac conductivity of Sm3+ doped different glass samples with the variation of frequency was studied.

  10. Synthesis and studies on microhardness of alkali zinc borate glasses

    SciTech Connect

    Subhashini, Bhattacharya, Soumalya Shashikala, H. D. Udayashankar, N. K.

    2014-04-24

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi{sub 2}O+yNa{sub 2}O+80B{sub 2}O{sub 3} (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li{sub 2}O and Na{sub 2}O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributed to the conversion of tetrahedral boron (BO{sub 4/2}){sup −} into (BO{sub 3/2}){sup −}. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.

  11. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.

    PubMed

    Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. PMID:26117744

  12. Molecular dynamics simulation of alkali borate glass using coordination dependent potential

    SciTech Connect

    Park, B.; Cormack, A.N.

    1997-12-31

    The structure of sodium borate glass was investigated by molecular dynamics simulation using coordination dependent potential model. The simulated alkali borate glass consists of basic units, BO{sub 3} triangle, BO{sub 4} tetrahedra and structural groups such as boroxol ring and triborate units. The coordination of boron is converted from 3 to 4 by adding alkali oxide.

  13. Borates

    USGS Publications Warehouse

    Crangle, R.D., Jr.

    2013-01-01

    Four minerals represent 90 percent of the borates used by industry worldwide — the sodium borates (tincal and kernite), calcium borate (colemanite) and the sodium-calcium borate (ulexite). Borax is a white crystalline substance, chemically known as sodium tetraborate decahydrate, and is found naturally as the mineral tincal. Boric acid is a colorless crystalline solid sold in technical, national formulary and special quality grades as granules or powder and marketed most often as anhydrous boric acid. Deposits of borates are associated with volcanic activity and arid climates, with the largest economically viable deposits located in the Mojave Desert of the United States near Boron, CA, the Alpide belt in southern Asia and the Andean belt of South America.

  14. Effect of TiO2 on electron paramagnetic resonance, optical transmission and dc conductivity of vanadyl doped sodium borate glasses.

    PubMed

    Agarwal, A; Seth, V P; Gahlot, P; Goyal, D R; Arora, M; Gupta, S K

    2004-11-01

    Glass systems with composition xTiO2.(30 - x)Na2O.70B2O3 (series I) and xTiO2.(70 - x)B2O3.30Na2O (series II) containing 2 mol% V2O5 have been prepared (0 < or = x < or = 7, mol%) by normal melt-quenching. The electron paramagnetic resonance (EPR) spectra of VO2+ ions have been recorded in the X-band (approximately 9.13 GHz) at room temperature. Spin Hamiltonian parameters, gparallel, gperpendicular, Aparallel, Aperpendicular, the dipolar hyperfine coupling parameter (P) and the Fermi contact interaction parameter (K) have been calculated. The increase in Deltagparallel/Deltagperpendicular with increase in TiO2 content in series I shows that the octahedral symmetry of V4+O6 complex is reduced, whereas in series II the octahedral symmetry is improved with increase in x. The decrease in P, in both the series, indicates that the 3dxy orbit expands with increase in mol% of TiO2. The molecular orbital coefficients, alpha2 and gamma2 have been calculated by recording the optical transmission spectra in the range 500-850 nm. alpha2 and gamma2 increase with increase in x in both the series, which indicates that, the covalency of the vanadium oxygen bonds decreases. The dc conductivity sigma, decreases and activation energy, W increases with increase in TiO2:Na2O ratio whereas with increase in TiO2:B2O3 ratio the variation in sigma and W is within experimental error. PMID:15477159

  15. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  16. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  17. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  18. On the Elastic behavior of Sodium Borate Glasses

    NASA Astrophysics Data System (ADS)

    Vignarooban, K.; Boolchand, P.; Kerner, R.; Micoulaut, M.

    2010-03-01

    Alkali Borates are industrial glasses and their physical properties are of general interest. We have made a special effort to synthesize dry (Na2O)x(B2O3)100-x glasses over a wide composition range, 0 < x < 70%, and have examined them in modulated-DSC, Raman scattering, FTIR, and molar volume experiments. The enthalpy of relaxation at Tg shows a global minimum in the 20% < x < 40% range, which we identify with the rigid but stress-free Intermediate Phase (IP). The Boroxyl ring vibrational mode near 808 cm-1 in B2O3, steadily softens by about 4 cm-1 as the soda content increases to about 20%. A vibrational mode of mixed ringsfootnotetextKamitsos et al., Jour. Mol. Struct 247, 1 (1996). (containing 3-fold and 4-fold B) is also observed near 775 cm-1 at low x, and it also steadily softens by nearly 10 cm-1 as x increases in the 20% < x < 40% soda range (IP). We are examining the underlying optical elasticity power-laws to ascertain the nature of the elastic phases. IR reflectance experiments provide the 4-fold coordinated B fraction to increase from 0.17 near x = 20% to 0.44 near x = 40% in broad agreement with NMR results. Evolution of physical properties of these glasses with soda content will be reviewed.

  19. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass

    NASA Astrophysics Data System (ADS)

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-12-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors.

  20. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass

    PubMed Central

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  1. Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass.

    PubMed

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns(2)-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn(2+)-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  2. Raman Spectra of Yttrium Aluminum Borate Glasses and Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Bradley, Juronica; Brooks, Montel; Crenshaw, Tiffany; Morris, Ayesha; Morgan, Steven

    1997-11-01

    Raman spectra of glasses and glass-ceramics in the Y_2O_3-Al_2O_3-B_2O3 system are reported. Glasses with B_2O3 contents ranging from 40 to 60 mole percent were prepared by melting 20 g of the appropriate oxide or carbonate powders in alumina crucibles at 1400^oC for 45 minutes. Subsequent heat treatments of the glasses at temperatures ranging from 600 to 700^oC were performed in order to induce nucleation and crystallization. It was found that Na_2CO3 added to the melt served as a nucleating agent and resulted in uniform bulk crystallization. The Raman spectra of the glasses are interpreted primarily in terms of vibrations of boron - oxygen structural groups. Comparison of the Raman spectra of the glass-ceramic samples with spectra of aluminate and borate crystalline materials reveal that these glasses crystallize primarily as yttrium aluminum borate, YAl_3(BO_3)_4.

  3. Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids.

    PubMed

    Mauro, John C; Gupta, Prabhat K; Loucks, Roger J

    2009-06-21

    Glass transition temperature and fragility are two important properties derived from the temperature dependence of the shear viscosity of glass-forming melts. While direct calculation of these properties from atomistic simulations is currently infeasible, we have developed a new topological modeling approach that enables accurate prediction of the scaling of both glass transition temperature and fragility with composition. A key feature of our approach is the incorporation of temperature-dependent constraints that become rigid as a liquid is cooled. Using this approach, we derive analytical expressions for the composition (x) dependence of glass transition temperature, T(g)(x), and fragility, m(x), in binary alkali borate systems. Results for sodium borate and lithium borate systems are in agreement with published values of T(g)(x) and m(x). Our modeling approach reveals a natural explanation for the presence of the constant T(g) regime observed in alkali borate systems. PMID:19548735

  4. Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Gupta, Prabhat K.; Loucks, Roger J.

    2009-06-01

    Glass transition temperature and fragility are two important properties derived from the temperature dependence of the shear viscosity of glass-forming melts. While direct calculation of these properties from atomistic simulations is currently infeasible, we have developed a new topological modeling approach that enables accurate prediction of the scaling of both glass transition temperature and fragility with composition. A key feature of our approach is the incorporation of temperature-dependent constraints that become rigid as a liquid is cooled. Using this approach, we derive analytical expressions for the composition (x) dependence of glass transition temperature, Tg(x), and fragility, m(x ), in binary alkali borate systems. Results for sodium borate and lithium borate systems are in agreement with published values of Tg(x) and m(x ). Our modeling approach reveals a natural explanation for the presence of the constant Tg regime observed in alkali borate systems.

  5. Composition-structure-properties relationship of strontium borate glasses for medical applications.

    PubMed

    Hasan, Muhammad S; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-07-01

    We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable. PMID:25366812

  6. Interpretation of IR spectra for lithium and sodium borate glasses

    SciTech Connect

    Chekhovskii, V.G.

    1994-05-01

    In the boron-oxygen groupings of crystalline and vitreous borates, such as triborate, tetraborate, and pentaborate, where B{sup III}-O(B{sup III}) and B{sup III}-O(B{sup IV}) bonds are present at the same time, one may arbitrarily single out groups of atoms with such bonds, similar to pyroborate and chain metaborate groupings in terms of structure and in the predominant localization of vibrations. From an analysis of what is known about the origin of bands in the IR spectra of the glasses investigated over the entire range of their compositions, may attribute the 1150-1300 cm{sup -1} bands mainly to the stretching vibrations of atoms in groups with B{sup III}-O(B{sup III}) bonds and, in glasses low in B{sub 2}O{sub 3}, also in BO{sup 3-}{sub 3} groups; in the 1300-1500 cm{sup -1} range, this holds for groups with B{sup III}-O(B{sup IV}) and/or B{sup III}-O{sup -} bonds.

  7. The effect of europium oxide impurity on the optical and physical properties of lithium potassium borate glass

    NASA Astrophysics Data System (ADS)

    Maqableh, M. M. A.; Hashim, S.; Alajerami, Y. S. M.; Mhareb, M. H. A.; Dawwud, R. S.; Saidu, A.

    2014-07-01

    The most hosts that is utilized in scientific application is borate glass. By using melt-quenching technique, five samples of lithium potassium borate (LKB) doped with different concentration of europium oxide (Eu2O3) were prepared. To investigate the influence of dopant on the optical and physical characteristics of the proposed glass, two methods have been applied (XRD, PL). The amorphous nature was confirmed by X-ray diffraction (XRD). The physical parameters of the glass matrix doped by different oxidation state have been analyzed, these parameters are density, molar volume, ion concentration, inter-nuclear distance, and polaron radius. The exchange in the concentration of Eu3+ indicated the influence of Eu as a dopant on the photoluminescence (PL) emission of LKB glasses. The emission spectrum of LKB:Eu3+ show a chain of emission bands, which are attributed to 5 D 0-7 F r ( r = 1-4) transition of Eu3+. The luminescence studies showed four peaks 590 (yellow), 613 (orange), 650 (red), and 698 nm (red) for all samples except sample 0, the high luminescence efficiency is in emitting orange light at 613 nm.

  8. Antiquenching effect of modifying cations on samarium clustering: Physical, structural and luminescent behavior of heavy metal borate glass systems

    NASA Astrophysics Data System (ADS)

    Kaur, Simranpreet; Kaur, Parvinder; Pal Singh, Gurinder; Kumar, Sunil; Singh, D. P.

    2015-09-01

    In this paper an attempt has been made to correlate the structural modifications and luminescence efficiencies by changing the environment of the glass network by modifying oxides. Sm3+ doped lead borate (SPB) and lead cadmium alumino borate (SCPB) glasses have been fabricated by melt quench technique at high temperature. The glass samples are characterized by XRD, FTIR, optical absorptions, fluorescence and density measurements. The effect of Sm3+ ion and glass host interaction on the emission spectra has been discussed in the view of the ionicity and covalency of hosts. The ratio of the intensities of electric to magnetic dipole emissions are calculated by varying both the concentration of the Sm3+ ion and the composition of the glass matrix. The XRD profile of all the glasses confirms their amorphous nature and FTIR spectrum shows the presence of BO3 and BO4 groups. These glasses have shown strong absorption bands in the visible (VIS and NIR) region and emit strong orange red wavelengths when excited by ultraviolet light. The concentration quenching has been noticed and ascribed to energy transfer through cross-relaxation between Sm3+ ions. Shifting of UV absorption edge towards longer wavelength with addition of Sm2O3 concentration has been observed. Incorporation of Al2O3 and CdO in 2nd glass system is responsible for strong effect on luminescence of the present glass system. Based on these results, an attempt has been made to throw some light on the relationship between the structural modifications and luminescence efficiencies in two different glass hosts as a laser active medium in the visible region. Moreover the optical basicity values were theoretically determined along with covalent behavior of two glass systems.

  9. Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.

    PubMed

    Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P

    2015-03-01

    Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. PMID:25605593

  10. Effects of copper on the preparation and characterization of Na-Ca-P borate glasses

    NASA Astrophysics Data System (ADS)

    Shailajha, S.; Geetha, K.; Vasantharani, P.; Sheik Abdul Kadhar, S. P.

    2015-03-01

    Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200 °C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81 eV to 2.99 eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM.

  11. Novel method for early investigation of bioactivity in different borate bio-glasses

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  12. EPR and optical absorption studies of Cu{sup 2+} ions in alkaline earth alumino borate glasses

    SciTech Connect

    Ramesh Kumar, V.; Rao, J.L. . E-mail: jlrao46@yahoo.co.in; Gopal, N.O.

    2005-08-11

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in alkaline earth alumino borate glasses doped with different concentrations of CuO have been studied. The EPR spectra of all the glasses exhibit the resonance signals, characteristic of Cu{sup 2+} ions present in axially elongated octahedral sites. The number of spins participating in the resonance has been calculated as a function of temperature for calcium alumino borate (CaAB) glass doped with 0.1 mol% of CuO. From the EPR data, the paramagnetic susceptibility ({chi}) was calculated at different temperatures (T) and from the 1/{chi}-T graph, the Curie temperature of the glass has been evaluated. The optical absorption spectra of all the glasses show a single broad band, which has been assigned to the {sup 2}B{sub 1g} {yields} {sup 2}B{sub 2g} transition of the Cu{sup 2+} ions. The variation in the intensity of optical absorption with the ionic radius of the alkaline earth ion has been explained based on the Coulombic forces. By correlating the EPR and optical absorption spectral data, the nature of the in-plane {sigma} bonding between Cu{sup 2+} ion and the ligands is estimated. From the fundamental ultraviolet absorption edges of the glasses, the optical energy gap (E {sub opt}) and the Urbach energy ({delta}E) are evaluated. The variation in E {sub opt} and {delta}E is explained based on the number of defect centers in the glass.

  13. Factors affecting optical dispersion in borate glass systems

    NASA Astrophysics Data System (ADS)

    Abdel-Baki, Manal; Abdel-Wahab, F. A.; Radi, Amr; El-Diasty, Fouad

    2007-08-01

    Series of ternary glass systems namely, Na2O, B2O3, and RO (R=Ba or Mg) doped with TiO2 are synthesized. The present glasses are dictated by requirement for a small refractive index and a small nonlinear coefficient needed for waveguide and laser fabrication requirements. The effect of MgO and BaO as alkaline earth metals on the optical properties of the glass systems is investigated. The dependence of the refractive index and extinction coefficient dispersion curves on composition is carried out over a wavelength range of 0.3 2.5μm. Applying a genetic algorithm technique, the parameters of Sellmeier dispersion formula that fit index data to accuracy consistent well with the measurements are given. The zero material dispersion-wavelength (ZMDW) and group velocity are also determined using the refractive index data. The Fermi level is calculated exploiting the extinction coefficient dispersion curves. The absorption coefficient, both direct and indirect optical energy gaps, and Urbach energy are evaluated using the absorption edge calculations. The different factors that play a role for controlling the refractive indices such as coordination number, electronic polarizability, field strength of cations, bridging and nonbridging oxygen, and optical basicity are discussed in accordance with the obtained index data. IR spectroscopy is used as a structural probe of the nearest-neighbor environment in the glass network.

  14. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model.

    PubMed

    Bi, Lianxiang; Rahaman, Mohamed N; Day, Delbert E; Brown, Zackary; Samujh, Christopher; Liu, Xin; Mohammadkhah, Ali; Dusevich, Vladimir; Eick, J David; Bonewald, Lynda F

    2013-08-01

    Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250-300μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair. PMID:23643606

  15. The preparation and characterization of a lithium borate glass prepared by the gel technique

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Neilson, G. F.; Smith, G. L.; Dunn, B.; Moore, G. S.; Mackenzie, J. D.

    1985-01-01

    The preparation of an amorphous lithium borate gel by the metal organic procedure is described. In addition, a preliminary evaluation of the behavior of the gel upon heating is given. In particular the crystallization tendency of the gel is studied with the aid of DTA and X-ray diffraction, and the structural changes in the gel are monitored with the aid of IR spectroscopy. The glass produced from the lithium borate gel is compared to both the gel precursor material and a glass of similar composition prepared by conventional techniques. Specifically, the relevant water contents, crystallization behavior, and structural features are contrasted.

  16. Heat capacity, glass transition temperature, size of cooperatively rearranging regions, and network connectivity of sodium silicate and alkali borate glasses

    SciTech Connect

    Borisova, N.V.; Ushakov, V.M.; Shultz, M.M.

    1994-07-01

    The radius of cooperatively rearranging domains at the glass transition in sodium silicate glasses and the number of bridging oxygen atoms in these domains are assessed within the framework of the kinetic theory of thermal fluctuations. The tendencies of the heat capacity, T{sub g}, and the cooperative rearrangement scale with the alkali oxide concentration in sodium silicate and alkali borate glasses are compared. The points of similarity and distinctions between them are revealed.

  17. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    SciTech Connect

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-05-09

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg.

  18. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass.

    PubMed

    Luo, Shi-Hua; Xiao, Wei; Wei, Xiao-Juan; Jia, Wei-Tao; Zhang, Chang-Qing; Huang, Wen-Hai; Jin, Dong-Xu; Rahaman, Mohamed N; Day, Delbert E

    2010-11-01

    The cytotoxicity of silver-containing borate bioactive glass was evaluated in vitro from the response of osteoblastic and fibroblastic cells in media containing the dissolution products of the glass. Glass frits containing 0-2 weight percent (wt %) Ag were prepared by a conventional melting and quenching process. The amount of Ag dissolved from the glass into a simulated body fluid (SBF), measured using atomic emission spectroscopy, increased rapidly within the first 48 h, but slowed considerably at longer times. Structural and microchemical analysis showed that the formation of a hydroxyapatite-like layer on the glass surface within 14 days of immersion in the SBF. The response of MC3T3-E1 and L929 cells to the dissolution products of the glass was evaluated using SEM observation of cell morphology, and assays of MTT hydrolysis, lactate dehydrogenase release, and alkaline phosphatase activity after incubation for up to 48 h. Cytotoxic effects were found for the borate glass containing 2 wt % Ag, but not for 0.75 and 1 wt % Ag. This borate glass containing up to ∼1 wt % Ag could provide a coating material for bacterial inhibition and enhanced bioactivity of orthopaedic implant materials such as titanium. PMID:20878930

  19. Radiation damage of alkali borate glasses for application in safe nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Baccaro, S.; Catallo, N.; Cemmi, A.; Sharma, G.

    2011-01-01

    The Electron Paramagnetic Resonance technique has been used to study the time decay of paramagnetic species induced by gamma irradiation and the radiation hardness of different alkali borate glasses for their application in safe nuclear waste disposal. Glasses with different composition have been prepared by conventional melt-quenching. Glass compositions have been chosen to elucidate the role of different alkali cations and of aluminium oxide on the borate glass network. The paramagnetic states detected in these glasses have been attributed, according to the literature, to the formation of hole centers associated with threefold coordinated boron. The results indicate that the time decay trend of the different glasses is slow and that the constant decay does not appear related to the chemical composition. Moreover, the undesired strong fading of the radiation-induced signal during the first 24 h after irradiation, observable in silicate glasses has not been detected. Although no species detectable by a X band spectrometer have been generated, the interaction of lithium borate glasses with air seem to accelerate the system decay rate. Annealing was finally performed and optimized, investigating the correlation between the chemical composition and the radiation damage recovery.

  20. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.

    PubMed

    Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

    2014-01-01

    Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation. PMID:23241965

  1. Effects of borate-based bioactive glass on neuron viability and neurite extension.

    PubMed

    Marquardt, Laura M; Day, Delbert; Sakiyama-Elbert, Shelly E; Harkins, Amy B

    2014-08-01

    Bioactive glasses have recently been shown to promote regeneration of soft tissues by positively influencing tissue remodeling during wound healing. We were interested to determine whether bioactive glasses have the potential for use in the treatment of peripheral nerve injury. In these experiments, degradable bioactive borate glass was fabricated into rods and microfibers. To study the compatibility with neurons, embryonic chick dorsal root ganglia (DRG) were cultured with different forms of bioactive borate glass. Cell viability was measured with no media exchange (static condition) or routine media exchange (transient condition). Neurite extension was measured within fibrin scaffolds with embedded glass microfibers or aligned rod sheets. Mixed cultures of neurons, glia, and fibroblasts growing in static conditions with glass rods and microfibers resulted in decreased cell viability. However, the percentage of neurons compared with all cell types increased by the end of the culture protocol compared with culture without glass. Furthermore, bioactive glass and fibrin composite scaffolds promoted neurite extension similar to that of control fibrin scaffolds, suggesting that glass does not have a significant detrimental effect on neuronal health. Aligned glass scaffolds guided neurite extension in an oriented manner. Together these findings suggest that bioactive glass can provide alignment to support directed axon growth. PMID:24027222

  2. Multilayer optical memory using femtosecond-laser induced fluorescence in rare-earth ion doped glass

    NASA Astrophysics Data System (ADS)

    Lim, Ki-Soo; Shin, Jongho; Jang, Kyungsik; Lee, Sunkyun; Hamilton, Douglas S.

    2008-10-01

    We report three-dimensional fluorescent memory by recording optical bits with irradiation of femtosecond laser pulses at 800 nm and by reading photoluminescence change in Eu3+ doped glass. We produced multi-layered micro-bit patterns and read the blue emission from the 405 and 325 nm excitations due to permanent reduction of Eu3+ to Eu2+ in sodium borate glass by scanning the irradiated region in multilayers.

  3. Concentration Effect of Sm3+ Ions on Structural and Luminescence Properties of Lithium Borate Glasses

    NASA Astrophysics Data System (ADS)

    Ramteke, D. D.; Ganvir, V. Y.; Munishwar, S. R.; Gedam, R. S.

    Sm3+ containing lithium borate glasses successfully prepared and their physical and spectroscopic properties were analyzed. Addition of Sm3+ ions increases the density of glasses due to creation of BO-4 units. The absorption spectra of Sm3+ containing glasses show number of transition peaks as compared to base glass. Tau's method is employed to find the optical energy band gap of glasses. The value of optical energy band gap decreases with increase in Sm3+ content which is explained on the basis of structural changes. From the excitation spectra it is clear that these glasses can be easily excited by UV and near UV light. On excitation these glasses show strong emission at 598 nm which corresponds to 4G5/2→6H7/2 transition. Luminescence results indicate that these glasses can be further modified for LED applications.

  4. The effect of composition on the viscosity, crystallization and dissolution of simple borate glasses and compositional design of borate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Goetschius, Kathryn Lynn

    Borate glasses have recently been developed for a variety of medical applications, but much less is known about their structures and properties than more common silicate glasses. Melt properties and crystallization tendency for compositions in the Na2O-CaO-B2O3 system were characterized using differential thermal analysis and viscosity measurements. Characteristic viscosity (isokom) temperatures varied with the ratio between the modifier content (Na2O+CaO) and B2O3, particularly at lower temperatures, consistent with the changes in the relative concentrations of tetrahedral borons in the glass structure. Similar glasses were used to study dissolution processes in water. These alkali-alkaline earth glasses dissolve congruently and follow linear dissolution kinetics. The dissolution rates were dependent on the glass structure, with slower rates associated with greater fractions of four-coordinated boron. For glasses with a fixed alkaline earth identity, the dissolution rates increased in the order Liglasses with a constant alkali identity, the dissolution rates increased in the order Caborate-based bioactive compositions for specific applications. Melt viscosity, thermal expansion coefficient, liquidus temperature and crystallization tendency were determined, as were dissolution rates in simulated body fluid (SBF).

  5. Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses

    SciTech Connect

    Takebe, Hiromichi; Nageno, Yoshikazu; Morinaga, Kenji

    1995-05-01

    Judd-Ofelt parameters {Omega}{sub t} with t = 2, 4, 6 for the rare-earth ions Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Er{sup 3+}, and Tm{sup 3+} in alkali and/or alkaline-earth silicate, borate, and phosphate glasses have been determined. The variations of {Omega}{sub t} with the number of 4{line_integral} electrons of the rare-earth ions are demonstrated, and factors affecting the Judd-Ofelt parameters {Omega}{sub 6} are discussed. The intensity parameter {Omega}{sub 6} depends on the ionic packing ratio of the glass host by changing modifier type in silicate and borate glasses, and it is independent of that in a series of borate glasses as a function of modifier content and phosphate glasses. The peak wavenumber of the transitions whose intensities are determined mainly by the {Omega}{sub 6} < {parallel}U{sup (6)}{parallel}>{sup 2} term-where <{parallel}U{sup (6)}{parallel}> is one of the reduced matrix elements--shift systematically with the values of {Omega}{sub 6} for all the rare-earth ions.

  6. Effect of alkali content on AC conductivity of borate glasses containing two transition metals

    NASA Astrophysics Data System (ADS)

    Kashif, I.; Rahman, Samy A.; Soliman, A. A.; Ibrahim, E. M.; Abdel-Khalek, E. K.; Mostafa, A. G.; Sanad, A. M.

    2009-11-01

    Sodium borate glasses containing iron and molybdenum ions with the total concentration of transition ions constant and gradual substitution of sodium oxide (network modifier) by borate oxide (network former) was prepared. Densities, molar volume, DC and AC conductivities are measured. The trends of these properties are attributed to changes in the glass network structure. Their DC and AC conductivity increased with increasing NaO concentration. The increase of AC conductivity of sodium borate glasses is attributed to the chemical composition and the hopping mechanism of conduction. Measurements of the dielectric constant ( ε) and dielectric loss (tan δ) as a function of frequency (50 Hz-100 kHz) and temperature (RT-600 K) indicate that the increase in dielectric constant and loss ( ε and tan δ) values with increasing sodium ion content could be attributed to the assumption that Fe and Mo ions tend to assume network-forming position in the glass compositions studied. The variation of the value of frequency exponent s for all glass samples as the function of temperature at a definite frequency indicates that the value of s decreases with increasing the temperature which agrees with the correlated barrier-hopping (CBH) model.

  7. The effect of MgO on the optical properties of lithium sodium borate doped with Cu+ ions

    NASA Astrophysics Data System (ADS)

    Alajerami, Yasser Saleh Mustafa; Hashim, Suhairul; Hassan, Wan Muhamad Saridan Wan; Ramli, Ahmad Termizi; Saleh, Muneer Aziz

    2013-04-01

    The current work presented the photoluminescence (PL) properties of a new glass system, which are reported for the first time. Based on the attractive properties of borate glass, a mixture of boric acid (70-x mol %) modified with lithium (20 mol %) and sodium carbonate (10 mol %) was prepared. The current study illustrated the effect of dopant and co-dopant techniques on the lithium sodium borate (LNB). Firstly, 0.1 mol % of copper ions doped with LNB was excited at 610 nm. The emission spectrum showed two prominent peaks in the violet region (403 and 440 nm). Then, we remarked the effect of adding different concentration of MgO on the optical properties of LNB. The results showed the great effect of magnesium oxide on the PL intensities (enhanced more than two times). Moreover, an obvious shifting has been defined toward the blue region (440 → 475 nm). The up-conversion optical properties were observed in all emission spectra. This enhancement is contributed to the energy transfer from MgO ions to monovalent Cu+ ion. It is well known that magnesium oxide alone generates weak emission intensity, but during this increment the MgO act as an activator (co-doped) for Cu+ ions. Finally, energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance all were measured for the current samples. The current samples were subjected to XRD for amorphous confirmation and IR for glass characterization before and after dopants addition. Finally, some of significant physical and optical parameters were also calculated.

  8. Stability of cement-glass packages containing sodium borate salt generated from pressurized water reactor power plants

    SciTech Connect

    Izumida, T.; Kawamura, F.; Chino, K.; Kikuchi, M.

    1987-08-01

    A new solidification technique using cement-glass, which is a mixture of sodium silicate and cement, was studied for solidification of sodium borate salt of liquid waste generated from pressurized water reactor plants. When the sodium borate salt was solidified with the cement-glass, the resulting package contained eight times more sodium borate than was found in cement because it did not interact with sodium borate. The leaching ratio of cesium ion from the cement-glass package was one-tenth that of cement. Its low leaching ratio was due to the high cesium adsorption ability of cement-glass. The ratio could be theoretically evaluated by considering the cesium adsorption-desorption equilibrium.

  9. Evolution of the spectral characteristics upon annealing of lithium borate glasses containing europium and aluminum

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kedrov, V. V.; Kiselev, A. P.; Zver'kova, I. I.

    2013-02-01

    The spectral and structural characteristics of lithium borate glasses containing europium and aluminum have been investigated upon annealing at different temperatures. It has been found that the spectral characteristics of the studied system change nonmonotonically with an increase in the annealing temperature. After annealing at a temperature of 600°C, the luminescence spectra of the glasses exhibit broad structureless bands that are specific for the amorphous phase containing Eu3+ ions. Then, after annealing at T = 700°C, narrow lines appear in the wavelength ranges 585-595 and 610-620 nm, which correspond to the luminescence of the Eu(BO2)3 and EuAl3(BO3)4 borates. A further increase in the annealing temperature ( T = 800-900°C) leads to the disappearance of europium aluminum borate. In the luminescence spectra of these samples, there are narrow bands in the wavelength range λ = 585-595 nm, which are typical of europium metaborate. Finally, at a temperature of 1050°C, these bands disappear and narrow lines appear again in the wavelength range 610-620 nm, which are characteristic of the EuAl3(BO3)4 borate. Thus, the temperature annealing makes it possible to purposely change the spectral characteristics of the studied system in the wavelength range 590-615 nm.

  10. Effect of SnO addition on optical absorption of bismuth borate glass and photocatalytic property of the crystallized glass

    SciTech Connect

    Masai, Hirokazu; Fujiwara, Takumi; Mori, Hiroshi

    2008-04-07

    We have found that an addition of SnO in a bismuth-borate glass, CaO-B{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-TiO{sub 2}, decreases the optical absorption coefficient in the visible region, in which selective crystallization of TiO{sub 2} was observed after heat treatment. Since selective crystallization of TiO{sub 2} was also attained in the SnO-containing glass, the transparency of TiO{sub 2} crystallized glass can be improved independently of selective crystallization of TiO{sub 2}. We have also demonstrated that the rutile-nanocrystallized glass with SnO addition shows a higher photocatalytic activity than the glass without SnO, indicating that this crystallized glass has a large potential for application as transparent photocatalytic materials.

  11. Structural, optical absorption and luminescence properties of Nd 3+ ions in NaO-NaF borate glasses

    NASA Astrophysics Data System (ADS)

    Karunakaran, R. T.; Marimuthu, K.; Arumugam, S.; Surendra Babu, S.; Leon-Luis, S. F.; Jayasankar, C. K.

    2010-07-01

    Structural and spectroscopic properties of neodymium doped sodium borate and fluoroborate glasses of composition (in mol%) (99 - X) B 2O 3 + XNa 2O + 1Nd 2O 3, X = 49.5, 39.5 and 29.5 and 49.5B 2O 3 + XNa 2O + (49.5 - X) NaF + 1Nd 2O 3, X = 0 and 24.75 have been investigated using XRD, FTIR, absorption and emission spectra and decay curve. The XRD of the glasses confirm their glassy nature and the FTIR spectra reveal the presence of BO 3 and BO 4 units along with the strong OH - groups in the glasses. The UV-vis-NIR absorption spectra were used to calculate the bonding parameters ( β¯ and δ), to identify the ionic/covalent nature of the glasses. The spectral intensities have been calculated by using Judd-Ofelt analysis and inturn used to estimate radiative properties such as radiative transition probabilities, radiative lifetimes, branching ratios, peak stimulated emission cross-sections. Branching ratios and stimulated emission cross-sections show that the 4F 3/2 → 4I 11/2 transition of the glasses under investigation has the strong emission around 1060 nm. The decay from the 4F 3/2 level of Nd 3+ ions is found to be single exponential. Multiphonon relaxation and quenching due to OH - groups play a governing role in the luminescence quenching of 4F 3/2 level of Nd 3+ ions in the titled glasses. The results obtained are compared with reports on similar glasses.

  12. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    NASA Astrophysics Data System (ADS)

    Matsuda, Yu; Matsui, Chihiro; Ike, Yuji; Kodama, Masao; Kojima, Seiji

    2006-05-01

    Complex heat capacity, Cp* = Cp' - iCp″, of lithium borate glasses Li2Oṡ(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent Cp* by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena.

  13. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    SciTech Connect

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish; Babu, Panakkattu K.

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the optical absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.

  14. Study of Electrical Conductivity and Dielectric Behaviour of Molybdenum containing Bismuth Borate Glasses

    NASA Astrophysics Data System (ADS)

    Kishore, N.; Sanjay; Agarwal, A.; Dahiya, Sanjay; Pal, Inder

    2015-02-01

    Bismuth borate glasses containing MoO3 content have been synthesized by the standard melt-quenching technique. The samples have been characterized by X-ray diffraction and scanning electron microscopy. Frequency and temperature dependent conductivity measurements have been carried out in the range of 20Hz to 1MHz and in the temperature range of 373K to 623K respectively. The frequency dependent conductivity has been studied using both conductivity and modulus formalisms. The dielectric permittivity (ε' and ε"), electrical modulus (M*) and dielectric loss were also studied of the prepared glasses. The values of ε' and ε'' are found to decrease with increase in frequency.

  15. Impact of network topology on cationic diffusion and hardness of borate glass surfaces

    NASA Astrophysics Data System (ADS)

    Smedskjaer, Morten M.; Mauro, John C.; Sen, Sabyasachi; Deubener, Joachim; Yue, Yuanzheng

    2010-10-01

    The connection between bulk glass properties and network topology is now well established. However, there has been little attention paid to the impact of network topology on the surface properties of glass. In this work, we report the impact of the network topology on both the transport properties (such as cationic inward diffusion) and the mechanical properties (such as hardness) of borate glasses with modified surfaces. We choose soda lime borate systems as the object of this study because of their interesting topological features, e.g., boron anomaly. An inward diffusion mechanism is employed to modify the glass surface compositions and hence the surface topology. We show that accurate quantitative predictions of the hardness of the modified surfaces can be made using topological constraint theory with temperature-dependent constraints. Experimental results reveal that Ca2+ diffusion is most intense in glasses with lowest BO4 fraction, whereas Na+ diffusion is only significant when nonbridging oxygens start to form. These phenomena are interpreted in terms of the atomic packing and the local electrostatic environments of the cations.

  16. Fluorescence line narrowing spectroscopy of Sm{sup 2+} and Eu{sup 3+} in sodium borate glasses

    SciTech Connect

    Fujita, K.; Tanaka, K.; Hirao, K.; Soga, N.

    1997-01-01

    A fluorescence line narrowing technique was carried out for sodium borate glasses containing a Sm{sup 2+} ion and its isoelectonic Eu{sup 3+} ion under a pulsed tunable dye laser excitation. In order to obtain site-dependent information, measurements were made by exciting the inhomogeneously broadened {sup 5}{ital D}{sub 0}-{sup 7}{ital F}{sub 0} transition at 10 K. Line-narrowing fluorescence of the {sup 5}{ital D}{sub 0}{r_arrow}{sup 7}{ital F}{sub 1} transition and the temporal changes of the emission lines were investigated as a function of excitation energy, and the dynamics of excited states for both ions were compared with each other. The results indicate that the site-to-site variations of the inhomogeneous broadening of {sup 5}{ital D}{sub 0}{endash}{sup 7}{ital F}{sub 0} transitions are attributed to the apparent difference in local environment between the Sm{sup 2+} and Eu{sup 3+} ions doped in borate glasses with Na{sub 2}O content from 10 to 20 mol{percent}. Also, a decrease in concentration of rare-earth ions causes a more significant effect on Eu{sup 3+} ions than on Sm{sup 2+} ions in the high-excitation-energy range. It is concluded that the difference in the local environment between Sm{sup 2+} and Eu{sup 3+} is mainly ascribable to the difference in the valence and in the ionic radius. {copyright} {ital 1997 American Institute of Physics.}

  17. Vibrational excitations and elastic phases in Sodium Borate Glasses

    NASA Astrophysics Data System (ADS)

    Vignarooban, K.; Boolchand, P.; Micoulaut, M.

    2011-03-01

    Glass Transition temperatures (Tg s) and non-reversing enthalpy (Δ Hnr) at Tg of dry (Na 2 O)x (B2 O3)100-x glasses across the 0% x < 44% soda range are measured. Trends in ΔHnr (x) show a reversibility window in the 20% < x < 40% range, and fix the Intermediate Phase (IP). IR and Raman vibrational modes including Boson modes are also examined. At low x (<20%), the Raman active 808 cm-1 mode of boroxyl rings steadily lowers in scattering strength and red-shifts with increasing x, suggesting that the stressed-rigid quasi 2D network of B2O3 glassatx = 0 , steadilysoftenswithacharacteristicopticalelasticpower - law (< formula > < ? TeX . In the 26% < x < 40% range, a mode near 770 cm rapidly grows in strength and red shifts with increasing x with a power-law of characteristic of IPs observed earlier in other 3D covalent and ionic networks. In addition, many other modes are observed, some blue-shift, some red-shift and some remain unchanged with x. These data will be discussed in relation to glass structure evolution with composition. D.Novita et al. J. Phys. Condens. Matter 21, 205106 (2009) This work is supported by DMR- 08-53957.

  18. Role of electron transfer in Ce3+ sensitized Yb3+ luminescence in borate glass

    NASA Astrophysics Data System (ADS)

    Sontakke, Atul D.; Ueda, Jumpei; Katayama, Yumiko; Zhuang, Yixi; Dorenbos, Pieter; Tanabe, Setsuhisa

    2015-01-01

    In a Ce3+-Yb3+ system, two mechanisms are proposed so far namely, the quantum cutting mechanism and the electron transfer mechanism explaining Yb3+ infrared luminescence under Ce3+ excitation. Among them, the quantum cutting mechanism, where one Ce3+ photon (ultraviolet/blue) gives rise to two Yb3+ photons (near infrared) is widely sought for because of its huge potential in enhancing the solar cell efficiency. In present study on Ce3+-Yb3+ codoped borate glasses, Ce3+ sensitized Yb3+ luminescence at ˜1 μm have been observed on Ce3+ 5d state excitation. However, the intensity of sensitized Yb3+ luminescence is found to be very weak compared to the strong quenching occurred in Ce3+ luminescence in Yb3+ codoped glasses. Moreover, the absolute luminescence quantum yield also showed a decreasing trend with Yb3+ codoping in the glasses. The overall behavior of the luminescence properties and the quantum yield is strongly contradicting with the quantum cutting phenomenon. The results are attributed to the energetically favorable electron transfer interactions followed by Ce3+-Yb3+ ⇌ Ce4+-Yb2+ inter-valence charge transfer and successfully explained using the absolute electron binding energies of dopant ions in the studied borate glass. Finally, an attempt has been presented to generalize the electron transfer mechanism among opposite oxidation/reduction property dopant ions using the vacuum referred electron binding energy (VRBE) scheme for lanthanide series.

  19. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    NASA Astrophysics Data System (ADS)

    Sasi Kumar, M. V.; Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-04-01

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li-Na, Li-K and Na-K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd-Ofelt (J-O) theory has been applied to calculate J-O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J-O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions.

  20. Effect of Sm{sub 2}O{sub 3} addition on electrical and optical properties of lithium borate glasses

    SciTech Connect

    Gedam, R. S.; Ramteke, D. D.

    2012-06-05

    The electrical and optical property of lithium borate glasses was investigated. It is observed that conductivity decreases while density and refractive index increases with the addition of Sm{sub 2}O{sub 3}. Radiation length of glasses was determined and it is observed that radiation length decreases with the addition of Sm{sub 2}O{sub 3}.

  1. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  2. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    PubMed

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. PMID:26204506

  3. Studies on the effect of Li{sub 2}SO{sub 4} on the structure of lithium borate glasses

    SciTech Connect

    Ganguli, M.; Rao, K.J.

    1999-02-11

    Thermal and spectroscopic investigations have been carried out on a number of glasses with a wide range of compositions in the pseudoternary glass system, Li{sub 2}SO{sub 4}-Li{sub 2}O-B{sub 2}O{sub 3}, to understand the role of sulfate ions in modifying the borate glass structure. Both nuclear magnetic resonance (NMR) and infrared (IR) spectroscopic results indicate that four-coordinate boron atoms are retained in the glass structure to a greater extent in sulfate-containing glasses than in pure lithium borate glasses. There seems to be some evidence for the existence of sulfoborate-type units in Raman spectra in the region of 800--960 cm{sup {minus}1}. These conclusions are supported by the observed behavior of glass transition temperatures and molar volumes. The possibility of formation of sulfoborate-type units is discussed from bonding and thermodynamic points of view.

  4. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.

    PubMed

    Deliormanlı, Aylin M

    2015-02-01

    Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications. PMID:25631259

  5. Conductivity and modulus formulation in lithium modified bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, Sajjan; Punia, R.; Murugavel, S.; Maan, A. S.

    2016-05-01

    The conductivity and modulus formulation in lithium modified bismuth zinc borate glasses with compositions xLi2O-(50-x) Bi2O3-10ZnO-40B2O3 has been studied in the frequency range 0.1 Hz-1.5 × 105 Hz in the temperature range 573 K-693 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the studied compositions, the dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of the experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating centre (Hf) and enthalpy of migration (Hm) have been estimated. It has been observed that number of charge carriers and ac conductivity in the lithium modified bismuth zinc borate glasses increases with increase in Li2O content. Further, the conduction mechanism in the glass sample with x = 0 may be due to overlapping large polaron tunneling, whereas, conduction mechanism in other studied glass samples more or less follows diffusion controlled relaxation model. The ac conductivity is scaled using σdc and ωH as the scaling parameter and is found that these are suitable scaling parameter for conductivity scaling. Non-Debye type relaxation is found prevalent in the studied glass system. Scaling of ac conductivity as well as electric modulus confirms the presence of different type of conduction mechanism in the glass samples with x = 0 and 5 from other studied samples. The activation energy of relaxation (ER) and dc conductivity (Edc) are almost equal, suggesting that polarons/ions have to overcome same barrier while relaxing and conducting.

  6. Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Zhu, Bin; Wang, Li; Qiu, Jianrong; Dai, Ye; Ma, Hongliang

    2008-03-01

    We report on the coordination transformation of B3+ ions and migration of Na+ and O2- ions in sodium borate glasses, induced by 250kHz, 800nm femtosecond laser irradiation. Micro-Raman spectra show that the ratio of the integrated intensity of the two peaks at 806 and 774cm-1 decreases at first and then increases with increasing distance from the center of the laser modified zone. Electron dispersive x-ray spectra show that a portion of Na+ and O2- ions migrate from the vicinity of focal point after the femtosecond laser irradiation. A possible mechanism is proposed to explain the observed phenomena.

