Science.gov

Sample records for borate glasses doped

  1. Devitfrification Properties Of Bismuth Borate Glasses Doped With Trivalent Ions

    SciTech Connect

    Khanna, Atul; Bajaj, Anu

    2010-12-01

    Bismuth borate glasses and crystalline phases have outstanding luminescent and nonlinear optical properties; therefore there is lot of interest in their preparation and characterization. In this study we report the crystallization properties of bismuth borate glasses doped with trivalent ions. Glasses of the composition: xBi{sub 2}O{sub 3}-(100-x)B{sub 2}O{sub 3} (x = 20, 25, 30, 37.5, 40, 50, 60 and 66 mol %) and 40Bi{sub 2}O{sub 3}-1Tv{sub 2}O{sub 3}-59B{sub 2}O{sub 3}(where Tv = Al, Nd and Eu) were prepared by melt quench technique and devitrified by heat treatment above their glass transition temperatures for several hours. The crystalline phases produced were characterized by FTIR absorption spectroscopy, DTA and X-ray diffraction. Bi{sub 3}B{sub 5}O{sub 12} was found to be the predominant phase in all crystallized samples containing Bi{sub 2}O{sub 3} concentration of {<=}40 mol %, at higher Bi{sub 2}O{sub 3} concentration, we observed the formation of Bi{sub 4}B{sub 2}O{sub 9} phase. Glasses with Bi{sub 2}O{sub 3} concentration of {<=}37.5 mol % produced Bi{sub 2}B{sub 8}O{sub 15} phase on crystallization. The metastable BiBO{sub 3}-I phase was formed by short duration heat treatment (less than 5 hours) of the initial glass sample. Doping with rare earth ions like Eu{sup 3+} and Nd{sup 3+} promotes the formation of BiBO{sub 3}-II phase while Al{sup 3+} doping suppresses it.

  2. Synthesis and structural studies of praseodymium doped silver borate glasses

    SciTech Connect

    Jagadeesha Gowda, G. V.; Eraiah, B.

    2013-02-05

    Praseodymium doped silver borate glasses with nominal composition xPr{sub 6}O{sub 11}-(25-x)Ag{sub 2}O-75B{sub 2}O{sub 3} (x=0, 1, 2, 3, 4, 5) were prepared by melt quench technique. XRD pattern shows that there is no sharp peak it confirms the amorphous nature of the present glasses. The glass transition temperature (T{sub g}) of this glass system have been studied using the Matac MBS-8000 Digital Signal Processing and Conventional Thermal Analysis (DTA) method. The T{sub g} of these glasses increases with increase in concentration of Pr{sub 6}O{sub 11} except at 0.2 mol%, T{sub g} value is lower. {sup 11}B MAS-NMR shows the presence of sharp peak around 0.306 ppm. Chemical shift of these glasses decreases with mol% of rare earth oxide. FTIR spectra recorded in the region of 400 to 4000 cm{sup -1}. This studies revealed that the progressive addition Ag{sub 2}O and Pr{sub 6}O{sub 11} leads to modification of B{sub 2}O{sub 3} into BO{sub 4} groups. Raman measurements of these glasses support the proposed interpretations of the experimental results.

  3. Optical properties of Dy3+ doped bismuth zinc borate glass and glass ceramics

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Kanth Kumar, V. V. Ravi

    2012-06-01

    Dy3+ doped bismuth zinc borate transparent glasses were prepared by melt quenching technique and these glasses were used precursor to obtain transparent glass ceramics by heat treatment method. XRD pattern of the glass ceramic shows the formation of the β-BiB3O6 and Bi2ZnOB2O6 phases. The visible emission intensity of the glass ceramics is stronger than the glass. This can be due to the formation of nano nonlinear optical crystallites in glass matrix.

  4. Neodymium-doped barium borate glasses as fluorescent concentrators for the infrared spectral range

    NASA Astrophysics Data System (ADS)

    Dyrba, Marcel; Wiegand, Marie-Christin; Ahrens, Bernd; Schweizer, Stefan

    2012-06-01

    Neodymium-doped barium borate glasses are investigated for their potential as fluorescent concentrators for the near infrared spectral range. Additional doping of the glasses with silver oxide and subsequent heat treatment leads to a reduction of the doped silver ions and to the formation of metallic silver nanoparticles. The formation of the silver nanoparticles is indicated by a broad surface plasmon-related extinction band at approximately 410 nm. The influence of the silver nanoparticles on the fluorescence properties is investigated.

  5. Elastic properties of Li+ doped lead zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Rajaramakrishna, R.; Lakshmikantha, R.; Anavekar, R. V.

    2014-04-01

    Glasses in the system 0.25PbO-(0.25-x) ZnO-0.5B2O3-xLi2O have been prepared by the melt quenching technique. Elastic properties, DSC studies have been employed to study the role of Li2O in the present glass system. Elastic properties and Debye temperature have been determined using pulsed echo ultrasonic interferometer operating at 10MHz. Sound velocities Vl, Vt and elastic moduli decrease up to 5 mol% and then gradually increase with increase in Li2O concentration. Debye temperature and the glass transition temperature decreases with increase in Li2O. Densities remains almost constant up to 15 mol% Li2O concentration and increases monotonically while the molar volume decreases with the increase of Li2O concentration. The results are discussed in view of the borate structural network and dual role of Zn and Pb in these glasses.

