Sample records for borate glasses doped

  1. Thermal property of holmium doped lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-04-01

    The new glass system of holmium doped lithium lead borate glasses were prepared by conventional melt quenching technique. The thermal stability of the different compositions of Ho3+ ions doped lithium lead borate glasses were studied by using TG-DTA. The Tg values are ranging from 439 to 444 °C with respect to the holmium concentration. Physical parameters like polaron radius(rp), inter-nuclear distance (ri), field strength (F) and polarizability (αm) of oxide ions were calculated using appropriate formulae.

  2. Structural and Luminescent property of Holmium doped Borate Glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-02-01

    Holmium doped Lithium Lead Borate glasses of different compositions were prepared by melt quenching technique. Fourier transform infrared investigations on lithium lead borate glasses have been made to study the local order and vibrations of atoms in the glass network and it contains mainly BO3 and BO4 structural units. Photoluminescence techniques were employed to investigate the luminescent property of these glasses excited at 451nm. Blue emission have been observed from the transition 495 (5F3 → 5I8).

  3. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    NASA Astrophysics Data System (ADS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  4. Red light emission from europium doped zinc sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Hegde, Vinod; Viswanath, C. S. Dwaraka; Upadhyaya, Vyasa; Mahato, K. K.; Kamath, Sudha D.

    2017-12-01

    Zinc sodium bismuth borate (ZNBB) glasses doped with different concentrations of europium were prepared by conventional melt quenching method and characterized through the measurements of density, refractive index, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, optical absorption, luminescence and radiative lifetimes. FTIR spectra showed seven characteristic peaks of bismuth and borate functional groups in the range of 400-1600 cm-1. The optical band gap and bonding parameters have been calculated from absorption spectra. Photoluminescence spectra recorded in the visible region with 394 nm excitation are used to calculate the Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4). The JO intensity parameters have been used to calculate the radiative parameters such as branching ratio (β), stimulated emission cross-section (σse), transition probability (A) for the fluorescent level of 5D0→7F2. Decay rates through single exponential are used to calculate the lifetime (τm) of the meta-stable state 5D0 of (Eu3+ ion) these glasses. The radiative parameters measured for all these glasses show 0.7 mol% europium doped zinc sodium bismuth borate glass 5D0→7F2 transition has the potential for red laser applications. The quality of the colour emitted by the present glasses are estimated quantitatively by CIE chromaticity coordinates, which confirms the suitability of these glasses as a red emitting material for field emission technologies and LEDs.

  5. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    PubMed

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  6. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions

    NASA Astrophysics Data System (ADS)

    Sathish, K.; Thirumaran, S.

    2015-08-01

    The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  7. Optical absorption and photoluminescence properties of Er3+ doped mixed alkali borate glasses.

    PubMed

    Ratnakaram, Y C; Kumar, A Vijaya; Naidu, D Tirupathi; Rao, J L

    2005-07-01

    An investigations of the optical absorption and fluorescence spectra of 0.2 mol% Er2O3 in mixed alkali borate glasses of the type 67.8B2O3 x xLi2O(32-x)Na2O, 67.8B2O3 x xLi2O(32-x)K2O and 67.8B2O3 x xNa2O(32-x)K2O (where x = 8, 12, 16, 20 and 24) are presented. The glasses were obtained by quenching melts consisting of H3BO3, Li2CO3, Na2CO3, K2CO3 and Er2O3 (950-1100 degrees C, 1.5-2 h) between two brass plates. Spectroscopic parameters like Racah (E1, E2 and E3), spin-orbit (xi(4f)) and configuration interaction (alpha) parameters are deduced as function of x. Using Judd-Ofelt theory, Judd-Ofelt intensity parameters (omega2, omega4 and omega6) are obtained. Radiative and non-radiative transition rates (A(T) and W(MPR)), radiative lifetimes (tauR), branching ratios (beta) and integrated absorption cross-sections (sigma) have been computed for certain excited states of Er3+ in these mixed alkali borate glasses. Emission spectra have been studied for all the three Er3+ doped mixed alkali borate glasses. The present paper throws light on the trends observed in the intensity parameters, radiative lifetimes, branching ratios and emission cross-sections as a function of x in these borate glasses, keeping in view the effect of mixed alkalies in borate glasses.

  8. Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass

    NASA Astrophysics Data System (ADS)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Samarium substituted tellurium lanthanum lead borate glass is prepared using melt quenching technique. Luminescence spectra have been recorded upon excitation with 402 nm various transitions from 4G5/2 level, for samarium doped tellurite glasses are studied and also lifetime for all the samples exhibit single exponential behaviour of decay curve. Luminescence spectra of present glasses show quenching effect due to cross-relation channels of samarium ions. The lifetime of glass samples decrease as the tellurite concentration is decreased. So, it evidences that to attain longer lifetime for lasing material one can tune the host by selecting concentration of tellurite.

  9. Thermoluminescence (TL) dosimeter of dysprosium doped strontium borate glass for different glass modifiers (Na, Li, Ca) subjected from 1 to 9 Gy doses

    NASA Astrophysics Data System (ADS)

    Hamzah, S. A.; Saeed, M. A.; Wagiran, H.; Hashim, I. H.

    2017-10-01

    This article reports TL response for different glass modifier and doping concentration. Alkali oxides (Na2O and Li2O) and alkali earth oxide (CaO) will be used as a glass modifier for strontium borate based glass. The samples were prepared by melt quenching technique. Dy2O3 concentrations ranging from 0.00 to 0.70 mol% and exposure doses of 1 to 9 Gy will be varied. All glass samples exhibit the prominent peak temperature positioned at 186 oC to 232 oC. From all the samples, one of the samples shows an excellent linearity dose response, higher TL and show good reproducibility after 5 cycles exposure which is sodium strontium borate doped with 0.1 mol% Dy2O3 (optimum concentration).

  10. Optical absorption of Er3+ doped lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-05-01

    A new glass system Lithium lead borate doped with erbium trioxide were perpared using conventional melt quenching method. The amorphous nature of the glass samples were confirmed by XRD spectrum. The density of these glass were measured using Archmides principle, the values lie in the range from 4.27 to 4.76 g/cm-3. The corresponding molar volumes are calculated and the values are in the range of 23.81 to 26.17 cm-3. Absorption spectra were recorded in the wavelength range of 200nm to 1100nm, for the prepared glass samples. The optical direct and indirect energy band gaps were measured, the values are in the range of 2.875 to 3.254 eV and 2.25 to 2.81 eV respectively. Photoluminescence technique was employed to study the luminescent property of the prepared glasses excited at 380nm, emission spectra were recorded and analyzed.

  11. Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harde, G. B.; Department of Physics, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India-444602; Muley, G. G., E-mail: gajananggm@yahoo.co.in

    2016-05-06

    Borate glasses of the system xNd{sub 2}O{sub 3}-(1-x) La{sub 2}O{sub 3}-SrCO{sub 3}-10H{sub 3}BO{sub 3} (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition {sup 4}I{sub 9/2} → {sup 4}G{sub 5/2} + {sup 2}G{sub 7/2} has found more prominent than the other transitions. Optical band gap energies of glasses havemore » been determined and found less for Nd doped glass.« less

  12. Multimodal emissions from Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, A.; Yadav, R.S.; Yadav, R.V.

    This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} andmore » Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3

  13. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A.

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium weremore » prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.« less

  14. Synthesis and structural studies of praseodymium doped silver borate glasses

    NASA Astrophysics Data System (ADS)

    Jagadeesha Gowda, G. V.; Eraiah, B.

    2013-02-01

    Praseodymium doped silver borate glasses with nominal composition xPr6O11-(25-x)Ag2O-75B2O3 (x=0, 1, 2, 3, 4, 5) were prepared by melt quench technique. XRD pattern shows that there is no sharp peak it confirms the amorphous nature of the present glasses. The glass transition temperature (Tg) of this glass system have been studied using the Matac MBS-8000 Digital Signal Processing and Conventional Thermal Analysis (DTA) method. The Tg of these glasses increases with increase in concentration of Pr6O11 except at 0.2 mol%, Tg value is lower. 11B MAS-NMR shows the presence of sharp peak around 0.306 ppm. Chemical shift of these glasses decreases with mol% of rare earth oxide. FTIR spectra recorded in the region of 400 to 4000 cm-1. This studies revealed that the progressive addition Ag2O and Pr6O11 leads to modification of B2O3 into BO4 groups. Raman measurements of these glasses support the proposed interpretations of the experimental results.

  15. Thermoluminescent properties of Dy doped calcium borate based glass for dose measurement subjected to photon irradiation

    NASA Astrophysics Data System (ADS)

    Tajuddin, H. A.; WanHassan, W. M. S.; Abdul Sani, S. F..; Shaharin, Nurul Syazlin

    2017-10-01

    This study presents the thermoluminescent (TL) dosimetric properties of calcium borate glass with various dopant concentration of dysprosium (Dy). Calcium borate glass is a new potential material to be used in radiation measurement with absorption coefficient that is close to human bone. A series of glasses based on chemical equation xCaO-(100-x) B2O3 system, x = 0.1, 0.2, 0.3, 0.4, 0.5 (0< x <100) % weight have been prepared by melt quenching method. The X-ray diffraction analysis of glass samples were carried out and the result showed a broad peak, which confirmed the amorphous nature of the glass. The 70B2O3-30CaO glass sample was found as the most stable among other glass samples studied. Present work focuses on 70B2O3-30CaO glass of (0.01-0.4) mol% Dy-doped in order to investigate the thermoluminescence (TL) properties, in particular, dose-response and fading. The glass samples were irradiated to dose range of 0.5-4.0 Gy subjected to 6MV photon irradiations of LINAC Primus MLC 3339. TL response of 0.3 mol% Dy-doped 70B2O3-30CaO glass was found to produce highest response, with good linear dose- response relationship.

  16. Thermoluminescence glow curve deconvolution and trapping parameters determination of dysprosium doped magnesium borate glass

    NASA Astrophysics Data System (ADS)

    Salama, E.; Soliman, H. A.

    2018-07-01

    In this paper, thermoluminescence glow curves of gamma irradiated magnesium borate glass doped with dysprosium were studied. The number of interfering peaks and in turn the number of electron trap levels are determined using the Repeated Initial Rise (RIR) method. At different heating rates (β), the glow curves were deconvoluted into two interfering peaks based on the results of RIR method. Kinetic parameters such as trap depth, kinetic order (b) and frequency factor (s) for each electron trap level is determined using the Peak Shape (PS) method. The obtained results indicated that, the magnesium borate glass doped with dysprosium has two electron trap levels with the average depth energies of 0.63 and 0.79 eV respectively. These two traps have second order kinetic and are formed at low temperature region. The obtained results due to the glow curve analysis could be used to explain some observed properties such as, high thermal fading and light sensitivity for such thermoluminescence material. In this work, systematic procedures to determine the kinetic parameters of any thermoluminescence material are successfully introduced.

  17. Fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses containing lithium, zinc and lead.

    PubMed

    Venkatramu, V; Babu, P; Jayasankar, C K

    2006-02-01

    The influence of glass composition on the fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses modified with Li+, Zn2+ and Pb2+ cations have been investigated. The magnitude of splittings of 7F1 levels are analyzed using crystal-field (CF) analysis. The relative intensities of 5D0 --> 7F2 to 5D0 --> 7F1 transitions, crystal-field strength parameters and decay times of the 5D0 level have been determined and are found to be lower for Pb based glasses than those of Zn/Li based glasses. The lifetimes of 5D0 level are found to increase when borate glasses are modified with pure fluorides than with oxides and oxyfluorides. The fluorescence decay of 5D0 level fits perfect single exponential in the Eu3+:glass systems studied which indicates the absence of energy transfer between Eu3+ ions in these glasses.

  18. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    PubMed

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Structural studies of lead lithium borate glasses doped with silver oxide.

    PubMed

    Coelho, João; Freire, Cristina; Hussain, N Sooraj

    2012-02-01

    Silver oxide doped lead lithium borate (LLB) glasses have been prepared and characterized. Structural and composition characterization were accessed by XRD, FTIR, Raman, SEM and EDS. Results from FTIR and Raman spectra indicate that Ag(2)O acts as a network modifier even at small quantities by converting three coordinated to four coordinated boron atoms. Other physical properties, such as density, molar volume and optical basicity are also evaluated. Furthermore, they are also affected by the silver oxide composition. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+ and Ag nanoparticles.

    PubMed

    Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Baranowska, Agata; Pisarski, Wojciech A; Pisarska, Joanna; Jadach, Renata; Sitarz, Maciej; Dorosz, Dominik

    2018-08-05

    In the paper analysis of structural and luminescent properties of antimony-germanate-borate glasses and glass fiber co-doped with 0.6AgNO 3 /0.2Eu 2 O 3 are presented. Heat treatment of the fabricated glass and optical fiber (400 °C, 12 h) enabled to obtain Ag nanoparticles (NPs) with average size 30-50 nm on their surface. It has been proofed that silver ions migrate to the glass surface, where they are reduced to Ag 0 nanoparticles. Simultaneously, FTIR analysis showed that heat treatment of the glass and optical fiber increases the local symmetry of the Eu 3+ site. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Spectroscopic investigations on Pr3+ ions doped lead telluro-borate glasses for photonic applications

    NASA Astrophysics Data System (ADS)

    Suthanthirakumar, P.; Mariyappan, M.; Marimuthu, K.

    2018-04-01

    A new series of Lead telluro-borate glasses doped with different concentrations of Pr3+ ions (xPLTB) were prepared by melt quenching technique and their structural and spectroscopic properties were investigated by recording XRD, FTIR, optical absorption and luminescence spectral measurements. XRD measurements confirm the amorphous nature and the FTIR spectra reveal the presence of different vibrational modes of borate and tellurite networks in the prepared glasses. The bonding parameter values (δ) obtained from the absorption band positions indicates that the bonding between Pr3+ ions and their surrounding ligands is of ionic in nature. The optical band gap (Eopt) corresponding to the direct and indirect allowed transitions were determined with the framework of tauc's plot. From the luminescence spectra, important radiative parameters such as stimulated emission cross-section (σPE) , branching ratios (βR) and radiative lifetime (τR) were calculated for the dominant emission transition 3P0→3H4 (blue) in order to suggest the suitability of the studied glasses for suitable photonic applications.

  2. Spectroscopic investigations on Pr³+ and Nd³+ doped strontium-lithium-bismuth borate glasses.

    PubMed

    Rajesh, D; Balakrishna, A; Seshadri, M; Ratnakaram, Y C

    2012-11-01

    Spectroscopic investigations on different concentrations (0.1, 0.5, 1.0, 1.5 and 2.0mol%) of Pr(3+) and Nd(3+) doped strontium lithium bismuth borate glasses have been done. X-ray diffraction, SEM with EDS, absorption and luminescence spectra were recorded for all the glass matrices and analyzed. X-ray diffraction profiles and SEM images conformed amorphous nature of investigated glass samples. EDS spectra of host glass and Pr(3+)doped glass matrices gave information about the chemical composition of glass samples. From the absorption spectra of Pr(3+) and Nd(3+) ions, Judd-Ofelt (J-O) intensity parameters (Ω(λ),λ=2, 4 and 6) have been calculated and compared with other glass matrices. The emission characteristics such as radiative lifetimes (τ(R)), measured and calculated branching ratios (β) and stimulated emission cross-sections (σ(P)) have been obtained for the observed emission transitions of Pr(3+) and Nd(3+) ions in the above glass matrix for all the concentrations. From the emission spectra of Pr(3+) and Nd(3+) doped glass matrices, the effect of concentration on the quenching of intensity of (1)D(2)→(3)H(4) transition of Pr(3+) ion and (4)F(3/2)→(4)I(9/2), (4)I(11/2) and (4)I(13/2) transitions of Nd(3+) have been studied and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Optical and physical properties of sodium lead barium borate glasses doped with praseodymium ion

    NASA Astrophysics Data System (ADS)

    Lenkennavar, Susheela K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-05-01

    Praseodymium doped sodium lead barium borate glasses have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses using PekinElemer Lambda-35 Uv-Vis spectrometer in the range of 200 -1100 nm. The optical direct band gap energies were found to be in the range of 3.62 eV to 3.69 eV and indirect band gap energies were found to be in the range of 3.57 eV to 3.62eV. The refractive indices were measured by using Abbe refractometer the values are in the range of 1.620 to 1.625.

  4. Thermoluminescence response of rare earth activated zinc lithium borate glass

    NASA Astrophysics Data System (ADS)

    Saidu, A.; Wagiran, H.; Saeed, M. A.; Obayes, H. K.; Bala, A.; Usman, F.

    2018-03-01

    New glasses of zinc lithium borate doped with terbium oxide were synthesized by high temperature solid-state reaction. The amorphous nature of the glasses was confirmed using x-ray diffraction analysis (XRD). Thermoluminescence (TL) response of pure zinc lithium borate (ZLB) and zinc lithium borate doped with terbium (ZLB: Tb) exposed to gamma radiation was measured and compared. There is significant enhancement in the TL yields of ZLB: Tb compared to that of pure ZLB. Effect of varying concentration of dopant (Tb4O7) on the TL response of zinc lithium borate was investigated. 0.3 mol% concentration of Tb exhibited strongest TL intensity. Thermoluminescence curve of the phosphor consist of single isolated peak. The TL response of the new materials to the exposed radiation is linear within 0.5-100 Gy range of dose with sublinearity at the lower region of the curve. High sensitivity was exhibited by the new amorphous materials. Reproducibility, thermal fading and energy response of the proposed TLD were investigated and shows remarkable result that made the phosphor suitable for radiation dosimetry.

  5. Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction

    NASA Astrophysics Data System (ADS)

    Marzouk, M.; ElBatal, H.; Eisa, W.

    2016-07-01

    This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (ΔE) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.

  6. Optical studies of Sm³⁺ ions doped zinc alumino bismuth borate glasses.

    PubMed

    Swapna, K; Mahamuda, Sk; Srinivasa Rao, A; Shakya, S; Sasikala, T; Haranath, D; Vijaya Prakash, G

    2014-05-05

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm(3+)) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm(3+) ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm(3+) ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the (4)G5/2 level of Sm(3+) ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm(3+) ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Photon Interaction Parameters for Some Borate Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  8. Exchange-mediated spin-lattice relaxation of Fe3+ ions in borate glasses.

    PubMed

    Misra, Sushil K; Pilbrow, John R

    2007-03-01

    Spin-lattice relaxation times (T1) of two borate glasses doped with different concentrations of Fe2O3 were measured using the Electron Spin-Echo (ESE) technique at X-band (9.630 GHz) in the temperature range 2-6K. In comparison with a previous investigation of Fe3+-doped silicate glasses, the relaxation rates were comparable and differed by no more than a factor of two. The data presented here extend those previously reported for borate glasses in the 10-250K range but measured using the amplitude-modulation technique. The T1 values were found to depend on temperature (T) as T(n) with n approximately 1 for the 1% and 0.1% Fe2O3-doped glass samples. These results are consistent with spin-lattice relaxation as effected by exchange interaction of a Fe3+ spin exchange-coupled to another Fe3+ spin in an amorphous material.

  9. Rare earth-doped lead borate glasses and transparent glass-ceramics: structure-property relationship.

    PubMed

    Pisarski, W A; Pisarska, J; Mączka, M; Lisiecki, R; Grobelny, Ł; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W

    2011-08-15

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)↔BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Dosimetric properties of germanium doped calcium borate glass subjected to 6 MV and 10 MV X-ray irradiations

    NASA Astrophysics Data System (ADS)

    Tengku Kamarul Bahri, T. N. H.; Wagiran, H.; Hussin, R.; Saeed, M. A.; Hossain, I.; Ali, H.

    2014-10-01

    Germanium doped calcium borate glasses are investigated in term of thermoluminescence properties to seek their possibility to use as glass radiation dosimeter. The samples were exposed to 6 MV, and 10 MV photon beams in a dose range of 0.5-4.0 Gy. There is a single and broad thermoluminescence glow curve that exhibits its maximum intensity at about 300 °C. Linear dose response behavior has been found in this dose range for the both photon energies. Effective atomic number, TL sensitivity, and reproducibility have also been studied. It is found that the sensitivity of germanium doped sample at 6 MV is only 1.28% and it is superior to the sensitivity at 10 MV. The reproducibility of germanium doped sample is good with a percentage of relative error less than 10%. The results indicate that this glass has a potential to be used as a radiation dosimetry, especially for application in radiotherapy.

  11. Structure and luminescence properties of Dy 2O 3 doped bismuth-borate glasses

    DOE PAGES

    Mugoni, Consuelo; Gatto, C.; Pla-Dalmau, A.; ...

    2017-07-05

    In this study heavy bismuth-borate glasses were studied as host matrices of Dy 2O 3 rare earth, for potential application as scintillator materials in high energy physics experiments and in general radiation detection systems. Glass matrices were prepared from 20BaO-xBi 2O 3-(80-x)B 2O 3 (x = 20, 30, 40 mol%) ternary systems and synthesized by the melt-quenching method at different temperatures in order to obtain high density and high transparency in the UV/Vis range. Particularly, the glass manifesting the higher transparency and with sufficiently high density was doped with Dy 2O 3 (2.5 and 5 mol%) in order to inducemore » the luminescence characteristics. The effects of Bi 2O 3 and Dy 2O 3 on density, thermal behaviour, transmission as well as luminescence properties under UV excitation, were investigated. The experimental results show that the synthesized glasses can be considered promising candidate materials as dense scintillators, due to the Dy 3 + centres emission.« less

  12. X-Ray Absorption Spectroscopy Studies of the Atomic Structure of Zirconium-Doped Lithium Silicate Glasses and Glass-Ceramics, Zirconium-Doped Lithium Borate Glasses, and Vitreous Rare-Earth Phosphates

    NASA Astrophysics Data System (ADS)

    Yoo, Changhyeon

    In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.

  13. Spectroscopic investigations of Nd3+ doped flouro- and chloro-borate glasses.

    PubMed

    Mohan, Shaweta; Thind, Kulwant Singh; Sharma, Gopi; Gerward, Leif

    2008-10-01

    Spectroscopic and physical properties of Nd3+ doped sodium lead flouro- and chloro-borate glasses of the type 20NaX-30PbO-49.5B2O3-0.5Nd2O3 (X=F and Cl) have been investigated. Optical absorption spectra have been used to determine the Slater Condon (F2, F4, and F6), spin orbit xi4f and Racah parameters (E1, E2, and E3). The oscillator strengths and the intensity parameters Omega2, Omega4 and Omega6 have been determined by the Judd-Ofelt theory, which in turn provide the radiative transition probability (A), total transition probability (A(T)), radiative lifetime (tauR) and branching ratio (beta) for the fluorescent level 4F3/2. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Omega4/Omega6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. Nephelauxetic effect results in a red shift in the energy levels of Nd3+ for chloroborate glass. The radiative transition probability of the potential lasing transition 4F3/2-->4I11/2 of Nd3+ ions is found to be higher for flouroborate as compared to chloroborate glass.

  14. Effects of Chemically Doped Bioactive Borate Glass on Neuron Regrowth and Regeneration.

    PubMed

    Gupta, Brinda; Papke, Jason B; Mohammadkhah, Ali; Day, Delbert E; Harkins, Amy B

    2016-12-01

    Peripheral nerve injuries present challenges to regeneration. Currently, the gold standard for nerve repair is an autograft that results in another region of the body suffering nerve damage. Previously, bioactive borate glass (BBG) has been studied in clinical trials to treat patients with non-healing wounds, and we have reported that BBG is conducive for soft tissue repair. BBG provides structural support, degrades in a non-cytotoxic manner, and can be chemically doped. Here, we tested a wide range of chemical compounds that are reported to have neuroprotective characteristics to promote regeneration of peripheral neurons after traumatic injury. We hypothesized that chemical dopants added in trace amounts to BBG would improve neuronal survival and neurite outgrowth from dorsal root ganglion (DRG) explants. We measured neurite outgrowth from whole DRG explants, and survival rates of dissociated neurons and support cells that comprise the DRG. Results show that chemically doped BBGs have differentially variable effects on neuronal survival and outgrowth, with iron, gallium, and zinc improving outgrowth of neurons, and iodine causing the most detriment to neurons. Because chemically doped BBGs support increased nerve regrowth and survival, they show promise for use in peripheral nerve regeneration.

  15. Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses.

    PubMed

    Thulasiramudu, A; Buddhudu, S

    2007-02-01

    This paper reports on the spectral analysis of Eu3+ or Tb3+ ions (0.5 mol%) doped heavy metal oxide (HMO) based zinc lead borate glasses from the measurement of their absorption, emission spectra and also different physical properties. From the XRD, DSC profiles, the glass nature and glass thermal properties have been studied. The measured emission spectrum of Eu3+ glass has revealed five transitions (5D0-->7F0, 7F1, 7F2, 7F3 and 7F4) at 578, 591, 613, 654 and 702 nm, respectively, with lambdaexci=392 nm (7F0-->5L6). In the case of Tb3+:ZLB glass, four emission transitions such as (5D4-->7F6, 7F5, 7F4 and 7F3) that are located at 489, 542, 585 and 622 nm, respectively, have been measured with lambdaexci=374 nm. For all these emission bands decay curves have been plotted to evaluate their lifetimes and the emission processes that arise in the glasses have been explained in terms of energy level schemes.

  16. Spectroscopy and energy transfer in lead borate glasses doubly doped with Tm3+ and Dy3+ ions

    NASA Astrophysics Data System (ADS)

    Górny, Agata; Sołtys, Marta; Pisarska, Joanna; Pisarski, Wojciech A.

    2018-03-01

    Lead borate glasses singly and doubly doped with Tm3+ and Dy3+ were prepared by traditional melt-quenching technique. The emission spectra of rare earths in studied glass systems were registered under different excitation wavelengths. The observed emission bands are located in the visible spectral region. They correspond to 1D2 → 3F4 (blue) and 1G4 → 3H6 (blue) transitions of Tm3+ as well as 4F9/2 → 6H15/2 (blue), 4F9/2 → 6H13/2 (yellow) and 4F9/2 → 6H11/2 (red) transitions of Dy3+. Moreover, the energy transfer process from Tm3+ to Dy3+ was observed. The luminescence bands originating to characteristic transitions of thulium and dysprosium ions are present on emission spectra under direct excitation of Tm3+. Luminescence lifetimes for the excited states of Tm3+ and Dy3+ ions in lead borate glass were also determined based on decay measurements. The luminescence intensities and lifetimes depend significantly on the relative concentrations of the optically active dopants.

  17. Effect of silver ions and clusters on the luminescence properties of Eu-doped borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Qing, E-mail: jiaoqing@nbu.edu.cn; Wang, Xi; Qiu, Jianbei

    2015-12-15

    Highlights: • Ag{sup +} and Ag clusters are investigated in the borate glasses via ion exchange method. • The aggregation of silver ions to the clusters was controlled by the ion exchange concentration. • Eu{sup 3+}/Eu{sup 2+} ions emission was enhanced with the sensitization of the silver species. • Energy transfer process from Ag ions and Ag clusters to Eu ions is identified by the lifetime measurements. - Abstract: Silver ions and clusters were applied to Eu{sup 3+}-doped borate glasses via the Ag{sup +}–Na{sup +} ion exchange method. Eu{sup 3+}/Eu{sup 2+} ion luminescence enhancement was achieved after silver ion exchange.more » Absorption spectra showed no band at 420 nm, which indicates that silver nanoparticles can be excluded as a silver state in the glass. Silver ion aggregation into clusters during the ion exchange process may be inferred. The effect of silver ions and clusters on rare earth emissions was investigated using spectral information and lifetime measurements. Significant luminescence enhancements were observed from the energy transfer of Ag{sup +} ions and clusters to Eu{sup 3+}/Eu{sup 2+} ions, companied with the silver ions aggregated into the clusters state. The results of this research may extend the current understanding of interactions between rare-earth ions and Ag species.« less

  18. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model.

    PubMed

    Zhao, Shichang; Li, Le; Wang, Hui; Zhang, Yadong; Cheng, Xiangguo; Zhou, Nai; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-01-01

    There is a need for better wound dressings that possess the requisite angiogenic capacity for rapid in situ healing of full-thickness skin wounds. Borate bioactive glass microfibers are showing a remarkable ability to heal soft tissue wounds but little is known about the process and mechanisms of healing. In the present study, wound dressings composed of borate bioactive glass microfibers (diameter = 0.4-1.2 μm; composition 6Na2O, 8K2O, 8MgO, 22CaO, 54B2O3, 2P2O5; mol%) doped with 0-3.0 wt.% CuO were created and evaluated in vitro and in vivo. When immersed in simulated body fluid, the fibers degraded and converted to hydroxyapatite within ∼7 days, releasing ions such as Ca, B and Cu into the medium. In vitro cell culture showed that the ionic dissolution product of the fibers was not toxic to human umbilical vein endothelial cells (HUVECs) and fibroblasts, promoted HUVEC migration, tubule formation and secretion of vascular endothelial growth factor (VEGF), and stimulated the expression of angiogenic-related genes of the fibroblasts. When used to treat full-thickness skin defects in rodents, the Cu-doped fibers (3.0 wt.% CuO) showed a significantly better capacity to stimulate angiogenesis than the undoped fibers and the untreated defects (control) at 7 and 14 days post-surgery. The defects treated with the Cu-doped and undoped fibers showed improved collagen deposition, maturity and orientation when compared to the untreated defects, the improvement shown by the Cu-doped fibers was not markedly better than the undoped fibers at 14 days post-surgery. These results indicate that the Cu-doped borate glass microfibers have a promising capacity to stimulate angiogenesis and heal full-thickness skin defects. They also provide valuable data for understanding the role of the microfibers in healing soft tissue wounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Electrical Characteristics of MnO2 Doped Bismuth Borate Glass Systems

    NASA Astrophysics Data System (ADS)

    Nissar, Umair; Ahmad, Javed; Rana, Anwar Manzoor; Bukhari, S. H.; Jamil, M. T.; Khan, J. Alam; Shakeel, R.; Nadeem, M. Y.

    2018-02-01

    Transparent glasses have a large number of applications in the industry of electronics as well as optical devices. xMnO2-(25- x) Bi2O3-75H3BO3 (0 ≤ x ≤ 1.5 mol.%) transparent glasses have been prepared via melt-quench technique and characterized using dc electrical measurements, and by analyzing x-ray diffraction and Fourier transform infrared (FTIR) spectra. These characteristics were examined to understand the role of modifier oxides, i.e., Bi2O3 and MnO2 in the B2O3 glass network. Adding MnO2 into a glass network causes structural changes, which are responsible for any variations in electrical characteristics of bismuth borate glasses. Manganese bismuth borate glasses (MBBG) show Ohmic conduction at low fields; however, glasses with higher manganese content seem to conduct through bulk limited Poole-Frenkel mechanism. FTIR spectroscopy analyses depict the presence of BO3 and BO4 groups along with B-O-B and Bi-O-Bi bonding vibrations. Glasses with higher MnO2 content also show Mn-O bond vibrations. The reduction of BO4 groups and increase of BO3 units lead to the formation of non-bridging oxygens (NBOs) which are responsible for the variations in the electrical properties of these glasses.

  20. Synthesis and characterization of γ-irradiated cadmium-borate glasses doped V2O5

    NASA Astrophysics Data System (ADS)

    Bahammam, S.; Abd El Al, S.; Ezz-Eldin, F. M.

    In this work, we study the relationship between the optical and magnetic properties for the irradiated and unirradiated V2O5-doped cadmium borate glasses and examined their optical band energy that has compromise of non-bridging oxygen (NBO) and bridging oxygen (BO), V3+, V4+ and V5+, and BO3 units and BO4 units. The induced defects created by γ-rays were characterized by optical and EPR spectroscopy. The dependability of the defects and the tendency for recombination or conversion of the defects besides the environment of optically dynamic V centers was also discussed. It is concluded that the development of both optical and magnetic intensity is related to V4+ ions at tetrahedral sites whereas the decrease in their intensity is recognized to the ligand-metal charge transfer transitions of V4+ ions coupled to V5+. The optical band gap energy (Eg) has been observed to decrease with increasing either V2O5 content or γ-doses. High γ-dose reduces the values of the allowed direct optical band gap Eg of 0.5 Mol% V2O5 glass up to 45 kGy after which Eg increases, but remain lower than that of un-irradiated glass. Borate glasses under this study showed linear optical absorption response over the dose range of 5-80 kG. Fading under dark and room light in 2 h after exposure in the course of 30 days have been studied in detail and presented. Our results and findings indicate that, the investigated samples may be seemed to be a good candidate for radiation processing purposes.

  1. Scintillation properties of phosphate-borate-fluoride glass doped with Tb3+/Pr3+

    NASA Astrophysics Data System (ADS)

    Valiev, D.; Stepanov, S.; Polisadova, E.; Yao, G.

    2018-06-01

    Scintillation glass doped with Tb3+ and Pr3+ ions with different concentrations were prepared by the melt-quenching method. Optical, photoluminescence and decay kinetic characteristics of the pulse cathodoluminescence (PCL) were investigated. It was shown that the absorption coefficient of the induced absorption in the visible range of the spectrum decreases significantly with the increase of the Pr2O3 content starting from 0.2 to 1 wt%. There was the difference in the luminescence spectra of the glass at a selective and non-selective type of excitation. The "green" emission (λem= 542 nm, 5D4→7F5 radiative transition of Tb3+ ions) was excited an electron beam. The "red" emission (λem= 600 nm, 3P0→3H6 radiative transition of Pr3+ ion) was observed under selective excitation action (λexc= 450 nm). It was demonstrated that decreasing of intensity the main bands of Tb3+ ions at 487, 544, 622 nm connected with increases of concentration Pr3+ ions. The luminescence decay time of terbium ions at 487, 544, 622 nm emission bands depend on Pr3+ concentration. The tendency of reducing the luminescence decay time in the main luminescence bands of Tb3+ ions at increasing the Pr3+ concentration was presented. The results showed that Tb3+/ Pr3+ co-doped phosphate-borate-fluoride glasses are promising non-crystalline scintillation materials.

  2. Optical and spectroscopic properties of neodymium doped cadmium-sodium borate glasses

    NASA Astrophysics Data System (ADS)

    Mohan, Shaweta; Thind, Kulwant Singh

    2017-10-01

    Neodymium doped cadmium sodium borate glasses having composition xCdO-(40-x) Na2CO3-59.5H3BO3-0.5Nd2O3; x = 10, 20 and 30 mol% were prepared by conventional melt-quenching technique. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. Conventional methods were used to determine the physical properties such as density, molar volume, refractive index, and rare earth ion concentration. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The calculated intensity parameters were further used to predict the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the various fluorescent levels of Nd3+ ion in the prepared glass series. The effect of the compositional changes on the spectroscopic characteristics of Nd3+ ions have been studied and reported. The value of Ω2 is found to decrease with the decrease in the sodium content and the corresponding increase in the cadmium content. This can be ascribed to the changes in the asymmetry of the ligand field at the rare earth ion site and the change in rare earth oxygen (RE-O) covalency. Florescence spectra has been used to determine the peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) for the 4F3/2 → 4I9/2,4I11/2,4I13/2 transitions of the Nd3+ ion. The reasonably higher values of branching ratios and stimulated emission cross-section for the prepared glasses points towards the efficacy of these glasses as laser host materials. However, the glass with more sodium content is found to show better lasing properties.

  3. Degradable borate glass polyalkenoate cements.

    PubMed

    Shen, L; Coughlan, A; Towler, M; Hall, M

    2014-04-01

    Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time.

  4. Bioactive borate glass coatings for titanium alloys.

    PubMed

    Peddi, Laxmikanth; Brow, Richard K; Brown, Roger F

    2008-09-01

    Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na(2)O-CaO-B(2)O(3) system, modified by additions of SiO(2), Al(2)O(3), and P(2)O(5), were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid for 2 weeks at 37 degrees C; similar layers form on 45S5 Bioglass((R)) exposed to the same conditions. Assays with MC3T3-E1 pre-osteoblastic cells show the borate glasses exhibit in vitro biocompatibility similar to that of the 45S5 Bioglass((R)). An enameling technique was developed to form adherent borate glass coatings on Ti6Al4V alloy, with adhesive strengths of 36 +/- 2 MPa on polished substrates. The results show these new borate glasses to be promising candidates for forming bioactive coatings on titanium substrates.

  5. Spectroscopy and energy transfer in lead borate glasses doubly doped with Dy(3)(+)-Tb(3+) and Tb(3)(+)-Eu(3+) ions.

    PubMed

    Pisarska, Joanna; Kos, Agnieszka; Pisarski, Wojciech A

    2014-08-14

    Lead borate glasses doubly doped with Dy(3)(+)-Tb(3+) and Tb(3+)-Eu(3+) were investigated using optical spectroscopy. Luminescence spectra of rare earths were detected under various excitation wavelengths. The main green emission band due to (5)D4→(7)F5 transition of Tb(3+) is observed under excitation of Dy(3+), whereas the main red emission band related to (5)D0→(7)F2 transition of Eu(3+) is successfully observed under direct excitation of Tb(3+). In both cases, the energy transfer processes from Dy(3+) to Tb(3+) and from Tb(3+) to Eu(3+) in lead borate glasses occur through a nonradiative processes with efficiencies up to 16% and 18%, respectively. The presence of energy transfer process was also confirmed by excitation spectra measurements. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Ho3+-doped strontium-aluminium-bismuth-borate glasses for green light emission.

    PubMed

    Rajesh, D; Dhamodhara Naidu, M; Ratnakaram, Y C; Balakrishna, A

    2014-11-01

    Strontium-aluminium-bismuth-borate glasses (SAlBiB) doped with different concentrations of Ho(3+) were prepared using conventional melt quenching technique and their structural and optical properties investigated. X-ray diffraction and scanning electron microscopy analysis were used to study the structural properties. Optical properties were studied by measuring the optical absorption and visible luminescence spectra. The Judd-Ofelt (J-O) theory was applied to evaluate J-O intensity parameters, Ω(λ) (λ = 2, 4 and 6). Using J-O intensity parameters, radiative properties such as spontaneous transition probabilities (A(R)), branching ratios (β(R)) and radiative lifetimes (τ(R)) were determined. From the emission spectra, a strong green emission nearly at 549 nm corresponding to the transition, (5)S2 ((5)F4)→(5)I(8) was observed. Emission peak positions (λ(P)), effective bandwidths (Δλ(eff)) and stimulated emission cross-sections (σ(p)) were calculated for the observed emission transitions, (5)F3 →(5)I(8), (5)S2((5)F4)→(5)I(8) and (5)F5 →(5)I(8) of Ho(3+) in all the glass matrices. Chromaticity color coordinates were calculated using the emission spectra. The experimental results suggest that SAlBiB glass matrix with 1.5 mol% of Ho(3+) has better emission properties. Copyright © 2014 John Wiley & Sons, Ltd.

  7. In vitro stimulation of vascular endothelial growth factor by borate-based glass fibers under dynamic flow conditions.

    PubMed

    Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan

    2017-04-01

    Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Structural and optical properties of lithium sodium borate glasses doped with Sm3+ ions

    NASA Astrophysics Data System (ADS)

    Dawaud, R. S. E. S.; Hashim, S.; Alajerami, Y. S. M.; Mhareb, M. H. A.; Maqableh, M. M.; Tamchek, N.

    2014-07-01

    Absorption and emission spectra of Sm3+ doped lithium sodium borate (LNB) have been reported. The samples were prepared by the melt-quenching technique and characterized by X-ray diffraction (XRD), diffraction thermal analysis (DTA), Fourier transforms infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). From the thermo-grams spectrum, glass transition (Tg), crystallization (Tc) and melting temperatures (Tm) have been evaluated. Direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. These glasses have shown strong nine absorption bands with hypersensitive transition at 1221 nm (6H5/2→4H3/2) and five emission bands for the transition at 4I7/2→6H13/2 (green color), 4I7/2→6H7/2 (orange color), 4I7/2→6H9/2 (orange color), 4I7/2→6H11/2 (red color) and 4I7/2→6H13/2 (red color) with performing an excitation of 400 nm. The oscillator strengths, refractive index, ions concentration, polaron radius and other parameters have been calculated for each dopant.

  9. Identification of ε-Fe2O3 nano-phase in borate glasses doped with Fe and Gd

    NASA Astrophysics Data System (ADS)

    Ivanova, O. S.; Ivantsov, R. D.; Edelman, I. S.; Petrakovskaja, E. A.; Velikanov, D. A.; Zubavichus, Y. V.; Zaikovskii, V. I.; Stepanov, S. A.

    2016-03-01

    A new type of magnetic nanoparticles was revealed in borate glasses co-doped with low contents of iron and gadolinium. Structure and magnetic properties of the particles differ essentially from that of the α-Fe2O3, γ-Fe2O3, or Fe3O4 nanoparticles which were detected earlier in similar glass matrices. Transmission electron microscopy including STEM-HAADF and EDX, synchrotron radiation-based XRD, static magnetic measurements, magnetic circular dichroism, and electron magnetic resonance studies allow referring the nanoparticles to the iron oxide phase-ε-Fe2O3. Analysis of the data set has shown that it is Gd atoms that govern the process of nanoparticles' nucleation and its incorporation into the particles in different proportions can be used to adjust their magnetic and magneto-optical characteristics.

  10. Negative induced absorption and negative index of refraction for iron doped potash-alumina-borate glasses subjected to thermal-radiation treatment

    NASA Astrophysics Data System (ADS)

    Salakhitdinov, Amritdin; Ibragimova, Elvira; Salakhitdinova, Maysara

    2018-02-01

    This work experimentally revealed, that 60Co-gamma-irradiation of potash-alumina-borate glasses doped with 1 and 2 mass% of iron oxide to the dose of 1.7 MR in the temperature range of 150-300 °C induced differential optical density changes within - 6 ≤ Δ D ≤ 0 in the wave length range of 300-350 nm, which is characteristic for meta-material. Calculations have shown that variation of optical refraction index within - 0.05 ≤ Δ n ω ≤ 0.05 due to microstructure transformation causes changes in the differential absorption index of the glass - 0.5 < Δ α ω < 0.55.

  11. Optical and physical properties of samarium doped lithium diborate glasses

    NASA Astrophysics Data System (ADS)

    Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna

    2018-05-01

    Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 < x < 2 mole. %) were prepared by melt quenching method. The addition of modifier oxide to vitreous B2O3 modifies the glass network by converting three coordinated trigonal boron units (BO3) to weaker anionic four coordinated tetrahedral borons (BO4). The decrease in density and increase in molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average separation of boron-boron atoms with VmB clearly indicates deterioration of borate glass network, which in turn leads to decrease in the oxygen packing density. The replacements of Sm2O3 for PbO depolymerise the chain structure and that would increase the concentration of non-bridging oxygens. The marginal increase of optical band gap energy after 1.0 mol.% of Sm2O3 is explained by considering the structural modification in lead-borate. The influence of Sm3+ ion on physical and optical properties in lithium-lead-borate glasses is investigated and the results were discussed in view of the structure of borate glass network.

  12. Effect of ZnSe and CdSe nanoparticles on the fluorescence and optical band gap of Sm3+ doped lead borate glasses

    NASA Astrophysics Data System (ADS)

    Fatokun, Stephen O.

    For the first part of this work, we prepared a series of Sm-doped lead borate (PbO-B2O3) glasses containing zinc selenide (ZnSe) and cadmium selenide (CdSe) nanoparticles (NPs) and studied the Sm 3+ fluorescence by varying the glass composition and size of the NPs. We have chosen these heavy metal oxide glasses to incorporate Sm3+ ions because they have large glass forming region, high refractive index, and good physical and thermal stability. Lead borate glasses with the following compositions xPbO:(96.5-x)B2O 3:0.5Sm2O3:3ZnSe/CdSe, x=36.5 and 56.5 mol%) are prepared using the melt-quenching method. Transmission electron microscopy characterization was done to confirm both nucleation and growth of the NPs for different annealing times. Fluorescence spectra of these samples are obtained with the excitation wavelengths at 403 and 477nm. Three fluorescence transitions are observed at 563 nm, 598 nm and 646 nm. The transition at 646 nm is a electric dipole (ED) transition that strongly depends on the covalency of the Sm-O bond and the asymmetry of the crystal field at the Sm3+ site. The 646 nm/598 nm fluorescence intensity ratio has been studied for different annealing times and PbO concentration for both ZnSe and CdSe samples. Longer annealing times tend to make the crystal field at the Sm3+ site more symmetric in nature for these glasses. The presence of CdSe NPs is seen to produce the greatest influence on the fluorescence intensity ratio. This is believed to be due to the larger size of the CdSe nanoparticles and its stronger influence on Sm3+ ions. The second part of this work was dedicated to the understanding of the optical band gap of samarium doped lead borate glasses with and without ZnSe/CdSe NPs. Optical absorption spectra for all these glass samples show their absorption edge in the ultraviolet region. Detailed analysis of the absorption edge was carried out using the Mott-Davis model and the optical band gap and the width of the tail in the band gap

  13. Structural and luminescence properties of samarium doped lead alumino borate glasses

    NASA Astrophysics Data System (ADS)

    Mohan, Shaweta; Kaur, Simranpreet; Singh, D. P.; Kaur, Puneet

    2017-11-01

    The study reports the effect of samarium concentration on the physical, structural and spectroscopic characteristics of samarium doped lead alumino borate glasses having composition 20PbO-(10-x)Al2O3-70B2O3-xSm2O3; x = 0.1, 0.5, 1.0 and 2.0 mol %. The glasses were fabricated by conventional melt-quenching technique and then characterized by XRD, FTIR, optical absorption and fluorescence spectra. X-ray diffraction studies confirmed the amorphous nature of the prepared glasses. FTIR spectra indicate the presence of BO3, BO4, AlO6 and a few other structural groups. Various physical properties such as density, molar volume, refractive index, rare earth ion concentration, boron-boron distance and polarizability etc. were determined using conventional methods and standard formulae. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. The value of Ω2 was found to be highest for glass with 1 mol% Sm2O3 and attributed to the asymmetry of the ligand field at the rare earth ion site and the rare earth oxygen (Sm-O) covalency. The calculated intensity parameters and fluorescence spectra were further used to predict the radiative transition probability (A), radiative lifetime (τR), branching ratio (βR), peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σ) for the characteristic 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 transitions of the Sm3+ ion. Concentration quenching was observed for 2 mol% concentration of Sm2O3 and ascribed to energy transfer through various cross-relaxation channels between Sm3+ ions. Reasonably high values of branching ratios and stimulated emission cross-section for the prepared glasses points towards their utility in the development of visible lasers emitting in the reddish-orange spectral region. However, the glass with 1 mol% Sm2O3 was found to show better radiative properties.

  14. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties.

    PubMed

    Möncke, D; Kamitsos, E I; Palles, D; Limbach, R; Winterstein-Beckmann, A; Honma, T; Yao, Z; Rouxel, T; Wondraczek, L

    2016-09-28

    A series of transition and post-transition metal ion (Mn, Cu, Zn, Pb, Bi) binary borate glasses was studied with special consideration of the cations impact on the borate structure, the cations cross-linking capacity, and more generally, structure-property correlations. Infrared (IR) and Raman spectroscopies were used for the structural characterization. These complementary techniques are sensitive to the short-range order as in the differentiation of tetrahedral and trigonal borate units or regarding the number of non-bridging oxygen ions per unit. Moreover, vibrational spectroscopy is also sensitive to the intermediate-range order and to the presence of superstructural units, such as rings and chains, or the combination of rings. In order to clarify band assignments for the various borate entities, examples are given from pure vitreous B 2 O 3 to meta-, pyro-, ortho-, and even overmodified borate glass compositions. For binary metaborate glasses, the impact of the modifier cation on the borate speciation is shown. High field strength cations such as Zn 2+ enhance the disproportionation of metaborate to polyborate and pyroborate units. Pb 2+ and Bi 3+ induce cluster formation, resulting in PbO n - and BiO n -pseudophases. Both lead and bismuth borate glasses show also a tendency to stabilize very large superstructural units in the form of diborate polyanions. Far-IR spectra reflect on the bonding states of modifier cations in glasses. The frequency of the measured cation-site vibration band was used to obtain the average force constant for the metal-oxygen bonding, F M-O . A linear correlation between glass transition temperature (T g ) and F M-O was shown for the metaborate glass series. The mechanical properties of the glasses also correlate with the force constant F M-O , though for cations of similar force constant the fraction of tetrahedral borate units (N 4 ) strongly affects the thermal and mechanical properties. For paramagnetic Cu- and Mn-borate glasses

  15. Er-doped lead borate glasses and transparent glass ceramics for near-infrared luminescence and up-conversion applications.

    PubMed

    Pisarski, Wojciech A; Goryczka, Tomasz; Pisarska, Joanna; Ryba-Romanowski, Witold

    2007-03-15

    Lead borate based glasses have been analyzed using Raman and infrared spectroscopy. The formation of different borate groups and the direction of BO3 <--> BO4 conversion strongly depends on the PbO- and/or PbF2-to-B2O3 ratio in chemical composition. PbF2-PbO-B2O3 based glasses containing Er3+ ions have been studied after annealing. The orthorhombic PbF2 crystallites are formed during thermal treatment, which was evidenced by X-ray diffraction analysis. Near-infrared luminescence at 1530 nm and green up-conversion at 545 nm have been registered for samples before and after annealing. The luminescence bands correspond to 4I13/2-4I15/2 and 4S3/2-4I15/2 transitions of Er3+ ions, respectively. In comparison to the precursor glasses, the luminescence intensities are higher in the studied transparent oxyfluoride glass ceramics. Simultaneously, the half-width of the luminescence lines slightly decreases. It can be the evidence that a small amount of the Er3+ ions is incorporated into the orthorhombic PbF2 phase.

  16. Angiogenic effects of borate glass microfibers in a rodent model.

    PubMed

    Lin, Yinan; Brown, Roger F; Jung, Steven B; Day, Delbert E

    2014-12-01

    The primary objective of this research was to evaluate the use of bioactive borate-based glass microfibers for angiogenesis in soft tissue repair applications. The effect of these fibers on growth of capillaries and small blood vessels was compared to that of 45S5 silica glass microfibers and sham implant controls. Compressed mats of three types of glass microfibers were implanted subcutaneously in rats and tissues surrounding the implant sites histologically evaluated 2-4 weeks post surgery. Bioactive borate glass 13-93B3 supplemented with 0.4 wt % copper promoted extensive angiogenesis as compared to silica glass microfibers and sham control tissues. The angiogenic responses suggest the copper-containing 13-93B3 microfibers may be effective for treating chronic soft tissue wounds. A second objective was to assess the possible systemic cytotoxicity of dissolved borate ions and other materials released from implanted borate glass microfibers. Cytotoxicity was assessed via histological evaluation of kidney tissue collected from animals 4 weeks after subcutaneously implanting high amounts of the borate glass microfibers. The evaluation of the kidney tissue from these animals showed no evidence of chronic histopathological changes in the kidney. The overall results indicate the borate glass microfibers are safe and effective for soft tissue applications. © 2014 Wiley Periodicals, Inc.

  17. Devitrification properties of lead borate glasses

    NASA Astrophysics Data System (ADS)

    Bajaj, Anu; Khanna, Atul; Krishnan, K.; Aggarwal, Suresh K.

    2013-06-01

    Lead borate glasses containing 30 to 60 mol% PbO were prepared by melt quenching technique and devitrified by long duration heat treament in the supercooled region. Glasses crystallized on heating above their glass transition temperature, and the crystalline phases produced on devitrification were characterized by XRD and DSC analyses. Glass with 30 mol% PbO slowly formed a solid solution of Pb6B10O21 and Pb5B8O17 crystalline phases, while glasses with 40 and 50 mol% PbO formed a mixture of Pb6B10O21, Pb5B8O17 and the remanent glassy phase. Glasses with higher PbO concentration of 56 to 60 mol% devitrified completely and produced only Pb5B8O17 crystalline phase. Lead borate glasses with PbO concentration of 40 to 50 mol% showed maximum thermal stability against devitrification, the ease of crystallization of glasses was correlated with the fraction of tetrahedral borons in them.

  18. Relationship between Eu{sup 3+} reduction and glass polymeric structure in Al{sub 2}O{sub 3}-modified borate glasses under air atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Qing; Yu, Xue; Xu, Xuhui

    2013-06-15

    The reduction of Eu{sup 3+} to Eu{sup 2+} is realized efficiently in Eu{sub 2}O{sub 3}-doped borate glasses prepared under air condition by melting-quenching method. Luminescent spectra show an increasing tendency of Eu{sup 2+} emission with increasing Al{sub 2}O{sub 3} concentration in B{sub 2}O{sub 3}–Na{sub 2}O glasses. It is interesting that significant enhancement appeared of Eu{sup 2+} luminescence in the Al{sub 2}O{sub 3}-rich sample comparing to the samples of Al{sub 2}O{sub 3} less than 6 mol%. FTIR and Raman scattering measurements indicated that some new vibration modes assigned to the low-polymerized structure groups decomposed from the slight Al{sub 2}O{sub 3} dopantmore » samples. These results demonstrated that the polymerization of the glass structure decreased with increasing incorporation of Al{sub 2}O{sub 3} into the borate glasses, linking to the efficiency of Eu{sup 3+} self-reduction in air at high temperature. - graphical abstract: A novel europium valence reduction phenomenon occurred in Al{sub 2}O{sub 3} modified borate glasses, FTIR and Raman measurements revealed that high polymeric groups were destroyed to low polymery structures with Al{sub 2}O{sub 3} addition. - Highlights: • The efficient reduction of Eu{sup 3+} to Eu{sup 2+} is observed in the B{sub 2}O{sub 3}–Na{sub 2}O glasses. • Eu{sup 2+} luminescence is significant enhanced in the Al{sub 2}O{sub 3}-rich glasses. • The introduction of Al{sub 2}O{sub 3} changed the network structure of the borate glasses. • High polymeric borate groups in the glass matrix may be destroyed to the lower ones.« less

  19. Optical and FT Infrared spectral studies of vanadium ions in cadmium borate glass and effects of gamma irradiation

    NASA Astrophysics Data System (ADS)

    AbdelAziz, T. D.; EzzElDin, F. M.; El Batal, H. A.; Abdelghany, A. M.

    2014-10-01

    Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8 × 104 Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+). The V2O5-doped glasses reveal an extra band at 380 nm and the high V2O5-content glass also shows a further band at about 420 nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d0 configuration). The surplus band at 420 nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe3+ ions by photochemical reactions with the presence of high content (45 mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO.

  20. Impact of vanadium ions in barium borate glass

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Hammad, Ahmed H.

    2015-02-01

    Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data.

  1. Impact of vanadium ions in barium borate glass.

    PubMed

    Abdelghany, A M; Hammad, Ahmed H

    2015-02-25

    Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Strontium borate glass: potential biomaterial for bone regeneration

    PubMed Central

    Pan, H. B.; Zhao, X. L.; Zhang, X.; Zhang, K. B.; Li, L. C.; Li, Z. Y.; Lam, W. M.; Lu, W. W.; Wang, D. P.; Huang, W. H.; Lin, K. L.; Chang, J.

    2010-01-01

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones. PMID:20031984

  3. Strontium borate glass: potential biomaterial for bone regeneration.

    PubMed

    Pan, H B; Zhao, X L; Zhang, X; Zhang, K B; Li, L C; Li, Z Y; Lam, W M; Lu, W W; Wang, D P; Huang, W H; Lin, K L; Chang, J

    2010-07-06

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones.

  4. Judd-Ofelt analysis and spectral properties of Dy3+ ions doped niobium containing tellurium calcium zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Ravi, O.; Reddy, C. Madhukar; Reddy, B. Sudhakar; Deva Prasad Raju, B.

    2014-02-01

    Niobium containing tellurium calcium zinc borate (TCZNB) glasses doped with different concentrations of Dy3+ ions were prepared by the melt quenching method and their optical properties have been studied. The Judd-Ofelt (J-O) intensity parameters Ωt (t=2, 4 and 6) were calculated using the least square fit method. Based on the magnitude of Ω2 parameter the hypersensitivity of 6H15/2→6F11/2 has also been discussed. From the evaluated J-O intensity parameters as well as from the emission and lifetime measurements, radiative transition properties such as radiative transition probability rates and branching ratios were calculated for 4F9/2 excited level. It is found that for Dy3+ ion, the transition 4F9/2→6H13/2 shows highest emission cross-section at 1.0 mol% TCZNB glass matrix. From the visible luminescence spectra, yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The TCZNB glasses exhibit good luminescence properties and are suitable for generation of white light.

  5. Emission properties of Ce3+ centers in barium borate glasses prepared from different precursor materials

    NASA Astrophysics Data System (ADS)

    Torimoto, Aya; Masai, Hirokazu; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki; Ohkubo, Takahiro

    2017-10-01

    The photoluminescence (PL) and X-ray induced luminescence properties of Ce-doped barium borate glasses prepared from different precursor materials have been investigated. Oxidation of Ce3+ takes place during the melting process performed using a pre-vitrified non-doped glass. Residual groups originated from the precursor materials, such as fluorine atoms and OH groups, are found to affect the optical and emission properties of the glasses. Moreover, both the PL and the X-ray induced luminescence properties of the glasses depend on the precursor materials used for their synthesis. Based on a thorough analysis of the emission properties, we conclude that the best synthesis conditions involve melting a batch containing Ce(CH3COO)3·H2O, BaCO3, and B2O3 in Ar atmosphere.

  6. Low-energy vibrational dynamics of cesium borate glasses.

    PubMed

    Crupi, C; D'Angelo, G; Vasi, C

    2012-06-07

    Low-temperature specific heat and inelastic light scattering experiments have been performed on a series of cesium borate glasses and on a cesium borate crystal. Raman measurements on the crystalline sample have revealed the existence of cesium rattling modes in the same frequency region where glasses exhibit the boson peak (BP). These localized modes are supposed to overlap with the BP in cesium borate glasses affecting its magnitude. Their influence on the low frequency vibrational dynamics in glassy samples has been considered, and their contribution to the specific heat has been estimated. Evidence for a relation between the changes of the BP induced by the increased amount of metallic oxide and the variations of the elastic medium has been provided.

  7. Optical and FT Infrared spectral studies of vanadium ions in cadmium borate glass and effects of gamma irradiation.

    PubMed

    AbdelAziz, T D; EzzElDin, F M; El Batal, H A; Abdelghany, A M

    2014-10-15

    Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8×10(4) Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe(3+)). The V2O5-doped glasses reveal an extra band at 380nm and the high V2O5-content glass also shows a further band at about 420nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d(0) configuration). The surplus band at 420nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe(3+) ions by photochemical reactions with the presence of high content (45mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Structural investigation of Zn doped sodium bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, V., E-mail: vijetabhatia0712@gmail.com; Kumar, D.; Singh, D.