  7. Spectroscopic properties of Pr3+ ions embedded in lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Ramteke, D. D.; Swart, H. C.; Gedam, R. S.

    2016-01-01

    A series of lithium borate glasses with different Pr3+ contents were prepared by the melt quench technique to explore the new material for solid state light applications. We found that the addition of Pr3+ ions in the glass matrix has a profound effect on the properties of the glasses. The presence of Pr3+ ions in the glass matrix created various absorption bands compared to the base glass. These bands were due to the ground state (3H4) of the Pr3+ to the various excited states. Optical energy band gap was calculated by Tauc's method which showed a decreasing trend with an increase in the Pr3+ content. This might be due to structural changes when the glass structure became rigid due to the Pr3+ ions and this was confirmed by the density results. Rigidity of the glass structure was further confirmed by the Fourier transformed infrared results. The excitation spectra showed bands at 3H4→3P2, 3P1 and 3P0 nm. The 3H4→3P2 band was used to study the unresolved 1D2→3H4 and 3P0→3H6 transitions of the Pr3+ ions.

  8. Molecular Dynamics Simulation of Lead Borate and Related Glasses in Multicomponent Systems for Low Melting Vitrification of Nuclear Wastes

    NASA Astrophysics Data System (ADS)

    Kato, S.; Sakida, S.; Benino, Y.; Nanba, T.

    2011-03-01

    Glasses based on lead oxide have excellent properties in general such as low melting point, high chemical durability and high stability of glassy form, which are suitable for the preservation of volatile nuclear wastes in a permanent vitrified form. In order to confirm the long-term performance of lead borate based glasses it is necessary to establish dissolution and diffusion processes based on a reliable model of the glass structure. In the present study molecular dynamics (MD) simulation of lead borate based glasses was carried out introducing a dummy negative point charge to reproduce asymmetric PbOn units. Parameters for the dummy charge were optimized based on the comparison between calculated radial distribution function and experimental one. Asymmetric coordination around Pb, for example trigonal bipyramid, was successfully reproduced in the MD simulated binary and ternary glass models. The simple model using the dummy charge was confirmed to be valid for further simulations of multicomponent glasses containing nuclear wastes and heavy elements.

  9. Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Martínez de Mendivil, J.; Cantelar, E.; Lifante, G.; Vázquez de Aldana, J.; Torchia, G. A.; Chen, Feng; Jaque, Daniel

    2011-05-01

    Buried channel optical waveguides, supporting orthogonal polarizations, have been fabricated in a neodymium doped yttrium aluminum borate nonlinear laser crystal by ultrafast laser inscription following the so-called "double line" approach. Confocal fluorescence and second harmonic imaging experiments have revealed that the original fluorescence and nonlinear properties have been not deteriorated by the waveguide inscription procedure. Preliminary laser experiments have shown the ability of the fabricated structures for green laser light generation under 808 nm optical pumping by self-frequency-doubling of the 1.06 μm laser line of neodymium ions.

  10. Spectroscopic properties of Pr3+ and Er3+ ions in lead-free borate glasses modified by BaF2

    NASA Astrophysics Data System (ADS)

    Pisarska, Joanna; Pisarski, Wojciech A.; Dorosz, Dominik; Dorosz, Jan

    2015-09-01

    Lead-free oxyfluoride borate glasses singly doped with Pr3+ and Er3+ were prepared and next investigated using absorption and luminescence spectroscopy. In the studied glass system, barium oxide was substituted by BaF2. Two luminescence bands of Pr3+ located at visible spectral region are observed, which correspond to 3P0-3H4 (blue) and 1D2-3H4 (reddish orange) transitions, respectively. The luminescence bands due to 1D2-3H4 transition of Pr3+ are shifted to shorter wavelengths, when BaO was substituted by BaF2. Near-infrared luminescence spectra of Er3+ ions in lead-free borate glasses modified by BaF2 correspond to 4I13/2-4I15/2 transition. Their spectral linewidths increase with increasing BaF2 concentration. The changes in measured lifetimes of rare earth ions are well correlated with the bonding parameters calculated from the optical absorption spectra.

  11. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model.

    PubMed

    Zhang, Yadong; Cui, Xu; Zhao, Shichang; Wang, Hui; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-02-01

    The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 ± 1.2 min) and a compressive strength of 19 ± 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery. PMID:25591177

  12. Gentamicin-Loaded Borate Bioactive Glass Eradicates Osteomyelitis Due to Escherichia coli in a Rabbit Model

    PubMed Central

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang

    2013-01-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

  13. Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model.

    PubMed

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang; Zhang, Changqing

    2013-07-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

  14. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing.

    PubMed

    Zhou, Jie; Wang, Hui; Zhao, Shichang; Zhou, Nai; Li, Le; Huang, Wenhai; Wang, Deping; Zhang, Changqing

    2016-03-01

    Full-thickness skin defects represent urgent clinical problem nowadays. Wound dressing materials are hotly needed to induce dermal reconstruction or to treat serious skin defects. In this study, the borate bioactive glass (BG) micro-fibers were fabricated and compared with the traditional material 45S5 Bioglass(®) (SiG) micro-fibers. The morphology, biodegradation and bioactivity of BG and SiG micro-fibers were investigated in vitro. The wound size reduction and angiogenic effects of BG and SiG micro-fibers were evaluated by the rat full-thickness skin defect model and Microfil technique in vivo. Results indicated that the BG micro-fibers showed thinner fiber diameter (1μm) and better bioactivity than the SiG micro-fibers did. The ionic extracts of BG and SiG micro-fibers were not toxic to human umbilical vein endothelial cells (HUVECs). In vivo, the BG micro-fiber wound dressings obviously enhanced the formation of blood vessel, and resulted in a much faster wound size reduction than the SiG micro-fibers, or than the control groups, after 9days application. The good skin defect reconstruction ability of BG micro-fibers contributed to the B element in the composition, which results in the better bioactivity and angiogenesis. As shown above, the novel bioactive borate glass micro-fibers are expected to provide a promising therapeutic alternative for dermal reconstruction or skin defect repair. PMID:26706550

  15. Effect of TeO 2 on the elastic moduli of sodium borate glasses

    NASA Astrophysics Data System (ADS)

    Saddeek, Yasser B.; Latif, Lamia. Abd El

    2004-05-01

    Sodium borate glass containing tellurite as Te xNa 2-2 xB 4-4 xO 7-5 x with x=0, 0.05, 0.15, 0.25 and 0.35 have been prepared by rapid quenching. Ultrasonic velocity (both longitudinal and shear) measurements have been made using a transducer operated at the fundamental frequency of 4 MHz at room temperature. The density was measured by the conventional Archimedes method. The elastic moduli, the Debye temperature, Poisson's ratio, and the parameters derived from the Makishima-Mackenzie model and the bond compression model have been obtained as a function of TeO 2 content. The monotonic decrease in the velocities and the elastic moduli, and the increase in the ring diameter and the ratio Kbc/ Ke as a function of TeO 2 modifier content reveals the loose packing structure, which is attributed to the increase in the molar volume and the reduction in the vibrations of the borate lattice. The observed results confirm that the addition of TeO 2 changes the rigid character of Na 2B 4O 7 to a matrix of ionic behaviour bonds (NBOs). This is due to the creation of more and more discontinuities and defects in the glasses, thus breaking down the borax structure.

  16. UV-VIS-NIR spectral optical properties of silver iodide borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Di Marco, G.; Torrisi, L.; Branca, C.; Carini, G.; Wanderlingh, U.; D'Angelo, G.

    2014-04-01

    We present a study of optical properties of a series of silver iodide borate glasses(AgI)x(Ag2OB2O3)1-xby UV-VIS-NIR spectroscopy. The results show an increased absorbance in the whole analysed spectral range when the AgI concentration is augmented. In particular, the enhanced intensity of the wavelength band at 400-500 nm with silver iodine content suggests that this band arises from plasmon-related absorption, describing the formation of silver nanoparticles. With respect to this study, our results could motivate novel target designs consisting of ternary silver boron based bulk glasses for generating resonant absorption of laser light by plasma.

  17. Boson peak in alkaline borate glasses: Raman spectroscopy, neutron scattering, and specific-heat measurements

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.; Carini, G.; Crupi, C.; Koza, M.; Tripodo, G.; Vasi, C.

    2009-01-01

    The dependence of the boson peak on the alkaline ion in modified borate glasses (M2O)0.14(B2O3)0.86 (M+=Li+,Na+,K+,Cs+) was analyzed by performing Raman spectroscopy, inelastic neutron scattering, and low-temperature specific-heat measurements. It is found that the distribution of vibrations merging into the boson peak shifts to higher frequency by going from cesium to lithium. A linear correlation between the boson peak frequency and the transverse sound velocity is evidenced. The dependence on the polarizing power of the metallic cation is analyzed, stemming from considerations about elastic moduli. These findings suggest a mainly transverse character of the excess vibrational modes in glasses.

  18. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection. PMID:23820937

  19. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    SciTech Connect

    Matsuda, Yu; Ike, Yuji; Matsui, Chihiro; Kodama, Masao; Kojima, Seiji

    2006-05-05

    Complex heat capacity, C{sub p}* = C{sub p}' - iC{sub p}'', of lithium borate glasses Li2O{center_dot}(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent C{sub p}* by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena.

  20. Specific features of the optical properties of potassium-aluminum borate glasses with copper chloride nanocrystals at high temperatures

    NASA Astrophysics Data System (ADS)

    Shirshnev, P. S.; Babkina, A. N.; Tsekhomskii, V. A.; Nikonorov, N. V.

    2015-09-01

    It is shown that heating of potassium-aluminum borate glasses with CuCl nanocrystals above 80°C leads to the disappearance of exciton absorption peaks, whereas cooling below 50°C gives rise to these peaks. These effects are related, respectively, to the melting of nanocrystals and crystallization of nanophase.

  1. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone.

    PubMed

    Cui, Xu; Zhao, Cunju; Gu, Yifei; Li, Le; Wang, Hui; Huang, Wenhai; Zhou, Nai; Wang, Deping; Zhu, Yi; Xu, Jun; Luo, Shihua; Zhang, Changqing; Rahaman, Mohamed N

    2014-03-01

    Osteomyelitis (bone infection) is often difficult to cure. The commonly-used treatment of surgical debridement to remove the infected bone combined with prolonged systemic and local antibiotic treatment has limitations. In the present study, an injectable borate bioactive glass cement was developed as a carrier for the antibiotic vancomycin, characterized in vitro, and evaluated for its capacity to cure osteomyelitis in a rabbit tibial model. The cement (initial setting time = 5.8 ± 0.6 min; compressive strength = 25.6 ± 0.3 MPa) released vancomycin over ~25 days in phosphate-buffered saline, during which time the borate glass converted to hydroxyapatite (HA). When implanted in rabbit tibial defects infected with methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis, the vancomycin-loaded cement converted to HA and supported new bone formation in the defects within 8 weeks. Osteomyelitis was cured in 87 % of the defects implanted with the vancomycin-loaded borate glass cement, compared to 71 % for the defects implanted with vancomycin-loaded calcium sulfate cement. The injectable borate bioactive glass cement developed in this study is a promising treatment for curing osteomyelitis and for regenerating bone in the defects following cure of the infection. PMID:24477872

  2. A Novel Injectable Borate Bioactive Glass Cement as an Antibiotic Delivery Vehicle for Treating Osteomyelitis

    PubMed Central

    Cui, Xu; Gu, Yi-Fei; Jia, Wei-Tao; Rahaman, Mohamed N.; Wang, Yang; Huang, Wen-Hai; Zhang, Chang-Qing

    2014-01-01

    Background A novel injectable cement composed of chitosan-bonded borate bioactive glass (BG) particles was evaluated as a carrier for local delivery of vancomycin in the treatment of osteomyelitis in a rabbit tibial model. Materials and Methods The setting time, injectability, and compressive strength of the borate BG cement, and the release profile of vancomycin from the cement were measured in vitro. The capacity of the vancomycin-loaded BG cement to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in rabbit tibiae in vivo was evaluated and compared with that for a vancomycin-loaded calcium sulfate (CS) cement and for intravenous injection of vancomycin. Results The BG cement had an injectability of >90% during the first 3 minutes after mixing, hardened within 30 minutes and, after hardening, had a compressive strength of 18±2 MPa. Vancomycin was released from the BG cement into phosphate-buffered saline for up to 36 days, and the cumulative amount of vancomycin released was 86% of the amount initially loaded into the cement. In comparison, vancomycin was released from the CS cement for up 28 days and the cumulative amount released was 89%. Two months post-surgery, radiography and microbiological tests showed that the BG and CS cements had a better ability to eradicate osteomyelitis when compared to intravenous injection of vancomycin, but there was no significant difference between the BG and CS cements in eradicating the infection. Histological examination showed that the BG cement was biocompatible and had a good capacity for regenerating bone in the tibial defects. Conclusions These results indicate that borate BG cement is a promising material both as an injectable carrier for vancomycin in the eradication of osteomyelitis and as an osteoconductive matrix to regenerate bone after the infection is cured. PMID:24427311

  3. Ligand field modification around Cu2+ ions in sodium borate glass by codoping.

    PubMed

    Funabiki, Fuji; Matsuishi, Satoru; Hosono, Hideo

    2011-05-26

    Understanding the effect of codoping on the properties of photonic glasses is important for improving their properties. The effect of codoping on the ligand field around Cu(2+) ions in a sodium borate glass is examined using optical absorption spectroscopy, continuous-wave electron paramagnetic resonance, and three-pulse electron-spin-echo envelope-modulation. Glass with a composition of 0.1CuO·5Na(2)O·95B(2)O(3) was codoped with 2 mol % of Al(3+), Si(4+), P(5+), Zr(4+), or La(3+) oxide. Three codoping effects are found: strengthening the ligand field, as observed for Zr-codoping, which induces a large blue shift of the optical absorption peak of Cu(2+); weakening the ligand field, as observed for P-codoping, which causes a red shift of the Cu(2+) absorption peak; and almost no effect on the ligand field, which is observed for Al-, Si-, and La-codoping. Coordination structure models based on local charge neutrality are proposed for the codoped glasses. The mechanism of the codoping effect is revealed by elucidating the local structure around Cu(2+). PMID:21526847

  4. Temperature-induced boron coordination change in alkali borate glasses and melts

    NASA Astrophysics Data System (ADS)

    Majérus, Odile; Cormier, Laurent; Calas, Georges; Beuneu, Brigitte

    2003-01-01

    Neutron diffraction experiments have been performed on alkali diborate glasses and melts, M2O-2B2O3 with M=Li, Na, K, in order to investigate the structural changes above the glass transition. In the glassy state, the contributions of fourfold- and threefold-coordinated boron could be clearly distinguished on the first peak of the correlation functions, which has been fitted with two Gaussian components. The fraction of boron in fourfold coordination (N4) is 0.46, 0.43, and 0.40 for the Li-, Na-, and K-bearing glasses, respectively, in agreement with previous NMR studies. In the liquid state at ˜1200 K, a one-component fit of the peak yields an N4 value of about 0.30, which means that one-third of the BO4 tetrahedra in the glass converts to BO3 triangles in the melt. The estimated change of the mean heat capacity for this conversion is in the range 27 73 J mol-1K-1. This value accounts for the major part of the total heat capacity change at Tg, suggesting that the BO4 to BO3 conversion is mainly responsible for the fragile behavior of the viscosity of alkali borate melts. Indeed it is closely related to the dynamic processes of the viscous flow, which involve both the akali migration and B-O bond breakening and reforming.

  5. Optical properties of cerium doped oxyfluoroborate glass.

    PubMed

    Bahadur, A; Dwivedi, Y; Rai, S B

    2013-06-01

    Cerium doped oxyfluoroborate glasses have been prepared and its spectroscopic properties have been discussed. It is found that the absorption edge shifts towards the lower energy side for the higher concentration of cerium dopant. Optical band gap for these glasses have been calculated and it is found that the number of non-bridging oxygen increases with cerium content. The emission spectra of these glasses have been recorded using UV laser radiations (266 and 355 nm) and it is observed that these glasses show bright blue emission. On the basis of excitation and emission spectra we have reported the existence of at least two different emission centers of Ce(3+)ions. PMID:23583876

  6. Ions of metals of groups (II-V)B in anomalous oxidation states (the /sup 2/S/sub 1/2/ electronic state) in sodium borate and potassium borate glasses

    SciTech Connect

    Aleksandrov, A.I.; Prokof'ev, A.I.; Raspertova, Z.I.; Solinov, V.F.; Bubnov, N.N.

    1987-02-01

    The authors studied sodium borate glasses (SBG's), potassium borate glasses (PBG's), and potassium sodium borate glasses (PSBG's) containing oxides of metals from groups (II-V)B. Chemically pure reagents were used for their synthesis. In order to create the metal ions in unusual oxidation states, the glasses were subjected to ..gamma.. radiation from /sup 60/Co at 77 K and 300 K in doses up to 100 kGy. The ESR spectra were recorded on a Varian E-12 radiofrequency spectrometer at 77 K in the 3-CM microwave range. Glasses without the metal oxides were investigated in parallel. Following the irradiation of SBG's, PBG's, and PSBG's containing the oxides of cadmium, mercury, gallium, thallium, tin, and lead, additional ESR signals appear in the region of the g factor of a free electron g/sub e/ and at high fields.

  7. Optical Absorption Spectra of Sodium Borate Cobalt Doped Glasses

    SciTech Connect

    Elokr, M. M.; Hassan, M. A.; Yaseen, A. M.; Elokr, R.

    2007-02-14

    Glassy system: xNa2O-(100-x-y)B2O3-yCo3O4 has been prepared by conventional melt quenching technique. Optical absorption spectra have been obtained in the range 300 - 2500 nm at room temperature. An absorption edge was observed in the near UV range, the analysis of which reveals that indirect transition is the dominant absorption mechanism. All prepared samples exhibit blue color, indicating that the Co ions are acted upon by tetrahedral ligand field. Obtained spectra were used to estimate some ligand field parameters.

  8. Optical Absorption Spectra of Sodium Borate Cobalt Doped Glasses

    NASA Astrophysics Data System (ADS)

    Elokr, M. M.; Yaseen, A. M.; Elokr, R.; Hassan, M. A.

    2007-02-01

    Glassy system: xNa2O-(100-x-y)B2O3-yCo3O4 has been prepared by conventional melt quenching technique. Optical absorption spectra have been obtained in the range 300 - 2500 nm at room temperature. An absorption edge was observed in the near UV range, the analysis of which reveals that indirect transition is the dominant absorption mechanism. All prepared samples exhibit blue color, indicating that the Co ions are acted upon by tetrahedral ligand field. Obtained spectra were used to estimate some ligand field parameters.

  9. B K-Edge XANES of Superstructural Units in Borate Glasses

    SciTech Connect

    Sipr, O.; Simunek, A.; Rocca, F.

    2007-02-02

    The potential of x-ray absorption near-edge structure (XANES) spectroscopy for studying medium range order in borate glasses is assessed by theoretical modelling of the spectra. B K edge XANES is calculated in case that B atoms are located in isolated BO3 and BO4 units and in case that B atom are located in superstructural units of 9-15 atoms. It is found that boroxol ring and diborate and ditriborate superstructural units give rise to spectra which differ from spectra obtained by a mere superposition of spectra of isolated BO3 and BO4 units. On the other hand, spectra of pentaborate and triborate units do not differ significantly from spectra of isolated BO3 and BO4.

  10. Combination of platelet-rich plasma with degradable bioactive borate glass for segmental bone defect repair.

    PubMed

    Zhang, Ya-Dong; Wang, Gang; Sun, Yan; Zhang, Chang-Qing

    2011-02-01

    Porous scaffold biomaterials may offer a clinical alternative to bone grafts; however, scaffolds alone are typically insufficient to heal large bone defects. Numerous studies have demonstrated that osteoinductive growth factor significantly improves bone repair. In this study, a strategy combining degradable bioactive borate glass (BG) scaffolds with platelet-rich plasma (PRP) was tested. The bone defect was filled with BG alone, BG combined with autologous PRP or left empty. Bone formation was analyzed at 4, 8 and 12 weeks using both histology and radiology. The PRP treated group yielded better bone formation than the pure BG scaffold as determined by both histology and microcomputer tomography after 12 weeks. In conclusion, PRP improved bone healing in a diaphyseal rabbit model on BG. The combination of PRP and BG may be an effective approach to repair critical defects. PMID:21473456

  11. Effect of R(3+) ions on the structure and properties of lanthanum borate glasses

    NASA Technical Reports Server (NTRS)

    Chakraborty, I. N.; Day, D. E.

    1985-01-01

    The present investigation of glass formation in the (mole percent) systems 25La2O3 (x)R2O3 (75-x)B2O3, where R = Al, Ga, and (25-x)La2O3 (x)Ln2O3 75B2O3, where Ln = Gd, Er, Y, notes that up to 25 mol pct Al2O3 or Ga2O3 can be substituted for B2O3, while no more than about 5 mol pct Ln2O3, substituted for La2O3, caused macro-phase separation. The substitution of either R2O3 or Ln2O3 in the lanthanum borate system changes the separation distance between adjacent B3O6 chains. The effect of this structural change on the molar volume, transformation temperature, thermal expansion coefficient, and transformation-range viscosity is discussed.

  12. Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses

    SciTech Connect

    Liu Yin; Zhu Bin; Wang Li; Qiu Jianrong; Dai Ye; Ma Hongliang

    2008-03-24

    We report on the coordination transformation of B{sup 3+} ions and migration of Na{sup +} and O{sup 2-} ions in sodium borate glasses, induced by 250 kHz, 800 nm femtosecond laser irradiation. Micro-Raman spectra show that the ratio of the integrated intensity of the two peaks at 806 and 774 cm{sup -1} decreases at first and then increases with increasing distance from the center of the laser modified zone. Electron dispersive x-ray spectra show that a portion of Na{sup +} and O{sup 2-} ions migrate from the vicinity of focal point after the femtosecond laser irradiation. A possible mechanism is proposed to explain the observed phenomena.

  13. New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses.

    PubMed

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO(2) glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO(2) glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  14. A general approach to spindle-assembled lanthanide borate nanocrystals and their photoluminescence upon Eu3+/Tb3+ doping.

    PubMed

    Zeng, Yubin; Li, Zhengquan; Liang, Yingfang; Gan, Xiaoqin; Zheng, Mengmeng

    2013-08-19

    Uniform-assembled lanthanide borate nanocrystals have been synthesized via a facile self-assembly process under hydrothermal conditions. All of the prepared lanthanide borate assemblies exhibit a spindle-like profile despite the fact that they belong to different crystal systems and have different formulas for composition. Each assembly is composed of small nanocrystals that are tightly attached along with their lateral surfaces. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy have been used to characterize the structure and morphology of these samples. The mechanism responsible for the growth and assembly of these lanthanide borate assemblies is also demonstrated. After Eu(3+) and/or Tb(3+) ions are doped inside these assemblies, strong and multicolor emissions can be realized. Notably, tunable emission and a warm-white color can be achieved in the Eu(3+)/Tb(3+) codoped samples. PMID:23899367

  15. On the Electron Paramagnetic Resonance Studies in Mixed Alkali Borate Glasses

    SciTech Connect

    Padmaja, G.; Reddy, T. Goverdhan; Kistaiah, P.

    2011-10-20

    Mixed alkali effect in oxide based glasses is one of the current research activity and studies on the behavior of spectroscopic parameters in these systems are quite important to understand the basic nature of this phenomenon. EPR studies of mixed alkali glasses Li{sub 2}O-K{sub 2}O-ZnO-B{sub 2}O{sub 3} doped with Fe{sup 3+} and Mn{sup 2+} were carried out at room temperature. The EPR spectra show typical resonances of d{sup 5} system (Fe{sup 3+} and Mn{sup 2+}) in all the measured glass specimens. Evaluated hyperfine constant, number of paramagnetic centers and paramagnetic susceptibility values show deviation from the linearity with the progressive substitution of the Li ion with K in glass network.

  16. Experimental insights on the electron transfer and energy transfer processes between Ce3+-Yb3+ and Ce3+-Tb3+ in borate glass

    NASA Astrophysics Data System (ADS)

    Sontakke, Atul D.; Ueda, Jumpei; Katayama, Yumiko; Dorenbos, Pieter; Tanabe, Setsuhisa

    2015-03-01

    A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce3+-Yb3+ exhibits a steady rise with temperature, whereas the Ce3+-Tb3+ energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host. The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.

  17. Magnetic behavior of erbium-zinc-borate glasses and glass ceramics

    SciTech Connect

    Borodi, G.; Pascuta, P.; Bosca, M.; Pop, V.; Stefan, R.; Tetean, R.; Radulescu, D.

    2013-11-13

    Glasses of the system (Er{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} (3 ≤ x ≤ 15 mol%) were prepared by conventional melt quenching and subsequently converted to glass ceramics by heat treatment of glass samples at 860 °C for 2 h. The magnetic behaviour of the studied glasses and glass ceramics were investigated using a vibrating sample magnetometer (VSM) and a Faraday-type magnetic balance. Magnetic data show that erbium ions are involved in negative superexchange interactions in all the investigated samples, being antiferromagnetically coupled. For all studied samples the experimental values obtained for the effective magnetic moments are lower than the value corresponding to free Er{sup 3+} ions and decrease with the increasing of Er{sub 2}O{sub 3} content. The decrease is more pronounced in heat treated samples than untreated ones.

  18. The Development of Doped Radiosensitive Glass

    SciTech Connect

    Bradley, D. A.; Okoya, O. O.; Hugtenburg, R. P.; Hashim, Suhairul; Ramli, A. T.; Wagiran, H.; Yusoff, A. L.; Hassan, A. Aziz Mat

    2007-05-09

    For a range of industrial and medical situations there exists need for sensitive, robust high spatial resolution systems for radiation measurements. Our overall focus is on the development of doped silica-glass thermoluminescent dosimeters (TLD) with a view towards improving upon the thermoluminescence (TL) yield of commercially produced optical fibers. In baseline studies of the latter, as detailed herein, measurements have been conducted using Ge-doped communication fibers, employing sources of irradiation including bremsstrahlung x-rays (produced by a nominal accelerating potential of 50 kVp), alpha particles from an 241Am source (predominant emission 5.486 MeV) and protons of energy 2.5 MeV provided by an ion beam source. Present studies, also including elemental analysis via the PIXE and RBS techniques, permit comparison with higher TL yield doped glasses previously made by this group via the sol-gel technique and characterized in part using a range of synchrotron techniques.

  19. Spectroscopic analysis of a novel Nd3+-activated barium borate glass for broadband laser amplification

    NASA Astrophysics Data System (ADS)

    Vázquez, G. V.; Muñoz H., G.; Camarillo, I.; Falcony, C.; Caldiño, U.; Lira, A.

    2015-08-01

    Spectroscopic parameters of a novel Nd3+-activated barium borate (BBONd) glass have been analyzed for broadband laser amplification. The Judd-Ofelt (JO) intensity parameters were determined through a systematic analysis of the absorption spectrum of Nd3+ ions in the BBONd glass. High values of the JO intensity parameters reveal a great centro-symmetrical loss of the Nd3+ sites and high covalency degree of the ligand field. The very high Ω6 intensity parameter value makes evident both a great structural distortion of the Nd3+ sites and a strong electron-phonon coupling between Nd3+ and free OH- ions, which is consistent with the phonon energy maximum (3442.1 cm-1) recorded by Raman spectroscopy. This strong electron-phonon coupling favors high effective bandwidth and gain bandwidth values of the laser emission (4F3/2 → 4I11/2) of Nd3+ ions. The electric-dipole oscillator strengths of all the Nd3+ absorption transitions, and in particular that of the hypersensitive transition (4I9/2 → 4G5/2), are enhanced by this great structural distortion of the host. Broadband laser amplification of the 4F3/2 → 4I11/2 emission (1062 nm) of Nd3+ ions in the BBONd glass pumped at 805 nm (4I9/2 → 4F5/2 + 2H9/2) is evaluated through the main fluorescent parameters in competition with non-radiative processes. In general, the BBONd glass exhibits spectroscopic parameters comparable with those reported in the literature for broadband laser amplification into the IR region.

  20. Comparisons in Neutron Detection, as modeled by MCNPX, in Li-6 Glass, HE-3, BF-3, and Borated PVT

    SciTech Connect

    Lawrence Lakeotes, Craig Marianno

    2009-04-03

    With the potential shortage of He-3 being reported by venders, it is important to consider other materials for neutron detection. Traditional neutron detectors are composed of BF-3 and He-3. Recently Li-6 Glass and borated PVT have been presented as possible replacements. This work will compare the relative detection efficiencies and consider other factors to determine the most appropriate neutron detection material.

  1. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    NASA Astrophysics Data System (ADS)

    Raghunatha, S.; Eraiah, B.

    2016-05-01

    Holmium doped lithium-antimony-lead borate glasses having 1mol% AgNO3 with composition 50B2O3-20PbO-25Sb2O3-5Li2O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range of 2.31 to 2.37.

  2. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses.

    PubMed

    Gu, Yifei; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E

    2013-11-01

    Previous studies have evaluated the capacity of porous scaffolds composed of a single bioactive glass to regenerate bone. In the present study, scaffolds composed of a mixture of two different bioactive glasses (silicate 13-93 and borate 13-93B3) were created and evaluated for their response to osteogenic MLO-A5 cells in vitro and their capacity to regenerate bone in rat calvarial defects in vivo. The scaffolds, which have similar microstructures (porosity=58-67%) and contain 0, 25, 50 and 100 wt.% 13-93B3 glass, were fabricated by thermally bonding randomly oriented short fibers. The silicate 13-93 scaffolds showed a better capacity to support cell proliferation and alkaline phosphatase activity than the scaffolds containing borate 13-93B3 fibers. The amount of new bone formed in the defects implanted with the 13-93 scaffolds at 12 weeks was 31%, compared to values of 25, 17 and 20%, respectively, for the scaffolds containing 25, 50 and 100% 13-93B3 glass. The amount of new bone formed in the 13-93 scaffolds was significantly higher than in the scaffolds containing 50 and 100% 13-93B3 glass. While the 13-93 fibers were only partially converted to hydroxyapatite at 12 weeks, the 13-93B3 fibers were fully converted and formed a tubular morphology. Scaffolds composed of an optimized mixture of silicate and borate bioactive glasses could provide the requisite architecture to guide bone regeneration combined with a controllable degradation rate that could be beneficial for bone and tissue healing. PMID:23827095

  3. Luminescent thermochromism in potassium-alumina-borate glass with copper-containing molecular clusters at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Babkina, Anastasiya N.; Nikonorov, Nikolaij V.; Shakhverdov, Teimur A.; Shirshnev, Pavel S.; Sidorov, Alexander I.

    2014-02-01

    It is experimentally shown that a considerable luminescent thermochromic effect occurs in potassium-alumina-borate (PAB) glasses with copper-containing molecular clusters. This effect is manifested in a reversible blue spectral shift of luminescence band about 100 nm and its narrowing, with negligible change of luminescence amplitude in maximum during heating from 20 up to 300 °C. Luminescence and excitation spectra of PAB glass at different temperatures are presented. It is shown that the temperature rise results in a red spectral shift of excitation bands and in their broadening.

  4. Thermoluminescence properties of CaO-B2O3 glass system doped with GeO2

    NASA Astrophysics Data System (ADS)

    Tengku Kamarul Bahri, T. N. H.; Wagiran, H.; Hussin, R.; Hossain, I.; Kadni, T.

    2014-09-01

    The aim of this study is to investigate the thermoluminescence properties of germanium doped calcium borate glass for thermoluminescence dosimeter used. Glasses with composition (30-x) CaO-70B2O3: xGeO2 where x=0.1, 0.2, 0.3, 0.4 and 0.5 mol% were prepared using a melt-quenching method. The glasses were irradiated to 60Co gamma ray with doses ranging from 0.5 Gy to 4.0 Gy. The amorphous phases were identified for all glass samples. The glow curves were analyzed to determine various characterizations of a thermoluminescence dosimeter of the glass. It was found that the sample with a concentration of 0.1 mol% GeO2 has the best thermoluminescence characteristics such as linearity, sensitivity, fading characteristic, minimum detectable dose and effective atomic number. The results clearly showed that germanium doped calcium borate glass has a potential to be considered as the thermoluminescence dosimeter.

  5. Melting and freezing of spherical bismuth nanoparticles confined in a homogeneous sodium borate glass

    NASA Astrophysics Data System (ADS)

    Kellermann, G.; Craievich, A. F.

    2008-08-01

    The melting temperature and the crystallization temperature of Bi nanoclusters confined in a sodium borate glass were experimentally determined as functions of the cluster radius. The results indicate that, on cooling, liquid Bi nanodroplets exhibit a strong undercooling effect for a wide range of radii. The difference between the melting temperature and the freezing temperature decreases for decreasing radius and vanishes for Bi nanoparticles with a critical radius R=1.9nm . The magnitude of the variation in density across the melting and freezing transitions for Bi nanoparticles with R=2nm is 40% smaller than for bulk Bi. These experimental results support a basic core-shell model for the structure of Bi nanocrystals consisting of a central crystalline volume surrounded by a structurally disordered shell. The volume fraction of the crystalline core decreases for decreasing nanoparticle radius and vanishes for R=1.9nm . Thus, on cooling, the liquid nanodroplets with R<1.9nm preserve, across the liquid-to-solid transformation, their homogeneous and disordered structure without crystalline core.

  6. Structural and morphological transformations of BaTiO3 nanocrystals in thin layers of borate oxide glasses

    NASA Astrophysics Data System (ADS)

    Kedrov, V. V.; Shmyt'ko, I. M.

    2015-02-01

    The influence of thin layers (2-15 μm) of some oxide glass melts on BaTiO3 nanocrystallites has been investigated using X-ray diffractometry and scanning electron microscopy. It has been shown that lead borate and sodium borate glass melts bring about the dissolution of BaTiO3 nanocrystallites and the subsequent crystallization in glasses of lead titanate PbTiO3 and sodium titanate Na2TiO3, respectively. It has been found that thin layers of melts of these glasses have a strong orientation effect on crystallites of the PbTiO3 and Na2TiO3 compounds newly synthesized from barium titanate. The orientation effect exerted by these glass layers results in the formation of a pronounced texture of the perovskite crystallites with the texture axes oriented along the [100] and [001] directions parallel to the surface normal of the substrate for lead titanate and the orientation of the planes of the film surface for the sodium titanium oxide.

  7. Characterization of the glass-to-vitroceramic transition in yttrium aluminum borate laser glasses using solid state NMR.

    PubMed

    Deters, Heinz; Eckert, Hellmut

    2012-02-01

    The crystallization of laser glasses in the system (Y(2)O(3))(0.2){((Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 ≤ x ≤ 0.40) doped with 0.5 mol% of ytterbium oxide has been investigated by x-ray powder diffraction, and various solid state NMR techniques. The crystallization process has been analyzed in a quantitative fashion by high-resolution solid state (11)B, (27)Al, and (89)Y NMR spectroscopy as well as (11)B{(27)Al} and (27)Al{(11)B} rotational echo double resonance (REDOR) experiments. The homogeneous glasses undergo major phase segregation processes resulting in crystalline Al(5)BO(9) (historically denoted as Al(18)B(4)O(33)), YBO(3), crystalline YAl(3)(BO(3))(4), residual glassy B(2)O(3), and an additional yet not identified crystalline phase ("X-phase"). PMID:22244244

  8. Non-bridging oxygens in borate glasses: characterization by 11B and 17O MAS and 3QMAS NMR.

    PubMed

    Stebbins, J F; Zhao, P; Kroeker, S

    2000-05-01

    The concentrations of non-bridging oxygens (NBO) in oxide glasses has major effects on their properties and on those of their precursor glass melts. In borate and borosilicate glasses, the presence of NBO bonded to boron has generally been inferred from 11B NMR spectra and mass balance considerations. Here we report the direct observation of such NBO using 17O MAS and 3QMAS techniques, and compare estimates of their populations with those derived from high-resolution 11B MAS spectra. For the latter, two independent methods are used, based on the ratios of trigonal to tetrahedral boron and on the concentrations of trigonal boron sites with large quadrupolar asymmetry parameters. We include data on crystalline sodium pyroborate (Na4B2O5) and sodium metaborate (NaBO2), and several sodium and barium borate glasses. 17O chemical shifts and quadrupolar coupling constants for NBO bonded to boron vary considerably depending on their coordination environment. In borosilicates, peaks for this species may be hidden by overlap with B-O-Si or Si-O-Si resonances. PMID:10811425

  9. Electronic polarizability and interaction parameter of gadolinium tungsten borate glasses with high WO{sub 3} content

    SciTech Connect

    Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi; Dimitrov, Vesselin; Komatsu, Takayuki

    2014-12-15

    Glasses with the compositions of 25Gd{sub 2}O{sub 3}–xWO{sub 3}–(75−x)B{sub 2}O{sub 3} with x=25–65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(n{sub o}), and interaction parameters A(n{sub o}) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO{sub 3} contents. The optical basicity of the glasses increases monotonously with the substitution of WO{sub 3} for B{sub 2}O{sub 3}, and contrary the interaction parameter decreases monotonously with increasing WO{sub 3} content. A good linear correlation was observed between Λ(n{sub o}) and A(n{sub o}) and between the glass transition temperature and A(n{sub o}). It was proposed that Gd{sub 2}O{sub 3} oxide belongs to the category of basic oxide with a value of A(n{sub o})=0.044 Å{sup −3} as similar to WO{sub 3}. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO{sub 3} and Gd{sub 2}O{sub 3} contents would be a floppy network system consisting of mainly basic oxides. - Graphical abstract: This figure shows the correlation between the optical basicity and interaction parameter in borate-based glasses. The data obtained in the present study for Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses are locating in the correlation line for other borate glasses. These results shown in Fig. 8 clearly demonstrate that Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses having a wide range of optical basicity and interaction parameter are regarded as glasses consisting of acidic and basic oxides. - Highlights: • Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses with high WO{sub 3} contents were prepared. • Electronic polarizability and interaction parameter were estimated. • Optical basicity increases monotonously with increasing WO{sub 3} content. • Interaction parameter decreases monotonously with increasing WO{sub 3} content. • Glasses with high WO{sub 3}contents is regarded as a floppy network system.

  10. LITHIUM-7, BORON-10, BORON-11, and OXYGEN-17 Nuclear Magnetic Resonance Studies of Lithium Borate Glasses and Related Compounds.

    NASA Astrophysics Data System (ADS)

    Feller, Steven Allen

    1980-06-01

    Nuclear Magnetic Resonance (NMR) studies of lithium borate glasses employing the two stable isotopes of boron, B('10) and B('11), were used in the formulation of a consistent structural model throughout the glass-forming region. The ideas of Krogh-Moe were used in which the glasses are viewed as mixtures of units found in corresponding crystalline compounds. For low-alkali oxide content glasses the results are in good agreement with those obtained by Jellison and Bray in sodium borate glasses. These glasses are viewed as being mixtures of boroxol, tetraborate and diborate units. Intermediate-alkali oxide content glasses satisfy a model proposed in this thesis in which diborate and tetraborate units are destroyed to form loose N('4) and metaborate units. For high-alkali oxide content glasses the results are in good agreement with a model proposed by Yun and Yun and Bray in which loose N('4), metaborate, pyroborate and orthoborate units exist. Li(,2)O, enriched in O('17), was synthesized in such a way that H(,2)O enriched to 54% O('17) was efficiently transferred into Li(,2)O. It is hypothesized that the synthesis of Li(,2)O enriched in O('17) as well as the synthesis of the other alkali oxides (e.g. Na(,2)O, K(,2)O, Rb(,2)O and Cs(,2)O) will greatly enlarge the range of O('17) NMR studies of glasses and related compounds. Li('7) and O('17) NMR studies of Li(,2)O revealed structureless derivative spectra of linewidths 9.9 gauss and 5.8 gauss, respectively. These experimental results were compared to a second-moment calculation of the linewidths using the anti-fluorite crystal structure for Li(,2)O. O('17) NMR studies of two lithium borate compounds, lithium metaborate (Li(,2)O(.)B(,2)O(,3)) and lithium orthoborate (3Li(,2)O(.)B(,2)O(,3)) were used to identify the quadrupole parameters of bridging and non-bridging oxygen atoms. These results, in conjunction with B('11) NMR results from these compounds, were used to determine charge densities associated with the boron and oxygen atoms by means of the simplifying approximations of Townes and Dailey.

  11. The effect of semiconducting CdSe and ZnSe nanoparticles on the fluorescence of Sm3+ in lead borate glasses

    NASA Astrophysics Data System (ADS)

    Mallur, Saisudha; Fatokun, Stephen; Babu, P. K.

    2015-03-01

    We studied the fluorescence spectra of Sm3+ doped lead borate glasses containing zinc selenide (ZnSe) and cadmium selenide (CdSe) nanoparticles with the following compositions (x PbO: 96.5-x B2O3:0.5 Sm2O3:3ZnSe/CdSe, x =36.5 and 56.5 mol%). These glass samples are prepared using the melt-quenching technique. Each sample is annealed just below the glass transition temperature at 400°C for 3 hrs and 6 hrs. We have chosen PbO-B2O3 glasses to incorporate Sm3+ ions because they have large glass forming region, high refractive index, and good physical and thermal stability. Fluorescence spectra of these samples are obtained with the excitation wavelength at 477 nm. Four fluorescence transitions are observed at 563 nm, 598 nm, 646 nm and 708 nm. The transition at 646 nm is found to be a hypersensitive transition that strongly depends on the covalency of the Sm-O bond and the asymmetry of the crystal field at Sm site. The 646 nm/598 nm fluorescence intensity ratio has been studied for different annealing times and PbO concentration for both ZnSe and CdSe samples. The presence of CdSe nanoparticles is seen to produce the greatest influence on the fluorescence intensity ratio. This could be due to the size of the CdSe nanoparticles and covalency of the Sm-O bond.

  12. Co-doped Barium Phosphate Glass

    NASA Astrophysics Data System (ADS)

    Jiménez, J. A.

    2014-09-01

    Co-doping of a P2O5:BaO glass matrix with divalent tin and trivalent samarium ions has been realized by the melt-quenching technique with the purpose of investigating the material's luminescent properties. Photoluminescence excitation spectra obtained by monitoring Sm3+ 4G5/2 emission showed a broad excitation band around 290 nm (absent in a Sm3+-doped reference), typical of donor/acceptor energy transfer. Under such excitation, the material exhibits a reddish-white emission. Time-resolved spectra recorded under the 290-nm excitation (non-resonant with Sm3+ excitation peaks) exposed a broad blue-white band characteristic of twofold-coordinated Sn centers and orange-red emission bands of Sm3+ ions, which appeared well separated in time in accord with their emission decay dynamics. Consequently, the data indicate that light absorption occurs at Sn centers (donors) followed by energy transfer to samarium ions (acceptors) which results in populating the 4G5/2 emitting state in Sm3+. Energy transfer pathways likely resulting in the sensitization of Sm3+ photoluminescence are discussed. Results are put into context in terms of the potential of SnO and rare-earth co-doped barium phosphate glasses for use in white light-emitting devices.

  13. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Soliman, A. A.; Kashif, I.

    2010-01-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) have been employed to investigate the copper oxide content dependence of the glass transition temperatures data, activation energy for the glass transition Et, glass stability GS, fragility index Fi, the glass-forming ability (GFA) and crystallization behavior of {(100- x) mol% Li 2B 4O 7- x mol% CuO} glass samples, where x=0-40 mol% CuO. From the dependence of the glass transition temperature Tg on the heating rate β, the fragility, Fi, and the activation energy, Et, have been calculated. It is seen that Fi and Et are attained their minimum values at 0glass-forming ability and the supercooled liquid region SCL. Thermal stability has been monitored through the calculation of the temperature difference T x- Tg, SCL region and the GS. The GFA has been investigated on the basis of Hrubÿ parameter KH, which is a strong indicator of GFA, and the relaxation time. Results of GFA are in good agreement with the fragility index, Fi, calculations indicating that {90Li 2B 4O 7·10CuO} is the best glass former. The stronger glass forming ability has decreasing the fragility index. XRD result indicates that no fully amorphous samples but a mixture of crystalline and amorphous phases are formed in the samples containing x>25 mol% CuO and below it composed of glassy phase. Increasing the CuO content above 25 mol% helps the crystallization process, and thus promotes a distinct SCL region. XRD suggests the presence of micro-crystallites of remaining residual amorphous matrix by increasing the CuO content.

  14. Defect formation of gamma irradiated MoO3-doped borophosphate glasses.

    PubMed

    Abdelghany, A M; Ouis, M A; Azooz, M A; Ellbatal, H A

    2013-10-01

    Borophosphate glasses of the basic composition (50P2O5, 30B2O3, 20Na2O mol%) containing different doping molybdenum oxide percents (0.16-0.98) were prepared by melting and annealing method. Infrared and UV-visible absorption spectroscopic measurements before and after gamma irradiation were carried out. The base undoped borophosphate glass reveals strong UV absorption bands but with no visible bands and these UV bands are related to unavoidable trace iron impurities contaminated within the raw materials used for the preparation of this glass. The introduction of MoO3 (in doping ratio) into this glass produces an additional UV band and a broad visible band and their intensities increase with the MoO3 content. These additional bands are related to both Mo(6+) and Mo(5+) ions. The base undoped borophosphate glass shows retardation effect towards gamma irradiation. Gamma irradiation produces marked changes in the UV-visible spectra of Mo-O3-doped glasses. Such changes can be related to the production of induced defects from photochemical reactions and the generation of positive holes. Infrared absorption spectrum of the undoped borophosphate glass reveals complex vibrational bands due to the presence of both phosphate groups beside borate groups with triangular and tetrahedrally coordinated units. The introduction of MoO3 causes some limited variations in the FTIR spectra. Gamma irradiation produces minor changes in the intensities of some IR bands. Such changes are related to the changes in the bond angles and/or bond lengths of few structural groups upon irradiation while the main structural groups remain unchanged in their number and position. PMID:23800775

  15. Photosensitivity of rare-earth-doped glasses

    NASA Astrophysics Data System (ADS)

    Williams, Glen M.; Dutt, David A.; Ruller, Jacqueline A.; Griscom, David L.; Jewell, John M.; Crahan, Kathleen K.; Friebele, E. J.

    1993-12-01

    Rare earth-doped glasses exhibit high initial photosensitivity but their response saturates at relatively modest values of (Delta) n (approximately 5 X 10-7), which greatly limits their usefulness for device applications. In the context of our model, saturation results from either exhaustion of photosensitive rare earth sites, trap sites, or through competition between two photon creation and one photon bleaching processes. In this paper we report the results of new experiments designed to further elucidate the photosensitivity process with specific emphasis on the saturation mechanisms(s). Based on these new experimental results we present a refinement of our earlier model.

  16. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model.

    PubMed

    Zhang, Xin; Jia, Weitao; Gu, Yifei; Xiao, Wei; Liu, Xin; Wang, Deping; Zhang, Changqing; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Zhou, Nai

    2010-08-01

    The treatment of chronic osteomyelitis (bone infection) remains a clinical challenge. In this work, pellets composed of a chitosan-bonded mixture of borate bioactive glass particles (<50microm) and teicoplanin powder (antibiotic), were evaluated in vitro and in vivo for treating chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) in a rabbit model. When immersed in phosphate-buffered saline, the pellets showed sustained release of teicoplanin over 20-30 days, while the bioactive glass converted to hydroxyapatite (HA) within 7 days, eventually forming a porous HA structure. Implantation of the teicoplanin-loaded pellets in a rabbit tibia osteomyelitis model resulted in the detection of teicoplanin in the blood for about 9 days. The implants converted to a bone-like HA graft, and supported the ingrowth of new bone into the tibia defects within 12 weeks of implantation. Microbiological, histological and scanning electron microscopy techniques showed that the implants provided a cure for the bone infection. The results indicate that the teicoplanin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone ingrowth, could provide a method for treating chronic osteomyelitis. PMID:20434766

  17. Structure of Alkali Borate Glasses at High Pressure: B and Li K-Edge Inelastic X-Ray Scattering Study

    SciTech Connect

    Lee, Sung Keun; Eng, Peter J.; Mao, Ho-kwang; Meng, Yue; Shu, Jinfu

    2008-06-16

    We report the first in situ boron K-edge inelastic x-ray scattering (IXS) spectra for alkali borate glasses (Li{sub 2}B{sub 4}O{sub 7}) at high pressure up to 30 GPa where pressure-induced coordination transformation from three-coordinated to four-coordinated boron was directly probed. Coordination transformation (reversible upon decompression) begins around 5 GPa and the fraction of four-coordinated boron increases with pressure from about 50% (at 1 atm) to more than 95% (at 30 GPa) with multiple densification mechanisms, evidenced by three distinct pressure ranges for (d{sup [4]}B/dP){sub T}. The lithium K-edge IXS spectrum for Li-borate glasses at 5 GPa shows IXS features similar to that at 1 atm, suggesting that the Li environment does not change much with pressure up to 5 GPa. These results provide improved understanding of the structure of low-z glass at high pressure.

  18. Molecular dynamics investigation of mixed-alkali borate glasses: Short-range order structure and alkali-ion environments

    NASA Astrophysics Data System (ADS)

    Vegiri, A.; Varsamis, C.-P. E.; Kamitsos, E. I.

    2009-11-01

    Structural properties of mixed-alkali borate glasses, 0.3[(1-x)Li2O-xCs2O]-0.7B2O3 and 0.3[(1-x)Li2O-xNa2O]-0.7B2O3 , have been studied by molecular dynamics simulations at T=300K and for several values of the alkali mixing parameter, x , to explore structural foundations of the mixed-alkali effect (MAE). The short-range order (SRO) structure was found to consist of borate tetrahedra, B∅4- , and of neutral, B∅3 , and charged, B∅2O- , triangular units [ ∅=bridging oxygen atom]. The abundance of B∅4- units was found to decrease from Li to Cs and to exhibit negative deviation from linearity in Li-Cs glasses. However, no appreciable change in SRO structure was detected in mixed Li-Na glasses. Even though alkali metal (M) ions occupy in mixed glasses sites, i.e., coordination environments with O atoms, similar to those formed in single alkali borates, mixing was found to affect the M-O bonding properties of dissimilar alkalis in an opposite manner. Thus, for both systems investigated here the Li ion-coordination environment was found to become better defined and the Li-O interactions to strengthen upon alkali mixing, whereas the Cs-O and Na-O interactions become progressively weakened. The origin of these trends was traced to cationic environments formed around nonbridging oxygen (NBO) atoms in glass; it was found that the dominant cation configurations around NBOs consist of dissimilar cations in mixed-alkali glasses. The formation of dissimilar ion pairs affects by polarization effects the bonding and vibrational properties of metal ions in their oxide sites. This was demonstrated for Li-Cs glasses by both experimental and calculated far infrared spectra, where the metal ion-oxide site vibrations are strongly active. It was discussed that the preference of unlike-alkali ion pairing around NBOs and the consequent drastic reduction in the number of NBOs that sense like-cations could provide a structural explanation for the MAE.

  19. Physical and optical properties of magnesium sulfoborate glasses doped Dy3+ ions

    NASA Astrophysics Data System (ADS)

    Dalhatu, S. A.; Deraman, Karim; Hussin, R.

    2016-04-01

    The optical properties of alkaline earth borate glasses doped with rare earth are attractive field of research due to many optical applications. We have concentrated on the physical and optical properties of MgO-SO4-B2O3 glass with different concentrations of Dy3+ ions. The samples of glass were prepared using the melting quenching technique. The physical parameter and optical properties of the prepared glass were determined. It was observed that the density of the glass samples increased and the molar volume reduced with respect to Dy3+ ions content. Dy3+: MgO-SO4-B2O3 glass displayed 10 absorption bands with hypersensitive transition around 1265 nm (6H15/6 →6F11/2). Two intense luminescence emissions were observed at 482 nm (4F9/2 →6H15/2: blue) and 573 nm (4F9/2 →6H13/2: yellow) and weak band at 662 nm (4F9/2 →6H11/2: red) with excitation wavelength 380 nm. A strong enhancement in the emission peaks at 573 nm in the yellow region was observed with the 0.07 mol% concentration of dysprosium oxide, which may assign to the energy transfer from Mg2+ to Mg3+ ions. Beyond the optimum concentration, contrary result was observed.

  20. Energy transfer in silver and cerium co-doped glass

    NASA Astrophysics Data System (ADS)

    Kim, Taehong; Kim, Daejin; Jang, Wooyoung; Lim, Ki-Soo; Lee, Sunkyun; Cho, Yong-Hoon

    The spectroscopic characterizations of sodium borate glasses codoped with Ce3+ and Ag+ prepared by melt quench method are done using absorption, excitation and emission spectra. The nonradiative energy transfer between Ag+ and Ce3+ ions process is observed. With fs-laser irradiation, we formed silver aggregates and studied efficient resonant energy transfer from Ce3+ ions to silver aggregates by analyzing the emission of Ce3+ ions and the absorption of the silver aggregates.

  1. IR luminescence in bismuth-doped germanate glasses and fibres

    SciTech Connect

    Pynenkov, A A; Firstov, Sergei V; Panov, A A; Firstova, E G; Nishchev, K N; Bufetov, Igor' A; Dianov, Evgenii M

    2013-02-28

    We have studied the optical properties of lightly bismuth doped ({<=}0.002 mol %) germanate glasses prepared in an alumina crucible. The glasses are shown to contain bismuth-related active centres that have been identified previously only in bismuth-doped fibres produced by MCVD. With increasing bismuth concentration in the glasses, their luminescence spectra change markedly, which is attributable to interaction between individual bismuth centres. (optical fibres)

  2. Probing and modeling of pressure-induced coordination transformation in borate glasses: Inelastic x-ray scattering study at high pressure

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Eng, Peter J.; Mao, Ho-Kwang; Shu, Jinfu

    2008-12-01

    Here, we report on the in situ synchrotron inelastic x-ray scattering spectra of Na-borate glasses at high pressure up to 25 GPa. The pressure-induced boron coordination transformation from B[3] to B[4] is linear with pressure characterized by a single value of (∂B[3]/∂P)T . Previous studies of Li-borate and pure-borate glasses show a nonlinear transformation with multiple (∂B[3]/∂P)T values for different pressure ranges, revealing the important role cation field strength plays in densification and pressure-induced structural changes. Considering the distribution of the energy difference between low- and high-pressure states (Δɛ) in the energy landscape and the variance of the ratio Δɛ to its pressure gradient (∂Δɛ/∂P)T as a measure of network flexibility with pressure, an amorphous system with a large variance in Δɛ at 1 atm and/or a small (∂Δɛ/∂P)T may undergo a gradual coordination transformation (e.g., Na borates). In contrast, a system with the opposite behavior (e.g., Li borates) undergoes an abrupt coordination transformation. The results and concepts of this study thus can shed light on opportunities to study the effect of composition on the nature of densification in low- z oxide and other archetypal glasses and melts.

  3. Role of electron transfer in Ce{sup 3+} sensitized Yb{sup 3+} luminescence in borate glass

    SciTech Connect

    Sontakke, Atul D. Katayama, Yumiko; Zhuang, Yixi; Tanabe, Setsuhisa; Ueda, Jumpei; Dorenbos, Pieter

    2015-01-07

    In a Ce{sup 3+}-Yb{sup 3+} system, two mechanisms are proposed so far namely, the quantum cutting mechanism and the electron transfer mechanism explaining Yb{sup 3+} infrared luminescence under Ce{sup 3+} excitation. Among them, the quantum cutting mechanism, where one Ce{sup 3+} photon (ultraviolet/blue) gives rise to two Yb{sup 3+} photons (near infrared) is widely sought for because of its huge potential in enhancing the solar cell efficiency. In present study on Ce{sup 3+}-Yb{sup 3+} codoped borate glasses, Ce{sup 3+} sensitized Yb{sup 3+} luminescence at ∼1 μm have been observed on Ce{sup 3+} 5d state excitation. However, the intensity of sensitized Yb{sup 3+} luminescence is found to be very weak compared to the strong quenching occurred in Ce{sup 3+} luminescence in Yb{sup 3+} codoped glasses. Moreover, the absolute luminescence quantum yield also showed a decreasing trend with Yb{sup 3+} codoping in the glasses. The overall behavior of the luminescence properties and the quantum yield is strongly contradicting with the quantum cutting phenomenon. The results are attributed to the energetically favorable electron transfer interactions followed by Ce{sup 3+}-Yb{sup 3+} ⇌ Ce{sup 4+}-Yb{sup 2+} inter-valence charge transfer and successfully explained using the absolute electron binding energies of dopant ions in the studied borate glass. Finally, an attempt has been presented to generalize the electron transfer mechanism among opposite oxidation/reduction property dopant ions using the vacuum referred electron binding energy (VRBE) scheme for lanthanide series.

  4. Effect of Co(2+) and Ni(2+)-doped zinc borate nano crystalline powders by co-precipitation method.

    PubMed

    Shim, Jaesool; Venkata Reddy, Ch; Sarma, G V S S; Narayana Murthy, P; Ravikumar, R V S S N

    2015-05-01

    A simple co-precipitation method has been used for the synthesis of Co(2+) and Ni(2+)-doped zinc borate nanopowders. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV/Vis absorption, Scanning electron microscope (SEM) with EDS and photoluminescence (PL) spectroscopies techniques has been employed for their characterization. Powder X-ray diffraction data reveals that the crystal structure belongs to monoclinic for both as-prepared samples. SEM images showed surface morphology of the prepared samples. Optical absorption spectra showed the characteristic bands of doped ions in octahedral site symmetry. From the optical absorption data crystal field and inter-electronic repulsion parameters are evaluated. The FT-IR spectra showed the characteristic vibrational bands related to ZnO, BO3 and BO4 molecules. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions. PMID:25706597

  5. Synthesis and photoluminescence properties of Pb2+ doped inorganic borate phosphor NaSr4(BO3)3

    NASA Astrophysics Data System (ADS)

    Chauhan, A. O.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    A series of Inorganic borate phosphors NaSr4(BO3)3 doped with Pb2+ was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb2+ concentration for the NaSr4(BO3)3 were studied in details. The concentration quenching of Pb2+ doped NaSr4(BO3)3 was observed at 0.02 mol. The Stokes shifts of NaSr4(BO3)3: Pb2+ phosphor was calculated to be 7574 cm-1.

  6. Effect of Co2+ and Ni2+-doped zinc borate nano crystalline powders by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Shim, Jaesool; Venkata Reddy, Ch.; Sarma, G. V. S. S.; Narayana Murthy, P.; Ravikumar, R. V. S. S. N.

    2015-05-01

    A simple co-precipitation method has been used for the synthesis of Co2+ and Ni2+-doped zinc borate nanopowders. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV/Vis absorption, Scanning electron microscope (SEM) with EDS and photoluminescence (PL) spectroscopies techniques has been employed for their characterization. Powder X-ray diffraction data reveals that the crystal structure belongs to monoclinic for both as-prepared samples. SEM images showed surface morphology of the prepared samples. Optical absorption spectra showed the characteristic bands of doped ions in octahedral site symmetry. From the optical absorption data crystal field and inter-electronic repulsion parameters are evaluated. The FT-IR spectra showed the characteristic vibrational bands related to ZnO, BO3 and BO4 molecules. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions.

  7. Effect of B 2O 3 on luminescence of erbium doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Dai, Shixun; Wang, Xunsi

    2007-02-01

    The B 2O 3 was introduced into the Er 3+ doped TeO 2-ZnO-Na 2O glass to increase the phonon energy of the host. The effect of B 2O 3 on the non-radiative rate of the 4I 11/2 → 4I 13/2 transition of Er 3+, the lifetime of the 4I 11/2 and 4I 13/2 levels, the green and red upconversion emissions intensity, and the 4I 13/2 → 4I 15/2 emission intensity was discussed. The results show that the phonon energy of boro-tellurite glass is close to that of germanate glass and is quite smaller than that of borate glass. The lifetime of 4I 11/2 level and the upconversion emissions decrease with increasing B 2O 3 concentration. The higher OH group concentration presented in the boro-tellurite glass may shorten the lifetime of 4I 13/2 level and also reduce the quantum efficiency of 4I 13/2 → 4I 15/2 emission. The future dehydrating procedures are suggested to enhance the efficiency of amplification at 1.5 μm band.

  8. Influence of modifier oxides on spectroscopic properties of Sm3+ doped lithium fluoroborate glass

    NASA Astrophysics Data System (ADS)

    Ratnakaram, Y. C.; Balakrishna, A.; Rajesh, D.; Seshadri, M.

    2012-11-01

    Sm3+ doped lithium fluoro-borate glasses with different modifier oxides (Li2B4O7-BaF2-NaF-MO where M = Mg, Ca, Cd and Pb) and combinations of modifier oxides (Li2B4O7-BaF2-NaF-MgO+CaO, Li2B4O7-BaF2-NaF-CdO+PbO) were prepared by means of melt quenching method. These samples were characterized by XRD, FTIR, optical absorption and fluorescence techniques at room temperature. The XRD profiles of all the glasses confirm their amorphous nature and the FTIR spectra reveal the presence of BO3 and BO4 units along with the strong OH- groups in the glass matrices. The influence of modifier oxides on Judd-Ofelt (J-O) intensity parameters and intensity of the emission lines are reported. Judd-Ofelt theory is used to study the spectral properties and to calculate the radiative transition probabilities (AT), branching ratios (βR), integrated absorption cross sections (Σ) and radiative lifetimes (τR) for certain spectral transitions. From the emission spectral analysis, emission cross-sections (σP) are calculated for the four emission transitions, 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 of Sm3+ ion in different lithium fluoro-borate glasses. Among the four transitions, it is observed that the transition 4G5/2 → 6H7/2 has higher emission cross-section (σP) in all the glass matrices, except in Mg, Cd and Mg-Ca glass matrices. The non-exponential nature of the luminescence decay curves of 4G5/2 level of Sm3+ doped glass matrices are also reported.

  9. Effect of pyrophosphate ions on the conversion of calciumlithiumborate glass to hydroxyapatite in aqueous phosphate solution

    PubMed Central

    Fu, Hailuo; Day, Delbert E.; Huang, Wenhai

    2010-01-01

    The conversion of glass to a hydroxyapatite (HA) material in an aqueous phosphate solution is used as an indication of the bioactive potential of the glass, as well as a low temperature route for preparing biologically useful materials. In this work, the effect of varying concentrations of pyrophosphate ions in the phosphate solution on the conversion of a calciumlithiumborate glass to HA was investigated. Particles of the glass (150355 m) were immersed for up to 28 days in 0.25 M K2HPO4 solution containing 00.1 M K4P2O7. The kinetics of degradation of the glass particles and their conversion to HA were monitored by measuring the weight loss of the particles and the ionic concentration of the solution. The structure and composition of the conversion products were analyzed using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. For K4P2O7 concentrations of up to 0.01 M, the glass particles converted to HA, but the time for complete conversion increased from 2 days (no K4P2O7) to 10 days (0.01 M K4P2O7). When the K4P2O7 concentration was increased to 0.1 M, the product consisted of an amorphous calcium phosphate material, which eventually crystallized to a pyrophosphate product (predominantly K2CaP2O7 and Ca2P2O7). The consequences of the results for the formation of HA materials and devices by the glass conversion route are discussed. PMID:20680413

  10. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions.

    PubMed

    Huang, Wenhai; Day, Delbert E; Kittiratanapiboon, Kanisa; Rahaman, Mohamed N

    2006-07-01

    Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37 degrees Celsius. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO(2) with B(2)O(3). Higher B(2)O(3) content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO(2) in a Na-depleted core. The concentration of Na(+) in the phosphate solution increased with reaction time whereas the PO(4) (3-) concentration decreased, both reaching final limiting values at a rate that increased with the B(2)O(3) content of the glass. However, the Ca(2+) concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K(2)HPO(4) and K(2)CO(3) produced a carbonate-substituted HA but the presence of the K(2)CO(3) had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process. PMID:16770542

  11. Structural studies of some phospho-borate glasses using ultrasonic pulse-echo technique, DSC and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaafar, M. S.; Afifi, H. A.; Mekawy, M. M.

    2009-06-01

    Glasses in the system (95- x) [0.25 Na 2O-0.75 B 2O 3]- x P 2O 5-5 Fe 2O 3 (0⩽ x⩽15 mol%), have been prepared by the melt quenching technique. Elastic properties and FT-IR spectroscopic studies have been employed to study the role of P 2O 5 on the structure of the glass system. Elastic properties Poisson's ratio, micro-hardness and Debye temperature have been investigated using sound wave velocity measurements at 4 MHz (both longitudinal and shear) at room temperature. The results showed that the density and the molar volume increase as both sound velocities and the determined glass transition temperatures decrease with increasing the contents of P 2O 5. Infrared spectra of the glasses reveal that the borate network consists of diborate units and is affected by the increase in the concentration of P 2O 5 content as a second network former. These results are interpreted in terms of the replacement of the diborate units with B-O-B bridges by phosphate units with non-bridging oxygens (NBOs). Therefore, the elastic moduli are observed to decrease with the increase in P 2O 5 content.

  12. Effect of zinc-borate glass addition on the thermal properties of the cordierite/Al2O3 composites containing nano-sized spinel crystal.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-11-01

    Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km). PMID:24245313

  13. Surface characterization of silver-doped bioactive glass.

    PubMed

    Vernè, E; Di Nunzio, S; Bosetti, M; Appendino, P; Brovarone, C Vitale; Maina, G; Cannas, M

    2005-09-01

    A bioactive glass belonging to the system SiO(2)-CaO-Na(2)O was doped with silver ions by ion exchange in molten salts as well as in aqueous solution. The ion exchange in the solution was done to check if it is possible to prepare an antimicrobial material using a low silver content. The doped glass was characterized by means of X-ray diffraction, SEM observation, EDS analysis, bioactivity test (soaking in a simulated body fluid), leaching test (GFAAS analyses) and cytotoxicity test. It is demonstrated that these surface silver-doped glasses maintain, or even improve, the bioactivity of the starting glass. The measured quantity of released silver into simulated body fluid compares those reported in literature for the antibacterial activity and the non-cytotoxic effect of silver. Cytotoxicity tests were carried out to understand the effect of the doped surfaces on osteogenic cell adhesion and proliferation. PMID:15792537

  14. Structural and optical properties of Dy3+ doped Aluminofluoroborophosphate glasses for white light applications

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Mahesvaran, K.; Patel, Dinesh K.; Arunkumar, S.; Marimuthu, K.

    2014-11-01

    Dy3+ doped Aluminofluoroborophosphate glasses (BPAxD) have been prepared following conventional melt quenching technique and their structural and optical properties were explored through XRD, FTIR, optical absorption, excitation, emission and decay measurements. The coexistence of BO3 groups in borate rich domain and BO4 groups in phosphate rich domain have been confirmed through vibrational energy analysis. Negative bonding parameter (δ) values indicate that, the metal-ligand environment in the prepared glasses is of ionic in nature. The oscillator strength and the luminescent intensity Ωλ (λ = 2, 4 and 6) parameters are calculated using Judd-Ofelt theory. The radiative properties such as transition probability (A), stimulated emission cross-section (σpE) and branching ratios (β) have been calculated using JO intensity parameters and compared with the reported Dy3+ doped glasses. Concentration effect on Y/B intensity ratios and the CIE chromaticity coordinates were calculated for the generation of white light from the luminescence spectra. The color purity and the correlated color temperature were also calculated and the results are discussed in the present work. The decay of the 4F9/2 excited level is found to be single exponential for lower concentration and become non-exponential for higher concentration. The non-exponential behavior arises due to the efficient energy transfer between the Dy3+ ions through various non-radiative relaxation channels and the decay of the 4F9/2 excited level have been analyzed with IH model. Among the prepared glasses, BPA0.5D glass exhibits higher σpE, βR, σpE×σpE, σpE×Δλeff and η values for the 6H13/2 emission band which in turn specifies its suitability for white LEDs, laser applications and optical amplifiers.

  15. Photon-conversion and sensitization evaluation of Eu3+ in a borate glass system.

    PubMed

    Tian, Y M; Shen, L F; Pun, E Y B; Lin, H

    2016-02-20

    Photon conversion is exhibited in a borate (LKZBSB) glass system containing Eu3+, and the enhanced characteristic emissions of Eu3+ with the codoping of Ce3+ have been verified. A large Judd-Ofelt intensity parameter Ω2 of Eu3+ indicates a high asymmetrical and strong covalent environment around rare-earth (RE) ions in LKZBSB glasses and spontaneous emission probability and a maximum emission cross section of the dominant D50→F27 transition were derived to be 370  s-1 and 1.28×10-21  cm2, respectively, revealing the potential UV→visible photon-conversion capacity of Eu3+. Absolutely quantitative evaluation illustrates that Eu3+ is a favorable photon-conversion center to achieve high photon-conversion efficiency. The addition of Ce3+ is beneficial to realizing effective red emission of Eu3+, which possesses commercial value by decreasing the dopant of expensive europium compounds. As an expectation, this photon-conversion LKZBSB glass system can promote the development of a photon downconversion layer for solar cells, which are particularly used in outer space with intense UV radiation. PMID:26906599

  16. Thermal, structural and optical properties of Eu3+-doped zinc-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Surendra Babu, S.; Jang, Kiwan; Cho, Eun Jin; Lee, Hoseop; Jayasankar, C. K.

    2007-09-01

    Europium doped zinc-tellurite glasses modified with LiF, Na2O + Li2O and Na2O + Li2 O + Nb2O5 were prepared by the conventional melting procedure and their thermal, structural and optical properties were investigated. Differential thermal analysis curves in the temperature range 30-1200 °C at a heating rate of 10 °C min-1 were used to determine the thermal properties such as glass transition, crystallization and melting temperature. FT-IR spectra were used to analyse the glass structure. The spectroscopic properties including absorption and emission spectra and fluorescence lifetime of Eu3+ ions were measured. A strong red fluorescence is observed from the 5 D0 level of Eu3+ ions in these glasses. The relative luminescence intensity ratio (R) of 5D0 → 7F2 to 5D0 → 7F1 transitions has been evaluated to estimate the local site symmetry around the Eu3+ ions. The emission spectra of these glasses show a complete removal of degeneracy for the 5 D0 → 7F1 transition of Eu3+ ions. Based on the energy level data obtained from the absorption and emission measurements, free-ion energy level analysis has been carried out. Second rank crystal-field parameters have been calculated together with the crystal-field strength parameter by assuming the C2v symmetry for the Eu3+ ions in these glasses. The crystal-field parameters are found to be higher in binary zinc-tellurite glasses. The trend of variation of crystal-field strength with glass composition is found to be more or less opposite to that of R in the present glasses. The effect of temperature on the luminescence from 5D1 level is studied. The decay from the 5D0 level is found to be exponential and the lifetime is shorter than those found in Eu3+-doped borate, phosphate and fluoride based glasses.

  17. Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation.

    PubMed

    Abdelghany, A M; ElBatal, F H; Azooz, M A; Ouis, M A; ElBatal, H A

    2012-12-01

    Undoped and transition metals (3d TM) doped sodium borophosphate glasses were prepared. UV-visible absorption spectra were measured in the region 200-900nm before and after gamma irradiation. Experimental optical data indicate that the undoped sodium borophosphate glass reveals before irradiation strong and broad UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within the raw materials used for preparation of this base borophosphate glass. The TMs-doped glasses show absorption bands within the UV and/or visible regions which are characteristic to each respective TM ion in addition to the UV absorption observed from the host base glass. Infrared absorption spectra of the undoped and TMs-doped glasses reveal complex FTIR consisting of extended characteristic vibrational bands which are specific for phosphate groups as a main constituent but with the sharing of some vibrations due to the borate groups. This criterion was investigated and approved using DAT (deconvolution analysis technique). The effects of different TMs ions on the FTIR spectra are very limited due to the low doping level (0.2%) introduced in the glass composition. Gamma irradiation causes minor effect on the FTIR spectra specifically the decrease of intensities of some bands. Such behavior is related to the change of bond angles and/or bond lengths of some structural building units upon gamma irradiation. PMID:22995547

  18. Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; ElBatal, F. H.; Azooz, M. A.; Ouis, M. A.; ElBatal, H. A.

    2012-12-01

    Undoped and transition metals (3d TM) doped sodium borophosphate glasses were prepared. UV-visible absorption spectra were measured in the region 200-900 nm before and after gamma irradiation. Experimental optical data indicate that the undoped sodium borophosphate glass reveals before irradiation strong and broad UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within the raw materials used for preparation of this base borophosphate glass. The TMs-doped glasses show absorption bands within the UV and/or visible regions which are characteristic to each respective TM ion in addition to the UV absorption observed from the host base glass. Infrared absorption spectra of the undoped and TMs-doped glasses reveal complex FTIR consisting of extended characteristic vibrational bands which are specific for phosphate groups as a main constituent but with the sharing of some vibrations due to the borate groups. This criterion was investigated and approved using DAT (deconvolution analysis technique). The effects of different TMs ions on the FTIR spectra are very limited due to the low doping level (0.2%) introduced in the glass composition. Gamma irradiation causes minor effect on the FTIR spectra specifically the decrease of intensities of some bands. Such behavior is related to the change of bond angles and/or bond lengths of some structural building units upon gamma irradiation.

  19. EPR study of Yb-doped irradiated glasses

    NASA Astrophysics Data System (ADS)

    Ollier, N.; Planchais, R.; Boizot, B.

    2008-06-01

    Yb3+ reduction under β and γ irradiation has been studied in aluminoborosilicate glasses by EPR spectroscopy. From the Yb3+ EPR line variation, we demonstrate that more than one Yb3+ sites coexist in the pristine Yb-doped glasses. Reduction of Yb3+ into Yb2+ is observed for all integrated doses and Yb doping contents. For doses higher than 108 Gy, an Yb3+ ion environment change occurs, this change is correlated with a stabilization of the reduced Yb2+ state. The paramagnetic defect concentration displays a linear variation as a function of the logarithm of the dose. The glass doping with Yb2O3 leads to a substantial decrease of the defect concentration as well as a modification in the relative proportion of the defects produced. In particular, Yb doping tends to increase the relative content of Oxy defects.

  20. Lanthanide and actinide doped glasses as reference standards for dye doped systems

    SciTech Connect

    Pope, E.J.A.; Hentschel, A.

    1996-12-31

    Organic dye molecules are well known to be subject to chemical and optical bleaching damage, temperature instability, and other forms of optical degradation. Currently recognized methods of referencing rely upon fluorescent salt solutions, such as quinine sulfate. In this paper, optically-active lanthanide and actinide doped gel-glasses are compared as reference standards for dye doped polymers. Samples are subjected to continuous illumination by 254 nm UV radiation. While dye-doped polymers exhibited approximately 65 percent decline in fluorescence intensity after 96 hours of irradiation, glass samples and glass powder in resin showed no decline in fluorescence intensities.

  1. Experimental insights on the electron transfer and energy transfer processes between Ce{sup 3+}-Yb{sup 3+} and Ce{sup 3+}-Tb{sup 3+} in borate glass

    SciTech Connect

    Sontakke, Atul D. Katayama, Yumiko; Tanabe, Setsuhisa; Ueda, Jumpei; Dorenbos, Pieter

    2015-03-30

    A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host. The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.

  2. Probing and modeling of pressure-induced coordination transformation in borate glasses: Inelastic x-ray scattering study at high pressure

    SciTech Connect

    Lee, Sung Keun; Eng, Peter J.; Mao, Ho-kwang; Shu, Jinfu

    2009-01-15

    Here, we report on the in situ synchrotron inelastic x-ray scattering spectra of Na-borate glasses at high pressure up to 25 GPa. The pressure-induced boron coordination transformation from {sup [3]}B to {sup [4]}B is linear with pressure characterized by a single value of ({partial_derivative}{sup [3]}B/{partial_derivative}P){sub T}. Previous studies of Li-borate and pure-borate glasses show a nonlinear transformation with multiple ({partial_derivative}{sup [3]}B/{partial_derivative}P){sub T} values for different pressure ranges, revealing the important role cation field strength plays in densification and pressure-induced structural changes. Considering the distribution of the energy difference beween low- and high-pressure states ({Delta}{var_epsilon}) in the energy landscape and the variance of the ratio {Delta}{var_epsilon} to its pressure gradient ({partial_derivative}{Delta}{var_epsilon}/{partial_derivative}P){sub T} as a measure of network flexibility with pressure, an amorphous system with a large variance in {Delta}{var_epsilon} at 1 atm and/or a small ({partial_derivative}{Delta}{var_epsilon}/{partial_derivative}P){sub T} may undergo a gradual coordination transformation (e.g., Na borates). In contrast, a system with the opposite behavior (e.g., Li borates) undergoes an abrupt coordination transformation. The results and concepts of this study thus can shed light on opportunities to study the effect of composition on the nature of densification in low-z oxide and other archetypal glasses and melts.

  3. Composition and concentration dependence of spectroscopic properties of Nd 3+-doped tellurite and metaborate glasses

    NASA Astrophysics Data System (ADS)

    Jyothi, L.; Venkatramu, V.; Babu, P.; Jayasankar, C. K.; Bettinelli, M.; Mariotto, G.; Speghini, A.

    2011-04-01

    The spectroscopic properties of tellurite glasses of composition (in mol%) TNKNd: (70 - x)TeO 2-15Nb 2O 5-15K 2O- xNd 2O 3 ( x = 0.1, 1.0, 1.5, 2.0 and 2.5) and TNLNd10: 69TeO 2-15Nb 2O 5-15Li 2O-1.0Nd 2O 3 and lithium metaborate glass of composition LBNNd10: 89LiBO 2-10Nb 2O 5-1.0Nd 2O 3 have been investigated using absorption and emission spectra and decay curve analysis. An energy level analysis has been carried out considering the experimental energy positions of the absorption and emission bands, using the free-ion Hamiltonian model. The spectral intensities have been calculated by using the Judd-Ofelt theory and in turn the radiative properties such as radiative transition probabilities, emission cross-sections, branching ratios and radiative lifetimes have been estimated. The decay curves at the lower concentrations are exponential while they show a non-exponential behavior at higher concentrations (?1.0 mol%) due to energy transfer processes. The effective lifetimes for the 4F 3/2 level are found to decrease with increase in Nd 2O 3 concentration for all the glasses under investigation. The non-exponential decay curves have been well-fitted to the Yokota-Tanimoto model with S = 6, indicating that the nature of energy transfer is of dipole-dipole type and energy migration also plays an important role. The results obtained have been compared with Nd 3+-doped phosphate, fluorophosphate, lead borate, tellurite, germanate and silicate glasses and Nd 3+-doped YAG ceramic and Ca 2Nb 2O 7 crystals.

  4. Structural and luminescence behavior of Er3+ ions doped Barium tellurofluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Annapoorani, K.; Maheshvaran, K.; Arunkumar, S.; Suriya Murthy, N.; Marimuthu, K.

    2015-01-01

    Er3+ doped Barium tellurofluoroborate glasses (BTFBxE) with the chemical composition (30 - x)TeO2 + 30B2O3 + 20BaO + 20BaF + xEr2O3 (where x = 0.01, 0.05, 0.1, 0.5, 1.0 and 2.0 in wt%) were prepared following the melt quenching technique. The different vibrational modes of borates and tellurites in the prepared glasses were explored through FTIR and Raman spectra. The optical absorption spectra have been used to determine the ionic/covalent nature of the metal-ligand bond in the prepared glasses with the help of Nephelauxetic ratio (β) and bonding parameter (δ) studies. The optical band gap of direct and indirect allowed transitions were determined from Tauc's plot and the variations of band gap energy with structural arrangements were discussed. The Urbach energy values were determined and the relatively lower values of the Urbach's energy reveal the minimal degree of disorderness in the prepared glasses. The oscillator strengths (fexp and fcal) and Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were calculated with the application of JO theory and the trends of the JO intensity parameters are found to be Ω2 > Ω6 > Ω4 for all the prepared glasses with a minimum variation in Ω2 intensity parameter values. A bright green emission was observed from the 2H11/2 + 4S3/2 → 4I15/2 transition and the radiative properties such as transition probability (A), stimulated emission cross-section (σPE), branching ratio (βr) and radiative lifetime (τ) were calculated using the JO parameters. The suitability of the prepared glasses for the fabrication of photonic devices were also discussed and reported in the present work.

  5. Structural and luminescence behavior of Er(3+) ions doped Barium tellurofluoroborate glasses.

    PubMed

    Annapoorani, K; Maheshvaran, K; Arunkumar, S; Suriya Murthy, N; Marimuthu, K

    2015-01-25

    Er(3+) doped Barium tellurofluoroborate glasses (BTFBxE) with the chemical composition (30-x)TeO2+30B2O3+20BaO+20BaF+xEr2O3 (where x=0.01, 0.05, 0.1, 0.5, 1.0 and 2.0 in wt%) were prepared following the melt quenching technique. The different vibrational modes of borates and tellurites in the prepared glasses were explored through FTIR and Raman spectra. The optical absorption spectra have been used to determine the ionic/covalent nature of the metal-ligand bond in the prepared glasses with the help of Nephelauxetic ratio (β) and bonding parameter (δ) studies. The optical band gap of direct and indirect allowed transitions were determined from Tauc's plot and the variations of band gap energy with structural arrangements were discussed. The Urbach energy values were determined and the relatively lower values of the Urbach's energy reveal the minimal degree of disorderness in the prepared glasses. The oscillator strengths (fexp and fcal) and Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were calculated with the application of JO theory and the trends of the JO intensity parameters are found to be Ω2>Ω6>Ω4 for all the prepared glasses with a minimum variation in Ω2 intensity parameter values. A bright green emission was observed from the (2)H11/2+(4)S3/2→ (4)I15/2 transition and the radiative properties such as transition probability (A), stimulated emission cross-section (σP(E)), branching ratio (βr) and radiative lifetime (τ) were calculated using the JO parameters. The suitability of the prepared glasses for the fabrication of photonic devices were also discussed and reported in the present work. PMID:25173526

  6. Optical absorption and fluorescence properties of Er{sup 3+}/Yb{sup 3+} codoped lead bismuth alumina borate glasses

    SciTech Connect

    Goud, K. Krishna Murthy Reddy, M. Chandra Shekhar Rao, B. Appa

    2014-04-24

    Lead bismuth alumina borate glasses codoped with Er{sup 3+}/Yb{sup 3+} were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω{sub 2}, Ω{sub 4} and Ω{sub 6} parameters. Radiative properties like branching ratio β{sub r} and the radiative life time τ{sub R} have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions of Er{sup 3+} respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb{sup 3+} and Er{sup 3+}.

  7. Scintillation properties of cerium-doped germanate glass

    NASA Astrophysics Data System (ADS)

    Jiang, Chun; Zeng, QingJi; Gan, Fuxi

    2000-11-01

    The properties of high rare-earth-containing germanate glass have been investigated to assess the potential for using this material to construct electromagnetic calorimeters for particle physics. We report here on measurements of scintillation yield, transmission and decay time, on large blocks of Ce3+-doped Gd2O3-based glasses, the samples were excited by a high energy X-ray beam and the associated scintillation yield and decay time was measured. The optical transmission of the samples was measured. It was observed that scintillation yield of present scintillation glass is 20 - 30% of BGO scintillation yield, decay time is in range of 60 - 90 ns, glass density is 5.75 g/cm3. It was concluded that higher density and availability and low cost make this glass become promising candidate for cerium doped dense scintillator.

  8. Silver doped nanobioactive glass particles for bone implant applications

    NASA Astrophysics Data System (ADS)

    Prabhu, M.; Kavitha, K.; Karunakaran, G.; Manivasakan, P.; Rajendran, V.

    2013-02-01

    Silica based silver doped nanobioactive glass compositions (58SiO2-33CaO-9P2O5 and 58SiO2-23CaO-9P2O5-10Ag2O(mol%)) were synthesized by a simple sol-gel route. The prepared samples were comprehensively characterised by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopic studies. The results reveal that the prepared samples have amorphous phase with spherical morphology and having a particle size less than 100 nm. The specific surface areas were 90 and 61 m2g-1 respectively. The in vitro bioactivity of glass samples were confirmed by the formation of hydroxyapatite layer on glass surfaces. The Ag2O-doped nanobioactive glasse samples shows reveal significant antibacterial activity compare with base glasses.

  9. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Khasa, S.; Yadav, Arti; Dahiya, M. S.; Seema, Ashima, Agarwal, A.

    2015-06-01

    The DC conductivities of glasses having composition x(2NiO.V2O5).(30-x)Li2O.20Bi2O3.50B2O3 (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO.23 Li2O.20Bi2O3.50B2O3 and 7V2O5.23Li2O.20Bi2O3.50B2O3 (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott's small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  10. Luminescence and spectral hole burning of Sm(2+) doped in Li(2)O-SrO-B(2)O(3) glass-ceramics.