    2016-05-06

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na{sub 2}O:15Bi{sub 2}O{sub 3}:70B{sub 2}O{sub 3} (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained bymore » these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO{sub 3} & BO{sub 4} structural units) have been observed.« less

  9. Effect of Bi2O3 on spectroscopic and structural properties of Er3+ doped cadmium bismuth borate glasses.

    PubMed

    Sanghi, S; Pal, I; Agarwal, A; Aggarwal, M P

    2011-12-01

    Glasses with composition 20CdO·xBi(2)O(3)·(79.5-x)B(2)O(3) (15≤x≤35, x in mol%) containing 0.5 mol% of Er(3+) ions were prepared by melt-quench technique (1150°C in air). The amorphous nature of the glasses was confirmed by X-ray diffraction. The spectroscopic properties of the glasses were investigated using optical absorption spectra and fluorescence spectra. The phenomenological Judd-Ofelt intensity parameters Ω(λ) (λ=2, 4, 6) were determined from the spectral intensities of absorption bands in order to calculate the radiative transition probability (A(R)), radiative life time (τ(R)), branching ratios (β(R)) for various excited luminescent states. Using the near infrared emission spectra, full width at half maxima (FWHM), stimulated emission cross-section (σ(e)) and figure of merit (FOM) were evaluated and compared with other hosts. Especially, the numerical values of these parameters indicate that the emission transition (4)I(13/2)→(4)I(15/2) at 1.506 μm in Er(3+)-doped cadmium bismuth borate glasses may be useful in optical communication. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.

    PubMed

    Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Role of oxygen on the optical properties of borate glass doped with ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Baki, Manal; El-Diasty, Fouad, E-mail: fdiasty@yahoo.com

    2011-10-15

    Lithium tungsten borate glass (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0{<=}x{<=}0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B{sub 2}O{sub 3} the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density,more » which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B{sub 2}O{sub 3}, which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: > New borate glass for photonic application is prepared. > The dispersion property of the glass is effectively controlled using small amounts of ZnO. > ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. > Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.« less

  12. Synthesis and properties of silver nanoparticles in sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Patwari, D. Rajeshree; Eraiah, B.

    2018-04-01

    Rare earth doped Sodium Bismuth Borate glass samples with silver chloride were prepared by melt quenching method. X-Ray diffraction pattern was used to confirm the amorphous nature of the samples. UV-Visible Spectra was recorded to study the optical properties. Surface plasmon resonance (SPR) peak was observed due to the formation of silver nanoparticles before and after heat treatment and the presence of silver nanoparticles were confirmed by UV-Visible Spectral studies and transmission electron microscopy. The surface plasmon resonance band became wider and red shifted after longer heat treatment.

  13. Physical and optical absorption studies of Fe{sup 3+} - ions doped lithium borate glasses containing certain alkaline earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P., E-mail: pkistaiah@yahoo.com

    Iron ion doped lithium borate glasses with the composition 15RO-25Li{sub 2}O-59B{sub 2}O{sub 3}-1Fe{sub 2}O{sub 3} (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to {sup 6}A{sub 1g}(S) → 4E{sub g} (G) of Fe{sup 3+} ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties ismore » discussed.« less

  14. Er{sup 3+}-doped strontium lithium bismuth borate glasses for broadband 1.5 {mu}m emission - optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-02-05

    Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er{sup 3+} were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er{sup 3+} ions to evaluate J-O intensity parameters, {Omega}{lambda} ({lambda} = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (A{sub R}), branching ratios ({beta})more » and radiative lifetimes ({tau}) are estimated for certain transitions. From the emission spectra, peak emission-cross sections ({sigma}{sub p}) and products of stimulated emission cross-section and full width at half maximum ({sigma}{sub p} Multiplication-Sign FWHM) were calculated for the observed emission transition, {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}.« less

  15. Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications

    NASA Astrophysics Data System (ADS)

    Ottomeyer, Megan

    Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

  16. A study of physical and optical absorption spectra of VO2+ ions in potassium and sodium oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Kumar, J. Siva; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    Spectroscopic and physical properties of V2O5 doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K2O and Na2O) were changes and are prepared by melt quenching technique. The values of ri, rp, Rm, αm molar volume and Λth increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K2O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boron separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K2O content which manifests the mixed alkali effect.

  17. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    NASA Astrophysics Data System (ADS)

    Kliava, Janis; Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora; Hennet, Louis; Thiaudière, Dominique; Saboungi, Marie-Louise

    2011-03-01

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K 2O-22.5Al 2O 3-55B 2O 3 co-doped with low concentrations of Fe 2O 3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe 2O 4 after annealing the glasses at 560 °C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value.

  18. Raman and Infrared Spectroscopy of Yttrium Aluminum Borate Glasses and Glass-ceramics

    NASA Technical Reports Server (NTRS)

    Bradley, J.; Brooks, M.; Crenshaw, T.; Morris, A.; Chattopadhyay, K.; Morgan, S.

    1998-01-01

    Raman spectra of glasses and glass-ceramics in the Y2O3-Al2O3-B2O3 system are reported. Glasses with B2O3 contents ranging from 40 to 60 mole percent were prepared by melting 20 g of the appropriate oxide or carbonate powders in alumina crucibles at 1400 C for 45 minutes. Subsequent heat treatments of the glasses at temperatures ranging from 600 to 800 C were performed in order to induce nucleation and crystallization. It was found that Na2CO3 added to the melt served as a nucleating agent and resulted in uniform bulk crystallization. The Raman spectra of the glasses are interpreted primarily in terms of vibrations of boron - oxygen structural groups. Comparison of the Raman spectra of the glass-ceramic samples with spectra of aluminate and borate crystalline materials reveal that these glasses crystallize primarily as yttrium aluminum borate, YAl3(BO3)4.

  19. Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.

    PubMed

    Padmaja, G; Kistaiah, P

    2009-03-19

    A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition.

  20. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.

  1. Novel method for early investigation of bioactivity in different borate bio-glasses

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  2. Novel method for early investigation of bioactivity in different borate bio-glasses.

    PubMed

    Abdelghany, A M

    2013-01-01

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm(-1) after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Luminescence study and CIE diagram of certain alkaline sodium lead borate glass for LED applications

    NASA Astrophysics Data System (ADS)

    Lenkennavar, S. K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-04-01

    In the present work, the glass composition 20Na2O -10PbO-10MO -60B2O3 doped with Praseodymium ions have been synthesised using muffle furnace by the conventional melt quenching technique and the effect of Pr3+ ions on optical properties of present glasses have been examined. The emission spectra were recorded in the wavelength range of 450-750nm upon excitation at 450 and 550nm. The Commission International deI'Eclairage (CIE) chromaticity coordinates are determined to estimate the emission colour of the Pr3+ incorporated barium/calcium/strontium sodium lead borate glasses. It is observed that blue LED and red LED applications can be expected by tuning the excitation wavelength applied to the same glass matrices.

  4. Resonant excited UV luminescence of the Gd3+ centres in borate glasses, co-doped with Gd and Ag

    NASA Astrophysics Data System (ADS)

    Padlyak, B. V.; Drzewiecki, A.; Padlyak, T. B.; Adamiv, V. T.; Teslyuk, I. M.

    2018-05-01

    The Li2B4O7:Gd, CaB4O7:Gd, LiCaBO3:Gd, and Li2B4O7:Gd, Ag glasses of high optical quality, obtained by standard technology, have been investigated by electron paramagnetic resonance (EPR) and optical spectroscopy at room temperature. The Gd impurity was added in the raw materials as Gd2O3 oxide in amounts 0.5 and 1.0 mol.%. The Ag impurity was introduced into the Li2B4O7 composition as AgNO3 and as highly dispersed metallic Ag in amount 2.0 mol.%. In all Gd-doped glasses was observed typical for glasses EPR U-spectrum of the Gd3+ (8S7/2, 4f7) ions. In the Gd-doped glasses upon the 273 nm excitation was observed weak UV emission line at 311 nm that is attributed to the 6P7/2 → 8S7/2 intraconfiguration 4f - 4f transition of the Gd3+ ions. In the Li2B4O7:Gd, Ag glass has been observed significant (∼100 times) increasing of peak intensity of the Gd3+ emission line at 311 nm in comparison with this line in CaB4O7:Gd glass. In luminescence excitation spectra of the CaB4O7:Gd and Li2B4O7:Gd, Ag glasses are observed characteristic groups of lines corresponding to the 8S7/2 → 6IJ, 6DJ transitions of the Gd3+ ions. Significant increasing of the Gd3+ emission line at 311 nm in the Li2B4O7:Gd, Ag glass is explained by energy transfer from Ag+ (4d10) to Gd3+ (4f7) upon 273 nm excitation that is resonant for 4d10 → 4d9 5s1 (1S0 → 1D2) and 8S7/2 → 6IJ transitions of the Ag+ and Gd3+ ions. Luminescence kinetics of the Gd3+ and Ag+ centres was investigated and analysed. Obtained results show that the borate glasses, co-activated by Gd3+ and Ag+, can be promising materials for effective UVB light sources for biomedical applications.

  5. FTIR of binary lead borate glass: Structural investigation

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  6. Visible properties of Sm{sup 3+} ions in chloro-fluoro-borate glasses for reddish - orange emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K. Venkata, E-mail: drvenkataraok@gmail.com; Babu, S.; Ratnakaram, Y. C.

    2016-05-23

    Optical properties of different concentration (0.2, 0.4, 0.6, 0.8 and 1.0 mol %) of Sm{sup 3+} doped chloro-fluoro-borate glasses have been synthesized and discussed. Structural characterizations have been studied through XRD analysis. Spectroscopic analysis has done from absorption spectra, luminescence spectra and decay lifetime profiles. From the emission spectra, concentration quenching is observed, with increase of samarium concentration and discussed behind the phenomena. The nature of decay curve analysis was performed for the {sup 4}G{sub 5/2} level. These glasses are expected to give interesting application in the field of optics.

  7. A study of physical and optical absorption spectra of VO{sup 2+} ions in potassium and sodium oxide borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivas, G., E-mail: srinu123g@gmail.com; Ramesh, B.; Kumar, J. Siva

    2016-05-23

    Spectroscopic and physical properties of V{sub 2}O{sub 5} doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K{sub 2}O and Na{sub 2}O) were changes and are prepared by melt quenching technique. The values of r{sub i}, r{sub p}, R{sub m}, α{sub m} molar volume and Λ{sub th} increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K{sub 2}O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boronmore » separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K{sub 2}O content which manifests the mixed alkali effect.« less

  8. Synthesis, characterization, bioactivity and antibacterial studies of silver doped calcium borosilicate glass-ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Alesh; Mariappan, C. R.

    2018-04-01

    Bioactive glass-ceramics 45.8 mol% SiO- 45.8 CaO - 8.4 B2O3 doped with Ag2O were synthesized by sol-gel method. The glass-ceramic nature of samples was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. Fourier transform infrared (FT-IR) spectra reveal the probable stretching and bending vibration modes of silicate and borate groups. UV-Visible spectra reveal the presence of Ag+ ions and metallic Ag in the glass matrix for Ag2O doped ceramic sample. Biocompatibility of the glass nature of samples was studied by soaking of samples in Dulbecco's Modified Eagle's Medium (DMEM) with subsequent XRD studies. It was found that bone-like apatite formation on the glasses after soaked in DMEM. Antibacterial studies of glass ceramics powder against gram positive and negative microorganisms were carried out.

  9. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass.

    PubMed

    Luo, Shi-Hua; Xiao, Wei; Wei, Xiao-Juan; Jia, Wei-Tao; Zhang, Chang-Qing; Huang, Wen-Hai; Jin, Dong-Xu; Rahaman, Mohamed N; Day, Delbert E

    2010-11-01

    The cytotoxicity of silver-containing borate bioactive glass was evaluated in vitro from the response of osteoblastic and fibroblastic cells in media containing the dissolution products of the glass. Glass frits containing 0-2 weight percent (wt %) Ag were prepared by a conventional melting and quenching process. The amount of Ag dissolved from the glass into a simulated body fluid (SBF), measured using atomic emission spectroscopy, increased rapidly within the first 48 h, but slowed considerably at longer times. Structural and microchemical analysis showed that the formation of a hydroxyapatite-like layer on the glass surface within 14 days of immersion in the SBF. The response of MC3T3-E1 and L929 cells to the dissolution products of the glass was evaluated using SEM observation of cell morphology, and assays of MTT hydrolysis, lactate dehydrogenase release, and alkaline phosphatase activity after incubation for up to 48 h. Cytotoxic effects were found for the borate glass containing 2 wt % Ag, but not for 0.75 and 1 wt % Ag. This borate glass containing up to ∼1 wt % Ag could provide a coating material for bacterial inhibition and enhanced bioactivity of orthopaedic implant materials such as titanium. © 2010 Wiley Periodicals, Inc.

  10. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  11. Preparation and characterization of Tb3+ ions doped zincborophosphate glasses for green emission

    NASA Astrophysics Data System (ADS)

    Bindu, S. Hima; Raju, D. Siva; Krishna, V. Vinay; Raju, Ch. Linga

    2017-06-01

    The present study reports the preparation of various concentrations of Tb3+ ions doped zincborophosphate glasses and analysis by XRD, FTIR, optical, emission and decay curve spectras. The effect of borate groups on the phosphate was evidenced by FTIR spectroscopy. The JO intensity parameters was calculated using Judd-Offlet theory. The fluroscence spectra of Tb3+ doped zincborophosphate glasses revealed the efficient blue and green emissions due to 5D3 and 5D4 excited levels to 7Fj ground state respectively. The decay curves exhibits single exponential curves for all the Tb3+ ion concentrations. Various radiative and fluorescence parameters are calculated using JO intensity parameters. Based on the results obtained in the present study, the Tb3+ ions doped zincborophosphate glasses behaves as a efficient laser active materials for highintensity emissions in the green region.

  12. Spectroscopic investigations of Nd3+ doped Lithium Lead Alumino Borate glasses for 1.06 μm laser applications

    NASA Astrophysics Data System (ADS)

    Deopa, Nisha; Rao, A. S.; Gupta, Mohini; Vijaya Prakash, G.

    2018-01-01

    Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li2Osbnd 10PbOsbnd (10-x) Al2O3sbnd 70B2O3sbnd x Nd2O3 (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentialities using the absorption, emission and photoluminescence decay spectral measurements. The oscillator strengths measured from the absorption spectra were used to estimate the Judd-Ofelt intensity parameters using least square fitting procedure. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions 4F3/2 → 4I11/2 (1063 nm) and 4F3/2 → 4I9/2 (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd3+ ion concentration up to 1 mol % and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd3+ ion concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, the non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively higher values of emission cross-sections, branching ratios and quantum efficiency values obtained for 1.0 mol% of Nd3+ ions in LiPbAlB glass suggests it's aptness in generating lasing action at 1063 nm in NIR region.

  13. Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass

    NASA Astrophysics Data System (ADS)

    Mhareb, M. H. A.; Hashim, S.; Ghoshal, S. K.; Alajerami, Y. S. M.; Saleh, M. A.; Dawaud, R. S.; Razak, N. A. B.; Azizan, S. A. B.

    2014-11-01

    Enhancing the up-conversion efficiency of borate glass via optimized doping of rare earth ions is an ever-ending quest in lasing glass. Neodymium (Nd3+) doped Lithium Magnesium Borate (LMB) glasses are prepared using the melt-quenching method. X-ray diffraction (XRD), Fourier transformed infrared (FTIR), UV-Vis-NIR absorption and Photoluminescence (PL) spectroscopic characterizations are made to examine the influence of Nd3+ concentration on physical properties and optical properties. Nd3+ contents dependent density, molar volume, refractive index, ion concentration, Polaron radius, inter nuclear distance, field strength, energy band gap and oscillator strength are calculated. XRD patterns confirm the amorphous nature of all glasses and the FTIR spectra reveal the presence of BO3 and BO4 functional groups. UV-Vis-IR spectra exhibit ten prominent bands centered at 871, 799, 741, 677, 625, 580, 522, 468, 426, 349 nm corresponding to the transitions from the ground state to 4F3/2, (4F5/2 + 2H9/2), (4F7/2 + 4S3/2), 4F9/2, 2H11/2, (4G5/2 + 2G7/2), (2K13/2 + 4G7/2 + 4G9/2), (2G9/2 + 2D3/2 + 2P3/2), (2P1/2 + 2D5/2), (4D3/2 + 4D5/2) excited states, respectively. A hyper-sensitive transition related to (4G5/2 + 2G7/2) level is evidenced at 580 nm. The room temperature up-conversion emission spectra at 800 nm excitation displays three peaks centered at 660, 610 and 540 nm. Glass with 0.5 mol% of Nd3+ showing an emission enhancement by a factor to two is attributed to the energy transfer between Mg2+ and Nd3+ ions. Our results suggest that these glasses can be nominated for solid state lasers and other photonic devices.

  14. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivas, G., E-mail: srinu123g@gmail.com; Ramesh, B.; Shareefuddin, Md.

    2016-05-06

    The mixed alkali and alkaline earth oxide borate glass with the composition xK{sub 2}O - (25-x) Li{sub 2}O-12.5BaO-12.5MgO-50B{sub 2}O{sub 3} (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α{sub 0}2-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α{sub 0}2-), and (Λ) increases with increasing of K{sub 2}O content and electronicmore » polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K{sub 2}O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).« less

  15. Influence of MO/MF2 modifiers (M = Ca, Sr, Ba) on spectroscopic properties of Eu3+ ions in germanate and borate glasses

    NASA Astrophysics Data System (ADS)

    Zur, Lidia; Janek, Joanna; Pietrasik, Ewa; Sołtys, Marta; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-11-01

    Series of Eu3+-doped lead-free germanate and borate glasses were synthesized. The MO glass modifiers (M = Ca, Sr or Ba) were partially or totally substituted by MF2 in chemical composition. In contrast to samples modified by CaO/CaF2 or SrO/SrF2, the germanate glass samples containing BaO and/or BaF2 are fully amorphous, while the lead-free borate glasses are fully amorphous, independently from glass modifiers. Effect of glass modifiers on spectroscopic properties of Eu3+ were systematically investigated. For that reason, excitation and emission spectra of Eu3+ ions in examined systems were registered. Based on the emission spectra, ratio of integrated luminescence intensity of the 5D0 → 7F2 transition to that of the 5D0 → 7F1 transition (R factor) was calculated. Moreover, the luminescence decay curves were collected and the luminescence lifetimes of the 5D0 excited state of Eu3+ ions were determined in function of MF2 concentration.

  16. XRD and FTIR analysis heat treated lithium bismo-borate glasses doped with 1.0 mol% copper ferrite

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Narwal, P.; Dahiya, Manjeet S.; Dahiya, T.; Agarwal, A.; Khasa, S.

    2018-05-01

    Glasses of compositions of 20Li20 • xBi2O3• (79-x)B2O3 + (1.0 mol%) CuFe2O4, with 0 ≤ x ≤ 40 were prepared by melt-quench technique. To obtain the glass-ceramics the controlled heat treatment were given to the prepared glasses. Two nano crystalline phases, i.e., Li2B4O7 and LiB3O5 were observed from X-ray diffraction patterns of the prepared glass- ceramic samples. We investigated the change in coordination number of network formers B2O3 and Bi2O3 and network modifiers Bi2O3, Li2O and CuFe2O4. Crystallites size (lies in range ˜47-50nm) and lattice strain (ɛ) were calculated for major phases for all prepared samples. FT-IR study revealed the de-polymerization of borate groups that change with heat treatment and Bi2O3 content. Deconvolution of IR absorption spectra resolves the overlapped and hidden peaks in IR spectra. Sharp and more intense FTIR peaks confirm the vibrations due to crystallites Li2B4O7 and LiB3O5 and change in coordination of network forming borate units.

  17. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  18. Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.

  19. Luminescence properties of erbium doped sodium barium borate glass with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rajeshree Patwari, D.; Eraiah, B.

    2018-02-01

    Alteration in the absorption features of rare earth (RE) doped glasses with silver nanoparticles is ever-challenging in photonics. Erbium (Er3+) doped glasses with composition (60-x-y)B2O3-30Na2CO3-10BaO-xEr2O3-yAgCl where (x=0.5, 1.0 and y=1.0 mol %) are synthesized using melt-quenching method. The density is determined by Archimedes principle and molar volumes are calculated. Glass samples were characterized by XRD and UV-Visible spectroscopy. UV-Visible spectra shows eleven prominent absorption peaks centred around 366, 378, 408, 442, 452, 489, 521, 547, 652, 800 and 977 nm equivalent to the rare earth (Er3+) ion transitions. The sample without rare earth shows no peaks which specifies that rare earth ion plays a spirited role in the glass matrix. The glass samples with silver and without rare earth ion shows plasmon peak on heat treatment. The energy band gap values calculated for direct and indirect transitions are in the range of 3.126-3.440eV and 2.58-3.177eV respectively. The refractive indices and Urbach energies are also determined. Photoluminescence spectra are recorded and studied for excitation of the most intense peaks of wavelengths 378 and 521nm. The luminescence of erbium ion is enhanced by the presence of silver when the concentration of rare earth ion is less than that of silver.

  20. Structural properties of molybdenum-lead-borate glasses.

    PubMed

    Rada, M; Rada, S; Pascuta, P; Culea, E

    2010-11-01

    Glasses and glass ceramics in the system xMoO₃·(100 - x)[3B₂O₃·PbO] with 0 ≤ x ≤ 30 mol% have been prepared from melt quenching method and characterized by means of X-ray diffraction, FTIR, UV-VIS and EPR spectroscopy. We have examined and analyzed the effects of systematic molybdenum ions intercalation on lead-borate glasses and glass ceramics with interesting results. The observations present in these mechanisms show the lead ions bonded ionic have a strong affinity towards [BO₃] units containing non-bridging oxygens and [MoO₄]²⁻ molybdate units. The pronounced affinity towards molybdate anions yields the formation of the PbMoO₄ crystalline phase. Then, the excess of oxygen can be supported into the glass network by the formation of [MoO₆] and [Mo₂O₇] structural units. Pb²(+) ions with 6s² configuration show strong absorption in the ultraviolet due to parity allowed s²-sp transition and yield an absorption band centered at about 310 nm. The changes in the features of the absorption bands centered at about 310 nm can be explained as a consequence of the appearance of additional absorption shoulder due to photoinduced color centers in the glass such as the formation of borate-molybdate and lead-molybdate paramagnetic defect centers in the glasses. The concentration of molybdenum ions influences the shape and width of the EPR signals located at g ∼ 1.86, 1.91 and 5.19. The microenvironment of molybdenum ions in glasses is expected to have mainly sixfold coordination. However, there is a possibility of reduction of a part of molybdenum ions from the Mo⁶(+) to the Mo⁵(+) and Mo⁴(+) to the Mo³(+) states. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Cell adhesion to borate glasses by colloidal probe microscopy.

    PubMed

    Wiederhorn, Sheldon M; Chae, Young-Hun; Simon, Carl G; Cahn, Jackson; Deng, Yan; Day, Delbert

    2011-05-01

    The adhesion of osteoblast-like cells to silicate and borate glasses was measured in cell growth medium using colloidal probe microscopy. The probes consisted of silicate and borate glass spheres, 25-50 μm in diameter, attached to atomic force microscope cantilevers. Variables of the study included glass composition and time of contact of the cell to the glasses. Increasing the time of contact from 15 to 900 s increased the force of adhesion. The data could be plotted linearly on a log-log plot of adhesive force versus time. Of the seven glasses tested, five had slopes close to 0.5, suggesting a square root dependence of the adhesive force on the contact time. Such behavior can be interpreted as a diffusion limited process occurring during the early stages of cell attachment. We suggest that the rate limiting step in the adhesion process is the diffusion of integrins resident in the cell membrane to the area of cell attachment. Data presented in this paper support the hypothesis of Hench et al. that strong adhesion depends on the formation of a calcium phosphate reaction layer on the surfaces of the glass. Glasses that did not form a calcium phosphate layer exhibited a weaker adhesive force relative to those glasses that did form a calcium phosphate layer. Published by Elsevier Ltd.

  2. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.

    PubMed

    Deliormanlı, Aylin M

    2015-02-01

    Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications.

  3. Crystallization of lithium borate glasses

    NASA Technical Reports Server (NTRS)

    Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.

    1992-01-01

    The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.

  4. The effect of MgO on the optical properties of lithium sodium borate doped with Cu+ ions

    NASA Astrophysics Data System (ADS)

    Alajerami, Yasser Saleh Mustafa; Hashim, Suhairul; Hassan, Wan Muhamad Saridan Wan; Ramli, Ahmad Termizi; Saleh, Muneer Aziz

    2013-04-01

    The current work presented the photoluminescence (PL) properties of a new glass system, which are reported for the first time. Based on the attractive properties of borate glass, a mixture of boric acid (70-x mol %) modified with lithium (20 mol %) and sodium carbonate (10 mol %) was prepared. The current study illustrated the effect of dopant and co-dopant techniques on the lithium sodium borate (LNB). Firstly, 0.1 mol % of copper ions doped with LNB was excited at 610 nm. The emission spectrum showed two prominent peaks in the violet region (403 and 440 nm). Then, we remarked the effect of adding different concentration of MgO on the optical properties of LNB. The results showed the great effect of magnesium oxide on the PL intensities (enhanced more than two times). Moreover, an obvious shifting has been defined toward the blue region (440 → 475 nm). The up-conversion optical properties were observed in all emission spectra. This enhancement is contributed to the energy transfer from MgO ions to monovalent Cu+ ion. It is well known that magnesium oxide alone generates weak emission intensity, but during this increment the MgO act as an activator (co-doped) for Cu+ ions. Finally, energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance all were measured for the current samples. The current samples were subjected to XRD for amorphous confirmation and IR for glass characterization before and after dopants addition. Finally, some of significant physical and optical parameters were also calculated.

  5. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    PubMed

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model.

    PubMed

    Bi, Lianxiang; Rahaman, Mohamed N; Day, Delbert E; Brown, Zackary; Samujh, Christopher; Liu, Xin; Mohammadkhah, Ali; Dusevich, Vladimir; Eick, J David; Bonewald, Lynda F

    2013-08-01

    Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250-300μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass

    PubMed Central

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  8. Bright up-conversion white light emission from Er3+ doped lithium fluoro zinc borate glasses for photonic applications

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, L.; Naveen Kumar, K.; Rao, K. Srinivasa; Hwang, Pyung

    2018-03-01

    Various concentrations of Er3+ (0.3, 0.5, 1.0 and 1.5 mol %) doped lithium fluoro zinc borate glasses were synthesized by a traditional melt quenching method. XRD, FTIR and FESEM have been employed to analyze the structural, compositional and morphological analysis respectively. Judd-Ofelt theory has been employed to analyze the intensity parameters (Ωλ, λ = 2, 4 and 6) which can be used to estimate the radiative properties of fluorescent levels of Er3+. We have been observed a strong NIR emission peak at 1.53 μm (4I13/2 → 4I15/2) under the excitation of 980 nm from Er3+: LBZ glasses. Nevertheless, the NIR emission is remarkably enhanced by increasing the Er3+ ions concentration until the optimized concentration of 0.5 mol%. The lifetime of the excited level of 4I13/2 in the NIR emission transition is evaluated and it is found to be1.22 ms from the decay analysis of 0.5 mol% Er3+: LBZ glass. Apart from the NIR emission, a bright up-conversion green emission is observed at 544 nm (4S3/2 → 4I15/2) along with an intense red emission at 659 nm (4F9/2 → 4I15/2) and a weak blue emission (2H9/2 → 4I15/2) under the excitation of 980 nm. Up-conversion emission features were significantly enhanced with increasing the Er3+ concentration up to 1.0 mol%. The combination of the obtained up-conversion emission colors of green, red and blue could generate white light emission. The cool white-light emission from the optimized glass sample has been confirmed from the Commission International de I'Echairage (CIE) 1931 chromaticity diagram analysis and their correlated color temperature (CCT) values. Based on the NIR and up-conversion emission features, Er3+: LBZ glasses could be suggested as promising candidates for optical amplifiers, optical telecommunication windows and white light photonic applications.

  9. Variation of photoluminescence features in Pr{sup 3+} doped lithium-fluoro-borate glass by changing different modifier oxides (MgO, CaO, CdO and PbO)-Judd-Ofelt theory application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakrishna, A.; Rajesh, D.; Babu, S.

    2015-06-24

    Pr{sup 3+} (1.0 mol%) doped different modifier oxide based six lithium-fluoro-borate glasses with chemical composition of 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-20MO (where M= Mg, Ca, Cd and Pb), 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10MgO-10CaO and 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10CdO-10PbO were prepared by conventional melt quenching technique. Judd-Ofelt theory has been applied for evaluating the Judd-Ofelt intensity parameters for Pr{sup 3+} ion in these glass compositions and are in turn to used to predict radiative properties such as radiative transition probabilities (A{sub T}), branching ratios (β) and stimulated emission cross-section (σ{sub P}). Stimulated emission cross-section (σ{sub p}) of prominent emission transitions,more » {sup 3}P{sub 0}→{sup 3}H{sub 4} and {sup 1}D{sub 2}→{sup 3}H{sub 4} of Pr{sup 3+} ion in all lithium-fluoro-borate glasses were calculated. Among all the emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} posseses higher branching ratio and stimulated emission cross-section in Mg-Ca glass, which leads to the best laser excitation at 487 nm wavelength.« less

  10. Characterization of the third-order optical nonlinearity spectrum of barium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, S. N. C.; Almeida, J. M. P.; Paula, K. T.; Tomazio, N. B.; Mastelaro, V. R.; Mendonça, C. R.

    2017-11-01

    Borate glasses have proven to be an important material for applications ranging from radiation dosimetry to nonlinear optics. In particular, B2O3-BaO based glasses are attractive to frequency generation since their barium metaborate phase (β-BaB2O4 or β-BBO) may be crystallized under proper heat treatment. Despite the vast literature covering their linear and second-order optical nonlinear properties, their third-order nonlinearities remain overlooked. This paper thus reports a study on the nonlinear refraction (n2) of BBO and BBS-DyEu glasses through femtosecond Z-scan technique. The results were modeled using the BGO approach, which showed that oxygen ions are playing a role in the nonlinear optical properties of the glasses studied here. In addition, the barium borate glasses containing rare-earths ions were found to exhibit larger nonlinearities, which is in agreement with previous studies.

  11. Synthesis and studies on microhardness of alkali zinc borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subhashini,, E-mail: subhashini.p.p@gmail.com; Bhattacharya, Soumalya, E-mail: subhashini.p.p@gmail.com; Shashikala, H. D., E-mail: subhashini.p.p@gmail.com

    2014-04-24

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi{sub 2}O+yNa{sub 2}O+80B{sub 2}O{sub 3} (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li{sub 2}O and Na{sub 2}O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributedmore » to the conversion of tetrahedral boron (BO{sub 4/2}){sup −} into (BO{sub 3/2}){sup −}. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.« less

  12. In vitro bioactivity behavior of modified multicomponent borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; ElBatal, F. H.; Ghoneim, N. A.

    2018-02-01

    Some multi-component borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5 were prepared. Multi-characterization techniques were carried out to investigate their bioactivity, corrosion weight loss after immersion in phosphate solution. Controlled thermal heat-treatment by two-step technique was done to convert the prepared glasses to their corresponding glass-ceramic derivatives. X-ray diffraction analysis was performed to identify the crystalline phases formed by thermal treatment. Infrared absorption of glasses and glass-ceramics reveal vibrational bands due to combined main triangular and tetrahedral borate groups in their specific wavenumbers besides some sharing of phosphate group. After immersion in the phosphate solution, two extra characteristic peaks are generated indicating the bioactivity of the studied glasses and glass-ceramics through the formation of calcium phosphate (hydroxyapatite). X-ray diffraction data indicate the formation of crystalline phases which are variable with the introduced dopants. The main crystalline phase identified is calcium borate together with some other phases some of which contain phosphate ions. These data indicate that the presence of CaO and P2O5 initiates phase separation and subsequent crystallization of the parent and doped glasses. Weight loss data indicate that glass-ceramics are obviously durable than the parent glasses. SEM micrographs of glass-ceramics before immersion show multiconstituent crystalline phases due to the basic chemical composition consisting of multicomponent mixed alkali and alkaline earth oxides beside P2O5 and with the main B2O3 constituent. After immersion, the crystalline phases are identified to be more distinct in different shapes because of the multi-composition involved.

  13. Thermoluminescent properties of rare earth doped lithium strontium borate phosphors

    NASA Astrophysics Data System (ADS)

    Jakathamani, S.; Annalakshmi, O.; Jose, M. T.

    2018-04-01

    Thermoluminescence (TL) of borates is remarkable in the field of radiation dosimetry because they can detect both neutron and gamma radiations. Usually, the TL efficiency of pure borates is low and hence dopants have to be added to increase their TL output. Their sensitivity and thermal stability vary widely and depend strongly on the preparation method. In this study polycrystalline powders of different rare earth doped thermoluminescent phosphors of Lithium Strontium borate (LSB) were synthesized by solid state sintering technique. Among the different rare earth dopants, the phosphor doped with cerium was found to have a simple glow curve structure with a dosimetric peak at around 265°C for a heating rate of 5°C/s. In order to study the effect of dopant on the TL characteristics, LSB phosphor with different concentrations of Ce dopant was synthesized and the TL intensity was found to be maximum for a dopant concentration of 0.7 mol%. All other important dosimetric characteristics like dose response and fading were carried out for the LSB:Ce (0.7 mol%) phosphor. Kinetic parameters like trap depth and frequency factor were determined using Peak shape method from Chen's equation.

  14. Visible luminescence of dysprosium ions in oxyhalide lead borate glasses.

    PubMed

    Pisarska, Joanna; Żur, Lidia; Pisarski, Wojciech A

    2011-08-15

    Visible luminescence of Dy(3+) ions in oxyhalide lead borate glasses was examined. Luminescence spectra show two intense bands at 480 nm and 573 nm due to (4)F(9/2)→(6)H(15/2) (blue) and (4)F(9/2)→(6)H(13/2) (yellow) transitions of Dy(3+). Luminescence decays from (4)F(9/2) state and yellow-to-blue luminescence intensity ratios (Y/B) were analysed with PbX(2) (X=F, Cl) content. An introduction of PbX(2) to the borate glass results in the increasing of (4)F(9/2) lifetime and the decreasing of yellow-to-blue luminescence intensity ratio, which is due to reduction of covalency between Dy(3+) and O(2-)/X(-) ions. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Atom probe tomography of lithium-doped network glasses.

    PubMed

    Greiwe, Gerd-Hendrik; Balogh, Zoltan; Schmitz, Guido

    2014-06-01

    Li-doped silicate and borate glasses are electronically insulating, but provide considerable ionic conductivity. Under measurement conditions of laser-assisted atom probe tomography, mobile Li ions are redistributed in response to high electric fields. In consequence, the direct interpretation of measured composition profiles is prevented. It is demonstrated that composition profiles are nevertheless well understood by a complex model taking into account the electronic structure of dielectric materials, ionic mobility and field screening. Quantitative data on band bending and field penetration during measurement are derived which are important in understanding laser-assisted atom probe tomography of dielectric materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effects of borate-based bioactive glass on neuron viability and neurite extension.

    PubMed

    Marquardt, Laura M; Day, Delbert; Sakiyama-Elbert, Shelly E; Harkins, Amy B

    2014-08-01

    Bioactive glasses have recently been shown to promote regeneration of soft tissues by positively influencing tissue remodeling during wound healing. We were interested to determine whether bioactive glasses have the potential for use in the treatment of peripheral nerve injury. In these experiments, degradable bioactive borate glass was fabricated into rods and microfibers. To study the compatibility with neurons, embryonic chick dorsal root ganglia (DRG) were cultured with different forms of bioactive borate glass. Cell viability was measured with no media exchange (static condition) or routine media exchange (transient condition). Neurite extension was measured within fibrin scaffolds with embedded glass microfibers or aligned rod sheets. Mixed cultures of neurons, glia, and fibroblasts growing in static conditions with glass rods and microfibers resulted in decreased cell viability. However, the percentage of neurons compared with all cell types increased by the end of the culture protocol compared with culture without glass. Furthermore, bioactive glass and fibrin composite scaffolds promoted neurite extension similar to that of control fibrin scaffolds, suggesting that glass does not have a significant detrimental effect on neuronal health. Aligned glass scaffolds guided neurite extension in an oriented manner. Together these findings suggest that bioactive glass can provide alignment to support directed axon growth. © 2013 Wiley Periodicals, Inc.

  17. Spectroscopic properties of some borate glasses containg uranium

    NASA Astrophysics Data System (ADS)

    Culea, E.; Milea, I.; Bratu, I.

    1993-03-01

    Spectroscopic properties of some borate glasses containing 1-5%UO 3 have been studied in the fields of 700-1200 cm -1 and 10,000-30,000 cm -1 Absorption bands specific for U 6+ and U 4+ ions were observed. The increase of the melting time produces the reduction of U 6+ ions to U 4+.

  18. Infrared-to-visible conversion luminescence of Er 3+ ions in lead borate transparent glass-ceramics

    NASA Astrophysics Data System (ADS)

    Pisarski, Wojciech A.; Pisarska, Joanna; Lisiecki, Radosław; Grobelny, Łukasz; Dominiak-Dzik, Grażyna; Ryba-Romanowski, Witold

    2009-10-01

    Transparent glass-ceramics were successfully prepared during controlled heat treatment of lead borate glasses. The PbF 2 particles were dispersed into a borate glass matrix which was evidenced by X-ray diffraction analysis. The phase identification revealed that crystalline peaks can be related to the orthorhombic PbF 2 phase. Green up-conversion luminescence due to the 4S 3/2- 4I 15/2 transition of Er 3+ ions was registered. In comparison to the precursor glass the luminescence intensity was considerably higher, whereas the luminescence linewidth slightly decreased in the studied oxyfluoride transparent glass-ceramics. It indicated that a part of the trivalent erbium was incorporated into the PbF 2 crystalline phase.

  19. Composition-structure-properties relationship of strontium borate glasses for medical applications.

    PubMed

    Hasan, Muhammad S; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-07-01

    We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable. © 2014 Wiley Periodicals, Inc.

  20. Thermo-optical characteristics and concentration quenching effects in Nd3+doped yttrium calcium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, D. R. S.; Santos, C. N.; de Camargo, A. S. S.; Silva, W. F.; Santos, W. Q.; Vermelho, M. V. D.; Astrath, N. G. C.; Malacarne, L. C.; Li, M. S.; Hernandes, A. C.; Ibanez, A.; Jacinto, C.

    2011-03-01

    In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd2O3-(5-x)Y2O3-40CaO-55B2O3 (0 ≤ x ≤ 1.0 mol%). Their fluorescence quantum efficiency (η) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Förster-Dexter model of multipolar ion-ion interactions. A maximum η = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd3+ content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of η on the Nd3+ concentration with a high optimum Nd3+ concentration put this system as a strong candidate for photonics applications.

  1. Reaction of sodium calcium borate glasses to form hydroxyapatite.

    PubMed

    Han, Xue; Day, Delbert E

    2007-09-01

    This study investigated the transformation of two sodium calcium borate glasses to hydroxyapatite (HA). The chemical reaction was between either 1CaO . 2Na(2)O . 6B(2)O(3) or 2CaO . 2Na(2)O . 6B(2)O(3) glass and a 0.25 M phosphate (K(2)HPO(4)) solution at 37, 75 and 200 degrees C. Glass samples in the form of irregular particles (125-180 microm) and microspheres (45-90 and 125-180 microm) were used in order to understand the reaction mechanism. The effect of glass composition (calcium content) on the weight loss rate and reaction temperature on crystal size, crystallinity and grain shape of the reaction products were studied. Carbonated HA was made by dissolving an appropriate amount of carbonate (K(2)CO(3)) in the 0.25 M phosphate solution. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy were used to characterize the reaction products. The results show that sodium calcium borate glasses can be transformed to HA by reacting with a phosphate solution. It is essentially a process of dissolution of glass and precipitation of HA. The transformation begins from an amorphous state to calcium-deficient HA without changing the size and shape of the original glass sample. Glass with a lower calcium content (1CaO . 2Na(2)O . 6B(2)O(3)), or reacted at an elevated temperature (75 degrees C), has a higher reaction rate. The HA crystal size increases and grain shape changes from spheroidal to cylindrical as temperature increases from 37 to 200 degrees C. Increase in carbonate concentration can also decrease the crystal size and yield a more needle-like grain shape.

  2. Optical and Physical Investigations of Lanthanum Bismuth Borate glasses doped with Ho2O3

    NASA Astrophysics Data System (ADS)

    Ramesh, P.; Jagannath, G.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Holmium doped 10La2O3-15Bi2O3-(75-x) B2O3 (Ho3+: LBB) glasses have been prepared by melt quench technique and the impact of holmium ions concentration on optical and physical properties of present glasses have been examined. Ho3+ dependent density, molar volume, refractive index, rare earth ion concentration, polaron radius, inter ionic distance, field strength and energy band gap are calculated and tabulated. Amorphous nature of the all glasses has been confirmed by XRD patterns. The room temperature (RT) Uv-Vis absorption spectrum doped with 1 mol% of Ho2O3 exhibit eight prominent bands centred at 895, 641, 537, 486, 472, 467, 451 and 416 due to transition between ground state to various excited states. The results show that, the density is increases and molar volume of the glasses is decreases with an increase in Ho2O3 concentration and consequently generate more non-bridging oxygen (NBOs) in the glass matrix. The Urbach energy is increases with holmium concentration which exemplifies the degree of disorder present in the LBB glasses. The considerable increase in field strength observed in present glasses is attributed to occurrence of strong bridge between Ho3+ and B- ions and this strong bridge is possibly due to the displacement between Ho3+ and oxygen atoms which are generated from the conversion BO3-BO4 units.

  3. A medium range order structural connection to the configurational heat capacity of borate-silicate mixed glasses.

    PubMed

    Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng

    2016-04-28

    It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).

  4. Third order nonlinear optical properties of bismuth zinc borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V., E-mail: ravi.phy@pondiuni.edu.in; Kuladeep, R.

    2013-12-28

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due tomore » dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.« less

  5. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.

    PubMed

    Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

    2014-01-01

    Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation.

  6. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  7. Structure-property relations in lanthanide borate glasses

    NASA Technical Reports Server (NTRS)

    Chakraborty, I. N.; Day, D. E.; Lapp, J. C.; Shelby, J. E.

    1985-01-01

    Glass formation in the system Ln2O3-B2O3 (Ln = Nd, Sm) was studied. Glasses could be formed in the range from 0 to 28 mol pct rare-earth oxide (Ln2O3), but liquid immiscibility in these systems limits the range of homogeneous glasses to 0 to 1.5 and 25 to 28 mol pct Ln2O3. The infrared spectra indicate that the rare-earth-rich glasses are structurally similar to rare-earth metaborates (LnB3O6) which contain (B3O6)-infinity chains. The variation in density, transformation temperature, thermal expansion coefficient, and transformation-range viscosity of these glasses with the size of the rare-earth ion is discussed. Glasses near the metaborate composition have a transformation temperature of about 700 C, which is high for binary borate glasses. Glasses could not be formed in the systems Eu2O3-, Gd2O3-, Ho2O3-, and Er2O3-B2O3, even by quenching at 1300 C/s. The sudden lack of glass formation in the system Ln2O3-B2O3 with Ln(3+) ions smaller than Sm(3+) is explained on the basis of the size effect of the Ln(3+) ion on the stability of (B3O6)-infinity chains in these metaborates.

  8. Gamma-ray shielding effect of Gd3+ doped lead barium borate glasses

    NASA Astrophysics Data System (ADS)

    Kummathi, Harshitha; Naveen Kumar, P.; Vedavathi T., C.; Abhiram, J.; Rajaramakrishna, R.

    2018-05-01

    The glasses of the batch xPbO: 10BaO: (90-x)B2O3: 0.2Gd2O3 (x = 40,45,50 mol %) were prepared by melt-quench technique. The work emphasizes on gamma ray shielding effect on doped lead glasses. The role of Boron is significant as it acts as better neutron attenuator as compared with any other materials, as the thermal neutron cross-sections are high for Gadolinium, 0.2 mol% is chosen as the optimum concentration for this matrix, as higher the concentration may lead to further increase as it produces secondary γ rays due to inelastic neutron scattering. Shielding effects were studied using Sodium Iodide (NaI) - Scintillation Gamma ray spectrometer. It was found that at higher concentration of lead oxide (PbO) in the matrix, higher the attenuation which can be co-related with density. Infra-red (I.R.) spectra reveals that the conversion of Lose triangles to tight tetrahedral structure results in enhancement of shielding properties. The Differential Scanning Calorimeter (D.S.C.) study also reveals that the increase in glass forming range increases the stability which in-turn results in inter-conversion of BO3 to BO4 units such that the density of glass increases with increase in PbO content, resulting in much stable and efficient gamma ray shielding glasses.

  9. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.

  10. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution.

    PubMed

    Zhao, Di; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Wang, Deping

    2009-05-01

    The effect of replacing varying amounts (0-2.5 mol.%) of B2O3 with Al2O3 in a borate glass on (1) the conversion of the glass to HA in an aqueous phosphate solution and (2) the compressive strength of the as-formed HA product was investigated. Samples of each glass (10 x 10 x 8 mm) were placed in 0.25 M K2HPO4 solution at 60 degrees C, and the conversion kinetics to HA were determined from the weight loss of the glass and the pH of the solution. The structure and composition of the solid reaction products were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. While the conversion rate of the glass to HA decreased considerably with increasing Al2O3 content, the microstructure of the HA product became denser and the compressive strength of the HA product increased. The addition of SiO2 to the Al2O3-containing borate glass reversed the deterioration of the conversion rate, and produced a further improvement in the strength of the HA product. The compressive strength of the HA formed from the borate glass with 2.5 mol.% Al2O3 and 5 mol.% SiO2 was 11.1 +/- 0.2 MPa, which is equal to the highest strengths reported for trabecular bone. The results indicated that simultaneous additions of Al2O3 and SiO2 could be used to control the bioactivity of the borate glass and to enhance the mechanical strength of the HA product. Furthermore, the HA product formed from the glass containing both SiO2 and Al2O3 could be applied to bone repair.

  11. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  12. Preparation and properties of porous microspheres made from borate glass.

    PubMed

    Conzone, Samuel D; Day, Delbert E

    2009-02-01

    Dysprosium lithium-borate glass microspheres and particles, ranging from 45 to 150 microm in diameter, were reacted with a 0.25 M phosphate solution at 37 degrees C, whose pH was either 3 or 8.8. The glass reacted nonuniformly and was converted into a porous, amorphous, hydrated, dysprosium phosphate reaction product. The amorphous product had the same volume and shape (pseudomorphic) as the unreacted glass, and could be dried without cracking. After heating at 300 degrees C for 1 h, the amorphous reaction product had a specific surface area of approximately 200 m(2)/g, a pore size of approximately 30 nm, and nominal crushing strength of approximately 10 MPa. When the reaction product was heated to 600 degrees C for 15 min, the specific surface area decreased to approximately 90 m(2)/g and the nominal crushing strength increased to 35 MPa. Heating above 615 degrees C converted the amorphous dysprosium phosphate product into crystalline DyPO(4), which contained open porosity until heated above 800 degrees C for 15 min. Highly porous materials of different chemical composition can be prepared by chemically reacting a borate-based glass with an aqueous solution at low-temperature (<100 degrees C). These highly porous materials are easy to process, and are considered candidates for controlled drug delivery, catalysis, chromatographic separation, filtration, and as bioactive materials.

  13. The preparation and characterization of a lithium borate glass prepared by the gel technique

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Neilson, G. F.; Smith, G. L.; Dunn, B.; Moore, G. S.; Mackenzie, J. D.

    1985-01-01

    The preparation of an amorphous lithium borate gel by the metal organic procedure is described. In addition, a preliminary evaluation of the behavior of the gel upon heating is given. In particular the crystallization tendency of the gel is studied with the aid of DTA and X-ray diffraction, and the structural changes in the gel are monitored with the aid of IR spectroscopy. The glass produced from the lithium borate gel is compared to both the gel precursor material and a glass of similar composition prepared by conventional techniques. Specifically, the relevant water contents, crystallization behavior, and structural features are contrasted.

  14. Relaxation dynamics in AgI-doped silver vanadate superionic glasses.

    PubMed

    Bhattacharya, S; Ghosh, A

    2005-09-22

    Relaxation dynamics of Ag+ ions in several series of AgI-Ag2O-V2O5 superionic glasses has been studied in the frequency range from 10 Hz to 2 MHz and in the temperature range from 93 to 323 K. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. The frequency-dependent electrical data have been analyzed in the framework of conductivity formalism. We have obtained the mobile ion concentration and the power-law exponent from the analysis of the conductivity spectra. We have observed that the concentration of Ag+ ions is independent of temperature and the conductivity is primarily determined by the mobility. A fraction of the Ag+ ions in the glass compositions are involved in the dynamic process. We have also shown that the power-law exponent is independent of temperature. The results are also supported by the temperature and composition independence of the scaling of the conductivity spectra.

  15. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghunatha, S.; Eraiah, B., E-mail: eraiah@rediffmail.com

    2016-05-06

    Holmium doped lithium-antimony-lead borate glasses having 1 mol% AgNO{sub 3} with composition 50B{sub 2}O{sub 3}-20PbO-25Sb{sub 2}O{sub 3}-5Li{sub 2}O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range ofmore » 2.31 to 2.37.« less

  16. Preparation and characterization of magnesium borate for special glass

    NASA Astrophysics Data System (ADS)

    Dou, Lishuang; Zhong, Jianchu; Wang, Hongzhi

    2010-05-01

    Magnesium borate with a variety of B2O3/MgO molar ratios, which can be applied for special glass, has been prepared through the reaction of light-burned magnesia with boric acid by a hydrothermal method. The effects of the B2O3/MgO molar ratio of raw materials, reaction time, temperature and liquid to solid ratio (ml g-1) on the synthetic product are investigated. The XRD and TG-DTG analyses indicate that the prepared magnesium borate is a mixture of magnesium hexaborate hydrate and ascharite. The results show that high B2O3/MgO molar ratios of raw materials and low reaction liquid-solid ratios favour the product with a high B2O3/MgO molar ratio and vice versa. There exists free MgO in the product when the reaction temperature is below 140 °C or the reaction time is not enough, because of the incomplete reaction of magnesium oxide with boric acid. The process of fractional crystallization for the magnesium borate mixture is also discussed.

  17. Emission properties of Ce-doped alkaline earth borate glasses for scintillator applications

    NASA Astrophysics Data System (ADS)

    Torimoto, Aya; Masai, Hirokazu; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-11-01

    We investigate the photoluminescence (PL) and X-ray-induced luminescence properties of 0.1 mol% Ce-doped MO-B2O3 (M = Ca, Sr, and Ba) glasses. We also determine the Ce3+/(Ce3++Ce4+) ratio by X-ray absorption near-edge structure analyses. The emission intensities of PL, X-ray scintillation, and thermally stimulated luminescence (TSL) depend on the host glass composition. The order of the PL intensity from highest to lowest is as follows: Ca-substituted glass, Ba-substituted glass, and Sr-substituted glass. Our results suggest that the optical absorption edge and quantum yield (QY) are influenced by the local coordination state of Ce3+, which, in turn, is likely to be affected by the optical basicity. The order of the X-ray scintillation intensity from highest to lowest is reverse of that of the PL intensity. This is probably because the interaction probability of X-rays with matter depends on the effective atomic number of the material and the effective atomic number has a stronger influence on the scintillation intensity than does the QY. Though the TSL glow curves reveal that the density and energy depth of the trap sites depend on the substituted alkaline earth oxides, we are unable to correlate the electron spin resonance (ESR) spectra with the TSL results. Therefore, it is considered that the ESR active sites are not responsible for the TSL in these systems.

  18. Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications

    NASA Astrophysics Data System (ADS)

    Deopa, Nisha; Rao, A. S.

    2017-10-01

    Photoluminescence (PL) characterization of Lithium Lead Alumino Borate (LiPbAlB) glasses doped with Sm3+ ions at varying concentrations have been studied by using absorption, excitation, emission, time resolved and confocal image measurements. From the absorption spectra, Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ion doped LiPbAlB glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2, for which the emission cross-sections and branching ratios were evaluated to know the potentialities of these materials as visible luminescent devices. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition level were used to estimate quantum efficiency of the as-prepared glasses. The non-exponential decay curves observed for higher Sm3+ ion concentrations were well fitted to Inokuti-Hirayama model to understand the predominant energy transfer mechanism involved in the as-prepared glasses. CIE chromaticity coordinates and correlated color temperatures (CCT) were evaluated to understand the utility of the titled glasses in cool white light generation. The confocal images captured under 405 nm CW laser excitation show intense reddish-orange color. From the evaluated radiative parameters, emission cross-sections, quantum efficiency, CIE co-ordinates, CCT temperatures and confocal images, it was observed that LiPbAlB glass with 0.5 mol% Sm3+ ions are more suitable for w-LEDs and reddish-orange luminescent device applications.

  19. Borates

    USGS Publications Warehouse

    Angulo, M.A.

    2011-01-01

    The article discusses the latest developments in the borates industry, particularly in the U.S., as of June 2011. It claims that the biggest economically feasible deposits of borates are seen in the U.S.' Mojave Desert, the Alpide belt in southern Asia and the Andean belt of South America. Turkish state-owned mining firm Eti Maden AS reported that borates were mainly used in the manufacture of glass, ceramics, fertilizer and detergent in 2009.

  20. Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses.

    PubMed

    Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M

    2010-03-01

    Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.

    PubMed

    Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P

    2015-03-05

    Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effect of MoO3 on electron paramagnetic resonance spectra, optical spectra and dc conductivity of vanadyl ion doped alkali molybdo-borate glasses

    NASA Astrophysics Data System (ADS)

    Agarwal, A.; Khasa, S.; Seth, V. P.; Sanghi, S.; Arora, M.

    2014-02-01

    Alkali molybdo-borate glasses having composition xMoO3·(30 - x)M2O·70B2O3 and xMoO3·(70 - x)B2O3·30M2O (M = Li, Na, K) with 0 ⩽ x ⩽ 15 (mol%) doped with 2.0 mol% of V2O5 have been prepared in order to study the influence of MoO3 on electrical conductivity, electron paramagnetic resonance (EPR) and optical spectra. From EPR studies it is observed that V4+ ions in these samples exist as VO2+ ions in octahedral coordination with a tetragonal compression and belong to C4V symmetry. The tetragonal nature and octahedral symmetry of V4+O6 complex increase as well as decrease depending upon the composition of glasses with increase in MoO3 but 3dxy orbit of unpaired electron in the VO2+ ion expands in all the glasses. The decrease in optical band gap suggests that there is an increase in the concentration of non-bridging oxygen's. From the study of optical transmission spectra it is observed that for all the glasses the degree of covalency of the σ-bonding decreases with increase in MoO3 content and the degree of covalency of the π-bonding also varies. These results based on optical spectroscopy are in agreement with EPR findings. It is found that dc conductivity decreases and activation energy increases with increase in MoO3:M2O (M = Li, Na, K) ratio in MoO3·M2O·B2O3 glasses, whereas the conductivity increases and activation energy decreases with increase in MoO3:B2O3 ratio in xMoO3·B2O3·M2O glasses, which is governed by the increase in nonbridging oxygen's. The variation in theoretical optical basicity, Λth is also studied.

  3. Framework influence of erbium doped oxyfluoride glasses on their optical properties

    NASA Astrophysics Data System (ADS)

    Środa, Marcin; Cholewa-Kowalska, Katarzyna; Różański, Marek; Nocuń, Marek

    2011-01-01

    Glasses of different matrix (phosphate, borate, silicate and lead-silicate) were studied for their optical properties. The effect of Er dopant on transmittance and luminescence properties was presented. The significant “red shift” and “blue shift” of UV edge absorption were discussed based on the changes in the framework of the borate and phosphate glasses, respectively. It was showed that the integral intensity of the two main optical absorption transitions monotonically increases with the order: phosphate < borate < silicate < lead-silicate. Ellipsometric measurement was applied to obtain the refractive index of the glasses. The correlation between the shift of edge absorption and the change of refractive index was presented. Effect of glassy matrix on luminescence of Er3+ was discussed.

  4. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone.

    PubMed

    Cui, Xu; Zhao, Cunju; Gu, Yifei; Li, Le; Wang, Hui; Huang, Wenhai; Zhou, Nai; Wang, Deping; Zhu, Yi; Xu, Jun; Luo, Shihua; Zhang, Changqing; Rahaman, Mohamed N

    2014-03-01

    Osteomyelitis (bone infection) is often difficult to cure. The commonly-used treatment of surgical debridement to remove the infected bone combined with prolonged systemic and local antibiotic treatment has limitations. In the present study, an injectable borate bioactive glass cement was developed as a carrier for the antibiotic vancomycin, characterized in vitro, and evaluated for its capacity to cure osteomyelitis in a rabbit tibial model. The cement (initial setting time = 5.8 ± 0.6 min; compressive strength = 25.6 ± 0.3 MPa) released vancomycin over ~25 days in phosphate-buffered saline, during which time the borate glass converted to hydroxyapatite (HA). When implanted in rabbit tibial defects infected with methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis, the vancomycin-loaded cement converted to HA and supported new bone formation in the defects within 8 weeks. Osteomyelitis was cured in 87 % of the defects implanted with the vancomycin-loaded borate glass cement, compared to 71 % for the defects implanted with vancomycin-loaded calcium sulfate cement. The injectable borate bioactive glass cement developed in this study is a promising treatment for curing osteomyelitis and for regenerating bone in the defects following cure of the infection.

  5. Local distortion and EPR parameters of copper(II) in borate glasses

    NASA Astrophysics Data System (ADS)

    Kuang, Min-Quan; Wang, Li-Dan; Duan, Shu-Kai

    2017-12-01

    The EPR parameters (g and A tensors) of the paramagnetic Cu2+ sites in CaB4O7, LiCaBO3, Li2B4O7, KLiB4O7 glasses are well explained by utilizing the fourth-order perturbation formulas for 3 d9 ions in the tetragonally elongated octahedral [CuO6]10- clusters. The magnitude of the local distortion for the [CuO6]10- clusters suffering the Jahn-Teller effect is denoted by the relative elongation ratio ρ which is proportional to the ratio Δg///Δg⊥ (Δg//= g//-gs and Δg⊥ = g⊥-gs). The g isotropies giso (=(g//+2g⊥)/3) undergo an linear increase with the decline of the covalecny of the glass systems (i.e., the augment of the orbital reduction factor k). The signs of the hyperfine structure constants are determined by computing the quantitative contributions arising from the isotropic and anisotropic copper 3d-3s (4s) orbital admixtures indicated by the core polarization constant κ and the reduction factor H, respectively. The above correlations are proved to be available for analogous borate glasses doping with copper ions, e.g., MRbB4O7 (M = Li, Na and K), 90M2B4O7·9PbO·CuO (M = Li, Na and K), 10MO·30ZnO·60B2O3 (M = Mg, Ca and Sr) and xLi2O·(30-x)Na2O·69.5B2O3 (5 ≤ x ≤ 25 mol%), and all the results are discussed.

  6. Effect of silver nanoparticles on the fluorescence of Pb2+ and compositional dependence of Sm3+ fluorescence in borate glasses

    NASA Astrophysics Data System (ADS)

    Olumoroti, Akinloluwa T.