    PubMed

    Jiang, Chuanfang; Huang, Yanlin; Park, Seongtae; Jang, Kiwan; Seo, Hyo Jin

    2009-03-01

    The Sm(3+)-doped alkali strontium borate glass-ceramics were obtained by heating of the as-made glasses in air, where Sm(3+) ions were reduced to Sm(2+) ions. The XRD, optical absorption spectra and luminescence of Sm(3+) and Sm(2+) ions were investigated. The excitation spectra of the (7)F(0)-->(5)D(0) transition were measured in the region of (7)F(0)-->(5)D(1) transition, where spectral holes were burnt within two of the Stark split (5)D(1) bands. The Sm(2+) ions doped glass ceramics exhibit the persistent spectral hole burning at room temperature. The hole depth, which are burned by the DCM dye laser, are about 40% of the total intensity, respectively. It is concluded that the dominant burning mechanism is a photoionization of electron trapping at a site other than Sm(3+) ions because of the absence of an antihole around the burned hole. PMID:19058997

  11. Preparation of Ferroelectric KNbO3 Based Borate Glass System.

    PubMed

    Kruea-In, Chatchai; Intawin, Pratthana; Leenakul, Wilaiwan

    2015-11-01

    The incorporation method was employed to produce ferroelectric glass ceramics from the K2O-Nb2O5-B2O3 glass system. The nanocrystalline potassium niobate (KNbO3) was first prepared using a simple mixed oxide method, where the B2O3 was initially mixed and then melted to form glass. The successfully produced optically transparent glass was then subjected to a heat treatment schedule for further crystallization at temperatures ranging from 500 to 650 degrees C, which resulted in the precipitation of the KNbO3 phase, together with the K3B2Nb3O12 phase. Scanning electron microscopy (SEM) showed the presence of randomly oriented KNbO3 crystals dispersed in a continuous glass matrix. It was found that the glass ceramics subjected to the heat treatment at temperatures higher than 545 degrees C were opaque, while the lower gave a highly transparent glass ceramics. The crystal size and crystallinity were found to increase with increasing heat treatment temperature, which in turn plays an important role in controlling the properties of the glass ceramics, including physical, optical, and dielectric properties. PMID:26726678

  12. FTIR spectra of pseudo-binary sodium borate glasses containing TeO2

    NASA Astrophysics Data System (ADS)

    Mansour, E.

    2012-04-01

    The glass system xTeO2·(100 - x)[0.5Na2O·0.5B2O3] was prepared and measured for Fourier transform infrared spectroscopy. The results show that [BO3] and [BO4] were among the main structural units in the investigated glasses as well as [TeO3] and [TeO4] groups. Evidence was observed for the presence of boroxol rings in these glasses. By introducing TeO2 into the glass network, the concentration of Na2O which is connected with B2O3 network is changed and hence trigonal to tetrahedral boron ratio. When 50% of the total Na2O content was associated with TeO2 minimum number of [TeO3] units was observed in the glass network. With higher than 40 mol% TeO2, there is a constancy of the concentration of [TeO4] units. Bonds of the type B-O-Te are common at high concentrations of TeO2 (>40 mol%) which is associated with an increase in the polymerization of the glass network. Introducing TeO2 into Na2O·B2O3 glasses (1:1) may delay the expected disappearance of non-bridging oxygens (NBOs) in the whole glass network with the decrease in the content of sodium oxide.

  13. Effects of host glasses on luminescence properties of Sm3+, Pr3+ co-doped glass

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Watanabe, K.; Uemura, H.; Fuchi, S.; Takeda, Y.

    2015-06-01

    We calculated density/molecular weight ratio of glass former oxides and modifier oxides to increase a number density of rare-earth ions in glass phosphor. Based on the calculated results, GeO2 and ZnO were chosen for the glass former oxide and the modifier oxide, respectively. The effects of substituting GeO2 for B2O3, ZnO for Sb2O3, or ZnO for Bi2O3 on luminescence spectra in Sm3+-doped glass were not observed. On the other hand, a drastically luminescence spectrum changing of Pr3+-doped glass was observed by substituting GeO2 for B2O3. The output power of Sm3+ -doped glass and that of Pr3+ -doped glass increased with substituting ZnO for Bi2O3. We successfully achieved an ultra-wideband luminescence from 760 nm to 1100 nm with the output power of 2.5 mW by combining a blue LED with 0.15Sm2O3-0.12Pr6O11-10ZnO-45Sb2O3-45GeO2 glass in one package.

  14. Electronic polarizability and interaction parameter of gadolinium tungsten borate glasses with high WO3 content

    NASA Astrophysics Data System (ADS)

    Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi; Dimitrov, Vesselin; Komatsu, Takayuki

    2014-12-01

    Glasses with the compositions of 25Gd2O3-xWO3-(75-x)B2O3 with x=25-65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(no), and interaction parameters A(no) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO3 contents. The optical basicity of the glasses increases monotonously with the substitution of WO3 for B2O3, and contrary the interaction parameter decreases monotonously with increasing WO3 content. A good linear correlation was observed between Λ(no) and A(no) and between the glass transition temperature and A(no). It was proposed that Gd2O3 oxide belongs to the category of basic oxide with a value of A(no)=0.044 Å-3 as similar to WO3. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO3 and Gd2O3 contents would be a floppy network system consisting of mainly basic oxides.

  15. Photostimulated luminescence from BaCl{sub 2}:Eu{sup 2+} nanocrystals in lithium borate glasses following neutron irradiation

    SciTech Connect

    Appleby, G. A.; Edgar, A.; Williams, G. V. M.; Bos, A. J. J.

    2006-09-04

    A glass-ceramic thermal neutron imaging plate material is reported. The material consists of a neutron sensitive 2B{sub 2}O{sub 3}-Li{sub 2}O glass matrix containing nanocrystallites of the storage phosphor BaCl{sub 2}:Eu{sup 2+}. When doped with 0.5 mol % Eu{sup 2+}, the neutron induced photostimulated luminescence (PSL) conversion efficiency of the {sup 10}B enriched glass-ceramic is around 60% of that a commercial neutron imaging plate, while the {gamma} sensitivity is an order of magnitude lower than that of the commercial plate. A Eu{sup 2+}-concentration series shows that the PSL efficiency for x rays is optimized at 0.01 mol % Eu{sup 2+}. Thermoluminescence measurements indicate trap depths in BaCl{sub 2}:Eu{sup 2+} ranging from 0.55 to 2.7 eV.

  16. Impedance spectroscopic characterization of Sm2O3 containing lithium borate glasses.

    PubMed

    Ramteke, D D; Gedam, R S

    2014-12-10

    27.5 Li2O-(72.5-X) B2O3-X Sm2O3 (X=0.5, 1, 1.5 and 2) were prepared by conventional melt quench technique. Impedance spectroscopy (IS) is used to study the electrical properties of these prepared glasses. Modulus formalism is introduced to study relaxation behaviour of these glasses. Scaling model shows the good overlap of data on single master curve which suggests that conduction mechanism in these glasses is compositional dependent. Variation of dielectric constant and dielectric loss with the addition of Sm2O3 and frequency are discussed here. PMID:24929310

  17. Effect of alkali addition on DC conductivity and thermal properties of vanadium-bismo-borate glasses

    SciTech Connect

    Khasa, S. Dahiya, M. S.; Agarwal, A.

    2014-04-24

    The DC Conductivity and Differential Thermal Analysis of glasses with composition (30−x)Li{sub 2}O⋅xV{sub 2}O{sub 5}⋅20Bi{sub 2}O{sub 3}⋅50B{sub 2}O{sub 3}(x=15, 10, 5) has been carried out in order to study the effect of replacing the Transition Metal Oxide (TMO) with alkali oxide. A significant increase in the DC conductivity has been observed with increase in alkali content. Again the thermal measurements have shown the decrease in both glass transition temperature (T{sub g}) and crystallization temperature (T{sub x}). The Glass Stability (GS) and Glass Forming Ability (GFA) have also been calculated and these also were found to decrease with increase in alkali oxide content at the cost of TMO.

  18. Role of copper metal or oxide on physical properties of lithium borate glass

    NASA Astrophysics Data System (ADS)

    Kashif, I.; Ratep, A.

    2015-12-01

    The effect of the addition of copper metal or copper oxide on lithium tetraborate glass was studied using X-ray powder diffraction, Optical, density and FTIR. The effect of adding Cu metal has a large effect than the addition of CuO and contributes to increase the NBOs than CuO. And the addition of Cu metal increases the homogeneity of lithium tetraborate glass. The glass sample containing 2 mol % CuO has the higher value of optical band gap Egopt, lower the fraction of four-coordination boron atoms N4 and Urbach energy (Eu) than the other samples containing different copper metal or copper oxide concentration. And the decrease in Urbach energy indicating that decreasing localized states in forbidden gap due to decrease in NBOs. The glass sample containing 2 mol % CuO can be used as a narrow band color filter (band width = 250, band half width = 130 and band center = 486 nm).

  19. DTA, powder XRD and SEM study of manganese-containing borate glasses

    SciTech Connect

    Shah, J.G.; Patki, V.A.; Raj, K.; Rao, U.R.K.

    1995-12-31

    Fixing in glass is one of the accepted modes of radioactive waste immobilization adopted all over the world. Several homogeneous glasses in the ternary SiO{sub 2}/B{sub 2}O{sub 3}/Na{sub 2}O containing MnO{sub 2} were investigated by powder XRD, DTA and SEM. The presence of a crystalline Mn{sub 7}SiO{sub 12} phase in the glasses which contain more than 20 mol% of MnO{sub 2} is confirmed. The crystalline compound could be synthesized in a pure form at 1,000 C at ambient pressure. No other crystalline phase in the ternary Si-Mn-O was detected in the otherwise homogeneous glass.

  20. Physical, structural and optical characterizations of borate modified bismuth-silicate-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Berwal, Neelam; Kundu, R. S.; Nanda, Kirti; Punia, R.; Kishore, N.

    2015-10-01

    Quaternary bismuthate glasses with compositions xB2O3-(80 - x) Bi2O3-15SiO2-5TeO2 have been prepared by melt-quench technique. X-ray diffraction studies were performed to ascertain the amorphous nature of samples. The density, molar volume and crystalline volume decrease with increase in B2O3 content whereas the glass transition temperature shows the reverse trend. The Raman and FTIR spectra of the studied glasses indicate that B2O3 has been found to exist in the form of BO3 trigonal and BO4 tetrahedral structural units and vibrations corresponding to these structural units increase with increase in B2O3 content. SiO2 is present in the form of SiO4 tetrahedral structural units and TeO2 in the form of TeO3 structural units. Bismuth plays the role of network modifier [BiO6 octahedra] as well as network former [BiO3 pyramids] for all the glass compositions. The optical band gap energy has been calculated from the fitting of both Mott and Davis's model and Hydrogenic excitonic model with the experimentally observed absorption spectra. A good fitting of experimental data with HEM indicates the excitonic formation in the studies glass system. The values of optical band gap energy show nonlinear behavior due to the structural changes that take place in the present glass samples. The Urbach energy calculated using Urbach empirical formula for studied glass samples suggest the possibility of reduction in defect concentrations. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.

  1. Spectral investigations of Sm{sup 3+}-doped oxyfluorosilicate glasses

    SciTech Connect

    Ramachari, D.; Rama Moorthy, L.; Jayasankar, C.K.

    2013-09-01

    Graphical abstract: The figure shows the emission spectra of Sm{sup 3+} doped KNSZL glass for different concentrations. Among the four emission transitions {sup 4}G{sub 5/2} → {sup 6}H{sub 5/2}, {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2}, {sup 4}G{sub 5/2} → {sup 6}H{sub 9/2} and {sup 4}G{sub 5/2} → {sup 6}H{sub 11/2}, the {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition of KNSZLSm10 glass is more intense compared with all the transitions. The insert figure shows, the color coordinates (0.59, 0.41) of KNSZLSm10 glass is located on the perimeter of the chromaticity diagram at 592 nm which appears to be closest to the orange color. From these results the KNSZLSm10 glass could be useful for optical amplifiers, waveguides, telecommunications and orange LEDs. - Highlights: • From the DTA, the undoped KNSZL glass more precisely in fiberdrawing. • The XRD pattern confirmed the KNbO{sub 3} nanocrystallites of undoped KNSZL glass. • FTIR and Raman data of KNSZLSm10 glass revealed structural properties. • Judd–Ofelt analysis and decay measurements were carried out. • The optical gain parameter of the investigated glass is 18.13 × 10{sup −25} cm{sup 2} s. - Abstract: Sm{sub 2}O{sub 3}-doped oxyfluorosilicate glasses were prepared by melt-quenching method. The differential thermal analysis and X-ray diffraction were carried out to investigate the glass transition temperature and structure of precursor glass. Infrared spectroscopy, Raman, optical absorption, photoluminescence and decay measurements were carried out for Sm{sup 3+}-doped oxyfluorosilicate glasses. From the absorption spectrum, the Judd–Ofelt intensity parameters have been evaluated to predict the radiative properties for the emission levels of Sm{sup 3+} ions. The lifetimes of {sup 4}G{sub 5/2} level are found to decrease from 1.17 to 0.93 ms due to the energy transfer, when the concentration of Sm{sup 3+} ions increases from 0.1 to 2.0 mol%. The optical gain parameter (18.13 × 10{sup −25} cm{sup 2} s) of the investigated glass is found to be higher than the other Sm{sub 2}O{sub 3}-doped glass systems.

  2. Femtosecond laser written nanostructures in Ge-doped glasses.

    PubMed

    Zimmermann, Felix; Lancry, Matthieu; Plech, Anton; Richter, Sören; Hari Babu, B; Poumellec, Bertrand; Tünnermann, Andreas; Nolte, Stefan

    2016-03-15

    We report on nanostructures induced by femtosecond laser pulses in the bulk of Germanium-doped silica glasses. For studying structural properties of the nanostructure constituents small-angle x-ray scattering and SEM served to map pore size, filling factor and periodicity. Our results show that with increasing the Ge doping concentration, the aspect ratio (transverse to inscribing laser) of nanometric pores rises while they arrange in a smaller period in contrast to nanogratings in pristine fused silica. Consequently, higher optical retardance can be obtained demonstrating the pronounced glass decomposition due to the changing network structure. PMID:26977659

  3. Laser irradiation in Nd3+ doped strontium barium niobate glass

    NASA Astrophysics Data System (ADS)

    Haro-González, P.; Martín, I. R.; Arbelo-Jorge, E.; González-Pérez, S.; Cáceres, J. M.; Núñez, P.

    2008-07-01

    A local nanocrystalline formation in a neodymium doped strontium barium niobate (SBN) glass has been obtained under argon laser irradiation. The intense emission around 880 nm, originated from the F43/2 (F45/2) thermalized level when the glass structure changes to a glass ceramic structure due to the irradiation of the laser beam, has been studied. The intensities and lifetimes change from this level inside and outside the irradiated area made by the laser excitation. They have been analyzed and demonstrated that the desvitrification process has been successfully achieved. These results confirm that nanocrystals of SBN have been created by the laser action confirming that the transition from glass to glass ceramic has been completed. These results are in agreement with the emission properties of nanocrystals of the bulk glass ceramic sample. The present study also suggests that the SBN nanocrystal has a potential application as temperature detector.

  4. Efficiency and tuning of the erbium-doped glass lasers

    NASA Astrophysics Data System (ADS)

    Fromzel, Victor A.; Kuchma, Igor G.; Lunter, Sergei G.; Mak, Artur A.; Petrov, Aleksey A.

    1992-11-01

    Erbium-doped glass lasers operated near by 1 5 mm wavelength are helpful for medicine and biology optical communication and eye-safe range finder systems. Advances in erbium-doped glass especially phosphate glass and lasers based on it have been extensive in recent years. Nowadays we can approve that erbium glass lasers are not worse compared with the neodymium ones by many spectroscopic and laser properties. Developments of the energy spectral and temporal characteristics and tuning near the 1500 nm wavelength of the erbium - doped phosphate glass lasers are reported. 2. SPECTROSCOPIC PECULIARITIES OF THE ERBIUM DOPED GLASS Phosphate erbium-doped glass possess a number of spectroscopic peculiarities as a laser active medium. Energy level diagrams of Er3 ions and two other its co-doped ions -Yb3 and Cr3 and the actual transitions (radiate and nonradiate) between them are shown in Fig. 1 (a). Absorption spectrum of that phosphate glass is also shown in Fig. 1 (b) . One can see that the whole pum energy is absorbed only by coactivators - Yb Cr - Yb E r and Cr3 - and then quickly and efficiently transferred from them to Er3 ions. Thus ''7 lasing and pumping of the erbium glass are ''4 realized by means of quite different ions. 4 Thanks to that one can get a low laser threshold t1/2 usin a small doping of Er3 ions (about 1019 I3/2 cm ) and the same time have a high efficient 4T pumoing by using the big concentration of ions 15/2 Yb3 and Cr3 in them (1021 cm3 and 1020 b cm3 accordingly). Obstacles for high efficiency of the lasers may be connected with either increase of the back pump energy transfer from Yb3 ions to Cr3 ones by too large concentration of Cr3 ions or thermal distortions of the active medium. Optimal pumping conditions for lamp pumped Er - doped glass laser differ from neodymium ones. It is explained by the important role of pump energy transfer processes in Er - doped glass. In order to have of high efficient pumping it is necessary that energy transfer rates from Yb3 to Er3 - 3+ 3+ WybEr and from Cr to Yb - WCrYb would be a lot of more then pumping rate W p (mainly object to WYbEr W1). It means the need to use pump pulse durations of about 1O - 102 s and more in that lasers. 3. EFFICIENCY AND THERMAL DISTORTIONS IN THE LASERS Efficiency of the lamp pumped Cr - Yb - Er doped phosphate glass oscillator can be up to 3 or some more (slope efficiency is up to 3. 5 ) /1 at free - running operation and storage efficiency of amplifiers based on the glass can be up to 1. 2 / 3 /. It was achieved

  5. Fluorescence properties of Eu3+-doped alumino silicate glasses

    NASA Astrophysics Data System (ADS)

    Herrmann, Andreas; Kuhn, Stefan; Tiegel, Mirko; Rüssel, Christian

    2014-11-01

    Alumino silicate glasses of a very broad range of molar compositions doped with 1 ṡ 1020 Eu3+ cm-3 (about 0.2 mol% Eu2O3) were prepared. As network modifier oxides Li2O, Na2O, K2O, MgO, CaO, SrO, BaO, ZnO, PbO, Y2O3 and La2O3 have been used. All glasses show relatively broad fluorescence excitation and emission spectra. For most glasses only a weak effect of the glass composition on the excitation and emission spectra is observed. Although the glasses should be structurally similar, notable differences are found for the fluorescence lifetimes. These increase steadily with decreasing mean atomic weight, decreasing refractive index and decreasing optical basicity of the glasses, which may be explained by local field effects. An exception from this rule are the strontium, barium and potassium containing glasses, which show significantly increased fluorescence lifetimes despite of their high refractive index, optical basicity and molecular weight. The non mono-exponential fluorescence decay curves as well as the fluorescence spectra indicate a massive change in the local surroundings of the doped rare earth ions for these glasses.

  6. Luminescence properties of Sm3+-doped fluorosilicate glasses

    NASA Astrophysics Data System (ADS)

    Linganna, K.; Basavapoornima, Ch.; Jayasankar, C. K.

    2015-06-01

    Sm2O3-doped fluorosilicate glasses (SiO2+Nb2O5+K2O+ZnF2) were prepared by the melt quenching technique and are characterized through various spectroscopic techniques such as Raman, optical absorption, excitation, emission and decay to derive various spectroscopic properties. Raman analysis has been carried out in order to know the vibrational groups present in the glass matrix. The optical band gap and Urbach energies have been evaluated from the absorption edges of the absorption spectra of 1.0 mol% Sm2O3 doped fluorosilicate glass. The Judd-Ofelt (JO) analysis has been applied to evaluate the intensity parameters, Ωλ (λ=2,4 and 6), for 1.0 mol% Sm2O3 doped fluorosilicate glass. These JO parameters have been used to evaluate radiative properties such as radiative transition probabilities, branching ratios, radiative lifetime and stimulated emission cross-sections for the luminescent levels of Sm3+ ion. The decay curve analysis has been performed for all the glasses in order to know the energy transfer processes between Sm3+ ions. The results indicate that the present glasses could be useful for photonics applications.

  7. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature

    SciTech Connect

    Yao, Aihua; Ai, Fanrong; Liu, Xin; Wang, Deping; Huang, Wenhai; Xu, Wei

    2010-01-15

    Hollow hydroxyapatite microspheres, consisting of a hollow core and a porous shell, were prepared by converting Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres in dilute phosphate solution at 37 {sup o}C. The results confirmed that Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass was transformed to hydroxyapatite without changing the external shape and dimension of the original glass object. Scanning electron microscopy images showed the shell wall of the microsphere was built from hydroxyapatite particles, and these particles spontaneously align with one another to form a porous sphere with an interior cavity. Increase in phosphate concentration resulted in an increase in the reaction rate, which in turn had an effect on shell wall structure of the hollow hydroxyapatite microsphere. For the Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres reacted in low-concentration K{sub 2}HPO{sub 4} solution, lower reaction rate and a multilayered microstructure were observed. On the other hand, the glass microspheres reacted in higher phosphate solution converted more rapidly and produced a single hydroxyapatite layer. Furthermore, the mechanism of forming hydroxyapatite hollow microsphere was described.

  8. Investigations on spectral features of tungsten ions in sodium lead alumino borate glass system

    NASA Astrophysics Data System (ADS)

    Madhuri, V.; Kumar, J. Santhan; Rao, M. Subba; Cole, Sandhya

    2015-03-01

    Na2O-PbO-Al2O3-B2O3 (NPAB) glasses mixed with different concentrations of WO3 (ranging from 0 to 2.5 mol%) are synthesized by conventional melt quenching method. The samples are characterized by X-ray diffraction (XRD), optical absorption, Electron paramagnetic resonance (EPR) and Fourier transform infrared (FT-IR) spectroscopic techniques. Glass formation is confirmed by X-ray diffraction spectra. The optical absorption spectra of these glasses exhibited a predominant broad band peak at about 850-870 nm is identified due to dxy-dx2-y2 transition of W5+ ions. From the optical absorption spectral data, optical band gap (Eopt) and Urbach energy (ΔE) are evaluated. From EPR spectra the strength of the signal is increased and hyperfine splitting is resolved with increasing concentration of WO3 in the glass matrix. The FT-IR spectral studies have pointed out the existence of conventional BO3, BO4, B-O-B, PbO4, WO4 and WO6 structural units of these glasses. Various physical properties and optical basicity are also evaluated with respect to the concentration of WO3 ions.

  9. Synthesis of novel organic-ligand-doped sodium bis(oxalate)-borate complexes with tailored thermal stability and enhanced ion conductivity for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Ge, Chunhua; Wang, Lixia; Xue, Lili; Wu, Zhong-Shuai; Li, Hehe; Gong, Zailin; Zhang, Xiang-Dong

    2014-02-01

    A series of novel organic-ligand-doped sodium bis(oxalate)-borate complexes, including sodium bis[salicylato(2-)]-borate (NBSB), sodium[salicylato benzenediol]borate (NBDSB), sodium bis[oxalate]-borate (NBOB) and its derivatives NBOB(C2H2O4)0.2, NBOB(C7H4O3)0.2, NBOB(C7H4O3)0.6, NBOB(C6H6O2)0.15 and NBOB(C6H6O2)0.3 fabricated by solid-state reaction are firstly developed as new-type electrolytes for sodium ion batteries. These resulting sodium boron salts possess good solubility in an abroad range of organic solvents (such as PC, AN, DMF, PC + AN, PC + DMF), tailored thermal stability from 300 to 353 °C, improved ion conductivity (>1 × 10-3 S cm-1), environmental friendliness and low cost. Therefore, we believe that these new-type sodium boron salts show great potential as a new class of electrolyte for high-performance sodium ion batteries.

  10. Bioactive borate glass promotes the repair of radius segmental bone defects by enhancing the osteogenic differentiation of BMSCs.

    PubMed

    Zhang, Jieyuan; Guan, Junjie; Zhang, Changqing; Wang, Hui; Huang, Wenhai; Guo, Shangchun; Niu, Xin; Xie, Zongping; Wang, Yang

    2015-12-01

    Bioactive borate glass (BG) has emerged as a promising alternative for bone regeneration due to its high osteoinductivity, osteoconductivity, compressive strength, and biocompatibility. However, the role of BG in large segmental bone repair is unclear and little is known about the underlying mechanism of BG's osteoinductivity. In this study, we demonstrated that BG possessed pro-osteogenic effects in an experimental model of critical-sized radius defects. Transplanting BG to radius defects resulted in better repair of bone defects as compared to widely used β-TCP. Histological and morphological analysis indicated that BG significantly enhanced new bone formation. Furthermore, the degradation rate of the BG was faster than that of β-TCP, which matched the higher bone regeneration rate. In addition, ions from BG enhanced cell viability, ALP activity, and osteogenic-related genes expression. Mechanistically, the critical genes Smad1/5 and Dlx5 in the BMP pathway and p-Smad1/5 proteins were significantly elevated after BG transplantation, and these effects could be blocked by the BMP/Smad specific inhibitor. Taken together, our findings suggest that BG could repair large segmental bone defects through activating the BMP/Smad pathway and osteogenic differentiation in BMSCs. PMID:26586668

  11. Radioluminescence properties of Sm-doped fluorochlorozirconate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Okada, Go; Edgar, Andy; Kasap, Safa; Yanagida, Takayuki

    2016-02-01

    We have investigated X-ray induced radioluminescence (XL) properties of Sm-doped fluorochlorozirconate (FCZ) glasses and glass-ceramics. The FCZ glass is a modified ZBLAN glass which shows a very high optical transmission over a wide spectral range. The glass matrix includes Sm3+-doped nanocrystals of BaCl2 after heat-treatment at temperatures above 250 °C. The glass-ceramic emits red light under UV and X-ray exposure. Since conventional Si-based photodetectors, e.g., CCDs, have the highest quantum efficiency to red light in general, the Sm-doped FCZ glass-ceramic plate can be a good candidate as a scintillator material for indirect radiation detection. Moreover, a very broad emission is present in the glass-ceramic around 300-500 nm, which is attributed to a self-trapped exciton (STE) emissions. The temperature dependence of X-ray induced luminescence and photoluminescence are very similar. The XL light yield is linearly proportional to the X-ray exposure rate for rates higher than 20 mR/s. For low exposure rates, emissions by Sm2+ are more sensitive than others, leading to a nonlinear response.

  12. Crystallization behavior of rare-earth doped fluorochlorozirconate glasses.

    PubMed

    Paßlick, C; Ahrens, B; Henke, B; Johnson, J A; Schweizer, S

    2011-06-01

    A series of fluorochlorozirconate (FCZ) glasses, each doped with a different rare-earth, was prepared and examined to determine thermal stability and activation energy, Ea , of the dopant dependent BaCl2 crystallization. Non-isothermal differential scanning calorimetry (DSC) measurements were done to investigate the endothermic and exothermic reactions upon heat treatment of the glass samples. In comparison to the rare-earth free FCZ glass, significant changes in the Hruby constant, Hr , and Ea were found due to the addition of a rare-earth and also between the individual dopants. PMID:23493406

  13. Effect of substituting iron on structural, thermal and dielectric properties of lithium borate glasses

    SciTech Connect

    Dalal, Seema; Khasa, S.; Dahiya, M.S.; Agarwal, A.; Yadav, Arti; Seth, V.P.; Dahiya, S.

    2015-10-15

    Highlights: • There is increase in NBOs with iron content. • FTIR spectra supported the results predicted by density. • Glass stability has been examined. • Iron shows “blocking effect” on migration of mobile ions. • Internal Circuit varies with temperature and composition. - Abstract: Glasses with composition xFe{sub 2}O{sub 3}·(30 − x)Li{sub 2}O·70B{sub 2}O{sub 3} (x = 0, 2, 5, 7 and 10 mol%) were prepared via melt-quenching technique and their physical, thermal and dielectric properties are discussed. XRD was carried out to confirm the amorphous nature of prepared glasses. Density (ρ) and molar volume (V{sub m}) were found to increase with increase in Fe{sub 2}O{sub 3} content. Infrared absorption spectra depicted that Fe{sub 2}O{sub 3} is acting as a network modifier. DTA has been carried out to determine glass transition temperature (T{sub g}) and crystallization temperature (T{sub x}). Electrical properties have been studied using impedance spectroscopy and dc conductivity. The dc conductivity decreases and activation energy increases on replacing Li{sup +} ions with Fe{sup 3+}. The impedance measurements reveal that the total conductivity obeys Jonscher’s power law. Study of the equivalent circuit analysis up to a temperature of 523 K shows a significant change in the equivalent circuitry with change in temperature and composition.

  14. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    SciTech Connect

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curely, J.; Kliava, J.

    2012-10-15

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe{sup 3+} ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by 'direct' techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization studies.

  15. Structural and spectroscopic behavior of Er3+:Yb3+ co-doped lithium telluroborate glasses

    NASA Astrophysics Data System (ADS)

    Annapoorani, K.; Maheshvaran, K.; ArunKumar, S.; Suriya Murthy, N.; Soukka, Tero; Marimuthu, K.

    2015-01-01

    A new series of Er3+:Yb3+ co-doped Lithium telluroborate glasses were prepared following the melt quenching technique. The structural analyzes were made through XRD, Raman, FTIR spectra to explore the different vibrations of borate and tellurite network. The absorption spectra have been used to determine the nature of the metal-ligand and further Band gap and Urbach's analysis have also been carried out. The oscillator strength value of the 2H11/2→4I15/2 hypersensitive transition is found to be higher and increases as the concentration of the RE ion increases which emphasis the asymmetry nature of the glasses. The magnitude of the JO intensity parameters follow the trend as Ω2>Ω4>Ω6 uniformly for all the prepared glasses. A bright green emission corresponding to the 2H11/2+4S3/2→ 4I15/2 transition and luminescence from 4I13/2→4I15/2 in eye safe region have also been observed. The radiative parameters such as radiative transition probability, stimulated emission cross-section, branching ratios, radiative lifetime, gain bandwidth and gain linewidth for the 4S3/2 and 4I13/2 level of the title glasses have also been determined. The absorption and emission cross-section corresponding to the 4I13/2 level has been calculated using McCumber theory. Lifetime measurements were made under 980 nm excitation and the quantum efficiency were also calculated to evaluate the appropriateness of the host matrix for the fabrication of laser materials and broad band amplifiers.

  16. Phosphor in glass with Eu3+ and Pr3+-doped silicate glasses for LED color conversion

    NASA Astrophysics Data System (ADS)

    Park, Hyun-A.; Lee, Yl Kwon; Im, Won Bin; Heo, Jong; Chung, Woon Jin

    2015-03-01

    Phosphor-in-glasses (PiGs) with rare earth (RE) doped SiO2-B2O3-RO glasses were prepared by embedding YAG:Ce3+ as the yellow phosphor. Eu3+ and Pr3+ were used to dope the glass, varying their concentrations in order to provide red emissions for possible chromaticity-control of white-light emitting diodes (WLEDs). The glass-to-phosphor mixing ratio was also varied to find the proper combination for color-controlled white LEDs. PiGs with RE-doped glasses were sintered at 750 °C and polished to 250 μm in thickness for blue LED color conversion. The photoluminescence spectra of the PiGs were monitored after they were mounted on commercial blue LED chips. Variation of color coordination, color rendering index and correlated color temperature were observed due to red emissions from the doped RE-ions. The spectral contribution of Eu3+ and Pr3+ ions to white LEDs under 450 nm LED excitation was discussed. The spatial distribution of phosphors within the glass matrix, and their possible interaction, was inspected by SEM. The thermal quenching effect was also investigated.

  17. Site selective spectroscopy and crystal field analysis of Eu/sup 3 +/ doped lanthanum--calcium--zirconium--silicon borate

    SciTech Connect

    Capobianco, J.A.; Proulx, P.P.; Raspa, N.; Simkin, D.J.; Krashkevich, D.

    1989-03-15

    The fluorescence of Eu/sup 3 +/ doped lanthanum--calcium--zirconium--silicon borate ceramic was studied at 77 and 300 K using laser excited site selective spectroscopy. The fluorescence spectrum excited at 514.532 nm reveals the presence of three distinct sites for Eu/sup 3 +/. The sites were assigned to Eu/sup 3 +/ substituting for lanthanum in a ninefold coordination site in LaBO/sub 3/ and Eu/sup 3 +/ substituting for Ca/sup 2 +/ in six- and sevenfold coordination sites in Ca/sub 2/B/sub 2/O/sub 5/. To assign the spectra to the definite sites a phenomenological crystal field analysis was conducted, using C/sub 2//sub v/ symmetry. The crystal field for Eu/sup 3 +/ in Ca/sub 2/B/sub 2/O/sub 5/ was found to be dominated by electrostatic effects. The large /sup 7/F/sub 1/ level splitting and the value of the B/sub 20/ parameter support the concept of strong ionic bonding between europium and oxygen in Ca/sub 2/B/sub 2/O/sub 5/.

  18. XANES studies on Eu-doped fluorozirconate based glass ceramics.

    PubMed

    Henke, Bastian; Keil, Patrick; Paßlick, Christian; Vogel, Dirk; Rohwerder, Michael; Wiegand, Marie-Christin; Johnson, Jacqueline A; Schweizer, Stefan

    2010-01-01

    The influence of adding InF3 as a reducing agent on the oxidation state of Eu in fluorochloro- (FCZ) and fluorobromozirconate (FBZ) glass ceramics was investigated using x-ray absorption near edge (XANES) and photoluminescence (PL) spectroscopy. For both materials, it was found that InF3 decreases the Eu(2+)-to-Eu(3+) ratio significantly. PL spectroscopy proved that an annealing step leads to the formation of Eu-doped BaCl2 and BaBr2 nanocrystals in the FCZ and FBZ glasses, respectively. In the case of FCZ glass ceramics the hexagonal phase of BaCl2 could be detected in indium-free and InF3-doped ceramics, but only for InF3 containing FCZ glass ceramics a phase transition of the nanoparticles from hexagonal to orthorhombic structure is observed. For the FBZ glass ceramics, the hexagonal phase of BaBr2 can be formed with and without indium doping, but only in the indium-free case a phase transition to orthorhombic BaBr2 could be found. PMID:24748708

  19. EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions.

    PubMed

    Yadav, Arti; Khasa, Satish; Hooda, Ashima; Dahiya, Manjeet S; Agarwal, Ashish; Chand, Prem

    2016-03-15

    Glasses having composition 7NiO∙23Li2O∙20Bi2O3∙50B2O3, 7V2O5∙23Li2O∙20Bi2O3∙50B2O3 and x(2NiO∙V2O5)∙(30-x)Li2O∙50B2O3∙20Bi2O3 (with x=0, 2, 5, 7 & 10mol%) prepared through melt-quench route are explored by analyzing density, impedance spectroscopy and electron paramagnetic resonance (EPR). It is found that both density and molar volume increase with an increase in substitution of 2NiO∙V2O5 in the base glass matrix. Different dielectric parameters viz. dielectric loss (ε), electrical modulus (M), loss tangent (tanδ) etc. are evaluated and their variations with frequency and temperature are analyzed which reveals that these glasses exhibit a non-Debye relaxation behavior. A phenomenal description of the capacitive behavior is obtained by considering the circuitry as a parallel combination of bulk resistance (Rb) and constant phase element (CPE). The conduction mechanism is found to follow Quantum Mechanical Tunneling (QMT) model. Spin Hamiltonian Parameters (SHPs) and covalency rates are calculated from the EPR spectra of vanadyl ion. The observed EPR spectra confirmed that V(4+) ion exists as vanadyl ion in the octahedral coordination with tetragonal compression. PMID:26748341

  20. EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Khasa, Satish; Hooda, Ashima; Dahiya, Manjeet S.; Agarwal, Ashish; Chand, Prem

    2016-03-01

    Glasses having composition 7NiO • 23Li2O • 20Bi2O3 • 50B2O3, 7V2O5 • 23Li2O • 20Bi2O3 • 50B2O3 and x(2NiO • V2O5) • (30 - x)Li2O • 50B2O3 • 20Bi2O3 (with x = 0, 2, 5, 7 & 10 mol%) prepared through melt-quench route are explored by analyzing density, impedance spectroscopy and electron paramagnetic resonance (EPR). It is found that both density and molar volume increase with an increase in substitution of 2NiO • V2O5 in the base glass matrix. Different dielectric parameters viz. dielectric loss (ε), electrical modulus (M), loss tangent (tanδ) etc. are evaluated and their variations with frequency and temperature are analyzed which reveals that these glasses exhibit a non-Debye relaxation behavior. A phenomenal description of the capacitive behavior is obtained by considering the circuitry as a parallel combination of bulk resistance (Rb) and constant phase element (CPE). The conduction mechanism is found to follow Quantum Mechanical Tunneling (QMT) model. Spin Hamiltonian Parameters (SHPs) and covalency rates are calculated from the EPR spectra of vanadyl ion. The observed EPR spectra confirmed that V4 + ion exists as vanadyl ion in the octahedral coordination with tetragonal compression.

  1. XRD and FTIR structural investigation of gadolinium-zinc-borate glass ceramics

    SciTech Connect

    Borodi, G.; Pascuta, P.; Dan, V.; Pop, V.; Stefan, R.; Radulescu, D.

    2013-11-13

    X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy measurements have been employed to investigate the (Gd{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} glass ceramics system, with 0 ≤ x ≤ 15 mol%. After heat treatment applied at 860 °C for 2 h, some structural changes were observed and new crystalline phases appeared in the structure of the samples. In these glass ceramics four crystalline phases were identified using powder diffraction files (PDF 2), namely ZnB{sub 4}O{sub 7}, Zn{sub 4}O(B{sub 6}O{sub 12}), Zn{sub 3}(BO{sub 3}){sub 2} and GdBO{sub 3}. From the XRD data, the average unit-cell parameter and the quantitative ratio of the crystallographic phases in the studied samples were evaluated. FTIR data revealed that the BO{sub 3}, BO{sub 4} and ZnO{sub 4} are the main structural units of these glass ceramics network. The compositional dependence of the different structural units which appear in the studied samples was followed.

  2. Glass-crystal transition in silver-iodide-doped silver selenomolybdate glasses

    NASA Astrophysics Data System (ADS)

    Deb, B.; Ghosh, A.

    2013-12-01

    In this paper, we have studied the isothermal and non-isothermal glass-crystal transition in AgI-doped silver selenomolybdate glasses using differential scanning calorimetry. We have observed a strong dependence of AgI on the glass-crystal transition of these glasses. The activation energy for the crystallization and the dimensionality of the crystal growth for the isothermal and non-isothermal crystallization processes have been determined. The dimensionality of the crystal growth depends strongly on the AgI content and intriguingly shows different behavior when compared for isothermal and non-isothermal cases. For the present glass system the John-Mehl-Avrami model describes well the isothermal crystallization kinetics, while the Sestak-Berggren model is more suitable to describe the non-isothermal crystallization kinetics for glass-crystal transformation.

  3. Nanocrystallization in Yb3+-doped oxyfluoride glasses for laser cooling

    NASA Astrophysics Data System (ADS)

    Kummara, Venkata Krishaniah; Ledemi, Yannick; Soares de Lima Filho, Elton; Messaddeq, Younes; Kashyap, Raman

    2015-03-01

    Glass-ceramics are composite materials consisting of crystals which are controllably grown within a glass matrix usually by applying an appropriate heat treatment. They possess outstanding optical properties with applications in solid state lasers, optical amplifiers, and now, laser induced cooling. For laser cooling, the material should exhibit specific properties like low phonon energy environment around the lanthanide ions, low background losses, high transparency and high photoluminescence quantum yield. In the present study, oxyfluoride glasses and ultra-transparent nano glassceramics doped with different concentrations (2, 5, 8, 12, 16 and 20 mol %) of Yb 3+ ions have been prepared by conventional melt-quenching and subsequent thermal treatments at different temperatures, respectively. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) measurements have been performed to characterize the thermal properties of the glass and the structural changes in the glass-ceramics, respectively. The XRD patterns confirm the growth of β-PbF2 nanocrystals as well as progressive incorporation of Yb 3+ ions. This enhances the Yb 3+ ion emission intensity which depends on the doping concentration and ceramization temperatures. The size (20 nm) of the nanocrystallites was estimated from the Sherrer's formula and found to increase with increasing ceramization temperature, small enough to avoid scattering losses and ensure an excellent transparency of the glass-ceramics comparable with that of the parent glass. An enhancement of the luminescence properties of Yb 3+ ions surrounded by a crystalline low phonon environment is observed. Finally, the utilization of these heavily Yb 3+-doped ultra-transparent materials for laser cooling and solid state laser applications is discussed.

  4. Ab Initio Molecular Dynamics Simulations and GIPAW NMR Calculations of a Lithium Borate Glass Melt.

    PubMed

    Ohkubo, Takahiro; Tsuchida, Eiji; Takahashi, Takafumi; Iwadate, Yasuhiko

    2016-04-14

    The atomic structure of a molten 0.3Li2O-0.7B2O3 glass at 1250 K was investigated using ab initio molecular dynamics (AIMD) simulations. The gauge including projector augmented wave (GIPAW) method was then employed for computing the chemical shift and quadrupolar coupling constant of (11)B, (17)O, and (7)Li from 764 AIMD derived structures. The chemical shift and quadrupolar coupling constant distributions were directly estimated from the dynamical structure of the molten glass. (11)B NMR parameters of well-known structural units such as the three-coordinated ring, nonring, and four-coordinated tetrahedron were found to be in good agreement with the experimental results. In this study, more detailed classification of B units was presented based on the number of O species bonded to the B atoms. This highlights the limitations of (11)B NMR sensitivity for resolving (11)B local environment using the experimentally obtained spectra only. The (17)O NMR parameter distributions can theoretically resolve the bridging and nonbridging O atoms with different structural units such as nonring, single boroxol ring, and double boroxol ring. Slight but clear differences in the number of bridging O atoms surrounding Li that have not been reported experimentally were observed in the theoretically obtained (7)Li NMR parameters. PMID:27010637

  5. Characterization of borate glasses by W-band pulse electron-nuclear double resonance spectroscopy

    SciTech Connect

    Kordas, George; Goldfarb, Daniella

    2008-10-21

    (100-x) mol % B{sub 2}O{sub 3} x mol %Me{sub 2}O (Me=Li,Na,K) glasses, exposed to {gamma}-{sup 60}Co irradiation to produce paramagnetic states, were characterized by W-band (95 GHz) pulse electron-nuclear double resonance (ENDOR) spectroscopy in order to characterize local structures occurring in the range of compositions between x=16 and x=25 at which the 'boron oxide' anomaly occurs. The high resolution of nuclear frequencies allowed resolving the {sup 7}Li and {sup 11}B ENDOR lines. In the samples with x=16 and x=20 glasses, {sup 11}B hyperfine couplings of 16, 24, and 36 MHz were observed and attributed to the tetraborate, triborate, and boron oxygen hole center (BOHC) structures, respectively. The x=25 samples showed hyperfine couplings of 15 MHz for the tetraborate and 36 MHz for BOHC. Density functional theory (DFT) calculations predicted for these structures negative hyperfine couplings, which were confirmed by W-band ENDOR. This suggests that a spin polarization mechanism accounts for the negative hyperfine structure splitting.