    Borate glasses have been widely studied due to their good optical and mechanical properties. Lead and bismuth (PbO/Bi2O 3:B2O3) borate glasses belong to a family of heavy metal oxide (HMO) glasses which are well known to be chemically durable, stable against atmospheric moisture, have low melting temperatures and good corrosion resistance. The first part of this work deals with lead borate glasses with silver nanoparticles (NPs) introduced into the glass matrix. Transmission electron microscopy characterization is done to verify the nucleation of NPs. Fluorescence and optical absorption experiments are then carried out after different heat treatment duration to investigate the influence of silver NPs on the optical properties of lead (Pb2+) by comparing with a glass sample without silver NPs. Optical absorption experiments show that a well-defined surface plasmon resonance (SPR) peak due to Ag NPs can be observed only for samples that were annealed for 36 hrs. Pb2+ fluorescence spectra reveal that the presence of silver NPs creates new emission centers for Pb2+ ions by altering their chemical environment. The second part of the work involves the use of samarium (a rare earth ion) as a dopant in lead and bismuth borate glasses. The concentration of samarium (Sm3+) is fixed and the base glass composition is varied. The goal is to investigate the compositional dependence of optical properties of samarium in the base glass (PbO/Bi2O3:B 2O3). Optical absorption spectra have been collected and the oscillator strength of each transition - including the hypersensitive - is obtained. The Optical absorption edge is found to shift toward lower energies with increasing PbO/Bi2O3 concentration. Both the oscillator strength and the peak position of the hypersensitive transition show significant variation with glass composition. Strong interaction between Sm3+ ions and Pb2+/Bi3+ ions can also be seen from the variations in the fluorescence emission properties of Sm3+ as a

  7. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the opticalmore » absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.« less

  8. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model.

    PubMed

    Zhang, Yadong; Cui, Xu; Zhao, Shichang; Wang, Hui; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-02-04

    The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 ± 1.2 min) and a compressive strength of 19 ± 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery.

  9. Structural influence of mixed transition metal ions on lithium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Dahiya, Manjeet S.; Hooda, A.; Chand, Prem; Khasa, S.

    2017-08-01

    Lithium bismuth borate glasses containing mixed transition metals having composition 7CoO·23Li2O·20Bi2O3·50B2O3 (CLBB), 7V2O5·23Li2O·20Bi2O3·50B2O3 (VLBB) and x(2CoO·V2O5)·(30 - x)Li2O·20Bi2O3·50B2O3 (x = 0.0 (LBB) and x = 2.0, 5.0, 7.0, 10.0 mol% (CVLBB1-4)) are synthesized via melt quench route. The synthesized compositions are investigated for their physical properties using density (D) and molar volume (Vm), thermal properties by analyzing DSC/TG thermo-graphs, structural properties using IR absorption spectra in the mid-IR range and optical properties using UV-Vis-NIR spectroscopy. The Electron Paramagnetic Resonance (EPR) spectra of vanadyl and cobalt ion have been analyzed to study compositional effects on spin-Hamiltonian parameters. The non linear variations in physical properties depict a strong structural influence of Co/V- oxides on the glassy matrix. The compositional variations in characteristic temperatures (glass transition temperature Tg, glass crystallization temperature Tp and glass melting temperature Tm) reveals that Tg for glass samples CLBB is relatively less than that of pure lithium bismuth borate (LBB) glass sample wherein Tg for sample VLBB is higher than that of LBB. The increase in Tg (as compared with LBB) with an enhanced substitution of mixed transition metal oxides (2CoO·V2O5) shows a progressive structure modification of bismuth borate matrix. These predictions are very well corroborated by corresponding compositional trends of Tp and Tm. FTIR studies reveal that Co2+& VO2+ ions lead to structural rearrangements through the conversion of three-coordinated boron into four coordinated boron and thereby reducing number of non-bridging oxygen atoms. Bismuth is found to exist in [BiO6] octahedral units only, whereas boroxol rings are not present in the glass network. The theoretical values of optical basicity (Λth) and corresponding oxide ion polarizability (αo2-) have also been calculated to investigate oxygen covalency of

  10. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    PubMed

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Effect of B2O3 on luminescence of erbium doped tellurite glasses.

    PubMed

    Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Dai, Shixun; Wang, Xunsi

    2007-02-01

    The B2O3 was introduced into the Er3+ doped TeO2-ZnO-Na2O glass to increase the phonon energy of the host. The effect of B2O3 on the non-radiative rate of the 4I11/2-->4I13/2 transition of Er3+, the lifetime of the 4I11/2 and 4I13/2 levels, the green and red upconversion emissions intensity, and the 4I13/2-->4I15/2 emission intensity was discussed. The results show that the phonon energy of boro-tellurite glass is close to that of germanate glass and is quite smaller than that of borate glass. The lifetime of 4I11/2 level and the upconversion emissions decrease with increasing B2O3 concentration. The higher OH group concentration presented in the boro-tellurite glass may shorten the lifetime of 4I13/2 level and also reduce the quantum efficiency of 4I13/2-->4I15/2 emission. The future dehydrating procedures are suggested to enhance the efficiency of amplification at 1.5 microm band.

  12. Evaluation of gamma-ray attenuation properties of bismuth borate glass systems using Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D. A.; Gurler, Orhan

    2017-11-01

    A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi2O3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented.

  13. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin.

    PubMed

    Xie, Zongping; Liu, Xin; Jia, Weitao; Zhang, Changqing; Huang, Wenhai; Wang, Jianqiang

    2009-10-15

    The effectiveness of a degradable and bioactive borate glass has been compared with the clinically used calcium sulfate in the treatment of osteomyelitis of rabbits, as a carrier for vancomycin. The bone infections were induced in the tibias of 65 rabbits by injecting methicillin-resistant Staphylococcus aureus (MRSA). After 3 weeks, these rabbits were distributed into 4 groups and treated by debridement. Pure borate glass (BG), vancomycin-loaded calcium sulfate (VCS) and vancomycin-loaded borate glass (VBG) were implanted into the infection sites of groups 2 to 4 respectively. After 8 weeks, the effectiveness of treatment was assessed radiographically, bacteriologically, and histopathologically. The results showed that the negative rates of MRSA examination for rabbits were 36.36%, 18.18%, 73.33% and 81.25% respectively for groups 1 to 4. Significant differences were observed radiographically, bacteriologically, and histopathologically between groups 1 and 4, groups 2 and 3, and between groups 2 and 4. The best result of treatment was observed in group 4. Radiographically, VBG was found to be mostly reabsorbed and replaced by lots of new bones, whereas, VCS was completely reabsorbed and replaced by modest new bones. Histopathologically, there were lots of newly formed bones around VBG without any foreign body response, and only modest new bones around VCS with obvious foreign body response. VBG proved to have excellent biocompatibility and to be very effective in eradicating osteomyelitis and simultaneously stimulating bone regeneration, avoiding the disadvantages of VCS.

  14. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution.

    PubMed

    Liu, Xin; Pan, Haobo; Fu, Hailuo; Fu, Qiang; Rahaman, Mohamed N; Huang, Wenhai

    2010-02-01

    Porous scaffolds of a borate-based glass (composition in mol%: 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5), with interconnected porosity of approximately 70% and pores of size 200-500 microm, were prepared by a polymer foam replication technique. The degradation of the scaffolds and conversion to a hydroxyapatite-type material in a 0.02 M K2HPO4 solution (starting pH = 7.0) at 37 degrees C were studied by measuring the weight loss of the scaffolds, as well as the pH and the boron concentration of the solution. X-ray diffraction, scanning electronic microscopy and energy dispersive x-ray analysis showed that a hydroxyapatite-type material was formed on the glass surface within 7 days of immersion in the phosphate solution. Cellular response to the scaffolds was assessed using murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed that the scaffolds supported cell attachment and proliferation during the 6 day incubation. The results indicate that this borate-based glass could provide a promising degradable scaffold material for bone tissue engineering applications.

  15. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  16. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    PubMed

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effect of zinc-borate glass addition on the thermal properties of the cordierite/Al2O3 composites containing nano-sized spinel crystal.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-11-01

    Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km).

  18. Spectroscopic properties of Sm3 + ions doped Alkaliborate glasses for photonics applications

    NASA Astrophysics Data System (ADS)

    Nagaraj, R.; Suthanthirakumar, P.; Vijayakumar, R.; Marimuthu, K.

    2017-10-01

    A new series of Sm3 + doped alkaliborate glasses have been prepared by melt quenching technique and their structural and spectroscopic properties were analysed employing XRD, FTIR, optical absorption, photoluminescence and decay spectral measurements in order to explore their suitability for photonic applications. The amorphous nature have been confirmed through XRD analysis and the FTIR spectra reveal the presence of fundamental stretching and bending vibrations of the borate networks in the prepared glasses. From the absorption peak positions, bonding parameter (δ) values were calculated to examine the nature of the metal-ligand bond. The optical band gap (Eopt) corresponds to the direct and indirect allowed transitions and the Urbach energies (ΔE) were calculated from the absorption spectra to understand the electronic band structure of the studied glasses. The Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6) were determined to explore the symmetry of the ligand environment around the Sm3 + ions in the studied glasses. The luminescence spectra exhibit four emission bands in the visible region due to the 4G5/2 → 6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions. The radiative parameters such as transition probability (A), stimulated emission cross-section (σPE), branching ratios (βR) and radiative lifetime (τR) have been determined from the luminescence spectra using JO theory to ensure the suitability of the studied glasses for optoelectronic applications. The luminescence spectra were characterized through CIE 1931 chromaticity diagram to examine the dominant emission color of the studied glasses. The lifetime values of the Sm3 + doped studied glasses pertaining to the 4G5/2 excited level have been determined through decay curve measurements and the non-exponential decay curves were fitted to the Inokuti-Hirayama model to analyze the energy transfer mechanism between the nearby Sm3 + ions. The obtained results were discussed and compared with the

  19. Processing and optical characterization of lead calcium titanate borosilicate glass doped with germanium

    NASA Astrophysics Data System (ADS)

    Gautam, C. R.; Das, Sangeeta; Gautam, S. S.; Madheshiya, Abhishek; Singh, Anod Kumar

    2018-04-01

    In this study, various compositions of lead calcium titanate borosilicate glass doped with a fixed amount of germanium were synthesized using the rapid melt quench technique. The amorphous nature of the synthesized glass was confirmed by X-ray diffraction and scanning electron microscopy analyses. The structural and optical properties were deduced using Raman, Fourier transform infrared (FTIR), and ultraviolet-visible (UV-Vis) spectroscopy. FTIR spectroscopy confirmed the presence of borate groups in triangular and tetrahedral coordination. Infrared and Raman analyses detected the vibrational bonds of Gesbnd Osbnd Ge, Bsbnd Osbnd Ge, Sisbnd Osbnd Ge, Sisbnd Osbnd Si, and Pbsbnd Osbnd Ge. The energy band gaps were evaluated for the prepared glass samples based on Tauc plots of the UV-Vis spectra. The calculated values of the optical band gap decreased from 2.91 to 2.85 eV as the PbO content increased from x = 0.0 to x = 0.7. Furthermore, the Urbach energy was studied based on the UV-Vis results to confirm the disordered structure of the glass. The calculated densities of the glass samples (1.5835 g/cm3 to 3.9184 g/cm3) increased as the concentration of PbO increased, whereas they decreased with the molar volume.

  20. Using neutrons, X-rays and nuclear magnetism to determine the role of transition metal oxide inclusions on both glass structure and stability in automotive glass enamels.

    PubMed

    Bowron, Daniel T; Booth, Jonathan; Barrow, Nathan S; Sutton, Patricia; Johnson, Simon R

    2018-05-23

    Low levels of transition metal oxides in alkali borosilicate glass systems can drastically influence crystallisation and phase separation properties. We investigated the non-monotonic effect of manganese doping on suppressing crystallisation, and the influence on optical properties by iron oxide doping, in terms of local atomic structure. Structural models based on empirical potential structure refinement were generated from neutron and X-ray scattering data, and compared against multinuclear solid-state NMR. This revealed that a 2.5% manganese doping had a disruptive effect on the entire glass network, supressing crystallisation of an undesired bismuth silicate phase, and that iron species preferentially locate near borate tetrahedra. Preventing phase separation and controlling crystallisation behaviour of glass are critical to the ultimate properties of automotive glass enamels.

  1. Large Faraday effect of borate glasses with high Tb3+ content prepared by containerless processing

    NASA Astrophysics Data System (ADS)

    Suzuki, Futoshi; Sato, Fumio; Oshita, Hiroyuki; Yao, Situ; Nakatsuka, Yuko; Tanaka, Katsuhisa

    2018-02-01

    Borate glasses containing a large amount of Tb3+ ions have been prepared by containerless processing. The content of Tb2O3 reached 60 mol%. The glass bearing the highest content of Tb3+ ions showed a large Faraday effect; the Verdet constant was 234 rad/T m. Annealing of the glasses in H2/N2 atmosphere resulted in a low optical absorption coefficient, leading to an extremely large magneto-optical figure of merit that was ∼1.7 times higher than that of Tb3Ga5O12 single crystal.

  2. A mechanistic study of the interaction of water-soluble borate glass with apatite-bound heterocyclic nitrogen-containing bisphosphonates.

    PubMed

    Pramanik, Chandrani; Sood, Parveen; Niu, Li-Na; Yuan, He; Ghoshal, Sushanta; Henderson, Walter; Liu, Yaodong; Jang, Seung Soon; Kumar, Satish; Pashley, David H; Tay, Franklin R

    2016-02-01

    Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) is associated with osteonecrosis of the jaw. Although N-BPs bind strongly to bone surfaces via non-covalent bonds, it is possible for extrinsic ions to dissociate bound N-BPs from mineralized bone by competitive desorption. Here, we investigate the effects and mechanism of using an ionic cocktail derived from borate bioactive glass for sequestration of heterocyclic N-BPs bound to apatite. By employing solid-state and solution-state analytical techniques, we confirmed that sequestration of N-BPs from bisphosphonate-bound apatite occurs in the presence of the borate-containing ionic cocktail. Simulations by density functional theory computations indicate that magnesium cation and borate anion are well within the extent of the risedronate or zoledronate anion to form precipitate complexes. The sequestration mechanism is due to the borate anion competing with bisphosphonates for similar electron-deficient sites on the apatite surface for binding. Thus, application of the borate-containing ionic cocktail represents a new topical lavage approach for removing apatite-bound heterocyclic N-BPs from exposed necrotic bone in bisphosphonate-related osteonecrosis of the jaw. Long-term oral consumption and injections of nitrogen-containing bisphosphonates (N-BPs) may result in death of the jaw bone when there is traumatic injury to the bone tissues. To date, there is no effective treatment for such a condition. This work reported the use of an ionic cocktail derived from water-soluble borate glass microfibers to displace the most potent type of N-BPs that are bound strongly to the mineral component on bone surfaces. The mechanism responsible for such an effect has been identified to be cation-mediated complexation of borate anions with negatively-charged N-BPs, allowing them to be released from the mineral surface. This borate-containing cocktail may be developed into a novel topical rinse for

  3. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions.

    PubMed

    Huang, Wenhai; Day, Delbert E; Kittiratanapiboon, Kanisa; Rahaman, Mohamed N

    2006-07-01

    Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37 degrees Celsius. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO(2) with B(2)O(3). Higher B(2)O(3) content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO(2) in a Na-depleted core. The concentration of Na(+) in the phosphate solution increased with reaction time whereas the PO(4) (3-) concentration decreased, both reaching final limiting values at a rate that increased with the B(2)O(3) content of the glass. However, the Ca(2+) concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K(2)HPO(4) and K(2)CO(3) produced a carbonate-substituted HA but the presence of the K(2)CO(3) had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process.

  4. Volume and structural relaxation in compressed sodium borate glass.

    PubMed

    Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M

    2016-11-21

    The structure and properties of glass can be modified through compression near the glass transition temperature (T g ), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near T g at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its T g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11 B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B III ) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B IV ), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near T g , but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B III ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

  5. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Melo, B. M. G.; Graça, M. P. F.; Prezas, P. R.; Valente, M. A.; Almeida, A. F.; Freire, F. N. A.; Bih, L.

    2016-08-01

    In this work, phosphate-borate based glasses with molar composition 20.7P2O5-17.2Nb2O5-13.8WO3-34.5A2O-13.8B2O3, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σac and σdc, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz-1 MHz.

  6. Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Caldiño, U.; Kityk, I. V.; Mahdi, M. A.

    2017-10-01

    By using melt quenching technique, good optical quality singly doped Dy3+ or Tb3+ and Dy3+/Tb3+-codoped borate glasses were synthesized and studied by optical absorption, excitation, emission and decay lifetimes curve analysis. Following the absorption spectrum, the evaluated Judd-Ofelt (J-O) intensity parameters (Ωλ (λ = 2, 4 and 6)) were used to calculate the transition probability (AR), the branching ratio (βR), and the radiative lifetime (τR) for different luminescent transitions such as 4I15/2 → 6H15/2, 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, 4F9/2 → 6H11/2 and 4F9/2 → 6H9/2,6F11/2 for the 0.5 mol % singly Dy3+-doped glass. The βR calculated (65%) indicates that for lasing applications, 4F9/2 → 6H13/2 emission transition is highly suitable. For all the Dy3+/Tb3+-codoped glasses, Tb3+: 5D3→7F6 emission decay lifetime curves are found to be non-exponential in nature for different concentrations of Dy3+ codoping. Using the Inokuti-Hirayama model, these nonexponential decay curves were analyzed to identify the nature of the energy transfer (ET) processes and here the electric dipole-dipole interaction is dominant for the ET. Based on the excitation and emission spectra and decay lifetimes curve analysis, the cross relaxation and ET processes between Dy3+ and Tb3+ were confirmed. For the 0.5 mol % Tb3+ and 2.0 mol % Dy3+-codoped glass, the evaluated Tb3+→Dy3+ ET efficiency (η) is found to be 45% under 369 nm excitation. Further, for Tb3+/Dy3+ -codoped glasses, an enhancement of Tb3+ green emission is observed up to 1.5 mol % Dy3+ codoping, and this is due to the non-radiative resonant ET from Dy3+ to Tb3+ upon 395 nm excitation. For singly 0.5 mol % Dy3+ or 0.5 mol % Tb3+-doped glass, the calculated color coordinates (x,y) and correlated color temperatures (CCT) represent the neutral white or warm white light regions, whereas Dy3+/Tb3+-codoped glasses (x,y) and CCT values fall in the yellowish green region with respect to the different Dy3

  7. Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model.

    PubMed

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang; Zhang, Changqing

    2013-07-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli.

  8. Gentamicin-Loaded Borate Bioactive Glass Eradicates Osteomyelitis Due to Escherichia coli in a Rabbit Model

    PubMed Central

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang

    2013-01-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

  9. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses.

    PubMed

    Gu, Yifei; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E

    2013-11-01

    Previous studies have evaluated the capacity of porous scaffolds composed of a single bioactive glass to regenerate bone. In the present study, scaffolds composed of a mixture of two different bioactive glasses (silicate 13-93 and borate 13-93B3) were created and evaluated for their response to osteogenic MLO-A5 cells in vitro and their capacity to regenerate bone in rat calvarial defects in vivo. The scaffolds, which have similar microstructures (porosity=58-67%) and contain 0, 25, 50 and 100 wt.% 13-93B3 glass, were fabricated by thermally bonding randomly oriented short fibers. The silicate 13-93 scaffolds showed a better capacity to support cell proliferation and alkaline phosphatase activity than the scaffolds containing borate 13-93B3 fibers. The amount of new bone formed in the defects implanted with the 13-93 scaffolds at 12 weeks was 31%, compared to values of 25, 17 and 20%, respectively, for the scaffolds containing 25, 50 and 100% 13-93B3 glass. The amount of new bone formed in the 13-93 scaffolds was significantly higher than in the scaffolds containing 50 and 100% 13-93B3 glass. While the 13-93 fibers were only partially converted to hydroxyapatite at 12 weeks, the 13-93B3 fibers were fully converted and formed a tubular morphology. Scaffolds composed of an optimized mixture of silicate and borate bioactive glasses could provide the requisite architecture to guide bone regeneration combined with a controllable degradation rate that could be beneficial for bone and tissue healing. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model.

    PubMed

    Cui, Xu; Huang, Wenhai; Zhang, Yadong; Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting; Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping; Pan, Haobo; Rahaman, Mohamed N

    2017-04-01

    There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8±2MPa to 31±2MPa) as the ratio of glass particles to chitosan solution increased (from 1.0gml -1 to 2.5gml -1 ). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Structural and optical properties of Dy3+ doped Aluminofluoroborophosphate glasses for white light applications

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Mahesvaran, K.; Patel, Dinesh K.; Arunkumar, S.; Marimuthu, K.

    2014-11-01

    Dy3+ doped Aluminofluoroborophosphate glasses (BPAxD) have been prepared following conventional melt quenching technique and their structural and optical properties were explored through XRD, FTIR, optical absorption, excitation, emission and decay measurements. The coexistence of BO3 groups in borate rich domain and BO4 groups in phosphate rich domain have been confirmed through vibrational energy analysis. Negative bonding parameter (δ) values indicate that, the metal-ligand environment in the prepared glasses is of ionic in nature. The oscillator strength and the luminescent intensity Ωλ (λ = 2, 4 and 6) parameters are calculated using Judd-Ofelt theory. The radiative properties such as transition probability (A), stimulated emission cross-section (σpE) and branching ratios (β) have been calculated using JO intensity parameters and compared with the reported Dy3+ doped glasses. Concentration effect on Y/B intensity ratios and the CIE chromaticity coordinates were calculated for the generation of white light from the luminescence spectra. The color purity and the correlated color temperature were also calculated and the results are discussed in the present work. The decay of the 4F9/2 excited level is found to be single exponential for lower concentration and become non-exponential for higher concentration. The non-exponential behavior arises due to the efficient energy transfer between the Dy3+ ions through various non-radiative relaxation channels and the decay of the 4F9/2 excited level have been analyzed with IH model. Among the prepared glasses, BPA0.5D glass exhibits higher σpE, βR, σpE×σpE, σpE×Δλeff and η values for the 6H13/2 emission band which in turn specifies its suitability for white LEDs, laser applications and optical amplifiers.

  12. Multiple Doped Erbium Glasses,

    DTIC Science & Technology

    GLASS, LASERS, ERBIUM, ERBIUM COMPOUNDS, DOPING, OXIDES, OPTIMIZATION, ATOMIC ENERGY LEVELS, PHOSPHATES , YTTERBIUM COMPOUNDS, NEODYMIUM COMPOUNDS, OPTICAL PUMPING, FLUORESCENCE, LIFE EXPECTANCY(SERVICE LIFE), BAND SPECTRA.

  13. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model.

    PubMed

    Zhang, Xin; Jia, Weitao; Gu, Yifei; Xiao, Wei; Liu, Xin; Wang, Deping; Zhang, Changqing; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Zhou, Nai

    2010-08-01

    The treatment of chronic osteomyelitis (bone infection) remains a clinical challenge. In this work, pellets composed of a chitosan-bonded mixture of borate bioactive glass particles (<50microm) and teicoplanin powder (antibiotic), were evaluated in vitro and in vivo for treating chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) in a rabbit model. When immersed in phosphate-buffered saline, the pellets showed sustained release of teicoplanin over 20-30 days, while the bioactive glass converted to hydroxyapatite (HA) within 7 days, eventually forming a porous HA structure. Implantation of the teicoplanin-loaded pellets in a rabbit tibia osteomyelitis model resulted in the detection of teicoplanin in the blood for about 9 days. The implants converted to a bone-like HA graft, and supported the ingrowth of new bone into the tibia defects within 12 weeks of implantation. Microbiological, histological and scanning electron microscopy techniques showed that the implants provided a cure for the bone infection. The results indicate that the teicoplanin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone ingrowth, could provide a method for treating chronic osteomyelitis. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric,more » and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.« less

  15. Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection.

    PubMed

    Liu, Xin; Xie, Zongping; Zhang, Changqing; Pan, Haobo; Rahaman, Mohamed N; Zhang, Xin; Fu, Qiang; Huang, Wenhai

    2010-02-01

    The objective of this work was to evaluate borate bioactive glass scaffolds (with a composition in the system Na(2)O-K(2)O-MgO-CaO-B(2)O(3)-P(2)O(5)) as devices for the release of the drug Vancomycin in the treatment of bone infection. A solution of ammonium phosphate, with or without dissolved Vancomycin, was used to bond borate glass particles into the shape of pellets. The in vitro degradation of the pellets and their conversion to a hydroxyapatite-type material in a simulated body fluid (SBF) were investigated using weight loss measurements, chemical analysis, X-ray diffraction, and scanning electron microscopy. The results showed that greater than 90% of the glass in the scaffolds degraded within 1 week, to form poorly crystallized hydroxyapatite (HA). Pellets loaded with Vancomycin provided controlled release of the drug over 4 days. Vancomycin-loaded scaffolds were implanted into the right tibiae of rabbits infected with osteomyelitis. The efficacy of the treatment was assessed using microbiological examination and histology. The HA formed in the scaffolds in vivo, resulting from the conversion of the glass, served as structure to support the growth of new bone and blood vessels. The results in this work indicate that bioactive borate glass could provide a promising biodegradable and bioactive material for use as both a drug delivery system and a scaffold for bone repair.

  16. [Injectable borate glass/chitosan composite as drug carrier for treatment of chronic osteomyelitis].

    PubMed

    Zhao, Cunju; Wang, Xinfu; Zhang, Changqing; Cui, Xu; Jia, Weitao; Huang, Wenchan

    2012-06-01

    To evaluate the characterization, biocompatibility in vitro and in vivo, and antimicrobial activity of an injectable vancomycin-loaded borate glass/chitosan composite (VBC) so as to lay the foundation for its further clinical application. The solid phase of VBC was constituted by borate glass and vancomycin, liquid phase was a mixture of chitosan, citric acid, and glucose with the proportion of 1 : 10 : 20. Solid phase and liquid phase was mixed with the ratio of 2 : 1. Vancomycin-loaded calcium sulfate (VCS) was produced by the same method using calcium sulfate instead of borate glass and saline instead of chitosan, as control. High performance liquid chromatography was applied to detect the release rate of antibiotics from VBC and VCS, and minimum inhibitory concentration (MIC) was tested by using an antibiotic tube dilution method. The structure of the VBC and VCS specimens before and 2, 4, 8, 16, and 40 days after immersion in D-Hank's was examined by scanning electron microscopy, and the phase composition of VBC was analysed by X-ray diffraction after soaked for 40 days. Thirty-three healthy adult New Zealand white rabbits (weighing, 2.25-3.10 kg; male or female) were used to establish the osteomyelitis models according to Norden method. After 4 weeks, the models of osteomyelitis were successfully established in 28 rabbits, and they were randomly divided into 4 groups (groups A, B, C, and D). In group A (n=8), simple debridement was performed; in groups B and C (n=8), defect was treated by injecting VCS or VBC after debridement; and in group D (n=4), no treatment was given. The effectiveness of treatment was assessed using radiological and histological techniques after 2 months. The releases of vancomycin from VBC lasted for 30 days; the release rate of vancomycin reached 75% at the first 8 days, then could reached more than 90%. The releases of vancomycin from VCS lasted only for 16 days. The MIC of VBC and VCS were both 2 microg/mL. The VCS had a smooth

  17. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    NASA Astrophysics Data System (ADS)

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-11-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.

  18. New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses.

    PubMed

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-11-19

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO(2) glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO(2) glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.

  19. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    PubMed Central

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 – LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 – LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  20. Experimental and theoretical studies of the structure of tellurate-borate glasses network.

    PubMed

    Rada, Simona; Culea, Eugen; Neumann, Manfred

    2010-08-01

    The structural properties of the xTeO(2) x (1-x)B(2)O(3) glasses (x = 0.6; 0.7) were investigated by FT-IR spectroscopy. From the analysis of the FTIR spectra, it is reasonable to assume that by the increasing of boron ions content, the tetrahedral [BO(4)] units are gradually replaced by the trigonal [BO(3)] units. The increase in the number of non-bridging oxygen atoms would decrease the connectivity of the glass network and will yield the depolymerization of the borate chains. The molecular structure and vibrational frequencies of the proposed structural models have been studied by exploring the density functional theory (DFT) calculations. The FTIR spectra of the xTeO(2) x (1-x)B(2)O(3) vitreous systems were compared with the calculated spectrum. This procedure allowed us to assign most of the observed IR bands.

  1. Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs

    NASA Astrophysics Data System (ADS)

    Zaman, F.; Rooh, G.; Srisittipokakun, N.; Wongdeeying, C.; Kim, H. J.; Kaewkhao, J.

    2018-06-01

    The aim of the current report is to fabricate Eu3+-doped glasses with the chemical composition of 50Li2O-15Gd2O3-5Bi2O3-(30-x)B2O3-xEu2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%), with the help of conventional melt quenching technique. The fabricated glasses have been studied with help of physical, structural and luminescence properties for application of LEDs. The structural properties were investigated by XRD and FTIR spectra. Physical properties have been measured. Direct and indirect optical energy band gap (Eg) have been calculated and found to be increasing with Eu2O3 concentration. Luminescence spectra have been observed from photo and radioluminescence spectra and found in good agreement with each other, however the concentration quenching was not determined for the samples. The high-covalence and asymmetric nature was confirmed from Photoluminescence emission and RL emission transition as well as from the higher values of luminescence intensity ratio. The JO parameters have been found for the better performance of lasing materials. The lifetime's data have been found to be decreasing from 1.64 to 1.50 ms, which is the confirmation of energy transfer in Eu3+ ions through cross relaxations. From the calculated properties it has been suggested that the present glass samples might be good for red-light emitting devices.

  2. Structural and luminescence behavior of Er(3+) ions doped Barium tellurofluoroborate glasses.

    PubMed

    Annapoorani, K; Maheshvaran, K; Arunkumar, S; Suriya Murthy, N; Marimuthu, K

    2015-01-25

    Er(3+) doped Barium tellurofluoroborate glasses (BTFBxE) with the chemical composition (30-x)TeO2+30B2O3+20BaO+20BaF+xEr2O3 (where x=0.01, 0.05, 0.1, 0.5, 1.0 and 2.0 in wt%) were prepared following the melt quenching technique. The different vibrational modes of borates and tellurites in the prepared glasses were explored through FTIR and Raman spectra. The optical absorption spectra have been used to determine the ionic/covalent nature of the metal-ligand bond in the prepared glasses with the help of Nephelauxetic ratio (β) and bonding parameter (δ) studies. The optical band gap of direct and indirect allowed transitions were determined from Tauc's plot and the variations of band gap energy with structural arrangements were discussed. The Urbach energy values were determined and the relatively lower values of the Urbach's energy reveal the minimal degree of disorderness in the prepared glasses. The oscillator strengths (fexp and fcal) and Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were calculated with the application of JO theory and the trends of the JO intensity parameters are found to be Ω2>Ω6>Ω4 for all the prepared glasses with a minimum variation in Ω2 intensity parameter values. A bright green emission was observed from the (2)H11/2+(4)S3/2→ (4)I15/2 transition and the radiative properties such as transition probability (A), stimulated emission cross-section (σP(E)), branching ratio (βr) and radiative lifetime (τ) were calculated using the JO parameters. The suitability of the prepared glasses for the fabrication of photonic devices were also discussed and reported in the present work. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  4. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  5. Physical, structural and spectroscopic investigations of Sm3+ doped ZnO mixed alkali borate glass

    NASA Astrophysics Data System (ADS)

    Sailaja, B.; Joyce Stella, R.; Thirumala Rao, G.; Jaya Raja, B.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.

    2015-09-01

    Glass of 20ZnO-15 Li2O-15 Na2O-49.9 B2O3 doped with 0.1 mol% of Sm3+ (ZLNB) was prepared by the melt quenching technique. Physical properties were studied and analysed. The XRD studies confirm the amorphous nature of sample. The FT-IR spectral investigation discloses the BO3, BO4 groups, H and OH bonds. Optical absorption and emission spectra were recorded and characterized. Judd-Ofelt theory was applied to f ↔ f transitions to evaluate Judd-Ofelt intensity parameters (Ωλ). The oscillator strengths and bonding parameters were determined from absorption spectra. The trend observed was Ω4 > Ω6 > Ω2. High value of Ω4 reveals higher rigidity and covalency around the Sm3+ ion. Low value of Ω2 implies ionic nature of ligands and site symmetry around Sm3+ ion. luminescence data and Judd-Ofelt parameters Ωλ (λ = 2, 4, and 6) were used to evaluate various radiative probabilities like spontaneous radiative emission probabilities (AR), radiative lifetime (τR) and branching ratios (βR) stimulated emission cross section (σe) and CIE colour coordinates were measured, CCT temperature evaluated and the values were used to ascertain potential laser transitions at the optimum mixed alkali effect observed for the glass sample prepared. The preparedness of the material as the efficient laser active material is examined.

  6. Appearance of small polaron hopping conduction in iron modified cobalt lithium bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahiya, M. S.; Khasa, S., E-mail: skhasa@yahoo.com; Yadav, Arti

    2016-05-23

    Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe{sub 2}O{sub 3}•(20-x)CoO•30Li{sub 2}O•10Bi{sub 2}O{sub 3}•40B{sub 2}O{sub 3} (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott’s small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaronmore » radius (R{sub p}) has been evaluated using the values of phonon radius (R{sub ph}) and Debye temperature (θ{sub D}). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.« less

  7. Role of electron transfer in Ce{sup 3+} sensitized Yb{sup 3+} luminescence in borate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Zhuang, Yixi

    2015-01-07

    In a Ce{sup 3+}-Yb{sup 3+} system, two mechanisms are proposed so far namely, the quantum cutting mechanism and the electron transfer mechanism explaining Yb{sup 3+} infrared luminescence under Ce{sup 3+} excitation. Among them, the quantum cutting mechanism, where one Ce{sup 3+} photon (ultraviolet/blue) gives rise to two Yb{sup 3+} photons (near infrared) is widely sought for because of its huge potential in enhancing the solar cell efficiency. In present study on Ce{sup 3+}-Yb{sup 3+} codoped borate glasses, Ce{sup 3+} sensitized Yb{sup 3+} luminescence at ∼1 μm have been observed on Ce{sup 3+} 5d state excitation. However, the intensity of sensitized Yb{supmore » 3+} luminescence is found to be very weak compared to the strong quenching occurred in Ce{sup 3+} luminescence in Yb{sup 3+} codoped glasses. Moreover, the absolute luminescence quantum yield also showed a decreasing trend with Yb{sup 3+} codoping in the glasses. The overall behavior of the luminescence properties and the quantum yield is strongly contradicting with the quantum cutting phenomenon. The results are attributed to the energetically favorable electron transfer interactions followed by Ce{sup 3+}-Yb{sup 3+} ⇌ Ce{sup 4+}-Yb{sup 2+} inter-valence charge transfer and successfully explained using the absolute electron binding energies of dopant ions in the studied borate glass. Finally, an attempt has been presented to generalize the electron transfer mechanism among opposite oxidation/reduction property dopant ions using the vacuum referred electron binding energy (VRBE) scheme for lanthanide series.« less

  8. Silicate and borate glasses as composite fillers: a bioactivity and biocompatibility study.

    PubMed

    Lopes, P P; Ferreira, B J M Leite; Gomes, P S; Correia, R N; Fernandes, M H; Fernandes, M H V

    2011-06-01

    Composites filled with a silicate glass (CSi) and a new borate glass (CB) were developed and compared in terms of their in vitro behaviour both in acellular and cellular media. Acellular tests were carried out in SBF and the composites were characterized by SEM-EDS, XRD and ICP. Biocompatibility studies were investigated by in vitro cell culture with MG-63 osteoblast-like and human bone marrow cells. The growth of spherical calcium phosphate aggregates was observed in acellular medium on all composite surfaces indicating that these materials became potentially bioactive. The biological assessment resulted in a dissimilar behavior of the composites. The CSi demonstrated an inductive effect on the proliferation of cells. The cells showed a normal morphology and high growth rate when compared to standard culture plates. Contrarily, inhibition of cell proliferation occurred in the CB probably due to its high degradation rate, leading to high B and Mg ionic concentration in the cell culture medium.

  9. Synthesis and optical property of holmium doped Lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2017-05-01

    The new glass system 60B2O3-30PbO-(10-x)Li2O-xHo2O3 (where x =0, 0.1, 0.3 and 0.5 mol%) were prepared by conventional melt quenching method. The XRD spectrum confirms the amorphous nature of the sample. The density of these glasses is measured by using Archimedes principle, the values range from 4.23 g/cm-3 to 4.34 g/cm-3 and the corresponding molar volumes are calculated. The optical absorbance studies were carried out on these glasses in the wavelength range of 200nm to 1100nm. The measured optical direct band gap energies were in the range of 3.072eV to 3.259eV and the optical indirect band gap energies in the range of 2.658eV to 2.846eV. The refractive indices of these glasses were measured by using Abbe refractometer and the corresponding polarizabilities of oxide ions are calculated by using Lorentz-Lorentz relations.

  10. Electronic polarizability and interaction parameter of gadolinium tungsten borate glasses with high WO{sub 3} content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi

    2014-12-15

    Glasses with the compositions of 25Gd{sub 2}O{sub 3}–xWO{sub 3}–(75−x)B{sub 2}O{sub 3} with x=25–65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(n{sub o}), and interaction parameters A(n{sub o}) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO{sub 3} contents. The optical basicity of the glasses increases monotonously with the substitution of WO{sub 3} for B{sub 2}O{sub 3}, and contrary the interaction parameter decreases monotonously with increasing WO{sub 3} content. A good linear correlation was observed betweenmore » Λ(n{sub o}) and A(n{sub o}) and between the glass transition temperature and A(n{sub o}). It was proposed that Gd{sub 2}O{sub 3} oxide belongs to the category of basic oxide with a value of A(n{sub o})=0.044 Å{sup −3} as similar to WO{sub 3}. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO{sub 3} and Gd{sub 2}O{sub 3} contents would be a floppy network system consisting of mainly basic oxides. - Graphical abstract: This figure shows the correlation between the optical basicity and interaction parameter in borate-based glasses. The data obtained in the present study for Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses are locating in the correlation line for other borate glasses. These results shown in Fig. 8 clearly demonstrate that Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses having a wide range of optical basicity and interaction parameter are regarded as glasses consisting of acidic and basic oxides. - Highlights: • Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses with high WO{sub 3} contents were prepared. • Electronic polarizability and interaction parameter were estimated. • Optical basicity

  11. Optical properties modification induced by laser radiation in noble-metal-doped glasses

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N.; Stankova, N. E.; Koleva, M. E.; Nikov, R.; Atanasov, P.; Grozeva, M.; Iordanova, E.; Yankov, G.; Aleksandrov, L.; Iordanova, R.; Karashanova, D.

    2018-03-01

    We present results on laser-induced color changes in gold- and silver-doped glass. The doped borosilicate glass was prepared by conventional melt quenching. The study was focused on the change of the optical properties after irradiation of the glass by femtosecond laser pulses. Under certain conditions, the laser radiation induces defects associated with formation of color centers in the material. We studied this process in a broad range of laser radiation wavelengths – from UV to IR, and observed changes in the color of the irradiated areas after annealing of the processed glass samples, the color being red for the gold-doped glass red and yellow for the silver-doped glass. The structural and morphological analyses performed indicated that this effect is related to formation of metal nanoparticles inside the material. The results obtained show that femtosecond laser processing of noble-metal-doped glasses can be used for fabrication of 3D-nanoparticles systems in transparent materials with application as novel optical components.

  12. Electrically conductive borate-based bioactive glass scaffolds for bone tissue engineering applications.

    PubMed

    Turk, Mert; Deliormanlı, Aylin M

    2017-07-01

    In this study, electrically conductive, borate-based, porous 13-93B3 bioactive glass composite scaffolds were prepared using a polymer foam replication technique. For this purpose, a slurry containing 40 vol% glass particles and 0-10 wt% graphene nanoplatelets was prepared by dispersing the particles in ethanol in the presence of ethyl cellulose. Composite scaffolds were subjected to a controlled heat treatment, in air atmosphere, to decompose the foam and sinter the glass particles into a dense network. It was found that the applied heat treatment did not influence the structure of graphene in the glass network. Graphene additions did not negatively affect the mechanical properties and enhanced the electrical conductivity of the glass scaffolds. In X-ray diffraction analysis, the crystalline peak corresponding to hydroxyapatite was observed in all the samples suggesting that all of the samples were bioactive after 30 days of immersion in simulated body fluid. However, Fourier transform infrared spectroscopy analysis and scanning electron microscope observations revealed that hydroxyapatite formation rate decreased with increasing graphene concentration especially for samples treated in simulated body fluid for shorter times. Based on the cytotoxicity assay findings, the MC3T3-E1 cell growth was significantly inhibited by the scaffolds containing higher amount of graphene compared to bare glass scaffolds. Best performance was obtained for 5 wt% graphene which yielded an enhancement of electrical conductivity with moderate cellular response and in vitro hydroxyapatite forming ability. The study revealed that the electrically conductive 13-93B3 graphene scaffolds are promising candidates for bone tissue engineering applications.

  13. Optical and vibrational spectroscopy of Ba0.85Ca0.15Zr0.1Ti0.9O3 modified lithium borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Viswanath, Pamarti; Prashanth, Sadhu Sai Pavan; Molli, Muralikrishna; Wicram, Jaschin Prem; Sai Muthukumar, V.

    2018-04-01

    Glass ceramics are excellent replacement for single crystalline materials which are expensive and difficult to fabricate. In this context, we have attempted to fabricate glass nanocomposites comprising of Lithium Borate glass matrix embedded with lead free ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT). Both of these functional materials are known to exhibit excellent ferroelectric behavior and are currently explored for various device applications. We have prepared these novel glass nanocomposite using melt-quenching techniquein various chemical composition involving different molar ratio. x(Ba0.85Ca0.15Zr0.1Ti0.9O3)-(1-x)(Li2O.2B2O3) where (x=0.1,0.2,0.3,0.4). The as-quenched samples exhibited amorphous nature as revealed by X-ray Diffraction studies. With the increase in BCZT content we have observed significant alteration in optical bandgap and Urbach energy. The tailoring of optical properties by tuning the structure was probed by Raman vibrational spectroscopy which confirmed the dominant role played by BCZT as a network modifier in these borate glasses. Concomitantly, these glass nanocomposites were found to be excellent UV absorbers.

  14. Characterisation and luminescence studies of Tm and Na doped magnesium borate phosphors.

    PubMed

    Ekdal, E; Garcia Guinea, J; Karabulut, Y; Canimoglu, A; Harmansah, C; Jorge, A; Karali, T; Can, N

    2015-09-01

    In this study, structural and luminescence properties of magnesium borate of the form MgB4O7 doped with Tm and Na were investigated by X-ray diffraction (XRD), Raman spectroscopy and cathodoluminescence (CL). The morphologies of the synthetised compounds exhibit clustered granules and road-like materials. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect is discussed. The CL spectra of undoped MgB4O7 shows a broad band emission centred around 350 nm which is postulated to be produced by self-trapped excitons and some other defects. From the CL emission spectrum, main emission bands centred at 360, 455, 475 nm due to the respective transitions of (1)D2→(3)H6,(1)D2→(3)F4 and (1)G4→(3)H6 suggest the presence of Tm(3+) ion in MgB4O7 lattice site. CL mechanism was proposed to explain the observed phenomena which are valuable in possibility of the developing new luminescent materials for different applications. In addition, the experimental Raman spectrum of doped and undoped MgB4O7 were reported and discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Optical properties of Nd3+ doped bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Venkatramu, V.; Ravi Kanth Kumar, V. V.

    2014-03-01

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) - x Nd2O3 (where x = 0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to 4F3/2 to 4I9/2, 4I11/2 and 4I13/2 transitions in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd3+ exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process.

  16. Optical properties of Nd3+ doped bismuth zinc borate glasses.

    PubMed

    Shanmugavelu, B; Venkatramu, V; Ravi Kanth Kumar, V V

    2014-03-25

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) -x Nd2O3 (where x=0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to (4)F3/2 to (4)I9/2, (4)I11/2 and (4)I13/2 transitions in the near infrared region. The emission intensity of the (4)F3/2 to (4)I11/2 transition increases with increase of Nd(3+) concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd(3+) concentration. The lifetimes for the (4)F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd(3+) exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. In vitro study of manganese-doped bioactive glasses for bone regeneration.

    PubMed

    Miola, Marta; Brovarone, Chiara Vitale; Maina, Giovanni; Rossi, Federica; Bergandi, Loredana; Ghigo, Dario; Saracino, Silvia; Maggiora, Marina; Canuto, Rosa Angela; Muzio, Giuliana; Vernè, Enrica

    2014-05-01

    A glass belonging to the system SiO2-P2O5-CaO-MgO-Na2O-K2O was modified by introducing two different amounts of manganese oxide (MnO). Mn-doped glasses were prepared by melt and quenching technique and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) observation and energy dispersion spectrometry (EDS) analysis. In vitro bioactivity test in simulated body fluid (SBF) showed a slight decrease in the reactivity kinetics of Mn-doped glasses compared to the glass used as control; however the glasses maintained a good degree of bioactivity. Mn-leaching test in SBF and minimum essential medium (MEM) revealed fluctuating trends probably due to a re-precipitation of Mn compounds during the bioactivity process. Cellular tests showed that all the Mn-doped glasses, up to a concentration of 50 μg/cm(2) (μg of glass powders/cm(2) of cell monolayer), did not produce cytotoxic effects on human MG-63 osteoblasts cultured for up to 5 days. Finally, biocompatibility tests demonstrated a good osteoblast proliferation and spreading on Mn-doped glasses and most of all that the Mn-doping can promote the expression of alkaline phosphatase (ALP) and some bone morphogenetic proteins (BMPs). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Nd3+-doped heavy metal oxide based multicomponent borate glasses for 1.06 μm solid-state NIR laser and O-band optical amplification applications

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Meza-Rocha, A. N.; Falcony, C.; Caldiño, U.; Kityk, I. V.; Méndez-Blas, A.; Abas, A. F.; Alresheedi, M. T.; Mahdi, M. A.

    2018-04-01

    Nd3+-doped glasses in the composition (50-x) B2O3-10 PbO-10 BaO-10 Al2O3-10 ZnO-10 Na2O-(x) Nd2O3 (x = 0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0 mol %) were fabricated using melt quenching method. Upon 592 nm visible and 808 nm LD excitations, the luminescence spectra show a strong 4F3/2 → 4I11/2 (1.06 μm) emission transition, and two less intense 4F3/2 → 4I9/2 (0.89 μm) and 4F3/2 → 4I13/2 (1.331 μm) emission transitions. The intensity of such emissions increases up to 0.5 mol % Nd3+, and above this doping level, quenching occurs. For 0.5 mol % Nd3+-doped glass, following Judd-Ofelt intensity parameters and emission spectrum, AR, τR, βR and βexp, including Δλeff,σem(λp), (σem × (Δλeff)) and (σem × (τrad)), are derived for Nd3+ ion 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 fluorescence transitions. The highest σem(λp) for the 1.06 and 1.331 μm fluorescence bands are found to be 6.216 × 10-20 and 2.295 × 10-20cm2, respectively. The 4F3/2 level lifetimes are found to decrease with an increase in Nd2O3 content and the decay curves of the glass up to 1.5 mol % Nd3+ exhibit single exponential nature. From 'τexp' of the Nd3+: 4F3/2 level, quantum efficiency (η), (σem × (τexp)), and saturation intensity (IS) are 48.87%, 51.09 × 10-25 cm2s and 3.67 × 108 W/m2, respectively, for the 0.5 mol % Nd3+-doped glass. Higher thermal stability, very low χ, high AR, large βexp., moderate τR, large gain bandwidth and high optical gain values indicate that 0.5 mol % Nd3+-doped glass could be a potential gain medium for solid-state NIR lasers at 1.06 μm. Moreover, for the 1.331 μm emission, large Δλeff and the theoretical gain coefficient value of 1.579 dB/cm, evaluated with an excited Nd3+ ion fractional factor of 0.6, indicate that this glass might be a promising candidate in developing O-band optical fiber amplifiers.

  19. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    NASA Astrophysics Data System (ADS)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.

  20. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite.

    PubMed

    Jia, Wei-Tao; Zhang, Xin; Zhang, Chang-Qing; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E

    2010-03-15

    Local antibiotic delivery system has an advantage over systemic antibiotic for osteomyelitis treatment due to the delivery of high local antibiotic concentration while avoiding potential systemic toxicity. Composite biomaterials with multifunctional roles, consisting of a controlled antibiotic release, a mechanical (load-bearing) function, and the ability to promote bone regeneration, gradually become the most active area of investigation and development of local antibiotic delivery vehicles. In the present study, a composite of borate glass and chitosan (designated BG/C) was developed as teicoplanin delivery vehicle. The in vitro elution kinetics and antibacterial activity of teicoplanin released from BG/C composite as a function of immersion time were determined. Moreover, the pH changes of eluents and the bioactivity of the composite were characterized using scanning electron microscopy coupled with energy-dispersive spectroscopy and X-ray diffraction analysis. 2009 Elsevier B.V. All rights reserved.

  1. Optically stimulated luminescence of borate glasses containing magnesia, quicklime, lithium and potassium carbonates

    NASA Astrophysics Data System (ADS)

    Valença, J. V. B.; Silveira, I. S.; Silva, A. C. A.; Dantas, N. O.; Antonio, P. L.; Caldas, L. V. E.; d'Errico, F.; Souza, S. O.

    2017-11-01

    The OSL characteristics of three different borate glass matrices containing magnesia (LMB), quicklime (LCB) or potassium carbonate (LKB) were examined. Five different formulations for each composition were produced using a melt-quenching method and analyzed in terms of both dose-response curves and OSL shape decay. The samples were irradiated using a 90Sr/90Y beta source with doses up to 30 Gy. Dose-response curves were plotted using the initial OSL intensity as the chosen parameter. The OSL analysis showed that LKB glasses are the most sensitive to beta irradiation. For the most sensitive LKB composition, the irradiation process was also done using a 60Co gamma source in a dose range from 200 to 800 Gy. In all cases, no saturation was observed. A fitting process using a three-term exponential function was performed for the most sensitive formulations of each composition, which suggested a similar behavior in the OSL decay.

  2. Fluorescence properties of Nd3+-doped tellurite glasses.

    PubMed

    Kumar, K Upendra; Prathyusha, V A; Babu, P; Jayasankar, C K; Joshi, A S; Speghini, A; Bettinelli, M

    2007-07-01

    The compositional and concentration dependence of luminescence of the (4)F(3/2)-->(4)I(J) (J=13/2, 11/2 and 9/2) transitions in four Nd(3+)-doped tellurite based glasses has been studied. The free-ion energy levels obtained for 60TeO(2)+39ZnO(2)+1.0Nd(2)O(3) (TZN10) glass have been analysed using the free-ion Hamiltonian model and compared with similar results obtained for Nd(3+):glass systems. The absorption spectrum of TZN10 glass has been analysed using the Judd-Ofelt theory. Relatively longer decay rates have been obtained for Nd(3+)-doped phosphotellurite glasses. The emission characteristics of the (4)F(3/2)-->(4)I(11/2) transition, of the Nd(3+):TZN10 glass, are found to be comparable to those obtained for Nd(3+):phosphate laser glasses. The non-exponential shape of the emission decay curves for the (4)F(3/2)-->(4)I(11/2) transition is attributed to the presence of energy transfer processes between the Nd(3+) ions.

  3. Spectroscopic analysis of lead borate systems

    NASA Astrophysics Data System (ADS)

    Georgi, Akash Daniel; Ramesh, K. P.; Mallikarjunaiah, K. J.

    2018-04-01

    Oxide glass systems are interesting because of their bonding like bridging and non-bridging oxygens. Depending on the modifier, the B2O3 glass system can have various Boron-Oxygen network. It is found that, PbO modifies the borate network and increases the formation of penta and diborate groups. In this work, we investigated optical properties of Lead Borate glass systems (x PbO: (1-x) B2O3) with x varying from 30-85 mol % using UV-VIS Spectra and the corresponding band gap was estimated using Tauc relation and these systems behave like direct allowed band gap systems. These results show that, Eg decreases with the addition of lead content. Further the refractive index measurements also have been carried out at various wavelengths. Many correlation is found between the band gap and refractive index for different compositions. Using different theoretical models a best fit has been tried and Ravindra's relation is found to match with our experimental results.

  4. Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system

    NASA Astrophysics Data System (ADS)

    Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.

    2018-05-01

    Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.

  5. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing.

    PubMed

    Zhou, Jie; Wang, Hui; Zhao, Shichang; Zhou, Nai; Li, Le; Huang, Wenhai; Wang, Deping; Zhang, Changqing

    2016-03-01

    Full-thickness skin defects represent urgent clinical problem nowadays. Wound dressing materials are hotly needed to induce dermal reconstruction or to treat serious skin defects. In this study, the borate bioactive glass (BG) micro-fibers were fabricated and compared with the traditional material 45S5 Bioglass(®) (SiG) micro-fibers. The morphology, biodegradation and bioactivity of BG and SiG micro-fibers were investigated in vitro. The wound size reduction and angiogenic effects of BG and SiG micro-fibers were evaluated by the rat full-thickness skin defect model and Microfil technique in vivo. Results indicated that the BG micro-fibers showed thinner fiber diameter (1 μm) and better bioactivity than the SiG micro-fibers did. The ionic extracts of BG and SiG micro-fibers were not toxic to human umbilical vein endothelial cells (HUVECs). In vivo, the BG micro-fiber wound dressings obviously enhanced the formation of blood vessel, and resulted in a much faster wound size reduction than the SiG micro-fibers, or than the control groups, after 9 days application. The good skin defect reconstruction ability of BG micro-fibers contributed to the B element in the composition, which results in the better bioactivity and angiogenesis. As shown above, the novel bioactive borate glass micro-fibers are expected to provide a promising therapeutic alternative for dermal reconstruction or skin defect repair. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synthesis, characterization of CaF2 doped silicate glass-ceramics.

    PubMed

    Riaz, Madeeha; Zia, Rehana; Mirza, Ambreen; Hussain, Tousif; Bashir, Farooq; Anjum, Safia

    2017-06-01

    This paper reports the fabrication and characterization of silicate glass-ceramics doped with (0-12mol%) CaF 2 . TGA-DSC analysis was carried out to determine the crystallization temperature and stability of glass measured by two glass parameters; Hruby parameter K H =(T x -T g )/(T L -T x ) and Weinberg parameter K W =(T c -T g )/T L . It was found that with CaF 2 doping improved sinterability at low temperature and provided stability to the glass. The XRD pattern exhibits a single phase of combeite and doping of CaF 2 cause increase in crystallite size. Microstructure of samples was also improved with CaF 2 addition, pores were significantly reduced. After 15days immersion in simulated body fluid all samples developed apatite layer onto its surface. Hence, the addition of CaF 2 provided bioactive glass-ceramic material having a low processing temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Tb3+ and Eu3+ doped zinc phosphate glasses for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Jha, Kaushal; Vishwakarma, Amit K.; Jayasimhadri, M.; Haranath, D.; Jang, Kiwan

    2018-04-01

    Tb3+ and Eu3+ doped zinc phosphate (ZP) glasses were prepared by conventional melt-quenching technique and their photoluminescence properties were investigated in detail. For, Tb3+ doped glasses the intense emission was at 545 nm corresponding to 5D4→7F5 transition under 377 nm n-UV excitation. The optimized concentration for Tb3+ doped zinc phosphate glass was 3 mol% and above this concentration quenching takes place. The Eu3+ doped zinc phosphate glass revealed intense emission at 613 nm attributed to the 5D0→7F2 transition under intense 392 nm n-UV excitation. The concentration quenching phenomenon was not observed in the Eu3+ doped ZP glasses. The CIE chromaticity coordinates for 3 mol% Tb3+ and 5 mol% Eu3+ doped ZP glasses were found to (0.283, 0.615) and (0.652, 0.331) lying in the green and red regions, respectively. The above mentioned results indicate that the prepared glass are suitable for application in the field of lighting and display devices.

  8. Spectral investigations of Sm{sup 3+}-doped oxyfluorosilicate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachari, D.; Rama Moorthy, L., E-mail: lrmphysics@yahoo.co.in; Department of Physics, Chadalawada Ramanamma Engineering College, Renigunta Road, Tirupati 517506

    2013-09-01

    Graphical abstract: The figure shows the emission spectra of Sm{sup 3+} doped KNSZL glass for different concentrations. Among the four emission transitions {sup 4}G{sub 5/2} → {sup 6}H{sub 5/2}, {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2}, {sup 4}G{sub 5/2} → {sup 6}H{sub 9/2} and {sup 4}G{sub 5/2} → {sup 6}H{sub 11/2}, the {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition of KNSZLSm10 glass is more intense compared with all the transitions. The insert figure shows, the color coordinates (0.59, 0.41) of KNSZLSm10 glass is located on the perimeter of the chromaticity diagram at 592 nm which appears to be closestmore » to the orange color. From these results the KNSZLSm10 glass could be useful for optical amplifiers, waveguides, telecommunications and orange LEDs. - Highlights: • From the DTA, the undoped KNSZL glass more precisely in fiberdrawing. • The XRD pattern confirmed the KNbO{sub 3} nanocrystallites of undoped KNSZL glass. • FTIR and Raman data of KNSZLSm10 glass revealed structural properties. • Judd–Ofelt analysis and decay measurements were carried out. • The optical gain parameter of the investigated glass is 18.13 × 10{sup −25} cm{sup 2} s. - Abstract: Sm{sub 2}O{sub 3}-doped oxyfluorosilicate glasses were prepared by melt-quenching method. The differential thermal analysis and X-ray diffraction were carried out to investigate the glass transition temperature and structure of precursor glass. Infrared spectroscopy, Raman, optical absorption, photoluminescence and decay measurements were carried out for Sm{sup 3+}-doped oxyfluorosilicate glasses. From the absorption spectrum, the Judd–Ofelt intensity parameters have been evaluated to predict the radiative properties for the emission levels of Sm{sup 3+} ions. The lifetimes of {sup 4}G{sub 5/2} level are found to decrease from 1.17 to 0.93 ms due to the energy transfer, when the concentration of Sm{sup 3+} ions increases from 0.1 to 2.0 mol%. The optical gain parameter (18.13 × 10

  9. Evaluation of the proliferation and differentiation behaviors of mesenchymal stem cells with partially converted borate glass containing different amounts of strontium in vitro.

    PubMed

    Zhu, Yi; Ouyang, Yuanming; Chang, Yi; Luo, Congfeng; Xu, Jun; Zhang, Changqing; Huang, Wenhai

    2013-04-01

    The objective of this study was to examine the proliferation and differentiation behaviors of different compositions of strontium-containing (from 0-12 mol%) borate glasses with mesenchymal stem cells (MSCs). The Cell Counting Kit-8 (CCK-8) assay revealed that after three days of culturing, the 6Sr group had the highest cell growth rate. Analysis of cell morphology revealed that cells proliferated well near the particles of the samples in all the groups on day 3. On day 7, cells in the 6Sr group demonstrated a higher proliferation rate than other 4 groups under the microscope. When performing the Live-Dead staining experiment, the 6Sr group had the least number of dead cells. Total DNA qualification indicated that the 6Sr group had a statistically higher concentration compared with the remaining groups. It was found that on day 7, compared with the 0Sr group, the core binding factor α1 (Cbfa1) mRNA expression level was significantly higher in the 6Sr, 9Sr and 12Sr groups. On day 14, compared with the 0Sr group, the bone sialoprotein (BSP) mRNA level was significantly higher in the 6Sr group. Additionally, on day 21, the 6Sr and 9Sr groups demonstrated higher osteocalcin (OCN) mRNA expression levels compared with the 0Sr group. In the alkaline phosphatase (ALP) activity test, on day 21, the 6Sr group presented a higher activity than the 0Sr group. Further, the number of mineralized nodules per unit in MSCs was measured by Alizarin Red S staining. The results showed that the 6Sr and 9Sr groups had the greatest number of mineralized nodules. Therefore, it could be concluded that borate glasses containing strontium oxide of 0, 3, 6, 9 and 12 mol% demonstrate a significant level of proliferation when interacting with MSCs. The borate glass containing 6 mol% strontium oxide had the greatest level of proliferation when cultured with MSCs. The borate glass containing 6 and 9 mol% strontium oxide facilitated an improved bone formation ability compared with the remaining

  10. Structural study and DC conductivity of vanadyl doped zinc lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Seema, Khasa, S.; Dahiya, M. S.; Yadav, Arti; Agarwal, A.; Dahiya, S.