  6. Characterization of borate glasses by W-band pulse electron-nuclear double resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kordas, George; Goldfarb, Daniella

    2008-10-01

    (100-x)mol% B2O3 x mol % Me2O (Me=Li,Na,K) glasses, exposed to γ-Co60 irradiation to produce paramagnetic states, were characterized by W-band (95GHz ) pulse electron-nuclear double resonance (ENDOR) spectroscopy in order to characterize local structures occurring in the range of compositions between x =16 and x =25 at which the "boron oxide" anomaly occurs. The high resolution of nuclear frequencies allowed resolving the Li7 and B11 ENDOR lines. In the samples with x =16 and x =20 glasses, B11 hyperfine couplings of 16, 24, and 36MHz were observed and attributed to the tetraborate, triborate, and boron oxygen hole center (BOHC) structures, respectively. The x =25 samples showed hyperfine couplings of 15MHz for the tetraborate and 36MHz for BOHC. Density functional theory (DFT) calculations predicted for these structures negative hyperfine couplings, which were confirmed by W-band ENDOR. This suggests that a spin polarization mechanism accounts for the negative hyperfine structure splitting.

  7. Ytterbium-doped glass-ceramics for optical refrigeration.

    PubMed

    Filho, Elton Soares de Lima; Krishnaiah, Kummara Venkata; Ledemi, Yannick; Yu, Ye-Jin; Messaddeq, Younes; Nemova, Galina; Kashyap, Raman

    2015-02-23

    We report for the first time the characterization of glass-ceramics for optical refrigeration. Ytterbium-doped nanocrystallites were grown in an oxyfluoride glass matrix of composition 2YbF(3):30SiO(2)-15Al(2)O(3)-25CdF(2)-22PbF(2)-4YF(3), forming bulk glass-ceramics at three different crystalisation levels. The samples are compared with a corresponding uncrystalised (glass) sample, as well as a Yb:YAG sample which has presented optical cooling. The measured X-ray diffraction spectra, and thermal capacities of the samples are reported. We also report for the first time the use of Yb:YAG as a reference for absolute photometric quantum efficiency measurement, and use the same setup to characterize the glass and glass-ceramic samples. The cooling figure-of-merit was measured by optical calorimetry using a fiber Bragg grating and found to depend on the level of crystallization of the sample, and that samples with nanocrystallites result in higher quantum efficiency and lower background absorption than the pure-glass sample. In addition to laser-induced cooling, the glass-ceramics have the potential to serve as a reference for quantum efficiency measurements. PMID:25836500

  8. Helium diffusion in curium-doped borosilicate waste glass

    NASA Astrophysics Data System (ADS)

    Fares, T.; Peuget, S.; Bouty, O.; Deschanels, X.; Magnin, M.; Jégou, C.

    2011-09-01

    The isothermal release of helium from 244Cm-doped borosilicate glass has been studied as a function of time at different annealing temperatures. Helium measurements were performed using a micro gas chromatograph coupled to a furnace installed in a hot cell at ATALANTE nuclear research facility. Plane-parallel glass samples were prepared from glass discs that had been stored for 5.1 years at room temperature, accumulating around 10 19 alpha decays per gram of glass, a level that will be reached in current nuclear glass packages several thousand years after disposal. The experimental helium release data were simulated using a 3D numerical model to determine the helium diffusion coefficients. The extracted diffusion coefficients follow the Arrhenius law with an activation energy of 0.61 ± 0.03 eV and a pre-exponential factor of (5.7 ± 1.6) × 10 -3 cm 2 s -1. The results were compared with literature data on damaged and undamaged glasses to assess the effect of glass damage on helium release. The helium release results are consistent with a thermal diffusion mechanism involving only one population of helium atoms. The helium diffusion coefficients were unaffected by the glass alpha damage.

  9. Nucleation and crystallization behavior of RE - doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Goncharuk, V.; Mamaev, A.; Silant'ev, V.; Starodubtsev, P.; Maslennikova, I.

    2016-01-01

    The microstructure and crystallization of the glasses with composition (100-x-y)TeO2-xPbO·P2O5-yPbF2:zMF3 (M= Er, Eu, Nd; x=42.5-30, y=5-30, z=0.5-3.0) were investigated by transmission electron microscopy (TEM) and luminescence methods. It was found that the doping with the rare-earth (III) fluorides promoted nucleation in the bulk glasses. The sizes of generated particles are about 2-5 nanometers and their shapes are close to spherical. The growth rate of crystallites depended on the lead fluoride content and glass forming rate. The heat treatment of the samples promotes the glass ceramic formation, where the crystalline phase is Pb2P2O7.

  10. Bismuth-doped Mg - Al silicate glasses and fibres

    SciTech Connect

    Bufetov, Igor' A; Vel'miskin, V V; Galagan, B I; Denker, B I; Sverchkov, S E; Semjonov, S L; Firstov, Sergei V; Shulman, I L; Dianov, Evgenii M

    2012-09-30

    This paper compares the optical properties of bulk bismuth-doped Mg - Al silicate glasses prepared in an iridium crucible to those of optical fibres prepared by the powder-in-tube method and having a core identical in composition to the glasses. The bulk glasses and fibres are shown to be similar in luminescence properties. The optical loss in the fibres in their IR luminescence band is about one order of magnitude lower than that in the crucible-melted glasses. The level of losses in the fibres and their luminescence properties suggest that such fibres can be made to lase near 1.15 {mu}m. (optical fibres, lasers and amplifiers. properties and applications)

  11. Electrical conduction in alkali borate glasses; a unique dependence on the concentration of modifier ions

    NASA Astrophysics Data System (ADS)

    Doweidar, H.; Moustafa, Y. M.; El-Damrawi, G. M.; Ramadan, R. M.

    2008-01-01

    The electrical conduction of Li2O-B2O3, Na2O-B2O3 and K2O-B2O3 glasses seems, at first sight, to be dominated by the activation energy. Regardless of the size of the alkali ion, there is a unique dependence of conductivity, at a certain temperature, on the alkali-alkali distance and thus on N (the number of ions per cm3). The linear dependence of logσ on N-3/2 for all types of alkali ions reveals that N is the basic parameter that determines the conductivity at a certain temperature. A derived semi-empirical relation can be used to calculate the conductivity as a function of N and temperature.

  12. Study of lithium borate glasses containing Bi{sub 2}O{sub 3}

    SciTech Connect

    Deshpande, A. V.; Raut, V. D.

    2014-04-24

    The effect of Bi{sub 2}O{sub 3} addition on the properties of 30Li{sub 2}O:(70−x)B{sub 2}O{sub 3}:xBi{sub 2}O{sub 3} (0≤x≤35 mol %) has been studied. Density and molar volume are increasing with Bi{sub 2}O{sub 3} content. The observed decrease in glass transition temperature and optical band gap has been explained on the basis of increase in non bridging oxygen which is supported by infrared spectroscopy. From the optical transmittance spectra it is observed that the cut off wavelength increases with Bi{sub 2}O{sub 3} content which is related to the structural changes.

  13. AC Conductivity Studies in Lithium-Borate Glass Containing Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shivaprakash, Y.; Anavekar, R. V.

    2011-07-01

    Gold nanoparticles have been synthesized in a base glass with composition 30Li2O-70B2O3 using gold chloride (HAuCl4.3H2O) as a dopant. The samples are characterized using XRD, ESR, SEM and optical absorption in the visible range. AC conductivity studies have been performed at RT over a frequency range 100 to 10 MHz. The dc conductivity is calculated from the complex impedence plot. The dc conductivity is found to be increasing with the increase of dopant concentration. AC conductivity data is fitted with Almond-West law with power exponent `s'. The values of `s' is found to lie in the range of 0.70-0.73.

  14. Silver doped nanobioactive glass particles for bone implant applications

    SciTech Connect

    Prabhu, M.; Kavitha, K.; Karunakaran, G.; Manivasakan, P.; Rajendran, V.

    2013-02-05

    Silica based silver doped nanobioactive glass compositions (58SiO{sub 2}-33CaO-9P{sub 2}O{sub 5} and 58SiO{sub 2}-23CaO-9P{sub 2}O{sub 5}-10Ag{sub 2}O(mol%)) were synthesized by a simple sol-gel route. The prepared samples were comprehensively characterised by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopic studies. The results reveal that the prepared samples have amorphous phase with spherical morphology and having a particle size less than 100 nm. The specific surface areas were 90 and 61 m{sup 2}g{sup -1} respectively. The in vitro bioactivity of glass samples were confirmed by the formation of hydroxyapatite layer on glass surfaces. The Ag{sub 2}O-doped nanobioactive glasse samples shows reveal significant antibacterial activity compare with base glasses.

  15. Temperature dependent electrical transport characteristics of BaTiO3 modified lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Thakur, Vanita; Singh, Anupinder; Awasthi, A. M.; Singh, Lakhwant

    2015-08-01

    The glass samples with composition (70B2O3-29Li2O-1Dy2O3)-xBT; x = 0, 10 and 20 weight percent, have been prepared by conventional melt quench technique. The dielectric measurements as a function of temperature have been carried out on these samples in the frequency range 1 Hz-10 MHz. The dielectric relaxation characteristics of these samples have been studied by analyzing dielectric spectroscopy, dielectric loss, electric modulus formulation and electrical conductivity spectroscopy. It is found that the dielectric permittivity of the samples increases with an increase in the temperature and BT content. The frequency dependent ac conductivity has been analyzed using Jonscher's universal power law whereas non exponential KWW function has been invoked to fit the experimental data of the imaginary part of the electric modulus. The values of the activation energy determined from the electric modulus and that from dc conductivity have been found to be quite close to each other suggesting that the same type of charge barriers are involved in the relaxation and the conduction mechanisms. The stretched exponent (β) and the power exponent (n) have been found to be temperature and composition dependent. The decrease in n with an increase in temperature further suggested that the ac conduction mechanism of the studied samples follows the correlated barrier hopping (CBH) model.

  16. Spectral luminescence characteristics of forsterite nano glass ceramics doped with chromium ions

    NASA Astrophysics Data System (ADS)

    Aseev, V. A.; Zhukov, S. N.; Kuleshov, N. V.; Kuril'chik, S. V.; Mudryi, A. V.; Nikonorov, N. V.; Rokhmin, A. S.; Yasyukevich, A. S.

    2015-01-01

    A technology for production of nano-glass-ceramic materials based on aluminosilicate glass doped with chromium oxide is proposed. A comparative study of the spectral luminescence properties of forsterite glass ceramics and single crystal doped with chromium ions is performed. It is shown that chromium ions are partially incorporated into the glass-ceramics crystalline phase. The quantum luminescence yields of Cr4+ ions in forsterite nano glass ceramics and single crystal are found to be close.

  17. Spectral investigations on Dy{sup 3+}-doped transparent oxyfluoride glasses and nanocrystalline glass ceramics

    SciTech Connect

    Babu, P.; Jang, Kyoung Hyuk; Kim, Eun Sik; Shi, Liang; Seo, Hyo Jin; Rivera-Lopez, F.; Rodriguez-Mendoza, U. R.; Lavin, V.; Vijaya, R.; Jayasankar, C. K.; Rama Moorthy, L.

    2009-01-01

    Dysprosium-doped oxyfluoride glasses and nanocrystalline glass ceramics have been synthesized and studied by x-ray diffraction, absorption, and visible and near-infrared emission spectra. The samples emit intense white light when populating the {sup 4}F{sub 9/2} level with a 451 nm laser light and, from the visible emission spectra, yellow to blue intensity ratios and chromaticity color coordinates have been calculated and their relative variation have been discussed based on the concentration of Dy{sup 3+} ions and the heat treatment conditions used to prepare the glass ceramics. Infrared emission has also been observed in glasses and glass ceramics after laser excitation at 800 nm, showing bands at 1.33 and 1.67 {mu}m, useful for optical amplification in fiber amplifiers.

  18. Magnetic resonance studies on radiation-induced point defects in mixed oxide glasses. I. Spin centers in B{sub 2}O{sub 3} and alkali borate glasses.

    SciTech Connect

    Shkrob, I. A.; Tadjikov, B. M.; Trifunac, A. D.; Chemistry

    2000-02-01

    Radiation-induced spin centers in vitreous boron trioxide and alkali borate glasses were studied using pulsed electron paramagnetic resonance (EPR). It is shown that electrons and holes in these glasses are trapped on valence alternation defects, undercoordinated oxygen (holes) and overcoordinated oxygen (electrons). The local environment around these defects has major effect on spin parameters of the corresponding spin centers. The electronic and atomic structure of spin-1/2 centers and their diamagnetic precursors is analyzed using semiempirical and ab initio calculations.

  19. Luminescence properties of Cr-doped silica sol gel glasses

    NASA Astrophysics Data System (ADS)

    Strek, Wieslaw; Lukowiak, Edward; Deren, Przemyslaw J.; Maruszewski, K.; Trabjerg, Ib; Koepke, Czeslaw; Malashkevich, G. E.; Gaishun, Vladimir E.

    1997-11-01

    The emission of Cr-doped silica glass obtained by the sol- gel method is characterized by an orange broad band with a maximum at 610 nm. Its nature is examined by the absorption, excited state absorption, emission, excitation and lifetime measurements over a wide range of temperature and for different concentration of Cr ions. Our measurement show that in spite of fact that the absorption properties of Cr- doped silica sol-gel glass are predominantly associated with Cr4+ centers, the observed in visible range emission can be assigned neither to Cr3+ nor to Cr4+ ions. The discussion of the nature of observed emission was carried out for all possible valencies of the Cr ions. In conclusion is suggested that it may be ascribed to the transitions on the monovalent Cr1+ ion. The reducing agents occurring during the sol-gel process and leading to lowering the Cr valency are discussed.

  20. Super-Resolution Effect of Semiconductor-Doped Glass

    NASA Astrophysics Data System (ADS)

    Nagase, Toshihiko; Ashida, Sumio; KatsutaroIchihara, KatsutaroIchihara

    1999-03-01

    Semiconductor-doped glass is proposed as a super-resolution layer for future ultra-high-density optical disc systems. It was confirmed that this material system showed very fast response and large transmittance change by laser-beam irradiation when CdSSe-doped glass was used. The rise time of the transmittance change was less than 10 ns and the transmittance change reached 30%. These optical responses were obtained at a power density of the pumped laser beam of 1 MW/cm2. This power density corresponds to the readout power in digital versatile disk-read onlymemory (DVD-ROM) and digital versatile disk-random access memory (DVD-RAM) discs. This material system is regarded as a potential candidate for a super-resolution readout layer that is applicable to both ROM and RAM discs.

  1. Mid-IR and far-IR investigation of AgI-doped silver diborate glasses

    SciTech Connect

    Hudgens, J.J.; Martin, S.W.

    1996-03-01

    The structures of {ital x}AgI+(1{minus}{ital x})Ag{sub 2}O{center_dot}2B{sub 2}O{sub 3} glasses, where 0.2{le}{ital x}{le}0.6, have been investigated using mid- and far-infrared spectroscopy. The mid-IR spectra revealed that in those glasses prepared using AgNO{sub 3} as the starting material for Ag{sub 2}O, the BO{sub 4}{sup {minus}}/BO{sub 3} ratio is constant with increasing amounts of AgI as would be expected form the proposed behavior of AgI in these glasses. However, a survey of the literature revealed those glasses prepared from pure Ag{sub 2}O show a strong linear dependence of the BO{sub 4}{sup {minus}}/BO{sub 3} ratio on AgI content. Most probably, in those glasses prepared with Ag{sub 2}O the Ag{sub 2}O/B{sub 2}O{sub 3} ratio changes with AgI content due to the decomposition of Ag{sub 2}O during melting. This different behavior is associated with AgNO{sub 3} decomposing to Ag{sub 2}O with heating followed by incorporation into the glassy network. For Ag{sub 2}O used directly, it is proposed that it decomposes to Ag metal and O{sub 2}(gas) with heating before it can be incorporated into the borate network. This latter behavior decreases with increasing AgI in the batch composition because AgI lowers the liquidus temperature of the melt considerably. The far-IR analysis of the AgI-doped silver diborate glasses suggests that there are three coordination environments for the Ag{sup +} ions; one with iodide anions and the other two with oxygen ions. It is proposed that the separate oxygen coordination environments for the Ag{sup +} ions arise from one with bridging oxygens of BO{sub 4}{sup {minus}} units, and the other with nonbridging oxygens on BO{sub 3}{sup {minus}} units. Furthermore, it is proposed that the Ag{sup +} ions in the iodide-ion environments progressively agglomerate into disordered regions of AgI, but do not form structures similar to {alpha}-AgI. (Abstract Truncated)

  2. Upconversion lasing of a Tm3+-doped fluoride glass microsphere

    NASA Astrophysics Data System (ADS)

    Sasaki, Keiji; Fujiwara, Hideki

    1999-07-01

    Upconversion lasing of a thulium-ion-doped zirconium fluoride glass microsphere was demonstrated. The microsphere was pumped by a fundamental wave of a Nd:YAG laser (1064 nm) at room temperature. The lasing emission was observed in 480-nm and 800-nm regions, and their lasing thresholds were determined to be approximately 20 mW and approximately 5 mW, respectively. The application to near-field optical microscopy is also discussed.

  3. Luminescence characteristics of Li₂CO₃-K₂CO₃-H₃BO₃ glasses co-doped with TiO₂/MgO.

    PubMed

    Alajerami, Yasser Saleh Mustafa; Hashim, Suhairul; Ghoshal, Sib Krishna; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Ibrahim, Zuhairi; Kadni, Taiman; Bradley, David Andrew

    2013-12-01

    Understanding the influence of co-dopants in the luminescence enhancement of carbonate glasses is the key issue in dosimetry. A series of borate glasses modified by lithium and potassium carbonate were synthesized by the melt-quenching method. The glass mixture activated with various concentrations of TiO2 and MgO was subjected to various doses of gamma-rays ((60)Co). The amorphous nature of the samples was confirmed by x-ray diffraction (XRD) spectra. The simple glowing curve of the glass doped with TiO2 features a peak at 230°C, whose intensity is maximal at 0.5 mol% of the dopant. The intensity of the glowing curve increases with the concentration of MgO added as a co-dopant up to 0.25 mol%, where it is two times higher than for the material without MgO thermoluminescence properties, including dose response, reproducibility, and fading were studied. The effective atomic number of the material was also determined. Kinetic parameters, such as kinetics order, activation energy, and frequency factor are estimated. The photoluminescence spectra of the titanium-doped glass consist of a prominent peaks at 480 nm when laser excitation at 650 nm is used. A three-fold photoluminescence enhancement and a blue shift of the peak were observed when 0.1% MgO was introduced. In addition, various physical parameters, such as ion concentration, polaron radius and internuclear distances were calculated. The mechanism for the thermoluminescence and photoluminescence enhancements are discussed. PMID:23948307

  4. EPR study of coordination of Ag and Pb cations in BaB2O4 crystals and barium borate glasses

    NASA Astrophysics Data System (ADS)

    Solntsev, V. P.; Mashkovtsev, R. I.; Davydov, A. V.; Tsvetkov, E. G.

    2008-07-01

    It is shown the possibility to determine the coordination of paramagnetic ions in disordered solid structures, e.g., in barium borate glasses. For this purpose the electron paramagnetic resonance (EPR) method was used to study α-and β-BaB2O4 crystals and glasses of 45·BaO × 55·B2O3 and 40·BaO × 60·B2O3 (mol%) composition activated by Ag+ and Pb2+ ions. After the samples were exposed to X-rays at 77 K, different EPR centers were observed in them. In α-and β-BaB2O4 crystals and glasses the EPR centers Ag2+, Ag0, Pb+, Pb3+, and hole centers of O- type were studied. The EPR parameters of these centers and their arrangement in crystal structure were determined. It is shown that Pb3+ ions in β-BaB2O4 crystals occupy Ba2+ position in an irregular polyhedron from the eight oxygen, whereas in α-BaB2O4 crystals they occupy Bа2 position in a sixfold coordination. Pb+ ions in α-BaB2O4 crystals occupy Bа1 position in a ninefold coordination from oxygen. In barium borate glasses, Pb3+ ions were studied in coordination polyhedron from six oxygen atoms and in a polyhedron from nine to ten oxygen atoms. It is assumed that the established difference in the structural position of Pb3+ ions in glasses is due to their previous incorporation in associative cation-anion complexes (AC) and “free” structure-forming cations (FC). Computer simulations have been performed to analyze the stability of specific associative complexes and to compare their bond lengths with experimental data.

  5. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  6. Spectroscopic properties of Er3+-doped fluorotellurite glasses

    NASA Astrophysics Data System (ADS)

    Miguel, A.; Al-Saleh, M.; Azkargorta, J.; Morea, R.; Gonzalo, J.; Arriandiaga, M. A.; Fernandez, J.; Balda, R.

    2013-09-01

    In this work we report the spectroscopic properties of Er3+-doped fluorotellurite glasses in the 46.6TeO2-18.2ZnO-35.2ZnF2 system for different ErF3 concentrations between 0.5 and 3 wt%. Absorption and emission spectra and lifetimes have been measured in the visible and near infrared regions. Judd-Ofelt analysis has been performed to estimate the radiative transition probabilities. The high content of ZnF2 in this glass decreases the covalency degree in rare-earth site and results in a lower value of ?2 if compared with zinc tellurite glasses. The infrared emissions at 1532 nm are broader by nearly 30 nm in these glasses if compared to silica glass. This broad emission together with the high values of the stimulated emission cross-section and lifetime of level 4I13/2 make these glasses attractive for broadband amplifiers. The decays from level 4I13/2 are single exponentials for all concentrations which indicates a fast energy diffusion between Er3+ ions. Similar values for the critical radius and energy transfer microparameter are obtained for the different concentrations, which supports the dipole-dipole transfer hypothesis.

  7. XRD and IR Studies of Yb3+ Doped Tellurite Glass

    NASA Astrophysics Data System (ADS)

    Sahar, M. R.; Isa, H. Noor

    2011-03-01

    Ytterbium doped sodium-tellurite glasses having composition of (80-x) TeO2-20Na2O-(x)Yb2O3 (where x = 0.0-2.0 mol%) are prepared by melt quenching technique. The crystallinity of the glass has been examined using X-ray diffraction technique. All glass are found to be amorphous in nature. Meanwhile the transmission spectroscopy is determine by using Infrared Spectroscopy. It is found that the absorption vibrational spectra occurs at range 3405-3423 cm-1, 1632-1643 cm-1, 1377-1382 cm-1, 721-732 cm-1 and 589-606 cm-1 peaks. The predominant peaks around 700 cm-1 is due to the Te-O-Te vibration while peak at 600 cm-1 is due to the vibration of Yb3+ ions.

  8. Luminescence properties of solid solutions of borates doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Levushkina, V. S.; Mikhailin, V. V.; Spassky, D. A.; Zadneprovski, B. I.; Tret'yakova, M. S.

    2014-11-01

    The structural and luminescence properties of LuxY1 - xBO3 solid solutions doped with Ce3+ or Eu+3 have been investigated. It has been found that the solid solutions crystallize in the vaterite phase with a lutetium concentration x < 0.5. For a higher lutetium concentration x, the solid solutions contain an additional calcite phase with a content less than 5 wt %. The luminescence spectra are characterized by intensive impurity emission under excitation with the synchrotron radiation in the X-ray and ultraviolet spectral ranges. It has been shown that, as the lutetium concentration x in the LuxY1 - xBO3: Ce3+ solid solutions increases, the emission intensity smoothly decreases, which is associated with a gradual shift of the Ce3+ 5 d(1) level toward the bottom of the conduction band, as well as with a decrease in the band gap. It has been established that, in the LuxY1 - xBO3: Eu3+ solid solutions with intermediate concentrations x, the efficiency of energy transfer to luminescence centers increases. This effect is explained by the limited spatial separation of electrons and holes in the solid solutions. It has been demonstrated that the calcite phase adversely affects the luminescence properties of the solid solutions.

  9. Differential scanning calorimetry investigations on Eu-doped fluorozirconate-based glass ceramics.

    PubMed

    Paßlick, C; Ahrens, B; Henke, B; Johnson, J A; Schweizer, S

    2010-12-01

    The properties of Eu-doped fluorochlorozirconate (FCZ) glass ceramics upon thermal processing and the influence of Eu-doping on the formation of BaCl(2) nanocrystals therein have been investigated. Differential scanning calorimetry indicates that higher Eu-doping shifts the crystallization peak of the nanocrystals in the glass to lower temperatures, while the glass transition temperature remains constant. The activation energy and the thermal stability parameters for the BaCl(2) crystallization are determined. PMID:21286235

  10. Laser ablation of silicate glasses doped with transuranic actinides

    SciTech Connect

    Gibson, J.K.; Haire, R.G.

    1998-10-01

    Direct sampling laser ablation plasma mass spectrometry (DS-LAMS) was applied to silica glasses doped with {sup 237}Np, {sup 242}Pu or {sup 241}Am using a unique instrument recently installed into a transuranic glovebox. The primary goal was to assess the utility of mass spectrometry of directly ablated ions for facile evaluation of actinide (An) constituents of silicate glass immobilization matrices used for encapsulation of radionuclides. The instrument and general procedures have been described elsewhere. Three high-purity silicate glasses prepared by a sol-gel process (SG) and one conventional high-temperature (HT; melting point {approx} 1,450 C) borosilicate glass were studied. These glasses comprised the following constituents, with compositions expressed in mass percentages: Np-HT {approx} 30% SiO{sub 2} + 6% B{sub 2}O{sub 3} + 3% BaO + 13% Al{sub 2}O{sub 3} + 10% PbO + 30% La{sub 2}O{sub 3} + 8% {sup 237}NpO{sub 2}; Np-SG {approx} 70% SiO{sub 2} + 30% {sup 237}NpO{sub 2}; Pu-SG {approx} 70% SiO{sub 2} + 30% {sup 242}PuO{sub 2}; Am-SG {approx} 85% SiO{sub 2} + 15% {sup 241}AmO{sub 2}.

  11. Effect of glass structure on spin Hamiltonian parameters: Cu doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Raj Kumar; Bhatnagar, Anil K.

    2015-06-01

    Cu-doped glasses with compositions [(70TeO2-(30-x)ZnO-xPbO)0.98- (CuO)0.02] (x = 5, 10, 15, 20) were prepared using the melt quenching technique and characterized by EPR. Cu2+ ions are found to be in distorted oxygen octahedral cage and their corresponding spin Hamiltonian (splitting) parameters are deduced for all glasses as a function of increasing PbO. Finally, effect of the matrix on spin Hamiltonian parameters of Cu2+ ions are correlated with the help of EPR and earlier Raman analysis.

  12. Effect of glass structure on spin Hamiltonian parameters: Cu doped tellurite glasses

    SciTech Connect

    Ramamoorthy, Raj Kumar; Bhatnagar, Anil K.

    2015-06-24

    Cu-doped glasses with compositions [(70TeO{sub 2}−(30−x)ZnO−xPbO){sub 0.98}− (CuO){sub 0.02}] (x = 5, 10, 15, 20) were prepared using the melt quenching technique and characterized by EPR. Cu{sup 2+} ions are found to be in distorted oxygen octahedral cage and their corresponding spin Hamiltonian (splitting) parameters are deduced for all glasses as a function of increasing PbO. Finally, effect of the matrix on spin Hamiltonian parameters of Cu{sup 2+} ions are correlated with the help of EPR and earlier Raman analysis.

  13. Lead-salt quantum dot doped glasses for photonics

    NASA Astrophysics Data System (ADS)

    Auxier, Jason Michael

    In this dissertation, I present photonics applications of PbS quantum-dot-doped (QD-doped) glasses. The dissertation consists of two major parts: bulk material applications (Cr:forsterite laser modelocking, bleaching dynamics, optical gain, and photo-luminescence) and the fabrication of QD-doped ion-exchanged waveguides. When this work began, these PbS QD-doped glasses were the state-of-the-art in quantum dot glasses due to their narrow size distribution. Modelocking of a Cr:forsterite laser using this glass as a saturable absorber had been demonstrated, with little understanding of the dynamics. This work began by studying the dynamics of the saturable absorber to explain the ps-pulse width. In the bulk measurements, I functioned as a secondary researcher. In the laser modelocking and bleaching measurements, my contribution was laser cavity alignment, sample preparation, collecting autocorrelation traces, and aiding in the setup and data collection for the bleaching measurements. On this work, I coauthored one refereed journal article in Applied Physics Letters [1] and one refereed conference paper [2], for which I am third and second author, respectively. For the gain measurements, I aided in the setup and data collection, whereas I setup and took most of the luminescence data. The gain measurements resulted in one second-author refereed journal article in Applied Physics Letters [3] and I presented the luminescence results at CLEO2000 [4]. I took the lead role in the waveguide fabrication and characterization and authored refereed journal articles in Applied Physics Letters [5], Journal of Applied Physics [6], and Journal of the Optical Society of America B [7]. I also presented an invited talk at Photonics West [8] and presented at CLEO200-1 [9]. Additionally, I have been a coauthor of presentations at the Nanotechnology Symposium (2006), American Ceramic Society [10], and Photonics Europe ( 2006) [11]. A book chapter in The Photonics Handbook, 2nd edition [12] also discusses this work. The next step is to focus on reducing the waveguide losses. This requires new, circular wafers with better surface quality and glass homogeneity. I suggest using silver-film ion exchange followed by a field-assisted burial to eliminate the surface interaction.

  14. Spectroscopy of the Er-doped lithium tetraborate glasses

    NASA Astrophysics Data System (ADS)

    Padlyak, B. V.; Lisiecki, R.; Ryba-Romanowski, W.

    2016-04-01

    The electron paramagnetic resonance (EPR), optical absorption, and luminescence (emission and excitation) spectra as well as luminescence kinetics of the Er-doped glasses with Li2B4O7 composition were investigated and analysed. The high optical quality glasses with Li2B4O7:Er composition containing 0.5 and 1.0 mol.% Er2O3 were obtained from corresponding polycrystalline compound by standard glass synthesis. The EPR spectroscopy in the 4.2-300 K temperature range and optical spectroscopy at 300 K show that the Er impurity is incorporated into the network of Li2B4O7 glass as Er3+ (4f11, 4I15/2) ions, exclusively. The local structure of the Er3+ luminescence centres in Li sites of the glass network is proposed. Based on the standard Judd-Ofelt theory the oscillator strength (Pcal) and experimental oscillator strength (Pexp) for observed absorption transitions as well as phenomenological intensity parameters (Ω2, Ω4, Ω6) for Er3+ centres in the Li2B4O7:Er glass containing 1.0 mol.% Er2O3 were calculated. Spectroscopic parameters of relevance for laser applications, including emission probabilities of transitions (Wr), branching ratios (β), and radiative lifetime (τrad) have been calculated for main observed emission transitions of the Er3+ centres in Li2B4O7:Er glasses. Experimental and calculated lifetimes were compared and quantum efficiency (η) for green (4S3/2 → 4I15/2 transition) and infrared (4I13/2 → 4I15/2 transition) emission bands has been estimated.

  15. Transmittance properties and TEM observation of metal doped glass by field-assisted ion exchange

    NASA Astrophysics Data System (ADS)

    Matsusaka, Souta; Nomura, Taketsugu; Hidai, Hirofumi; Chiba, Akira; Morita, Noboru

    2014-08-01

    Metal (silver or copper) ions were doped into borosilicate glass using an electric field- assisted ion exchange method. The optical transmittance of the metal doped glass was measured to determine why the doped glass exhibited an excellent laser micro-machinability. The doped metal ions were found to have enhanced the optical absorption of the glass, especially in the ultraviolet range. This in turn facilitated the efficient absorption of incident laser irradiation, and hence improved laser machinability of the glass. The metal doped glass also exhibited some absorption in the visible range, leading to a slight yellow-brown coloration. Transmission electron microscope (TEM) observations indicated that the metal ions had penetrated the glass and therein formed nanometer-sized (~6 nm) fine particles. In an attempt to control the optical characteristics in the ultraviolet-visible range, metal doped glass was heat-treated following the ion exchange doping step. In the case of silver-doped glass with heat treatment at 723 K, silver nanoparticles aggregated locally yielding an inhomogeneous structure. The heat-treated samples had a high optical absorption in the ultraviolet range.

  16. Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Hughes, M.; Rutt, H.; Hewak, D.; Curry, R. J.

    2007-01-01

    Vanadium doped gallium lanthanum sulphide glass (V:GLS) displays three absorption bands at 580, 730, and 1155nm identified by photoluminescence excitation measurements. Broad photoluminescence, with a full width at half maximum of ˜500nm, is observed peaking at 1500nm when exciting at 514, 808, and 1064nm. The fluorescence lifetime and quantum efficiency at 300K were measured to be 33.4μs and 4%, respectively. From the available spectroscopic data, the authors propose the vanadium ions' valence to be 3+ and be in tetrahedral coordination. The results indicate a potential for the development of a laser or optical amplifier based on V:GLS.

  17. Energy upconversion in holmium doped lead-germano-tellurite glass

    SciTech Connect

    Kamma, Indumathi; Reddy, B. Rami

    2010-06-15

    Holmium doped lead-germano-tellurite glass was prepared by the melt quenching technique. The Judd-Ofelt intensity parameters were estimated as {Omega}{sub 2}=7.6x10{sup -20}, {Omega}{sub 4}=12.9x10{sup -20}, and {Omega}{sub 6}=2.5x10{sup -20} cm{sup 2}. Radiative transition probabilities and lifetimes were also determined for some of the levels. Room temperature upconversion emissions have been observed from Ho{sup 3+} at 497 nm under 532 nm laser excitation, and at 557 and 668 nm under 762 nm laser excitation. The upconversion emission mechanisms were found to be due to a step wise excitation process. Upconversion emission intensity enhanced in a heat treated glass.

  18. Spectroscopic properties of Nd3+-doped tungsten-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Costa, F. B.; Yukimitu, K.; Nunes, L. A. O.; Figueiredo, M. S.; Andrade, L. H. C.; Lima, S. M.; Moraes, J. C. S.

    2016-01-01

    In this work, we investigate the spectroscopy properties of neodymium doped tungsten-tellurite glasses prepared in ambient and O2-rich atmospheres. A conversion of TeO4 to TeO3 units was caused by the addition of Nd3+ into the glass, which was confirmed by absorption spectra and by Judd-Ofelt parameter behavior. The relaxation of the 4F3/2 level is dominated by radiative decay and cross-relaxation between Nd3+ and Nd3+ ions. The energy transfer from Nd3+ to the hydroxyl group is negligible when compared to the cross-relaxation. The luminescence quantum efficiency values of the 4F3/2 level decreases as the Nd3+ concentration increases, independently if determined by the Judd-Ofelt method or by the thermal lens technique. The observed reduction in the IR absorption associated to OH groups was not effective to improve the luminescence quantum efficiency.

  19. Photoluminescence of Eu3+-doped glasses with Cu2+ impurities

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.

    2015-06-01

    Glasses activated with Eu3+ ions are attractive as luminescent materials for various photonic applications. Co-doping with copper has been proposed for enhancing material optical properties, but the quenching effect of Cu2+ impurities on Eu3+ emission in glass remains largely unexplored. In this work, Eu2O3/CuO-containing barium-phosphate glasses have been prepared by the melt-quench method, and the Eu3+ photoluminescence (PL) quenching resulting from Eu3+ → Cu2+ energy transfer was evaluated. Optical absorption spectroscopy showed that with the increase in CuO concentration the Cu2+ absorption band resonant with Eu3+ emission (e.g. 5D0 → 7F2 transition around 615 nm) developed steadily. As a result, Eu3+ PL was progressively quenched. Evaluation of the quenching constants as a function of temperature in the 298-673 K range showed differences basically within experimental error, consistent with a resonant transfer and lack of phonon-assisted processes. Moreover, analysis of the Eu3+ emission decay dynamics revealed a strong correlation between the decay rates and Cu2+ impurity levels. Results imply that for practical applications the levels of Cu2+ in Eu3+/Cu+-activated glasses should be reduced if not removed as these will significantly limit device efficiency.

  20. The Effect of TiO2 and MgO on the Thermoluminescence Properties of a Lithium Potassium Borate Glass System

    NASA Astrophysics Data System (ADS)

    Alajerami, Y. S. M.; Hashim, S.; Ghoshal, S. K.; Saleh, M. A.; Kadni, T.; Saripan, M. I.; Alzimami, K.; Ibrahim, Z.; Bradley, D. A.

    2013-12-01

    The influence of dopant TiO2 and co-dopant MgO on the thermoluminescence (TL) properties of lithium potassium borate glass (LKB) is reported in this paper. The glow curve exhibits a prominent peak (Tm) at 230 °C. The TL intensity was enhanced by a factor of ~3 due to the incorporation of MgO, and this was attributed to the creation of extra electron traps mediated by radiative recombination energy transfer. We achieved good linearity of the TL yield with dose, low fading, excellent reproducibility and a promising effective atomic number (Zeff=8.89), all of which are highly suitable for dosimetry. The effect of heating rate, sunlight and dose rate on the TL are also examined. These attractive features demonstrate that our dosimeter is useful in medical radiation therapy.

  1. Spectroscopic properties of Eu3+/Nd3+ co-doped phosphate glasses and opaque glass-ceramics

    NASA Astrophysics Data System (ADS)

    Narro-García, R.; Desirena, H.; López-Luke, T.; Guerrero-Contreras, J.; Jayasankar, C. K.; Quintero-Torres, R.; De la Rosa, E.

    2015-08-01

    This paper reports the fabrication and characterization of Eu3+/Nd3+ co-doped phosphate (PNE) glasses and glass-ceramics as a function of Eu3+ concentration. The precursor glasses were prepared by the conventional melt quenching technique and the opaque glass-ceramics were obtained by heating the precursor glasses at 450 °C for 30 h. The structural and optical properties of the glass and glass-ceramics were analyzed by means of X-ray diffraction, Raman spectroscopy, UV-VIS-IR absorption spectroscopy, photoluminescence spectra and lifetimes. The amorphous and crystalline structures of the precursor glass and opaque glass-ceramic were confirmed by X-ray diffraction respectively. The Raman spectra showed that the maximum phonon energy decreased from 1317 cm-1 to 1277 cm-1 with the thermal treatment. The luminescence spectra of the glass and glass-ceramic samples were studied under 396 nm and 806 nm excitation. The emission intensity of the bands observed in opaque glass-ceramic is stronger than that of the precursor glass. The luminescence spectra show strong dependence on the Eu3+ ion concentration in the Nd3+ ion photoluminescence (PL) intensity, which suggest the presence of energy transfer (ET) and cross-relaxation (CR) processes. The lifetimes of the 4F3/2 state of Nd3+ ion in Eu3+/Nd3+ co-doped phosphate glasses and glass-ceramics under 806 nm excitation were measured. It was observed that the lifetimes of the 4F3/2 level of Nd3+ of both glasses and glass-ceramics decrease with the increasing Eu3+ concentration. However in the case of opaque glass-ceramics the lifetimes decrease only 16%.

  2. Intense orange emission in Pr3+ doped lead phosphate glass

    NASA Astrophysics Data System (ADS)

    Mitra, Subrata; Jana, Samar

    2015-10-01

    Spectroscopic properties of one mol% Pr2O3 embedded in 40%PbO-60%P2O5 glass have been investigated at room temperature. From the absorption spectra energy levels of the observed bands are assigned. Using free ion Hamiltonian theoretical values of energy of 13 multiplets of Pr3+ are calculated. Judd-Ofelt intensity parameters have been estimated by including and excluding the hypersensitive transition (3H4→3P2). The best set of Judd-Ofelt parameters are obtained by omitting 3H4→3P2 transition from the calculation. These parameters are used to evaluate the important laser parameters for various emission lines. Our investigation reveals that the present glass may be utilized as a laser active medium corresponding to 3P0→3H4 and 1D2→3H4 transitions respectively, for 484.6 nm (blue) and 599.5 nm (strong orange) emissions. Indirect and direct optical band gap energies of Pr3+ doped lead phosphate glass matrix have also been reported.

  3. Lead-barium fluoroborate glass ceramics doped with Nd3+ or Er3+

    NASA Astrophysics Data System (ADS)

    Petrova, O. B.; Sevostjanova, T. S.; Anurova, M. O.; Khomyakov, A. V.

    2016-02-01

    Lead-barium fluoroborate glasses in the PbF2-BaF2-B2O3, PbF2-BaO-B2O3, and PbO- BaF2-B2O3 systems doped with rare-earth ions (Nd3+ or Er3+) are synthesized and studied. It is shown that, based on these glasses, it is possible to produce transparent glass ceramics with fluoride crystalline phases, including ceramics with one crystalline phase of the fluorite structure. The spectral and luminescent properties of the doped glasses, glass ceramics, and polycrystalline complex fluorides containing Pb, Ba, and rare ions are studied.

  4. Doping of ZnO nanowires using phosphorus diffusion from a spin-on doped glass source

    NASA Astrophysics Data System (ADS)

    Bocheux, A.; Robin, I. C.; Bonaimé, J.; Hyot, B.; Kolobov, A. V.; Mitrofanov, K. V.; Fons, P.; Tominaga, J.; Tamenori, Y.; Feuillet, G.

    2014-05-01

    In this article, we report on ZnO nanowires that were phosphorus doped using a spin on dopant glass deposition and diffusion method. Photoluminescence measurements suggest that this process yields p-doped ZnO. The spatial location of P atoms was studied using x-ray near-edge absorption structure spectroscopy and it is concluded that the doping is amphoteric with P atoms located on both Zn and O sites.

  5. Doping of ZnO nanowires using phosphorus diffusion from a spin-on doped glass source

    SciTech Connect

    Bocheux, A.; Robin, I. C.; Bonaimé, J.; Hyot, B.; Feuillet, G.; Kolobov, A. V.; Fons, P.; Mitrofanov, K. V.; Tominaga, J.; Tamenori, Y.

    2014-05-21

    In this article, we report on ZnO nanowires that were phosphorus doped using a spin on dopant glass deposition and diffusion method. Photoluminescence measurements suggest that this process yields p-doped ZnO. The spatial location of P atoms was studied using x-ray near-edge absorption structure spectroscopy and it is concluded that the doping is amphoteric with P atoms located on both Zn and O sites.

  6. Concentration dependent spectroscopic properties of Sm3+ doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R.; Marimuthu, K.

    2015-07-01

    A new series of Sm3+ doped borophosphate glasses 50B2O3 + 20Li2CO3 + 10ZnO + 9SrCO3 + (11 - x)P2O5 + xSm2O3 (x = 0.1, 0.25, 0.5, 1 and 2 in wt%) have been prepared by following melt quenching technique. The structural and optical properties of the prepared glasses were characterized through XRD, FTIR, absorption, luminescence and decay spectral measurements. The XRD spectrum exhibit broad diffusion at lower angles which reveal the amorphous nature and the presence of various functional groups such as Psbnd Osbnd P bonds, Bsbnd O vibrations in BO3 units and Psbnd OH and Bsbnd OH bonds in the title glasses were confirmed through the FTIR spectra. The nature of the metal-ligand bonding and the electronic band structure has been investigated using the absorption spectra. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were evaluated from the JO theory using the refractive index and the experimental oscillator strength values. The emission spectra exhibit four emission bands in the visible region corresponding to the 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 transitions by monitoring an excitation wavelength at 403 nm. The emission spectra have been characterized through Commission International de I'Eclairage (CIE) 1931 chromaticity diagram to explore the dominant emission from the studied glasses. The radiative parameters such as transition probability (AR), branching ratios (βR) and stimulated emission cross-section ( σPE) were obtained for the emission transitions using JO parameters and the results were discussed and compared with the reported literature.