    2015-06-01

    Glasses with composition xZnOṡ(30 - x)ṡLi2Oṡ70B2O3 containing 2 mol% of V2O5 (x = 0, 2, 5, 7 and 10) were prepared by standard melt-quench technique. The amorphous nature of the glass samples was confirmed by using x-ray diffraction. The structural changes in these glasses have been investigated by employing IR spectroscopy in the mid-IR range. The infrared spectroscopic analysis confirms the presence of both triangular and tetraheldral coordinated boron units and absence of boroxol ring. It also shows that metal-oxide vibrations are present which are due to the bonding of lithium and zinc ions with oxygen. The dc conductivity was measured in the temperature range 353-523 K. The dc conductivity results show that conductivity decreases and activation energy increases when Li2O is replaced by ZnO, keeping the concentration of B2O3 constant. Decrease in conductivity and increase in activation energy shows that addition of ZnO to the glass matrix shows a "blocking effect" on the overall mobility of alkali ions, but at higher concentration the hopping effect was also observed.

  11. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    NASA Astrophysics Data System (ADS)

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curély, J.; Kliava, J.

    2012-10-01

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe3+ ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by "direct" techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization studies.

  12. Effect of 1 MeV electrons on ceria-doped solar cell cover glass

    NASA Technical Reports Server (NTRS)

    Haynes, G. A.

    1973-01-01

    The effect of 1 MeV electrons on the transmission properties of 1.5-percent ceria-doped solar cell cover glass was studied. Samples of doped and undoped cover glass and synthetic fused silica were irradiated with a total integrated flux of 10 to the 15th power e/sq cm. Wideband transmission and spectral transmission measurements were made before and after irradiation. The results indicate that 1.5-percent ceria-doped cover glass is much less sensitive to radiation induced discoloration than undoped cover glass. Consequently, the glass is comparable to synthetic fused silica when used as a radiation resistant solar cell cover for many space missions.

  13. Ho3+ doped fluoroaluminate glass fibers for 2.9 µm lasing

    NASA Astrophysics Data System (ADS)

    Jia, S. J.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Jiang, H. W.; Zhang, L.; Feng, Y.; Qin, G. S.; Ohishi, Y.; Qin, W. P.

    2018-01-01

    Ho3+ doped fluoroaluminate glass fibers based on chemically durable AlF3-BaF2-YF3-PbF2-MgF2-CaF2 glasses are fabricated by using a rod-in-tube method. By using an 84 cm long Ho3+-doped fluoroaluminate glass fiber as the gain medium and a 1120 nm fiber laser as the pump source, lasing at 2868 nm is obtained, the maximum unsaturated power is about 57 mW for a pump power of 1224 mW, and the corresponding slope efficiency is ~5.1%. The effect of the fiber length on lasing at 2868 nm is also investigated. Our results show that Ho3+-doped fluoroaluminate glass fibers are promising gain media for 2.9 µm laser applications.

  14. Nd- And Er-Doped Phosphate Glass For Fiber Laser.

    NASA Astrophysics Data System (ADS)

    Yamashita, Toshiharu T.

    1990-02-01

    Laser fibers prepared from Nd- and Er-doped phosphate glass possessing a large stimulated emission cross section have been investigated both in a single fiber and in a fiber bundle. In the single fiber, continuous wave oscillations were successfully obtained at 1.054 p.m and 1.366 µm on a high Nd-doped single-mode fiber of 10 mm in length and also at 1.535 pm in a Er-doped single-mode fiber, sensitized by Nd, Yb. Especially, a low threshold of 1 mw and a high slope-efficiency of 50% were achieved in 1.054 pm laser oscillation on a Nd-doped fiber, end-pumped with a laser diode. A fiber bundle of phosphate glass doped with 8 wt% Nd2O3 yielded an average output power of 100 W at 50 pps where the bundle was 4.6 mm in diameter and was side-pumped with flash lamps.

  15. Porous silicon - rare earth doped xerogel and glass composites

    NASA Astrophysics Data System (ADS)

    Balakrishnan, S.; Gun'ko, Yurii K.; Perova, T. S.; Rafferty, A.; Astrova, E. V.; Moore, R. A.

    2005-06-01

    The development of components for photonics applications is growing exponentially. The sol-gel method is now recognised as a convenient and flexible way to deposit oxide or glass films on a variety of hosts, including porous silicon. In the present work we incorporated erbium and europium doped xerogel into porous silicon and developed new porous silicon - rare earth doped glass composites. Various characteris-ation techniques including FTIR, Raman Spectroscopy, Thermal Gravimetric Analysis and Scanning Electron Microscopy were employed in this work.

  16. The impact of gallium content on degradation, bioactivity, and antibacterial potency of zinc borate bioactive glass.

    PubMed

    Rahimnejad Yazdi, Alireza; Torkan, Lawrence; Stone, Wendy; Towler, Mark R

    2018-01-01

    Zinc borate glasses with increasing gallium content (0, 2.5, 5, 10, and 15 Wt % Ga) were synthesized and their degradation, bioactivity in simulated body fluid (SBF), and antibacterial properties were investigated. ICP measurements showed that increased gallium content in the glass resulted in increased gallium ion release and decreased release of other ions. Degradability declined with the addition of gallium, indicating the formation of more symmetric BO 3 units with three bridging oxygens and asymmetric BO 3 units with two bridging oxygens in the glass network as the gallium content in the series increased. The formation of amorphous CaP on the glass surface after 24 h of incubation in SBF was confirmed by SEM, XRD, and FTIR analyses. Finally, antibacterial evaluation of the glasses using the agar disc-diffusion method demonstrated that the addition of gallium increased the antibacterial potency of the glasses against P. aeruginosa (Gram-negative) while decreasing it against S. epidermidis (Gram-positive); considering the ion release trends, this indicates that the gallium ion is responsible for the glasses' antibacterial behavior against P. aeruginosa while the zinc ion controls the antibacterial activity against S. epidermidis. The statistical significance of the observed trends in the measurements were confirmed by applying the Kruskal-Wallis H Test. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 367-376, 2018. © 2017 Wiley Periodicals, Inc.

  17. Synthesis and photoluminescence properties of Pb2+ doped inorganic borate phosphor NaSr4(BO3)3

    NASA Astrophysics Data System (ADS)

    Chauhan, A. O.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    A series of Inorganic borate phosphors NaSr4(BO3)3 doped with Pb2+ was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb2+ concentration for the NaSr4(BO3)3 were studied in details. The concentration quenching of Pb2+ doped NaSr4(BO3)3 was observed at 0.02 mol. The Stokes shifts of NaSr4(BO3)3: Pb2+ phosphor was calculated to be 7574 cm-1.

  18. Experimental insights on the electron transfer and energy transfer processes between Ce{sup 3+}-Yb{sup 3+} and Ce{sup 3+}-Tb{sup 3+} in borate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Tanabe, Setsuhisa

    2015-03-30

    A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host.more » The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.« less

  19. X-ray absorption studies of gamma irradiated Nd doped phosphate glass

    NASA Astrophysics Data System (ADS)

    Rai, V. N.; Rajput, Parasmani; Jha, S. N.; Bhattacharyya, D.

    2015-06-01

    This paper presents the X-ray absorption near edge structure (XANES) studies of Nd doped phosphate glasses before and after gamma irradiation. The intensity and location of LIII edge white line peak of Nd changes depending on its concentration as well as on the ratio of O/Nd in the glass matrix. The decrease in the peak intensity of white line after gamma irradiation indicates towards reduction of Nd3+ to Nd2+ in the glass matrix, which increases with an increase in the doses of gamma irradiation. Similarity in the XANES spectra of Nd doped phosphate glasses and Nd2O3 suggests that coordination geometry around Nd3+ in glass samples may be identical to that of Nd2O3.

  20. Spectroscopic properties of Eu3+/Nd3+ co-doped phosphate glasses and opaque glass-ceramics

    NASA Astrophysics Data System (ADS)

    Narro-García, R.; Desirena, H.; López-Luke, T.; Guerrero-Contreras, J.; Jayasankar, C. K.; Quintero-Torres, R.; De la Rosa, E.

    2015-08-01

    This paper reports the fabrication and characterization of Eu3+/Nd3+ co-doped phosphate (PNE) glasses and glass-ceramics as a function of Eu3+ concentration. The precursor glasses were prepared by the conventional melt quenching technique and the opaque glass-ceramics were obtained by heating the precursor glasses at 450 °C for 30 h. The structural and optical properties of the glass and glass-ceramics were analyzed by means of X-ray diffraction, Raman spectroscopy, UV-VIS-IR absorption spectroscopy, photoluminescence spectra and lifetimes. The amorphous and crystalline structures of the precursor glass and opaque glass-ceramic were confirmed by X-ray diffraction respectively. The Raman spectra showed that the maximum phonon energy decreased from 1317 cm-1 to 1277 cm-1 with the thermal treatment. The luminescence spectra of the glass and glass-ceramic samples were studied under 396 nm and 806 nm excitation. The emission intensity of the bands observed in opaque glass-ceramic is stronger than that of the precursor glass. The luminescence spectra show strong dependence on the Eu3+ ion concentration in the Nd3+ ion photoluminescence (PL) intensity, which suggest the presence of energy transfer (ET) and cross-relaxation (CR) processes. The lifetimes of the 4F3/2 state of Nd3+ ion in Eu3+/Nd3+ co-doped phosphate glasses and glass-ceramics under 806 nm excitation were measured. It was observed that the lifetimes of the 4F3/2 level of Nd3+ of both glasses and glass-ceramics decrease with the increasing Eu3+ concentration. However in the case of opaque glass-ceramics the lifetimes decrease only 16%.

  1. Spectroscopic properties of Tm3+/Al3+ co-doped sol-gel silica glass

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Lou, Fengguang; Wang, Shikai; Yu, Chunlei; Chen, Danping; Hu, Lili

    2015-04-01

    Tm3+/Al3+ co-doped silica glass was prepared by sol-gel method combined with high temperature sintering. Glasses with compositions of xTm2O3-15xAl2O3-(100 - 16x) SiO2 (in mol%, x = 0.1, 0.3, 0.5, 0.8 and 1.0) were prepared. The high thulium doped silica glass was realized. Their spectroscopic parameters were calculated and analyzed by Judd-Ofelt theory. Large absorption cross section (4.65 × 10-21 cm2 at 1668 nm) and stimulated emission cross section (6.00 × 10-21 cm2 at 1812 nm), as well as low hydroxyl content (0.180 cm-1), long fluorescence lifetime (834 μs at 1800 nm), large σem × τrad (30.05 × 10-21 cm2 ms) and large relative intensity ratio of the 1.8 μm (3F4 → 3H6) to 1.46 (3H4 → 3F4) emissions (90.33) are achieved in this Tm3+/Al3+ co-doped silica glasses. According to emission characteristics, the optimum thulium doping concentration is around 0.8 mol%. The cross relaxation (CR) between ground and excited states of Tm3+ ions was used to explain the optimum thulium doping concentration. These results suggest that the sol-gel method is an effective way to prepare Tm3+ doped silica glass with high Tm3+ doping and prospective spectroscopic properties.

  2. Theoretical studies of the local structures and spin Hamiltonian parameters for Cu2+ in alkaline earth alumino borate glasses

    NASA Astrophysics Data System (ADS)

    Guo, Jia-Xing; Wu, Shao-Yi; Kuang, Min-Quan; Peng, Li; Wu, Li-Na

    2018-01-01

    The local structures and spin Hamiltonian parameters are theoretically studied for Cu2+ in alkaline earth alumino borate (XAB, X = Mg, Ca and Sr) glasses by using the perturbation calculations for tetragonally elongated octahedral 3d9 groups. The [CuO6]10- groups are subject to the large relative tetragonal elongation ratios of 15.4%, 13.4% and 13.0% for MgAB, CaAB and SrAB glasses, respectively, arising from the Jahn-Teller effect. The decreasing cubic field parameter Dq, orbital reduction factor k and relative elongation ratio with the increase of the radius of alkaline earth ion X from Mg to Ca or Sr are analyzed for the studied systems in a uniform way.

  3. Chemical composition and mineralogy of borate from Rio Grande deposit, Uyuni (Bolivia) as raw materials for industrial applications

    NASA Astrophysics Data System (ADS)

    Guillen Vargas, Julio; Arancibia, Jony Roger Hans; Alfonso, Pura; Garcia-Valles, Maite; Parcerisa, David; Martinez, Salvador

    2014-05-01

    Bolivia has large tailings as a result of the historic and present-day Sn mining activity developed extensively in that country. Tailings produced in these mining activities have an appropriate composition to reprocess them and make silicate glass and glass-ceramics, obtaining the valorization of wastes and reducing the visual and chemical impact. Reprocessing the wastes to make glass and glass-ceramics prevents the leaching of heavy metals from those wastes because they are retained in the structure of the glass. Furthermore, an option to increase the economic value of these glasses is the introduction of boron and other additives to produce borosilicate glass. In this study a characterization of the Rio Grande borate deposit for its use in the manufacture of borosilicate glass is presented. Mineralogy was determined by X-ray diffraction (XRD), and Fourier transforms infrared spectroscopy (FTIR); textures were observed by scanning electron microscopy (SEM) and chemical composition was determined by inductively coupled plasma mass spectrometry (ICP-MS). The Rio Grande borate deposit is located in an area of about 50 km2 close to the south of the Salar of Uyuni, in the Río Grande de Lípez Delta. Borates occur in the contact between fluvio-deltaic and lacustrine sediments from water raising the surface by capillarity. The borates crop out in an extent area but towards the west they are covered by fluvio-deltaic sediments, which can be up to 2 m thick. These borates occur as lenses 50-100 m in diameter and layers up to 1 m thick. They usually form brittle nodules with a cotton-ball texture. Chemical composition of the Rio Grande borates is CaO, 11.82-13.83 wt%; Na2O, 13.50-19.35 wt%; K2O, 0.05- 1.04 wt%; MgO, 0.42-1.46 wt%; B2O3, 36.21-42.60 wt%; SiO2, up to 0.53 wt% and SO2, up to 0.60 wt%. Trace elements are low: Sr content is between 151-786 ppm, Al 12-676 ppm, Mn between 1-17 ppm, As 2-10 ppm and Fe between 9-376 ppm. The most abundant borate mineral in this

  4. Optical properties of cerium doped oxyfluoroborate glass.

    PubMed

    Bahadur, A; Dwivedi, Y; Rai, S B

    2013-06-01

    Cerium doped oxyfluoroborate glasses have been prepared and its spectroscopic properties have been discussed. It is found that the absorption edge shifts towards the lower energy side for the higher concentration of cerium dopant. Optical band gap for these glasses have been calculated and it is found that the number of non-bridging oxygen increases with cerium content. The emission spectra of these glasses have been recorded using UV laser radiations (266 and 355 nm) and it is observed that these glasses show bright blue emission. On the basis of excitation and emission spectra we have reported the existence of at least two different emission centers of Ce(3+)ions. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Down- and up-conversion emissions in Er-doped transparent fluorotellurite glass-ceramics

    NASA Astrophysics Data System (ADS)

    Miguel, A.; Morea, R.; Gonzalo, J.; Fernandez, J.; Balda, R.

    2015-03-01

    In this work, we report the near infrared and upconversion emissions of Er3+-doped transparent fluorotellurite glassceramics obtained by heat treatment of the precursor Er-doped TeO2-ZnO-ZnF2 glass. Structural analysis shows that ErF3 nanocrystals nucleated in the glass-ceramic sample are homogeneously distributed in the glass matrix with a typical size of 45±10 nm. The comparison of the fluorescence properties of Er3+-doped precursor glass and glass-ceramic confirms the successful incorporation of the rare-earth into the nanocrystals. An enhancement of the red upconversion emission due to 4F9/2→4I15/2 transition together with weak emission bands due to transitions from 2H9/2, 4F3/2,5/2, and 4F7/2 levels to the ground state are observed under excitation at 801 nm in the glass-ceramic sample. The temporal evolution of the red emission together with the excitation upconversion spectrum suggest that energy transfer processes are responsible for the enhancement of the red emission.

  6. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials.

    PubMed

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-03-07

    Transparent Er 3+ -doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH - ) content. Enhanced 2.7 μm emission was achieved from Er 3+ -doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO 2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er 3+ -doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10 -20  cm 2 ). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.

  7. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    PubMed Central

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-01-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH−) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10−20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers. PMID:28266570

  8. Nano crystalline Bi2(VO5) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Khasa, S.; Dahiya, M. S.; Agarwal, A.

    2016-05-01

    Glass composition 7V2O5.23Li2O.20Bi2O3.50B2O3 and x(2NiO.V2O5).(30-x)Li2O.20Bi2O3.50B2O3, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi2(VO5) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V2O5-crystal were observed along with the nano crystalline Bi2(VO5) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRD diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi2(VO5) nano-crystallite was ~30nm for samples annealed at 400°C and ~42nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi2(VO5) crystallite.

  9. Spectroscopic studies on samarium oxide (Sm2O3) doped tungsten tellurite glasses

    NASA Astrophysics Data System (ADS)

    Shekhawat, M. S.; Basha, S. K. Shahenoor; Rao, M. C.

    2018-05-01

    Samarium oxide (Sm2O3) doped tungsten tellurite glasses have been prepared by conventional rapid melt quenching method. The optical absorption spectrum of Samarium oxide doped tellurite glasses showed an absorption peak at 301 nm. FT-Raman studies suggested that Sm2O3 could modify the properties of glass and CIE chromaticity coordinates were calculated for the generation of white light from the luminescence spectra.

  10. Raman and Photoluminescence Spectroscopy of Er(3+) Doped Heavy Metal Oxide Glasses

    NASA Technical Reports Server (NTRS)

    Dyer, Keith; Pan, Zheng-Da; Morgan, Steve

    1997-01-01

    The potential applications of rare-earth ion doped materials include fiber lasers which can be pumped conveniently by infrared semiconductor laser diodes. The host material systems most widely studied are fluoride crystals and glasses because fluorides have low nonradiative relaxation rates due to their lower phonon energies. However, the mechanical strength, chemical durability and temperature stability of the oxide glasses are generally much better than fluoride glasses. The objective of this research was to investigate the optical and spectroscopic properties of Er(3+)-doped lead-germanate and lead-tellurium-germanate glasses. The maximum vibrational energy of lead-tellurium-germanate glasses are in the range of 740-820/cm, intermediate between those of silicate (1150/cm) and fluoride (530/cm) glasses.

  11. Rare-earth doped transparent nano-glass-ceramics: a new generation of photonic integrated devices

    NASA Astrophysics Data System (ADS)

    Rodríguez-Armas, Vicente Daniel; Tikhomirov, Victor K.; Méndez-Ramos, Jorge; Yanes, Angel C.; Del-Castillo, Javier; Furniss, David; Seddon, Angela B.

    2007-05-01

    We report on optical properties and prospect applications on rare-earth doped oxyfluoride precursor glass and ensuing nano-glass-ceramics. We find out the spectral optical gain of the nano-glass-ceramics and show that its flatness and breadth are advantageous as compared to contemporary used erbium doped optical amplifiers. We present the possibility of flat gain cross-section erbium doped waveguide amplifiers as short 'chip', all-optical, devices capable of dense wavelength division multiplexing, including the potential for direct writing of these devices inside bulk glasses for three-dimensional photonic integration. We carried out a comparative study of the up-conversion luminescence in Er 3+-doped and Yb 3+-Er 3+-Tm 3+ co-doped samples, which indicates that these materials can be used as green/red tuneable up-conversion phosphors and white light simulation respectively. Observed changes in the spectra of the up-conversion luminescence provide a tool for tuning the colour opening the way for producing 3-dimensional optical recording.

  12. Antibacterial and osteo-stimulatory effects of a borate-based glass series doped with strontium ions.

    PubMed

    Li, Yiming; Stone, Wendy; Schemitsch, Emil H; Zalzal, Paul; Papini, Marcello; Waldman, Stephen D; Towler, Mark R

    2016-11-01

    This work considered the effect of both increasing additions of Strontium (Sr 2+ ) and incubation time on solubility and both antibacterial and osteo-stimulatory effects of a series of glasses based on the B 2 O 3 -P 2 O 5 -CaCO 3 -Na 2 CO 3 -TiO 2 -SrCO 3 series. The amorphous nature of all the glasses was confirmed by X-ray diffraction. Discs of each glass were immersed in de-ionized water for 1, 7 and 30 days, and the water extracts were used for ion release profiles, pH measurements and cytotoxicity testing. Atomic absorption spectroscopy was employed to detect the release of Na + , Ca 2+ and Sr 2+ ions from the glasses with respect to maturation, which indicated that the addition of Sr 2+ retarded solubility of the glass series. This effect was also confirmed by weight loss analysis through comparing the initial weight of glass discs before and after periods of incubation. The incorporation of Sr 2+ in the glasses did not influence the pH of the water extracts when the glasses were stored for up to 30 days. Cytotoxicity testing with an osteoblastic cell line (MC3T3-E1) indicated that glasses with the higher (20 mol% and 25 mol%) Sr 2+ incorporation promoted proliferation of osteoblast cells, while the glasses with lower Sr 2+ contents inhibited cell growth. The glass series, except for Ly-B5 (which contained the highest Sr 2+ incorporation; 25 mol%), were bacteriostatic against S. aureus in the short term (1-7 days) as a result of the dissolution products released. © The Author(s) 2016.

  13. Energy transfer and colour tunability in UV light induced Tm3+/Tb3+/Eu3+: ZnB glasses generating white light emission.

    PubMed

    Naresh, V; Gupta, Kiran; Parthasaradhi Reddy, C; Ham, Byoung S

    2017-03-15

    A promising energy transfer (Tm 3+ →Tb 3+ →Eu 3+ ) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm 3+ /Tb 3+ /Eu 3+ ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II) x -[O(-II)] y centres in the ZnB glass matrix. At 360nm (UV) excitation, triply doped Tm 3+ /Tb 3+ /Eu 3+ : ZnB glasses simultaneously shown their characteristic emission bands in blue (454nm: 1 D 2 → 3 F 4 ), green (547nm: 5 D 4 → 7 F 5 ) and red (616nm: 5 D 0 → 7 F 2 ) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb 3+ in ET from Tm 3+ →Eu 3+ was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb 3+ , Eu 3+ ) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Energy transfer and colour tunability in UV light induced Tm3 +/Tb3 +/Eu3 +: ZnB glasses generating white light emission

    NASA Astrophysics Data System (ADS)

    Naresh, V.; Gupta, Kiran; Parthasaradhi Reddy, C.; Ham, Byoung S.

    2017-03-01

    A promising energy transfer (Tm3 + → Tb3 + → Eu3 +) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm3 +/Tb3 +/Eu3 + ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(- II)]y centres in the ZnB glass matrix. At 360 nm (UV) excitation, triply doped Tm3 +/Tb3 +/Eu3 +: ZnB glasses simultaneously shown their characteristic emission bands in blue (454 nm: 1D2 → 3F4), green (547 nm: 5D4 → 7F5) and red (616 nm: 5D0 → 7F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb3 + in ET from Tm3 + → Eu3 + was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb3 +, Eu3 +) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.

  15. Revival of nitrogen-containing bisphosphonate-induced inhibition of osteoclastogenesis and osteoclast function by water-soluble microfibrous borate glass.

    PubMed

    Yuan, He; Niu, Li-Na; Jiao, Kai; Pei, Dan-Dan; Pramanik, Chandrani; Li, Ji-Yao; Messer, Regina; Kumar, Satish; Pashley, David H; Tay, Franklin R

    2016-02-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious skeletal complication associated with the long-term oral or intravenous use of nitrogen-containing bisphosphonates (N-BPs). Here, we investigated the effects of an ionic cocktail prepared from water-soluble microfibrous borate glass on neutralizing the inhibitory effects of two heterocyclic N-BPs, risedronate or zoledronic acid, on osteoclastogenesis, apoptosis of differentiated osteoclasts and osteoclast function. Cell growth and proliferation assays were first performed on RAW 264.7 cells to optimize the concentrations of the ionic cocktail and N-BPs to be used for static cell culture. The pre-osteoclasts were then stimulated with RANKL to differentiate into osteoclasts. The effects of the ionic cocktail and N-BPs on osteoclast differentiation, apoptosis and function were subsequently examined using 3 series of experiments conducted at the gene, protein, morphological and functional levels. After concentration optimization, the ionic cocktail was found to partially reverse N-BP-induced inhibition of osteoclastogenesis, stimulation of osteoclasts apoptosis and reduction of osteoclast resorptive activity. Ultrastructural examination of osteoclasts that had been exposed to either N-BP identified classical features of late apoptosis and secondary necrosis, while osteoclasts exposed simultaneously to the concentration-optimized ionic cocktail and N-BPs exhibited only signs of early apoptosis that were possibly reversible. Taken together, the results of the 4 series of experiments indicate that the ionic cocktail produced from dissolution of borate glass dressings has the potential to rescue the adverse effects of heterocyclic N-BPs on osteoclast differentiation and function. These results warrant further confirmation using dynamic cell culture and small animal BRONJ models. Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) may result in bisphosphonate

  16. A Novel Injectable Borate Bioactive Glass Cement as an Antibiotic Delivery Vehicle for Treating Osteomyelitis

    PubMed Central

    Cui, Xu; Gu, Yi-Fei; Jia, Wei-Tao; Rahaman, Mohamed N.; Wang, Yang; Huang, Wen-Hai; Zhang, Chang-Qing

    2014-01-01

    Background A novel injectable cement composed of chitosan-bonded borate bioactive glass (BG) particles was evaluated as a carrier for local delivery of vancomycin in the treatment of osteomyelitis in a rabbit tibial model. Materials and Methods The setting time, injectability, and compressive strength of the borate BG cement, and the release profile of vancomycin from the cement were measured in vitro. The capacity of the vancomycin-loaded BG cement to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in rabbit tibiae in vivo was evaluated and compared with that for a vancomycin-loaded calcium sulfate (CS) cement and for intravenous injection of vancomycin. Results The BG cement had an injectability of >90% during the first 3 minutes after mixing, hardened within 30 minutes and, after hardening, had a compressive strength of 18±2 MPa. Vancomycin was released from the BG cement into phosphate-buffered saline for up to 36 days, and the cumulative amount of vancomycin released was 86% of the amount initially loaded into the cement. In comparison, vancomycin was released from the CS cement for up 28 days and the cumulative amount released was 89%. Two months post-surgery, radiography and microbiological tests showed that the BG and CS cements had a better ability to eradicate osteomyelitis when compared to intravenous injection of vancomycin, but there was no significant difference between the BG and CS cements in eradicating the infection. Histological examination showed that the BG cement was biocompatible and had a good capacity for regenerating bone in the tibial defects. Conclusions These results indicate that borate BG cement is a promising material both as an injectable carrier for vancomycin in the eradication of osteomyelitis and as an osteoconductive matrix to regenerate bone after the infection is cured. PMID:24427311

  17. A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis.

    PubMed

    Ding, Hao; Zhao, Cun-Ju; Cui, Xu; Gu, Yi-Fei; Jia, Wei-Tao; Rahaman, Mohamed N; Wang, Yang; Huang, Wen-Hai; Zhang, Chang-Qing

    2014-01-01

    A novel injectable cement composed of chitosan-bonded borate bioactive glass (BG) particles was evaluated as a carrier for local delivery of vancomycin in the treatment of osteomyelitis in a rabbit tibial model. The setting time, injectability, and compressive strength of the borate BG cement, and the release profile of vancomycin from the cement were measured in vitro. The capacity of the vancomycin-loaded BG cement to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in rabbit tibiae in vivo was evaluated and compared with that for a vancomycin-loaded calcium sulfate (CS) cement and for intravenous injection of vancomycin. The BG cement had an injectability of >90% during the first 3 minutes after mixing, hardened within 30 minutes and, after hardening, had a compressive strength of 18 ± 2 MPa. Vancomycin was released from the BG cement into phosphate-buffered saline for up to 36 days, and the cumulative amount of vancomycin released was 86% of the amount initially loaded into the cement. In comparison, vancomycin was released from the CS cement for up 28 days and the cumulative amount released was 89%. Two months post-surgery, radiography and microbiological tests showed that the BG and CS cements had a better ability to eradicate osteomyelitis when compared to intravenous injection of vancomycin, but there was no significant difference between the BG and CS cements in eradicating the infection. Histological examination showed that the BG cement was biocompatible and had a good capacity for regenerating bone in the tibial defects. These results indicate that borate BG cement is a promising material both as an injectable carrier for vancomycin in the eradication of osteomyelitis and as an osteoconductive matrix to regenerate bone after the infection is cured.

  18. Optical spectroscopy and luminescence properties of Ho3+ doped zinc fluorophosphate (ZFP) glasses for green luminescent device applications

    NASA Astrophysics Data System (ADS)

    Reddy Prasad, V.; Damodaraiah, S.; Ratnakaram, Y. C.

    2018-04-01

    Ho3+ doped zinc fluorophosphate (ZFP) glasses with molar chemical compositions, (60-x) NH4H2PO4+20ZnO+10BaF2+10NaF+xHo2O3 (where x = 0.1, 0.3, 0.5, 1.0 and 1.5 mol%) were prepared by melt quenching technique. These glasses were characterized through physical, structural, optical, excitation, luminescence and decay curve analysis. From the absorption spectra, spectral intensities (fexp and fcal), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6), radiative transition probabilities (AT), radiative lifetimes (τR) and branching ratios (βR) were evaluated for all Ho3+ doped ZFP glass matrices. From the photoluminescence spectra, peak stimulated emission cross-sections (σP) were calculated for all Ho3+ doped ZFP glasses. The Ho3+ doped ZFP glasses show strong green emission at 545 nm and red emission at 656 nm under excitation, 450 nm. The measured lifetimes (τmeas) of (5S2)5F4 level of Ho3+ doped ZFP glasses were obtained from decay profiles. The CIE color coordinates of Ho3+ doped ZFP glasses were calculated from emission spectra and 1.0 mol% of Ho3+ doped ZFP glass matrix gives green emission. Hence, these results confirm that the Ho3+ doped ZFP glasses could be considered as a promising candidate for visible green laser applications.

  19. Radiation hardening in sol-gel derived Er{sup 3+}-doped silica glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hari Babu, B., E-mail: hariphy2012@gmail.com, E-mail: matthieu.lancry@u-psud.fr; León Pichel, Mónica; Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS-UPSud 8182, Université Paris Sud, 91405 Orsay

    2015-09-28

    The aim of the present paper is to report the effect of radiation on the Er{sup 3+}-doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er{sup 3+}-doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′{sub δ} point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposuremore » to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er{sup 3+} to Er{sup 2+} ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects.« less

  20. Sensitivity of novel silicate and borate-based glass structures on in vitro bioactivity and degradation behaviour.

    PubMed

    Mancuso, Elena; Bretcanu, Oana; Marshall, Martyn; Dalgarno, Kenneth W

    2017-10-15

    Three novel glass compositions, identified as NCL2 (SiO 2 -based), NCL4 (B 2 O 3 -based) and NCL7 (SiO 2 -based), along with apatite-wollastonite (AW) were processed to form sintered dense pellets, and subsequently evaluated for their in vitro bioactive potential, resulting physico-chemical properties and degradation rate. Microstructural analysis showed the carbonated hydroxyapatite (HCA) precipitate morphology following SBF testing to be composition-dependent. AW and the NCL7 formulation exhibited greater HCA precursor formation than the NCL2 and NCL4-derived pellets. Moreover, the NCL4 borate-based samples showed the highest biodegradation rate; with silicate-derived structures displaying the lowest weight loss after SBF immersion. The results of this study suggested that glass composition has significant influence on apatite-forming ability and also degradation rate, indicating the possibility to customise the properties of this class of materials towards the bone repair and regeneration process.

  1. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Bal, B Sonny; Bonewald, Lynda F; Kuroki, Keiichi; Brown, Roger F

    2010-10-01

    In Part I, the in vitro degradation of bioactivAR52115e glass scaffolds with a microstructure similar to that of human trabecular bone, but with three different compositions, was investigated as a function of immersion time in a simulated body fluid. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. This work is an extension of Part I, to investigate the effect of the glass composition on the in vitro response of osteogenic MLO-A5 cells to these scaffolds, and on the ability of the scaffolds to support tissue infiltration in a rat subcutaneous implantation model. The results of assays for cell viability and alkaline phosphatase activity showed that the slower degrading silicate 13-93 and borosilicate 13-93B1 scaffolds were far better than the borate 13-93B3 scaffolds in supporting cell proliferation and function. However, all three groups of scaffolds showed the ability to support tissue infiltration in vivo after implantation for 6 weeks. The results indicate that the required bioactivity and degradation rate may be achieved by substituting an appropriate amount of SiO2 in 13-93 glass with B2O3, and that these trabecular glass scaffolds could serve as substrates for the repair and regeneration of contained bone defects. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  2. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics.

    PubMed

    Bejarano, Julian; Caviedes, Pablo; Palza, Humberto

    2015-03-11

    Metal doping of bioactive glasses based on ternary 60SiO2-36CaO-4P2O5 (58S) and quaternary 60SiO2-25CaO-11Na2O-4P2O5 (NaBG) mol% compositions synthesized using a sol-gel process was analyzed. In particular, the effect of incorporating 1, 5 and 10 mol% of CuO and ZnO (replacing equivalent quantities of CaO) on the texture, in vitro bioactivity, and cytocompatibility of these materials was evaluated. Our results showed that the addition of metal ions can modulate the textural property of the matrix and its crystal structure. Regarding the bioactivity, after soaking in simulated body fluid (SBF) undoped 58S and NaBG glasses developed an apatite surface layer that was reduced in the doped glasses depending on the type of metal and its concentration with Zn displaying the largest inhibitions. Both the ion release from samples and the ion adsorption from the medium depended on the type of matrix with 58S glasses showing the highest values. Pure NaBG glass was more cytocompatible to osteoblast-like cells (SaOS-2) than pure 58S glass as tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The incorporation of metal ions decreased the cytocompatibility of the glasses depending on their concentration and on the glass matrix doped. Our results show that by changing the glass composition and by adding Cu or Zn, bioactive materials with different textures, bioactivity and cytocompatibility can be synthesized.

  3. The influence of different alkaline earth oxides on the structural and optical properties of undoped, Ce-doped, Sm-doped, and Sm/Ce co-doped lithium alumino-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Arzumanyan, G. M.; Möncke, D.

    2016-12-01

    Undoped, singly Sm doped, Ce doped, and Sm/Ce co-doped lithium alumino-phosphate glasses with different alkaline earth modifiers were prepared by melt quenching. The structure of the prepared glasses was investigated by FT-IR and Raman, as well as by optical spectroscopy. The effect of the optical basicity of the host glass matrix on the added active dopants was studied, as was the effect doping had on the phosphate structural units. The optical edge shifts toward higher wavelengths with an increase in the optical basicity due to the increased polarizability of the glass matrix, but also with increasing CeO2 concentration as a result of Ce3+/Ce4+ inter valence charge transfer (IV-CT) absorption. The optical band gap for direct and indirect allowed transitions was calculated for the undoped glasses. The glass sample containing Mg2+ modifier ions is found to have the highest value (4.16 eV) for the optical band gap while Ba2+ has the lowest value (3.61 eV). The change in the optical band gap arises from the structural changes and the overall polarizability (optical basicity). Refractive index, molar refractivity Rm and molar polarizability αm values increase with increasing optical basicity of the glasses. The characteristic absorption peaks of Sm3+ were also investigated. For Sm/Ce co-doped glasses, especially at high concentration of CeO2, the absorption of Ce3+ hinders the high energy absorption of Sm3+ and this effect becomes more obvious with increasing optical basicity.

  4. Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid.

    PubMed

    Liu, Xin; Rahaman, Mohamed N; Day, Delbert E

    2013-03-01

    Microfibrous bioactive glasses are showing a considerable capacity to heal soft tissue wounds, but little information is available on the mechanism of healing. In the present study, the conversion of microfibrous borate bioactive glass (diameter = 0.2-5 μm) with the composition designated 13-93B3 (5.5 Na2O, 11.1 K2O, 4.6 MgO, 18.5 CaO, 3.7 P2O5, 56.6 B2O3 wt%) was evaluated in vitro as a function of immersion time in a simulated body fluid (SBF) at 37 °C using structural and chemical techniques. Silicate 45S5glass microfibers (45 SiO2, 24.5 Na2O, 24.5 CaO, 6 P2O5 wt%) were also studied for comparison. Microfibrous 13-93B3 glass degraded almost completely and converted to a calcium phosphate material within 7-14 days in SBF, whereas >85 % of the silica remained in the 45S5 microfibers, forming a silica gel phase. An amorphous calcium phosphate (ACP) product that formed on the 13-93B3 microfibers crystallized at a slower rate to hydroxyapatite (HA) when compared to the ACP that formed on the 45S5 fibers. For immersion times >3 days, the 13-93B3 fibers released a higher concentration of Ca into the SBF than the 45S5 fibers. The fast and more complete degradation, slow crystallization of the ACP product, and higher concentration of dissolved Ca in SBF could contribute to the capacity of the microfibrous borate 13-93B3 glass to heal soft tissue wounds.

  5. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion.

    PubMed

    Rodriguez, Omar; Matinmanesh, Ali; Phull, Sunjeev; Schemitsch, Emil H; Zalzal, Paul; Clarkin, Owen M; Papini, Marcello; Towler, Mark R

    2016-12-01

    Silica-based and borate-based glass series, with increasing amounts of TiO₂ incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate's (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO₂ in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO₂ to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO₂ incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass ® and Pyrex.

  6. Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion

    PubMed Central

    Rodriguez, Omar; Matinmanesh, Ali; Phull, Sunjeev; Schemitsch, Emil H.; Zalzal, Paul; Clarkin, Owen M.; Papini, Marcello; Towler, Mark R.

    2016-01-01

    Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate’s (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex. PMID:27916951

  7. X-ray-induced fluorescent centers formation in zinc- phosphate glasses doped with Ag and Cu ions

    NASA Astrophysics Data System (ADS)

    Klyukin, D. A.; Pshenova, A. S.; Sidorov, A. I.; Stolyarchuk, M. V.

    2016-08-01

    Fluorescent properties of silver and copper doped zinc-phosphate glasses were studied. By X-ray irradiation of silver and copper co-doped glasses we could create and identify new emission centers which do not exist in single-doped samples. Doping of the glass with both silver and copper ions leads to the increase of quantum yield by 2.7 times. The study was complemented by quantum chemical calculations using the time-dependent density functional theory. It was shown that fluorescence may be attributed to the formation of mixed Ag-Cu molecular clusters.

  8. Ytterbium-doped glass-ceramics for optical refrigeration.

    PubMed

    Filho, Elton Soares de Lima; Krishnaiah, Kummara Venkata; Ledemi, Yannick; Yu, Ye-Jin; Messaddeq, Younes; Nemova, Galina; Kashyap, Raman

    2015-02-23

    We report for the first time the characterization of glass-ceramics for optical refrigeration. Ytterbium-doped nanocrystallites were grown in an oxyfluoride glass matrix of composition 2YbF(3):30SiO(2)-15Al(2)O(3)-25CdF(2)-22PbF(2)-4YF(3), forming bulk glass-ceramics at three different crystalisation levels. The samples are compared with a corresponding uncrystalised (glass) sample, as well as a Yb:YAG sample which has presented optical cooling. The measured X-ray diffraction spectra, and thermal capacities of the samples are reported. We also report for the first time the use of Yb:YAG as a reference for absolute photometric quantum efficiency measurement, and use the same setup to characterize the glass and glass-ceramic samples. The cooling figure-of-merit was measured by optical calorimetry using a fiber Bragg grating and found to depend on the level of crystallization of the sample, and that samples with nanocrystallites result in higher quantum efficiency and lower background absorption than the pure-glass sample. In addition to laser-induced cooling, the glass-ceramics have the potential to serve as a reference for quantum efficiency measurements.

  9. Structural origin and laser performance of thulium-doped germanate glasses.

    PubMed

    Xu, Rongrong; Xu, Lin; Hu, Lili; Zhang, Junjie

    2011-12-15

    The structural origin and laser performance of thulium-doped germanate glasses have been studied. The investigation includes two main sections. The first part discusses the Raman spectroscopic and thermal stability of the host glass structure. The low value of the largest phonon energy (850 cm(-1)) reduces the probability of nonradiative relaxation. The large emission cross section of the Tm(3+) : (3)F(4) level (8.69 × 10(-21) cm(2)), the high quantum efficiency of the (3)F(4) level (71%), and the low nonradiative relaxation rate of the (3)F(4) → (3)H(6) transition (0.09 ms(-1)) illustrate good optical properties of the germanate glass. In the second part, the room-temperature laser action from the thulium-doped germanate glass is demonstrated when pumped by a 790 nm laser diode. The maximum output power of 346 mW and slope efficiency of 25.6% are achieved.

  10. Optical properties of rare earth doped transparent oxyfluoride glass ceramics

    NASA Astrophysics Data System (ADS)

    Mendez-Ramos, J.; Lavin, V.; Martin, I. R.; Rodriguez-Mendoza, U. R.; Rodriguez, V. D.; Lozano-Gorrin, A. D.; Nunez, P.

    2003-01-01

    Optical properties of Eu3+ ions in oxyfluoride glasses and glass ceramics doped with low concentration (0.1 mol%) have been analysed and compared with previous results for high concentrated samples (2.5 mol%). The Eu3+ ions in the low dopant concentration glass ceramics are diluted into like crystalline environments with higher symmetry and lower coupled phonons energy than in the precursor glasses. Fluorescence line narrowing measurements indicate the presence of two main fluoride site distributions for the Eu3+ ions in these low concentrated glass ceramics.

  11. Linear and nonlinear optical characteristics of Te nanoparticles-doped germanate glasses

    NASA Astrophysics Data System (ADS)

    Xu, Zhousu; Guo, Qiangbing; Liu, Chang; Ma, Zhijun; Liu, Xiaofeng; Qiu, Jianrong

    2016-10-01

    Te nanoparticles (NPs)-doped GeO2-MgO-B2O3-Al2O3-TeO2 glasses were prepared by the conventional melt-quenching method. Based on X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscope observation, the coloration of the glass at high TeO2 concentration is ascribed to the precipitation of elemental Te NPs with a size of 5-10 nm in the germanate glass. Optical absorption spectra and nonlinear optical (NLO) properties of the glass samples were analyzed by UV-3600 spectrophotometry and Z-scan technique, respectively. The nonlinear absorption coefficient ( β) and the imaginary part of the third-order NLO susceptibility (Im χ (3)) were estimated to be 1.74 cm/GW and 1.142 × 10-12 esu for laser power of 95 μW, respectively. Due to the excellent NLO properties, the Te NPs-doped germanate glasses may have potential applications for ultrafast optical switch and photonics.

  12. Luminescent properties of Ln3+ doped tellurite glasses containing AlF3

    NASA Astrophysics Data System (ADS)

    Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara

    2016-09-01

    The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.

  13. Borates

    USGS Publications Warehouse

    Crangle, R.D.

    2013-01-01

    Four minerals represent 90 percent of the borates used by industry worldwide — the sodium borates (tincal and kernite), calcium borate (colemanite) and the sodium-calcium borate (ulexite). Borax is a white crystalline substance, chemically known as sodium tetraborate decahydrate, and is found naturally as the mineral tincal. Boric acid is a colorless crystalline solid sold in technical, national formulary and special quality grades as granules or powder and marketed most often as anhydrous boric acid. Deposits of borates are associated with volcanic activity and arid climates, with the largest economically viable deposits located in the Mojave Desert of the United States near Boron, CA, the Alpide belt in southern Asia and the Andean belt of South America.

  14. Visible emission in Sm3+ and Tb3+ doped phosphate glass excited by UV radiation

    NASA Astrophysics Data System (ADS)

    Zmojda, Jacek; Dorosz, Dominik; Kochanowicz, Marcin; Miluski, Piotr; Czajkowski, Karol; Ragin, Tomasz

    2013-10-01

    In the article analysis of UV absorption and visible fluorescence of Sm3+ and Tb3+ ions doped phosphate glass with molar composition: 65P2O5 + 8Al2O3 + 10BaO + 17(Na2O + MgO + ZnO) have been investigated. As a result of optical pumping fabricated glass with radiation from a deuterium lamp four luminescence bands were observed near to the wavelength of 600 nm for Sm3+ ions and 550 nm for Tb3+ ions. It was found that larger energy gap between laser and ground levels leads to the strongest emission in the visible range in terbium doped glasses than in glasses doped with samarium ions. Both fabricated glasses are characterized by the ability to selectively detect the radiation in the UV range.

  15. Crystal nucleation in lithium borate glass

    NASA Technical Reports Server (NTRS)

    Smith, Gary L.; Neilson, George F.; Weinberg, Michael C.

    1988-01-01

    Crystal nucleation measurements were made on three lithium borate compositions in the vicinity of Li2O-2Br2O3. All nucleation measurements were performed at 500 C. Certain aspects of the nucleation behavior indicated (tentatively) that it proceeded by a homogeneous mechanism. The steady state nucleation rate was observed to have the largest value when the Li2O concentration was slightly in excess of the diborate composition. The change in nucleation rate with composition is controlled by the variation of viscosity as well as the change in free energy with composition. The variation of nucleation rate is explained qualitatively in these terms.

  16. Spectroscopy of Yb-doped tungsten-tellurite glass and assessment of its lasing properties

    NASA Astrophysics Data System (ADS)

    Merzliakov, M. A.; Kouhar, V. V.; Malashkevich, G. E.; Pestryakov, E. V.

    2018-01-01

    Glasses of the TeO2-WO3-Yb2O3 system are synthesized for wide range of Yb3+ concentrations of up to 6.0 × 1021 ions/cm3. The spectral-luminescent properties of lightly doped samples are investigated at room temperature and at the boiling point of liquid nitrogen. The energies of the Stark levels of the ground and excited states of Yb3+ ions incorporated into tungsten-tellurite glass are determined by analyzing the low-temperature spectra. The absorption, emission, and gain cross section spectra are obtained. The excess of the measured fluorescence decay time over the radiative lifetime ∼0.3 ms derived from the absorption spectra is attributed to the reabsorption effect in bulk samples. Measurements of lightly doped glass powder in the immersion liquid are made to reduce the effect of reabsorption. The fluorescence decay time of the powder is very close to the calculated radiative lifetime. Compared with phosphate, silicate, and other Yb3+-doped glasses, the tungsten-tellurite glass has a promising potential as a gain medium for lasers and amplifiers.

  17. Physical and optical properties of lithium borosilicate glasses doped with Dy3+ ions

    NASA Astrophysics Data System (ADS)

    Ramteke, D. D.; Gedam, R. S.; Swart, H. C.

    2018-04-01

    The borosilicate glasses with Dy3+ ions were prepared by the melt quench technique with varying concentration of Dy2O3. The glasses were characterized by the density calculation, absorbance and photoluminescence (PL) spectroscopy measurements. Density and molar volume of the glasses increases with increase in Dy3+ ions in the glass matrix. This behavior is correlated with the higher molecular weight and larger ionic radius of Dy3+ ion compared to the other constituents of glass matrix. Emission of Dy3+ doped glasses showed three bands at 482, 573 and at 665 nm which correspond to 6H15/2 (blue), 6H13/2 (yellow) and 6H11/2 (red) transitions. The emission spectra of glasses with different concentration of Dy3+ ions shows that, glasses with 0.5 mol% of Dy2O3 shows highest emission and decreases with further doping. CIE 1931 chromaticity diagram showed that the emission of these glasses was in the white region. Photographs of these glasses under 349 nm Light emitting diode excitation also confirmed the white light emission from these glasses.

  18. Analysis of radiophotoluminescence center formation mechanism in Ag-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Kawamoto, Hiroki; Fujimoto, Yutaka; Koshimizu, Masanori; Okada, Go; Yanagida, Takayuki; Asai, Keisuke

    2018-06-01

    Ag-doped phosphate glasses have widely been used as radiophotoluminescence (RPL) dosimeters. However, the RPL center formation process is not fully understood. In this study, we investigated the RPL center formation process in Ag-doped Na–Al phosphate glasses. We observed that two RPL centers (Ag0 and Ag2+) were formed at temperatures higher than 100 and 250 K, respectively. In addition, activation energies of their formation were estimated to be 20 and 267 meV, respectively. These results suggest that the electron transfer process is not a simple thermally activated process.

  19. Photonic bandgap single-mode optical fibre with ytterbium-doped silica glass core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorova, O N; Semenov, S L; Vel'miskin, V V

    2011-01-24

    A photonic bandgap fibre with an ytterbium-doped silica glass core is fabricated and investigated. The possibility of implementing single-mode operation of such fibres in a wide spectral range at a large (above 20 {mu}m) mode field diameter makes them promising for fibre lasers and amplifiers. To ensure a high quality of the beam emerging from the fibre, particular attention is paid to increasing the optical homogeneity of the ytterbium-doped core glass. (optical fibres)

  20. Spectroscopic properties of Nd3+ doped transparent oxyfluoride glass ceramics.

    PubMed

    Yu, Yunlong; Chen, Daqin; Ma, En; Wang, Yuansheng; Hu, Zhongjian

    2007-07-01

    In this paper, the spectroscopic properties of Nd(3+) doped transparent oxyfluoride glass ceramics containing LaF(3) nano-crystals were systematically studied. The formation and distribution of LaF(3) nano-crystals in the glass matrix were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Based on Judd-Ofelt theory, the intensity parameters Omega(t) (t=2, 4, 6), spontaneous emission probability, radiative lifetime, radiative quantum efficiency, width of the emission line and stimulated emission cross-section of Nd(3+) were evaluated. Particularly, the effect of Nd(3+) doping level on them was discussed. With the increase of Nd(3+) concentration in the glass ceramic, the experimental luminescence lifetime, radiative quantum efficiency and stimulated emission cross-section vary from 353.4 micros, 78.3% and 1.86 x 10(-20)cm(2) to 214.7 micros, 39.9% and 1.52 x 10(-20)cm(2), respectively. The comparative study of Nd(3+) spectroscopic parameters in different hosts suggests that the investigated glass ceramic system is potentially applicable as laser materials for 1.06 microm emission.

  1. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  2. Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants.

    PubMed

    Rodriguez, Omar; Stone, Wendy; Schemitsch, Emil H; Zalzal, Paul; Waldman, Stephen; Papini, Marcello; Towler, Mark R

    2017-10-01

    In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn 2+ ), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro .

  3. Study on surface roughness evolvement of Nd-doped phosphate glass after IBF

    NASA Astrophysics Data System (ADS)

    Li, Furen; Xie, Xuhui; Zhou, Lin; Tie, Guipeng; Hu, Hao

    2016-10-01

    Nd doped phosphate glass is widely used as gain media in high power laser system. It is traditionally polished with the annular polishing technology. The edge effect is inevitable in annular polishing process and it results in the low manufacturing efficiency. Ion Beam Figuring (IBF) is a highly deterministic, non-contact method for the ultra-precision optics fabrication. So the edge effect is avoided. Nanometer and sub-nanometer precision is realizable in IBF. In this paper, Nd doped phosphate glass was polished with IBF, and the evolvement of surface roughness was emphasized. The roughness of surface polished with ion beam at normal and oblique incidence was researched. The oblique incident angle was 45°. The surface roughness was measured with the white light interferometer. No evident change was observed. This means that the pre-finish roughness can be preserved in IBF. The results denote that IBF is a feasible method to correct the contour errors of Nd doped phosphate glass, and the roughness will not be coarsened.

  4. Enhanced frequency upconversion study in Er3+/Yb3+ doped/codoped TWTi glasses

    NASA Astrophysics Data System (ADS)

    Azam, Mohd; Rai, Vineet Kumar

    2018-04-01

    Er3+/Yb3+ doped/codoped TeO2-WO3-TiO2 (TWTi) glasses have been prepared by using the melt-quenching technique. The upconversion (UC) emission spectra of the developed glasses have been recorded upon 980 nm laser excitation. Three intense UC emission bands have been observed within the green and red region centered at ˜532 nm, ˜553 nm and ˜669 nm corresponding to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions respectively in the singly Er3+ doped glass. On introducing Yb3+ ions in the singly Er3+ doped glass, an enhancement of about ˜ 12 times and ˜50 times in the green and red bands respectively have been observed even at low pump power ˜ 364 mW followed by two photon absorption process. Colour tunability from yellowish green to pure green colour region has been observed on varying the pump power. The prepared glass can be used to produce NIR to green upconverter and colour tunable display devices.

  5. Effect of R(3+) ions on the structure and properties of lanthanum borate glasses

    NASA Technical Reports Server (NTRS)

    Chakraborty, I. N.; Day, D. E.

    1985-01-01

    The present investigation of glass formation in the (mole percent) systems 25La2O3 (x)R2O3 (75-x)B2O3, where R = Al, Ga, and (25-x)La2O3 (x)Ln2O3 75B2O3, where Ln = Gd, Er, Y, notes that up to 25 mol pct Al2O3 or Ga2O3 can be substituted for B2O3, while no more than about 5 mol pct Ln2O3, substituted for La2O3, caused macro-phase separation. The substitution of either R2O3 or Ln2O3 in the lanthanum borate system changes the separation distance between adjacent B3O6 chains. The effect of this structural change on the molar volume, transformation temperature, thermal expansion coefficient, and transformation-range viscosity is discussed.

  6. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    PubMed

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-05

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of Gd2O3 doping on structure and boron volatility of borosilicate glass sealants in solid oxide fuel cells-A study on the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Tan, Shengwei; Ren, Mengyuan; Yang, Hsiwen; Tang, Dian; Chen, Kongfa; Zhang, Teng; Jiang, San Ping

    2018-04-01

    Boron volatility is one of the most important properties of borosilicate-based glass sealants in solid oxide fuel cells (SOFCs), as boron contaminants react with lanthanum-containing cathodes, forming LaBO3 and degrading the activity of SOFCs. Here, we report that the reaction between the volatile boron and a La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode during polarization can be significantly reduced by doping aluminoborosilicate glass with Gd2O3. Specifically, the Gd cations in glass with 2 mol.% Gd2O3 dissolve preferentially in the borate-rich environment to form more Gd-metaborate structures and promote the formation of calcium metaborate (CaB2O4); they also condense the B-O network after heat treatment, which suppresses poisoning by boron contaminants on the LSCF cathode. The results provide insights into design and development of a reliable sealing glass for SOFC applications.

  8. Optical and structural investigation on sodium borosilicate glasses doped with Cr2O3

    NASA Astrophysics Data System (ADS)

    Ebrahimi, E.; Rezvani, M.

    2018-02-01

    In this work, Sodium borosilicate glasses with chemical composition of 60% SiO2-20% B2O3-20%Na2O doped with different contents of Cr2O3 were prepared by melting-quenching method. Physical, structural and optical properties of glasses were investigated by studying density and molar volume, Fourier Transform Infrared (FT-IR) Spectra and UV-visible absorption spectroscopy. The results showed an increase in density of glasses with the increase of Cr2O3 that can be due to addition of oxide with high molar mass. The optical absorption spectra of un-doped glass reveals UV absorption due to trace iron impurities with no visible band however Cr2O3 doped glasses shows absorption in visible range that are characteristic. Increasing of Cr3 + ions in the glassy microstructure of samples provides a semiconducting character to Sodium borosilicate glass by reducing the direct and indirect optical band gaps of glass samples from 3.79 to 2.59 (ev) and 3.36 to 2.09 (ev), respectively. These changes could be attributed to the role of Cr3 + ions as the network former which asserts improvement of semiconducting behavior in presence of Cr2O3.

  9. Optical and structural investigation on sodium borosilicate glasses doped with Cr2O3.

    PubMed

    Ebrahimi, E; Rezvani, M

    2018-02-05

    In this work, Sodium borosilicate glasses with chemical composition of 60% SiO 2 -20% B 2 O 3 -20%Na 2 O doped with different contents of Cr 2 O 3 were prepared by melting-quenching method. Physical, structural and optical properties of glasses were investigated by studying density and molar volume, Fourier Transform Infrared (FT-IR) Spectra and UV-visible absorption spectroscopy. The results showed an increase in density of glasses with the increase of Cr 2 O 3 that can be due to addition of oxide with high molar mass. The optical absorption spectra of un-doped glass reveals UV absorption due to trace iron impurities with no visible band however Cr 2 O 3 doped glasses shows absorption in visible range that are characteristic. Increasing of Cr 3+ ions in the glassy microstructure of samples provides a semiconducting character to Sodium borosilicate glass by reducing the direct and indirect optical band gaps of glass samples from 3.79 to 2.59 (ev) and 3.36 to 2.09 (ev), respectively. These changes could be attributed to the role of Cr 3+ ions as the network former which asserts improvement of semiconducting behavior in presence of Cr 2 O 3 . Copyright © 2017. Published by Elsevier B.V.

  10. Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi.

    PubMed

    Srinivasan, Bhuvanesh; Boussard-Pledel, Catherine; Dorcet, Vincent; Samanta, Manisha; Biswas, Kanishka; Lefèvre, Robin; Gascoin, Franck; Cheviré, François; Tricot, Sylvain; Reece, Michael; Bureau, Bruno

    2017-03-23

    Chalcogenide semiconducting systems are of growing interest for mid-temperature range (~500 K) thermoelectric applications. In this work, Ge 20 Te 77 Se₃ glasses were intentionally crystallized by doping with Cu and Bi. These effectively-crystallized materials of composition (Ge 20 Te 77 Se₃) 100- x M x (M = Cu or Bi; x = 5, 10, 15), obtained by vacuum-melting and quenching techniques, were found to have multiple crystalline phases and exhibit increased electrical conductivity due to excess hole concentration. These materials also have ultra-low thermal conductivity, especially the heavily-doped (Ge 20 Te 77 Se₃) 100- x Bi x ( x = 10, 15) samples, which possess lattice thermal conductivity of ~0.7 Wm -1 K -1 at 525 K due to the assumable formation of nano-precipitates rich in Bi, which are effective phonon scatterers. Owing to their high metallic behavior, Cu-doped samples did not manifest as low thermal conductivity as Bi-doped samples. The exceptionally low thermal conductivity of the Bi-doped materials did not, alone, significantly enhance the thermoelectric figure of merit, zT. The attempt to improve the thermoelectric properties by crystallizing the chalcogenide glass compositions by excess doping did not yield power factors comparable with the state of the art thermoelectric materials, as these highly electrically conductive crystallized materials could not retain the characteristic high Seebeck coefficient values of semiconducting telluride glasses.

  11. Spectroscopic analysis of a novel Nd3+-activated barium borate glass for broadband laser amplification

    NASA Astrophysics Data System (ADS)

    Vázquez, G. V.; Muñoz H., G.; Camarillo, I.; Falcony, C.; Caldiño, U.; Lira, A.

    2015-08-01

    Spectroscopic parameters of a novel Nd3+-activated barium borate (BBONd) glass have been analyzed for broadband laser amplification. The Judd-Ofelt (JO) intensity parameters were determined through a systematic analysis of the absorption spectrum of Nd3+ ions in the BBONd glass. High values of the JO intensity parameters reveal a great centro-symmetrical loss of the Nd3+ sites and high covalency degree of the ligand field. The very high Ω6 intensity parameter value makes evident both a great structural distortion of the Nd3+ sites and a strong electron-phonon coupling between Nd3+ and free OH- ions, which is consistent with the phonon energy maximum (3442.1 cm-1) recorded by Raman spectroscopy. This strong electron-phonon coupling favors high effective bandwidth and gain bandwidth values of the laser emission (4F3/2 → 4I11/2) of Nd3+ ions. The electric-dipole oscillator strengths of all the Nd3+ absorption transitions, and in particular that of the hypersensitive transition (4I9/2 → 4G5/2), are enhanced by this great structural distortion of the host. Broadband laser amplification of the 4F3/2 → 4I11/2 emission (1062 nm) of Nd3+ ions in the BBONd glass pumped at 805 nm (4I9/2 → 4F5/2 + 2H9/2) is evaluated through the main fluorescent parameters in competition with non-radiative processes. In general, the BBONd glass exhibits spectroscopic parameters comparable with those reported in the literature for broadband laser amplification into the IR region.

  12. Thermal, optical and structural properties of Dy3+ doped sodium aluminophosphate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Anupinder; Thakur, Vanita; Singh, Lakhwant

    2016-03-01

    Trivalent Dysprosium doped sodium aluminophosphate glasses with composition 50P2O5-10Al2O3-(20-x)Na2O-20CaO-xDy2O3 (x varying from 0 to 5 mol%) were prepared by melt quench technique. The density of the prepared samples was measured using Archimedes principle and various physical properties like molar volume, rare earth ion concentration, polaron radius, inter nuclear distance and field strength were calculated using different formulae. The differential scanning calorimetry (DSC) was carried out to study the thermal stability of prepared glasses. The UV Visible absorption spectra of the dysprosium doped glasses were found to be comprised of ten absorption bands which correspond to transitions from ground state 6H15/2 to various excited states. The indirect optical band gap energy of the samples was calculated by Tauc's plot and the optical energy was found to be attenuated with Dy3+ ions. The photoluminescence spectrum revealed that Dy3+ doped aluminophosphate glasses have strong emission bands in the visible region. A blue emission band centred at 486 nm, a bright yellow band centred at 575 nm and a weak red band centred at 668 nm were observed in the emission spectrum due to excitation at 352 nm wavelength. Both FTIR and Raman spectra assert slight structural changes induced in the host glass network with Dy3+ ions.

  13. Cerium doped glasses: search for a new scintillator

    NASA Astrophysics Data System (ADS)

    Kielty, Matthew William

    Single crystals have been the standard material when it comes to scintillators, but with the ability to easily be produced at a considerably lower cost and fabricated into tailored sizes and shapes there is increasing interest in the development of glass scintillators as an alternative. Ce-doped borosilicate and phosphate glasses were investigated focusing on the effect of different modifiers on their optical properties and luminescence. The borosilicate glasses were prepared aiming at the detection of thermal neutrons, utilizing B-10, while the phosphate glasses were targeting the detection of gamma-rays taking advantage of high Z elements such as, Ba, Bi, Ta, Pb and W. Structural characteristics determined by Raman spectroscopy were coupled with results from photoluminescence and UV-visible transmission measurements, while the index of refraction was estimated using the Gladstone-Dale relation using experimentally obtained density values. This work revealed barium, with its superior optical transmission and luminescent properties, to be the best high Z element for inclusion in the phosphate glasses studied.

  14. Combination of platelet-rich plasma with degradable bioactive borate glass for segmental bone defect repair.

    PubMed

    Zhang, Ya-Dong; Wang, Gang; Sun, Yan; Zhang, Chang-Qing

    2011-02-01

    Porous scaffold biomaterials may offer a clinical alternative to bone grafts; however, scaffolds alone are typically insufficient to heal large bone defects. Numerous studies have demonstrated that osteoinductive growth factor significantly improves bone repair. In this study, a strategy combining degradable bioactive borate glass (BG) scaffolds with platelet-rich plasma (PRP) was tested. The bone defect was filled with BG alone, BG combined with autologous PRP or left empty. Bone formation was analyzed at 4, 8 and 12 weeks using both histology and radiology. The PRP treated group yielded better bone formation than the pure BG scaffold as determined by both histology and microcomputer tomography after 12 weeks. In conclusion, PRP improved bone healing in a diaphyseal rabbit model on BG. The combination of PRP and BG may be an effective approach to repair critical defects.

  15. Effect of pyrophosphate ions on the conversion of calcium-lithium-borate glass to hydroxyapatite in aqueous phosphate solution.

    PubMed

    Fu, Hailuo; Rahaman, Mohamed N; Day, Delbert E; Huang, Wenhai

    2010-10-01

    The conversion of glass to a hydroxyapatite (HA) material in an aqueous phosphate solution is used as an indication of the bioactive potential of the glass, as well as a low temperature route for preparing biologically useful materials. In this work, the effect of varying concentrations of pyrophosphate ions in the phosphate solution on the conversion of a calcium-lithium-borate glass to HA was investigated. Particles of the glass (150-355 μm) were immersed for up to 28 days in 0.25 M K(2)HPO(4) solution containing 0-0.1 M K(4)P(2)O(7). The kinetics of degradation of the glass particles and their conversion to HA were monitored by measuring the weight loss of the particles and the ionic concentration of the solution. The structure and composition of the conversion products were analyzed using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. For K(4)P(2)O(7) concentrations of up to 0.01 M, the glass particles converted to HA, but the time for complete conversion increased from 2 days (no K(4)P(2)O(7)) to 10 days (0.01 M K(4)P(2)O(7)). When the K(4)P(2)O(7) concentration was increased to 0.1 M, the product consisted of an amorphous calcium phosphate material, which eventually crystallized to a pyrophosphate product (predominantly K(2)CaP(2)O(7) and Ca(2)P(2)O(7)). The consequences of the results for the formation of HA materials and devices by the glass conversion route are discussed.

  16. Effect of pyrophosphate ions on the conversion of calcium–lithium–borate glass to hydroxyapatite in aqueous phosphate solution

    PubMed Central

    Fu, Hailuo; Day, Delbert E.; Huang, Wenhai

    2010-01-01

    The conversion of glass to a hydroxyapatite (HA) material in an aqueous phosphate solution is used as an indication of the bioactive potential of the glass, as well as a low temperature route for preparing biologically useful materials. In this work, the effect of varying concentrations of pyrophosphate ions in the phosphate solution on the conversion of a calcium–lithium–borate glass to HA was investigated. Particles of the glass (150–355 µm) were immersed for up to 28 days in 0.25 M K2HPO4 solution containing 0–0.1 M K4P2O7. The kinetics of degradation of the glass particles and their conversion to HA were monitored by measuring the weight loss of the particles and the ionic concentration of the solution. The structure and composition of the conversion products were analyzed using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. For K4P2O7 concentrations of up to 0.01 M, the glass particles converted to HA, but the time for complete conversion increased from 2 days (no K4P2O7) to 10 days (0.01 M K4P2O7). When the K4P2O7 concentration was increased to 0.1 M, the product consisted of an amorphous calcium phosphate material, which eventually crystallized to a pyrophosphate product (predominantly K2CaP2O7 and Ca2P2O7). The consequences of the results for the formation of HA materials and devices by the glass conversion route are discussed. PMID:20680413

  17. Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaonan; Neeway, James J.; Ryan, Joseph V.

    Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially dissolution behaviors, of International Simple Glass (ISG), a model nuclear waste glass system. Static chemical durability tests were performed at 90 °C with a pH value of 7 and a surface-area-to-solution-volume of 200 m-1 for 112 days on three glasses: ISG, ISG doped with 0.5 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. ICP-MS was used tomore » analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (Tg) while cobalt oxide did not significantly change the Tg of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes.« less

  18. Extraction of heavy metal ions from waste colored glass through phase separation.

    PubMed

    Chen, Danping; Masui, Hirotsugu; Miyoshi, Hiroshi; Akai, Tomoko; Yazawa, Tetsuo

    2006-01-01

    A new method utilizing phase separation phenomena for the extraction of heavy metal ions used as colorants in colored glass is proposed. Colored soda-lime-silica glass containing Co or Cr as a colorant was remelted with B2O3 to yield soda-lime-borosilicate glass. The soda-lime-borosilicate glass thus obtained was leached in 1M nitric acid at 90 degrees C to dissolve the borate phase. All cations (Na, Ca, Cr and Co) concentrated in the borate phase are successfully leached out with the dissolution of the borate phase, when the amount of the B2O3 added to the glass and heat treatment conditions are properly chosen. Porous silicate glass powders with high SiO2 purity are obtained as the result of the leaching. Porous glass can also be formed as bulk material by controlling the composition of additives during the remelting.

  19. EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses

    NASA Astrophysics Data System (ADS)

    De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.

    2014-12-01

    Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).

  20. White emission materials from glass doped with rare Earth ions: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasaka, P.; Kaewkhao, J., E-mail: mink110@hotmail.com; Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, 73000

    2016-03-11

    Solid State Lighting (SSL) based devices are predicted to play a crucial role in the coming years. Development of W-LED, which have an edge over traditional lighting sources due to their compact size, higher reliability, shock resistance, interesting design possibilities, higher transparency and an extremely long lifetime. Over the fifteen trivalent lanthanide ions, Dy{sup 3+} ions doped glasses are most appropriate for white light generation because of the fact that it exhibits two intense emission bands corresponds to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} (magnetic dipole) and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} (electric dipole) transitions at around 480-500 nm and 580-600 nmmore » pertaining to blue and yellow regions respectively. In this work, the developments of Dy3+ doped in several glass structures for white emitting materials application have reviewed. Properties of Dy{sup 3+} doped in glasses were discussed for use as a solid state lighting materials application.« less

  1. Secondary relaxations in supercooled and glassy sucrose-borate aqueous solutions.

    PubMed

    Longinotti, M Paula; Corti, Horacio R; Pablo, Juan J de

    2008-10-13

    The dielectric relaxation spectra of concentrated aqueous solutions of sucrose-borate mixtures have been measured in the supercooled and glassy regions in the frequency range of 40Hz to 2MHz. The secondary (beta) relaxation process was analyzed in the temperature range 183-233K at water contents between 20 and 30wt%. The relaxation times were obtained, and the activation energy of that process was calculated. In order to assess the effect of borate on the relaxation of disaccharide-water mixtures, we also studied the dielectric behavior of sucrose aqueous solutions in the same range of temperatures and water contents. Our findings support the view that, beyond a water content of approximately 20wt%, the secondary relaxation of water-sucrose and water-sucrose-borate mixtures adopts a universal character that can be explained in terms of a simple exponential function of the temperature scaled by the glass transition temperature (T(g)). The behavior observed for water-sucrose and water-sucrose-borate mixtures is compared with previous results obtained in other water-carbohydrate systems.

  2. Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi

    PubMed Central

    Srinivasan, Bhuvanesh; Boussard-Pledel, Catherine; Dorcet, Vincent; Samanta, Manisha; Biswas, Kanishka; Lefèvre, Robin; Gascoin, Franck; Cheviré, François; Tricot, Sylvain; Reece, Michael; Bureau, Bruno

    2017-01-01

    Chalcogenide semiconducting systems are of growing interest for mid-temperature range (~500 K) thermoelectric applications. In this work, Ge20Te77Se3 glasses were intentionally crystallized by doping with Cu and Bi. These effectively-crystallized materials of composition (Ge20Te77Se3)100−xMx (M = Cu or Bi; x = 5, 10, 15), obtained by vacuum-melting and quenching techniques, were found to have multiple crystalline phases and exhibit increased electrical conductivity due to excess hole concentration. These materials also have ultra-low thermal conductivity, especially the heavily-doped (Ge20Te77Se3)100−xBix (x = 10, 15) samples, which possess lattice thermal conductivity of ~0.7 Wm−1 K−1 at 525 K due to the assumable formation of nano-precipitates rich in Bi, which are effective phonon scatterers. Owing to their high metallic behavior, Cu-doped samples did not manifest as low thermal conductivity as Bi-doped samples. The exceptionally low thermal conductivity of the Bi-doped materials did not, alone, significantly enhance the thermoelectric figure of merit, zT. The attempt to improve the thermoelectric properties by crystallizing the chalcogenide glass compositions by excess doping did not yield power factors comparable with the state of the art thermoelectric materials, as these highly electrically conductive crystallized materials could not retain the characteristic high Seebeck coefficient values of semiconducting telluride glasses. PMID:28772687

  3. In vitro and in vivo dissolution behavior of a dysprosium lithium borate glass designed for the radiation synovectomy treatment of rheumatoid arthritis.

    PubMed

    Conzone, Samuel D; Brown, Roger F; Day, Delbert E; Ehrhardt, Gary J

    2002-05-01

    Dysprosium lithium borate (DyLB) glass microspheres were investigated for use in the radiation synovectomy treatment of rheumatoid arthritis. In vitro testing focused on weight loss and cation dissolution from glass microspheres immersed in simulated synovial fluid (SSF) at 37 degrees C for up to 64 days. In vivo testing was performed by injecting glass microspheres into the stifle joints of Sprague-Dawley rats and monitoring the biodegradability of the microspheres and the tissue response within the joints. The DyLB microspheres reacted nonuniformly in SSF with the majority of lithium and boron being dissolved, whereas nearly all of the dysprosium (>99.7%) remained in the reacted microspheres. Because the DyLB glasses released negligible amounts of dysprosium while reacting with SSF, they are considered safe for radiation synovectomy from the standpoint of unwanted radiation release from the joint capsule. Furthermore, the DyLB microspheres fragmented, degraded, and reacted with body fluids while in the joints of rats without histologic evidence of joint damage. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 260--268, 2002; DOI 10.1002/jbm.10047

  4. Quantifying the mode II critical strain energy release rate of borate bioactive glass coatings on Ti6Al4V substrates.

    PubMed

    Matinmanesh, A; Li, Y; Clarkin, O; Zalzal, P; Schemitsch, E H; Towler, M R; Papini, M

    2017-11-01

    Bioactive glasses have been used as coatings for biomedical implants because they can be formulated to promote osseointegration, antibacterial behavior, bone formation, and tissue healing through the incorporation and subsequent release of certain ions. However, shear loading on coated implants has been reported to cause the delamination and loosening of such coatings. This work uses a recently developed fracture mechanics testing methodology to quantify the critical strain energy release rate under nearly pure mode II conditions, G IIC , of a series of borate-based glass coating/Ti6Al4V alloy substrate systems. Incorporating increasing amounts of SrCO 3 in the glass composition was found to increase the G IIC almost twofold, from 25.3 to 46.9J/m 2 . The magnitude and distribution of residual stresses in the coating were quantified, and it was found that the residual stresses in all cases distributed uniformly over the cross section of the coating. The crack was driven towards, but not into, the glass/Ti6Al4V substrate interface due to the shear loading. This implied that the interface had a higher fracture toughness than the coating itself. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Development of Natural Anthocyanin Dye-Doped Silica Nanoparticles for pH and Borate-Sensing Applications

    NASA Astrophysics Data System (ADS)

    Ha, Chu T.; Lien, Nghiem T. Ha; Anh, Nguyen D.; Lam, Nguyen L.

    2017-12-01

    Anthocyanin belongs to a large group of phenolic compounds called flavonoids. It is found primarily in fruits, flowers, roots and other parts of higher plants. Within the black carrot, it has been found that the cyanidin component 1,2 diol was the major anthocyanine. Since the terminal thiols potentially display chemical interactions with borate additives, anthocyanin from the black carrot can act as a sensing material for detecting borate in the environment. As a natural dye, anthocyanin responds to pH change of the medium. Here, we present an application of black carrot dyes for pH sensing and for the detection of borate additives within meats. The dyes were encapsulated within a mesoporous silica (SiO2) matrix in order to prevent the sensing materials from dissolution into the aqueous medium. The encapsulation was done in situ during preparation of silica nanoparticles (size from 100 nm to 500 nm) following an advanced Stöber method. These anthocyanin-encapsulated silica nanoparticles show a clear color change from green in an aqueous solution free of borate to GRAY-red in the presence of borate additive and red (pH 2) to green (pH 10).

  6. Lasing transition at 1.06 μm emission in Nd3+ -doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers.

    PubMed

    Ravi, O; Prasad, K; Jain, Rajiv; Venkataswamy, M; Chaurasia, Shivanand; Deva Prasad Raju, B

    2017-08-01

    The spectroscopic properties of Tellurium Calcium Zinc Niobium oxide Borate (TCZNB) glasses of composition (in mol%) 10TeO 2  + 15CaO + 5ZnO + 10 Nb 2 O 5  + (60 - x)B 2 O 3  + Nd 2 O 3 (x = 0.1, 0.5, 1.0 or 1.5 mol%) have been investigated experimentally. The three phenomenological intensity parameters Ω 2 , Ω 4, Ω 6 have been calculated using the Judd-Ofelt theory and in turn radiative properties such as radiative transition probabilities, emission cross-sections, branching ratios and radiative lifetimes have been estimated. The trend found in the JO intensity parameter is Ω 2  > Ω 6  > Ω 4 If Ω 6  > Ω 4 , the glass system is favourable for the laser emission 4 F 3 /2  →  4 I 11 /2 in the infrared (IR) wavelength. The experimental values of branching ratio of 4 F 3 /2  →  4 I 11 /2 transition indicate favourable lasing action with low threshold power. The evaluated total radiative transition probabilities (A T ), stimulated emission cross-section (σ e ) and gain bandwidth parameters (σ e  × Δλ p ) were compared with earlier reports. An energy level analysis has been carried out considering the experimental energy positions of the absorption and emission bands. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Optical, Structural, and Thermal Properties of Cerium-Doped Zinc Borophosphate Glasses.

    PubMed

    Choi, Su-Yeon; Ryu, Bong-Ki

    2015-11-01

    In this study, we verify the relationship between the optical properties and structure of cerium-doped zinc borophosphate glasses that have concurrence of non-bridging oxygen (NBO) and bridging oxygen (BO), Ce3+ and Ce4+, and BO3 structure and BO4 structure. We prepared cerium-doped zinc borophosphate glass with various compositions, given by xCeO2-(100-x)[50ZnO-10B2O3 -40P2O5] (x = 1 mol% to 6 mol%), and analyzed their optical band energy, glass transition temperature, crystallization temperature, density, and molar volume. Some of the techniques used for analysis were Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In the investigated glasses, the optical band gap energy decreased from 3.28 eV to 1.73 eV. From these results, we can deduce the changes when transitions occur from BO to NBO, from Ce3+ to Ce4+, and from the BO3 structure to the BO4 structure with increasing CeO2 content using FT-IR and XPS analysis. We also verified the changes in structural and physical properties from quantitative properties such as glass transition temperature, crystallization temperature, density, and molar volume.

  8. Glass microspheres for medical applications

    NASA Astrophysics Data System (ADS)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass

  9. Efficient upconversion emission in Ho3+/Nd3+ co-doped oxyfluorosilicate glasses

    NASA Astrophysics Data System (ADS)

    Devarajulu, G.; Raju, B. Deva Prasad

    2018-04-01

    We report on an efficient Ho3+ and Ho3+/Nd3+ co-doped oxyfluorosilicate glasses upon excitation with an 808 nm laser diode. The detailed fluorescence have been studied under this excitation source and energy transfer mechanisms in Ho3+/Nd3+ co-doped oxyfluorosilicate glasses. The upconversion peaks at 486, 547 and 596 nm were observed in Nd3+/Ho3+ co-doped sample. The intensity of upconversion emission transitions in Ho3+ depends on the neodymium codopent concentration. These results indicate that Nd3+ ions can be potentially used as sensitizer for Ho3+ ions to stimulate the intense upconversion emission. The energy transfer mechanism between Nd3+ and Ho3+ was analyzed pursuant to the absorption spectra, upconversion spectra and the energy level structures of Nd3+ and Ho3+ ions have been briefly discussed.

  10. Scintillation properties of rare-earth doped NaPO3-Al(PO3)3 glasses

    NASA Astrophysics Data System (ADS)

    Kuro, Tomoaki; Okada, Go; Kawaguchi, Noriaki; Fujimoto, Yutaka; Masai, Hirokazu; Yanagida, Takayuki

    2016-12-01

    We systematically investigated photoluminescence (PL), scintillation and dosimeter properties of rare-earth (RE) doped NaPO3-Al(PO3)3 (NAP) glasses. The NAP glasses doped with a series of RE ions (La-Yb, except Pm) with a consistent concentration (0.3 wt%) were prepared by the conventional melt-quenching method. The PL and scintillation decay time profiles showed fast (ns) and slow (μs or ms) components: the fast components from 15 to 100 ns were due to the host or 5d-4f transition emission, and the slow components from 15 μs to 5 ms were due to the 4f-4f transitions of RE. The thermally stimulated luminescence (TSL) was evaluated as a dosimeter property, and glow peaks appeared around 400 °C in all the samples. The TSL dose response function was examined in the dose range from 10 mGy to 10 Gy. Among the samples tested, Nd and Tb doped glasses showed higher signal by at least one order of magnitude than those of non-doped and other RE-doped samples. Over the dose range tested, the TSL signals are linearly related with the incident X-ray dose, showing a potential for practical applications.

  11. Effect of Ga2O3 on the spectroscopic properties of erbium-doped boro-bismuth glasses.

    PubMed

    Ling, Zhou; Ya-Xun, Zhou; Shi-Xun, Dai; Tie-Feng, Xu; Qiu-Hua, Nie; Xiang, Shen

    2007-11-01

    The spectroscopic properties and thermal stability of Er3+-doped Bi2O3-B2O3-Ga2O3 glasses are investigated experimentally. The effect of Ga2O3 content on absorption spectra, the Judd-Ofelt parameters Omega t (t=2, 4, 6), fluorescence spectra and the lifetimes of Er3+:4I 13/2 level are also investigated, and the stimulated emission cross-section is calculated from McCumber theory. With the increasing of Ga2O3 content in the glass composition, the Omega t (t=2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) and the 4I 13/2 lifetimes of Er3+ first increase, reach its maximum at Ga2O3=8 mol.%, and then decrease. The results show that Er3+-doped 50Bi2O3-42B2O3-8Ga2O3 glass has the broadest FWHM (81nm) and large stimulated emission cross-section (1.03 x1 0(-20)cm2) in these glass samples. Compared with other glass hosts, the gain bandwidth properties of Er+3-doped Bi2O3-B2O3-Ga2O3 glass is better than tellurite, silicate, phosphate and germante glasses. In addition, the lifetime of 4I 13/2 level of Er(3+) in bismuth-based glass, compared with those in other glasses, is relative low due to the high-phonon energy of the B-O bond, the large refractive index of the host and the existence of OH* in the glass. At the same time, the glass thermal stability is improved in which the substitution of Ga2O3 for B2O3 strengthens the network structure. The suitability of bismuth-based glass as a host for a Er3+-doped broadband amplifier and its advantages over other glass hosts are also discussed.

  12. Nano crystalline Bi{sub 2}(VO{sub 5}) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Arti, E-mail: artidabhur@gmail.com; Khasa, S.; Dahiya, M. S.

    2016-05-23

    Glass composition 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3}, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi{sub 2}(VO{sub 5}) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V{sub 2}O{sub 5}-crystal were observed along with the nano crystalline Bi{sub 2}(VO{sub 5}) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRDmore » diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi{sub 2}(VO{sub 5}) nano-crystallite was ~30 nm for samples annealed at 400°C and ~42 nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi{sub 2}(VO{sub 5}) crystallite.« less

  13. New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Jiang, Shibin; Luo, Tao; Hwang, Bor-Chyuan; Nunzi Conti, Gualtiero; Myers, Michael J.; Rhonehouse, Daniel L.; Honkanen, Seppo; Peyghambarian, Nasser

    1998-12-01

    A new Er(superscript 3+)-doped phosphate glass exhibiting an excellent durability in both boiling water and NaNO(subscript 3) molten salt is developed. The ion-exchange process of this glass is investigated by treating glass samples in a variety of salt baths with various exposure times. A planar waveguide with one mode at 1.54 micrometers and three modes at 632.8 nm is demonstrated. The spectral properties of Er(superscript 3+) in this glass are characterized by measuring absorption and emission spectra and fluorescence lifetimes. The emission cross section of Er(superscript 3+) in this glass is calculated to be 0.76 X 10(superscript 20) cm(superscript 2) using McCumber theory.

  14. Pr3 + -doped GeSx-based glasses for fiber amplifiers at 1.3 µm

    NASA Astrophysics Data System (ADS)

    Simons, D. R.; Faber, A. J.; de Waal, H.

    1995-03-01

    The photoluminescence properties of Pr3+ -doped GeS x -based glasses are studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeSx-containing glasses in the telecommunications window at 1.3 mu m is discussed.

  15. Dy{sup 3+}-doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mingjie; Yang, Anping, E-mail: apyang@jsnu.edu.cn; Peng, Yuefeng

    2015-10-15

    Highlights: • Novel Ga–Sb–S chalcogenide glasses doped with Dy{sup 3+} ions were synthesized. • The glasses show good thermal stability and excellent infrared transparency. • The glasses show low phonon energy and intense mid-infrared emissions. • The mid-infrared emissions have high quantum efficiency. • The mid-infrared emissions have large stimulated emission cross sections. - Abstract: Novel Ga–Sb–S chalcogenide glasses doped with different amount of Dy{sup 3+} ions were prepared. Their thermal stability, optical properties, and mid-infrared (MIR) emission properties were investigated. The glasses show good thermal stability, excellent infrared transparency, very low phonon energy (∼306 cm{sup −1}), and intense emissionsmore » centered at 2.95, 3.59, 4.17 and 4.40 μm. Three Judd–Ofelt intensity parameters (Ω{sub 2} = 8.51 × 10{sup −20} cm{sup 2}, Ω{sub 4} = 2.09 × 10{sup −20} cm{sup 2}, and Ω{sub 6} = 1.60 × 10{sup −20} cm{sup 2}) are obtained, and the related radiative transition properties are evaluated. The high quantum efficiencies and large stimulated emission cross sections of the MIR emissions (88.10% and 1.11 × 10{sup −20} cm{sup 2} for 2.95 μm emission, 75.90% and 0.38 × 10{sup −20} cm{sup 2} for 4.40 μm emission, respectively) in the Dy{sup 3+}-doped Ga–Sb–S glasses make them promising gain materials for the MIR lasers.« less

  16. ROLE OF THE NETWORK FORMER IN SEMICONDUCTING OXIDE GLASSES.

    DTIC Science & Technology

    SEMICONDUCTOR DEVICES, * GLASS ), (*ELECTRICAL NETWORKS, GLASS ), ELECTRICAL PROPERTIES, SEEBECK EFFECT, BORATES, PHOSPHATES, ELECTRICAL RESISTANCE, X RAY DIFFRACTION, ANNEALING, OXIDATION, OXIDES, ELECTRODES, VANADIUM

  17. Structural investigation and optical properties of xMnO2-25Li2O-5Na2O-15Bi2O3-(55-x)B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shilpa; Jali, V. M.

    2018-02-01

    This paper deals with the new mixed system of glass compositions Lithium sodium bismuth borate glasses doped with transition metal oxide. The technique used to prepare a sample is by melt quenching. The XRD profile pattern confirmed the amorphous phase of the present glass system. The network structure is based on BO3, BO4 units and BiO6 octahedral units. No boroxyl rings observed in the glass structure. The addition of MnO2 in small amount does not account for major structural changes. Optical band gap lies in the range 1.89 to 0.96 eV. Density, molar volume, oxygen packing density, Tg, direct optical band gap and refractive index show anomalous behavior.

  18. Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing.

    PubMed

    Yang, Weijia; Corbari, Costantino; Kazansky, Peter G; Sakaguchi, Koichi; Carvalho, Isabel C S

    2008-09-29

    Single mode, low loss waveguides were fabricated in high index bismuth borate glass by femtosecond laser direct writing. A specific set of writing parameters leading to waveguides perfectly mode matched to standard single-mode fibers at 1.55 microm with an overall insertion loss of approximately 1 dB and with propagation loss below 0.2 dB/cm was identified. Photonic components such as Y-splitters and directional couplers were also demonstrated. A close agreement between their performances and theoretical predictions based upon the characterization of the waveguide properties is shown. Finally, the nonlinear refractive index of the waveguides has been measured to be 6.6 x 10(-15) cm(2)/W by analyzing self-phase modulation of the propagating femtosecond laser pulse at the wavelength of 1.46 microm. Broadening of the transmitted light source as large as 500 nm was demonstrated through a waveguide with the length of 1.8 cm.

  19. Synthesis and photoluminescence properties of Pb{sup 2+} doped inorganic borate phosphor NaSr{sub 4}(BO{sub 3}){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, A. O., E-mail: abhi2718@gmail.com; Koparkar, K. A.; Omanwar, S. K.

    2016-05-06

    A series of Inorganic borate phosphors NaSr{sub 4}(BO{sub 3}){sub 3} doped with Pb{sup 2+} was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb{sup 2+} concentration for the NaSr{sub 4}(BO{sub 3}){sub 3} were studied in details. The concentration quenching of Pb{sup 2+}more » doped NaSr{sub 4}(BO{sub 3}){sub 3} was observed at 0.02 mol. The Stokes shifts of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} phosphor was calculated to be 7574 cm{sup −1}.« less

  20. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation.

    PubMed

    Kaur, Gurbinder; Pandey, Om P; Singh, Kulvir; Homa, Dan; Scott, Brian; Pickrell, Gary

    2014-01-01

    Bioactive glass and glass-ceramics are used in bone repair applications and are being developed for tissue engineering applications. Bioactive glasses/Bioglass are very attractive materials for producing scaffolds devoted to bone regeneration due to their versatile properties, which can be properly designed depending on their composition. An important feature of bioactive glasses, which enables them to work for applications in bone tissue engineering, is their ability to enhance revascularization, osteoblast adhesion, enzyme activity and differentiation of mesenchymal stem cells as well as osteoprogenitor cells. An extensive amount of research work has been carried out to develop silicate, borate/borosilicate bioactive glasses and phosphate glasses. Along with this, some metallic glasses have also been investigated for biomedical and technological applications in tissue engineering. Many trace elements have also been incorporated in the glass network to obtain the desired properties, which have beneficial effects on bone remodeling and/or associated angiogenesis. The motivation of this review is to provide an overview of the general requirements, composition, structure-property relationship with hydroxyapatite formation and future perspectives of bioglasses.Attention has also been given to developments of metallic glasses and doped bioglasses along with the techniques used for their fabrication. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  1. A Rapid Method for Deposition of Sn-Doped GaN Thin Films on Glass and Polyethylene Terephthalate Substrates

    NASA Astrophysics Data System (ADS)

    Pat, Suat; Özen, Soner; Korkmaz, Şadan

    2018-01-01

    We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.

  2. Enhanced light emission near 2.7 μm from Er-Nd co-doped germanate glass

    NASA Astrophysics Data System (ADS)

    Bai, Gongxun; Tao, Lili; Li, Kefeng; Hu, Lili; Tsang, Yuen Hong

    2013-04-01

    Laser glass gain medium that can convert low cost 808 nm diode laser into 2.7 μm has attracted considerable interest due to its potential application for medical surgery fiber laser system. In this study, enhanced 2.7 μm emission has been achieved in Er3+:germanate glass by co-doping with Nd3+ ions under the excitation of an 808 nm diode laser. In the co-doped sample, the experimental results show that the harmful visible emissions via up-conversion were effectively restricted. The reduction of 1.5 μm emission was also detected in the co-doped sample, which indicates significant de-excitation of 4I13/2 Er3+ ion through energy transfer and non-radiative decay in Nd3+ ions. In conclusion, the 2.7 μm emission enhancement achieved was due to the increased optical absorption of 808 nm, efficient energy transfer (ET) with efficiency of 81.73% between Er3+ and Nd3+ ions, and shortening the lifetime of the lower lasing level 4I13/2 Er3+ in the co-doped sample. Therefore, Er3+/Nd3+ co-doped germanate glass could be used to fabricate fiber optical gain media for 2.7 μm laser generation.

  3. Structural, thermal, optical and dielectric studies of Dy3+: B2O3-ZnO-PbO-Na2O-CaO glasses for white LEDs application

    NASA Astrophysics Data System (ADS)

    Mohammed, Al-B. F. A.; Lakshminarayana, G.; Baki, S. O.; Halimah, M. K.; Kityk, I. V.; Mahdi, M. A.

    2017-11-01

    Dy3+-doped borate glasses with nominal composition (60-x) B2O3-10 ZnO-10 PbO-10 Na2O-10 CaO-(x) Dy2O3 (x = 0, 0.1, 0.2, 0.5, 0.75, 1.0, 1.5 and 2.0 mol%) were prepared by the melt quenching technique. The XRD and SEM confirm the amorphous nature of the glasses and through EDAX, all the related elements were found in the synthesized glasses. The vibrations of metal cations such as Pb2+ and Zn2+, B-O-B bond bending vibrations from pentaborate groups, bending vibrations of BO3 triangles, and stretching vibrations of tetrahedral BO4- units etc. are identified from the respective FTIR and Raman spectra including the non-hygroscopic nature of the synthesized glasses. The TGA and DSC measurements were performed to study thermal properties, where ΔT >100 °C (ΔT = Tx - Tg) for all the glasses. Among all the Dy3+-doped glasses, the 0.75 mol% Dy3+-doped glass shows the highest PL intensity with four emissions, where the two transitions corresponding to 4F9/2 → 6H15/2 (blue) and 4F9/2 → 6H13/2 (yellow) are observed more intense than the others. The CIE chromaticity (x,y) coordinates for BZPNCDy 0.1 mol% glass are (0.398, 0.430), close to the white light region in the CIE 1931 chromaticity diagram. The dielectric properties of the 0.75 mol% Dy3+-doped glass such as dielectric constant, dielectric loss and AC conductivity were studied in the various frequencies and temperature.

  4. [Vancomycin-loaded bioactive borate glass for treatment of chronic osteomyelitis in rabbits].

    PubMed

    Xie, Zongping; Liu, Xin; Jia, Weitao; Zhang, Changqing; Huang, Wenhai

    2011-07-01

    Bioactive borate glass (BG) has good biocompatibility and biodegradation. To investigate the feasibility of bioactive borate glass as a carrier of the antibiotic controlled-releasing by implanting vancomycin-loaded BG (VBG) into the focus of tibia chronic osteomyelitis after debridement. VBG and vancomycin-loaded calcium sulfate (VCS) were prepared with a vancomycin content of 80 mg/g. Sixty-five New Zealand white rabbits, weighing 2.12-3.91 kg (mean, 2.65 kg), were used. The tibia chronic osteomyelitis rabbit models were established by injecting methicillin-resistant Staphylococcus aureus (MRSA, 0.1 mL, 1 x 10(9) cfu/mL) into the right tibia of 65 rabbits. After 3 weeks of injection, 54 rabbits of successful models were randomly divided into groups A (n=11), B (n=11), C (n=16), and D (n=16). Simple debridement was performed in group A; BG, VCS, and VBG were implanted into the infection sites of groups B, C, and D respectively after thorough debridement. A sample of the debrided tissues was harvested for bacterial examination. The vancomycin serum levels were determined in groups C and D at 1, 2, 4, 10, 24, and 48 hours after operation. The boron serum levels were determined in groups B and D at 10, 24, 48, 72, and 120 hours after operation. After 8 weeks, the effectiveness was assessed radiographically, bacteriologically, and histopathologically. Ten rabbits died after operation. No vancomycin was detected in group C; the vancomycin level increased gradually, reached the highest level at 4 hours after operation, and then decreased rapidly in group D. No boron was detected in group B; the boron reached the highest serum level at 10 hours after operation, and then decreased gradually in group D. At 8 weeks, calcium sulfate degraded in group C; BG degraded partially in group D; and no obvious degradation was observed in group B. The repair effect was better in group D than in group C. There was no significant difference in radiograph scoring between groups A, B, C

  5. Study of boro-tellurite glasses doped with neodymium oxide

    NASA Astrophysics Data System (ADS)

    Sanjay, Kishore, N.; Sheoran, M. S.; Devi, S.

    2018-05-01

    Borotellurite glasses doped with Nd2O3 [xB2O3(95-x)TeO25Nd2O3] have been prepared by the standard melt-quenching technique. Amorphous nature of the present system was estimated by XRD patterns. The thermal parameters like glass transition temperature (Tg), crystallization (Tc) and melting (Tm) temperatures have been estimated from differential scanning calorimetry (DSC) traces. Density and molar volume have been determined. It was found that Tg is increased due to increasing number of Te-O bonds were replaced by a number of stronger B-O bonds whereas density was decreased with an increase in B2O3 content is due to the higher degree of cross-bonding between the Boron and non-bridging oxygen ions resulting in a strengthening of glass network.

  6. Development and characterization of a new Er3+-doped phosphate glass for planar waveguide lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Jiang, Shibin; Honkanen, Seppo; Luo, Tao; Hwang, Bor-Chyuan; Nunzi Conti, Gualtiero; Myers, Michael J.; Rhonehouse, Daniel L.; Peyghambarian, Nasser

    1998-04-01

    A new Er3+ doped phosphate glass exhibiting an excellent durability in both boiling water and NaNO3 molten salt was developed. Ion-exchange process of this glass was investigated by treating glass samples in a variety of salt bathes with various exposure times. Planar waveguide with one mode at 1.54 micrometers and three modes at 632.8 nm was demonstrated. Spectral properties of Er3+ in this glass were characterized by measuring absorption and emission spectra, and fluorescence lifetimes. Emission cross section of Er3+ in this glass was calculated to be 0.76 X 10-20 cm2 using McCumber theory. Our preliminary experimental results indicate this new Er3+ doped glass is an excellent material for ion-exchanged waveguide lasers and amplifiers.

  7. [Optical and spectral parameters in Ce3+ -doped gadolinium gallium aluminum garnet glass-ceramics].

    PubMed

    Gong, Hua; Zhao, Xin; Yu, Xiao-bo; Setsuhisa, Tanabe; Lin, Hai

    2010-01-01

    The crystalline phases of Ce3+ -doped gadolinium gallium aluminum garnet (GGAG) glass-ceramics were investigated by X-ray diffraction, and the fluorescence spectra were recorded under the pumping of blue light-emitting diode (LED) using an integrating sphere of 10-inch in diameter, which connected to a CCD detector. The spectral power distribution of the glass-ceramics was obtained from the measured spectra first, and then the quantum yield was derived based on the photon distribution. The quantum yield of Ce3+ emission in GGAG glass-ceramics is 29.2%, meanwhile, the color coordinates and the correlated color temperature (CCT) of combined white light were proved to be x = 0.319, y = 0.349 and 6086 K, respectively. Although the quantum yield is a little smaller than the value in Ce3+ -doped YAG glass-ceramics, the CCT of the combined white light is much smaller than that in the latter. The optical behavior of GGAG glass-ceramics provides new vision for developing comfortable LED lighting devices.

  8. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    NASA Astrophysics Data System (ADS)

    Strobel, L. A.; Hild, N.; Mohn, D.; Stark, W. J.; Hoppe, A.; Gbureck, U.; Horch, R. E.; Kneser, U.; Boccaccini, A. R.

    2013-07-01

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30-35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.

  9. Synthesis and study on the luminescence properties of cadmium borate phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annalakshmi, O.; Jose, M.T., E-mail: mtjosein@yahoo.co.in; Venkatraman, B.

    2014-02-01

    Highlights: • Cadmium borate synthesized by solid state sintering technique. • Neutron sensitivity of the material ten times that of TLD-600. • Gamma sensitivity is found to be twice that of TLD-100. • Gamma response is linear from 0.1 to 10{sup 3} mGy. - Abstract: Cadmium borate compound prepared through wet chemical reaction from the starting chemicals followed by high temperature solid state synthesis below the melting point to get the final TL phosphor powder. Phase purity and bond details of cadmium borate crystals are characterized using X-ray diffraction technique and infrared spectroscopy. Feasibility of these materials for radiation dosimetrymore » applications was studied after gamma and neutron irradiation. Gamma irradiation of undoped phosphors show a single peak around 185 °C whereas doping with gadolinium and silver, new more intense peak observed at 290 °C. Irradiation to thermal neutrons revealed single peak around 170 °C for all the phosphors. TL emission spectra and photoluminescence (PL) studies were also carried out on the phosphors. These borate materials are found to be highly sensitive to neutrons and hence can be used for neutron detection. Neutron sensitivity of the material is about ten times that of TLD-600.« less

  10. Blue light emission from trivalent cerium doped in sol-gel silica glass

    NASA Astrophysics Data System (ADS)

    Tokumitsu, Seika; Murakami, Yukon; Oda, Hisaya; Kawabe, Yutaka

    2017-02-01

    Rare earths in glass matrices are promising for active optical devices as amplifiers and lasers. Emission originating from d-f transitions in sol-gel glass has not been studied very often, while those based on f-f transitions were widely utilized. However, d-f emission in rare earths is very important because of their strong oscillator strength and broad emission widths suitable for the application to scintillators and solid-state lasers. Co-doping of aluminum in sol-gel synthesis was known to be effective for the emission enhancement of trivalent terbium and europium. Recently, we applied aluminum co-doping to cerium and europium systems in sol-gel glass to succeed in the observation of strong blue light emission originating from d-f transitions. Glass samples were prepared with conventional sol-gel process where tetramethylorthosilicate was hydrolyzed in the mixture of water, ethanol and dimethylformamide with nitric acid catalyst. After adding cerium nitrate and aluminum nitrate, the solution experienced drying followed by calcination at 1,050°C under air environment. When molar ratio of cerium to silicon was adjusted at 0.1% and Al concentration was varied in 0.1 2.0%, transparent glass products showed bright and broad blue photoluminescence under UV illumination. The fluorescence lifetimes were found to be about 50 90 ns, indicating that the emission was due to d-f transitions. Considering the simplicity of the process, blue phosphors based on sol-gel glass will be very promising for future applications.

  11. Reversible redox and clusterization of silver in glasses by X-ray irradiation and heat treatment: Mechanism of photochromic behavior of halogen-free silver-doped glass

    NASA Astrophysics Data System (ADS)

    Isaji, Tomoya; Wakasugi, Takashi; Fukumi, Kohei; Kadono, Kohei

    2012-01-01

    We investigated photochromic behavior, i.e. X-ray irradiation and post-heat-treatment-induced reversible redox and clusterization reactions of silver, in soda-lime silicate (74SiO2·16Na2O·8CaO·2Al2O3) and aluminosilicate ((75 - x)SiO2·25Na2O·xAl2O3 (x = 5-25)) glasses. Generation and annihilation of silver nanoparticles were observed for soda-lime silicate and x = 5 aluminosilicate glasses doped with 0.05 wt.% or less of Ag while no nanoparticles were formed for x = 15-25 aluminosilicate glasses even doped with 0.5 wt.% of Ag. These results were analyzed from the viewpoints of the reaction kinetics and network structures of the glasses.

  12. Influence of silver and copper doping on luminescent properties of zinc-phosphate glasses after x-ray irradiation

    NASA Astrophysics Data System (ADS)

    Murashov, Alexander A.; Sidorov, Alexander I.; Shakhverdov, Teimur A.; Stolyarchuk, Maxim V.

    2017-11-01

    It is shown, experimentally, that in silver- and copper-containing zinc-phosphate glasses, metal molecular clusters are formed during the glass synthesis. X-ray irradiation of these glasses led to the considerable increase of its luminescence in visible spectral range. This effect is caused by the transformation of the charged metal molecular clusters into the neutral state. Luminescence and excitation spectra of the glass, doped with silver and copper simultaneously, change significantly in comparison with the spectra of glasses doped with one metal. The reason for this can be the formation of hybrid AgnCum molecular clusters. The computer simulation of the structure and optical properties of such clusters by the time-dependent density functional theory method is presented. It is shown that the optimal luminescent material for photonics application, in comparison with other studied materials, is glass, containing hybrid molecular clusters.

  13. Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions

    NASA Astrophysics Data System (ADS)

    Gao, Xinyu; Tian, Ying; Liu, Qunhuo; Yang, Shuai; Jing, Xufeng; Zhang, Junjie; Xu, Shiqing

    2018-06-01

    Fluorophosphate glass co-doped with Er3+ and Ho3+ ions has been synthesized by high temperature melting method. Using a commercially available 980 nm laser diode, intense about 2 μm emissions were successfully obtained in present Ho3+/Er3+ co-doped glasses without obvious quenching. To understand 2 μm fluorescence behaviors of the prepared glasses, 1.55 μm emission spectra, energy transfer mechanism and microparameters from different levels of Er3+ to Ho3+ ions have been obtained and discussed. As a result, the Er3+/Ho3+ co-doped fluorophosphate glass with excellent spectroscopic properties might be appropriate host material for 2 μm solid laser.

  14. Time Evolution of Radiation-Induced Luminescence in Terbium-Doped Silicate Glass

    NASA Technical Reports Server (NTRS)

    West, Michael S.; Winfree, William P.

    1996-01-01

    A study was made on two commercially available terbium-doped silicate glasses. There is an increased interest in silicate glasses doped with rare-earth ions for use in high-energy particle detection and radiographic applications. These glasses are of interest due to the fact that they can be formed into small fiber sensors; a property that can be used to increase the spatial resolution of a detection system. Following absorption of radiation, the terbium ions become excited and then emit photons via 4f-4f electronic transitions as they relax back to the ground state. The lifetime of these transitions is on the order of milliseconds. A longer decay component lasting on the order of minutes has also been observed. While radiative transitions in the 4f shell of rare-earth ions are generally well understood by the Judd-Olfelt theory, the pr'esence of a longer luminescence decay component is not. Experimental evidence that the long decay component is due, in part, to the thermal release of trapped charge carriers will be presented. In addition, a theoretical model describing the time evolution of the radiation-induced luminescence will be presented.

  15. Synthesis, characterization and processing of active rare earth-doped chalcohalide glasses

    NASA Astrophysics Data System (ADS)

    Debari, Roberto Mauro

    Applications for infrared-transmitting non-oxide glass fibers span a broad range of topics. They can be used in the military, the medical field, telecommunications, and even in agriculture. Rare earth ions are used as dopants in these glasses in order to stimulate emissions in the infrared spectral region. In order to extend the host glass transmission further into the infrared, selenium atoms were substituted for sulfur in the established Ge-S-I chalcohalide glass system and the fundamental properties of these latter glasses were explored. Over 30 different compositions in the Ge-Se-I glass system were investigated as to their thermal and optical properties. The resulting optimum host with a composition of Ge15Se80I5 has a broad transmission range from 0.7 mum to 17.0 mum and a high working range over 145°C. The host glass also exhibited a Tg of 125°C, making rotational casting of a cladding tube for rod-and-tube fiberization a possibility. The base glass was doped with 1000 to 4000 ppm/wt of erbium, dysprosium, or neodymium. When doped with Er3+-ions, absorptions at 1.54 mum and 3.42 mum were observed. Nd3+-doping resulted in an absorption peak near 4.24 mum and Dy3+ ions caused absorption at 1.30 mum. Fluorescence emissions were found for neodymium at 1.396 mum with a FWHM of 74 nm, and for dysprosium at 1.145 mum with a FWHM of 75 nm, at 1.360 mum with a FWHM of 98 rim and at 1.674 mum with a FWHM of 60 nm. High optical quality tubes of the host glass could be formed using rotational casting in silica ampoules. Glass tubes, 4 to 6 cm long with a 1 cm outer diameter and a tailored inner-hole diameter ranging from 0.4 to 0.6 cm could be synthesized by this process with excellent dimensional tolerances around the circumference as well as along the length. A preform of this size provided 25 continuous meters of unclad fiber with diameters ranging from 140 to 200 mum. A UV-curable acrylate cladding was applied via an external coating cup. An x-ray analysis of the

  16. Direct laser writing of topographic features in semiconductor-doped glass

    NASA Astrophysics Data System (ADS)

    Smuk, Andrei Y.

    2000-11-01

    Patterning of glass and silica surfaces is important for a number of modern technologies, which depend on these materials for manufacturing of both final products, such as optics, and prototypes for casting and molding. Among the fields that require glass processing on microscopic scale are optics (lenses and arrays, diffractive/holographic elements, waveguides), biotechnology (capillary electrophoresis chips and biochemical libraries) and magnetic media (landing zones for magnetic heads). Currently, standard non-laser techniques for glass surface patterning require complex multi-step processes, such as photolithography. Work carried out at Brown has shown that semiconductor- doped glasses (SDG) allow a single-step patterning process using low power continuous-wave visible lasers. SDG are composite materials, which consist of semiconductor crystallites embedded into glass matrix. In this study, borosilicate glasses doped with CdSxSe1-x nanocrystals were used. Exposure of these materials to a low-power above- the-energy gap laser beam leads to local softening, and subsequent expansion and rapid solidification of the exposed volume, resulting in a nearly spherical topographic feature on the surface. The effects of the incident power, beam configuration, and the exposure time on the formation and final parameters of the microlens were studied. Based on the numerical simulation of the temperature distribution produced by the absorbed Gaussian beam, and the ideas of viscous flow at the temperatures around the glass transition point, a model of lens formation is suggested. The light intensity distribution in the near-field of the growing lens is shown to have a significant effect on the final lens height. Fabrication of dense arrays of microlenses is shown, and the thermal and structural interactions between the neighboring lenses were also studied. Two-dimensional continuous-profile topographic features are achieved by exposure of the moving substrates to the writing

  17. PAL spectroscopy of rare-earth doped Ga-Ge-Te/Se glasses

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Ya.; Ingram, A.; Shpotyuk, O.

    2016-04-01

    Positron annihilation lifetime (PAL) spectroscopy was applied for the first time to study free-volume void evolution in chalcogenide glasses of Ga-Ge-Te/Se cut-section exemplified by glassy Ga10Ge15Te75 and Ga10Ge15Te72Se3 doped with 500 ppm of Tb3+ or Pr3+. The collected PAL spectra reconstructed within two-state trapping model reveal decaying tendency in positron trapping efficiency in these glasses under rare-earth doping. This effect results in unchanged or slightly increased defect-related lifetimes τ2 at the cost of more strong decrease in I2 intensities, as well as reduced positron trapping rate in defects and fraction of trapped positrons. Observed changes are ascribed to rare-earth activated elimination of intrinsic free volumes associated mainly with negatively-charged states of chalcogen atoms especially those neighboring with Ga-based polyhedrons.

  18. Spectroscopic properties of Sm3+ doped sodium-tellurite glasses: Judd-Ofelt analysis

    NASA Astrophysics Data System (ADS)

    Mawlud, Saman Q.; Ameen, Mudhafar M.; Sahar, Md. Rahim; Mahraz, Zahra Ashur Said; Ahmed, Kasim F.

    2017-07-01

    Modifying the optical response of rare earth doped inorganic glasses for diverse optical applications is the current challenge in materials science and technology. We report the enhancement of the visible emissions of the Sm3+ ions doped sodium-tellurite (TNS) glasses. The impacts of varying Sm3+ ions concentration on the spectroscopic properties of such glass samples are evaluated. Synthesized glass samples are characterized via emission and absorption measurements. The UV-Vis-NIR absorption spectra revealed nine absorption peaks which are assigned to the transitions from the ground level (6H5/2) to 6P3/2, 4I11/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2 and 6F1/2 excited energy levels of Sm3+ ions. Emission spectra of the prepared glass under 404 nm excitation wavelength consisted of four bands centered at 561 nm, 598 nm, 643 nm and 704 nm which are originated from 4G5/2→6HJ (J = 5/2, 7/2, 9/2 and 11/2) transitions. The experimental oscillator strengths, fexp are calculated from the area under absorption bands. Using Judd-Ofelt theory and fit process of least square, the phenomenological intensity parameters Ωλ (λ = 2, 4, 6) are obtained. In order to evaluate potential applications of Sm3+ ions in telluride glasses, the spectroscopic parameters: radiative transition probability AR, branching ratio BR, radiative life time τr and stimulated emission cross section σλ for each band are calculated. These glass compositions could be a potential candidate for lasers.

  19. Optical absorption and gamma-radiation-shielding parameter studies of Tm3+-doped multicomponent borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Sayyed, M. I.; Baki, S. O.; Lira, A.; Dong, M. G.; Kaky, Kawa M.; Kityk, I. V.; Mahdi, M. A.

    2018-05-01

    Different concentrations (0.1‒2.0 mol%) of Tm3+-doped multicomponent borosilicate glasses with 10 mol% Li2O (alkali) or MgO (alkaline) have been synthesized and their optical absorption and radiation shielding features were studied. For both Li2O and MgO series 0.5 mol% Tm3+-doped glass samples, the evaluated Ωλ ( λ = 2, 4, and 6) Judd-Ofelt (JO) intensity parameters from experimental oscillator strengths were used in estimating the radiative transition probabilities ( A R), branching ratios ( β R), and radiative lifetimes ( τ R) for several emission transitions. Using the XCOM software, the mass attenuation coefficients ( µ/ ρ) for all the fabricated glasses were evaluated within the 0.015‒10 MeV energy range. Also, the ( µ/ ρ) values were calculated at 0.356, 0.662, 1.173, and 1.33 MeV photon energies by MCNP5 simulation code and the results were compared with those obtained by XCOM. The ( µ/ ρ) values for Li2O, as well as MgO series glasses, increase with the addition of Tm2O3 and these values for MgO series glasses are slightly higher with respect to Li2O series glasses. From the ( µ/ ρ) values, effective atomic number ( Z eff), half-value layer (HVL), and mean free path (MFP) were calculated and the HVL and MFP results revealed that high-energy photons have more penetration into a glass sample compared to low-energy photons. Further, geometric progression (GP) fitting method was utilized to calculate the exposure buildup factor (EBF) within the 0.015‒15 MeV energy range. The 2.0 mol% Tm2O3-doped glasses show a better ability to attenuate gamma-rays in comparison to other glass samples, so the addition of Tm2O3 content leads to improvement of the shielding efficiency of the prepared glasses.

  20. Strong emission in Yb3+/Er3+ co-doped phosphate glass ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Yanling; Song, Feng; Jia, Guozhi; Zhang, Yanbang; Tang, Yi

    Yb3+/Er3+ co-doped phosphate glass and glass ceramics were prepared by high-temperature melting method. The X-ray diffraction, transmission electron micrographs, up-conversion and infrared emissions, photothermal conversion properties of the samples have been measured. The results showed the annealing time had a great impact on the microstructure and luminous performance of the phosphate glass. At the beginning of annealing, the metaphosphate crystals were firstly dissolved out. The metaphosphate crystals gradually turned into the orthophosphate with the increasing of annealing time. The emission intensity of the sample was obviously improved after the precursor glass was annealed. The up-conversion and infrared emissions of the sample annealed at 600 °C for 24 h, reached the maximum intensity. Compared with the photothermal properties of glass, the lower photothermal conversion efficiency of the glass ceramics testified the strong emission.

  1. Research on up- and down-conversion emissions of Er3+/Yb3+ co-doped phosphate glass ceramic

    NASA Astrophysics Data System (ADS)

    Ming, Chengguo; Song, Feng; An, Liqun; Ren, Xiaobin; Yuan, Yize; Cao, Yang; Wang, Gangzhi

    2012-12-01

    By high-temperature melting method and thermal treatment technology, Er3+/Yb3+ co-doped phosphate glass and glass ceramic samples were prepared. The luminescence spectra of the glass and glass ceramic samples were studied under 975 nm excitation. In visible and near-infrared bands, the emission intensity of the glass ceramic is stronger than that of the glass. The glass ceramic can comprehensively improve the luminous characters of the precursor glass. The phosphate glass ceramic will be valuable luminescence materials.

  2. Glass transition and heat capacities of inorganic glasses: Diminishing change in the heat capacity at T{sub g} for xNa{sub 2}S + (1{minus}x)B{sub 2}S{sub 3} glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kincs, J.; Cho, J.; Bloyer, D.

    1994-09-01

    The T{sub g}`s and heat capacity functions have been measured for a series of Na{sub 2}S + B{sub 2}S{sub 3} glasses for the first time. Unlike the alkali borates, T{sub g} decreases rapidly as Na{sub 2}S is added to B{sub 2}S{sub 3}. This effect, even in the presence of a rapidly increasing fraction of tetrahedrally coordinated borons, has been associated with the ``over crosslinking`` effect of the sulfide ion. Unlike the borate glasses where each added oxygen produces two tetrahedral borons, the conversion rate for the thioborates is between four and six. This behavior is suggested to result in themore » formation of local tightly-bonded molecular-like structures that exhibit less long-range network bonding than the alkali borite glasses. A a result, T{sub g} decreases with added alkali in alkali thioborates rather than increases as in the alkali borate glasses. The change in heat capacity at T{sub g}, {Delta}C{sub p}(T{sub g}) has been carefully measured and is found to also decrease dramatically as alkali sulfide is added to the glass. Again this effect is opposite to the trends observed for the alkali borate glasses. The decreasing {Delta}C{sub p}(T{sub g}) occurs even in the presence of a decreasing T{sub g}. The authors have tentatively associated the diminishing {Delta}C{sub p}(T{sub g}) values to the decreasing density of the configurational states above T{sub g}. This is attributed to the high coordination number and site specificity caused by the added alkali sulfide. The glassy state heat capacities were analyzed and found to reach {approximately}90% of the classical limiting DuLong-Petit value just below T{sub g} for all glasses. This was used to suggest that the diminishing {Delta}C{sub p}(T{sub g}) values are associated with a unique behavior in the system to become a liquid with very little change in the density of configurational states.« less

  3. Spectroscopic properties and energy transfer parameters of Er3+- doped fluorozirconate and oxyfluoroaluminate glasses

    PubMed Central

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-01-01

    Er3+- doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+: 4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+- doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials. PMID:24852112

  4. Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses.

    PubMed

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-05-23

    Er3+-doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+:4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+-doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials.

  5. Ag-doped Lithium alumino silicate photostructurable glass for microdevice fabrication

    NASA Astrophysics Data System (ADS)

    Mishra, Richa; Goswami, Madhumita; Krishnan, Madangopal

    2018-04-01

    Ag-doped LAS glass of composition (wt.%):74SiO2-6Al2O3-15Li2O-5X (X=other additives) were prepared by melt-quench technique and characterized for thermal and optical properties using DTA and UV-Visible spectrometer. XRD technique was used for phase identification in the heat treated glasses. Glass samples were exposed to UV-light for conversion of Ce3+ to Ce4+ state and Ag+ into Ago metallic state. DTA shows a lower crystallization temperature (Tp) at around 605°C for exposed samples as compared to unexposed base glass which is at around 625°C. UV-Visible spectra shows a broad band at around 305nm which indicates Ce3+ in base glass whereas in case of UV-exposed sample the reduced peak intensity indicates conversion of Ce3+ to Ce4+ ions, which also confirm formation of Ago in glass samples. Ag agglomeration was also confirmed from the band position at 430nm in heat treated sample, found responsible for early growth of meta-silicate phase in exposed sample. The meta-silicate phase was selectively etched for fabrication of micro-devices.