  7. Effect of doping of Nd3+ ions in BaO-TeO2-B2O3 glasses: A vibrational and optical study

    NASA Astrophysics Data System (ADS)

    Nanda, Kirti; Berwal, Neelam; Kundu, R. S.; Punia, R.; Kishore, N.

    2015-05-01

    Nd3+ ions doped Barium-Tellurite-Borate glasses with compositions xNd2O3 - (100 - x)[0.1BaO-0.4TeO2-0.5B2O3]; x = 0.0, 0.5, 1.0, 1.5 and 2.0 have been prepared by melt-quench technique. The amorphous nature of as-prepared glasses has been confirmed by X-ray diffraction patterns. The density, molar volume and equivalent crystalline volume of the glass samples have been found to increase with the increase in concentration of Nd2O3. FTIR and Raman spectra of the prepared glasses indicate that Nd2O3 acts as glass modifier and as the content of Nd2O3 increases, BO4 structural units are converted into BO3 structural units. The values of optical band gap have been estimated from the fitting of Mott and Davis's model with the experimentally observed absorption spectra. The experimentally observed spectra of absorption coefficient also show good agreement with the hydrogenic excitonic model and the values of different parameters like optical band gap, excitonic binding energy, line width of m = 1 state and line width of continuum have been estimated from theoretical fitting of this model. The values of optical band gap are observed to decrease with increase in concentration of Nd2O3.

  8. [Investigation on spectroscopic properties of Yb3+ -doped laser glasses].

    PubMed

    Li, Wei-nan; Ding, Guang-lei; Lu, Min; Xiang, Li-bin

    2006-10-01

    Yb3+ -doped borosilicate glasses were prepared at high tempreture. The absorption spectra and fluorescence spectra were measured at room temperature. The integrated absorption cross section, stimulated emission cross section and fluorescent time were calculated. The results showed that the main peak wavelength was 975.15 nm in absorption spectra with one subpeak near 937.17 nm; emission peak was at 977.15 nm in fluorescence spectra with one subpeak near 997.42 nm; with increasing the sample thickness from 0.5 to 5 mm, luminescence intensity became greater, and the peak shifted to longer wavelength from 995.79 to 999.02 nm. The effective line width of fluorescence increased from 34.64 to 54.50 nm; Fluorescence lifetime decreased from 1.04 to 1.00 ms. PMID:17205719

  9. Dissolution and drug release profiles of phosphate glasses doped with high valency oxides.

    PubMed

    El-Meliegy, E; Farag, M M; Knowles, J C

    2016-06-01

    This paper investigates phosphate glasses incorporating vanadium and molybdenum oxides for effective management of dissolution and drug release. These glass formulations are found to reduce the rate of dissolution from the glass surfaces. The drug functional groups of vancomycin molecules loaded by immersion showed stronger hydrogen bonding with Vanadium doped glasses and consequently lower rate of drug release over 2 weeks indicating better surface attachment with the drug molecules and slow drug release profiles. This can be explained by the strong adherence of drug molecules to glass surfaces compared with the molybdenum containing glasses (PM5 and PM10). The strong attachment relates to hydrogen bonding between the amino-functional groups of vancomycin and the hydrated P-O-H groups in the glass network. In conclusion, the rate of dissolution of doped glasses and the rate of drug release can be administered to deliver the drug molecules over weeks. PMID:27117794

  10. Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Huang, Lihui; Jia, Shijie; Li, Yang; Zhao, Shilong; Deng, Degang; Wang, Huanping; Jia, Guohua; Hua, Youjie; Xu, Shiqing

    2015-07-01

    Transparent Tb3+-doped glass ceramics containing BaF2 nanocrystals were prepared by melt-quenching method with subsequent heat treatment. The XRD and EDS results showed the precipitated crystalline phase in the glass matrix was BaF2. Under 376 nm light, Tb3+ doped oxyfluoride glass ceramics containing BaF2 nanocrystals showed more intense green emission than the as-made glass, and the emission intensity increased with increasing heat treatment temperature and time. The lifetimes of 541 nm emission of Tb3+ doped oxyfluoride glass ceramics were longer than that of as-made glass, which are in the range from 3.00 ms to 3.55 ms. Under X-ray excitation, the green emission was enhanced in the glass ceramics compared to the as-made glass. The results indicate Tb3+ doped oxyfluoride glass ceramics containing BaF2 nanocrystals could be a material candidate for X-ray glass scintillator for slow event detection.

  11. Thermal, structural and spectroscopic properties of heavy metal oxide glass and glass-ceramics doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Ragin, Tomasz; Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Jelen, Piotr; Sitarz, Maciej; Dorosz, Dominik

    2015-09-01

    In this paper, bismuth-germanate oxide glass doped with erbium ions has been synthesized. Composition of the glass has been chosen in terms of the low phonon energy and good transparency in the infrared region. Transparent glass-ceramics sample has been prepared by controlled crystallization process. Fourier transform infrared spectroscopy (FTIR) has been used to determinate structural properties of samples. The absorption coefficient, the luminescence intensity in visible and infrared region and the differential scanning calorimetry have been examined. Difference in the emission intensity and shape of the luminescence bands indicates the presence of crystalline phases in obtained glass-ceramics sample.

  12. Fluoride-modified electrical properties of lead borate glasses and electrochemically induced crystallization in the glassy state

    SciTech Connect

    M'Peko, Jean-Claude; Souza, Jose E. de; Rojas, Seila S.; Hernandes, Antonio C.

    2008-02-15

    Lead fluoroborate glasses were prepared by the melt-quenching technique and characterized in terms of (micro)structural and electrical properties. The study was conducted on as prepared as well as temperature- and/or electric field-treated glass samples. The results show that, in the as-prepared glassy-state materials, electrical conductivity improved with increasing the PbF{sub 2} glass content. This result involves both an increase of the fluoride charge carrier density and, especially, a decrease of the activation energy from a glass structure expansion improving charge carrier mobility. Moreover, for the electric field-treated glass samples, surface crystallization was observed even below the glass transition temperature. As previously proposed in literature, and shown here, the occurrence of this phenomenon arose from an electrochemically induced redox reaction at the electrodes, followed by crystallite nucleation. Once nucleated, growth of {beta}-PbF{sub 2} crystallites, with the indication of incorporating reduced lead ions (Pb{sup +}), was both (micro)structurally and electrically detectable and analyzed. The overall crystallization-associated features observed here adapt well with the floppy-rigid model that has been proposed to further complete the original continuous-random-network model by Zachariasen for closely addressing not only glasses' structure but also crystallization mechanism. Finally, the crystallization-modified kinetic picture of the glasses' electrical properties, through application of polarization/depolarization measurements originally combined with impedance spectroscopy, was extensively explored.

  13. In vitro study of manganese-doped bioactive glasses for bone regeneration.

    PubMed

    Miola, Marta; Brovarone, Chiara Vitale; Maina, Giovanni; Rossi, Federica; Bergandi, Loredana; Ghigo, Dario; Saracino, Silvia; Maggiora, Marina; Canuto, Rosa Angela; Muzio, Giuliana; Vernè, Enrica

    2014-05-01

    A glass belonging to the system SiO2-P2O5-CaO-MgO-Na2O-K2O was modified by introducing two different amounts of manganese oxide (MnO). Mn-doped glasses were prepared by melt and quenching technique and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) observation and energy dispersion spectrometry (EDS) analysis. In vitro bioactivity test in simulated body fluid (SBF) showed a slight decrease in the reactivity kinetics of Mn-doped glasses compared to the glass used as control; however the glasses maintained a good degree of bioactivity. Mn-leaching test in SBF and minimum essential medium (MEM) revealed fluctuating trends probably due to a re-precipitation of Mn compounds during the bioactivity process. Cellular tests showed that all the Mn-doped glasses, up to a concentration of 50 μg/cm(2) (μg of glass powders/cm(2) of cell monolayer), did not produce cytotoxic effects on human MG-63 osteoblasts cultured for up to 5 days. Finally, biocompatibility tests demonstrated a good osteoblast proliferation and spreading on Mn-doped glasses and most of all that the Mn-doping can promote the expression of alkaline phosphatase (ALP) and some bone morphogenetic proteins (BMPs). PMID:24656359

  14. Investigations on spectroscopic properties of Er3+-doped Li-Zn fluoroborate glass

    NASA Astrophysics Data System (ADS)

    Thomas, Sunil; Sajna, M. S.; George, Rani; Rasool, Sk. Nayab; Joseph, Cyriac; Unnikrishnan, N. V.

    2015-09-01

    Er3+-doped Li-Zn fluoroborate glass was synthesized via melt quenching technique. Optical properties of the glass were investigated by UV-Vis-NIR absorption and emission spectra. To evaluate the nature of Er3+-ligand bond in the glass network, nephelauxetic ratios and bonding parameter were calculated. Judd-Ofelt analysis and hence the radiative properties of the present glass system were evaluated for ascertaining the suitability of the glass for laser applications and compared those with the emission spectra. Absorption cross-sections have been calculated from the absorption spectrum and stimulated emission cross-sections were estimated using McCumber theory for 4I13/2 ↔ 4I15/2 transitions. The results of the present glass were compared with those obtained for some other Er3+-doped glass systems.

  15. Investigations on spectroscopic properties of Er(3+)-doped Li-Zn fluoroborate glass.

    PubMed

    Thomas, Sunil; Sajna, M S; George, Rani; Rasool, Sk Nayab; Joseph, Cyriac; Unnikrishnan, N V

    2015-09-01

    Er(3+)-doped Li-Zn fluoroborate glass was synthesized via melt quenching technique. Optical properties of the glass were investigated by UV-Vis-NIR absorption and emission spectra. To evaluate the nature of Er(3+)-ligand bond in the glass network, nephelauxetic ratios and bonding parameter were calculated. Judd-Ofelt analysis and hence the radiative properties of the present glass system were evaluated for ascertaining the suitability of the glass for laser applications and compared those with the emission spectra. Absorption cross-sections have been calculated from the absorption spectrum and stimulated emission cross-sections were estimated using McCumber theory for (4)I13/2↔(4)I15/2 transitions. The results of the present glass were compared with those obtained for some other Er(3+)-doped glass systems. PMID:25863458

  16. Luminescence efficiency growth in wide band gap semiconducting Bi2O3 doped Cd0.4Pb0.1B0.5 glasses and effect of γ-irradiation

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; Ibrahim, S.; Hamdy, Y. M.

    2014-11-01

    Cadmium lead borate glasses together with other glasses containing different Bi2O3-doping concentrations (2.5, 5, 7.5, 10 mol%) were prepared by conventional melt annealing method. The density and molar volume values were calculated to obtain some insight on the packing density and arrangement in the network. Also their optical and structural properties have been characterized by means of X-ray diffraction, UV-visible spectroscopy, luminescence spectroscopy and FTIR spectroscopy. Optical measurements have been used to determine the optical band gap (Eg), Urbach energy (ΔE) and the refractive index (n). The results demonstrate the effective rule of Bi2O3 on the studied glasses. The undoped and Bi2O3 doped - glass show strong extended UV-near visible absorption bands which are attributed to the collective presence of both trace iron impurities from raw materials and also the sharing of bismuth Bi+3 ions. Furthermore, the luminescence intensity strongly increases with increasing Bi2O3 content which may be attributed to transfer of energy from transitions in its energy levels. It has been revealed that the decreasing values of optical band gap and band tail can be understood and related in terms of the structural changes that are taking place in the glass samples. The infrared absorption spectra of the prepared glasses show characteristic absorption bands related to the borate network (BO3, BO4 groups) together with vibrational modes due to Bi-O groups upon the introduction of Bi2O3. The prepared samples reveal a very limited response towards of gamma irradiation which reflects its shielding behavior towards the effect of such type of irradiation.

  17. The Verdet constant of Er-doped crystalline YAG and tellurite glass at 1645 nm

    NASA Astrophysics Data System (ADS)

    Harris, Lachlan; Ottaway, David; Veitch, Peter J.

    2012-02-01

    We describe the measurement of the Verdet constant of undoped and Er-doped crystalline YAG and tellurite glass at 1645 nm. The undoped YAG value is compared to those measured using visible light. We show that the paramagnetic nature of Er reduces the Verdet constant but that the decrease is probably not significant for the typical Er doping levels used in Er:YAG or in Er:tellurite-glass mid-IR lasers.

  18. Effect of 1 MeV electrons on ceria-doped solar cell cover glass

    NASA Technical Reports Server (NTRS)

    Haynes, G. A.

    1973-01-01

    The effect of 1 MeV electrons on the transmission properties of 1.5-percent ceria-doped solar cell cover glass was studied. Samples of doped and undoped cover glass and synthetic fused silica were irradiated with a total integrated flux of 10 to the 15th power e/sq cm. Wideband transmission and spectral transmission measurements were made before and after irradiation. The results indicate that 1.5-percent ceria-doped cover glass is much less sensitive to radiation induced discoloration than undoped cover glass. Consequently, the glass is comparable to synthetic fused silica when used as a radiation resistant solar cell cover for many space missions.

  19. Effect of OH - on upconversion luminescence of Er 3+-doped oxyhalide tellurite glasses

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Fang, Dawei; Zhang, Zaixuan; Jiang, Zhonghong

    2005-06-01

    The Raman spectra, infrared spectra and upconversion luminescence spectra were studied, and the effect mechanism of OH - groups on the upconversion luminescence of Er 3+-doped oxyhalide tellurite glasses was analyzed. The results show that the phonon energy of lead chloride tellurite (PCT) glass was lower than that of lead fluoride tellurite (PFT) glass, but upconversion luminescence intensity of Er 3+-doped PFT glass was higher than that of Er 3+-doped PCT glass. The analysis considers that it was attributed mainly to the effect of OH - groups. The lower the absorption coefficient of the OH - groups, the higher the fluorescence lifetime of Er 3+, and as a result the higher upconversion luminescence intensity of Er 3+. In this work, the effect of OH - groups on the upconversion luminescence of Er 3+ was bigger than that of the phonon energy.

  20. Optical absorption and self activated upconversion fluorescence spectra of Tm 3+ ions in antimony borate glass systems

    NASA Astrophysics Data System (ADS)

    Sudhakar, K. S. V.; Satyanarayana, T.; Srinivasa Rao, L.; Srinivasa Reddy, M.; Veeraiah, N.

    2008-06-01

    Optical absorption and fluorescence spectra of Tm 3+ ions in Sb 2O 3-B 2O 3 glasses mixed with three different modifier oxides viz., PbO, CaO and ZnO have been recorded at room temperature. The radiative transition probabilities and branching ratios evaluated for various luminescent transitions suggested the highest value for G41?H63 transition among various other transitions in all the three glass systems. The analysis of these data further suggested that the comparatively high non-radiative losses in ZnO mixed glasses. We have also demonstrated the upconversion from red to blue emission (from D21 and G41 emitting levels) in these glasses with two step absorption mechanism using F43 and H43 levels as intermediate levels.

  1. Study of vibrational spectroscopy, linear and non-linear optical properties of Sm3+ ions doped BaO-ZnO-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Nanda, Kirti; Kundu, R. S.; Sharma, Sarita; Mohan, Devendra; Punia, R.; Kishore, N.

    2015-07-01

    Samarium oxide doped Barium-Zinc-Borate glasses with compositions xSm2O3-(100-x)[0.1BaO-0.4ZnO-0.5B2O3]; x = 0.0, 0.5, 1.0, 1.5 and 2.0 have been prepared by melt quench technique. The amorphous nature of as-prepared glasses has been ascertained by X-ray diffraction patterns. The observed values of density and molar volume of the glass samples are found to increase with the increase in concentration of Sm2O3. Fourier Transform Infrared spectra of the prepared glasses indicate that Sm2O3 acts as glass modifier. With the increase in Sm2O3 content, BO4 structural units start converting into BO3 structural units. The values of optical energy band gap (Eg), estimated from Tauc's plots, are observed to decrease with the increase in Sm2O3 content. The nonlinear optical properties of glass samples have been investigated by Z-scan method with nanosecond pulsed laser at ˜532 nm in both open and close aperture geometries. The values of two photon absorption coefficient (β) and nonlinear refractive index (n2) have been estimated by fitting of experimentally observed data with theoretical models and both are found to increase with the increase in Sm3+ ions concentration in the glass matrix. The total third order nonlinear susceptibility (χ(3)) have been calculated and observed to increase with the increase in Sm3+ ions concentration.

  2. Raman and Photoluminescence Spectroscopy of Er(3+) Doped Heavy Metal Oxide Glasses

    NASA Technical Reports Server (NTRS)

    Dyer, Keith; Pan, Zheng-Da; Morgan, Steve

    1997-01-01

    The potential applications of rare-earth ion doped materials include fiber lasers which can be pumped conveniently by infrared semiconductor laser diodes. The host material systems most widely studied are fluoride crystals and glasses because fluorides have low nonradiative relaxation rates due to their lower phonon energies. However, the mechanical strength, chemical durability and temperature stability of the oxide glasses are generally much better than fluoride glasses. The objective of this research was to investigate the optical and spectroscopic properties of Er(3+)-doped lead-germanate and lead-tellurium-germanate glasses. The maximum vibrational energy of lead-tellurium-germanate glasses are in the range of 740-820/cm, intermediate between those of silicate (1150/cm) and fluoride (530/cm) glasses.

  3. Scintillation luminescence of cerium-doped borosilicate glass containing rare-earth oxide

    NASA Astrophysics Data System (ADS)

    Jiang, Chun; Zeng, QingJi; Gan, Fuxi

    2000-11-01

    The properties of high rare-earth-containing borosilicate glasses have been investigated to assess the potential for using these materials to construct electromagnetic calorimeters for particle physics. We report here on measurements of scintillation yield, transmission and decay time, on large blocks of Ce3+-doped Gd2O3-based glasses. The samples were excited by a high energy X-ray beam and the associated scintillation yield and decay time was measured. The optical transmission of the samples was measured. It was observed that scintillation yield of present scintillation glass is 20% of BGO scintillation yield, decay time is in range of 50 - 80 ns, glass density is 5.50 g/cm3. It was concluded that higher light yield and density make this glass become promising candidate for cerium doped dense glass scintillator.

  4. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    SciTech Connect

    Sushama, D.

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  5. Thermal analysis and luminescence of phospho-tellurite glass doped with NdF3

    NASA Astrophysics Data System (ADS)

    Iwanowicz, Kamil; Dorosz, Dominik; Żmojda, Jacek; Kochanowicz, Marcin

    2015-09-01

    In the paper thermal and luminescence properties of phospho-tellurite glass and glass after thermal treatment doped with NdF3 were presented. The crystallization kinetic of the main crystallization peaks of glass was investigated using differential scanning calorimetry (DSC). The value of the activation energy for crystalline phase (Ec 54,21 +/- 5 kJ mol-1) was calculated using Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunose (KAS), Starink and Tang methods. The glass-ceramic was obtained by heat treatment method. The luminescence transitions from levels 4F5/2 --> 4I9/2 (878 nm), 4F3/2-->4I11/2 (1058 nm), and 4F3/2 --> 4I13/2 (1330 nm) in glass and glass-ceramic doped NdF3 were compered.

  6. Up-conversion losses in different erbium-doped laser glasses

    NASA Astrophysics Data System (ADS)

    Denker, B. I.; Galagan, B. I.; Sverchkov, S. E.

    2015-08-01

    Up-conversion can be the main mechanism of energy losses in laser glasses with high concentration of erbium ions. This investigation is devoted to the evaluation of up-conversion parameters in several phosphate and silicate Er-doped glasses. Analysis of the luminescent lifetime shortening at high excitation level has shown that the up-conversion parameters in different glasses can differ by an order of magnitude. The smallest up-conversion was observed in Ba crown silicate glass and Li-Ln-phosphate glass.

  7. Passive laser Q switches made of glass doped with oxidised nanoparticles of copper selenide

    SciTech Connect

    Yumashev, K V

    2000-01-31

    Passive Q switching of Nd{sup 3+}:YAG ({lambda} = 1060 nm) and YAlO{sub 3}:Nd{sup 3+} (1340 nm) lasers, as well as of an Er{sup 3+} (1540 nm) glass laser was realised by using glass doped with oxidised nanoparticles of copper selenide. Nonlinear optical properties of the nanoparticles (radius of 25 nm) in a glass matrix were studied by the picosecond absorption spectroscopy technique. (control of laser radiation parameters)

  8. Laser induced breakdown spectroscopy diagnosis of rare earth doped optical glasses

    SciTech Connect

    Dwivedi, Y.; Thakur, S. N.; Rai, S. B.

    2010-05-01

    In the present work, rare earth (Nd, Eu, Er, Ho) doped oxyfluoroborate glasses were studied using laser induced breakdown spectroscopy (LIBS) technique. It has been observed that rare earth elements other than the doped one also reveal their presence in the spectrum. In addition the spectral lines of elements constituting the glass matrix have also been observed. Different plasma parameters such as plasma temperature and electron density have been estimated. It is concluded that the LIBS is a potential technique to identify simultaneously the light elements (B, O, F) as well as the heavy elements (Fe, Ba, Ca, Eu, Nd, Ho, Er) present in optical glasses.

  9. Nonlinear-optic and ferroelectric behavior of lithium borate{endash}strontium bismuth tantalate glass{endash}ceramic composite

    SciTech Connect

    Senthil Murugan, G.; Varma, K. B. R.; Takahashi, Yoshihiro; Komatsu, Takayuki

    2001-06-18

    Transparent glasses in the system (100{endash}x) Li{sub 2}B{sub 4}O{sub 7}{endash}xSrBi{sub 2}Ta{sub 2}O{sub 9} (0{le}x{le}20) were fabricated via a splat-quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses. X-ray powder diffraction and transmission electron microscopic studies confirmed the amorphous nature of the as-quenched and crystallinity (40 nm) in the heat-treated (glass{endash}ceramic) samples. The dielectric constant ({epsilon}{sub r}) of the glass{endash}ceramic composite (x=20, heat treated at 773 K/8 h) was in between that of the parent host glass (Li{sub 2}B{sub 4}O{sub 7}) and strontium bismuth tantalate ceramics in the frequency range 100 Hz{endash}40 MHz at 300 K. These exhibited intense second-harmonic generation and a ferroelectric hysteritic behavior (P vs E loops) at 300 K. The coercive field (E{sub c}) and the remnant polarization (P{sub r}) were 1053 V/cm and 0.483 {mu}C/cm2, respectively. {copyright} 2001 American Institute of Physics.

  10. Low-threshold lasing at 1975 nm in thulium-doped tellurite glass microspheres.

    PubMed

    Vanier, Francis; Ct, Franois; Amraoui, Mohammed El; Messaddeq, Youns; Peter, Yves-Alain; Rochette, Martin

    2015-11-15

    Thulium-doped (Tm-doped) tellurite glass microspheres are used as laser media. Emission lines at wavelengths near 1975 nm are observed. The onset of laser emission is achieved with 8.6 and 30 ?W of coupled pump power and injected pump power, respectively, at a wavelength of 1554 nm. To the authors' knowledge, these are the lowest laser threshold values recorded for a Tm-doped tellurite glass microcavity. Intrinsic Q-factors above 10(6) for the undoped tellurite glass microspheres assert the quality of the fabrication processes. An optical intrinsic Q-factor comparison between Tm-doped tellurite and undoped tellurite microspheres shows that ion absorption is the dominant loss source at pump wavelengths. Lower lasing threshold powers and higher power conversion are observed at longer pump wavelengths in agreement with theoretical models. PMID:26565841

  11. Synthesis, thermal and photoluminescent properties of ZnSe- based oxyfluoride glasses doped with samarium

    NASA Astrophysics Data System (ADS)

    Kostova, I.; Okada, G.; Pashova, T.; Tonchev, D.; Kasap, S.

    2014-12-01

    Rare earth (RE) doped glasses and glass ceramic materials have recently received considerable attention because of their potential or realized applications as X-ray intensifying screens, phosphors, detectors, waveguides, lasers etc. [1]. In this work, we present a new RE doped ZnO-ZnSe-SrF2-P2O5-B2O3-Sm2O3-SmF3 (ZSPB) glass system synthesized by melt quenching technique. The resulting glasses were visually fully transparent and stable with glass the transition temperatures around 530°C. The thermal properties of this glass system were characterized by Modulated Differential Scanning Calorimetry (MDSC) measurements before and after annealing at 650°C. We have characterized these glasses by Raman spectroscopy and photoluminescence (PL) measurements over the UV-VIS range using light emitting diodes (LED) and laser diodes (LD) excitation sources. We have also irradiated thermally treated and non-treated glass samples by X-rays and have studied the resulting PL. We discuss the results in terms of previously reported models for Sm-doped Zn-borophosphate oxide, oxyfluoride and oxyselenide glasses.

  12. Effect of the volumes and radii of the channels in the alkali borate phase of phase-separated sodium borosilicate glasses on the rate of their interaction with an acid

    SciTech Connect

    Roskova, G.P.; Anfimova, I.N.; Antropova, T.V.; Tsekhomskaya, T.S.

    1986-07-01

    According to the authors, the studies of the dependence of the rate of the chemical interaction between phase-separating two-framework sodium borosilicate (SBS) glasses and acid solutions on the size of the liquid-phase-separation channels occupied by the low-resistance alkali borate phase are of theoretical and practical importance. Here the authors use one of the SBS glasses to study the kinetics of the acidextraction of the unstable phase as a function of the duration of its heat treatment, leading to enlargement of the regions of nonuniformity at the stage of recondensation of the phase-separated regions. It is found that the sizes of the channels of the chemically unstable phase of two-framework sodium borosilicate glasses under the conditions of attainment of phase equilibrium do not affect the rate of growth of the depth of the nitric acid treated layer in these glasses.

  13. Effects of irradiation on transmittance of cerium doped germanate glasses in the ultraviolet and visible regions

    NASA Astrophysics Data System (ADS)

    Baccaro, S.; Cecilia, A.; Chen, G.; Du, Y.; Montecchi, M.; Wang, H.; Wang, S.

    2002-05-01

    A set of heavy germanate glasses were presented as the host for scintillating rare earths. The glasses consisted of GeO 2, Gd 2O 3, BaO as the main constituents and Ce 2O 3 and Tb 2O 3 for introducing the activating cations Ce 3+ and Tb 3+. Ultraviolet and visible transmittance spectra were measured on glass samples before and after irradiations at different doses to study the effects of ionising radiation on their transmission properties. Irradiated samples were submitted to annealing treatments and their transmittance spectra were compared with respect to their thermal bleaching behaviours. Extraordinary irradiation resistance of Ce 3+ doped glasses was observed after comparison with their counterparts doped with Tb 3+, which is of special significance for their applications in high-energy particle experiments. Possible mechanisms causing the positive effect of cerium doping was discussed in terms of its special valence electron orbital configuration.

  14. Multi-functionality of luminescent glasses for energy applications

    NASA Astrophysics Data System (ADS)

    Steudel, F.; Loos, S.; Ahrens, B.; Schweizer, S.

    2015-09-01

    Rare-earth-(RE) doped barium borate glasses are investigated for their potential use as photon downshifting cover glasses for CdTe solar cells and as converters for white light-emitting diodes (LEDs). The glasses are doped with trivalent RE ions such as Eu3+ and Tb3+, resulting in an intense luminescence in the red (Eu3+) and green (Tb3+) spectral range upon excitation in the ultraviolet and blue ranges. Doping the glasses with two different RE ions enables broader absorption, which is necessary for both photovoltaic applications and for the appropriate color mixing needed for use in white LEDs. Though the single-doped cover glasses already reveal a slight increase in the short-circuit current density of CdTe solar cells, the double-doped glasses allow for even higher efficiency gains due to the significantly broader spectral range for absorption. For an Eu3+/Tb3+ double-doped glass with an RE doping level of 1 at.% each, an efficiency increase of 1.32% can be achieved. Furthermore, the Eu3+/Tb3+ double-doped glasses enable appropriate color mixing in the green-to-red spectral range by varying the RE doping level accordingly.

  15. Enhanced broadband near-infrared luminescence in Bi-doped glasses by co-doping with Ag

    NASA Astrophysics Data System (ADS)

    Xu, Beibei; Chen, Ping; Zhou, Shifeng; Hong, Zhanglian; Hao, Jianhua; Qiu, Jianrong

    2013-05-01

    Enhanced broadband near-infrared luminescence has been observed in Bi-doped oxyfluoride glasses excited from UV to near-infrared regions with the addition of AgCl. Enhancement factors depend greatly on excitation wavelength and maximal enhancement factor over three times occurs at the excitation wavelength around 320, 640, and 800 nm. Ag species play dual functions. The mechanism of the enhancement is discussed in depth combing the energy transfer from Ag+, molecular-like, nonplasmonic Ag species, Bi3+ and Bi2+ to near-infrared bismuth active centers, and the redox reaction of Bi species with Ag species. These results offer a valuable way to enhance the near-infrared luminescence efficiency of Bi-doped glasses, and the dual functions of Ag species may also be employed to enhance luminescence of rare-earth and transition metal ions doped materials.

  16. X-ray absorption studies of gamma irradiated Nd doped phosphate glass

    SciTech Connect

    Rai, V. N.; Rajput, Parasmani; Jha, S. N.; Bhattacharyya, D.

    2015-06-24

    This paper presents the X-ray absorption near edge structure (XANES) studies of Nd doped phosphate glasses before and after gamma irradiation. The intensity and location of L{sub III} edge white line peak of Nd changes depending on its concentration as well as on the ratio of O/Nd in the glass matrix. The decrease in the peak intensity of white line after gamma irradiation indicates towards reduction of Nd{sup 3+} to Nd{sup 2+} in the glass matrix, which increases with an increase in the doses of gamma irradiation. Similarity in the XANES spectra of Nd doped phosphate glasses and Nd{sub 2}O{sub 3} suggests that coordination geometry around Nd{sup 3+} in glass samples may be identical to that of Nd{sub 2}O{sub 3}.

  17. Short vertical tube furnace for the fabrication of doped glass microsphere lasers

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan M.; Wu, Yuqiang; Khalfi, Krimo; Chormaic, Síle Nic

    2010-07-01

    We report on the design of an electric tube furnace that can be used for the fabrication of doped glass microsphere lasers. The tube furnace has a short hot zone of length 133 mm and is based on a quartz tube design. Doped laser glass particles, specifically Er:Yb phosphate glass (IOG-2), of ˜1 μm diameter are blown into the furnace using a 60 ml syringe and microspheres ranging in size from 10 to 400 μm are collected at the output of the tube furnace in a Petri dish. The furnace operates at a wall temperature of ˜900 °C and is capable of making microspheres from glasses with glass transition temperatures of at least 375 °C. High quality (Q ˜105) whispering gallery modes have been excited within the microspheres by optically pumping at 978 nm via a tapered optical fiber.

  18. X-ray absorption studies of gamma irradiated Nd doped phosphate glass

    NASA Astrophysics Data System (ADS)

    Rai, V. N.; Rajput, Parasmani; Jha, S. N.; Bhattacharyya, D.

    2015-06-01

    This paper presents the X-ray absorption near edge structure (XANES) studies of Nd doped phosphate glasses before and after gamma irradiation. The intensity and location of LIII edge white line peak of Nd changes depending on its concentration as well as on the ratio of O/Nd in the glass matrix. The decrease in the peak intensity of white line after gamma irradiation indicates towards reduction of Nd3+ to Nd2+ in the glass matrix, which increases with an increase in the doses of gamma irradiation. Similarity in the XANES spectra of Nd doped phosphate glasses and Nd2O3 suggests that coordination geometry around Nd3+ in glass samples may be identical to that of Nd2O3.

  19. 2.7 μm emission in heavy metal oxide glasses doped with erbium ions

    NASA Astrophysics Data System (ADS)

    Ragin, Tomasz; Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Jelen, Piotr; Sitarz, Maciej; Dorosz, Dominik

    2015-12-01

    In this paper, heavy metal oxide glasses based on bismuth, germanate and gallium elements doped with Er3+ have been synthesized. Composition of glass matrix has been developed in terms of low phonon energy (724 cm-1), low absorption coefficient in the infrared region (1.2 cm-1), good mechanical and chemical properties. Synthesis of glasses has been performed under a low vacuum condition, which has reduced the OH- ions to 50 ppm. Glasses were doped with (0.25 - 1 mol%) Er2O3 to obtain emission at the wavelength of 2.7 μm (4I11/2 → 4I13/2) under 980 nm laser diode excitation. Obtained results demonstrate that developed heavy metal oxide glass is an attractive material for mid-infrared applications.

  20. Short vertical tube furnace for the fabrication of doped glass microsphere lasers.

    PubMed

    Ward, Jonathan M; Wu, Yuqiang; Khalfi, Krimo; Nic Chormaic, Síle

    2010-07-01

    We report on the design of an electric tube furnace that can be used for the fabrication of doped glass microsphere lasers. The tube furnace has a short hot zone of length 133 mm and is based on a quartz tube design. Doped laser glass particles, specifically Er:Yb phosphate glass (IOG-2), of approximately 1 microm diameter are blown into the furnace using a 60 ml syringe and microspheres ranging in size from 10 to 400 microm are collected at the output of the tube furnace in a Petri dish. The furnace operates at a wall temperature of approximately 900 degrees C and is capable of making microspheres from glasses with glass transition temperatures of at least 375 degrees C. High quality (Q approximately 10(5)) whispering gallery modes have been excited within the microspheres by optically pumping at 978 nm via a tapered optical fiber. PMID:20687704

  1. Research on up- and down-conversion emissions of Er3+/Yb3+ co-doped phosphate glass ceramic

    NASA Astrophysics Data System (ADS)

    Ming, Chengguo; Song, Feng; An, Liqun; Ren, Xiaobin; Yuan, Yize; Cao, Yang; Wang, Gangzhi

    2012-12-01

    By high-temperature melting method and thermal treatment technology, Er3+/Yb3+ co-doped phosphate glass and glass ceramic samples were prepared. The luminescence spectra of the glass and glass ceramic samples were studied under 975 nm excitation. In visible and near-infrared bands, the emission intensity of the glass ceramic is stronger than that of the glass. The glass ceramic can comprehensively improve the luminous characters of the precursor glass. The phosphate glass ceramic will be valuable luminescence materials.

  2. Er3+- and Yb3+-doped phosphate glasses for eye-safe laser systems

    NASA Astrophysics Data System (ADS)

    Mierczyk, Zygmunt; Kwasny, Miroslaw; Stepien, Ryszard; Jedrzejewski, Kazimierz P.

    2000-10-01

    Erbium laser glasses have attracted much attention due to their capability for emission of radiation at the 'eye safe' wavelength of 1.54 microns. The development of erbium glass laser systems has renewed the requirements for additional research into improved laser glass properties and performance. This report describes the effect of variations erbium, ytterbium, chromium ions and glass base compositions on laser efficiency and the improved properties of a new glass base. The spectral properties and laser characteristics were measured for this ne glass. Absorption spectra of these Er3+ and Yb3+-doped glasses were measured in the spectral range 190 divided by 5000 nm at room temperature. The excitation and luminescence spectra were also recorded at room temperature on a JOBIN-YVON spectrofluorometer using a diode laser as an excitation source. The measurements of the lifetime of the ER3+ ions in the upper laser level of the samples were made by the direct method with pulse excitation.

  3. Fluorescence properties and electron paramagnetic resonance studies of γ-irradiated Sm3+-doped oxyfluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Babu, B. Hari; Ravi Kanth Kumar, V. V.

    2012-11-01

    The permanent photoinduced valence manipulation of samarium doped oxyfluoroborate glasses as a function of γ-ray irradiation has been investigated using a steady-state fluorescence and electron paramagnetic resonance techniques. An increase in SrF2 content in the glass led to the red shift of the peaks in as prepared glass, while in irradiated glasses this led to the decrease in defect formation as well as increase in photoreduction of Sm3+ to Sm2+ ion. The energy transfer mechanism of induced permanent photoreduction of Sm3+ to Sm2+ ions in oxyfluoroborate glasses has been discussed. The decay analysis shows exponential behavior before irradiation and non-exponential behavior after irradiation. The energy transfer in irradiated glasses increases with the increase in SrF2 content in the glass and also with the irradiation dose.

  4. Luminescence studies of PbO-Bi2O3-Ga2O3-B2O3 glasses doped with Yb3+/Er3+

    NASA Astrophysics Data System (ADS)

    Rao, Y. Raja; Goud, K. Krishnamurthy; Rao, B. Appa

    2013-06-01

    The effect of Er3+ concentration on red emission in lead bismuth gallium borate glasses codoped with Yb3+ is studied. Optical absorption and luminescence spectra of all the glasses were recorded at room temperature. The results obtained are discussed quantitatively based on the energy transfer between Yb3+ and Er3+.

  5. Er- and Nd-doped yttrium aluminosilicate glasses: Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Prnová, A.; Domanická, A.; Klement, R.; Kraxner, J.; Polovka, M.; Pentrák, M.; Galusek, D.; Šimurka, P.; Kozánková, J.

    2011-10-01

    The undoped, and Nd-, Er-doped low silica high alumina yttrium aluminosilicate (YAS) glasses were prepared by flame synthesis in the form of transparent glass microbeads with diameters ranging from a few to several tens of micrometers. The silica content ranged between 5 and 20 mol.%. The prepared glass microbeads were characterized by optical microscopy, SEM XRD, FT-IR and UV-VIS-NIR spectroscopy. The glass forming ability of glasses, expressed in terms of the difference between the glass transition temperature, Tg, and the onset of crystallization, Tx, improved with increasing silica content. Doping of YAS15 glass with neodymium or erbium at the level of 1-5 mol.% leads to decrease of both the Tg and Tx. However, the glass forming ability was not affected. The UV-VIS-NIR reflectance spectra in the spectral range from 300 to 1800 nm shows characteristic absorptions, due to the optically active Nd 3+ and Er 3+ ions in the host glass.

  6. A novel ionizing radiation sensor utilizing radiophotoluminescence in silver-doped phosphate glass

    NASA Astrophysics Data System (ADS)

    Nanto, H.; Miyamoto, Y.; Ohno, T.; Ikeguchi, T.; Hirasawa, K.; Takei, Y.; Kurobori, T.; Yamamoto, T.; Iida, T.

    2014-03-01

    Silver (Ag+) doped phosphate glass exhibits an intense photoluminescence (PL) when the non-irradiated Ag+-doped phosphate glass is excited with about 230 nm ultra-violet light. In x-ray irradiated glass, intense radiophotoluminescense (RPL) is observed when the irradiated glass is excited with about 340 nm ultra-violet light. It is found that the RPL spectrum includes two emission bands such as blue emission band peaked at about 460 nm (lifetime: about 6.6 ns) and yellow RPL emission band peaked at about 560 nm (lifetime : about 2.2μs). The PL intensity is decreased with increasing x-ray irradiation dose, while the RPL intensity is increased with x-ray absorbed dose. For the annealing of x-ray irradiated glass at 523 K, the RPL intensity is decreased with annealing, while the PL intensity is increased with annealing. The RPL is vanished and the PL is recovered at original intensity by annealing at 523 K for 40 min. This means that there is a complementary relationship between the PL and RPL on irradiation and heat-treatment processes. The RPL intensity is increased with increasing the x-ray absorbed dose in the range from 0.01 mGy to about 20 Gy, showing that the Ag+-doped phosphate glass can be useful for individual radiation monitoring and environmental radiation monitoring. On the basis of such potentiality of glass as the dosimeter, the application of Ag+-doped phosphate glass on environmental radiation monitoring is discussed and the RPL response of the glass for α- particle and heavy-particle (He, C, Fe particle) irradiation is demonstrated.

  7. Determining the 6Li doped side of a glass scintillator for ultra cold neutrons

    NASA Astrophysics Data System (ADS)

    Jamieson, Blair; Rebenitsch, Lori Ann

    2015-08-01

    Ultracold neutron (UCN) detectors using two visually very similar, to the microscopic level, pieces of optically contacted cerium doped lithium glasses have been proposed for high rate UCN experiments. The chief difference between the two glass scintillators is that one side is 6Li depleted and the other side 6Li doped. This note outlines a method to determine which side of the glass stack is doped with 6Li using AmBe and 252Cf neutron sources, and a Si surface barrier detector. The method sees an excess of events around the α and triton energies of neutron capture on 6Li when the enriched side is facing the Si surface barrier detector.

  8. Application to Temperature Sensor Based on Green Up-Conversion of Er3+ Doped Silicate Glass

    PubMed Central

    Li, Chengren; Dong, Bin; Ming, Chengguo; Lei, Mingkai

    2007-01-01

    The green up-conversion emissions centered at the wavelengths of about 534nm and 549nm of the Er3+ doped silicate glass were recorded, using a 978 nm semiconductor laser diode (LD) as an excitation source. The fluorescence intensity ratio (FIR) of the green up-conversion emissions at about 534nm and 549nm in the Er3+ doped silicate glass was studied as a function of temperature over the temperature range of 296K-673K. The maximum sensitivity and the temperature resolution derived from the FIR of the green up-conversion emissions are approximately 0.0023K-1 and 0.8K, respectively. It is demonstrated that the prototype optical temperature sensor based on the FIR technique from the green up-conversion emissions in the Er3+ doped silicate glass could play a major role in temperature measurement.

  9. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    SciTech Connect

    Passlick, C.; Mueller, O.; Luetzenkirchen-Hecht, D.; Frahm, R.; Johnson, J. A.; Schweizer, S.

    2011-12-01

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl{sub 2}) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu{sup 3+} is more strongly reduced to Eu{sup 2+}, in particular, when doped as a chloride instead of fluoride compound. The Eu{sup 2+}-to-Eu{sup 3+} doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu{sup 2+} fraction leads to a BaCl{sub 2} phase transition from hexagonal to orthorhombic structure at a lower temperature.

  10. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    SciTech Connect

    PaBlick, C.; Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.; Johnson, J.A.; Schweizer, S.

    2012-10-10

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl2) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu3+ is more strongly reduced to Eu2+, in particular, when doped as a chloride instead of fluoride compound. The Eu2+-to-Eu3+ doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu2+ fraction leads to a BaCl2 phase transition from hexagonal to orthorhombic structure at a lower temperature.