  6. Copper-Doped Bioactive Glass as Filler for PMMA-Based Bone Cements: Morphological, Mechanical, Reactivity, and Preliminary Antibacterial Characterization.

    PubMed

    Miola, Marta; Cochis, Andrea; Kumar, Ajay; Arciola, Carla Renata; Rimondini, Lia; Verné, Enrica

    2018-06-06

    To promote osteointegration and simultaneously limit bacterial contamination without using antibiotics, we designed innovative composite cements containing copper (Cu)-doped bioactive glass powders. Cu-doped glass powders were produced by a melt and quenching process, followed by an ion-exchange process in a Cu salt aqueous solution. Cu-doped glass was incorporated into commercial polymethyl methacrylate (PMMA)-based cements with different viscosities. The realized composites were characterized in terms of morphology, composition, leaching ability, bioactivity, mechanical, and antibacterial properties. Glass powders appeared well distributed and exposed on the PMMA surface. Composite cements showed good bioactivity, evidencing hydroxyapatite precipitation on the sample surfaces after seven days of immersion in simulated body fluid. The leaching test demonstrated that composite cements released a significant amount of copper, with a noticeable antibacterial effect toward Staphylococcus epidermidis strain. Thus, the proposed materials represent an innovative and multifunctional tool for orthopedic prostheses fixation, temporary prostheses, and spinal surgery.

  7. AuCl3 doping-induced conductive unstability for CVD-grown graphene on glass substrate

    NASA Astrophysics Data System (ADS)

    Wang, Jiaqing; Liu, Xianming; Cao, Xueying; Zhang, Peng; Lei, Xiaohua; Chen, Weimin

    2017-09-01

    Graphene is a candidate material for next-generation high performance transparent conducting film (TCF) to replace indium tin oxide (ITO) materials. However, the sheet resistance of large area graphene obtained by the chemical vapor deposition (CVD) method is higher than other kinds of TCFs. The main strategies for improving the electrical conductivity of graphene films have been based on various doping treatments. AuCl3 is one of the most effective dopants. In this paper, we investigate the influence of AuCl3 doping on the conductive stability of CVD-grown graphene. Large area graphene film synthesized by CVD and transferred to glass substrates is taken as experimental sample. AuCl3 in nitromethane is used to dope the graphene films to improve the electrical conductivity. Another sample without doping is prepared for comparison. The resistances of graphene under periodic visible light irradiation with and without AuCl3 doping are measured. Results show that the resistances for all samples increase exponentially under lighting, while decrease slowly in an exponential form as well after the light is switched off. The relative resistance changes for undoped and doped samples are compared under 445nm light irradiation with 40mW/cm2, 60mW/cm2, 80mW/cm2, 100mW/cm2 in atmosphere and vacuum. The change rate and degree for doped graphene are greater than that of undoped graphene. It is evident from the experimental data that AuCl3 doping may induce conductive unstability for CVD-grown graphene on glass substrate.

  8. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

    PubMed Central

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-01-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er3+ can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce3+ and its effects on the luminescence properties of Er3+ are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce3+/Yb3+/Er3+ triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers. PMID:27646191

  9. Absorption and emission spectra of Ga1.7Ge25As8.3S65 glasses doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Lupan, E. V.; Iaseniuc, O. V.; Ciornea, V. I.; Iovu, M. S.

    2016-12-01

    Excellent optical properties of chalcogenide glasses make them interesting for optoelectronic devices in the visible (VIS) and, especially, in the near- and mid-infrared (NIR and MIR) spectral regions. The rare-earth (RE3+) doped Ga17Ge25As8.3S65 glasses were prepared in evacuated ( 10-5 Pa) silica-glass ampoules which were heated up to 1000 °C at 2-4°C min-1, and then the melt was quenched. The absorption and photoluminescence spectra in the visible and near IR regions for GA1.7Ge25As8.3S65 doped with rare-earth RE+) ions (Sm3+, Nd3+, Pr3+, Dy3+ and co-doped with Ho3++Dy3+) are investigated. The energy transfer of the absorbed light in the broad band Urbach region of the host glass to the RE3+ ions is suggested for increasing the emission efficiency. The investigated Ga17Ge25As8.3S65 glasses doped with RE3+ ions are promising materials for optical amplifiers operating at 1300 and 1500 nm telecommunication windows.

  10. Synthesis of Ag doped calcium phosphate particles and their antibacterial effect as additives in dental glass ionomer cements.

    PubMed

    Chen, Song; Gururaj, Satwik; Xia, Wei; Engqvist, Håkan

    2016-11-01

    Developing dental restorations with enhanced antibacterial properties has been a constant quest for materials scientists. The aim of this study was to synthesize silver doped calcium phosphate particles and use them to improve antibacterial properties of conventional glass ionomer cement. The Ag doped monetite (Ag-DCPA) and hydroxyapatite (Ag-HA) were synthesized by precipitation method and characterized using X-ray diffraction, scanning electron microscope and X-ray fluorescence spectroscopy. The antibacterial properties of the cements aged for 1 day and 7 days were evaluated by direct contact measurement using staphylococcus epidermis Xen 43. Ion concentrations (F - and Ag + ) and pH were measured to correlate to the results of the antibacterial study. The compressive strength of the cements was evaluated with a crosshead speed of 1 mm/min. The glass ionomer cements containing silver doped hydroxyapatite or monetite showed improved antibacterial properties. Addition of silver doped hydroxyapatite or monetite did not change the pH and ion release of F - . Concentration of Ag + was under the detection limit (0.001 mg/L) for all samples. Silver doped hydroxyapatite or monetite had no effect on the compressive strength of glass ionomer cement.

  11. Ho-doped Soft Glass Optical Fibers for Coherent Wavelength Sources Above 2 Micron

    DTIC Science & Technology

    2010-12-01

    following glasses were prepared in order to fabricate a single-mode Tm-Ho doped optical fibre. Their composition is in mol% and the rare earth oxides ...in this work was 99+%. The onset melting temperature was 750 ˚C and the duration of the process 2 hours. The melt was cast in a brass mould...preheated to 300 ˚C and annealed at Tg – 10 ˚C for 2 h. Glass melting was carried out in a Pt crucible inside a chamber furnace. Core glass was melted

  12. Fluorescence properties and white light generation from Dy3+-doped niobium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Srihari, T.; Jayasankar, C. K.

    2017-07-01

    Niobium phosphate glasses (P2O5+Nb2O5+K2O + Al2O3+Dy2O3) doped with different concentrations of Dy3+ ions have been synthesized by melt quenching technique and characterized through structural and optical measurements to evaluate the fluorescence properties and find their suitability for white light emitting diodes (LEDs). Phonon energy and vibrational groups of the host matrix have been analyzed from Raman spectra. Judd-Ofelt analysis has been applied for 1.0 mol% Dy2O3-doped glass and inturn radiative properties have been evaluated for excited states of the Dy3+ ion. The higher value of stimulated emission cross-section (σe = 6.4 × 10-21 cm2) for the 4F9/2 → 6H13/2 level confirms its potentiality to be used as yellow laser. The decay curves exhibit non-exponential nature at higher concentrations (≥1 mol %) of Dy3+ ion. From the decay curve analysis, the quantum efficiency for the 4F9/2 level of 1.0 mol % Dy3+-doped glass is found to be 92%. The yellow to blue intensity ratios and chromaticity color co-ordinates are found to vary with Dy3+ ion concentrations/excitation wavelengths and are within the white light region.

  13. Method of recycling lithium borate to lithium borohydride through methyl borate

    DOEpatents

    Filby, Evan E.

    1977-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

  14. New High Index Optical Glasses

    NASA Astrophysics Data System (ADS)

    Blair, Gerald E.; Greco, Edgar J.; DeJager, Donald; Wylot, James M.

    1982-02-01

    The pioneering work of Charles W. Frederick and George W. Morey on the design by Frederick of an "ideal photographic lens" using hypothetical glasses, and the subsequent discovery and development of rare-element borate glasses by Morey, has been resumed at Eastman Kodak. New ultra-high index, low dispersion crown glasses and companion flint glasses have been developed, based on the needs dictated by lens design studies for novel fast cine' and still camera lenses. These new glasses reduce the number of elements required in a lens while maintaining or improving lens performance. Composition studies leading to these new glasses will be discussed.

  15. Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 µm laser applications

    NASA Astrophysics Data System (ADS)

    Wang, S. B.; Jia, Z. X.; Yao, C. F.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2017-05-01

    Ho3+-doped AlF3-TeO2-based glass fibers based on AlF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 glasses are fabricated by using a rod-in-tube method. The glass rod including a core and a thick cladding layer is prepared by using a suction method, where the thick cladding layer is used to protect the core from the effect of surface crystallization during the fiber drawing. By inserting the glass rod into a glass tube, the glass fibers with relatively low loss (~2.3 dB m-1 @ 1560 nm) are prepared. By using a 38 cm long Ho3+-doped AlF3-TeO2-based glass fiber as the gain medium and a 1965 nm fiber laser as the pump source, 2065 nm lasing is obtained for a threshold pump power of ~220 mW. With further increasing the pump power to ~325 mW, the unsaturated output power of the 2065 nm laser is about 82 mW and the corresponding slope efficiency is up to 68.8%. The effects of the gain fiber length on the lasing threshold, the slope efficiency, and the operating wavelength are also investigated. Our experimental results show that Ho3+-doped AlF3-TeO2-based glass fibers are promising gain media for 2.1 µm laser applications.

  16. Optical evaluation on Nd3+-doped phosphate glasses for O-band amplification.

    PubMed

    Lei, Weihong; Chen, Baojie; Zhang, Xiangling; Pun, Edwin Yun Bun; Lin, Hai

    2011-02-20

    We have fabricated and characterized optically Nd3+-doped phosphate [Li2O-CaO-BaO-Al2O3-La2O3-P2O5 (LCBALP)] glasses for drawing single-mode glass fiber. The 4F3/2→4I13/2 transition emission from the Nd3+ is at the 1.327 μm wavelength with a full width at half-maximum of 43 nm, and the spontaneous transition probability and quantum efficiency are calculated to be 1836 s-1 and 52%, respectively. The maximum stimulated emission cross sections for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions are derived to be 1.82×10(-20) cm2 and 6.97×10(-21) cm2, respectively, and the theoretical gain coefficient at the 1.327 μm wavelength is evaluated to be 0.182 dB/cm when the fractional factor of the excited neodymium ions equals 0.6, which indicates that Nd3+-doped LCBALP phosphate glasses are potential candidates in developing O-band optical fiber amplifiers.

  17. Tunable luminescence mediated by energy transfer in Tm3+/Dy3+ co-doped phosphate glasses under UV excitation

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Chen, Guohua; Liu, Xiangyu; Yuan, Changlai; Zhou, Changrong

    2017-11-01

    Tm3+/Dy3+ co-doped phosphate glasses for white light-emitting diodes were synthesized by a conventional melting-quenching method. A spectroscopic research based on optical, photoluminescence spectrum and decay time curves in Tm3+/Dy3+ co-doped phosphate glasses was carried out. The color of luminescence could be tuned by altering the concentrations of Tm3+ ions. Under UV light excitation, the CIE chromaticity coordinates (0.3471, 0.3374) and color correlate temperature (CCT = 4866.21 K) close to the standard white-light illumination (0.333, 0.333 and CCT = 5454.12 K) could be achieved in 0.4 Tm3+/0.6 Dy3+ (mol %) co-doped glass sample. The decrease of the Dy3+ emission decay time in existence of Tm3+ ascertained that non-radiative energy transfer from Dy3+ to Tm3+ occurred. Moreover, the research of energy transfers between Dy3+ and Tm3+ based on the Inokuti-Hirayama model revealed that an electric quadrupole-quadrupole interaction might be the predominant mechanism participated in the energy transfer. This finding suggests that the as-prepared Tm3+/Dy3+ co-doped phosphate glasses may be promising candidate for white LEDs and other display devices.

  18. Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, Luke B.; Witcher, Jon J.; Troy, Neil

    We have investigated waveguide writing in Er-Yb doped zinc polyphosphate glass using a femtosecond laser with a repetition rate of 1 KHz. We find that fabrication of good waveguides requires a glass composition with an O/P ratio of 3.25. The dependence on laser writing parameters including laser fluence, focusing conditions, and scan speed is reported. Waveguide properties together with absorption and emission data indicate that these glasses can be used for the fabrication of compact, high gain amplifying devices.

  19. Photoluminescence properties of Mn2+/Yb3+ co-doped oxyfluoride glasses for solar cells application

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Chen, Zeng; Jia, Xiyang; Li, Shengjun

    2018-01-01

    Mn2+/Yb3+ co-doped oxyfluoride glasses were facilely synthesized in the SiO2-Al2O3-Na2O-CaF2 system. Partial crystallization processed during the preparation of the glasses, by which small amounts of CaF2 nano-crystals were formed. Under ultraviolet and blue (370-500 nm) light excitation, an efficient down-conversion involving the emission of near-infrared is realized in the Mn2+/Yb3+ co-doped oxyfluoride glasses. The near-infrared emission peaks mainly at 976 nm and secondarily at 1020 nm, which is a comfortable match with the band gap of c-Si. The variation in visible and near-infrared spectra and the decay curves of Mn2+:4T1 → 6A1 emission have been investigated to verify the possible energy transfer from Mn2+ ions to Yb3+ ions. On analyzing the energy transfer processes theoretically and experimentally, we propose that quantum cutting and down-shifting processes may occur simultaneously in the samples. We suggest that the Mn2+-Yb3+ co-doped materials can provide a novel direction to realize UV-Vis to NIR down-conversion for Si solar cells.

  20. Dual role of the six-coordinated molybdenum and lead ions in novel of photochromic properties of the molybdenum-lead-borate glasses.

    PubMed

    Rada, M; Maties, V; Culea, M; Rada, S; Culea, E

    2010-02-01

    Transparent glasses were prepared by conventional melting-quenching method in the xMoO(3).(100-x)[3B(2)O(3).PbO] system where 0borate network. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass

    PubMed Central

    Huang, Chengcheng; Zhang, Meng; Ruan, Changshun; Peng, Songlin; Li, Li; Liu, Wenlong; Wang, Ting; Li, Bing; Huang, Wenhai; Rahaman, Mohamed N.; Lu, William W.; Pan, Haobo

    2017-01-01

    Although poly(methylmethacrylate) (PMMA) cements are widely used in orthopaedics, they have numerous drawbacks. This study aimed to improve their bioactivity and osseointegration by incorporating strontium-containing borate bioactive glass (SrBG) as the reinforcement phase and bioactive filler of PMMA cement. The prepared SrBG/PMMA composite cements showed significantly decreased polymerization temperature when compared with PMMA and retained properties of appropriate setting time and high mechanical strength. The bioactivity of SrBG/PMMA composite cements was confirmed in vitro, evidenced by ion release (Ca, P, B and Sr) from SrBG particles. The cellular responses of MC3T3-E1 cells in vitro demonstrated that SrBG incorporation could promote adhesion, migration, proliferation and collagen secretion of cells. Furthermore, our in vivo investigation revealed that SrBG/PMMA composite cements presented better osseointegration than PMMA bone cement. SrBG in the composite cement could stimulate new-bone formation around the interface between the composite cement and host bone at eight and 12 weeks post-implantation, whereas PMMA bone cement only stimulated development of an intervening connective tissue layer. Consequently, the SrBG/PMMA composite cement may be a better alternative to PMMA cement in clinical applications and has promising orthopaedic applications by minimal invasive surgery. PMID:28615491

  2. Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass.

    PubMed

    Cui, Xu; Huang, Chengcheng; Zhang, Meng; Ruan, Changshun; Peng, Songlin; Li, Li; Liu, Wenlong; Wang, Ting; Li, Bing; Huang, Wenhai; Rahaman, Mohamed N; Lu, William W; Pan, Haobo

    2017-06-01

    Although poly(methylmethacrylate) (PMMA) cements are widely used in orthopaedics, they have numerous drawbacks. This study aimed to improve their bioactivity and osseointegration by incorporating strontium-containing borate bioactive glass (SrBG) as the reinforcement phase and bioactive filler of PMMA cement. The prepared SrBG/PMMA composite cements showed significantly decreased polymerization temperature when compared with PMMA and retained properties of appropriate setting time and high mechanical strength. The bioactivity of SrBG/PMMA composite cements was confirmed in vitro , evidenced by ion release (Ca, P, B and Sr) from SrBG particles. The cellular responses of MC3T3-E1 cells in vitro demonstrated that SrBG incorporation could promote adhesion, migration, proliferation and collagen secretion of cells. Furthermore, our in vivo investigation revealed that SrBG/PMMA composite cements presented better osseointegration than PMMA bone cement. SrBG in the composite cement could stimulate new-bone formation around the interface between the composite cement and host bone at eight and 12 weeks post-implantation, whereas PMMA bone cement only stimulated development of an intervening connective tissue layer. Consequently, the SrBG/PMMA composite cement may be a better alternative to PMMA cement in clinical applications and has promising orthopaedic applications by minimal invasive surgery. © 2017 The Author(s).

  3. Modulated optical phase conjugation in rhodamine 110 doped boric acid glass saturable absorber thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh C.; Waigh, Thomas A.; Singh, Jagdish P.

    2008-03-01

    The optical phase conjugation signal in nearly nondegenerate four wave mixing was studied using a rhodamine 110 doped boric acid glass saturable absorber nonlinear medium. We have demonstrated a narrow band optical filter (2.56±0.15Hz) using an optical phase conjugation signal in the frequency modulation of a weak probe beam in the presence of two strong counterpropagating pump beams in rhodamine 110 doped boric acid glass thin films (10-4m). Both the pump beams and the probe beam are at a wavelength of 488nm (continuous-wave Ar+ laser). The probe beam frequency was detuned with a ramp signal using a piezoelectric transducer mirror.

  4. Role of aluminum on the physical and spectroscopic properties of chromium-doped strontium alumino borate glasses

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohamed Raheem; Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md

    2018-03-01

    The glass samples were prepared in accordance with the formula: (30-x)SrO-xAl2O3-69.8B2O3-0.2Cr2O3 (0 ≤x ≤ 15 mol %) by melt quenching method. The absence of Bragg’s peaks confirmed the amorphous nature of the prepared glass samples. It was observed that the molar volume was increasing while the density is decreasing with increasing of Al2O3 content. Optical absorption study was performed to evaluate the optical bandgap, oxygen packing density, ionic packing density and Urbach energies. The Racah parameters (B and C) and Dq/B ratio have been calculated. Fourier transform infrared (FTIR) spectra recorded in the region from 400-1600 cm-1 at room-temperature (RT) confirmed the formation of BO3, BO4 and AlO4 groups upon the addition of strontium oxide as modifier. The Raman spectra of all the glasses recorded over continuous spectral range 200-1600 cm-1 exhibited different spectral bands. The EPR spectra recorded at 9.7 GHz (X-band frequency) have four resonance signals. The signal at g ≈ 5.33 is due to Cr3+ ion sites of rhombic symmetry and signal at g ≈ 1.97 is due to contribution from Cr3+ and Cr5+ ion pairs.

  5. Structure and properties of strontium-doped phosphate-based glasses

    PubMed Central

    Abou Neel, Ensanya A.; Chrzanowski, Wojciech; Pickup, David M.; O'Dell, Luke A.; Mordan, Nicola J.; Newport, Robert J.; Smith, Mark E.; Knowles, Jonathan C.

    2008-01-01

    Owing to similarity in both ionic size and polarity, strontium (Sr2+) is known to behave in a comparable way to calcium (Ca2+), and its role in bone metabolism has been well documented as both anti-resorptive and bone forming. In this study, novel quaternary strontium-doped phosphate-based glasses, containing 1, 3 and 5 mol% SrO, were synthesized and characterized. 31P magic angle spinning (MAS) nuclear magnetic resonance results showed that, as the Sr2+ content is increased in the glasses, there is a slight increase in disproportionation of Q2 phosphorus environments into Q1 and Q3 environments. Moreover, shortening and strengthening of the phosphorus to bridging oxygen distance occurred as obtained from FTIR. The general broadening of the spectral features with Sr2+ content is most probably due to the increased variation of the phosphate–cation bonding interactions caused by the introduction of the third cation. This increased disorder may be the cause of the increased degradation of the Sr-containing glasses relative to the Sr-free glass. As confirmed from elemental analysis, all Sr-containing glasses showed higher Na2O than expected and this also could be accounted for by the higher degradation of these glasses compared with Sr-free glasses. Measurements of surface free energy (SFE) showed that incorporation of strontium had no effect on SFE, and samples had relatively higher fractional polarity, which is not expected to promote high cell activity. From viability studies, however, the incorporation of Sr2+ showed better cellular response than Sr2+-free glasses, but still lower than the positive control. This unfavourable cellular response could be due to the high degradation nature of these glasses and not due to the presence of Sr2+. PMID:18826914

  6. Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO₂.

    PubMed

    Wang, Ling; Zeng, Huidan; Yang, Bin; Ye, Feng; Chen, Jianding; Chen, Guorong; Smith, Andew T; Sun, Luyi

    2017-02-28

    Yb 3+ -doped phosphate glasses containing different amounts of SiO₂ were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO₂ on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO₂ possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm²), the maximum Stark splitting manifold of ²F 7/2 level (781 cm -1 ), and the largest scalar crystal-field N J and Yb 3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO₂ promoted the formation of P=O linkages, but broke the P=O linkages when the SiO₂ content was greater than 26.7 mol %. Based on the previous 29 Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO₆] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb 3+ -doped gain medium for solid-state lasers and optical fiber amplifiers.

  7. Tunable color emission via energy transfer in co-doped Ce3+/Dy3+: Li2O-LiF-B2O3-ZnO glasses for photonic applications

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, L.; Naveen Kumar, K.; Srinivasa Rao, K.; Hwang, Pyung

    2017-10-01

    A set of co-doped (Ce3+/Dy3+): LBZ glasses were prepared by standard melt quenching technique. The pertinent absorption bands were observed in the optical absorption spectrum of co-doped Ce3+/Dy3+: LBZ glasses. We have been observed a prominent blue and yellow emission pertaining to Dy3+ ions at 0.5 mol % under the excitation of 385 nm doped glasses. However, the photoluminescence intensities were remarkably enhanced by co-doping with Ce3+ ions to Dy3+: LBZ glasses due to energy transfer from Ce3+ to Dy3+. The emission spectra of co-doped (Ce3+/Dy3+): LBZ glass exhibits three strong emissions at 440 nm, 480 nm and 574 nm which are assigned with corresponding electronic transitions of 4I15/2 → 6H15/2, 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 respectively. The Commission International de E'clairage coordinates were calculated from their emission spectra of single doped Dy3+ and co-doped (Ce3+/Dy3+): LBZ glasses. The obtained CIE chromaticity coordinates for optimized co-doped glass are found to be very close to the standard white region. Based on the concentration of Ce3+, the emitting color of the co-doped glass can be changed from blue to white color. The transformation of the color from blue to white region due to energy transfer from Ce3+ to Dy3+. The energy transfer mechanism was substantiated by various fluorescence dynamics such as overlapped spectral profiles, photoluminescence, lifetime decay and CIE color coordinate analysis. These results could be suggested that the obtained co-doped (Ce3+/Dy3+): LBZ glasses are promising candidates for commercial white light applications.

  8. Bioactive glass/polymer composites for bone and nerve repair and regeneration

    NASA Astrophysics Data System (ADS)

    Mohammadkhah, Ali

    Bioactive glasses have several attractive properties in hard and soft tissue repair but their brittleness limited their use, as scaffolding materials, for applications in load-bearing hard tissue repair. At the same time, because of their bioactive properties, they are being studied more often for soft tissue repair. In the present work, a new glass/polymer composite scaffold was developed for the repair of load-bearing bones with high flexural strength and without brittle behavior. The new composites have 2.5 times higher flexural strength and ˜100 times higher work of fracture (without catastrophic failure) compared to a similar bare glass scaffold. Also the use of two known bioactive glasses (13-93-B3 and 45S5) was investigated in developing glass/Poly(epsilon-caprolactone) (PCL) composite films for peripheral nerve repair. It was found that a layer of globular hydroxyapatite (HA) formed on both sides of the composites. The borate glass in the composites was fully reacted in SBF and different ions were released into the solution. The addition of bioactive glass particles to the PCL lowered its elastic modulus and yield strength, but the composites remained intact after the 14 day period in SBF at 37°C. Finally, in an effort to design a better bioactive glass, new borosilicate glass compositions were developed that possess advantages of borate and silicate bioactive glasses at the same time. It was found that replacing small amounts of B2O3 with SiO2 improved glass formation, resistance to nucleation and crystallization, and increased the release rate of boron and silicon in vitro. This new borosilicate glass could be a good alternative to existing silicate and borate bioactive glasses.

  9. UV light induced red emission in Eu3+-doped zincborophosphate glasses

    NASA Astrophysics Data System (ADS)

    Hima Bindu, S.; Siva Raju, D.; Vinay Krishna, V.; Rajavardhana Rao, T.; Veerabrahmam, K.; Linga Raju, Ch.

    2016-12-01

    This paper reports the preparation of transparent zincborophosphate (ZBP) glasses doped with Eu3+ ions by the conventional melt quenching technique. The prepared glasses were characterized using powder XRD, FTIR, optical absorption, photoluminescence and decay curves. Judd-Ofelt (JO) intensity parameters calculated under various constraints using absorption and emission spectra. These JO intensity parameters have been used to predict the radiative properties such as radiative life time, branching ratios and stimulated emission cross section of the 5D0→7FJ (J = 0-4) transitions. Decay curves for the 5D0 level of Eu3+ ions shows single exponential for all concentrations. Luminescence properties of 5D0→7F2 transitions of Eu3+ions have revealed that the present ZBP:Eu3+ glasses have significant in optical applications at around 613 nm. An intense red luminescence has been observed due to 5D0→7F2 transition of Eu3+ ion in these glasses. From the CIE color coordinate diagram, it is observed that the present glass system is prominent material for red emission.

  10. New laser media based on microporous glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altshuler, G.B.; Bakanov, V.A.; Dulneva, E.G.

    The results of the investigation of new class of the laser media based on dye solutions impregnated microporous glasses are presented. Based on such media highly effective active elements of tunable dye lasers and passive modulators for solid-state lasers are created. This article is devoted to laser media of the new type - the heterogenous solid-liquid media on the basis of the impregnated by the solutions of the dyes of the microporous glasses. The microporous glasses represent themselves the products of the leaching of heat - treated sodium borosilicate glasses of a certain composition range. As a result of heatmore » treatment is realized the phase separated glass. It consists of two interconnected phases: the silica rich phase and the chemical unstable sodium - borate - rich phase. If we place this glass in the acid then the ions of sodium and borate will be transfered to the solution. As a result we obtain the porous glass and this process produces the continuous claster. Therefore it could be easily impregnated by liquids and gases. We now have the technology that permits us to obtain the samples with the volume porosity from ten to fifty percent and the size of this poroses could be varied from twenty angstroms up to one thousand angstroms.« less

  11. Electrochemical double layers at the interface between glassy electrolytes and platinum: Differentiating between the anode and the cathode capacitance

    NASA Astrophysics Data System (ADS)

    Kruempelmann, J.; Mariappan, C. R.; Schober, C.; Roling, B.

    2010-12-01

    We have measured potential-dependent interfacial capacitances of two Na-Ca-phosphosilicate glasses and of an AgI-doped silver borate glass between ion-blocking Pt electrodes. An asymmetric electrode configuration with highly dissimilar electrode areas on both faces of the glass samples allowed us to determine the capacitance at the small-area electrode. Using equivalent circuit fitting we extract potential-dependent double-layer capacitances. The potential-dependent anodic capacitance exhibits a weak maximum and drops strongly at higher potentials. The cathodic capacitance exhibits a more pronounced maximum, this maximum being responsible for the maximum in the total capacitance observed in measurements in a symmetrical electrode configuration. The capacitance maxima of the Na-Ca phosphosilicate glasses show up at higher electrode potentials than the maxima of the AgI-doped silver borate glass. Remarkably, for both types of glasses, the potential of the cathodic capacitance maximum is closely related to the activation energy of the bulk ion transport. We compare our results to recent theoretical predictions by Shklovskii and co-workers.

  12. Experimental and theoretical approach on the optical properties of zinc borotellurite glass doped with dysprosium oxide

    NASA Astrophysics Data System (ADS)

    Halimah, M. K.; Ami Hazlin, M. N.; Muhammad, F. D.

    2018-04-01

    and blue emission. The white light emission of the glass systems is confirmed by using the Commission International de I'Eclairage 1931 (CIE 1931) chromaticity diagram. The colour coordinate of the zinc borotellurite glass systems doped Dy2O3 is tabulated in Table 3 while Fig. 10 represents the colour chromaticity diagram of Dy2O3 doped zinc borotellurite glass systems. Based on the result obtained, the CIE coordinate for the zinc borotellurite glass doped with dysprosium oxide lies closed to the standard white light point which located at x = 0.333 and y = 0.333 [63,64]. This suggests that the zinc borotellurite glass doped with Dy2O3 may be useful for the solid state lighting application.

  13. Fabrication of planar optical waveguides by 6.0 MeV silicon ion implantation in Nd-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao

    2018-04-01

    We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.

  14. Luminescence properties of Eu3+-doped SiO2-LiYF4 glass-ceramic microrods

    NASA Astrophysics Data System (ADS)

    Secu, C. E.; Secu, M.

    2015-09-01

    Photoluminescence properties of the glass-ceramics microrods containing Eu3+-doped LiYF4 nanocrystals have been studied and characterized. Judd-Ofelt parameters and quantum efficiency has been computed from luminescence spectra and discussed by comparison to the glass ceramic bulk and pellet. The radiative decay rate Arad is higher in the glass ceramic rods (221 s-1) than in the glass ceramic bulk (130 s-1) but the quantum efficiency computed is very low (21%) compared to the glass-ceramic bulk (97%). There are effective non-radiative decay channels that might be related to an influence of the dimensional constraints imposed by the membrane pores during xerogel formation and subsequent glass ceramization.

  15. Luminescence quenching versus enhancement in WO3-NaPO3 glasses doped with trivalent rare earth ions and containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Dousti, M. Reza; Poirier, Gael Y.; Amjad, Raja J.; de Camargo, Andrea S. S.

    2016-10-01

    We report on the influence of silver nanoparticles (NPs) on the luminescence behavior of trivalent rare earth (RE) ion doped tungsten-phosphate glasses. In order to induce the growth of NPs, the as-prepared glass samples containing silver atoms, are exposed to heat-treatment above the glass transition temperature. The surface plasmon resonance band of the Ag NPs is observed in the visible range around 420 and 537 nm in the glasses with low and high tungsten content, respectively. Such difference in spectral shift of the plasmon band is attributed to the difference in the refractive index of the two studied glass compositions. Heat-treatment results in the general increase in number of NPs, while in the case of glasses with low tungsten content, it also imposes a shift to the Ag plasmon band. The NPs size distribution (4-10 nm) was determined in good agreement with the values obtained by using Mie theory and by transmission electron microscopy. The observed quenching in the visible luminescence of glasses doped with Eu3+, Tb3+ or Er3+is attributed to energy transfer from the RE ions to Ag species, while an enhanced near-infrared emission in Er3+ doped glasses is discussed in terms of the chemical contribution of silver, rather than the most commonly claimed enhancement of localized field or energy transfer from silver species to Er3+. The results are supported by the lifetime measurements. We believe that this study gives further insight and in-depth exploration of the somewhat controversial discussions on the influence of metallic NPs plasmonic effects in RE-doped glasses.

  16. Spectroscopic and laser properties of Er{sup 3+} doped fluoro-phosphate glasses as promising candidates for broadband optical fiber lasers and amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, S.; Seshadri, M.; Reddy Prasad, V.

    2015-10-15

    Highlights: • Erbium doped different fluoro-phosphate glasses are prepared and characterized. • Spectroscopic properties have been determined using Judd–Ofelt and Mc-Cumber theory. • Prominent laser transition Er{sup 3+}:{sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} is observed at 1.53 μm. - Abstract: Different fluoro-phosphate glasses doped with 0.5 mol% Er{sup 3+} doped are prepared by melt quenching method. Both structural and spectroscopic properties have been characterized in order to evaluate their potential as both laser source and amplifier materials. Optical absorption measurements are carried out and analyzed through Judd–Ofelt and Mc-Cumber theories where spectroscopic parameters such as intensity parameters Ω{sub l}more » (λ = 2,4,6), transition probabilities, radiative lifetimes, stimulated absorption cross-sections and emission cross-sections at 1.5 μm have been evaluated for Er{sup 3+} doped different fluorophosphate glasses. The various luminescence and gain properties are explained from photoluminescence studies. The decay curve analysis have been done for obtaining the decay time constants of Er{sup 3+} excited level {sup 4}I{sub 13/2} in all the fluoro-phosphate glasses. The obtained results of each glass matrix are compared with the equivalent parameters for several other host glasses. These fluoro-phosphate glasses are found to be suitable candidates for laser and amplifier applications.« less

  17. Influence of CuO content on the structure of lithium fluoroborate glasses: Spectral and gamma irradiation studies.

    PubMed

    Abdelghany, A M; ElBatal, H A; EzzElDin, F M

    2015-10-05

    Glasses of lithium fluoroborate of the composition LiF 15%-B2O3 85% with increasing CuO as added dopant were prepared and characterized by combined optical and FTIR spectroscopy before and after gamma irradiation. The optical spectrum of the undoped glass reveals strong UV absorption with two distinct peaks at about 235 and 310 nm and with no visible bands. This strong UV absorption is related to the presence of unavoidable trace iron impurity (Fe(3+)) within the materials used for the preparation of this glass. After irradiation, the spectrum of the undoped glass shows a decrease of the intensity of the UV bands together with the resolution of an induced visible broad band centered at about 520 nm. The CuO doped glasses reveal the same UV absorption beside a very broad visible band centered at 780 nm and this band shows extension and splitting to several component peaks with higher CuO contents. Upon gamma irradiation, the spectra of all CuO-doped glasses reveal pronounced decrease of their intensities. The response of irradiation on the studied glasses is correlated with suggested photochemical reactions together with some shielding effect of the copper ions. The observed visible band is related to the presence of copper as distorted octahedral Cu(2+) ions. Infrared absorption spectra of the prepared glasses show repetitive characteristic triangular and tetrahedral borate units similar to that published from alkali or alkaline earth oxides B2O3 glasses. A suggested formation of (BO3/2F) tetrahedral units is advanced through action of LiF on B2O3 and these suggested units showing the same position and number as BO4 tetrahedra. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    NASA Astrophysics Data System (ADS)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  19. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Fu, Hailuo; Liu, Xin

    2010-10-01

    Bioactive glass scaffolds with a microstructure similar to that of dry human trabecular bone but with three different compositions were evaluated for potential applications in bone repair. The preparation of the scaffolds and the effect of the glass composition on the degradation and conversion of the scaffolds to a hydroxyapatite (HA)-type material in a simulated body fluid (SBF) are reported here (Part I). The in vitro response of osteogenic cells to the scaffolds and the in vivo evaluation of the scaffolds in a rat subcutaneous implantation model are described in Part II. Scaffolds (porosity = 78-82%; pore size = 100-500 microm) were prepared using a polymer foam replication technique. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. The conversion rate of the scaffolds to HA in the SBF increased markedly with the B2O3 content of the glass. Concurrently, the pH of the SBF also increased with the B2O3 content of the scaffolds. The compressive strengths of the as-prepared scaffolds (5-11 MPa) were in the upper range of values reported for trabecular bone, but they decreased markedly with immersion time in the SBF and with increasing B2O3 content of the glass. The results show that scaffolds with a wide range of bioactivity and degradation rate can be achieved by replacing varying amounts of SiO(2) in silicate bioactive glass with B2O3. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  20. A crystal-chemical classification of borate structures with emphasis on hydrated borates

    USGS Publications Warehouse

    Christ, C.L.; Clark, J.R.

    1977-01-01

    The rules governing formation of hydrated borate polyanions that were proposed by C.L. Christ in 1960 are critically reviewed and new rules added on the basis of recent crystal structure determinations. Principles and classifications previously published by others are also critically reviewed briefly. The fundamental building blocks from which borate polyanions can be constructed are defined on the basis of the number n of boron atoms, and the fully hydrated polyanions are illustrated. Known structures are grouped accordingly, and a shorthand notation using n and symbols ?? = triangle, T = tetrahedron is introduced so that the polyanions can be easily characterized. For example, 3:??+2T describes [B3O3(OH)5]2-. Correct structural formulas are assigned borates with known structures whereas borates of unknown structure are grouped separately. ?? 1977 Springer-Verlag.

  1. Spectroscopic investigations of neodymium doped barium bismuth fluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Mariselvam, K.; Arun Kumar, R.; Manasa, P.

    2018-06-01

    A new series of neodymium doped barium bismuth fluoroborate glasses with the chemical composition of (70-x)H3BO3 + 5Bi2O3 + 10BaCO3 + 7.5CaF2 + 7.5ZnO + xNd2O3 (where x = 0.05, 0.1, 0.25, 0.5, 1, 2 (in wt.%) have been prepared by the conventional melt quenching method. The powder X-ray diffraction pattern confirms the amorphous nature of the prepared glasses. The Urbach energy reveals the minimum disorderness of the glass samples. Judd-Ofelt intensity parameters (Ωλ = 2, 4 and 6) were derived from the absorption spectrum and were used to calculate the emission properties. The near infrared emission spectra recorded with 808 nm laser diode excitation for different concentrations of Nd3+ ions and the emission for the 4F3/2 → 4I11/2 transition at 1060 nm found to be high intense. The measured decay curves for 4F3/2 fluorescent level exhibit single exponential nature with shortening of lifetime with increase in concentration. The laser parameters such as stimulated emission cross-section, branching ratios, gain band width and optical gain values are found to be high for BBFB:Nd3+ (0.5 wt%) glass. Hence, the results suggested that the present BBFB:Nd3+ (0.5 wt%) glass could be used as an efficient infrared laser source around 1.06 μm region.

  2. Enhanced broadband near-infrared luminescence from Pr3+-doped tellurite glass with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheng, Pan; Zhou, Yaxun; Zhou, Minghan; Su, Xiue; Zhou, Zizhong; Yang, Gaobo

    2017-11-01

    Pr3+-doped tellurite glasses containing metallic silver NPs were synthesized by the conventional melt-quenching technique. Structural, thermal and optical properties of the synthesized glass samples were characterized by X-Ray diffraction (XRD) curves, Raman spectra, differential scanning calorimeter (DSC) curves, transmission electron microscopy (TEM) images, UV/Vis/NIR absorption and near-infrared fluorescence emission spectra. The XRD curves confirmed the amorphous structural nature of the synthesized glasses, the Raman spectra identified the presence of different vibrational groups, the DSC curves verified the good thermal stability, and the TEM images revealed the nucleated silver NPs with average diameter about 10 nm dispersed in the glass matrix and its surface Plasmon resonance (SPR) absorption band was located at around 510 nm. Besides, Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6) and other important spectroscopic parameters like transition probability, radiative lifetime, branching ratio were calculated to evaluate the radiative properties of Pr3+ levels from the measured optical absorption spectra. It was found that Pr3+-doped tellurite glasses could emit an ultra-broadband fluorescence extending from 1250 to 1650 nm under the 488 nm excitation, and this fluorescence emission increased further with the introduction of silver NPs. The enhanced fluorescence was mainly attributed to the increased local electric field around Pr3+ induced by silver NPs. The present results demonstrate that Pr3+-Ag codoped tellurite glass is a promising candidate for the near-infrared band ultra-broadband fiber amplifiers covering the expanded low-loss communication window.

  3. Structural, thermal and optical investigations of Dy3+ ions doped lead containing lithium fluoroborate glasses for simulation of white light

    NASA Astrophysics Data System (ADS)

    Zulfiqar Ali Ahamed, Sd.; Madhukar Reddy, C.; Deva Prasad Raju, B.

    2013-05-01

    Lead containing barium zinc lithium fluoroborate (LBZLFB) glasses doped with different concentrations of trivalent dysprosium ions were synthesized by conventional melt quenching method and characterized through the XRD, DSC, FTIR, FT-Raman, optical absorption, photoluminescence and decay curve analysis. X-ray diffraction studies revealed amorphous nature of the studied glass matrices. The thermal behavior has been reported by recording DSC thermograms. Coexistence of trigonal BO3 and tetrahedral BO4 units was evidenced by IR and Raman spectroscopy. Judd-Ofelt intensity parameters have been evaluated for 1.0 mol% Dy3+ ions doped LBZLFB glass. The measuring branching ratios are reasonably high for transitions 4F9/2 → 6H15/2 and 6H13/2 suggesting that the emission at 486 and 577 nm, respectively can give rise to lasing action in the visible region. From the visible emission spectra, the yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were estimated. A combination of blue and yellow emissions has emerged in the glasses, which allows the observation of white light when the glasses are excited by the ultraviolet/blue light. These Dy3+ doped glasses are studied for their utility for white light generation under 454 nm excitation and the present LBZLFB glass is more suitable for generation of white light for blue LED chips.

  4. Spectroscopic properties of Er3+-doped fluorotellurite glasses containing various modifiers

    NASA Astrophysics Data System (ADS)

    Burtan-Gwizdała, Bożena; Reben, Manuela; Cisowski, Jan; Grelowska, Iwona; Yousef, El Sayed; Algarni, Hamed; Lisiecki, Radosław; Nosidlak, Natalia

    2017-11-01

    We have investigated the optical and spectroscopic properties of new Er3+-doped fluorotellurite glasses with the basic molar composition 75%TeO2-10%P2O5-10%ZnO-5%PbF2, modified by replacing 5%TeO2 by four various metal oxides, namely MgO, PbO, SrO and CdO. The ellipsometric data have provided a Sellmeier-type dispersion relation of the refractive index of the investigated glasses. The optical absorption edge has been described within the Urbach approach, while the absorption and fluorescence spectra have been analyzed in terms of the standard Judd-Ofelt theory along with the photoluminescence decay of the 4I13/2 and 4S3/2 levels of the Er3+ ion. The absorption and emission spectra of the 4I15/2 ↔ 4I13/2 infrared transition have been analyzed within the McCumber theory to yield the peak emission cross-section and figure of merit (FOM) for the amplifier gain. It appears that the glass containing MgO as a modifier is characterized by the largest FOM suggesting that the fluorotellurite matrix with this oxide can be a good novel host for Er3+ ion doping. Finally, we propose a new simple method to calculate the mean transition energy of the McCumber approach as the arithmetic average of the barycenter wavenumbers of absorption and emission spectra.

  5. N-Alkyl-N-methylpyrrolidinium Difluoro(oxalato)borate Ionic Liquids: Physical/Electrochemical Properties and Al Corrosion

    DTIC Science & Technology

    2013-01-01

    U.S. Army Research Laboratory, Adelphi, MD 20783, USA The synthesis and physical properties of difluoro(oxalato) borate (DFOB-)-based ionic...have a melting point (Tm) of -5°C and 31°C, respectively, whereas the PY15DFOB salt does not crystallize. Instead, this salt has a glass transition

  6. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    PubMed

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.

  7. Thermal and optical properties of Tm3+ doped tellurite glasses.

    PubMed

    Ozen, G; Demirata, B; Oveçoğlu, M L; Genç, A

    2001-02-01

    Ultraviolet, visible (UV/VIS) and differential thermal analysis (DTA) measurements were carried out in order to investigate the optical and thermal properties of various 0.5 mol.% Tm2O3 containing (1 - x)TeO2 + xLiCl glasses in molar ratio. The samples were prepared by fusing the mixture of their respective reagent grade powders in a platinum cricuble at 750 degrees C for 30 min. DTA curves taken in the 23-600 degrees C temperature range with a heating rate of 10 degrees C/min reveal a change in the value of the glass transition temperature, Tg, while melting was not observed for the glasses containing LiCl content less than 50 mol.%. These glasses were found to be moisture-resistant. However, the glasses with LiCl content higher than 50 mol.%, in which a melting peak was observed at Tc = 401 degrees C, were moisture-sensitive. Absorption measurements in the UV/VIS region of the glasses without Tm2O3 content show that the Urbach cutoff occurs at about 320 nm and, is relatively independent of the LiCl content. Six absorption bands were observed in the Tm2O3 doped glasses corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level of Tm3+ ions. The spectra also show that the integrated absorption cross-section of each band depends on the glass composition. Judd-Ofelt theory was used to determine the Judd-Ofelt parameters as well as the radiative transition probabilities for the metastable levels of Tm3+ ions in (0.3)LiCl + (0.7) TeO2: 0.01 Tm2O3 glass which is moisture-resistant.

  8. The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering

    NASA Astrophysics Data System (ADS)

    Tikhomirov, V. K.; Seddon, A. B.; Ferrari, M.; Montagna, M.; Santos, L. F.; Almeida, R. M.

    2003-11-01

    We show that the structure of transparent oxy-fluoride glass-ceramics formed by heat treatment of glasses of typical composition 32(SiO2):9(AlO1.5):31.5(CdF2):18.5(PbF2): 5.5(ZnF2):3.5(ErF3) mol% consists of ~ 12 nm diameter, Er3+-doped, β-PbF2 nano-crystals embedded in a silica-based glass network and connected to it via non-bridging O and F anions, or fluorine linkages such as Pb-F-Cd and Pb-F-Zn. It is proposed that the glass network structure is mostly chain-like and dominated by Si(O,F)4 tetrahedra with two bridging O and two non-bridging O and/or F atoms (Q2 units). SiO4 tetrahedra with zero and one bridging O (Q0 and Q1 units, respectively) are also present in the glass structure, in the approximate proportion Q0:Q1:Q2 = 1:1:3, a characteristic which appears to be of primary importance. The flexible, chain-like glass-network, with many broken bonds, results in easy accommodation of the Er3+-doped PbF2 nano-crystals, which are grown by heat-treatment of the precursor glass. The boson peak in the Raman spectrum of the precursor glass decreases in intensity upon ceramming and is partly converted to narrow crystalline peaks at lower frequency, consistent with the precipitation of PbF2 crystalline nano-particles. It is suggested that the boson peak involves localized vibrations of broken or stretched Pb-F bonds. The mean free path for these vibrations increases with ceramming, which involves partial crystallization of the glass network, resulting in a shift of the boson peak vibrations to lower-frequency crystalline peaks.

  9. Plasmon-Assisted Efficiency Enhancement of Eu3+-Doped Tellurite Glass-Covered Solar Cells

    NASA Astrophysics Data System (ADS)

    Lima, Bismarck C.; Gómez-Malagón, L. A.; Gomes, A. S. L.; Garcia, J. A. M.; Kassab, L. R. P.

    2017-12-01

    Rare-earth-doped tellurite glass containing metallic nanoparticles can be exploited to manage the solar spectrum in order to increase solar cell efficiency. It is therefore possible to modify the incident solar spectrum profile to the spectrum that optimizes the solar cell recombination process by covering the solar cell with plasmonic luminescent downshifting layers. With this approach, the losses due to thermalization are minimized and the efficiency is increased. Due to the down-conversion process that couples the plasmon resonance of the metallic nanoparticles and the rare-earth electronic energy levels, it is possible to convert photons from the ultraviolet region to the visible and near-band-gap region of the semiconductor. It is demonstrated here that plasmon-assisted efficiency enhancements of 14.0% and 34.5% can be obtained for commercial Si and GaP solar cells, respectively, covered with Eu3+-doped TeO2-ZnO glass containing silver nanoparticles.

  10. Dispersion and thermal properties of lithium aluminum silicate glasses doped with Cr3+ ions

    NASA Astrophysics Data System (ADS)

    El-Diasty, Fouad; Abdel-Baki, Manal; Abdel Wahab, Fathy A.; Darwish, Hussein

    2006-10-01

    A series of new lithium aluminum silicate (LAS) glass systems doped with chromium ion is prepared. The reflectance and transmittance of the glass slabs are recorded. By means of an iteration procedure, the glass refractive index n and the extinction coefficient k and their dispersions are obtained. Across a wide spectral range of 0.2-1.6 μm, the dispersion curves are used to determine the atomic and quantum constants of the prepared glasses. These findings provide the average oscillator wavelength, the average oscillator strength, oscillator energy, dispersion energy, lattice energy, and material dispersion of the glass materials to be calculated. For optical waveguide applications, the wavelength for zero material dispersion is obtained. Dilatometric measurements are performed and the thermal expansion coefficient is calculated to throw some light on the thermo-optical properties of the present glasses correlating them with their structure and the presence of nonbridging oxygen ions.

  11. Investigation of Tm3+/Yb3+ co-doped germanate-tellurite glasses for efficient 2 µm mid-infrared laser materials

    NASA Astrophysics Data System (ADS)

    Dou, Aoju; Shen, Lingling; Wang, Ning; Cai, Yangjian; Cai, Muzhi; Guo, Yanyan; Huang, Feifei; Tian, Ying; Xu, Shiqing; Zhang, Junjie

    2018-05-01

    The Tm3+/Yb3+ co-doped germanate-tellurite glasses with good thermal properties were prepared. Based on the absorption spectra and the Judd-Ofelt theory, the J-O intensity parameters (Ω t ), radiative transition probability (276.78 s- 1), fluorescence lifetime (3.89 ms), absorption and emission cross sections ({σ e} = 1.35 × 10- 20 cm2) were calculated. The 2 µm mid-infrared emission resulting from the 3F4→3H6 transition of Tm3+ sensitized by Yb3+ was observed pumped by 980 nm LD. Besides, the energy transfer mechanism between Yb3+ and Tm3+ was thoroughly discussed. The measured 2 µm emission lifetime of Tm3+/Yb3+ co-doped glass can reach as high as 2.38 ms. The above results showed that Tm3+/Yb3+ co-doping glass could be expected to be a promising material to achieve high efficient 2 µm lasing with a 980 nm LD pumping.

  12. White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses

    NASA Astrophysics Data System (ADS)

    Luewarasirikul, N.; Kim, H. J.; Meejitpaisan, P.; Kaewkhao, J.

    2017-04-01

    Lanthanum calcium phosphate oxide and oxyfluoride glasses doped with dysprosium oxide were prepared by melt-quenching technique with chemical composition 20La2O3:10CaO:69P2O5:1Dy2O3 and 20La2O3:10CaF2:69P2O5:1Dy2O3. The physical, optical and luminescence properties of the glass samples were studied to evaluate their potential to using as luminescence materials for solid-state lighting applications. The density, molar volume and refractive index of the glass samples were carried out. The optical and luminescence properties were studied by investigating absorption, excitation, and emission spectra of the glass samples. The absorption spectra were investigated in the UV-Vis-NIR region from 300 to 2000 nm. The excitation spectra observed under 574 nm emission wavelength showed the highest peak centered at 349 nm (6H15/2 → 6P7/2). The emission spectra, excited with 349 nm excitation wavelength showed two major peaks corresponding to 482 nm blue emission (4F9/2 → 6H15/2) and 574 nm yellow emission (4F9/2 → 6H13/2). The experimental lifetime were found to be 0.539 and 0.540 for oxide and oxyfluoride glass sample, respectively. The x,y color coordinates under 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, that be plotted in white region of CIE 1931 chromaticity diagram. The CCT values obtained from the glass samples are 4204 K for oxide glass and 4228 K for oxyfluoride glass corresponding to the commercial cool white light (3100-4500 K). Judd-Ofelt theory had also been employed to obtain the J-O parameters (Ω2, Ω4 and Ω6), oscillator strength, radiative transition possibility, stimulated emission cross section and branching ratio. The Ω2 > Ω4 > Ω6 trend of J-O parameters of both glass samples may indicate the good quality of a glass host for using as optical device application. Temperature dependence of emission spectra was studied from 300 K to 10 K and found that the intensity of the emission peak was found to be increased with

  13. Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yiming; Fu, Yuting; Shi, Yahui

    2016-02-15

    Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800more » nm was modulated by the phase transition of the surrounding crystal field.« less

  14. Quantitative determination of copper in a glass matrix using double pulse laser induced breakdown and electron paramagnetic resonance spectroscopic techniques.

    PubMed

    Khalil, Ahmed A I; Morsy, Mohamed A

    2016-07-01

    A series of lithium-lead-borate glasses of a variable copper oxide loading were quantitatively analyzed in this work using two distinct spectroscopic techniques, namely double pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR). DP-LIBS results measured upon a combined nanosecond lasers irradiation running at 266nm and 1064nm pulses of a collinear configuration directed to the surface of borate glass samples with a known composition. This arrangement was employed to predict the electron's temperature (Te) and density (Ne) of the excited plasma from the recorded spectra. The intensity of elements' responses using this scheme is higher than that of single-pulse laser induced breakdown spectroscopy (SP-LIBS) setup under the same experimental conditions. On the other hand, the EPR data shows typical Cu (II) EPR-signals in the borate glass system that is networked at a distorted tetragonal Borate-arrangement. The signal intensity of the Cu (II) peak at g⊥=2.0596 has been used to quantify the Cu-content accurately in the glass matrix. Both techniques produced linear calibration curves of Cu-metals in glasses with excellent linear regression coefficient (R(2)) values. This study establishes a good correlation between DP-LIBS analysis of glass and the results obtained using EPR spectroscopy. The proposed protocols prove the great advantage of DP-LIBS system for the detection of a trace copper on the surface of glasses. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. UV-visible, Raman and E.S.R. studies of gamma-irradiated NiO-doped sodium metaphosphate glasses.

    PubMed

    ElBatal, Fatma H; Morsi, Reham M; Ouis, Mona A; Marzouk, Samir Y

    2010-11-01

    UV-visible spectroscopic measurements of Ni-doped sodium phosphate glasses were carried out before and after successive gamma irradiation. The undoped glass reveals strong UV absorption originating from trace iron impurities. NiO-doped glasses show characteristic absorption bands due mainly to octahedral coordination of Ni(2+) ions. Gamma irradiation produces induced bands generated from intrinsic defects and extrinsic defects. The changes in the spectroscopic data are discussed in relation to the structural evolution caused by the changes in composition and coordination state of nickel ions. The change in the growth behaviour of the induced bands is related to the annihilation or approach saturation of these characteristic induced bands. Raman and E.S.R. spectroscopic measurements confirm the presence of nickel as Ni(2+) ions in octahedral state. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Physical and Optical Studies of Bi3+-Modified Erbium Doped Tellurite Glasses

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Ega Fausta, Devara

    2018-03-01

    Er3+-doped tellurite glasses with various compositions (in mole%): 54TeO2-(41-x)ZnO-xBi2O3-2Na2O-3Er2O3 (x = 1, 2, 3, 4, and 5) were prepared with melt quenching method. Studies was aimed at investigating the effect of Bi3+ ion content on the physical and optical properties of the glasses. The density, refractive index, optical absorption, and optical energy band gap measurements were carried out at room temperature using pycnometer, Brewster angle method, and UV-VIS-NIR spectrophotometer, respectively. From the experiment, it was shown that the density and refractive index of the glasses increased with the increase of Bi3+ ions concentration. The absorption band intensity of electronic transition from 4I15/2 to 4H11/2 exhibited an increase as the Bi3+ ions concentration increase suggesting that incorporating Bi3+ ions into this glasses might improve the pumping efficiency.

  17. Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters.

    PubMed

    Da, Ning; Peng, Mingying; Krolikowski, Sebastian; Wondraczek, Lothar

    2010-02-01

    We report on intense red fluorescence from Mn(2+)-doped sulfophosphate glasses and glass ceramics of the type ZnO-Na(2)O-SO(3)-P(2)O(5). As a hypothesis, controlled internal crystallization of as-melted glasses is achieved on the basis of thermally-induced bimodal separation of an SO(3)-rich phase. Crystal formation is then confined to the relict structure of phase separation. The whole synthesis procedure is performed in air at glasses, increasing MnO content results in decreasing network polymerization. Stable glasses and continuously increasing emission intensity are observed for relatively high dopant concentration of up to 3 mol.%. Recrystallization of the glass results in strongly increasing emission intensity. Dynamic emission spectroscopy reveals only on type of emission centers in the glassy material, whereas three different centers are observed in the glass ceramic. These are attributed to octahedrally coordinated Mn(2+) in the residual glass phase and in crystalline phosphate and sulfate lattices, respectively. Relatively low crystal field strength results in almost ideal red emission, peaking around 625 nm. Excitation bands lie in the blue-to-green spectral range and exhibit strong overlap. The optimum excitation range matches the emission properties of GaN- and InGaN-based light emitting devices.

  18. GeS2–In2S3–CsI Chalcogenide Glasses Doped with Rare Earth Ions for Near- and Mid-IR Luminescence

    PubMed Central

    Li, Legang; Bian, Junyi; Jiao, Qing; Liu, Zijun; Dai, Shixun; Lin, Changgui

    2016-01-01

    Chalcogenide glass has been considered as a promising host for the potential laser gain and amplifier media operating in near- and mid-IR spectral region. In this work, the IR luminescence spectra of rare earth ions (Tm3+, Er3+, and Dy3+) doped 65GeS2–25In2S3–10CsI chalcogenide glasses were measured under the excitation of an 808 nm laser diode. To the best of our knowledge, it firstly provides the luminescence spectra of a full near- and mid-IR spectral range from 1 to 4 μm in rare earth ions doped chalcogenide glasses. The results of absorption spectra, luminescence spectra, and fluorescence decay curves were obtained in these samples with singly-, co- and triply-doping behaviors of Tm3+, Er3+, and Dy3+ ions. In order to search possible efficient IR emissions, the luminescence behavior was investigated specifically with the variation of doping behaviors and dopant ions, especially in the samples co- and triply-doped active ions. The results suggest that favorable near- and mid-IR luminescence of rare earth ions can be further modified in chalcogenide glasses through an elaborated design of doping behavior and optically active ions. PMID:27869231

  19. Determination of nonlinear optical properties by time resolved Z-scan in Nd-doped phosphate glass

    NASA Astrophysics Data System (ADS)

    de Souza, J. M.; de Lima, W. J.; Pilla, V.; Andrade, A. A.; Dantas, N. O.; Messias, D. N.

    2017-02-01

    In this work, we have used a Ti3+:Safira laser tuned at 803nm to performed time-resolved measurements using the Z-scan technique to characterize the nonlinear optical properties of phosphate glasses. The glass matrices, labeled PAN (P2O5-Al2O3-Na2CO3) and PANK (P2O5-Al2O3- Na2O-K2O), were doped with increasing Nd3+ concentration, ranging from 0.5 to 5 wt%. For both systems, we have seen that the optical nonlinearity has a linear dependence with the doping ion concentration. Therefore, we propose a new approach to obtain the parameters Δα and Δσ. All results obtained are in good agreement with others found in the literature.

  20. Intense green emission from Tb3+- doped Teo2-Wo3-Geo2 glasses

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, Tallam; Gopal, Kotalo Rama; Suvarna, Reniguntla Padma; Jamalaiah, Bungala Chinna

    2018-04-01

    Tb3+ -doped oxyfluoro tellurite (TWGTb) glasses were prepared by conventional melt quenching technique. The Judd-Ofelt theory has been applied to evaluate the Ωλ (λ=2,4,6) intensity parameters. The TWGTb glasses exhibit 5D3 → 7F5-3 and 5D4 → 7F6-0 transitions when excited at 316 nm wavelength. The variation of intensity of 5D4 → 7F5 (Green) and 5D3 → 7F4 (Blue) transitions and the green to blue (IG/IB) intensity ratios were studied as a function of Tb3+ ions concentration. The laser characteristic parameters such as effective bandwidth (Δλeff), stimulated emission cross-section (σe), gain bandwidth (σe×Δλeff) and optical gain (σe×τR) were determined using the emission spectra and radiative parameters. The luminescence decay profiles exhibit single-exponential nature for all the samples. Based on the experimental results we suggest that the 1.0 mol% of Tb3+-doped TWGTb glass could be the suitable laser host materials to emit intense green luminescence at 545 nm.

  1. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

    DOE PAGES

    Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; ...

    2016-02-12

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 10 12 e/cm 2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 10 13 e/cm 2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-dopingmore » reaches 2.11 × 10 13 e/cm 2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. As a result, the ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors.« less

  2. Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses

    NASA Astrophysics Data System (ADS)

    Samanta, Buddhadev; Dutta, Dibakar; Ghosh, Subhankar

    2017-06-01

    A series of Gd2O3 doped sodium zinc tellurite [xGd2O3-(0.8-x) TeO2-0.1Na2O-0.1ZnO] glasses are prepared by the conventional melt quenching method and their optical properties have been studied. UV-vis spectrophotometric studies within the wavelength range from 230 nm-800 nm are carried out in the integrating sphere mode to study the effect of Gd2O3 doping on the optical band gap (Eg), refractive index (n), dielectric constant (εr) and susceptibility (χ). Other physical properties like molar volume, molar refraction, polarizability, metallization criterion, number density of rare-earth ions (N), polaron radius (rp), inter ionic distance (ri), molar cation polarizability (∑αi), number of oxide ions in chemical composition (NO2-), optical band gap based electronic oxide ion polarizability (αO2-) and optical basicity (Λ) of glass samples have been studied on the basis of UV-vis spectra and density profile of the different glasses.

  3. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm

    NASA Astrophysics Data System (ADS)

    Yan, Y. C.; Faber, A. J.; de Waal, H.; Kik, P. G.; Polman, A.

    1997-11-01

    Erbium-doped multicomponent phosphate glass waveguides were deposited by rf sputtering techniques. The Er concentration was 5.3×1020cm-3. By pumping the waveguide at 980 nm with a power of ˜21 mW, a net optical gain of 4.1 dB at 1.535 μm was achieved. This high gain per unit length at low pump power could be achieved because the Er-Er cooperative upconversion interactions in this heavily Er-doped phosphate glass are very weak [the upconversion coefficient is (2.0±0.5)×10-18 cm3/s], presumably due to the homogeneous distribution of Er in the glass and due to the high optical mode confinement in the waveguide which leads to high pump power density at low pump power.

  4. Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO2

    PubMed Central

    Wang, Ling; Zeng, Huidan; Yang, Bin; Ye, Feng; Chen, Jianding; Chen, Guorong; Smith, Andew T.; Sun, Luyi

    2017-01-01

    Yb3+-doped phosphate glasses containing different amounts of SiO2 were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO2 on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO2 possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm2), the maximum Stark splitting manifold of 2F7/2 level (781 cm−1), and the largest scalar crystal-field NJ and Yb3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO2 promoted the formation of P=O linkages, but broke the P=O linkages when the SiO2 content was greater than 26.7 mol %. Based on the previous 29Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO6] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb3+-doped gain medium for solid-state lasers and optical fiber amplifiers. PMID:28772601

  5. Radiation-induced luminescence properties of Tb-doped Li3PO4-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Isokawa, Yuya; Hirano, Shotaro; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-02-01

    In this study, we developed Li3PO4-B2O3 glasses doped with different concentrations of Tb (0.1, 0.3, 1.0, 3.0, and 10.0%) as well as undoped glass, and then the prepared glasses were studied for the optical, dosimeter and scintillator properties. The Tb-doped samples indicated radioluminescence and photoluminescence (PL) due to the 4f-4f transitions of Tb3+ with sharp spectral features peaking around 375, 410, 435, 480, 540, 590 and 620 nm. The luminescence decay times of radioluminescence and PL were 2.3-2.7 ms and 2.7-2.9 ms, respectively. The shorter radioluminescence decay time than that of PL indicated quenching effect of excited states in radioluminescence. As the concentration of Tb increased, both the radioluminescence intensity and PL quantum yield (QY) increased, and the 10.0% Tb-doped sample showed the highest radioluminescence intensity and QY (54.3%). In addition, thermally-stimulated luminescence (TSL) was observed after irradiating with X-rays. The sensitivity was the highest for the 3.0% Tb-doped sample having a dynamic range from 0.1 mGy to 10 Gy, which was equivalent to commercial dosimeters. The comprehensive studies suggested that X-ray generated charges are captured at TSL-active centers more effectively at lower concentrations of Tb whereas the recombination probability at Tb center during irradiation increases with the concentration of Tb. Consequently, the optimal Tb concentration was 10% as scintillator and 3.0% for TSL dosimeter, among the present samples.

  6. Emission properties of Er3+-doped Ge20Ga5Sb10Se65 glasses in near- and mid-infrared

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Pan, Hongbo; Chen, Yimin; Wang, Rongping; Shen, Xiang

    2018-03-01

    In this work, we reported the fabrications and characterization of Er3+-doped Ge20Ga5Sb10Se65 glasses and glass-ceramics and measured their transmission and fluorescence spectra. The results showed that, the fluorecence intensity of the glasses increased until Er3+ concentration was up to ∼1.1 wt% Er, and then decreased with further increasing Er3+ concentration that was due to concentration quenching effect. While it was found that the mid- and far-infrared transmission did not decrease significantly in the glasses annealed at 310 °C for a duration up to 50 h, seven-folded enhancement in the intensity of mid-infrared fluorescence at 2.78 μm was observed. This demonstrated the potentials of the materials used for Er-doped amplifier and fiber laser.

  7. Dy3+ doped tellurite glasses containing silver nanoparticles for lighting devices

    NASA Astrophysics Data System (ADS)

    Hua, Chenxiao; Shen, Lifan; Pun, Edwin Yue Bun; Li, Desheng; Lin, Hai

    2018-04-01

    Efficient warm yellowish-white fluorescence emissions of Dy3+ were observed in heavy metal germanium tellurite (HGT) glasses under the excitation of 454 nm. Further, the luminescence intensity of Dy3+ is increased by ∼29% accompanying the introduction of Ag NPs with diameter ∼7 nm when compared with that of the silver-free case, which is caused by the existence of localized surface plasmon resonance (LSPR). The larger net emission power, the more net emission photon number and the higher quantum yield in Dy2O3 doped HGT glasses containing Ag NPs (HGT-Ag) confirm the availability of utilizing laser. Presupposed fluorescence color trace reveals that white luminescence can be achieved when the intensity ratio between residual laser and Dy3+ emission reaches the appropriate range. The productive transition emissions and the tunable white fluorescence illustrate tellurite glasses embodying noble-metal NPs are a potential candidate for high-quality lighting devices.

  8. Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser

    PubMed Central

    Wen, Xin; Tang, Guowu; Yang, Qi; Chen, Xiaodong; Qian, Qi; Zhang, Qinyuan; Yang, Zhongmin

    2016-01-01

    Highly Tm3+ doped optical fibers are urgently desirable for 2.0 μm compact single-frequency fiber laser and high-repetition-rate mode-locked fiber laser. Here, we systematically investigated the optical parameters, energy transfer processes and thermal properties of Tm3+ doped barium gallo-germanate (BGG) glasses. Highly Tm3+ doped BGG glass single mode (SM) fibers were fabricated by the rod-in-tube technique. The Tm3+ doping concentration reaches 7.6 × 1020 ions/cm3, being the reported highest level in Tm3+ doped BGG SM fibers. Using ultra short (1.6 cm) as-drawn highly Tm3+ doped BGG SM fiber, a single-frequency fiber laser at 1.95 μm has been demonstrated with a maximum output power of 35 mW when in-band pumped by a home-made 1568 nm fiber laser. Additionally, a multilongitudinal-mode fiber laser at 1.95 μm has also been achieved in a 10 cm long as-drawn active fiber, yielding a maximum laser output power of 165 mW and a slope efficiency of 17%. The results confirm that the as-drawn highly Tm3+ doped BGG SM fibers are promising in applications that require high gain and high power from a short piece of active optical fiber. PMID:26828920

  9. The enhanced and broadband near-infrared emission in Pr3+/Nd3+ co-doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Zhou, Zizhong; Zhou, Yaxun; Cheng, Pan; Zhou, Minghan; Su, Xiue; Li, Jun

    2017-11-01

    This paper reports an enhanced and broadband near-infrared fluorescence emission in the Pr3+/Nd3+ co-doped tellurite glass, which was prepared using melt-quenching technique. Under the excitation of 488 nm laser diode (LD), three near-infrared emission bands at around 0.9, 1.04 and 1.30 μm from 3P1,0 → 1G4, 1G4→3H4 and 1G4→3H5 radiative transitions respectively were observed in the Pr3+ single-doped glass, and the fluorescence intensities increased further with the introduction of Nd3+ ions, which is mainly attributed to the energy transfers from Nd3+ to Pr3+ emissions. Meanwhile, the spectral overlapping of Pr3+:1G4→3H4 and Nd3+:4F3/2 → 4I11/2 radiative transitions resulted in a broadband emission ranging from 1000 to 1100 nm, whose full-width at half-maximum (FWHM) reached about 66 nm. Additionally, the spectroscopic properties of Nd3+ and Pr3+ ions were analyzed using Judd-Ofelt theory and the thermal stability property of prepared glass was characterized by the differential scanning calorimeter (DSC) measurement, and larger than 134 °C for the difference ΔT(=Tx -Tg) was observed, which indicates its feasibility for later fiber drawing. The enhanced fluorescence and broadband emission indicate that Pr3+/Nd3+ co-doped tellurite glass can be applied in the near-infrared band tunable lasers and broadband optical amplifiers.

  10. Light induced dielectric constant of Alumina doped lead silicate glass based on silica sands

    NASA Astrophysics Data System (ADS)

    Diantoro, Markus; Natalia, Desi Ayu; Mufti, Nandang; Hidayat, Arif

    2016-04-01

    Numerous studies on glass ceramic compounds have been conducted intensively. Two major problems to be solved are to simplify the fabrication process by reducing melting temperature as well as improving various properties for various fields of technological application. To control the dielectric constant, the researchers generally use a specific dopant. So far there is no comprehensive study to control the dielectric constant driven by both of dopant and light intensity. In this study it is used Al2O3 dopant to increase the light induced dielectric constant of the glass. The source of silica was taken from local silica sands of Bancar Tuban. The sands were firstly leached using hydrochloric acid to improve the purity of silica which was investigated by means of XRF. Fabricating the glass samples were performed by using melting-glass method. Silica powder was mixed with various ratio of SiO2:Na2CO3:PbO:Al2O3. Subsequently, a mixture of various Al2O3 doped lead silicate glasses were melted at 970°C and directy continued by annealed at 300°C. The samples were investigated by XRD, FTIR, SEM-EDX and measuring dielectric constant was done using dc-capacitance meter with various light intensities. The investigation result of XRD patterns showed that the crystal structures of the samples are amorphous state. The introduction of Al2O3 does not alter the crystal structure, but significantly change the structure of the functional glass bonding PbO-SiO2 which was shown by the FTIR spectra. It was noted that some new peak peaks were exist in the doped samples. Measuring result of dielectricity shows that the dielectric constant of glass increases with the addition of Al2O3. Increasing the light intensity gives rise to increase their dielectric constant in general. A detail observation of the dielectric seen that there are discontinuous step-like of dielectric. Most likely a specific quantization mechanism occurs when glass exposed under light.

  11. Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass.

    PubMed

    Guo, Yanyan; Li, Ming; Hu, Lili; Zhang, Junjie

    2012-01-15

    The 2.7 μm emission properties in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass were investigated in the present Letter. An intense 2.7 μm emission in Er3+-doped bismuthate glass was observed. It is found that Er3+-doped bismuthate glass possesses high spontaneous transition probability A (65.26 s(-1)) and large 2.7 μm emission cross section σ(em) (9.53×10(-21) cm2) corresponding to the stimulated emission of Er3+:4I11/2→4I13/2 transition. The emission characteristic and energy transfer process upon excitation of a conventional 980 nm laser diode in bismuthate glass were analyzed. Additionally, the structure of bismuthate glass was analyzed by the Raman spectrum. The advantageous spectroscopic characteristics of Er3+ single-doped bismuthate glass together with the prominent thermal property indicate that bismuthate glass might become an attractive host for developing solid-state lasers around 2.7 μm.

  12. Optical properties of Ag- and AgI-doped Ge-Ga-Te far-infrared chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Cheng, Ci; Wang, Xunsi; Xu, Tiefeng; Sun, Lihong; Pan, Zhanghao; Liu, Shuo; Zhu, Qingde; Liao, Fangxing; Nie, Qiuhua; Dai, Shixun; Shen, Xiang; Zhang, Xianghua; Chen, Wei

    2016-05-01

    Te-based glasses are ideal material for life detection and infrared-sensing applications because of their excellent far-infrared properties. In this study, the influence of Ag- and AgI- doped Te-based glasses were discussed. Thermal and optical properties of the prepared glasses were evaluated using X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy. Results show that these glass samples have good amorphous state and thermal stability. However, Ge-Ga-Te-Ag and Ge-Ga-Te-AgI glass systems exhibit completely different in optical properties. With an increase of Ag content, the absorption cut-off edge of Ge-Ga-Te-Ag glass system has a red shift. On the contrary, a blue shift appears in Ge-Ga-Te-AgI glass system with an increase of AgI content. Moreover, the transmittance of Ge-Ga-Te-Ag glass system deteriorates while that of Ge-Ga-Te-AgI glass system ameliorates. All glass samples have wide infrared transmission windows and the far-infrared cut-off wavelengths of these glasses are beyond 25 μm. The main absorption peaks of these glasses are eliminated through a purifying method.

  13. Photoluminescence quenching by OH in Er- and Pr-doped glasses for 1.5 and 1.3 μm optical amplifiers

    NASA Astrophysics Data System (ADS)

    Faber, Anne J.; Simons, Dennis R.; Yan, Yingchao; de Waal, Henk

    1994-09-01

    In this paper we report on the effect of hydroxyl (OH) groups on the photoluminescence in the near IR (1.5 and 1.3 micrometers ) in rare earth (Er, Pr)-doped glasses. The 1.5 micrometers emission of Er-doped phosphate glasses was studied, before and after a special heat treatment. The luminescent lifetime of the 1.5 micrometers emission increases substantially, typically from 3 ms up to 7.2 ms for a 2 mole% Er2O3-doped phosphate glass, due to the controlled heat treatment. The increase in lifetime is ascribed to a decrease in OH- concentration, which is confirmed by IR-absorption spectroscopy. The quenching by OH is described by a simplified quenching model, which predicts the 1.5 micrometers emission lifetime as a function of Er- concentration with the OH-concentration as parameter. It appears that the larger part of the OH groups is coupled to Er ions and thus acts as quenching center. Photoluminescence quenching by OH groups is also reported for the 1.3 micrometers emission of Pr in GeS2-glasses: In pure OH-free GeS2 glass the 1.3 micrometers emission lifetime is as high as 350 microsecond(s) , for a 400 ppm dopant level. In GeS2 glasses containing only small amounts of OH (approximately 100 ppm), this lifetime is less than 200 microsecond(s) . Both examples demonstrate that for the fabrication of efficient glass optical amplifiers at the telecommunication windows 1.3 and 1.5 micrometers , the OH-impurity level of the host glass must be kept as low as possible.

  14. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr

    PubMed Central

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R.

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431

  15. Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion

    NASA Astrophysics Data System (ADS)

    Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.

    2017-04-01

    The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.

  16. Luminescent properties of Eu{sup 2+}-doped BaGdF{sub 5} glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weihuan; Zhang, Yuepin, E-mail: zhangyuepin@nbu.edu.cn; Ouyang, Shaoye

    2015-01-14

    Eu{sup 2+} doped transparent oxyfluoride glass ceramics containing BaGdF{sub 5} nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd{sup 3+} ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu{sup 2+} doped glass ceramics showed an excellent overlapmore » with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions, the energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu{sup 2+} doped BaGdF{sub 5} glass ceramics may be used as a potential blue-emitting phosphor for UV-LED.« less

  17. Dielectric relaxation in AgI doped silver selenomolybdate glasses

    NASA Astrophysics Data System (ADS)

    Palui, A.; Shaw, A.; Ghosh, A.

    2016-05-01

    We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.

  18. DBR and DFB Lasers in Neodymium- and Ytterbium-Doped Photothermorefractive Glasses

    NASA Technical Reports Server (NTRS)

    Ryasnyanskiy, Aleksandr; Vorobiev, N.; Smirnov, V.; Lumeau, J.; Glebov, A.; Mokhun, O..; Spiegelberg, Ch.; Krainak, Michael A.; Glebov, A.; Glebov, L.

    2014-01-01

    The first demonstration, to the best of our knowledge, of distributed Bragg reflector (DBR) and monolithic distributed feedback (DFB) lasers in photothermorefractive glass doped with rare-earth ions is reported. The lasers were produced by incorporation of the volume Bragg gratings into the laser gain elements. A monolithic single-frequency solid-state laser with a line width of 250 kHz and output power of 150 mW at 1066 nm is demonstrated.

  19. Transparent Oxyfluoride Nano-Glass-Ceramics Doped with Pr3+ and Pr3+-Yb3+ for NIR Emission

    NASA Astrophysics Data System (ADS)

    Gorni, Giulio; Cosci, Alessandro; Pelli, Stefano; Pascual, Laura; Durán, Alicia; Pascual, M. J.

    2016-12-01

    Pr3+-Yb3+ co-doped oxyfluoride glasses and glass-ceramics (GC) containing LaF3 nanocrystals have been prepared to obtain NIR emission of Yb3+ ions upon Pr3+ excitation in the blue region of the visible spectrum. Two different compositions have been tested 0.1-0.5 Pr-Yb and 0.5-1 Pr-Yb, in addition to Pr3+ singly doped samples. The crystallization mechanism of the nano-glass-ceramics was studied by DTA revealing that it occurs from a constant number of nuclei, the crystal growth being limited by diffusion. HR-TEM demonstrated that phase separation acts as precursor for LaF3 crystallization and a detailed analysis of the chemical composition (EDXS) revealed the enrichment in RE3+ ions inside the initial phase separated droplets, from which the LaF3 crystals are formed. The RE3+ ions incorporation inside LaF3 crystals was also proved by photoluminescence measurements showing Stark splitting of the RE3+ ions energy levels in the glass-ceramic samples. Lifetimes measurements showed the existence of a better energy transfer process between Pr3+ and Yb3+ ions in the glass-ceramics compared to the as made glass, and the highest value of energy transfer efficiency is 59% and the highest theoretical quantum efficiency is 159%, obtained for glass-ceramics GC0.1-0.5 Pr-Yb treated at 620 ºC-40 h.

  20. Photoinduced Changes in Ge-Doped Flame Hydrolysis Silica Glass Films

    NASA Astrophysics Data System (ADS)

    Zhang, Letian; Xie, Wenfa; Wang, Jian; Li, Aiwu; Xing, Hua; Zheng, Wei; Qian, Ying; Zhang, Jian; Zhang, Yushu

    2003-12-01

    The influence on the structural and optical properties of Ge-doped flame hydrolysis silica glass films of KrF excimer laser irradiation was investigated. A maximum refractive index change of about 3.41× 10-3 is obtained at approximately 1550 nm after 10 min irradiation. The irradiation process and roughness of the films were analyzed by atomic force microscopy (AFM). As irradiation time increased, the density of the films increased, resulting in decreases in the surface roughness and increases in the refractive index of the films.

  1. Second-order non-linear optical studies on CdS microcrystallite-doped alkali borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Liu, Qiming; Wang, Mingliang; Zhao, Xiujian

    2007-05-01

    CdS microcrystal-doped alkali borosilicate glasses were prepared by conventional fusion and heat-treatment method. Utilizing Maker fringe method, second-harmonic generation (SHG) was both observed from CdS-doped glasses before and after certain thermal/electrical poling. While because the direction of polarization axes of CdS crystals formed in the samples is random or insufficient interferences of generated SH waves occur, the fringe patterns obtained in samples without poling treatments showed no fine structures. For the poled samples, larger SH intensity has been obtained than that of the samples without any poling treatments. It was considered that the increase of an amount of hexagonal CdS in the anode surface layer caused by the applied dc field increased the SH intensity. The second-order non-linearity χ(2) was estimated to be 1.23 pm/V for the sample poled with 2.5 kV at 360 °C for 30 min.

  2. Preparation of Ferroelectric KNbO3 Based Borate Glass System.

    PubMed

    Kruea-In, Chatchai; Intawin, Pratthana; Leenakul, Wilaiwan

    2015-11-01

    The incorporation method was employed to produce ferroelectric glass ceramics from the K2O-Nb2O5-B2O3 glass system. The nanocrystalline potassium niobate (KNbO3) was first prepared using a simple mixed oxide method, where the B2O3 was initially mixed and then melted to form glass. The successfully produced optically transparent glass was then subjected to a heat treatment schedule for further crystallization at temperatures ranging from 500 to 650 degrees C, which resulted in the precipitation of the KNbO3 phase, together with the K3B2Nb3O12 phase. Scanning electron microscopy (SEM) showed the presence of randomly oriented KNbO3 crystals dispersed in a continuous glass matrix. It was found that the glass ceramics subjected to the heat treatment at temperatures higher than 545 degrees C were opaque, while the lower gave a highly transparent glass ceramics. The crystal size and crystallinity were found to increase with increasing heat treatment temperature, which in turn plays an important role in controlling the properties of the glass ceramics, including physical, optical, and dielectric properties.

  3. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    NASA Astrophysics Data System (ADS)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2018-01-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  4. Thermoluminescence responses of photon- and electron-irradiated lithium potassium borate co-doped with Cu+Mg or Ti+Mg.

    PubMed

    Alajerami, Y S M; Hashim, S; Ramli, A T; Saleh, M A; Saripan, M I; Alzimami, K; Min Ung, Ngie

    2013-08-01

    New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effect of PbO on the spectral and thermo-optical properties of Nd3+-doped phosphate laser glass

    NASA Astrophysics Data System (ADS)

    Yin, Qianwen; Kang, Shuai; Wang, Xue; Li, Shunguang; He, Dongbing; Hu, Lili

    2017-04-01

    Nd3+-doped P2O5-K2O-Al2O3-BaO-PbO phosphate glasses with various PbO/BaO ratios were synthesized using the melt quenching technique. Raman, absorption, and emission spectra were measured to investigate the effects of PbO/BaO ratios on the structures and spectroscopic properties of the glasses. The emission cross-sections of the Nd3+-doped phosphate glasses were calculated using the Judd-Ofelt theory, and were found to increase from 4.37 × 10-20 to 4.50 × 10-20 cm2 as the PbO/BaO ratio increased. In addition, thermo-optical properties were measured using an interferometric technique. The thermo-optical coefficients, which were -1.49 × 10-6, -1.65 × 10-6, and -1.64 × 10-6 K-1, respectively, were all largely negative values. The thermal expansion coefficients of the three glass samples varied within a small range. The results showed that increasing the PbO/BaO ratio of phosphate glasses can improve the laser properties while maintaining their good thermo-optical properties.

  6. Formation of nanostructures in Eu3+ doped glass-ceramics: an XAS study.

    PubMed

    Pellicer-Porres, J; Segura, A; Martínez-Criado, G; Rodríguez-Mendoza, U R; Lavín, V

    2013-01-16

    We describe the results of x-ray absorption experiments carried out to deduce structural and chemical information in Eu(3+) doped, transparent, oxyfluoride glass and nanostructured glass-ceramic samples. The spectra were measured at the Pb and Eu-L(III) edges. The Eu environment in the glass samples is observed to be similar to that of EuF(3). Complementary x-ray diffraction experiments show that thermal annealing creates β-PbF(2) type nanocrystals. X-ray absorption indicates that Eu ions act as seeds in the nanocrystal formation. There is evidence of interstitial fluorine atoms around Eu ions as well as Eu dimers. X-ray absorption at the Pb-L(III) edge shows that after the thermal treatment most lead atoms form a PbO amorphous phase and that only 10% of the lead atoms remain available to form β-PbF(2) type nanocrystals. Both x-ray diffraction and absorption point to a high Eu content in the nanocrystals. Our study suggests new approaches to the oxyfluoride glass-ceramic synthesis in order to further improve their properties.

  7. Optical properties of Sm3+ -doped TeO2sbnd WO3sbnd GeO2 glasses for solid state lasers

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, T.; Gopal, K. Rama; Suvarna, R. Padma; Jamalaiah, B. Chinna; Rao, Ch Srinivasa

    2018-03-01

    Sm3+ -doped oxyfluoride tellurite-tungsten (TWGSm) glasses were prepared by conventional melt quenching method. The optical properties were investigated through photoluminescence excitation, emission and luminescence decay analysis. The optical band gap energy was determined as ∼3.425 eV for 1.0 mol% of Sm3+ -doped TWGSm glass. Upon 404 nm excitation, the TWGSm glasses emit luminescence through 4G5/2 → 6H5/2 (563 nm), 4G5/2 → 6H7/2 (600 nm), 4G5/2 → 6H9/2 (645 nm) and 4G5/2 → 6H11/2 (705 nm) transitions. The Judd-Ofelt analysis was performed using absorption spectrum and obtained radiative parameters were used to estimate the laser characteristics of present glasses. The concentration of Sm3+ has been optimized as 1.0 mol% for efficient luminescence. The luminescence decay of 4G5/2 emission level was studied by monitoring the emission and excitation wavelengths at 600 and 404 nm, respectively. The experimental lifetime of 4G5/2 level was decrease with increase of Sm3+ concentration. The 1.0 mol% of Sm3+ -doped TWGSm glass could be the best choice for solid state visible lasers to emit orange luminescence.

  8. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    NASA Astrophysics Data System (ADS)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  9. Reactive magnetron sputtering of N-doped carbon thin films on quartz glass for transmission photocathode applications

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Sasinková, V.; Boháček, P.; Arbet, J.

    2018-03-01

    N-doped carbon thin films were deposited on a silicon substrate and quartz glass by RF reactive magnetron sputtering using a carbon target and an Ar+N2 gas mixture. During the magnetron sputtering, the substrate holder temperatures was kept at 800 °C. The carbon film thickness on the silicon substrate was about 70 nm, while on the quartz glass it was in the range 15 nm – 60 nm. The elemental concentration in the films was determined by RBS and ERD. Raman spectroscopy was used to evaluate the intensity ratios I D/I G of the D and G peaks of the carbon films. The transmission photocathodes prepared were placed in the hollow-cathode assembly of a Pierce-structure DC gun to produce photoelectrons. The quantum efficiency (QE) was calculated from the laser energy and cathode charge measured. The properties of the transmission photocathodes based on semitransparent N-doped carbon thin films on quartz glass and their potential for application in DC gun technology are discussed.

  10. Compositional dependence of broadband near-infrared downconversion and upconversion of Yb3+-doped multi-component glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Liaolin; Xia, Yu; Shen, Xiao; Wei, Wei

    2017-07-01

    Yb3+ single-doped glasses show a strong excitation band in the 300-400 nm region, and efficiently emit photons with wavelengths of 920-1150 nm, and have potential applications in solar cells operating in an extraterrestrial situation. In this work, we systematically study the broadband near-infrared downconversion and upconversion of Yb3+-doped silicate, germanate, phosphate, tellurite and tungsten tellurite glasses. All samples show a broad excitation band in the 300-400 nm range, which is attributed to the charge transfer of the Yb3+-O2- couple. The position of the charge transfer band (CTB) shifts from 300 nm to longer wavelengths around 350 nm when the length of the R-O(Si, P, Ge, Te) increases. The longer R-O gives rise to a smaller central void for Yb3+, thus resulting in a small proportion of Yb3+ ions, thus leading to the blue-shift of the CTB. A smaller proportion of Yb3+ in silicate glasses causes in the strongest upconversion emission at 500 nm.

  11. Enhanced NIR downconversion luminescence by precipitating nano Ca5(PO4)3F crystals in Eu2+-Yb3+ co-doped glass

    NASA Astrophysics Data System (ADS)

    Li, Chen; Song, Zhiguo; Li, Yongjin; Lou, Kai; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Wang, Xue; Wang, Qi; Wan, Ronghua

    2013-10-01

    Eu2+-Yb3+ co-doped transparent glass-ceramic containing nano-Ca5(PO4)3F (FAP) was prepared in reducing atmosphere. XRD and TEM analysis indicated that nano-FAP about 40 nm precipitated homogeneously in glass matrix after heat treatment. Confirmed by spectroscopy measurements, the crystal-like absorption and emission of Eu2+ indicated the partition of Eu2+ into FAP nanocrystals in glass ceramic. NIR emission due to the transition 2F→2F of Yb3+ ions (about 980-1100 nm) was observed from glasses under ultraviolet excitation, ascribed to downconversion from Eu2+ to Yb3+, which can be enhanced by precipitating nano-FAP crystals. The results indicated that Eu2+-Yb3+ co-doped glass-ceramic embedding with nano-FAP is a promising candidate as downconversion materials for enhancing conversion efficiency of solar cells.

  12. Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells.

    PubMed

    Isaac, J; Nohra, J; Lao, J; Jallot, E; Nedelec, J M; Berdal, A; Sautier, J M

    2011-02-08

    There is accumulating evidence that strontium-containing biomaterials have positive effects on bone tissue repair. We investigated the in vitro effect of a new Sr-doped bioactive glass manufactured by the sol-gel method on osteoblast viability and differentiation. Osteoblasts isolated from foetal mouse calvaria were cultured in the presence of bioactive glass particles; particles were undoped (B75) or Sr-doped with 1 wt.% (B75-Sr1) and 5 wt.% (B75-Sr5). Morphological analysis was carried out by contrast-phase microscopy and scanning electron microscopy (SEM). Cell viability was evaluated by the MTS assay at 24 h, 48 h and 72 h. At 24 h, day 6 and day 12, osteoblast differentiation was evaluated by assaying alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion and gene expression of various bone markers, using Real-Time-PCR. Alizarin Red staining and ALP histoenzymatic localisation were performed on day 12. Microscopic observations and MTS showed an absence of cytotoxicity in the three investigated bioactive glasses. B75-Sr5 particles in cell cultures, in comparison with those of B75 and B75-Sr1, resulted in a significant up-regulation of Runx2, Osterix, Dlx5, collagen I, ALP, bone sialoprotein (BSP) and OC mRNA levels on day 12, which was associated with an increase of ALP activity on day 6 and OC secretion on day 12. In conclusion, osteoblast differentiation of foetal mouse calvarial cells was enhanced in the presence of bioactive glass particles containing 5 wt.% strontium. Thus, B75-Sr5 may represent a promising bone-grafting material for bone regeneration procedures.

  13. Absorption Spectroscopy Analysis of Calcium-Phosphate Glasses Highly Doped with Monovalent Copper.

    PubMed

    Jiménez, José A

    2016-06-03

    CaO-P2 O5 glasses with high concentrations of monovalent copper ions were prepared by a simple melt-quench method through CuO and SnO co-doping. Spectroscopic characterization was carried out by optical absorption with the aim of analyzing the effects of Cu(+) ions on the optical band-gap energies, which were estimated on the basis of indirect-allowed transitions. The copper(I) content is estimated in the CuO/SnO-containing glasses after the assessment of the concentration dependence of Cu(2+) absorption in the visible region for CuO singly doped glasses. An exponential dependence of the change in optical band gaps (relative to the host) with Cu(+) concentration is inferred up to about 10 mol %. However, the entire range is divided into two distinct linear regions that are characterized by different rates of change with respect to concentration: 1) below 5 mol %, where the linear dependence presents a relatively high magnitude of the slope; and 2) from 5-10 mol %, where a lower magnitude of the slope is manifested. With increasing concentration, the mean Cu(+) -Cu(+) interionic distance decreases, thereby decreasing the sensitivity of monovalent copper for light absorption. The decrease in optical band-gap energies is ultimately shown to follow a linear dependence with the interionic distance, suggesting the potential of the approach to gauge the concentration of monovalent copper straightforwardly in amorphous hosts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fluorescence properties of Yb3+-Er3+ co-doped phosphate glasses containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Martínez Gámez, Ma A.; Vallejo H, Miguel A.; Kiryanov, A. V.; Licea-Jiménez, L.; Lucio M, J. L.; Pérez-García, S. A.

    2018-04-01

    Er3+-Yb3+ co-doped phosphate glasses containing silver nitrate (SN), were fabricated. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) analyses were used to evidence the nucleation and presence of silver nanoparticles (SNP). The basic parameters of the glasses were inspected by means of absorption and fluorescence spectra, and fluorescence lifetimes under excitation at 916 nm (in-band of Yb3+), and at 406 nm (in-band of surface plasmon resonance given by the presence of SNP). The spectra as well as estimates for the basic parameters defining the lasing/amplifying potential of the glasses were studied as a function of SN concentration. The experimental results indicate that by increasing the SN content an enhancement of Er3+/Yb3+ fluorescence takes place.

  15. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells

    PubMed Central

    Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species. PMID:24715955

  16. Polarized localization and borate-dependent degradation of the Arabidopsis borate transporter BOR1 in tobacco BY-2 cells.

    PubMed

    Yamauchi, Noboru; Gosho, Tadashi; Asatuma, Satoru; Toyooka, Kiminori; Fujiwara, Toru; Matsuoka, Ken

    2013-01-01

    In Arabidopsis the borate transporter BOR1, which is located in the plasma membrane, is degraded in the presence of excess boron by an endocytosis-mediated mechanism. A similar mechanism was suggested in rice as excess boron decreased rice borate transporter levels, although in this case whether the decrease was dependent on an increase in degradation or a decrease in protein synthesis was not elucidated. To address whether the borate-dependent degradation mechanism is conserved among plant cells, we analyzed the fate of GFP-tagged BOR1 (BOR1-GFP) in transformed tobacco BY-2 cells. Cells expressing BOR1-GFP displayed GFP fluorescence at the plasma membrane, especially at the membrane between two attached cells. The plasma membrane signal was abolished when cells were incubated in medium with a high concentration of borate (3 to 5 mM). This decrease in BOR1-GFP signal was mediated by a specific degradation of the protein after internalization by endocytosis from the plasma membrane. Pharmacological analysis indicated that the decrease in BOR1-GFP largely depends on the increase in degradation rate and that the degradation was mediated by a tyrosine-motif and the actin cytoskeleton. Tyr mutants of BOR1-GFP, which has been shown to inhibit borate-dependent degradation in Arabidopsis root cells, did not show borate-dependent endocytosis in tobacco BY-2 cells. These findings indicate that the borate-dependent degradation machinery of the borate transporter is conserved among plant species.

  17. Bioactive borate glass promotes the repair of radius segmental bone defects by enhancing the osteogenic differentiation of BMSCs.

    PubMed

    Zhang, Jieyuan; Guan, Junjie; Zhang, Changqing; Wang, Hui; Huang, Wenhai; Guo, Shangchun; Niu, Xin; Xie, Zongping; Wang, Yang

    2015-11-20

    Bioactive borate glass (BG) has emerged as a promising alternative for bone regeneration due to its high osteoinductivity, osteoconductivity, compressive strength, and biocompatibility. However, the role of BG in large segmental bone repair is unclear and little is known about the underlying mechanism of BG's osteoinductivity. In this study, we demonstrated that BG possessed pro-osteogenic effects in an experimental model of critical-sized radius defects. Transplanting BG to radius defects resulted in better repair of bone defects as compared to widely used β-TCP. Histological and morphological analysis indicated that BG significantly enhanced new bone formation. Furthermore, the degradation rate of the BG was faster than that of β-TCP, which matched the higher bone regeneration rate. In addition, ions from BG enhanced cell viability, ALP activity, and osteogenic-related genes expression. Mechanistically, the critical genes Smad1/5 and Dlx5 in the BMP pathway and p-Smad1/5 proteins were significantly elevated after BG transplantation, and these effects could be blocked by the BMP/Smad specific inhibitor. Taken together, our findings suggest that BG could repair large segmental bone defects through activating the BMP/Smad pathway and osteogenic differentiation in BMSCs.

  18. Rare-Earth Oxide Ion (Tm3+, Ho3+, and U3+) Doped Glasses and Fibres for 1.8 to 4 Micrometer Coherent and Broadband Sources

    DTIC Science & Technology

    2006-07-24

    oxide ( TeO2 ) , fluorine- containing silicate (SiOF2) and germanate (GeOF2) glass hosts for each dopant by characterising the spectroscopic properties...Earth Oxide Ion (Tm3+, Ho3+, And U3+) Doped Glasses And Fibres For 1.8 To 4 Micrometer Coherent And Broadband Sources 5c. PROGRAM ELEMENT NUMBER 5d...Rare-earth oxide ion (Tm3+, Ho3+, and U3+) doped glasses and fibres for 1.8 to 4 micrometer coherent and broadband sources Report prepared

  19. Radioluminescence and optical studies of gadolinium calcium phosphate oxyfluoride glasses doped with Sm3+

    NASA Astrophysics Data System (ADS)

    Meejitpaisan, P.; Insiripong, S.; Kedkaew, C.; Kim, H. J.; Kaewkhao, J.

    2017-08-01

    Sm3+-doped gadolinium calcium phosphate oxyfluoride glasses have been synthesized and investigated their optical, photo and radioluminescence properties. The glasses were prepared by melt quenching technique at 1400 °C. The characteristic absorption bands of Sm3+ ions originating from the 6H5/2 ground state and occurring absorbed photon in visible light (VIS) and near-infrared (NIR) region with clearly observed from absorption spectra. From the photoluminescence (PL), the glasses showed the emission at 561 (4G5/2→6H5/2), 598 (4G5/2→6H7/2), 644 (4G5/2→6H9/2) and 705 nm (4G5/2→6H11/2). The radioluminescence (RL), emission spectra were corresponding to those from PL measurements. From RL measurement, the integral scintillation efficiency of developed glass was determined at 43% when compared with BGO crystal.

  20. Penetration of boron from topically applied borate solutions

    Treesearch

    Stan T. Lebow; Patricia K. Lebow; Steven A. Halverson

    2010-01-01

    Borate penetration relies on diffusion when borate and glycol-borate preservatives are applied to the surface of wood. This study evaluated the extent of borate penetration in framing lumber as a function of preservative formulation, wood moisture content, and diffusion time after treatment. In Phase I of the study, end-matched specimens were conditioned to target...

  1. Towards modular bone tissue engineering using Ti-Co-doped phosphate glass microspheres: cytocompatibility and dynamic culture studies.

    PubMed

    Peticone, Carlotta; De Silva Thompson, David; Owens, Gareth J; Kim, Hae-Won; Micheletti, Martina; Knowles, Jonathan C; Wall, Ivan

    2017-09-01

    The production of large quantities of functional vascularized bone tissue ex vivo still represent an unmet clinical challenge. Microcarriers offer a potential solution to scalable manufacture of bone tissue due to their high surface area-to-volume ratio and the capacity to be assembled using a modular approach. Microcarriers made of phosphate bioactive glass doped with titanium dioxide have been previously shown to enhance proliferation of osteoblast progenitors and maturation towards functional osteoblasts. Furthemore, doping with cobalt appears to mimic hypoxic conditions that have a key role in promoting angiogenesis. This characteristic could be exploited to meet the clinical requirement of producing vascularized units of bone tissue. In the current study, the human osteosarcoma cell line MG-63 was cultured on phosphate glass microspheres doped with 5% mol titanium dioxide and different concentrations of cobalt oxide (0%, 2% and 5% mol), under static and dynamic conditions (150 and 300 rpm on an orbital shaker). Cell proliferation and the formation of aggregates of cells and microspheres were observed over a period of two weeks in all glass compositions, thus confirming the biocompatibility of the substrate and the suitability of this system for the formation of compact micro-units of tissue. At the concentrations tested, cobalt was not found to be cytotoxic and did not alter cell metabolism. On the other hand, the dynamic environment played a key role, with moderate agitation having a positive effect on cell proliferation while higher agitation resulting in impaired cell growth. Finally, in static culture assays, the capacity of cobalt doping to induce vascular endothelial growth factor (VEGF) upregulation by osteoblastic cells was observed, but was not found to increase linearly with cobalt oxide content. In conclusion, Ti-Co phosphate glasses were found to support osteoblastic cell growth and aggregate formation that is a necessary precursor to tissue

  2. Study of visible luminescence spectra from Nd3+ doped TPO glass upon 808 nm excitation

    NASA Astrophysics Data System (ADS)

    Azam, Mohd; Rai, Vineet Kumar

    2018-05-01

    The Nd3+ doped TPO glasses have been prepared by melting and quenching method using the high temperature electric furnace. The upconversion (UC) spectra of Nd3+ doped TPO glasses at different concentration of rare ions have been recorded in the 400-700 nm wavelength range upon 808 nm laser excitation source. In the UC emission process, there are four bands centered at ˜495 nm, 546 nm, 602 nm and 653 nm respectively in the visible range were observed. But the green and red bands centered at˜546 nm and ˜653 nm corresponding to the 4G7/2 → 4I9/2 and 4G7/2 → 4I13/2 transitions respectively have been observed as the strong bands. The UC emission mechanism was observed as two photon process. The material can be used as a good NIR to visible upconverter and non-colour tunable display.

  3. Spectroscopic behavior of composition dependent Dy3+ doped alkali fluoroborophosphate glasses

    NASA Astrophysics Data System (ADS)

    Raj, V. Anthony; Maheshvaran, K.; D'Silva, A. Josuva; Rayappan, I. Arul

    2018-04-01

    A new series of Dy3+ doped Alkali fluoroborophosphate glasses were prepared following conventional melt quenching technique and characterized using optical absorption and luminescence measurements. The nature of the metal-ligand bonding and the electronic band structure has been investigated using the absorption spectra. The Judd-Oflet (JO) intensity parameters (Ω2, Ω4 and Ω6) were evaluated and the experimental oscillator strength values were also calculated. The luminescence spectra exhibit two visible bands 4F9/2→6H15/2 (Blue) and 4F9/2→6H13/2 (Yellow) respectively. The radiative properties such as peak wavelength and effective band width for the emission transition were calculated. The yellow to blue (Y/B) ratios and color coordinates have been calculated from the luminescence spectra and the utility of the present glasses for white LED applications.

  4. Investigations on the spectroscopic properties of Dy3 + ions doped Zinc calcium tellurofluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Arunkumar, S.; Annapoorani, K.; Marimuthu, K.

    2018-03-01

    A new series of Dy3 + doped (30-x)B2O3 + 30TeO2 + 20CaCO3 + 10ZnO + 10ZnF2 + xDy2O3 (x = 0.01, 0.1, 0.5, 1, 2 and 3 in wt%) Zinc calcium tellurofluoroborate glasses were prepared and their structural, luminescence and excited state dynamics have been studied and reported. The structural properties have been characterized through XRD and FTIR studies to confirm the amorphous nature and to explore the presence of fundamental stretching vibrations. The bonding parameters (δ and β), optical band gap, Urbach's energy, oscillator strengths and Judd-Ofelt (JO) intensity parameters were calculated from the absorption spectra. The JO intensity parameters and the Y/B intensity ratio values have been used to explore the nature of the bonding and asymmetry around the Dy-ligand field environment. The luminescence properties of the present Dy3 + doped glasses have been analyzed through luminescence excited state dynamics and radiative properties such as transition probability (A), stimulated emission cross-section (σPE) branching ratio (β) and radiative lifetime (τR) values. The combination of dominant blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emissions generates white light emission in the CIE chromaticity diagram thus suggests that the present Dy3 + doped glasses are suitable for white light applications. The lifetime of the 4F9/2 excited state is found to decrease with the increase in Dy3 + ion content and the concentration quenching of the Dy3 + ions emission could be ascribed due to the resonant energy transfer and cross-relaxation processes. The non-exponential behavior of the decay curves has been analyzed with Inokuti-Hirayama model and the interaction between the Dy3 + ions is of electric dipole-dipole in nature.

  5. Spectroscopic investigation of zinc tellurite glasses doped with Yb(3+) and Er(3+) ions.

    PubMed

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-05

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80-x-y) TeO2+(0.20) ZnO+xEr2O3+yYb2O3 (x=0, y=0; x=0.004, y=0; x=0, y=0.05 and x=0.004, y=0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er(3+) glasses as erbium doped fiber amplifiers at 1.55μm in infrared emission region. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Feasibility and Functional Performance of Ternary Borate-Filled Hydrophilic Bone Cements: Targeting Therapeutic Release Thresholds for Strontium

    PubMed Central

    MacDonald, Kathleen; Price, Richard B.; Boyd, Daniel

    2017-01-01

    We examine the feasibility and functionality of hydrophilic modifications to a borate glass reinforced resin composite; with the objective of meeting and maintaining therapeutic thresholds for Sr release over time, as a potential method of incorporating antiosteoporotic therapy into a vertebroplasty material. Fifteen composites were formulated with the hydrophilic agent hydroxyl ethyl methacrylate (HEMA, 15, 22.5, 30, 37.5 or 45 wt% of resin phase) and filled with a borate glass (55, 60 or 65 wt% of total cement) with known Sr release characteristics. Cements were examined with respect to degree of cure, water sorption, Sr release, and biaxial flexural strength over 60 days of incubation in phosphate buffered saline. While water sorption and glass degradation increased with increasing HEMA content, Sr release peaked with the 30% HEMA compositions, scanning electron microscope (SEM) imaging confirmed the surface precipitation of a Sr phosphate compound. Biaxial flexural strengths ranged between 16 and 44 MPa, decreasing with increased HEMA content. Degree of cure increased with HEMA content (42 to 81%), while no significant effect was seen on setting times (209 to 263 s). High HEMA content may provide a method of increasing monomer conversion without effect on setting reaction, providing sustained mechanical strength over 60 days. PMID:28708123

  7. The Feasibility and Functional Performance of Ternary Borate-Filled Hydrophilic Bone Cements: Targeting Therapeutic Release Thresholds for Strontium.

    PubMed

    MacDonald, Kathleen; Price, Richard B; Boyd, Daniel

    2017-07-14

    We examine the feasibility and functionality of hydrophilic modifications to a borate glass reinforced resin composite; with the objective of meeting and maintaining therapeutic thresholds for Sr release over time, as a potential method of incorporating antiosteoporotic therapy into a vertebroplasty material. Fifteen composites were formulated with the hydrophilic agent hydroxyl ethyl methacrylate (HEMA, 15, 22.5, 30, 37.5 or 45 wt% of resin phase) and filled with a borate glass (55, 60 or 65 wt% of total cement) with known Sr release characteristics. Cements were examined with respect to degree of cure, water sorption, Sr release, and biaxial flexural strength over 60 days of incubation in phosphate buffered saline. While water sorption and glass degradation increased with increasing HEMA content, Sr release peaked with the 30% HEMA compositions, scanning electron microscope (SEM) imaging confirmed the surface precipitation of a Sr phosphate compound. Biaxial flexural strengths ranged between 16 and 44 MPa, decreasing with increased HEMA content. Degree of cure increased with HEMA content (42 to 81%), while no significant effect was seen on setting times (209 to 263 s). High HEMA content may provide a method of increasing monomer conversion without effect on setting reaction, providing sustained mechanical strength over 60 days.

  8. Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhou, Yaxun; Cheng, Pan; Zhou, Zizhong; Li, Jun; Jin, Wei

    2016-10-01

    Tm3+/Yb3+ co-doped tellurite glasses with different silver nanoparticles (Ag NPs) concentrations were prepared using the conventional melt-quenching technique and characterized by the UV/Vis/NIR absorption spectra, 1.85 μm band fluorescence emission spectra, transmission electron microscopy (TEM) images, differential scanning calorimeter (DSC) curves and X-ray diffraction (XRD) patterns to investigate the effects of Ag NPs on the 1.85 μm band spectroscopic properties of Tm3+ ions, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the 1.85 μm band fluorescence emission of Tm3+ ions enhances significantly in the presence of Ag NPs with average diameter of ∼8 nm and local surface Plasmon resonance (LSPR) band of ∼590 nm, which is mainly attributed to the increased local electric field induced by Ag NPs at the proximity of doped rare-earth ions on the basis of energy transfer from Yb3+ to Tm3+ ions. An improvement by about 110% of fluorescence intensity is observed in the Tm3+/Yb3+ co-doped tellurite glass containing 0.5 mol% amount of AgNO3 while the prepared glass samples possess good thermal stability and amorphous structural nature. Meanwhile, the Judd-Ofelt intensity parameters Ωt (t = 2,4,6), spontaneous radiative transition probabilities, fluorescence branching ratios and radiative lifetimes of relevant excited levels of Tm3+ ions were determined based on the Judd-Ofelt theory to reveal the enhanced effects of Ag NPs on the 1.85 μm band spectroscopic properties, and the energy transfer micro-parameters and phonon contribution ratios were calculated based on the non-resonant energy transfer theory to elucidate the energy transfer mechanism between Yb3+ and Tm3+ ions. The present results indicate that the prepared Tm3+/Yb3+ co-doped tellurite glass with an appropriate amount of Ag NPs is a promising lasing media applied for 1.85 μm band solid-state lasers and amplifiers.

  9. Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers.

    PubMed

    Jiang, Chun

    2009-04-13

    The energy level, transition configuration and mathematical model of Ni(2+)-doped glass-ceramics amplifiers are presented for the first time, to the best of one's knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25-1.65 microm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.

  10. Laser and gain parameters at 2.7 μm of Er 3+-doped oxyfluoride transparent glass-ceramics

    NASA Astrophysics Data System (ADS)

    Tikhomirov, V. K.; Méndez-Ramos, J.; Rodríguez, V. D.; Furniss, D.; Seddon, A. B.

    2006-07-01

    The room temperature emission spectrum at about 2.7 μm corresponding to the laser transition 4I 11/2 → 4I 13/2 in Er 3+-doped nano-scaled transparent oxyfluoride glass-ceramic has been measured and stimulated emission cross-section for the transition has been calculated. The intensity of the transition has been found to be 40 times stronger and lifetime 50 times longer in the glass-ceramics compared to the precursor glass, which we show to be due to a change of frequency of the phonon involved in non-radiative de-excitation of the 4I 11/2 level from 900 cm -1 in the precursor glass to 240 cm -1 in the ensuing glass-ceramics. The absorption cross-section for the excited state absorption 4I 13/2 → 4I 11/2 has been calculated based on the experimental reciprocal emission spectrum and wavelength dependence of the gain cross-section for the lasing transition 4I 11/2 → 4I 13/2 vs population inversion has been derived. The lasing/optical amplification gain parameters, such as population inversion, pump saturation intensity and product of emission cross-section and fluorescence lifetime have been obtained at the 2.7 μm wavelength. A noteworthy result is that laser action at 2.7 μm is possible in these Er 3+-doped glass-ceramics, already not taking into account energy transfer or up-conversion processes, related to the 4I 13/2 level, which favour the population inversion.

  11. Spectral analysis of Cu 2+: B 2O 3-ZnO-PbO glasses

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Buddhudu, S.

    2005-11-01

    A new series of heavy metal oxide (PbO) based zinc borate glasses in the chemical composition of (95 - x)B 2O 3-5ZnO- xPbO ( x = 10, 15, 20, 25, 30, 35, 40, 45 and 50 mol%) have been prepared to verify their UV filtering performance. Both direct and indirect optical band gaps ( Eopt) have been evaluated for these glasses. For a reference glass of 45B 2O 3-5ZnO-50PbO, refractive indices at different wavelengths are measured and found the results satisfactorily correlated with the theoretical data upon the computation of Cauchy's constants of A = 1.766029949, B = 159531.024 nm 2 and C = -1.078 × 10 10 nm 4. Measurements concerning X-ray diffraction (XRD), FT-IR, differential scanning colorimeter (DSC) profiles have been carried out for this glass. The FT-IR profile has revealed that the glass has both BO 3 and BO 4 units. From DSC thermogram, glass transition temperature ( Tg), crystallization temperature ( Tc) and melting temperature ( Tm) have been located and from them, other related parameters of the glass have also been calculated. Visible absorption spectra of 45B 2O 3-5ZnO-(50 - x)PbO- xCuO ( x = 0. 1, 0.2, 0.5 and 1.0 mol%) have revealed two absorption bands at around 400 nm ( 2B 1g → 2E g) and 780 nm ( 2B 1g → 2B 2g) of Cu 2+ ions, respectively. Emission bands at 422 and 512 nm are found for the 1 mol% CuO doped glass with excitations at 306 and 332 nm.

  12. Structure and intense UV up-conversion emissions in RE3+-doped sol-gel glass-ceramics containing KYF4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.; del-Castillo, J.

    2013-12-01

    Transparent nano-glass-ceramics containing KYF4 nanocrystals were successfully obtained by the sol-gel method, doped with Eu3+ and co-doped with Yb3+ and Tm3+ ions. Precipitation of cubic KYF4 nanocrystals was confirmed by X-ray diffraction and high-resolution transmission electron microscope images. Excitation and emission spectra let us to discern between ions into KYF4 nanocrystals and those remaining in a glassy environment, supplemented with time-resolved photoluminescence decays, that also clearly reveal differences between local environments. Unusual high-energy up-conversion emissions in the UV range were obtained in Yb3+-Tm3+ co-doped samples, and involved mechanisms were discussed. The intensity of these high-energy emissions was analyzed as a function of Yb3+ concentration, heat treatment temperature of precursor sol-gel glasses and pump power, determining the optimum values for potential optical applications as highly efficient UV up-conversion materials in UV solid-state lasers.

  13. Tm3+-doped lead silicate glass sensitized by Er3+ for efficient 2 μm mid-infrared laser material

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Wang, Ning; Guo, Yanyan; Cai, Muzhi; Tian, Ying; Huang, Feifei; Xu, Shiqing

    2018-06-01

    Er3+/Tm3+ co-doped lead silicate glasses with low phonon (953 cm-1) and good thermal stability were synthesized. The 2 μm mid-infrared emission resulting from the 3F4 → 3H6 transition of Tm3+ sensitized by Er3+ has been observed by 808 nm LD pumping. The optimal luminescence intensity was obtained in the sample with 1Tm2O3/2.5Er2O3 co-doped. Moreover, the energy transfer mechanism from Er3+ to Tm3+ ion was analyzed. Absorption and emission cross section have been calculated. The calculated maximum emission cross section of Tm3+ is 2.689 × 10-21 cm2 at 1863 nm. Microparameters of energy transfer between Er3+ and Tm3+ ions have also been analyzed. These results ensure that the prepared Er3+/Tm3+ co-doped lead silicate glasses have excellent spectroscopic properties in mid-infrared region and provide a beneficial guide for mid-infrared laser material.

  14. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm.

    PubMed

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-03-17

    Ho 3+ /Tm 3+ co-doped 50TeO 2 -25GeO 2 -3WO 3 -5La 2 O 3 -3Nb 2 O 5 -5Li 2 O-9BaF 2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm 3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho 3+ is greatly influenced by the doping concentration ratio of Ho 3+ to Tm 3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10 -21  cm 2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm -1 , which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser.

  15. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm

    NASA Astrophysics Data System (ADS)

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-03-01

    Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10-21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm-1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser.

  16. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm

    PubMed Central

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-01-01

    Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10−21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm−1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser. PMID:28303946

  17. Nb-doped SrTiO3 glass-ceramics as high temperature stable n-type oxide thermoelectrics

    NASA Astrophysics Data System (ADS)

    Lingner, Julian; Jakob, Gerhard; Letz, Martin

    2012-06-01

    Niobium doped SrTiO3 is known for its high potential as an oxide thermoelectric material and is one of the possible candidates for the n-type site in an oxidic thermoelectric module. The high thermal conductivity [1] and the lack of high-temperature stability of the oxygen vacancies [2] limit its properties in the ceramic systems. Glass-ceramics are intrinsic nano-structured systems and provide crystal phases densely embedded in a glass matrix which prevents the material from detoriation at high temperatures. In particular, the glass-matrix prevents an uncontrolled reoxidization as well as an uncontrolled grain growth therefore retaining the nano-structure even at high temperatures. Here, measurements and results of first glass-ceramic systems are presented, which show a low thermal conductivity due to the residue glass phase. Furthermore a stable thermal cycling up to 650 °C is demonstrated.

  18. Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Hu, Lili; Chen, Danping

    2015-04-01

    The stack-and-draw technique was used to fabricate Nd3+-doped silicate and phosphate glass double-clad step-index fibers with a non-circular inner cladding. For the silicate fiber, a maximum output power of 7.7 W was obtained from a 94 cm fiber. An output power of 1.25 W was also realized with a short length fiber of 8 cm, confirming the application potential of this fiber in single frequency lasers and pulsed amplifiers where an efficient rare-earth-doped fiber with short length is desirable. For the phosphate fiber, a maximum output power of 2.78 W was obtained from a single-mode fiber with a core diameter of up to 35 μm.

  19. Structural and electronic properties of copper-doped chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Guzman, David M.; Strachan, Alejandro

    2017-10-01

    Using ab initio molecular dynamics based on density functional theory, we study the atomic and electronic structure, and transport properties of copper-doped germanium-based chalcogenide glasses. These mixed ionic-electronic conductor materials exhibit resistance or threshold switching under external electric field depending on slight variations of chemical composition. Understanding the origin of the transport character is essential for the functionalization of glassy chalcogenides for nanoelectronics applications. To this end, we generated atomic structures for GeX3 and GeX6 (X = S, Se, Te) at different copper concentrations and characterized the atomic origin of electronic states responsible for transport and the tendency of copper clustering as a function of metal concentration. Our results show that copper dissolution energies explain the tendency of copper to agglomerate in telluride glasses, consistent with filamentary conduction. In contrast, copper is less prone to cluster in sulfides and selenides leading to hysteresisless threshold switching where the nature of transport is dominated by electronic midgap defects derived from polar chalcogen bonds and copper atoms. Simulated I -V curves show that at least 35% by weight of copper is required to achieve the current demands of threshold-based devices for memory applications.

  20. Nonlinear optical effects on the surface of acridine yellow-doped lead-tin fluorophosphate glass

    NASA Technical Reports Server (NTRS)

    He, K. X.; Bryant, William; Venkateswarlu, Putcha

    1991-01-01

    The second- and third-order nonlinear optical properties of acridine yellow-doped lead-tin fluorophosphate (LTF) glass have been directly studied by measurement of surface enhanced second harmonic generation and third harmonic generation. The three photon excitation fluorescence is also observed. Based on these results, the large nonlinearities of the acridine LTF system which is a new nonlinear optical material are experimentally demonstrated.

  1. Comparison of Borate Bioactive Glass and Calcium Sulfate as Implants for the Local Delivery of Teicoplanin in the Treatment of Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis in a Rabbit Model

    PubMed Central

    Jia, Wei-Tao; Fu, Qiang; Huang, Wen-Hai

    2015-01-01

    There is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TEC in vitro and to cure methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC. PMID:26416858

  2. Comparison of Borate Bioactive Glass and Calcium Sulfate as Implants for the Local Delivery of Teicoplanin in the Treatment of Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis in a Rabbit Model.