  11. Spectroscopic properties of Tm3+/Al3+ co-doped sol-gel silica glass

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Lou, Fengguang; Wang, Shikai; Yu, Chunlei; Chen, Danping; Hu, Lili

    2015-04-01

    Tm3+/Al3+ co-doped silica glass was prepared by sol-gel method combined with high temperature sintering. Glasses with compositions of xTm2O3-15xAl2O3-(100 - 16x) SiO2 (in mol%, x = 0.1, 0.3, 0.5, 0.8 and 1.0) were prepared. The high thulium doped silica glass was realized. Their spectroscopic parameters were calculated and analyzed by Judd-Ofelt theory. Large absorption cross section (4.65 × 10-21 cm2 at 1668 nm) and stimulated emission cross section (6.00 × 10-21 cm2 at 1812 nm), as well as low hydroxyl content (0.180 cm-1), long fluorescence lifetime (834 μs at 1800 nm), large σem × τrad (30.05 × 10-21 cm2 ms) and large relative intensity ratio of the 1.8 μm (3F4 → 3H6) to 1.46 (3H4 → 3F4) emissions (90.33) are achieved in this Tm3+/Al3+ co-doped silica glasses. According to emission characteristics, the optimum thulium doping concentration is around 0.8 mol%. The cross relaxation (CR) between ground and excited states of Tm3+ ions was used to explain the optimum thulium doping concentration. These results suggest that the sol-gel method is an effective way to prepare Tm3+ doped silica glass with high Tm3+ doping and prospective spectroscopic properties.

  12. Tm3+ doped Ga-As-S chalcogenide glasses and fibers

    NASA Astrophysics Data System (ADS)

    Galstyan, A.; Messaddeq, S. H.; Fortin, V.; Skripachev, I.; Valle, R.; Galstian, T.; Messaddeq, Y.

    2015-09-01

    Tm3+ doped Ga-As-S chalcogenide glass samples were produced using As2S3 pure glass as starting materials. Their photoluminescence properties were characterized and strong emission bands were observed at 1.2 ?m (1H5 ? 3H6), 1.4 ?m (3H4 ? 3F4) and 1.8 ?m (3F4 ? 3H6) under excitation wavelengths of 698 nm and 800 nm. The thulium and gallium concentrations were optimized to achieve the highest photoluminescence efficiency. From the optimal composition, a Tm3+ doped Ga-As-S fiber was drawn and its optical properties were studied.

  13. Broadband infrared luminescence in Yb-doped Bi2O3-GeO2 glasses

    NASA Astrophysics Data System (ADS)

    Yu, Pingsheng; Su, Liangbi; Cheng, Junhua; Xu, Jun

    2016-01-01

    The Yb-doped Bi2O3-GeO2 glasses were prepared by the conventional melt quenching technique. Near-infrared (NIR) broadband emission was found at about 1024 nm, and 1330 nm (under 785 nm excitation), and the measured fluorescent lifetime was about several hundred microseconds. The emission intensity of Yb-doped Bi2O3-GeO2 glasses increased with increasing of Yb dopant in our experiments. The NIR emission should be related to Yb3+ and lower valence Bi ions.

  14. Liquid phase sintering of 20Bi(Zn0.5Ti0.5)O 3-80BaTiO3 dielectrics with bismuth-zinc-borate and bismuth borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Shahin, David I.

    Dielectrics in the Bi(Zn0.5Ti0.5)O3-BaTiO 3 system (specifically 20BZT-80BT, in mol%) are promising candidates for high energy density capacitor applications due to broad temperature-dependent dielectric constant maxima and a relatively field-independent permittivity. Bulk samples require sintering temperatures of greater than 1180°C to reach useful densities. Due to incompatibility of Bi with low-pO2 processing, BZT-BT-based multilayer capacitors must utilize noble metal electrodes that resist oxidation during sintering. Sintering temperatures must be reduced to allow use of less expensive electrode materials (Cu, etc.). This work studies the reduced temperature sintering behavior and dielectric properties of BZT-BT sintered with 30Bi2O3-30ZnO-40B 2O3 and 50Bi2O3-25B2O 3-25SiO2 (mol%) liquid phase formers. Dielectrics sintered with 1v% borate additions and 5v% additions of either the borate or borosilicate achieved relative densities greater than 95% after sintering at 1000°C for four hours. All compositions retained the relaxor behavior exhibited by pure 20BZT-80BT. Increased borate additions led to greater dielectric constant reductions, while increased borosilicate additions yielded no clear trend in the dielectric constant reduction. Energy densities were estimated between 0.3-0.5 J/cm3; smaller glass additions typically led to larger energy densities. Dielectrics sintered with 1v% borate additions are of interest due to their high relative densities (approx. 96%) and energy densities of approximately 0.5 J/cm3 under 100kV/cm electric fields. Studies of BZT-BT/glass interfaces revealed the formation of crystalline interfacial layers less than 10 microns thick. The borate formed a bismuth titanate phase (likely Bi4Ti3O12) during heating to 700°C, whereas the borosilicate formed a barium silicate phase (likely BaSiO3) during processing to 800°C. Similar phases are expected to be present in the liquid phase sintered dielectrics and likely affect the BZT-BT sintering and dielectric behavior.

  15. Laser irradiation in Nd{sup 3+} doped strontium barium niobate glass

    SciTech Connect

    Haro-Gonzalez, P.; Martin, I. R.; Arbelo-Jorge, E.; Gonzalez-Perez, S.; Caceres, J. M.; Nunez, P.

    2008-07-01

    A local nanocrystalline formation in a neodymium doped strontium barium niobate (SBN) glass has been obtained under argon laser irradiation. The intense emission around 880 nm, originated from the {sup 4}F{sub 3/2} ({sup 4}F{sub 5/2}) thermalized level when the glass structure changes to a glass ceramic structure due to the irradiation of the laser beam, has been studied. The intensities and lifetimes change from this level inside and outside the irradiated area made by the laser excitation. They have been analyzed and demonstrated that the desvitrification process has been successfully achieved. These results confirm that nanocrystals of SBN have been created by the laser action confirming that the transition from glass to glass ceramic has been completed. These results are in agreement with the emission properties of nanocrystals of the bulk glass ceramic sample. The present study also suggests that the SBN nanocrystal has a potential application as temperature detector.

  16. Highly efficient reddish orange emission in Mn2+/Eu3+ co-doped phosphate glasses for greenhouse

    NASA Astrophysics Data System (ADS)

    Ming, Chengguo; Song, Feng; Ren, Xiaobin; An, Liqun

    2013-07-01

    A series of phosphate glasses doped with Mn2+/Eu3+ ions were prepared by high temperature melting method to explore reddish orange luminescent materials for greenhouse. The absorption, emission, and excitation spectra of the samples were studied in detail. A wide excitation band at 300-550 nm in the Mn2+/Eu3+ co-doped phosphate glasses was observed. Under the illumination of sunlight, the Mn2+/Eu3+ co-doped phosphate glasses can emit strong red emission. Our materials will be helpful to improve the utilization of solar for glass greenhouses.

  17. Luminescence properties of Tb3+-doped borosilicate scintillating glass under UV excitation

    NASA Astrophysics Data System (ADS)

    Zuo, Chenggang; Zhou, Zhihua; Zhu, Ligang; Xiao, Anguo; Chen, Yuandao; Zhang, Xiangyang; Zhuang, Yongbing; Li, Xiaoyang; Ge, Qizhi

    2015-08-01

    Transparent Li2O-BaO-La2O3-Al2O3-B2O3-SiO2 glasses doped with Tb3+ ion were prepared by high temperature melting method. Luminescence properties of Tb3+-doped borosilicate glasses have been investigated by transmission, excitation, emission and luminescence decay measurements. The transmission spectrum shows the glass has good transmittance in the visible region. Under the 236 nm UV excitation the intense green emission from 5D4 level is observed in Tb3+-doped borosilicate glass, comparable in intensity to the violet-blue emission starting from the 5D3 level. The green emission intensity of Tb3+ ion firstly increases and then decreases with the decreasing B2O3/SiO2 ratio in glass matrix. 5D4 → 7FJ (J = 6, 5, 4 and 3) transitions of Tb3+ ion in borosilicate glass are greatly enhanced with increasing concentration of Tb3+ through the cross relaxation [Tb3+ (5D3) + Tb3+ (7F6) → Tb3+ (5D4) + Tb3+ (7F0)] between two Tb3+ ions. Luminescence decay time of 2.13 ms is obtained for the emission transitions starting from 5D4 level in 2.5Li2O-20BaO-20La2O3-2.5Al2O3-20B2O3-35SiO2-0.5Tb4O7 glass. The results show that Tb3+-doped borosilicate glasses would be potential candidates for scintillating material for static X-ray imaging.

  18. Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics doped with chromium

    NASA Astrophysics Data System (ADS)

    Sharonov, M. Yu.; Bykov, A. B.; Owen, S.; Petricevic, V.; Alfano, R. R.; Beall, G. H.; Borrelli, N.

    2004-11-01

    We present a spectroscopic study of transparent forsterite nanocrystalline glass-ceramic doped with chromium, a promising active medium for near-infrared fiber-optic applications. Absorption, emission, excited-state absorption spectra, and continuous function decay analysis of luminescence decay reveal the presence of Cr3+ and Cr4+ centers in both glass and crystal phases. The optical behavior of Cr3+ and Cr4+ centers is discussed and compared with that in bulk forsterite crystals.

  19. Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass.

    PubMed

    Fernandez, T Toney; Della Valle, G; Osellame, R; Jose, G; Chiodo, N; Jha, A; Laporta, P

    2008-09-15

    We report on fs-laser micromachining of active waveguides in a new erbium-doped phospho-tellurite glass by means of a compact cavity-dumped Yb-based writing system. The spectroscopic properties of the glass were investigated, and the fs-laser written waveguides were characterized in terms of passive as well as active performance. In particular, internal gain was demonstrated in the whole C+L band of optical communications (1530- 1610 nm). PMID:18795058

  20. Synthesis and optical properties of CsC1-doped gallium-sodium-sulfide glasses

    SciTech Connect

    Hehlen, Markus P; Bennett, Bryan L; Williams, Darrick J; Muenchausen, Ross E; Castro, Alonso; Tornga, Stephanie C

    2009-01-01

    Ga{sub 2}S{sub 3}-Na{sub 2}S (GNS) glasses doped with CsCl were synthesized in open crucibles under inert atmosphere. The evaporative loss of CsCl during glass melting was measured by energy dispersive X-ray spectroscopy and corrected for by biasing the CsCl concentration in the mixture of starting materials to obtain glasses with accurately controlled stoichiometry. Glass transition temperatures, refractive index dispersions, and band edge energies were measured for four GNS:CsCl glasses, and the respective values were found to significantly improve over earlier studies that did not mitigate CsCl evaporative losses. The refractive index dispersion measurements indicate that the Cs{sup +} and Cl{sup -} radii are 16% larger in GNS:CsCl glass than in bulk crystalline CsCl. The band edge energy increases from 2.97 eV in GNS glass to 3.32 eV in GNS glass doped with 20 mol% CsCl as a result of introducing Cl{sup -} ions having a large optical electronegativity. The large bandgap of 3.32 eV and the low (450 cm{sup -1}) phonon energy make GNS:20%CsCl an attractive host material for rare-earth ions with radiative transitions in the near ultra-violet, visible, and near-infrared spectral regions.

  1. Line patterning of (Sr,Ba)Nb{sub 2}O{sub 6} crystals in borate glasses by transition metal atom heat processing

    SciTech Connect

    Sato, M.; Honma, T.; Benino, Y.; Komatsu, T.

    2007-09-15

    Some NiO-doped Bi{sub 2}O{sub 3},La{sub 2}O{sub 3}-SrO-BaO-Nb{sub 2}O{sub 5}-B{sub 2}O{sub 3} glasses giving the formation of strontium barium niobate Sr{sub 0.5}Ba{sub 0.5}Nb{sub 2}O{sub 6} (SBN) crystals with a tetragonal tungsten-bronze structure through conventional crystallization in an electric furnace have been developed, and SBN crystal lines have been patterned on the glass surface by heat-assisted (250-300 deg. C) laser irradiation and scanning of continuous-wave Nd:YAG laser (wavelength: 1064 nm). The surface morphology and the quality of SBN crystal lines are examined from measurements of confocal scanning laser micrographs and polarized micro-Raman scattering spectra. The surface morphology of SBN crystal lines changes from periodic bump structures to homogeneous structures, depending on laser scanning conditions. It is suggested that the line patterned at the laser irradiation condition of laser power P=1 W and of laser scanning speed S=1 {mu}m/s in 2NiO-4La{sub 2}O{sub 3}-16SrO-16BaO-32Nb{sub 2}O{sub 5}-30B{sub 2}O{sub 3} glass has a possibility of the orientation of SBN crystals along the laser scanning direction. The present study demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni{sup 2+} ions) is a novel technique for spatially selected crystallization of SBN crystals in glass. - Graphical abstract: This figure shows the polarization optical (a) and confocal scanning laser (b) micrographs for the sample obtained by heat-assisted (300 deg. C) Nd:YAG laser irradiation with a laser power of P=1 W and laser scanning speed of S=1 {mu}m/s in Glass C. The figure demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni{sup 2+} ions) is a novel technique for spatially selected crystallization of SBN crystals in glass.

  2. Yb-doped silica glass and photonic crystal fiber based on laser sintering technology

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wu, Jiale; Zhou, Guiyao; Xia, Changming; Liu, Jiantao; Tian, Hongchun; Liang, Wanting; Hou, Zhiyun

    2016-03-01

    We demonstrate the fabricating method for Yb3+-doped silica glass and double-cladding large mode area photonic crystal fiber (LMA PCF) based on laser sintering technology combined with a liquid phase doping method. The doped material prepared shows the amorphous property and the hydroxyl content is approximately 40 ppm. The attenuation of the fabricated LMA PCF is 14.2 dB m-1 at 976 nm, and the lowest value is 0.25 dB m-1 at 1200 nm. The laser slope efficiency is up to 70.2%.

  3. Down- and up-conversion emissions in Er-doped transparent fluorotellurite glass-ceramics

    NASA Astrophysics Data System (ADS)

    Miguel, A.; Morea, R.; Gonzalo, J.; Fernandez, J.; Balda, R.

    2015-03-01

    In this work, we report the near infrared and upconversion emissions of Er3+-doped transparent fluorotellurite glassceramics obtained by heat treatment of the precursor Er-doped TeO2-ZnO-ZnF2 glass. Structural analysis shows that ErF3 nanocrystals nucleated in the glass-ceramic sample are homogeneously distributed in the glass matrix with a typical size of 45±10 nm. The comparison of the fluorescence properties of Er3+-doped precursor glass and glass-ceramic confirms the successful incorporation of the rare-earth into the nanocrystals. An enhancement of the red upconversion emission due to 4F9/2→4I15/2 transition together with weak emission bands due to transitions from 2H9/2, 4F3/2,5/2, and 4F7/2 levels to the ground state are observed under excitation at 801 nm in the glass-ceramic sample. The temporal evolution of the red emission together with the excitation upconversion spectrum suggest that energy transfer processes are responsible for the enhancement of the red emission.

  4. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Zhao, Lijuan; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua

    2016-02-01

    Tm3+ ions doped β-PbF2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an Oh to D4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field.

  5. Host dependence of spectroscopic properties of cerium-doped glasses

    NASA Astrophysics Data System (ADS)

    Jiang, Chun; Zeng, QingJi; Gan, Fuxi

    2000-11-01

    Oxide glasses containing Ce were prepared by the conventional melting method under reducing atmosphere. Spectroscopic properties of the glasses were studied by steady-state luminescence spectroscopy. In the present paper we made a report to summarize the characteristics of excitation and emission spectra in difference oxide hosts.

  6. Hyperpolarized cesium ions doped in a glass material

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kiyoshi

    2014-12-01

    Hyperpolarized (HP) 133 Cs nuclear magnetic resonance signals were measured from borosilicate glass cell walls during optical pumping of cesium vapor at high magnetic field (9.4 T). Significant signal enhancements were observed when additional heating of the cell wall was provided by intense but non-resonant laser irradiation, with integrated HP 133 Cs NMR signals and line widths varying as a function of heating laser power (and hence glass temperature). Given that virtually no Cs ions would originally be present in the glass, absorbed HP Cs atoms rarely met thermally-polarized Cs ions already at the surface; thus, spin-exchange via nuclear dipole interaction cannot be the primary mechanism for injecting spin polarization into the glass. Instead, it is concluded that the absorption and transport of HP atoms into the glass material itself is the dominant mechanism of nuclear spin injection at high temperatures-the first reported experimental demonstration of such a mechanism.

  7. Properties and Applications of Laser-Induced Gratings in Rare Earth Doped Glasses.

    NASA Astrophysics Data System (ADS)

    Behrens, Edward Grady

    Scope and method of study. Four-wave-mixing techniques were used in an attempt to create permanent laser-induced grating in Pr^{3+}-, Nd ^{3+}-, Eu^ {3+}-, and Er^{3+ }-doped glasses. The permanent laser-induced grating signal intensity and build-up and erase times were investigated as function of the write beam crossing angle, write beam power, and temperature. Thermal lensing measurements were conducted on Eu^{3+} - and Nd^{3+}-doped glasses and room temperature Raman and resonant Raman spectra were obtained for Eu^{3+}-doped glasses. The permanent laser-induced grating signal intensity was studied in Eu^{3+} -doped alkali-metal glasses as a function of the alkali -metal network modifier ion and a model was developed by treating the sample as a two-level system. Optical device applications of the permanent laser-induced gratings were studied by creating some simple devices. Findings and conclusions. Permanent laser-induced gratings were created in the Pr^{3+ }- and Eu^{3+} -doped glasses. The permanent laser-induced grating is associated with a structural phase change of the glass host. The structural change is produced by high energy phonons which are emitted by radiationless relaxation processes of the rare earth ion. Nd^{3+} and Er^{3+} relax nonradiatively by the emission of phonons of much lower energy which are unable to produce the structural phase change needed to form a permanent laser-induced grating. The difference in energy of the emitted phonons is responsible for the differing characteristics of the thermal lensing experiments. The model does a good job of predicting the experimental results for the asymmetry and other parameters of the two-level system. The application of these laser -induced gratings for optical devices demonstrates their importance to optical technology.

  8. Thermal analysis, spectral characterization and refractive index studies of lithium doped PbO-ZnO-B{sub 2}O{sub 3} glass

    SciTech Connect

    Rajaramakrishna, R.; Lakshmikantha, R.; Anavekar, R. V.

    2012-06-05

    Lithium containing lead zinc borate glasseshave been prepared by melt quenching technique. X-ray diffraction reveals the amorphous nature of the glass. Differential scanning calorimeter (DSC) study was carried out in the temperature range RT to 600 deg. C temperature and found glass transition temperature of these glasses decreases with increase in inter substitution of Pb and Zn lithium content. PZB glasses are stable, IR spectra of these glasses show characteristics band originating from borate groups namely [BO{sub 3}] [BO{sub 4}]and B-O-B stretching vibrations respectively, and found that structure is not affected with effect of lithium content. Refractive index of these glasses are in the range of 1.47 with increasing lithium content refractive index decreases indicating decrease in scattering of light.

  9. Energy transfer kinetics in oxy-fluoride glass and glass-ceramics doped with rare-earth ions

    SciTech Connect

    Sontakke, Atul D.; Annapurna, K.

    2012-07-01

    An investigation of donor-acceptor energy transfer kinetics in dual rare earths doped precursor oxy-fluoride glass and its glass-ceramics containing NaYF{sub 4} nano-crystals is reported here, using three different donor-acceptor ion combinations such as Nd-Yb, Yb-Dy, and Nd-Dy. The precipitation of NaYF{sub 4} nano-crystals in host glass matrix under controlled post heat treatment of precursor oxy-fluoride glasses has been confirmed from XRD, FESEM, and transmission electron microscope (TEM) analysis. Further, the incorporation of dopant ions inside fluoride nano-crystals has been established through optical absorption and TEM-EDX analysis. The noticed decreasing trend in donor to acceptor energy transfer efficiency from precursor glass to glass-ceramics in all three combinations have been explained based on the structural rearrangements that occurred during the heat treatment process. The reduced coupling phonon energy for the dopant ions due to fluoride environment and its influence on the overall phonon assisted contribution in energy transfer process has been illustrated. Additionally, realization of a correlated distribution of dopant ions causing clustering inside nano-crystals has also been reported.

  10. Absorption and Luminescence of Novel PbS-QUANTUM-DOT-DOPED Alkali-Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Loiko, P. A.; Yumashev, K. V.; Rachkovskaya, G. E.; Zakharevich, G. B.

    2013-05-01

    Optical absorption and photoluminescence of novel PbS-quantum-dot-doped alumino-alkali-silicate glasses was investigated. PbS nanocrystals with an average diameter of 3.3-5.4 nm were obtained by heat-treatment of the as-cast glass. An influence of temperature (490-510 °C) and duration (10-80 h) of heat-treatment on the optical properties of the glasses was studied. A possibility to shift the maximum of 1S-1S excitonic absorption peak in the spectral range of 0.85-1.4 μm was demonstrated.

  11. Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass

    SciTech Connect

    Fletcher, Luke B.; Witcher, Jon J.; Troy, Neil; Krol, Denise M.; Reis, Signo T.; Brow, Richard K.

    2012-07-15

    We have investigated waveguide writing in Er-Yb doped zinc polyphosphate glass using a femtosecond laser with a repetition rate of 1 KHz. We find that fabrication of good waveguides requires a glass composition with an O/P ratio of 3.25. The dependence on laser writing parameters including laser fluence, focusing conditions, and scan speed is reported. Waveguide properties together with absorption and emission data indicate that these glasses can be used for the fabrication of compact, high gain amplifying devices.

  12. Electrical and mechanical properties of ZnO doped silver-molybdate glass-nanocomposite system

    NASA Astrophysics Data System (ADS)

    Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    Zno doped silver-molybdate glass-nanocomposites, 0.3 Ag2O - 0.7 [0.075 ZnO - 0.925 MoO3] have been prepared by melt-quenching method. Ionic conductivity of these glass-nanocomposites has been measured in wide temperature and frequency windows. Vicker's hardness methods have been employed to study micro-hardness of the as-prepared samples. Heat-treated counterparts for this glass-nanocomposites system has been analyzed in different temperature to observe the changes in conductivity as well as micro-hardness for that system.

  13. Decay kinetics and energy transfer in ternary phosphate glass doped Eu and Eu/Dy

    NASA Astrophysics Data System (ADS)

    Polisadova, E. F.; Othman, H. A.

    2016-02-01

    Different series of glass samples with different glass compositions and different concentrations of rare earth ions (Eu and Eu/ Dy co-doped) were prepared. Excitation and photoluminescence spectra were measured, for which the observed peaks are attributed to the f-f transitions of the rare earth ions. Decay kinetics of the characteristic emission peaks were registered and investigated using Inokuti-Hirayama model (IH model),when the emission decay deviated from the exponential pattern to study energy transfer in the prepared samples. The IH model is used to determine the energy transfer parameter which is correlated to the glass composition factor.

  14. Preparation and photoluminescence of monolithic silica glass doped with Tb3+ ions using SiO2-PVA nanocomposite

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroshi; Murata, Takahiro; Fujino, Shigeru

    2014-05-01

    The monolithic silica glass doped with Tb3+ ions was fabricated using the SiO2-PVA nanocomposite as the glass precursor. In order to dope Tb3+ ions in the monolithic silica glass, the mesoporous SiO2-PVA nanocomposite was immersed in the Tb3+ ions contained solution and subsequently sintered at 1100 °C in air. Consequently the monolithic transparent silica glass was obtained, exhibiting green fluorescence attributed to 5D4 → 7F5 main transitions under UV excitation. The Tb concentration in the sintered glass could be controlled by immersion time of the nanocomposite in the solution.

  15. Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds.

    PubMed

    Wang, Hui; Zhao, Shichang; Xiao, Wei; Xue, Jingzhe; Shen, Youqu; Zhou, Jie; Huang, Wenhai; Rahaman, Mohamed N; Zhang, Changqing; Wang, Deping

    2016-01-01

    Copper doped borosilicate glasses (BG-Cu) were studied by means of FT-IR, Raman, UV-vis and NMR spectroscopies to investigate the changes that appeared in the structure of borosilicate glass matrix by doping copper ions. Micro-fil and immunohistochemistry analysis were applied to study the angiogenesis of its derived scaffolds in vivo. Results indicated that the Cu ions significantly increased the B-O bond of BO4 groups at 980 cm(-1), while they decrease that of BO2O(-) groups at 1440-1470 cm(-1) as shown by Raman spectra. A negative shift was observed from (11)B and (29)Si NMR spectra. The (11)B NMR spectra exhibited a clear transformation from BO3 into BO4 groups, caused by the agglutination effect of the Cu ions and the charge balance of the agglomerate in the glass network, leading to a more stable glass network and lower ions release rate in the degradation process. Furthermore, the BG-Cu scaffolds significantly enhanced blood vessel formation in rat calvarial defects at 8 weeks post-implantation. Generally, it suggested that the introduction of Cu into borosilicate glass endowed glass and its derived scaffolds with good properties, and the cooperation of Cu with bioactive glass may pave a new way for tissue engineering. PMID:26478303

  16. Upconversion properties of Er3+-doped oxyfluoride glass-ceramics containing SrF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Kesavulu, C. R.; Kiran Kumar, K.; Jayasankar, C. K.

    2014-03-01

    Er3+-doped oxyfluoride glass and glass-ceramics containing SrF2 nanocrystals have been prepared and investigated their spectroscopic and luminescence properties. The formation of SrF2 nanocrystals in glass-ceramics were confirmed by Xray diffraction (XRD) and transmission electron microscopy (TEM). Judd-Ofelt parameters have been evaluated from absorption spectra of the Er3+-doped glass, which in turn used to predict radiative properties for the fluorescent levels of Er3+ ions. The intensities of both Stokes and upconversion (anti-Stokes) emissions significantly increase with increase of the size of the fluoride crystals in the glass matrix. The mechanism of green and red upconversion emissions have been ascribed to two photon processes. The lifetime of the 4S3/2 level of the Er3+ ions in glass-ceramics is found to be slightly higher than that of the counter glass, which may be due to the incorporation of Er3+ ions into the low phonon sites of SrF2 nanocrystals.

  17. Comparison of optical properties of pure and doped lithium tetraborate single crystals and glasses

    NASA Astrophysics Data System (ADS)

    Patra, G. D.; Singh, A. K.; Singh, S. G.; Tyagi, M.; Sen, S.; Tiwari, B.; Gadkari, S. C.

    2012-06-01

    High optical quality Li2B4O7 (LTB) single crystals and glassy phases of pure, doped (Cu, Ag) and co-doped with Cu+Ag have been grown by Czochralski crystal pulling and melt quenching techniques respectively. They were characterized through photoluminescence (PL), thermoluminescence (TL), and UV-VIS-NIR transmission measurements. The PL of glass phase shows light yield comparable to that of single crystal. 80-85 % optical transmission in the range 350-800 nm revealed good optical quality of the glasses which is comparable to the single crystals though the glasses have higher cut off wavelength (lower energy). TL glow peaks of Cu doped LTB single crystal at 200 °C and for Cu+Ag co-doped LTB single crystals at around 170°C and 240°C are useful for the dosimetry applications and found to be linear in the range from 1mGy to 1kGy. However, in glasses no TL was observed in spite of a good PL yield.

  18. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    NASA Astrophysics Data System (ADS)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  19. Enhancement of light emission from anthracene-doped polyphenylsiloxane glass films containing Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Shimada, Ryoko; Kimura, Megumi; Tarutani, Naoki; Takahashi, Masahide; Karna, Sanjay; Neogi, Arup

    2014-03-01

    Metal-nanoparticles can induce the localized electric filed in the narrow inter-particle gap. This localization can significantly enhance light emission from fluorescent materials embedding metal nanoparticles. In this phenomenon, the important factors are optical absorption and emission. However, the mechanism of enhancement has not been fully elucidated. In this work, anthracene-doped polyphenylsiloxane (PPS) glass films containing Ag nanoparticles (AgNPs) were prepared for the characterization of enhanced photoluminescence properties. AgNPs of ~ 30nm diameter were synthesized by the polyol process, and mixed in the anthracene-doped PPS glass film. The anthracene-doped PPS thin films of thickness ~ 200 nm, with/without AgNPs, were prepared by spin-casting method. The photoluminescence (PL), measured for these films at room temperature, changed with the anthracene and/or AgNPs concentrations. In the optimum condition, the integrated PL intensity enhancement factor was found to exceed 50.

  20. Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides

    SciTech Connect

    Damas, Pedro; Coelho, João; Hungerford, Graham; Hussain, N. Sooraj

    2012-11-15

    Graphical abstract: [TeO{sub 4}] trigonal bipyramid structural unit, which is formed by two unequivalent pair of oxygen atoms: two equatorial oxygens (O{sub eq}) and two axial oxygens (O{sub ax}). Highlights: ► Pr{sup 3+} and Sm{sup 3+} doped LBT glasses have been prepared and characterized. ► LBT glasses present normal surfaces without metallic clusters. ► Raman spectra revealed the network modifying behaviour of dopant ions. -- Abstract: This paper reports the preparation and structural studies of praseodymium and samarium (0.5, 2 and 4 mol%) oxide doped lithium boro tellurite glasses. These materials were prepared by the quenching technique in a ceramic crucible at 950 °C. Structural characterization was performed by Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy techniques. Results from Raman analysis are in good agreement with those reported in the literature, revealing a normal glass structure for the host material. Understanding on how the glasses internal structure changed when the doping concentration increases was also assessed.

  1. Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Anupinder; Thakur, Vanita; Singh, Lakhwant

    2016-03-01

    Trivalent Dysprosium doped sodium aluminophosphate glasses with composition 50P2O5-10Al2O3-(20-x)Na2O-20CaO-xDy2O3 (x varying from 0 to 5 mol%) were prepared by melt quench technique. The density of the prepared samples was measured using Archimedes principle and various physical properties like molar volume, rare earth ion concentration, polaron radius, inter nuclear distance and field strength were calculated using different formulae. The differential scanning calorimetry (DSC) was carried out to study the thermal stability of prepared glasses. The UV Visible absorption spectra of the dysprosium doped glasses were found to be comprised of ten absorption bands which correspond to transitions from ground state 6H15/2 to various excited states. The indirect optical band gap energy of the samples was calculated by Tauc's plot and the optical energy was found to be attenuated with Dy3+ ions. The photoluminescence spectrum revealed that Dy3+ doped aluminophosphate glasses have strong emission bands in the visible region. A blue emission band centred at 486 nm, a bright yellow band centred at 575 nm and a weak red band centred at 668 nm were observed in the emission spectrum due to excitation at 352 nm wavelength. Both FTIR and Raman spectra assert slight structural changes induced in the host glass network with Dy3+ ions.

  2. The microstructure of erbium-ytterbium co-doped oxyfluoride glass-ceramic optical fibers

    NASA Astrophysics Data System (ADS)

    Augustyn, Elżbieta; Żelechower, Michał; Stróż, Danuta; Chrapoński, Jacek

    2012-04-01

    Oxyfluoride transparent glass-ceramics combine some features of glasses (easier shaping or lower than single crystals cost of fabrication) and some advantages of rare-earth doped single crystals (narrow absorption/emission lines and longer lifetimes of luminescent levels). Since the material seems to be promising candidate for efficient fiber amplifiers, the manufacturing as well as structural and optical examination of the oxyfluoride glass-ceramic fibers doped with rare-earth ions seems to be a serious challenge. In the first stage oxyfluoride glasses of the following compositions 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-11PbF2-3ErF3 and 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-10PbF2-3YbF3-1ErF3 (in molar%) were fabricated from high purity commercial chemicals (Sigma-Aldrich). The fabricated glass preforms were drawn into glass fibers using the mini-tower. Finally, the transparent Er3+ doped and Er3+/Yb3+ co-doped oxyfluoride glass-ceramic fibers were obtained by controlled heat treatment of glass fibers. The preceding differential thermal analysis (DTA) studies allowed estimating both the fiber drawing temperature and the controlled crystallization temperature of glass fibers. X-ray diffraction examination (XRD) at each stage of the glass-ceramic fibers fabrication confirmed the undesirable crystallization of preforms and glass fibers has been avoided. The fibers shown their mixed amorphous-crystalline microstructure with nano-crystals of size even below 10 nm distributed in the glassy host. The crystal structure of the grown nano-crystals has been determined by XRD and confirmed by electron diffraction (SAED). Results obtained by both techniques seem to be compatible: Er3FO10Si3 (monoclinic; ICSD 92512), Pb5Al3F19 (triclinic; ICSD 91325) and Er4F2O11Si3 (triclinic; ICSD 51510) against to initially expected PbF2 crystals.

  3. Structural and optical properties of erbium-doped willemite-based glass-ceramics.

    PubMed

    Sarrigani, G V; Matori, K A; Lim, W F; Kharazmi, A; Quah, H J; Bahari, H R; Hashim, M

    2015-11-20

    Willemite-based glass-ceramic was prepared from waste material using a conventional melt and quenching method. The crystalline willemite-based glass-ceramic was doped with Er2O3 (1-5 wt.%) followed by sintering at different temperatures (500°C-1100°C). Density and linear shrinkage were increased with the increase of the sintering temperature. Ultraviolet-visible spectroscopy (UV-Vis) confirmed an optimum optical absorption for sample doped with 3 wt.% of Er2O3 and sintered at 900°C. Photoluminescence measurements further confirmed 3 wt.% of Er2O3 as the optimum percentage of dopant. Results suggested that the obtained glass-ceramic could be a promising material for use as fiber amplifiers. PMID:26836559

  4. Charge transport in tri-p-tolylamine doped trinaphthalylbenzene glass

    NASA Astrophysics Data System (ADS)

    Lin, Liang-Bih; O'Reilly, James M.; Magin, Edward H.; Weiss, David S.; Jenekhe, Samson A.

    2000-09-01

    The charge transport properties of tri-p-tolylamine (TTA) doped trinaphthalylbenzene have been measured as a function of electric field and temperature. The charge mobilities of the composite are comparable to but somewhat lower than that of TTA doped polystyrene, a nonpolar polymeric host, at similar weight fractions. We suggest that the difference is due to inhomogeneity between the host and the dopant. The results suggest that, similar to polymer hosts in molecularly doped polymers, the molecular host only functions as an inert diluter and does not directly participate in the charge transport manifold. The results also substantiate the importance of molecular packing to charge hopping in disordered organic materials. The charge mobility data are analyzed with a disorder model due to Bässler and coworkers and a recently modified expression due to Novikov and coworkers [Phys. Rev. Lett. 81, 4472 (1998)]. Both models provide adequate descriptions of charge transport in organic amorphous materials.

  5. Enhanced broadband near-infrared luminescence and its origin in Yb/Bi co-doped borophosphate glasses and fibers

    NASA Astrophysics Data System (ADS)

    Sheng, Qiuchun; Wang, Xiaolin; Chen, Danping

    2014-07-01

    Yb/Bi co-doped borophosphate glasses and fibers were prepared. The effect of Yb3+ on the near-infrared (NIR) luminescent properties and the mechanism of luminescence of Bi-ions were investigated. Under 976 nm laser diode (LD) excitation, the NIR emission intensity of the glass with 8 mol% Yb2O3 co-doped glass is ~37 times stronger than that of Bi singly-doped glass. The fluorescence lifetime increases by ~7 times with 5 mol% Yb2O3 co-doped glass. The energy transfer efficiency is ~59.1%. It is also suggested that the broadband NIR luminescence pumped by 808 nm and 976 nm LDs derives from Bi+ and Bi2+, respectively.

  6. Bioactive glass in tissue engineering.

    PubMed

    Rahaman, Mohamed N; Day, Delbert E; Bal, B Sonny; Fu, Qiang; Jung, Steven B; Bonewald, Lynda F; Tomsia, Antoni P

    2011-06-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  7. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  8. Optical properties of Ce3+ doped fluorophosphates scintillation glasses

    NASA Astrophysics Data System (ADS)

    Yao, Yongxin; Liu, Liwan; Zhang, Yu; Chen, Danping; Fang, Yongzheng; Zhao, Guoying

    2016-01-01

    Fluorophosphates (P2O5-BaO-BaF2-Al2O3-Gd2O3-Ce2O3) glasses with different Gd2O3 and BaF2 concentrations have been prepared by a melt quenching method. The effect of Gd2O3 and BaF2 on the glass performance including the density, absorption as well as luminescence properties under both ultraviolet (UV) and X-ray excitation was studied systematically. Energy transfer from Gd3+ to Ce3+ plays an important role in the scintillation mechanism of these glasses and the optimum concentration of Gd2O3 is found to be approximately 3 mol%. The highest integrated light emission intensity of these glass samples excited by X-ray is 25% of BGO and the decay time constants are in the range of 25-35 ns, much shorter than the 300 ns decay time of BGO. Meanwhile, replacing lighter compound BaO with the BaF2 can increase the density of the glasses and also improve the light yield.

  9. Comparison of Er-doped sol-gel glasses with various hosts

    NASA Astrophysics Data System (ADS)

    Xiang, Qing; Zhou, Yan; Lam, Yee Loy; Ooi, Boon Siew; Chan, Yuen Chuen; Kam, Chan Hin

    1999-11-01

    Using the sol-gel process, we prepared three groups of Er-doped glasses, namely, Er-doped Si02-A101.5 (SAB) glass, Er-doped Si02-Ti02-A101.5 (STAE) glass, and Er-doped Si02-Ge02-Al01.5 (SGAE) glass. Various erbium concentration and different host composition under the same processing condition have been studied in order to optimize the material composition to get the strongest fluorescence emission for each material system. It has been found that for SAE glass, the strongest fluorescence emission is obtained when the mole ratio of the three constituent oxides is lOOSiO2 : 20A101.5 2ErO1.5. For the STAE material system, the best composition ratio for the strongest fluorescence emission is 93 Si02 : 7TiO2: 20A101.5 : lErO1.5, whereas the value for SGAE glass is 9OSiO2:lOGeO2 : 2OAlO1.5: 1ErO1.5. But the relative lifetimes were obtained with the recipe lOOSiO2:10A101.5:1ErO1.5 for SAE series, 90 Si02:lOGeO2:1OAlO1.5: 1ErO1.5 for STAE group and 93 Si02:7Ti02:20A101.5:1ErO1.5 for STAE group. Using these recipes, three 20-layer (up to 2.5 μm) crack-free films have been deposited on silica-on-silicon (SOS) substrates with multiple spin-coating and rapid thermal annealing (RTA). Only the STAE film and the SGAE film are found to guide light. The experimental results show that STAB glasses have higher hydrophilicity than SGAE glasses and SGAE glasses has lower crystallization temperature than STAE glasses. The fact that these waveguiding films emit relatively strong fluorescence around the wavelength of 1.55 μm implies that such planar waveguides are potential candidates from which integrated optical waveguide amplifiers and lasers operating at the third optical fiber communication window can be fabricated.

  10. White luminescence of Tm-Dy ions co-doped aluminoborosilicate glasses under UV light excitation

    SciTech Connect

    Liu Shimin; Zhao Gaoling; Lin Xiaohua; Ying Hao; Liu Junbo; Wang Jianxun; Han Gaorong

    2008-10-15

    Tm{sup 3+} and Dy{sup 3+} ions co-doped aluminoborosilicate glasses were prepared in this study. The luminescence properties of the glasses were analyzed. A combination of blue, green, yellow, and red emission bands was shown for these glasses, and white light emission could be observed under UV light excitation. White light luminescence color could be changed by varying the excitation wavelength. Concentration quenching effect was investigated in this paper. Furthermore, the dependence of luminescence properties on glass compositions was studied. Results showed that the luminescence intensity changed with different network modifier oxides, while the white color luminescence was not affected significantly. - Graphical abstract: Tm{sup 3+} and Dy{sup 3+} ions co-doped aluminoborosilicate glasses, which emit white light under UV light excitation, were prepared. The dependence of luminescence properties on glass compositions was studied, and results showed that the white color luminescence was not affected significantly with different network modifier oxides. This adjustability could broaden application areas.

  11. The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics.

    PubMed

    Hu, Nan; Yu, Hua; Zhang, Ming; Zhang, Pan; Wang, Yazhou; Zhao, Lijuan

    2011-01-28

    Rare-earth doped oxyfluoride glasses and nanocrystalline glass ceramics have been prepared and studied by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) aiming at investigating the structure and the symmetry of the nanocrystal as well as the site of the rare-earth ion. To solve the problem encountered by previous researchers due to glass host interference, we etched off glass matrix and released the fluoride nanocrystal, which is more convenient for EDS measurement. A tetragonal phase model with the chemical formula as PbREF(5) proved by quantitative EDS and XRD analyses has been proposed in this paper for the first time. Two specific crystalline phases with the same space group have been observed at 460 °C-500 °C and 520 °C-560 °C, respectively. Moreover, a super "pseudo-cubic" cell based on our tetragonal model may give a good explanation to the probable previous cubic-symmetry misunderstanding by researchers. Additionally, the thermodynamic mechanism of phase transition and the thermal stability related to the structure of nanocrystals in glass ceramics have been studied and supported by ab initio calculations and experimental methods. The structure and thermal stability of the nanocrystal and clear environment of the rare-earth ion reported here have far-reaching significance with respect to the optical investigations and further applications of rare-earth doped oxyfluoride glass ceramics. PMID:21152548

  12. Transition-metal-doped chalcogenide glasses for broadband near-infrared sources

    NASA Astrophysics Data System (ADS)

    Hughes, Mark A.; Aronson, Jonathan E.; Brocklesby, William S.; Shepherd, David P.; Hewak, Daniel W.; Curry, Richard J.

    2004-12-01

    In this paper we report the spectroscopic data for samples of 0.031% iron, 0.017% nickel, 0.01% chromium and 0.017% cobalt (molar) doped gallium lanthanum sulphide (GLS) glass. Photoluminescence (PL) with a full width half maximum (FWHM) of around 500 nm and peaking between 1120 nm and 1460 nm is observed when excited using wavelengths of 850 nm and 1064 nm. The emission lifetime for nickel-doped GLS at 300 K was measured to be 40 μs. Photoluminescence excitation (PLE) peaks for chromium-doped GLS at 700 nm and 1020 nm have been observed. By comparisons of our spectroscopic data to that of transition metals doped into other hosts we determine the oxidation states of the transition metal ions and propose transitions for the observed spectroscopic peaks.

  13. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr

    PubMed Central

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R.