    PubMed

    Jia, Wei-Tao; Fu, Qiang; Huang, Wen-Hai; Zhang, Chang-Qing; Rahaman, Mohamed N

    2015-12-01

    There is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TEC in vitro and to cure methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Structural and optical studies of Er3+-doped alkali/alkaline oxide containing zinc boro-aluminosilicate glasses for 1.5 μm optical amplifier applications

    NASA Astrophysics Data System (ADS)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Lira, A.; Caldiño, U.; Meza-Rocha, A. N.; Falcony, C.; Kityk, I. V.; Taufiq-Yap, Y. H.; Halimah, M. K.; Mahdi, M. A.

    2017-07-01

    In the present work, we report on the optical spectral properties of Er3+-doped zinc boro-aluminosilicate glasses with an addition of 10 mol % alkali/alkaline modifier regarding the fabrication of new optical materials for optical amplifiers. A total of 10 glasses were prepared using melt-quenching technique with the compositions (40-x)B2O3 - 10SiO2 - 10Al2O3 - 30ZnO - 10Li2O - xEr2O3 and (40-x)B2O3 - 10SiO2 - 10Al2O3 - 30ZnO - 10MgO - xEr2O3 (x = 0.1, 0.25, 0.5, 1.0, and 2.0 mol %). We confirm the amorphous-like structure for all the prepared glasses using X-ray diffraction (XRD). To study the functional groups of the glass composition after the melt-quenching process, Raman spectroscopy was used, and various structural units such as triangular and tetrahedral-borates (BO3 and BO4) have been identified. All the samples were characterized using optical absorption for UV, visible and NIR regions. Judd-Ofelt (JO) intensity parameters (Ωλ, λ = 2, 4 and 6) were calculated from the optical absorption spectra of two glasses LiEr 2.0 and MgEr 2.0 (doped with 2 mol % of Er3+). JO parameters for LiEr 2.0 and MgEr 2.0 glasses follow the trend as Ω6>Ω2>Ω4. Using Judd-Ofelt intensity parameters, we obtained radiative probability A (S-1), branching ratios (β), radiative decay lifetimes τrad (μs) of emissions from excited Er+3 ions in LiEr 2.0 and MgEr 2.0 to all lower levels. Quantum efficiency (η) of 4I13/2 and 4S3/2 levels for LiEr 2.0 and MgEr 2.0 with and without 4D7/2 level was calculated using the radiative decay lifetimes τrad. (μs) and measured lifetimes τexp. (μs). We measured the visible photoluminescence under 377 nm excitation for both LiEr and MgEr glass series within the region 390-580 nm. Three bands were observed in the visible region at 407 nm, 530 nm, and 554 nm, as a result of 2H9/2 → 4I15/2, 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions, respectively. Decay lifetimes for emissions at 407 nm, 530 nm, and 554 nm were measured and they show

  4. Glass Former Effects on Photoluminescence and Optical Properties of Some Heavy Metal Oxide Glasses Doped with Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; Abo-Naf, S. M.; Zayed, H. A.; Hassan, N. S.

    2017-03-01

    Heavy metal oxide (PbO and Bi2O3) glasses doped with transition metal (TM) ions (TiO2, V2O5, Cr2O3, and MnO2) and having low content of common glass formers (B2O3, SiO2, or P2O5) were prepared by the conventional melt annealing method. Ultraviolet, visible absorption, and photoluminescence properties of these glasses were measured, and the data were employed to investigate the prepared glassy samples. The optical absorption spectra of TiO2 and V2O5 exhibited three bands centered at about 240, 305, and 380 nm, followed by a broad asymmetrical near-visible band centered at 425-432 nm, while Cr2O3 and MnO2 exhibited an extended visible peak at 517-548 nm. Results showed that the luminescence intensity changed with different transition metal oxides. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (ΔE) were calculated. The calculated values of the optical energy gap were found to be dependent on the glass composition. The changing values of optical band gap and band tail can be related to the structural changes that are taking place in the glass samples. The variations of the luminescence intensity, values of optical band gap, band tail, and refractive index gave an indication of the potential use of the prepared glasses to design novel optical functional materials with higher optical performance.

  5. Organic solution-processible electroluminescent molecular glasses for non-doped standard red OLEDs with electrically stable chromaticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Xiaoman; Zuo, Weiwei; Liu, Yingliang, E-mail: liuylxn@sohu.com

    Highlights: • The D–A–D electroluminescent molecular glasses are synthesized. • Non-doped red electroluminescent film is fabricated by spin-coating. • Red OLED shows stable wavelength, luminous efficiency and chromaticity. • CIE1931 coordinate is in accord with standard red light in PAL system. - Abstract: Organic light-emitting molecular glasses (OEMGs) are synthesized through the introduction of nonplanar donor and branched aliphatic chain into electroluminescent emitters. The target OEMGs are characterized by {sup 1}H NMR, {sup 13}C NMR, IR, UV–vis and fluorescent spectra as well as elemental analysis, TG and DSC. The results indicated that the optical, electrochemical and electroluminescent properties of OEMGsmore » are adjusted successfully by the replacement of electron-donating group. The non-doped OLED device with a standard red electroluminescent emission is achieved by spin-coating the THF solution of OEMG with a triphenylamine moiety. This non-doped red OLED device takes on an electrically stable electroluminescent performance, including the stable maximum electroluminescent wavelength of 640 nm, the stable luminous efficiency of 2.4 cd/A and the stable CIE1931 coordinate of (x, y) = (0.64, 0.35), which is basically in accord with the CIE1931 coordinate (x, y) = (0.64, 0.33) of standard red light in PAL system.« less

  6. Mid-infrared emission and Raman spectra analysis of Er(3+)-doped oxyfluorotellurite glasses.

    PubMed

    Chen, Fangze; Xu, Shaoqiong; Wei, Tao; Wang, Fengchao; Cai, Muzhi; Tian, Ying; Xu, Shiqing

    2015-04-10

    This paper reports on the spectroscopic and structural properties in Er(3+)-doped oxyfluorotellurite glasses. The compositional variation accounts for the evolutions of Raman spectra, Judd-Ofelt parameters, radiative properties, and fluorescent emission. It is found that, when maximum phonon energy changes slightly, phonon density plays a crucial role in quenching the 2.7 μm emission generated by the Er(3+):(4)I11/2→(4)I13/2 transition. The comparative low phonon density contributes strong 2.7 μm emission intensity. The high branching ratio (18.63%) and large emission cross section (0.95×10(-20)  cm(2)) demonstrate that oxyfluorotellurite glass contained with 50 mol.% TeO2 has potential application in the mid-infrared region laser.

  7. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    NASA Astrophysics Data System (ADS)

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra

    2016-09-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering.

  8. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    PubMed Central

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra

    2016-01-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering. PMID:27604654

  9. 40 CFR 721.10631 - Mixed metal borate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal borate (generic). 721... Substances § 721.10631 Mixed metal borate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal borate (PMN P-12-64...

  10. 40 CFR 721.10631 - Mixed metal borate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal borate (generic). 721... Substances § 721.10631 Mixed metal borate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal borate (PMN P-12-64...

  11. Broadband ∼3 μm mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Lingling; Wang, Ning; Dou, Aoju; Cai, Yangjian; Tian, Ying; Huang, Feifei; Xu, Shiqing; Zhang, Junjie

    2018-01-01

    The Dy3+/Yb3+ co-doped germanate glasses with good thermal stability have been prepared by the conventional melt quenching method. The J-O intensity parameters and radiative properties such as spontaneous transition probilities (Arad), fluorescence branching ratios (β) and radiative lifetimes (τrad) were investigated according to the absorption spectrum based on Judd-Ofelt theory. An intense emission around ∼3 μm with the FWHM reaching to 322 nm was obtained in present glasses excited by 980 nm LD. The high spontaneous transition probability (63.94 s-1), large emission cross section (6.0 × 10-21 cm2) and superior gain performance corresponding to the Dy3+: 6H13/2 → 6H15/2 transition were obtained. Moreover, the energy transfer mechanism was analyzed qualitatively, and it was found that the energy transfer from Yb3+: 2F5/2 to Dy3+: 6H5/2 level could be quite efficient. Hence, the results indicated that the prepared Dy3+/Yb3+ co-doped germanate glass could be a potential candidate for ∼3 μm mid-infrared solid state lasers.

  12. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications.

    PubMed

    Krishnaiah, Kummara Venkata; de Lima Filho, Elton Soares; Ledemi, Yannick; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-02-26

    Oxyfluoride glasses doped with 2, 5, 8, 12, 16 and 20 mol% of ytterbium (Yb(3+)) ions have been prepared by the conventional melt-quenching technique. Their optical, thermal and thermo-mechanical properties were characterized. Luminescence intensity at 1020 nm under laser excitation at 920 nm decreases with increasing Yb(3+) concentration, suggesting a decrease in the photoluminescence quantum yield (PLQY). The PLQY of the samples was measured with an integrating sphere using an absolute method. The highest PLQY was found to be 0.99(11) for the 2 mol% Yb(3+): glass and decreases with increasing Yb(3+) concentration. The mean fluorescence wavelength and background absorption of the samples were also evaluated. Upconversion luminescence under 975 nm laser excitation was observed and attributed to the presence of Tm(3+) and Er(3+) ions which exist as impurity traces with YbF3 starting powder. Decay curves for the Yb(3+): (2)F5/2 → (2)F7/2 transition exhibit single exponential behavior for all the samples, although lifetime decrease was observed for the excited level of Yb(3+) with increasing Yb(3+) concentration. Also observed are an increase in the PLQY and a slight decrease in lifetime with increasing the pump power. Finally, the potential of these oxyfluoride glasses with high PLQY and low background absorption for laser cooling applications is discussed.

  13. Blue and white light emission in Tm3+ and Tm3+/Dy3+ doped zinc phosphate glasses upon UV light excitation

    NASA Astrophysics Data System (ADS)

    Meza-Rocha, A. N.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2016-08-01

    A spectroscopic study based on photoluminescence spectra and decay time profiles in Tm3+ and Tm3+/Dy3+ doped Zn(PO3)2 glasses is reported. The Tm3+ doped Zn(PO3)2 glass, upon 357 nm excitation, exhibits blue emission with CIE1931 chromaticity coordinates, x = 0.157 and y = 0.030, and color purity of about 96%. Under excitations at 348, 352 and 363 nm, which match with the emissions of AlGaN and GaN based LEDs, the Tm3+/Dy3+ co-doped Zn(PO3)2 glass displays natural white, bluish white and cool white overall emissions, with correlated color temperature values of 4523, 10700 and 7788 K, respectively, depending strongly on the excitation wavelength. The shortening of the Dy3+ emission decay time in presence of Tm3+ suggests that Dy3+→Tm3+ non-radiative energy transfer occurs. By using the Inokuti-Hirayama model, it is inferred that an electric quadrupole-quadrupole interaction might be the dominant mechanism involved in the energy transfer. The efficiency and probability of this energy transfer are 0.12 and 126.70 s-1, respectively.

  14. 1 kW peak power passively Q-switched Nd(3+)-doped glass integrated waveguide laser.

    PubMed

    Charlet, B; Bastard, L; Broquin, J E

    2011-06-01

    Embedded optical sensors always require more compact, stable, and powerful laser sources. In this Letter, we present a fully integrated passively Q-switched laser, which has been realized by a Ag(+)/Na(+) ion exchange on a Nd(3+)-doped phosphate glass. A BDN-doped cellulose acetate thick film is deposited on the waveguide, acting as an upper cladding and providing a distributed saturable absorption. At λ=1054 nm, the device emits pulses of 1.3 ns FWHM with a repetition rate of 28 kHz. These performances, coupled with the 1 kW peak power, are promising for applications such as supercontinuum generation. © 2011 Optical Society of America

  15. Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates

    NASA Astrophysics Data System (ADS)

    Putri, Nur Ajrina; Fauzia, Vivi; Iwan, S.; Roza, Liszulfah; Umar, Akrajas Ali; Budi, Setia

    2018-05-01

    Mn-doped ZnO nanorods were synthesized on glass substrates via a two-steps process of ultrasonic spray pyrolysis and hydrothermal methods with four different concentrations Mn-doping (0, 1, 3, and 7 mol%). Introduction of Mn into ZnO is known could enhance the photocatalytic activity owing to the increase in the defect sites that effectively suppress the recombination of free electrons and holes. In this study, results show that Mn-doping has effectively modified the nucleations and crystal growth of ZnO, as evidenced by the increasing in the diameter, height, and the number of nanorods per unit area, besides slightly reduced the band gap and increased the oxygen vacancy concentrations in the ZnO lattice. This condition has successfully multiplied the photocatalytic performance of the ZnO nanorods in the degradation of methylene blue (MB) compared to the undoped-ZnO sample where in the typical process the MB can be degraded approximately 77% within only 35 min under a UV light irradiation.

  16. NIR emission studies and dielectric properties of Er(3+)-doped multicomponent tellurite glasses.

    PubMed

    Sajna, M S; Thomas, Sunil; Jayakrishnan, C; Joseph, Cyriac; Biju, P R; Unnikrishnan, N V

    2016-05-15

    Multicomponent tellurite glasses containing altered concentrations of Er2O3 (ranging from 0 to 1 mol%) were prepared by the standard melt quenching technique. Investigations through energy dispersive X-ray spectroscopy (EDS), Raman scattering spectroscopy, Fourier transform infrared (FTIR) spectroscopy, near-infrared (NIR) emission studies and dielectric measurement techniques were done to probe their compositional, structural, spectroscopic and dielectric characteristics. The broad emission together with the high values of the effective linewidth (~63 nm), stimulated emission cross-section (9.67 × 10(-21) cm(2)) and lifetime (2.56 ms) of (4)I13/2 level for 0.5 mol% of Er(3+) makes these glasses attractive for broadband amplifiers. From the measured capacitance and dissipation factor, the relative permittivity, dielectric loss and the conductivity were computed; which furnish the dielectric nature of the multicomponent tellurite glasses that depend on the applied frequency. Assuming the ideal Debye behavior as substantiated by Cole-Cole plot, an examination of the real and imaginary parts of impedance was performed. The power-law and Cole-Cole parameters were resolved for all the glass samples. From the assessment of the emission analysis and dielectric properties of the glass samples, it was obvious that the Er(3+) ion concentration had played a vital role in tuning the optical and dielectric properties and the 0.5 mol% of Er(3+) -doped glass was confirmed as the optimum composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses.

    PubMed

    Yang, Hucheng; Lakshminarayana, G; Zhou, Shifeng; Teng, Yu; Qiu, Jianrong

    2008-04-28

    Aluminum-lanthanum-silicate glasses with different Eu doping concentration have been synthesized by conventional melt-quenching method at 1680 degrees C in reductive atmosphere. Under 395nm excitation, samples with low Eu doping concentration show mainly the cyan broad emission at 460nm due to 4f(6)5d(1)-4f(7) transition of Eu(2+); and the samples with higher Eu doping concentration show mainly some narrow emissions with maximum at 616nm due to (5)D(0)-(7)F(j) (J=0, 1, 2, 3, 4) transitions of Eu(3+). Cyan-white-red tunable luminescence under 395nm excitation has been obtained by changing the Eu doping concentration.

  18. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  19. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN

  20. Eu-doped ZnO-HfO2 hybrid nanocrystal-embedded low-loss glass-ceramic waveguides

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhabrata; N, Shivakiran Bhaktha B.

    2016-03-01

    We report on the sol-gel fabrication, using a dip-coating technique, of low-loss Eu-doped 70SiO2 -(30-x) HfO2-xZnO (x = 2, 5, 7 and 10 mol%) ternary glass-ceramic planar waveguides. Transmission electron microscopy and grazing incident x-ray diffraction experiments confirm the controlled growth of hybrid nanocrystals with an average size of 3 nm-25 nm, composed of ZnO encapsulated by a thin layer of nanocrystalline HfO2, with an increase of ZnO concentration from x = 2 mol% to 10 mol% in the SiO2-HfO2 composite matrix. The effect of crystallization on the local environment of Eu ions, doped in the ZnO-HfO2 hybrid nanocrystal-embedded glass-ceramic matrix, is studied using photoluminescence spectra, wherein an intense mixed-valence state (divalent as well as trivalent) emission of Eu ions is observed. The existence of Eu2+ and Eu3+ in the SiO2-HfO2-ZnO ternary matrix is confirmed by x-ray photoelectron spectroscopy. Importantly, the Eu{}2+,3+-doped ternary waveguides exhibit low propagation losses (0.3 ± 0.2 dB cm-1 at 632.8 nm) and optical transparency in the visible region of the electromagnetic spectrum, which makes ZnO-HfO2 nanocrystal-embedded SiO2-HfO2-ZnO waveguides a viable candidate for the development of on-chip, active, integrated optical devices.

  1. Transmission performance analysis of WDM systems based on bismuth-doped phosphate glass fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Ji, Jianhua; Huang, Qian; Wang, Ke; Xu, Ming; Jiang, Chun

    2018-01-01

    In this paper transmission performance of Allwave fiber WDM systems cascaded by bismuth-doped phosphate glass fiber amplifiers pumped by 808 nm lasers is analyzed for the first time, to the best of our knowledge. The rate and power propagation equations of a three-level system are used to model the signal amplification and noise figure in the doped fibers. The simulation results show that the channels in the 1460-1470 nm wavelength region in 32 × 40 Gbit/s WDM system with 10 nm channel space can reach a BER less than 1 × 10-9 with the transmission distance more than 600 km, but when the channel space is reduced to 1 nm, the performance of the system is degraded greatly.

  2. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasileva, A.A., E-mail: anvsilv@gmail.com; Nazarov, I.A.; Olshin, P.K.

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. Themore » process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.« less

  3. The Effect of Remelting on the Physical Properties of Borotellurite Glass Doped with Manganese

    PubMed Central

    Hashim, Syed Putra Hashim Syed; Sidek, Haji Abdul Aziz; Halimah, Mohamed Kamari; Matori, Khamirul Amin; Yusof, Wan Mohamad Daud Wan; Zaid, Mohd Hafiz Mohd

    2013-01-01

    A systematic set of borotellurite glasses doped with manganese (1–x) [(B2O3)0.3(TeO2)0.7]-xMnO, with x = 0.1, 0.2, 0.3 and 0.4 mol%, were successfully synthesized by using a conventional melt and quench-casting technique. In this study, the remelting effect of the glass samples on their microstructure was investigated through density measurement and FT-IR spectra and evaluated by XRD techniques. Initial experimental results from XRD evaluation show that there are two distinct phases of glassy and crystallite microstructure due to the existence of peaks in the sample. The different physical behaviors of the studied glasses were closely related to the concentration of manganese in each phase. FTIR spectra revealed that the addition of manganese oxide contributes the transformation of TeO4 trigonal bipyramids with bridging oxygen (BO) to TeO3 trigonal pyramids with non-bridging oxygen (NBO). PMID:23296276

  4. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications

    PubMed Central

    Krishnaiah, Kummara Venkata; Soares de Lima Filho, Elton; Ledemi, Yannick; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-01-01

    Oxyfluoride glasses doped with 2, 5, 8, 12, 16 and 20 mol% of ytterbium (Yb3+) ions have been prepared by the conventional melt-quenching technique. Their optical, thermal and thermo-mechanical properties were characterized. Luminescence intensity at 1020 nm under laser excitation at 920 nm decreases with increasing Yb3+ concentration, suggesting a decrease in the photoluminescence quantum yield (PLQY). The PLQY of the samples was measured with an integrating sphere using an absolute method. The highest PLQY was found to be 0.99(11) for the 2 mol% Yb3+: glass and decreases with increasing Yb3+ concentration. The mean fluorescence wavelength and background absorption of the samples were also evaluated. Upconversion luminescence under 975 nm laser excitation was observed and attributed to the presence of Tm3+ and Er3+ ions which exist as impurity traces with YbF3 starting powder. Decay curves for the Yb3+: 2F5/2 → 2F7/2 transition exhibit single exponential behavior for all the samples, although lifetime decrease was observed for the excited level of Yb3+ with increasing Yb3+ concentration. Also observed are an increase in the PLQY and a slight decrease in lifetime with increasing the pump power. Finally, the potential of these oxyfluoride glasses with high PLQY and low background absorption for laser cooling applications is discussed. PMID:26915817

  5. Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics tuneable up-conversion phosphor

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Rodriguez, V. D.; Tikhomirov, V. K.; Del-Castillo, J.; Yanes, A. C.

    2008-08-01

    Transparent Yb3+-Er3+-Tm3+ co-doped nano-glass-ceramics have been prepared, 32(SiO{2}) 9(AlO{1.5}) 31.5(CdF{2}) 18.5(PbF{2}) 5.5(ZnF{2}): 3.5(Yb-Er-TmF{3}) mol%, where the co-dopants partition mostly to the fluoride PbF{2}-based nano-crystals. A comparative study of the up-conversion luminescence in nano-glass-ceramics and its precursor glass indicates that these materials can be used as blue/green/red tuneable up-conversion phosphor, in particular for white light generation. A ratio between blue, green and red emission bands of the Tm3+ and Er3+ can be widely varied with nano-ceramming of the precursor glass and with changing a pump power of luminescence. The change in the ratio between the blue, green and red emission bands is explained to be due to substantial lowering phonon energy and shortening of inter-dopant distances with nano-ceramming of the precursor glass and due to change in the ratio of 2- and 3-photon up-conversion processes with pump power.

  6. Evidence of phase transition in Nd3+ doped phosphate glass determined by thermal lens spectrometry.

    PubMed

    Andrade, Acácio A; Lourenço, Sidney A; Pilla, Viviane; Silva, Anielle C Almeida; Dantas, Noelio O

    2014-01-28

    Thermal lens spectroscopy (TLS), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) techniques were applied to the thermo-optical property analysis of a new phosphate glass matrix PANK with nominal composition 40P2O5·20Al2O3·35Na2O·5K2O (mol%), doped with different Nd(3+) compositions. This glass system, synthesized by the fusion protocol, presents high transparency from UV to the near infrared, excellent thermo-optical properties at room temperature and high fluorescence quantum efficiency. Thermal lens phase shift parameters, thermal diffusivity and the DSC signal present pronounced changes at about 61 °C for the PANK glass system. This anomalous behavior was associated with a phase transition in the nanostructured glass materials. The FTIR signal confirms the presence of isolated PO4 tetrahedron groups connected to different cations in PANK glass. As a main result, our experimental data suggest that these tetrahedron groups present a structural phase transition, paraelectric-ferroelectric phase transition, similar to that in potassium dihydrogen phosphate, KH2PO4, nanocrystals and which TLS technique can be used as a sensitive method to investigate changes in the structural level of nanostructured materials.

  7. Spectroscopic studies of Dy3 + ion doped tellurite glasses for solid state lasers and white LEDs

    NASA Astrophysics Data System (ADS)

    Himamaheswara Rao, V.; Syam Prasad, P.; Mohan Babu, M.; Venkateswara Rao, P.; Satyanarayana, T.; Luís F., Santos; Veeraiah, N.

    2018-01-01

    Rare earth ion Dy3 +-doped tellurite glasses were synthesised in the system of (75-x)TeO2-15Sb2O3-10WO3-xDy2O3 (TSWD glasses). XRD and FTIR characterizations were used to find the crystalline and structural properties. The intensities of the electronic transitions and the ligand environment around the Dy3 + ion were determined using the Judd-Ofelt (J-O) theory on the absorption spectra of the glasses. The measured luminescence spectra exhibit intense emissions at 574 and 484 nm along with less intense emissions around 662 and 751 nm. Various radiative properties of the 4F9/2 excited level of Dy3 + ion were calculated for the glasses. Decay profiles were measured to find the life times and quantum efficiencies. Yellow to blue intensity ratio (Y/B), CIE chromaticity coordinates and correlated color temperature (CCT) values are calculated using the emission spectra to evaluate the emitted light. The obtained results suggest the utility of the glasses for potential yellow laser and white LED's applications.

  8. 1887 nm lasing in Tm3+-doped TeO2-BaF2-Y2O3 glass microstructured fibers

    NASA Astrophysics Data System (ADS)

    Wang, Shunbin; Yao, Chuanfei; Jia, Zhixu; Qin, Guanshi; Qin, Weiping

    2017-04-01

    In this paper, we demonstrate ∼2 μm lasing in Tm3+-doped fluorotellurite microstructured fibers. The Tm3+-doped fibers are based on TeO2-BaF2-Y2O3 glasses and fabricated by using a rod-in-tube method. Under the pump of a 1570 nm Er3+-doped fiber laser, lasing at 1887 nm is obtained in a ∼42.5 cm long Tm3+-doped fiber with a threshold pump power of 94 mW. As the pump power increases to 780 mW, the obtained maximum unsaturated power reaches up to ∼408 mW with a slop efficiency of ∼58.1%. This result indicates that the Tm3+-doped fluorotellurite fibers are promising gain media for ∼2 μm fiber lasers.

  9. Effect of Partial Crystallization on the Structural and Luminescence Properties of Er3+-Doped Phosphate Glasses

    PubMed Central

    Lopez-Iscoa, Pablo; Salminen, Turkka; Hakkarainen, Teemu; Petit, Laeticia; Janner, Davide; Boetti, Nadia G.; Lastusaari, Mika; Pugliese, Diego; Paturi, Petriina; Milanese, Daniel

    2017-01-01

    Er-doped phosphate glass ceramics were fabricated by melt-quenching technique followed by a heat treatment. The effect of the crystallization on the structural and luminescence properties of phosphate glasses containing Al2O3, TiO2, and ZnO was investigated. The morphological and structural properties of the glass ceramics were characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), and micro-Raman spectroscopy. Additionally, the luminescence spectra and the lifetime values were measured in order to study the influence of the crystallization on the spectroscopic properties of the glasses. The volume ratio between the crystal and the glassy phases increased along with the duration of the heat treatment. The crystallization of the glass ceramics was confirmed by the presence of sharp peaks in the XRD patterns and different crystal phases were identified depending on the glass composition. Sr(PO3)2 crystals were found to precipitate in all the investigated glasses. As evidenced by the spectroscopic properties, the site of the Er3+ ions was not strongly affected by the heat treatment except for the fully crystallized glass ceramic which does not contain Al2O3, TiO2, and ZnO. An increase of the lifetime was also observed after the heat treatment of this glass. Therefore, we suspect that the Er3+ ions are incorporated in the precipitated crystals only in this glass ceramic. PMID:28772833

  10. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers

    PubMed Central

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-01-01

    A series of Er3+/Tm3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er3+/Tm3+ co-doped fibers mainly yield 1390–1470, 1850–1980, and 2625–2750 nm emissions when excited at 793 nm, and 1480–1580, 1800–1980, and 2625–2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410–1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er3+/Tm3+ co-doped fiber amplifier working in the S + C communication band. PMID:28772846

  11. Spectral Properties of Er3+/Tm3+ Co-Doped ZBLAN Glasses and Fibers.

    PubMed

    Liao, Xili; Jiang, Xiaobo; Yang, Qiuhong; Wang, Longfei; Chen, Danping

    2017-05-03

    A series of Er 3+ /Tm 3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong self-absorption effect, Er 3+ /Tm 3+ co-doped fibers mainly yield 1390-1470, 1850-1980, and 2625-2750 nm emissions when excited at 793 nm, and 1480-1580, 1800-1980, and 2625-2750 nm emissions when excited at 980 nm. Further, a broadband emission in the range of 1410-1580 nm covering the S + C communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results suggest that the dual-pumping scheme would be more effective and important for an Er 3+ /Tm 3+ co-doped fiber amplifier working in the S + C communication band.

  12. Optical and luminescence properties of Dy3+ doped sodium silicate glass

    NASA Astrophysics Data System (ADS)

    Srisittipokakun, N.; Kaewkhao, J.

    2017-07-01

    The aim of the present work is to study the optical and luminescence properties of Dy2O3 doped Na2O-BaO-Bi2O3-SiO2 glasses. The Dy3+ ion is chosen as dopant because it emits three visible bands, blue (470-485 nm; 4F9/2→6H15/2), yellow (570-580 nm; 4F9/2→6H13/2) and red (640-655 nm; 4F9/2→6H11/2) luminescence and finds its applications in the fields of laser, white LEDs, telecommunication technology and display devices. NaBaBiSiDy glasses with the compositions of (30-x)SiO2: 10Bi2O3: 30Na2O: 30BaO: xDy2O3 where x=0.0, 0.1, 0.5, 1.0, 1.5 and 2.0 mol% were prepared by melt-quenching technique and characterized by using density, optical absorption photoluminescence (PL) and decay rate measurements as function of different concentrations. The density (ρ), molar volume (VM) and refractive index obtained were found to increase with increase in the concentration of Dy2O3 in the glass matrix. The chromaticity coordinates were calculated from emission spectra and analyzed with CIE color diagram and appear in the white light region under ultraviolet excitation.

  13. Enhanced 1.32 μm fluorescence and broadband amplifying for O-band optical amplifier in Nd3+-doped tellurite glass

    NASA Astrophysics Data System (ADS)

    Zhou, Zi-zhong; Zhou, Ming-han; Su, Xiu-e.; Cheng, Pan; Zhou, Ya-xun

    2017-01-01

    WO3 oxides with relatively high phonon energy and different concentrations were introduced into the Nd3+-doped tellurite-based glasses of TeO2-ZnO-Na2O to improve the 1.32 μm band fluorescence emission. The absorption spectra, Raman spectra, 1.32 μm band fluorescence spectra and differential scanning calorimeter (DSC) curves were measured, together with the Judd-Ofelt intensity parameters, stimulated emission and gain parameters were calculated to evaluate the effects of WO3 amount on the glass structure and spectroscopic properties of 1.32 μm band fluorescence. It is shown that the introduction of an appropriate amount of WO3 oxide can effectively improve the 1.32 μm band fluorescence intensity through the enhanced multi-phonon relaxation (MPR) processes between the excited levels of Nd3+. The results indicate that the prepared Nd3+-doped tellurite glass with an appropriate amount of WO3 oxide is a potential gain medium applied for the O-band broad and high-gain fiber amplifier.

  14. Optical constants, single-oscillator modal and refractive index dispersion analysis of lithium zinc bismuth borate glasses doped with Eu{sup 3+} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boda, Ramesh; Srinivas, G.; Komaraiah, D.

    2016-05-06

    The glasses of composition xLi{sub 2}O-15ZnO- 20Bi{sub 2}O{sub 3}- (64 - x) B{sub 2}O{sub 3}- 1EuO (ZLB) (where x=0, 5, 10, 15, 20 mole %) prepared by melt-quenching technique. The amorphous nature of the prepared glasses was confirmed by XRD spectra. The UV-Vis optical absorption spectrum was recorded in the wave length range of 200-1000 nm. It is observed that the optical band gap is inversely changing with Urbach energy. The optical constants such as G (a constant proportional to the second-order deformation potential) and E{sub f} (a constant that depends on local coordination and is called as free energy ofmore » the glass system). The most significant result of the present work is the refractive index dispersion curves of the ZLB glasses obey the single-oscillator model and oscillator parameters (E{sub o}, E{sub d}) changed with the Li{sub 2}O content. the absorption edge, band gap and Urbach energy is changing nonlinearly with increasing content of Li{sub 2}O, which can be used to calculate the optical, physical, and other constants.« less

  15. Highly efficient Zr doped-TiO2/glass fiber photocatalyst and its performance in formaldehyde removal under visible light.

    PubMed

    Huang, Chao; Ding, Yaping; Chen, Yingwen; Li, Peiwen; Zhu, Shemin; Shen, Shubao

    2017-10-01

    Zr-doped-TiO 2 loaded glass fiber (ZT/GF) composite photocatalysts with different Zr/Ti ratios were prepared with a sol-gel process. Zr 4+ can replace Ti 4+ in the TiO 2 lattice, which is conducive to forming the anatase phase and reducing the calcination temperature. The glass fiber carrier was responsible for better dispersion and loading of Zr-doped-TiO 2 particles, improving the applicability of the Zr-doped-TiO 2 . The ZT/GF photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis) and Barrett-Joyner-Halenda (BJH). The performance of photocatalysts with different loading was evaluated in formaldehyde degradation under visible light at room temperature. ZT/GF0.2 exhibited the highest activity, with a formaldehyde removal rate as high as 95.14% being observed, which is better than that of the photocatalyst particles alone. The stability of the catalyst was also tested, and ZT/GF exhibited excellent catalytic performance with 94.38% removal efficiency, even after seven uses. Copyright © 2017. Published by Elsevier B.V.

  16. Chromium doped nano-phase separated yttria-alumina-silica glass based optical fiber preform: fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Bysakh, Sandip; Kir'yanov, Alexandar; Paul, Mukul Chandra

    2015-06-01

    Transition metal (TM) doping in silica core optical fiber is one of the research area which has been studied for long time and Chromium (Cr) doping specially attracts a lot of research interest due to their broad emission band covering U, C and L band with many potential application such as saturable absorber or broadband amplifier etc. This paper present fabrication of Cr doped nano-phase separated silica fiber within yttria-alumina-silica core glass through conventional Modified Chemical Vapor Deposition (MCVD) process coupled with solution doping technique along with different material and optical characterization. For the first time scanning electron microscope (SEM) / energy dispersive X-ray (EDX) analysis of porous soot sample and final preform has been utilized to investigate incorporation mechanism of Crions with special emphasis on Cr-species evaporation at different stages of fabrication. We also report that optimized annealing condition of our fabricated preform exhibited enhanced fluorescence emission and a broad band within 550- 800 nm wavelength region under pumping at 532 nm wavelength due to nano-phase restructuration.

  17. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light.

    PubMed

    Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei

    2016-02-10

    We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.

  18. Reddish-orange, neutral and warm white emissions in Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Rodríguez-Carvajal, David A.; Meza-Rocha, A. N.; Caldiño, U.; Lozada-Morales, R.; Álvarez, E.; Zayas, Ma. E.

    2016-11-01

    Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses were prepared using the melt-quenching process and analyzed by X-diffraction, Raman spectroscopy, excitation and emission spectra, and emission decay time profiles. The lack of X ray diffraction peaks revealed that all samples are amorphous. Vibrational modes associated with Tesbnd Osbnd Te and Gesbnd Osbnd Ge related bonds and molecular oxygen were detected by Raman spectroscopy. The luminescence characteristics were studied upon excitations that correspond with the emission of InGaN (370-420 nm) based LEDs. The Eu3+ singly doped glass displayed reddish-orange global emission, with x = 0.601 and y = 0.349 CIE1931 chromaticity coordinates, upon 393 nm excitation. Neutral emission with x = 0.373 and y = 0.412 CIE1931 chromaticity coordinates and correlated color temperature (CCT) of 4400 K, was achieved in the Dy3+ singly doped glass excited at 388 nm. The Dy3+/Eu3+ co-doped glass exhibited warm, neutral and soft warm white emissions with CCT values of 3435, 4153 and 2740 K, under excitations at 382, 388 and 393 nm, respectively, depending mainly on the Dy3+ and Eu3+ relative excitation. The Dy3+ excitation bands observed in the Dy3+/Eu3+ glass by monitoring the 611 nm Eu3+ emission, suggest that Dy3+ → Eu3+ energy transfer takes place, despite the fact that the Dy3+ emission decays in the Dy3+ and Dy3+/Eu3+ doped glass, remain without changes. The shortening of Eu3+ decay in presence of Dy3+ was attributed to an Eu3+ → Dy3+ non-radiative energy transfer process, which according with the Inokuti-Hirayama model might be dominated through an electric quadrupole-quadrupole interaction, with efficiency and probability of 5.5% and 51.6 s-1, respectively.

  19. Optical absorption and photoluminescence properties of Nd3+ doped mixed alkali phosphate glasses-spectroscopic investigations.

    PubMed

    Ratnakaram, Y C; Srihari, N V; Kumar, A Vijaya; Naidu, D Thirupathi; Chakradhar, R P S

    2009-02-01

    Spectroscopic investigations were performed on 68NH(4)H(2)PO(4).xLi(2)CO(3)(30-x)K(2)CO(3) and 68NH(4)H(2)PO(4).xNa(2)CO(3)(30-x)K(2)CO(3) (where x=5, 10, 15, 20 and 25) glasses containing 2 mol% Nd(2)O(3). Various spectroscopic parameters (Racah (E(1), E(2), E(3)), spin-orbit (xi(4f)) and configuration interaction (alpha)) are reported. Judd-Ofelt intensity parameters (Omega(2), Omega(4), Omega(6)) are calculated for Nd(3+) doped two mixed alkali phosphate glass matrices. From the magnitude of Judd-Ofelt parameters, covalency is studied as a function of x in the glass matrix. Using Judd-Ofelt intensity parameters, total radiative transition probabilities (A(T)), radiative lifetimes (tau(R)), branching ratios (beta) and integrated absorption cross sections (Sigma) have been computed for certain excited states of Nd(3+) in these mixed alkali phosphate glasses. Emission cross sections (sigma(P)) are calculated for the two transitions, (4)G(7/2)-->(4)I(11/2) and (4)G(7/2)-->(4)I(13/2) of Nd(3+) in these mixed alkali phosphate glasses. Optical band gaps (E(opt)) for direct and indirect transitions are reported.

  20. Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2018-03-01

    Seven rare earth (Sm3+, Eu3+ and Nd3+) doped lead alumino phosphate glasses were prepared. The protective and sensing measures from gamma rays were analysed in terms of parameters viz. density (ρ), refractive index, energy band gap (Eg), mean free path (mfp), effective atomic number (Zeff) and buildup factors (energy absorption EABF as well as exposure buildup factor EBF). The energy dependent parameters (mfp, Zeff, EABF and EBF) were investigated in the energy region from 15 keV to 15 MeV. EABF and EBF values were observed to be maximum in the intermediate energy region. Besides, the EABF and EBF values for the prepared samples are shown to have strong dependence on chemical composition of the glass at lower energy, whereas, it is almost independent of chemical composition in higher energy region. The prepared glass samples are found to have potential applications in radiation shielding as well as radiation sensing, which further find numerous applications in the field of medicine and industry.

  1. Effect of gallium environment on infrared emission in Er3+-doped gallium– antimony– sulfur glasses

    PubMed Central

    Jiao, Qing; Li, Ge; Li, Lini; Lin, Changgui; Wang, Guoxiang; Liu, Zijun; Dai, Shixun; Xu, Tiefeng; Zhang, Qinyuan

    2017-01-01

    Gallium-based Ga–Sb–S sulfide glasses was elaborated and studied. A relationship between the structure, composition, and optical properties of the glass has been established. The effects of the introduction of Ga on the structure using infrared and Raman spectroscopies and on the Er3+-doped IR emission have been discussed. The results show that incorporation of Ga induced the dissociation of [SbS3] pyramids units and the formation of tetrahedral [GaS4] units. The dissolved rare earth ions are separated around the Ga–S bonding and the infrared emission quenching are controlled. Moreover, continuous introduction of Er ions into the glass forms more Er–S bonds through the further aggregation surrounding the [GaS4] units. In return, the infrared emission intensity decreased with excessive Er ion addition. This phenomenon is correlated with the recurrence concentration quenching effect induced by the increase of [GaS4] units. PMID:28106143

  2. Spectroscopic studies of Dy3+ ion doped tellurite glasses for solid state lasers and white LEDs.

    PubMed

    V, Himamaheswara Rao; P, Syam Prasad; M, Mohan Babu; P, Venkateswara Rao; T, Satyanarayana; Luís F, Santos; N, Veeraiah

    2018-01-05

    Rare earth ion Dy 3+ -doped tellurite glasses were synthesised in the system of (75-x)TeO 2 -15Sb 2 O 3 -10WO 3 -xDy 2 O 3 (TSWD glasses). XRD and FTIR characterizations were used to find the crystalline and structural properties. The intensities of the electronic transitions and the ligand environment around the Dy 3+ ion were determined using the Judd-Ofelt (J-O) theory on the absorption spectra of the glasses. The measured luminescence spectra exhibit intense emissions at 574 and 484nm along with less intense emissions around 662 and 751nm. Various radiative properties of the 4 F 9/2 excited level of Dy 3+ ion were calculated for the glasses. Decay profiles were measured to find the life times and quantum efficiencies. Yellow to blue intensity ratio (Y/B), CIE chromaticity coordinates and correlated color temperature (CCT) values are calculated using the emission spectra to evaluate the emitted light. The obtained results suggest the utility of the glasses for potential yellow laser and white LED's applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of absorption recovery in bismuth-doped silica glass at 1450 nm on soliton grouping in fiber laser

    PubMed Central

    Gumenyuk, R.; Melkumov, M. A.; Khopin, V. F.; Dianov, E. M.; Okhotnikov, O. G.

    2014-01-01

    Saturable absorption in bismuth-doped glasses was found to have a noticeable influence on soliton interaction and group formation. This phenomenon, observed in 1450 nm mode-locked bismuth-doped fiber laser, shows the distinct feature of the multiple pulse regime, which appears as a stationary pulse group whose length can be spread over the whole cavity length by variation of the pump power and polarization. Pulse positioning within the ensemble depends on the saturation fluence and the relatively fast recovery dynamics of bismuth fiber. PMID:25391808

  4. Compositional investigation of ∼2 μm luminescence of Ho{sup 3+}-doped lead silicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xueqiang; Huang, Feifei; Gao, Song

    2015-11-15

    Graphical abstract: Ho{sup 3+}-doped lead silicate glass with lowest maximum phonon energy possesses highest ∼2 μm luminescence intensity. - Highlights: • With increment of lead oxide, maximum phonon energy in lead silicate glass decreased. • ∼2 μm luminescent intensity of Ho{sup 3+} increased with increment of lead oxide. • Lowest lead oxide content glass possesses highest quantum efficiency due to low maximum phonon energy. - Abstract: Lead silicate glass samples with varying lead oxide content were prepared in this study, and their luminescent properties were examined and analyzed. It was found that with increasing lead oxide content, the maximum phononmore » energies of the glass samples decreased, while their spontaneous transition probabilities first increased and then decreased. The influence of the spontaneous transition rate, A{sub 10}, and the multi-phonon relaxation rate, W{sub 10}, on the sample luminescent properties was analyzed using rate equations. As a result, it was found that with increasing lead oxide content, W{sub 10}/A{sub 10} decreased, while the quantum efficiency increased. Thus, the luminescent intensity at ∼2 μm increased in the glass samples with increased lead oxide content. The high luminescent intensity and long lifetime indicate that silicate glasses containing high levels of lead oxide could potentially be used in ∼2 μm lasers.« less

  5. Survey and research on up-conversion emission character and energy transition of Yb3+/Er3+/Tm3+ co-doped phosphate glass and glass ceramic

    NASA Astrophysics Data System (ADS)

    Yu, Yin; Song, Feng; Ming, Chengguo; Liu, Jiadong; Li, Wei; Liu, Yanling; Zhao, Hongyan

    2012-11-01

    By conventional high-temperature melting method, Yb3+/Er3+/Tm3+ co-doped phosphate glass was synthesized. After annealing the precursor glass, the phosphate glass ceramic (GC) was obtained. By measuring the X-ray diffraction (XRD) spectrum, it is proved that the LiYbP4O12 and Li6P6O18 nano-crystals have existed in the phosphate GC. The up-conversion (UC) emission intensity of the GC is obvious stronger compared to that of the glass. The reason is that the shorter distance between rare earth ions in the glass ceramic increases the energy transitions from the sensitized ions (Yb3+) to the luminous ions (Er3+ and Tm3+). By studying the dependence of UC emissions on the pump power, the 523 and 546 nm green emissions of Er3+ ions in the glass are two-photon processes. But in the glass ceramic, they are two/three-photon processes. The phenomenon implies that a three-photon process has participated in the population of the two green emissions. Using Dexter theory, we discuss the energy transitions of Er3+ and Tm3+. The results indicate the energy transition of Tm3+ to Er3+ is very strong in the GC, which changes the population mechanism of UC emissions of Er3+.

  6. Spectrometric analysis of different fluorophosphate glasses doped with Sm{sup 3+} ions for reddish-orange laser emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, S., E-mail: ratnakaramsvu@gmail.com; Balakrishna, A., E-mail: ratnakaramsvu@gmail.com; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com

    2014-04-24

    Optical properties of Sm{sup 3+} doped different fluorophosphate glasses have been synthesized and discussed. The J- O intensity parameters Ω{sub λ} (λ= 2, 4, 6) from absorption spectra have been evaluated. No sharp edges are found in the absorption spectra, which confirm amorphous nature of present glass matrices. Various radiative parameters have been obtained from luminescence spectra for excited states to corresponding {sup 4}G{sub 5/2}→{sup 6}H{sub 5/2}, {sup 6}H{sub 7/2}, {sup 6}H{sub 9/2} and {sup 6}H{sub 11/2} transitions. The nature of decay curve analysis was performed for the {sup 4}G{sub 5/2} level. These glasses are expected to give interesting applicationmore » in field of optical devices.« less

  7. Thin transparent W-doped indium-zinc oxide (WIZO) layer on glass.

    PubMed

    Lee, Young-Jun; Lim, Byung-Wook; Kim, Joo-Hyung; Kim, Tae-Won; Oh, Byeong-Yun; Heo, Gi-Seok; Kim, Kwang-Young

    2012-07-01

    Annealing effect on structural and electrical properties of W-doped IZO (WIZO) films for thin film transistors (TFT) was studied under different process conditions. Thin WIZO films were deposited on glass substrates by RF magnetron co-sputtering technique using indium zinc oxide (10 wt.% ZnO-doped In2O3) and WO3 targets in room temperature. The post annealing temperature was executed from 200 degrees C to 500 degrees C under various O2/Ar ratios. We could not find any big difference from the surface observation of as grown films while it was found that the carrier density and sheet resistance of WIZO films were controlled by O2/Ar ratio and post annealing temperature. Furthermore, the crystallinity of WIZO film was changed as annealing temperature increased, resulting in amorphous structure at the annealing temperature of 200 degrees C, while clear In2O3 peak was observed for the annealed over 300 degrees C. The transmittance of as-grown films over 89% in visible range was obtained. As an active channel layer for TFT, it was found that the variation of resistivity, carrier density and mobility concentration of WIZO film decreased by annealing process.

  8. Study of upconversion fluorescence property of novel Er3+/Yb3+ co-doped tellurite glasses.

    PubMed

    Xu, Tie-Feng; Li, Guang-Po; Nie, Qiu-Hua; Shen, Xiang

    2006-06-01

    Er3+/Yb3+ co-doped TeO2-B2O3-Nb2O5-ZnO (TBN) glasses were prepared. The absorption spectra and upconversion luminescence spectra of TBN glasses were measured and analyzed. The upconversion emission bands centered at 530, 546 and 658 nm were observed under the excitation at 975 nm, corresponding to the transitions of 2H11/2-->4I15/2, 4S3/2-->4I15/2 and 4F9/2-->4I15/2 respectively. The ratio of red emission to green emission increases with an increasing of Yb3+ ions concentration. According to the quadratic dependence on excitation power, the possible upconversion mechanisms and processes were discussed.

  9. Structural and luminescence studies on Dy3+ doped lead boro-telluro-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Selvi, S.; Venkataiah, G.; Arunkumar, S.; Muralidharan, G.; Marimuthu, K.

    2014-12-01

    This paper reports results obtained on the structural and luminescence properties of Dy3+doped lead boro-telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B-O vibrations, P-O-P symmetric vibrations and Te-O stretching modes of TeO3 and TeO6 units. The metal-ligand bond was identified through UV-vis-NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σPE) and branching ratio (βR) for the transitions that include 4F9/2→6H11/2, 6H13/2 and 6H15/2 bands. The effect of Dy3+ ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the 4F9/2 level of the title glasses has been found to decrease with the increase in Dy3+ ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.

  10. Luminescence of Eu(3+) doped SiO2 Thin Films and Glass Prepared by Sol-gel Technology

    NASA Technical Reports Server (NTRS)

    Castro, Lymari; Jia, Weiyi; Wang, Yanyun; Santiago, Miguel; Liu, Huimin

    1998-01-01

    Trivalent europium ions are an important luminophore for lighting and display. The emission of (5)D0 to (7)F2 transition exhibits a red color at about 610 nm, which is very attractive and fulfills the requirement for most red-emitting phosphors including lamp and cathode ray phosphorescence materials. Various EU(3+) doped phosphors have been developed, and luminescence properties have been extensively studied. On the other hand, sol-gel technology has been well developed by chemists. In recent years, applications of this technology to optical materials have drawn a great attention. Sol-gel technology provides a unique way to obtain homogeneous composition distribution and uniform doping, and the processing temperature can be very low. In this work, EU(3+) doped SiO2 thin films and glasses were prepared by sol-gel technology and their spectroscopic properties were investigated.

  11. Mixed polyanion glass cathodes: Effect of polyanion content

    DOE PAGES

    Kercher, Andrew K.; Kolopus, James A.; Sacci, Robert L.; ...

    2017-02-18

    Mixed polyanion glass cathodes in lithium-ion batteries have very high capacities (200-500 mAh/g), but currently these materials have fundamental problems with 1 st-cycle irreversible loss, cycling efficiency, and capacity fade. It is well established that polyanion substitutions into glasses can dramatically affect their physical properties, but the effect of polyanion content on the electrochemical performance has not been previously established. The proper amount of lithium and borate substitution in copper phosphate/vanadate glasses was shown to nearly eliminate 1 st-cycle irreversible loss and improve cycling efficiency. As a result, Raman and IR spectroscopy were used to identify polyanions that correlated withmore » electrochemical performance changes.« less

  12. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiawei; Huo, Juntao; Chang, Chuntao, E-mail: ctchang@nimte.ac.cn, E-mail: dujun@nimte.ac.cn

    2014-08-14

    The effects of heavy rare earth (RE) additions on the Curie temperature (T{sub C}) and magnetocaloric effect of the Fe-RE-B-Nb (RE = Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune T{sub C} in a large temperature range of 120 K without significantly decreasing the magnetic entropy change (ΔS{sub M}) and refrigerant capacity (RC) of the alloys. The observed values of ΔS{sub M} and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd{sub 5}Ge{sub 1.9}Si{sub 2}Fe{sub 0.1}. The tunable T{submore » C} and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.« less

  13. Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.

    Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.

  14. Structural and luminescence studies of Ho{sup 3+}-doped zinc-aluminium-sodium-phosphate (ZANP) glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brahmachary, K.; Rajesh, D.; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com

    Trivalent holmium doped zinc-aluminium-sodium-phosphate (ZANP) glasses were prepared by conventional melt-quenching technique and characterized for their structural and luminescence properties. The amorphous nature, elemental analysis and thermal stability of the glasses were studied by using X-ray diffraction, energy dispersive spectrum and differential scanning calorimetry analysis, respectively. The absorption and fluorescence spectra have been recorded at room temperature. Based on the absorption spectra, the Judd-Ofelt parameters and radiative parameters such as spontaneous transition probabilities (A{sub R}), branching ratios (β{sub R}), radiative lifetimes (τ{sub R}) were calculated and discussed. From the emission spectra emission peak positions (λ{sub P}), effective bandwidths (Δλ{sub eff})more » and stimulated emission cross-sections (σ{sub P}) were calculated for the observed emission transitions,{sup 5}S{sub 2} ({sup 5}F{sub 4}→{sup 5}I{sub 8}) and {sup 5}F{sub 5}→{sup 5}I{sub 8} in all the glass samples. The stimulated emission cross-section is higher for ZANPHo10 glass matrix and so it may be useful for laser excitation.« less

  15. Thermoluminescence and optically stimulated luminescence properties of Dy3+-doped CaO-Al2O3-B2O3-based glasses

    NASA Astrophysics Data System (ADS)

    Yahaba, T.; Fujimoto, Y.; Yanagida, T.; Koshimizu, M.; Tanaka, H.; Saeki, K.; Asai, K.

    2017-02-01

    We developed Dy3+-doped CaO-Al2O3-B2O3 based glasses with Dy concentrations of 0.5, 1.0, and 2.0 mol% using a melt-quenching technique. The as-synthesized glasses were applicable as materials exhibiting thermoluminescence (TL) and optically stimulated luminescence (OSL). The optical and radiation response properties of the glasses were characterized. In the photoluminescence (PL) spectra, two emission bands due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ were observed at 480 and 580 nm. In the OSL spectra, the emission band due to the 4F9/2 → 6H15/2 transition of Dy3+ was observed. Excellent TL and OSL responses were observed for dose ranges of 0.1-90 Gy. In addition, TL fading behavior was better than that of OSL in term of the long-time storage. These results indicate that the Dy3+-doped CaO-Al2O3-B2O3-based glasses are applicable as TL materials.

  16. Down-shifting in Ce3+-Tb3+ co-doped SiO2-LaF3 nano-glass-ceramics for photon conversion in solar cells

    NASA Astrophysics Data System (ADS)

    Velázquez, J. J.; Rodríguez, V. D.; Yanes, A. C.; del-Castillo, J.; Méndez-Ramos, J.

    2012-10-01

    95SiO2-5LaF3 sol-gel derived nano-glass-ceramics single doped with Ce3+ or Tb3+ and co-doped with Ce3+-Tb3+ were synthesized by thermal treatment of precursor glasses. Precipitation of LaF3 nanocrystals during ceramming process was confirmed by X-ray diffraction with mean size ranging from 12 to 15 nm. An exhaustive spectroscopic analysis has been carried out. As a result, it was found that the green emission of Tb3+ ions was greatly enhanced through down shifting process, due to efficient energy transfer from Ce3+ to Tb3+ ions in the glass-ceramics, which is favored by the reduction of the interionic distances when the dopant ions are partitioned into LaF3 nanocrystals. These results suggest the use of these materials to improve the efficiency of solar cells.

  17. Physical, structural and optical characterizations of borate modified bismuth-silicate-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Berwal, Neelam; Kundu, R. S.; Nanda, Kirti; Punia, R.; Kishore, N.

    2015-10-01

    Quaternary bismuthate glasses with compositions xB2O3-(80 - x) Bi2O3-15SiO2-5TeO2 have been prepared by melt-quench technique. X-ray diffraction studies were performed to ascertain the amorphous nature of samples. The density, molar volume and crystalline volume decrease with increase in B2O3 content whereas the glass transition temperature shows the reverse trend. The Raman and FTIR spectra of the studied glasses indicate that B2O3 has been found to exist in the form of BO3 trigonal and BO4 tetrahedral structural units and vibrations corresponding to these structural units increase with increase in B2O3 content. SiO2 is present in the form of SiO4 tetrahedral structural units and TeO2 in the form of TeO3 structural units. Bismuth plays the role of network modifier [BiO6 octahedra] as well as network former [BiO3 pyramids] for all the glass compositions. The optical band gap energy has been calculated from the fitting of both Mott and Davis's model and Hydrogenic excitonic model with the experimentally observed absorption spectra. A good fitting of experimental data with HEM indicates the excitonic formation in the studies glass system. The values of optical band gap energy show nonlinear behavior due to the structural changes that take place in the present glass samples. The Urbach energy calculated using Urbach empirical formula for studied glass samples suggest the possibility of reduction in defect concentrations. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.

  18. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis.

    PubMed

    Jia, Wei-Tao; Zhang, Xin; Luo, Shi-Hua; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E; Zhang, Chang-Qing; Xie, Zong-Ping; Wang, Jian-Qiang

    2010-03-01

    Composite materials composed of borate bioactive glass and chitosan (designated BGC) were investigated in vitro and in vivo as a new delivery system for teicoplanin in the treatment of chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA). In vitro, the release of teicoplanin from BGC pellets into phosphate-buffered saline (PBS), as well as its antibacterial activity, were determined. The compressive strength of the pellets was measured after specific immersion times, and the structure of the pellets was characterized using scanning electron microscopy and X-ray diffraction. In vivo, the tibial cavity of New Zealand White rabbits was injected with MRSA strain to induce chronic osteomyelitis, treated by debridement after 4weeks, implanted with teicoplanin-loaded BGC pellets (designated TBGC) or BGC pellets, or injected intravenously with teicoplanin. After 12weeks' implantation, the efficacy of the TBGC pellets for treating osteomyelitis was evaluated using hematological, radiological, microbiological and histological techniques. When immersed in PBS, the TBGC pellets provided a sustained release of teicoplanin, while the surface of the pellets was converted to hydroxyapatite (HA). In vivo, the best therapeutic effect was observed in animals implanted with TBGC pellets, resulting in significantly lower radiological and histological scores, a lower positive rate of MRSA culture, and an excellent bone defect repair, without local or systemic side effects. The results indicate that TBGC pellets are effective in treating chronic osteomyelitis by providing a sustained release of teicoplanin, in addition to participating in bone regeneration. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Comparative analysis of luminescent properties of germanate glass and double-clad optical fibers co-doped with Yb3+/Ho3+ ions

    NASA Astrophysics Data System (ADS)

    Pietrzycki, Marcin; Kochanowicz, Marcin; Romańczuk, Patryk; Żmojda, Jacek; Miluski, Piotr; Ragiń, Tomasz; Jeleń, Piotr; Sitarz, Maciej; Dorosz, Dominik

    2016-09-01

    The 2 μm and visible emission of low phonon (805 cm-1) germanate glasses and double - clad optical fiber co-doped with 0.7Yb2O3/(0.07-0.7)Ho2O3 ions have been investigated. Luminescence at 2 μm corresponding to Ho3+: 5I7 → 5I8 as well as upconversion luminescence in the visible spectral range corresponding to the Ho3+: 5S2(5F4)→5I8 (545 nm), and Ho3+: 5F5→5I8 (655 nm) transition, respectively were obtained. The optimization of the acceptor content and donor-acceptor ratio were conducted with the purpose of maximizing the luminescence intensity. The highest luminescence intensity in both spectral range was obtained in glass co-doped with 0.7Yb2O3/0.15 Ho2O3. Despite relatively small effective absorption coefficient of the optical fiber comparative analysis of luminescent properties of fabricated glasses (further core) and double - clad optical fiber showed significant contribution of reabsorption process of emitted ASE signal.

  20. Borate minerals and origin of the RNA world.

    PubMed

    Grew, Edward S; Bada, Jeffrey L; Hazen, Robert M

    2011-08-01

    The RNA World is generally thought to have been an important link between purely prebiotic (>3.7 Ga) chemistry and modern DNA/protein biochemistry. One concern about the RNA World hypothesis is the geochemical stability of ribose, the sugar moiety of RNA. Prebiotic stabilization of ribose by solutions associated with borate minerals, notably colemanite, ulexite, and kernite, has been proposed as one resolution to this difficulty. However, a critical unresolved issue is whether borate minerals existed in sufficient quantities on the primitive Earth, especially in the period when prebiotic synthesis processes leading to RNA took place. Although the oldest reported colemanite and ulexite are 330 Ma, and the oldest reported kernite, 19 Ma, boron isotope data and geologic context are consistent with an evaporitic borate precursor to 2400-2100 Ma borate deposits in the Liaoning and Jilin Provinces, China, as well as to tourmaline-group minerals at 3300-3450 Ma in the Barberton belt, South Africa. The oldest boron minerals for which the age of crystallization could be determined are the metamorphic tourmaline species schorl and dravite in the Isua complex (metamorphism between ca. 3650 and ca. 3600 Ma). Whether borates such as colemanite, ulexite and kernite were present in the Hadean (>4000 Ma) at the critical juncture when prebiotic molecules such as ribose required stabilization depends on whether a granitic continental crust had yet differentiated, because in its absence we see no means for boron to be sufficiently concentrated for borates to be precipitated.