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431

  14. Nd3+, Yb3+ and Nd3+/Yb3+: doped borosilicate glasses for luminescent thermometry

    NASA Astrophysics Data System (ADS)

    Bykowski, Kamil; Bruszewski, Artur; Cimaszewski, Dominik; Zmojda, Jacek; Kochanowicz, Marcin; Dorosz, Dominik

    2014-11-01

    The article presents influence of temperature on luminescent properties of borosilicate glasses with molar composition: SiO2-B2O3-Al2O3-Na2O-K2O doped with Nd3+, Yb3+ and co-doped with Nd3+/Yb°3+ ions. In the range from 60 to 300°C the quenching of luminescence signal versus increase of temperature was observed. In case of glasses doped with Nd3+ and Yb3+ ions the sensitivity was determinated to be 0.0016 [1/K] at 1.06μm and 0.001 [1/K] at 1.02μm, respectively. Fabricated glass co-doped with Nd3+/Yb3+ ions is characterized by the highest sensitivity and maximum value 0.003 [1/K] was observed at the wavelength of 1020nm, corresponding to the Yb3+: 2F5/2 --> 2F7/2 transition in energy levels structure of ions.

  15. Spectroscopic properties and energy transfer in Er-Tm co-doped bismuth silicate glass

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Zhilan; Li, Kefeng; Zhang, Lei; Cheng, Jimeng; Hu, Lili

    2013-10-01

    In this paper, we investigate the spectroscopic properties of and energy transfer processes in Er-Tm co-doped bismuth silicate glass. The Judd-Ofelt parameters of Er3+ and Tm3+ are calculated, and the similar values indicate that the local environments of these two kinds of rare earth ions are almost the same. When the samples are pumped at 980 nm, the emission intensity ratio of Tm:3F4 ? 3H6 to Er:4I13/2 ? 4I15/2 increases with increased Er3+ and Tm3+ contents, indicating energy transfer from Er:4I13/2 to Tm:3F4. When the samples are pumped at 800 nm, the emission intensity ratio of Er:4I13/2 ? 4I15/2 to Tm:3H4 ? 3F4 increases with increased Tm2O3 concentration, indicating energy transfer from Tm:3H4 to Er:4I13/2. The rate equations are given to explain the variations. The microscopic and macroscopic energy transfer parameters are calculated, and the values of energy transfer from Er:4I13/2 to Tm:3F4 are found to be higher than those of the other processes. For the Tm singly-doped glass pumped at 800 nm and Er-Tm co-doped glass pumped at 980 nm, the pumping rate needed to realize population reversion is calculated. The result shows that when the Er2O3 doping level is high, pumping the co-doped glass by a 980 nm laser is an effective way of obtaining a low-threshold 2 ?m gain.

  16. EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses

    NASA Astrophysics Data System (ADS)

    De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.

    2014-12-01

    Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).

  17. High Photoluminescent Property of Low-Melting Sn-Doped Phosphate Glass

    NASA Astrophysics Data System (ADS)

    Masai, Hirokazu; Takahashi, Yoshihiro; Fujiwara, Takumi; Matsumoto, Syuji; Yoko, Toshinobu

    2010-08-01

    The authors report on the quantum efficiency (QE) of UV-excited photoluminescence measured in SnO-ZnO-P2O5 glass developed as rare earth (RE)-free material for light emitting diode (LED) applications; we report what is, to the best of our knowledge, the highest value of QE ever reported. It is notable that the QE value of the present RE-free glass (˜90%) is comparable to that of RE-doped glass. For future LED applications, we have emphasized that the low-melting glass will be one of the most industrially favorable inorganic materials to replace organic sealants that suffer degradation by strong LED irradiation.

  18. Ultraviolet and white photon avalanche upconversion in Ho{sup 3+}-doped nanophase glass ceramics

    SciTech Connect

    Lahoz, F.; Martin, I.R.; Calvilla-Quintero, J.M.

    2005-01-31

    Ho{sup 3+}-doped fluoride nanophase glass ceramics have been synthesized from silica-based oxyfluoride glass. An intense white emission light is observed by the naked eye under near infrared excitation at 750 nm. This visible upconversion is due to three strong emission bands in the primary color components, red, green, and blue. Besides, ultraviolet signals are also recorded upon the same excitation wavelength. The excitation mechanism of both the ultraviolet and the visible emissions is a photon avalanche process with a relatively low pump power threshold at about 20 mW. The total upconverted emission intensity has been estimated to increase by about a factor of 20 in the glass ceramic compared to the precursor glass, in which an avalanche type mechanism is not generated.

  19. Spectroscopic properties of Er3+ doped lead phosphate glasses for photonic application 4-23-2009

    SciTech Connect

    Santos, C. C.; Guedes, I.; Moura, A. L. Moura; de Araujo, M. T.; Jacinto, C.; Vermelho, M. V. D.; Loong, C. K.; Boatner, Lynn A

    2010-01-01

    The spectroscopic characteristics of Er3+-doped lead phosphate glasses have been investigated, and Judd-Ofelt analysis was used to evaluate the effect of increasing the Er3+ content on the glass matrices. The intensity-dependent Judd=-Ofelt parameters: (4) and (6) remained constant while (2) decreased. Photoluminescence analysis revealed a low up-conversion efficiency through the weak green (530 and 550 nm) and red (660 nm) signals that were present under excitation at 800 nm. The concentration quenching effect on the lifetime of the Er3+: 4I13/2 4I15/2 (1530 nm) transition is also evaluated as a result of the addition of Er3+ to the lead phosphate glass composition. The observed relatively large reduction in the lifetime reflects the significant effects of non-radiative processes in this system. The potential use of these glasses as photonic devices is also discussed.

  20. Spectroscopic characteristics of chromium doped mullite glass-ceramics

    SciTech Connect

    Wojtowicz, A.J.; Meng, W.; Lempicki, A.; Beall, G.H.; Hall, D.W.; Chin, T.C.

    1988-06-01

    Characteristics of chromium doped mullite ceramics are discussed with reference to possible laser applications. Dominant features are attributed to large and inherent spectroscopic inhomogeneity of mullite. The spectroscopic data are analyzed using a generalized McCumber theory. The peak stimulated emission cross section is 0.54 x 10/sup -20/ cm/sup 2/. This, together with preliminary single-pass measurements, indicate that gain for mullite is about 2.6 times smaller than gain for alexandrite.

  1. Dy{sup 3+}-doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers

    SciTech Connect

    Zhang, Mingjie; Yang, Anping; Peng, Yuefeng; Zhang, Bin; Ren, He; Guo, Wei; Yang, Yan; Zhai, Chengcheng; Wang, Yuwei; Yang, Zhiyong; Tang, Dingyuan

    2015-10-15

    Highlights: • Novel Ga–Sb–S chalcogenide glasses doped with Dy{sup 3+} ions were synthesized. • The glasses show good thermal stability and excellent infrared transparency. • The glasses show low phonon energy and intense mid-infrared emissions. • The mid-infrared emissions have high quantum efficiency. • The mid-infrared emissions have large stimulated emission cross sections. - Abstract: Novel Ga–Sb–S chalcogenide glasses doped with different amount of Dy{sup 3+} ions were prepared. Their thermal stability, optical properties, and mid-infrared (MIR) emission properties were investigated. The glasses show good thermal stability, excellent infrared transparency, very low phonon energy (∼306 cm{sup −1}), and intense emissions centered at 2.95, 3.59, 4.17 and 4.40 μm. Three Judd–Ofelt intensity parameters (Ω{sub 2} = 8.51 × 10{sup −20} cm{sup 2}, Ω{sub 4} = 2.09 × 10{sup −20} cm{sup 2}, and Ω{sub 6} = 1.60 × 10{sup −20} cm{sup 2}) are obtained, and the related radiative transition properties are evaluated. The high quantum efficiencies and large stimulated emission cross sections of the MIR emissions (88.10% and 1.11 × 10{sup −20} cm{sup 2} for 2.95 μm emission, 75.90% and 0.38 × 10{sup −20} cm{sup 2} for 4.40 μm emission, respectively) in the Dy{sup 3+}-doped Ga–Sb–S glasses make them promising gain materials for the MIR lasers.

  2. Optical Characterization of Nd3+ and Er3+ Doped-Lead-Indium Phosphate Glasses

    SciTech Connect

    Brito, Taisa B.; Vermelho, M. V. D.; Gouveia, E. A.; de Araujo, M. T.; Guedes, I.; Loong, C. K.; Boatner, Lynn A

    2007-01-01

    In this work, Judd-Ofelt analysis is applied to rare-earth-doped lead-indium-phosphate glasses (RE-PbInPO{sub 4}, where RE = Er{sup 3+} and Nd{sup 3+}) in order to evaluate their potential as both glass laser systems and amplifier materials. The phenomenological Judd-Ofelt parameters {Omega}{sub (2)}, {Omega}{sub (4)}, and {Omega}{sub (6)} are determined for both rare-earth ions together with their quality factors and compared with the equivalent parameters for several other host glasses. The spontaneous emission probabilities and the lifetimes of the Nd{sup 3+} {sup 4}F{sub 3/2} laser transitions are determined and analyzed as a function of the optical quality factor. For Nd{sup 3+}-PbInPO{sub 4}, glass fluorescence emission (890, 1058, and 1330 nm) lines are observed. Highly efficient infrared-to-visible frequency up-conversion at 530, 550, and 670 nm as well as an intense infrared fluorescence emission ({approx}1540 nm) is observed in Er{sup 3+}-doped PbIn(PO{sub 4}) glasses pumped using 800 nm radiation excitation.

  3. Spectroscopic properties of transparent Er-doped oxyfluoride glass-ceramics with GdF3

    NASA Astrophysics Data System (ADS)

    Środa, Marcin; Szlósarczyk, Krzysztof; Różański, Marek; Sitarz, Maciej; Jeleń, Piotr

    2015-01-01

    Optically active glass-ceramics (GC) with the low-phonon phases of fluorides, doped with Er3+ was studied. Glass based on SiO2-Al2O3-Na2F2-Na2O-GdF3-BaO system was obtained. Dopant were introduced to the glass in an amount of 0.01 mol Er2O3 per 1 mol of glass. DTA/DSC study shows multi-stage crystallization. XRD identification of obtained phases did not confirm the presence of pure GdF3 phase. Instead of that ceramization process led to formation of NaGdF4 and BaGdF5. The structural changes were studied using FT-IR spectroscopic method. The study of luminescence of the samples confirmed that optical properties of the obtained GC depend on crystallizing phases during ceramization. Time resolved spectroscopy of Er-doped glass showed the 3 and 8 times increase of lifetime of emission from 4S3/2 and 4F9/2 states, respectively. It confirms the erbium ions have ability to locate in the low phonon gadolinium-based crystallites. The results give possibility to obtain a new material for optoelectronic application.

  4. Physical and optical properties of lead doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Riyatun; Rahmasari, Lita; Marzuki, Ahmad

    2016-02-01

    Physical and optical properties of lead telluride (Pb:TZBN) glasses with composition 55TeO2-(41-x)ZnO-2Bi2O3-2Na2O-xPbO where x = 1.0, 1.5, 2.0, 2.5% mol are presented. UV-VIS-NIR spectra of the glasses in the range of 300 - 800 nm along with their densities and refractive indices at 746 nm were recorded at room temperature. The optical bandgap energy (Eg) has been calculated from the fitting of Tauc plot. On the basis of these results we found that with the increase of Pb2+ content, their refractive indices are increased while their optical bandgaps are decreased. From this experiment, no distinct relationship between the Pb2+ content variation and the electronic polarizability (αO2-) as well as their optical basicity values (A) were observed.

  5. HONO Reactions on Clean and Nitric Acid Doped Glass Surfaces

    NASA Astrophysics Data System (ADS)

    Syomin, D.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2002-12-01

    It is well known that HONO, NO and HNO3 are the major products of the heterogeneous hydrolysis of NO2. However, studies of NO2 hydrolysis in laboratory systems are complicated by secondary reactions of HONO occurring on the glass walls of the reactor. These reactions affect the rate of HONO formation at the beginning of the reaction as well as at longer reaction times. We investigated reactions of HONO on clean and HNO3 predosed silica surfaces. In order to investigate the kinetics and mechanism of these surface reactions the rate of dark decay of HONO was studied in a long path IR borosilicate glass cell at different initial HONO concentrations and relative humidities. Observed loss of HONO and production of the gas phase species were interpreted using a computer kinetics model of this system. The mechanism and the implications of the removal of HONO from the atmosphere are discussed.

  6. Electrical properties of praseodymium oxide doped Boro-Tellurite glasses

    NASA Astrophysics Data System (ADS)

    Jagadeesha Gowda G., V.; Devaraja, C.; Eraiah, B.

    2016-05-01

    Glasses of the composition xPr6O11- (35-x)TeO2-65B2O3 (x=0, 0.1 to 0.5 mol %) have been prepared using the melt quenching method. The ac and dc conductivity of glass have been measured over a wide range of frequencies and temperatures. Experimental results indicate that the ac conductivity depend on temperature, frequency and Praseodymium content. The conductivity as a function of frequency exhibited two components: dc conductivity (σdc), and ac conductivity (σac). The activation energies are estimated and found to be decreases with composition. The impedance plot at each temperature appeared as a semicircle passes through the origin.

  7. Upconversion lasing of a thulium-ion-doped fluorozirconate glass microsphere

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hideki; Sasaki, Keiji

    1999-09-01

    Blue and red upconversion lasing of a Tm3+-doped fluorozirconate glass microsphere was demonstrated. Tens-of-micrometer-sized, genuinely spherical glass particles were produced by a melting method with a burner. The single microsphere was pumped by a focused beam of a Nd:YAG laser operating at 1064 nm. Three-photon-excited lasing emission could be observed in 480 and 800 nm regions at room temperature, and their lasing thresholds were determined to be 20 and 5 mW, respectively. Applications of the microspherical upconversion laser to near-field scanning optical microscopy are also discussed.

  8. Optical absorption and luminescence study of cobalt-doped magnesium aluminosilicate glass ceramics

    NASA Astrophysics Data System (ADS)

    Malyarevich, A. M.; Denisov, I. A.; Yumashev, K. V.; Dymshits, O. S.; Zhilin, A. A.

    2002-08-01

    Linear and nonlinear optical properties of cobalt-doped magnesium aluminosilicate transparent glass ceramics that were prepared under different conditions have been studied. It has been shown that absorption and luminescence spectra and absorption bleaching of these glass ceramics are defined mainly by tetrahedrally coordinated Co 2+ ions located in magnesium aluminum spinel nanocrystals. The lifetimes of the 4 T 1 ( 4 F) and 4 T 2 ( 4 F) excited states of the tetrahedral Co 2+ ions were found to be in the ranges 2540 and 120450 ns, respectively, depending on the Co concentration. 2002 Optical Society of America

  9. Energy Transfer Process of Eu3+ Ions Doped in Tellurite Glass

    NASA Astrophysics Data System (ADS)

    Hong, Tran Thi; Dung, Phan Tien; Quang, Vu Xuan

    2016-05-01

    Tellurite glass doped with different concentrations of Eu3+ ions has been prepared by the conventional melting process. Photoluminescence, Raman spectra, phonon side-band spectra, and Judd-Ofelt analysis were carried out. Some spectroscopic parameters were estimated to predict the luminescence efficiency of the materials. The energy transfer between the rare-earth ions was observed, and a model for its cross-relaxation was proposed and quantitatively estimated. The charged intrinsic defects in the form of nonbridging oxygen (NBO) were determined, and the energy transfer between NBO and rare-earth ions observed. The energy-transfer-induced Eu3+ photoluminescence enhancement in tellurite glass is studied.

  10. Energy Transfer Process of Eu3+ Ions Doped in Tellurite Glass

    NASA Astrophysics Data System (ADS)

    Hong, Tran Thi; Dung, Phan Tien; Quang, Vu Xuan

    2016-03-01

    Tellurite glass doped with different concentrations of Eu3+ ions has been prepared by the conventional melting process. Photoluminescence, Raman spectra, phonon side-band spectra, and Judd-Ofelt analysis were carried out. Some spectroscopic parameters were estimated to predict the luminescence efficiency of the materials. The energy transfer between the rare-earth ions was observed, and a model for its cross-relaxation was proposed and quantitatively estimated. The charged intrinsic defects in the form of nonbridging oxygen (NBO) were determined, and the energy transfer between NBO and rare-earth ions observed. The energy-transfer-induced Eu3+ photoluminescence enhancement in tellurite glass is studied.

  11. Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters.

    PubMed

    Tikhomirov, V K; Rodríguez, V D; Kuznetsov, A; Kirilenko, D; Van Tendeloo, G; Moshchalkov, V V

    2010-10-11

    Bulk oxyfluoride glasses doped with Ag nanoclusters have been prepared using the melt quenching technique. When pumped in the absorption band of Ag nanoclusters between 300 to 500 nm, these glasses emit a very broad luminescence band covering all the visible range with a weak tail extending into the near infrared. The maximum of the luminescence band and its color shifts to the blue with a shortening of the excitation wavelength and an increasing ratio of oxide to fluoride components, resulting in white color luminescence at a particular ratio of oxide to fluoride; with a quantum yield above 20%. PMID:20941104

  12. Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses

    NASA Astrophysics Data System (ADS)

    Wang, Xueying; Lin, Hai; Yang, Dianlai; Lin, Lin; Yue-Bun Pun, Edwin

    2007-06-01

    10mol% of bismuth oxide was designed to add in making novel Ho3+ doped heavy metal tellurite glasses (LKBBT) with large refractive indices and glass densities. Based on optical absorption, Judd-Ofelt parameters Ω2, Ω4, and Ω6 have been derived to be 4.373×10-20, 1.906×10-20, and 1.451×10-20cm2, respectively, which indicate higher asymmetry and stronger covalent environment in LKBBT glasses compared with ZnF2-CdF2, oxyfluorobotate, and zirconium-barium-lanthanum-aluminum-sodium-fluoride glasses. Efficient visible upconversion emission bands peaked at 544, 657, and 753nm in Ho3+/Yb3+ codoped LKBBT glass system have confirmed that two photons contribute to the upconversion processes under the pumping of a 974nm diode laser. Owing to large absorption and emission cross sections, Yb3+ ion is considered to be a preferable sensitizer for catching enough pumping energy and transferring considerable energy to Ho3+ in LKBBT glasses. Low maximum phonon energy and high spontaneous transition probabilities of Ho3+ are beneficial in obtaining efficient upconversion and IR emission in the glass system.

  13. Long-term test results from a West Valley actinide-doped reference glass

    SciTech Connect

    Fortner, J.A.; Gerding, T.J.; Bates, J.K.

    1995-07-01

    Results from drip tests designed to simulate unsaturated conditions in the proposed Yucca Mountain Repository are reported for an actinide-doped glass (reference glass ATM-10) used as a model waste form. These tests have been ongoing for nearly 7 years, with data collected on solution composition (including transuranics), colloid formation and disposition, glass corrosion layers, and solid secondary phases. This test is unique because of its long elapsed time, high content of thorium and transuranics, use of actual groundwater from the proposed site area, use of contact between the glass and sensitized stainless steel in the test, and the variety of analytical procedures applied to the components. Some tests have been terminated, and scanning electron microscopy (SEM) and analytical transmission electron microscopy (AEM) were used to directly measure glass corrosion and identify secondary phases. Other tests remain ongoing, with periodic sampling of the water that had contacted the glass. The importance of integrated testing has been demonstrated, as complex interactions between the glass, the groundwater, and the sensitized stainless steel have been observed. Secondary phases include smectite clay, iron silicates, and brockite. Actinides, except neptunium, concentrate into stable secondary phases. The release of actinides is then controlled by the behavior of these phases.

  14. Influence of the melting atmosphere on Yb3+/Al3+ co-doped silica glass with powder melting technology

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhou, Guiyao; Xia, Changming; Han, Ying; Zhao, Xingtao; Zhang, Wei; Wang, Wei

    2014-03-01

    We demonstrated the formation of Yb2+ ions in Yb3+/Al3+ co-doped silica glass using the powder melting technology based on the high-frequency plasma furnace. The Yb3+ ions can be deoxidated into Yb2+ ions under the atmosphere of N2 or Ar. The appearance and optical properties of the Yb3+/Al3+ co-doped silica glass are also changed.

  15. On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses.

    PubMed

    Hughes, Mark A; Gwilliam, Russell M; Homewood, Kevin; Gholipour, Behrad; Hewak, Daniel W; Lee, Tae-Hoon; Elliott, Stephen R; Suzuki, Takenobu; Ohishi, Yasutake; Kohoutek, Tomas; Curry, Richard J

    2013-04-01

    Reaction order in Bi-doped oxide glasses depends on the optical basicity of the glass host. Red and NIR photoluminescence (PL) bands result from Bi(2+) and Bin clusters, respectively. Very similar centers are present in Bi- and Pb-doped oxide and chalcogenide glasses. Bi-implanted and Bi melt-doped chalcogenide glasses display new PL bands, indicating that new Bi centers are formed. Bi-related PL bands have been observed in glasses with very similar compositions to those in which carrier-type reversal has been observed, indicating that these phenomena are related to the same Bi centers, which we suggest are interstitial Bi(2+) and Bi clusters. PMID:23571900

  16. Effect of OH{sup -} on upconversion luminescence of Er{sup 3+}-doped oxyhalide tellurite glasses

    SciTech Connect

    Xu Shiqing . E-mail: shiquingxu75@hotmail.com; Fang Dawei; Zhang Zaixuan; Jiang Zhonghong

    2005-06-15

    The Raman spectra, infrared spectra and upconversion luminescence spectra were studied, and the effect mechanism of OH{sup -} groups on the upconversion luminescence of Er{sup 3+}-doped oxyhalide tellurite glasses was analyzed. The results show that the phonon energy of lead chloride tellurite (PCT) glass was lower than that of lead fluoride tellurite (PFT) glass, but upconversion luminescence intensity of Er{sup 3+}-doped PFT glass was higher than that of Er{sup 3+}-doped PCT glass. The analysis considers that it was attributed mainly to the effect of OH{sup -} groups. The lower the absorption coefficient of the OH{sup -} groups, the higher the fluorescence lifetime of Er{sup 3+}, and as a result the higher upconversion luminescence intensity of Er{sup 3+}. In this work, the effect of OH{sup -} groups on the upconversion luminescence of Er{sup 3+} was bigger than that of the phonon energy.

  17. Simulations of silver-doped germanium-selenide glasses and their response to radiation

    NASA Astrophysics Data System (ADS)

    Prasai, Kiran; Drabold, David A.

    2014-10-01

    Chalcogenide glasses doped with silver have many applications including their use as a novel radiation sensor. In this paper, we undertake the first atomistic simulation of radiation damage and healing in silver-doped Germanium-selenide glass. We jointly employ empirical potentials and ab initio methods to create and characterize new structural models and to show that they are in accord with many experimental observations. Next, we simulate a thermal spike and track the evolution of the radiation damage and its eventual healing by application of a simulated annealing process. The silver network is strongly affected by the rearrangements, and its connectivity (and thus contribution to the electrical conductivity) change rapidly in time. The electronic structure of the material after annealing is essentially identical to that of the initial structure.

  18. PAL spectroscopy of rare-earth doped Ga-Ge-Te/Se glasses

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Ya.; Ingram, A.; Shpotyuk, O.

    2016-04-01

    Positron annihilation lifetime (PAL) spectroscopy was applied for the first time to study free-volume void evolution in chalcogenide glasses of Ga-Ge-Te/Se cut-section exemplified by glassy Ga10Ge15Te75 and Ga10Ge15Te72Se3 doped with 500 ppm of Tb3+ or Pr3+. The collected PAL spectra reconstructed within two-state trapping model reveal decaying tendency in positron trapping efficiency in these glasses under rare-earth doping. This effect results in unchanged or slightly increased defect-related lifetimes τ2 at the cost of more strong decrease in I2 intensities, as well as reduced positron trapping rate in defects and fraction of trapped positrons. Observed changes are ascribed to rare-earth activated elimination of intrinsic free volumes associated mainly with negatively-charged states of chalcogen atoms especially those neighboring with Ga-based polyhedrons.

  19. Upconversion luminescence of Yb 3+/Tb 3+ co-doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Kochanowicz, Marcin; Zmojda, Jacek; Dorosz, Dominik; Miluski, Piotr; Dorosz, Jan

    2014-05-01

    In the article the upconversion luminescence ofTeO2- GeO2 - PbO - PbF2- BaO - Nb2O5 - LaF3 glass system co-doped withYb 3+ /Tb 3+ under 976 nm laser diode excitation was investigated. The influence of Tb2O3concentration on the luminescent properties was determined. Measured strong luminescence at492, 547, 588, 622 nm correspond to 5D4→7FJ (J=6, 4, 3) transitions. Energy transfer (ET) mechanism involved in observed emission was discussed. The highest upconversion emission intensity was obtained in the tellurite glass co-doped with 0.5 Yb2O3/0.5 Tb2O3 (mol%).

  20. Crystallization studies on rare-earth co-doped fluorozirconate-based glasses.

    PubMed

    Paßlick, C; Johnson, J A; Schweizer, S

    2013-07-01

    This work focuses on the structural changes of barium chloride (BaCl2) nanoparticles in fluorochlorozirconate-based glass ceramics when doped with two different luminescent activators, in this case rare-earth (RE) ions, and thermally processed using a differential scanning calorimeter. In a first step, only europium in its divalent and trivalent oxidation states, Eu(2+) and Eu(3+), is investigated, which shows no significant influence on the crystallization of hexagonal phase BaCl2. However, higher amounts of Eu(2+) increase the activation energy of the phase transition to an orthorhombic crystal structure. In a second step, nucleation and nanocrystal growth are influenced by changing the structural environment of the glasses by co-doping with Eu(2+) and trivalent Gd(3+), Nd(3+), Yb(3+), or Tb(3+), due to the different atomic radii and electro-negativity of the co-dopants. PMID:23745010

  1. Effects of chloride introduction on up-conversion luminescence in Tm3+ -doped tellurite glasses.

    PubMed

    Xu, Shiqing; Yang, Zhongmin; Wang, Guonian; Zhang, Junjie; Dai, Shixun; Hu, Lili; Jiang, Zhonghong

    2004-11-01

    Blue up-conversion luminescence properties in Tm3+ -doped lead chloride tellurite glasses have been studied under 980 nm excitation. The intense blue and relatively weak red emissions centered at 476 and 649 nm corresponding to the transitions 1G4 --> 3H6 and 1G4 --> 3H4 of Tm3+, respectively, are simultaneously observed at room temperature. The effect of PbCl2 on up-conversion intensity is observed and discussed, and possible up-conversion mechanisms are evaluated. The intense blue up-conversion luminescence of Tm3+ -doped lead chloride tellurite glasses may be a potentially useful material for developing up-conversion optical devices. PMID:15477139

  2. Effects of chloride introduction on up-conversion luminescence in Tm 3+-doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Yang, Zhongmin; Wang, Guonian; Zhang, Junjie; Dai, Shixun; Hu, Lili; Jiang, Zhonghong

    2004-11-01

    Blue up-conversion luminescence properties in Tm 3+-doped lead chloride tellurite glasses have been studied under 980 nm excitation. The intense blue and relatively weak red emissions centered at 476 and 649 nm corresponding to the transitions 1G4→ 3H6 and 1G4→ 3H4 of Tm 3+, respectively, are simultaneously observed at room temperature. The effect of PbCl 2 on up-conversion intensity is observed and discussed, and possible up-conversion mechanisms are evaluated. The intense blue up-conversion luminescence of Tm 3+-doped lead chloride tellurite glasses may be a potentially useful material for developing up-conversion optical devices.

  3. Simulations of silver-doped germanium-selenide glasses and their response to radiation

    PubMed Central

    2014-01-01

    Chalcogenide glasses doped with silver have many applications including their use as a novel radiation sensor. In this paper, we undertake the first atomistic simulation of radiation damage and healing in silver-doped Germanium-selenide glass. We jointly employ empirical potentials and ab initio methods to create and characterize new structural models and to show that they are in accord with many experimental observations. Next, we simulate a thermal spike and track the evolution of the radiation damage and its eventual healing by application of a simulated annealing process. The silver network is strongly affected by the rearrangements, and its connectivity (and thus contribution to the electrical conductivity) change rapidly in time. The electronic structure of the material after annealing is essentially identical to that of the initial structure. PMID:25426005

  4. Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Yue-Bun Pun, Edwin

    2011-08-01

    Superbroadband near-infrared (NIR) emission covering 1250 to 1680nm wavelength has been obtained in praseodymium (Pr3+) singly doped bismuth gallate glasses. The emission originates from the G41→H53 and D21→G41 transitions at 1330 and 1490nm wavelengths, respectively, and is due to the extremely low phonon energy (˜690cm-1) and the unique ligand field of the glasses. It is shown that the emission line shape can be modified by adjusting the Pr3+ concentration and the energy transfers involved. The results confirm that other than bismuth (Bi), chromium (Cr), nickel (Ni), and other chemical elements, Pr3+ singly doped system is a promising alternative in achieving superbroadband NIR emission.

  5. Low-power nonlinear optical interaction in dye-doped sol-gel glasses

    NASA Astrophysics Data System (ADS)

    Lam, Sio K.; Chan, Man-shih A.; Lo, Dennis Y.

    2000-11-01

    Organic dye-doped solids show strong third-order optical non-linearity due to the enhancement of the lifetime of the lowest triplet state of the dye in solid environment. The long triplet state lifetime leads to low absorption saturation intensity. As a result, the third order nonlinear optical behavior is observable at very low light power (i.e. tens of mW). Dye-doped solid of large third order nonlinearity finds application in many photonic devices. Boric acid glass, polymer (such as PMMA, PVA, PAA), sol-gel silica, and organically modified sol-get silicate (ORMOSIL) have been used as host materials for dyes. We will concentrate our interest on the dye-doped sol-gel silica and dye-doped ORMOSIL. We have performed degenerate four wave mixing (DFWM) experiment to demonstrate optical phase conjugation by eosin Y-doped sol-gel silica in vacuum ambient. We have also performed Z-scan measurement to study the nonlinear refractive index of fluorescein 548- doped ORMOSIL. Absorption saturation experiments are conducted to determine the absorption intensity and (chi) (3).

  6. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C.; Edgar, A.; Varoy, C.; Belev, G.; Wysokinski, T.; Chapman, D.; Sammynaiken, R.; Kasap, S. O.

    2014-02-01

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm3+) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405 nm to erase the recorded dose information in Sm3+-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm3+-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm2+ to Sm3+ reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm2+ to Sm3+ reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  7. DBR and DFB Lasers in Neodymium- and Ytterbium-Doped Photothermorefractive Glasses

    NASA Technical Reports Server (NTRS)

    Ryasnyanskiy, Aleksandr; Vorobiev, N.; Smirnov, V.; Lumeau, J.; Glebov, A.; Mokhun, O..; Spiegelberg, Ch.; Krainak, Michael A.; Glebov, A.; Glebov, L.

    2014-01-01

    The first demonstration, to the best of our knowledge, of distributed Bragg reflector (DBR) and monolithic distributed feedback (DFB) lasers in photothermorefractive glass doped with rare-earth ions is reported. The lasers were produced by incorporation of the volume Bragg gratings into the laser gain elements. A monolithic single-frequency solid-state laser with a line width of 250 kHz and output power of 150 mW at 1066 nm is demonstrated.

  8. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    SciTech Connect

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C. Kasap, S. O.; Edgar, A.; Varoy, C.; Belev, G.; Wysokinski, T.; Chapman, D.; Sammynaiken, R.

    2014-02-14

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm{sup 3+}) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405 nm to erase the recorded dose information in Sm{sup 3+}-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm{sup 3+}-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm{sup 2+} to Sm{sup 3+} reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm{sup 2+} to Sm{sup 3+} reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  9. Upconversion luminescence in bismuth-doped germano-silicate glass optical fiber

    NASA Astrophysics Data System (ADS)

    Fan, Weiwei; Htein, Lin; Kim, Bok Hyeon; Watekar, Pramod R.; Han, Won-Taek

    2013-12-01

    We report, for the first time, a broadband upconversion emission (800-1000 nm) in Bi-doped germano-silicate glass optical fibers with excitation in the range of 1515-1585 nm, which can explain the low laser efficiency at wavelengths longer than 1500 nm. The mechanism responsible for the emission is two-step upconversion process. The origin of this upconversion luminescence is discussed and new energy transition schemes are proposed.

  10. Energy transfer upconversion on neodymium doped phosphate glasses investigated by Z-scan technique

    NASA Astrophysics Data System (ADS)

    Lima, W. J.; Martins, V. M.; Monte, A. F. G.; Messias, D. N.; Dantas, N. O.; Bell, M. J. V.; Catunda, T.

    2013-07-01

    Time-resolved Z-scan measurements were employed to characterize energy transfer upconversion on the phosphate glass matrix, named PAN (P2O5-Al2O3-Na2CO3), doped with increasing Nd3+ concentrations. It was observed a linear dependence of the upconversion parameter with the dopant agent, which indicates the presence of a static and dynamic energy transfer processes. The critical inversion density was also evaluated for the same set of samples.

  11. Promethium-doped phosphate glass laser at 933 and 1098 nm

    SciTech Connect

    Krupke, W.F.; Shinn, M.D.; Kirchoff, T.A.; Finch, C.B.; Boatner, L.A.

    1987-12-28

    A promethium (Pm/sup 3 +/) laser has been demonstrated for the first time. Trivalent promethium 147 doped into a lead-indium-phosphate glass etalon was used to produce room-temperature four-level laser emission at wavelengths of 933 and 1098 nm. Spectroscopic and kinetic measurements have shown that Pm/sup 3 +/ is similar to Nd/sup 3 +/ as a laser active ion.

  12. DBR and DFB lasers in neodymium- and ytterbium-doped photothermorefractive glasses.

    PubMed

    Ryasnyanskiy, A; Vorobiev, N; Smirnov, V; Lumeau, J; Glebova, L; Mokhun, O; Spiegelberg, Ch; Krainak, Michael; Glebov, A; Glebov, L

    2014-04-01

    The first demonstration, to the best of our knowledge, of distributed Bragg reflector (DBR) and monolithic distributed feedback (DFB) lasers in photothermorefractive glass doped with rare-earth ions is reported. The lasers were produced by incorporation of the volume Bragg gratings into the laser gain elements. A monolithic single-frequency solid-state laser with a linewidth of 250 kHz and output power of 150 mW at 1066 nm is demonstrated. PMID:24686699

  13. Nonlinear optical effects on the surface of acridine yellow-doped lead-tin fluorophosphate glass

    NASA Technical Reports Server (NTRS)

    He, K. X.; Bryant, William; Venkateswarlu, Putcha

    1991-01-01

    The second- and third-order nonlinear optical properties of acridine yellow-doped lead-tin fluorophosphate (LTF) glass have been directly studied by measurement of surface enhanced second harmonic generation and third harmonic generation. The three photon excitation fluorescence is also observed. Based on these results, the large nonlinearities of the acridine LTF system which is a new nonlinear optical material are experimentally demonstrated.

  14. Superbroadband near-infrared emission from Cr-Ni co-doped transparent forsterite glass ceramics

    NASA Astrophysics Data System (ADS)

    Zhuang, Yixi; Guan, Miaojia; Xie, Junhua; Teng, Yu; Zhou, Jiajia; Zhou, Shifeng; Ruan, Jian; Qiu, Jianrong

    2010-03-01

    Cr2O3 and NiO are co-doped in transparent forsterite glass ceramics. Absorption, emission spectra and fluorescence lifetime are performed to analyse the luminescence characteristics. Several near-infrared active centres are identified and energy transfer from Cr3+ and Cr4+ to Ni2+ is confirmed. Superbroadband near-infrared luminescence with a full width at half maximum of 700 nm is observed, which covers the whole telecommunication window.

  15. White emission materials from glass doped with rare Earth ions: A review

    NASA Astrophysics Data System (ADS)

    Yasaka, P.; Kaewkhao, J.

    2016-03-01

    Solid State Lighting (SSL) based devices are predicted to play a crucial role in the coming years. Development of W-LED, which have an edge over traditional lighting sources due to their compact size, higher reliability, shock resistance, interesting design possibilities, higher transparency and an extremely long lifetime. Over the fifteen trivalent lanthanide ions, Dy3+ ions doped glasses are most appropriate for white light generation because of the fact that it exhibits two intense emission bands corresponds to the 4F9/2→6H15/2 (magnetic dipole) and 4F9/2→6H13/2 (electric dipole) transitions at around 480-500 nm and 580-600 nm pertaining to blue and yellow regions respectively. In this work, the developments of Dy3+ doped in several glass structures for white emitting materials application have reviewed. Properties of Dy3+ doped in glasses were discussed for use as a solid state lighting materials application.

  16. Influence of high magnetic field on the luminescence of Eu{sup 3+}-doped glass ceramics

    SciTech Connect

    Jiang, Wei; Chen, Weibo; Chen, Ping; Xu, Beibei; Zheng, Shuhong; Guo, Qiangbing; Liu, Xiaofeng E-mail: qjr@zju.edu.cn; Zhang, Junpei; Han, Junbo; Qiu, Jianrong E-mail: qjr@zju.edu.cn

    2014-09-28

    Rare earth (RE) doped materials have been widely exploited as the intriguing electronic configuration of RE ions offers diverse functionalities from optics to magnetism. However, the coupling of magnetism with photoluminescence (PL) in such materials has been rarely reported in spite of its fundamental significance. In the present paper, the effect of high pulsed magnetic field on the photoluminescence intensity of Eu{sup 3+}-doped nano-glass-ceramics has been investigated. In our experiment, Eu-doped oxyfluoride glass and glass ceramic were prepared by the conventional melt-quenching process and controlled heat treatment. The results demonstrate that the integrated PL intensity of Eu{sup 3+} decreases with the enhancement of magnetic field, which can be interpreted in terms of cooperation effect of Zeeman splitting and magnetic field induced change in site symmetry. Furthermore, as a result of Zeeman splitting, both blue and red shift in the emission peaks of Eu{sup 3+} can be observed, and this effect becomes more prominent with the increase of magnetic field. Possible mechanisms associated with the observed magneto-optical behaviors are suggested. The results of the present paper may open a new gate for modulation of luminescence by magnetic field and remote optical detection of magnetic field.

  17. Active waveguides by low-fluence carbon implantation in Nd3+-doped fluorophosphate glasses

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Luo, Zhe-Yuan; Li, Yu-Wen; Chen, Meng; Xu, Jun; Fu, Li-Li; Yu, Ke-Han; Zheng, Rui-Lin; Zhou, Zhi-Guang; Li, Wei-Nan; Guo, Hai-Tao; Lin, She-Bao; Wei, Wei

    2016-01-01

    A planar waveguide in the Nd3+-doped fluorophosphate glass is fabricated by a 6.0 MeV C3+ ion implantation at a low-fluence of 1.0 × 1014 ions/cm2. The fluence is close to that in semiconductor industry. The dark mode spectra are recorded by a model 2010 prism coupler. The energy losses during the implantation process and the refractive index profile of the waveguide are simulated by the SRIM 2010 code and the reflectivity calculation method (RCM), respectively. The near-field light intensity profile and the propagation loss of the waveguide are measured by an end-face coupling system. The two-dimensional (2D) modal profile of transverse electric (TE) mode for the fabricated waveguide is calculated by the finite difference beam propagation method (FD-BPM). The results of microluminescence and optical absorption reveal that the spectroscopic characteristics of the Nd3+-doped fluorophosphate glass are nearly unaffected by the carbon ion implantation process. This work suggests that the carbon-implanted Nd3+-doped fluorophosphate glass waveguide is a promising candidate for integrated active devices.

  18. Laser performance at 1064 nm in Nd3+ doped oxi-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Bell, Maria Jose; Anjos, Virgílio; Moreira, Lyane; Falci, Rodrigo; Kassab, Luciana; Silva, D.; Doualan, Jean Louis; Camy, Patrice; Moncorge, Richard

    2015-03-01

    The search for Nd3+ doped new solid-state laser hosts having specific thermo-mechanical and optical properties is very active. Among tellurites, the TeO2-ZnO glass combines good mechanical stability, chemical durability, high linear and nonlinear refractive indices, low phonon energies (~750 cm-1) and a wide transmission window (0.4-6 μm). Their high nonlinear optical properties can be used for the development of Kerr-lens mode-locked subpicosecond lasers. The present work concentrates on the luminescence properties and the laser performance of a TeO2-ZnO tellurite glasses doped with Nd3+. True continuous-wave laser action is achieved by pumping the sample with a CW Ti:Sapphire laser inside a standard two-mirror laser cavity. A low laser threshold of 8 mW and a laser slope efficiency of 21% could be obtained for an output coupler transmission of 2.7%, which is an encouraging improvement compared to what was reported in the past with other Nd-doped tellurite bulk glasses. Authors acknowledge the support of agencies CAPES, FAPEMIG National Institute of Photonics (INCT Project/CNPQ) and COFECUB.

  19. Fluorescence and Spectroscopic Properties of Yb3+-Doped Phosphate Glasses

    NASA Astrophysics Data System (ADS)

    Krishnaiah, K. Venkata; Kumar, K. Upendra; Agarwal, V.; Murali, C. G.; Chaurasia, S.; Dhareshwar, L. J.; Jayasankar, C. K.; Lavin, Victor

    The concentration dependent Yb3+: phosphate (P2O5 + K2O + MgO + Al2O3 + Yb2O3) glasses have been prepared and characterized their fluorescence and laser properties. The stimulated emission cross-section and laser performance parameters were determined from the measured absorption spectra using the method of reciprocity. The refractive index, absorption and emission cross-sections and fluorescence lifetimes varied with Yb3+ ion concentration. The higher emission cross-section was found to be 1.01 × 10-20 cm2 at the extraction wavelength of 1005 nm. The fluorescence lifetime of 2F5/2 level decreases from 1.04 ms to 0.28 ms with increase of Yb2O3 concentration from 0.05 to 6.0 mol %. The gain cross-section spectra can be obtained from the measured absorption and emission cross-sections with different population levels. The values of emission cross-section, fluorescence lifetime, minimum pulse duration, pump power, extraction efficiency and gain coefficients suggest that these glasses can be used as a laser gain media for the generation of ultrashort pulse and high power laser applications.

  20. Fabrication of uniformly dispersed nanoparticle-doped chalcogenide glass

    SciTech Connect

    Lu, Chao; Arnold, Craig; Almeida, Juliana M. P.; Yao, Nan

    2014-12-29

    The dispersion of metallic nanoparticles within a chalcogenide glass matrix has the potential for many important applications in active and passive optical materials. However, the challenge of particle agglomeration, which can occur during traditional thin film processing, leads to materials with poor performance. Here, we report on the preparation of a uniformly dispersed Ag-nanoparticle (Ag NP)/chalcogenide glass heterogeneous material prepared through a combined laser- and solution-based process. Laser ablation of bulk silver is performed directly within an arsenic sulfide/propylamine solution resulting in the formation of Ag NPs in solution with an average particle size of less than 15 nm as determined by dynamic light scattering. The prepared solutions are fabricated into thin films using standard coating processes and are then analyzed using energy-dispersive X-ray spectroscopy and transmission electron microscopy to investigate the particle shape and size distribution. By calculating the nearest neighbor index and standard normal deviate of the nanoparticle locations inside the films, we verify that a uniformly dispersed distribution is achieved through this process.