  6. Structural investigation of Zn doped sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Bhatia, V.; Kumar, D.; Singh, D.; Singh, S. P.

    2016-05-01

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na2O:15Bi2O3:70B2O3 (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained by these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO3 & BO4 structural units) have been observed.

  7. Fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses containing lithium, zinc and lead.

    PubMed

    Venkatramu, V; Babu, P; Jayasankar, C K

    2006-02-01

    The influence of glass composition on the fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses modified with Li+, Zn2+ and Pb2+ cations have been investigated. The magnitude of splittings of 7F1 levels are analyzed using crystal-field (CF) analysis. The relative intensities of 5D0 --> 7F2 to 5D0 --> 7F1 transitions, crystal-field strength parameters and decay times of the 5D0 level have been determined and are found to be lower for Pb based glasses than those of Zn/Li based glasses. The lifetimes of 5D0 level are found to increase when borate glasses are modified with pure fluorides than with oxides and oxyfluorides. The fluorescence decay of 5D0 level fits perfect single exponential in the Eu3+:glass systems studied which indicates the absence of energy transfer between Eu3+ ions in these glasses. PMID:15979397

  8. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    NASA Astrophysics Data System (ADS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  9. Physical and optical characterization of Er3+ doped lead-zinc-borate glass.

    PubMed

    Sooraj Hussain, N; Cardoso, P J; Hungerford, G; Gomes, M J M; Ali, Nasar; Santos, J D; Buddhudu, S

    2009-06-01

    This paper reports on the systematic optical characterization of Er3+ (1.0%) doped lead-zinc-borate glass from the measured absorption, luminescence and fluorescence lifetime decay curve profiles. By the application of the Judd-Ofelt theory, spectral intensities of the absorption bands have been analysed and these absorption results have been used in evaluating the luminescence properties of the Er3+ doped lead-zinc-borate glass. Stimulated emission cross-sections (sigmapE) of the measured emission transitions have been computed. Based on the measured glass density, and refractive indices, other related physical parameters have also been evaluated. Further, the structural and morphology of the glass material have also been investigated from X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy analysis. PMID:19504881

  10. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    PubMed

    Sathish, K; Thirumaran, S

    2015-08-01

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  11. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions

    NASA Astrophysics Data System (ADS)

    Sathish, K.; Thirumaran, S.

    2015-08-01

    The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  12. Spectroscopic study of neodymium doped lead-bismuth-borate glasses

    NASA Astrophysics Data System (ADS)

    Pasha, Altaf; Dayani, P.; Negalur, Mahesh; Swamy, Manjunatha; Abhiram, J.; Rajaramakrishna, R.

    2016-05-01

    This paper reports on different physical and optical properties of rare earth doped heavy metal oxide glasses. The glass composition of 10Bi2O3-30PbO-60B2O3-xNd2O3 where x = 0, 0.1, 0.2, 0.5 and 1 (in mol %) has been synthesized using melt-quenching technique. Refractive index measurements for these glasses were done and physical parameters were studied. Structural properties of these glasses were analysed through infrared spectra that was recorded between 1600cm-1 and 300cm-1 in transmission mode. The optical absorption spectra were recorded in the wavelength range from 300 to 700 nm. The transitions originated from ground state energy 4I9/2. The energy level analysis has been carried out by considering absorption spectral bands. The results thus obtained are comparable with reports on similar glasses, indicating that the prepared glasses may have potential laser applications.

  13. Visible photon multiplication in Ce3+-Tb3+ doped borate glasses for enhanced solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Chen, Baojie; Shen, Lifan; Bun Pun, Edwin Yue; Lin, Hai

    2014-11-01

    Visible photon multiplication is exposed in the Ce3+-Tb3+ doped alkaline-earth borate (LKZBSB) glass system. Efficient green and blue fluorescences originate from Tb3+ and Ce3+ emitting centres, respectively. Evaluation of absolute spectral parameters reveals that the quantum yield of Tb3+ single doped LKZBSB glasses is ~8% under UVA radiation. Furthermore, with the introduction of Ce3+ into the Tb3+ doping system, the effective excitation wavelength range and the emission intensity of Tb3+ in LKZBSB glasses are remarkably expanded and improved by a maximum sensitization factor of ~52 in the UVB spectral region. These results demonstrate that the Ce3+-Tb3+ doped LKZBSB glass system has promising potential as an efficient UV → Visible radiation conversion layer for the enhancement of solar cell efficiency, including cells employed in outer space.

  14. Spectroscopic and nonlinear optical studies of pure and Nd-doped lanthanum strontium borate glasses

    NASA Astrophysics Data System (ADS)

    Harde, G. B.; Muley, G. G.

    2016-05-01

    Borate glasses of the system xNd2O3-(1-x) La2O3-SrCO3-10H3BO3 (with x = 0 and 0.05) were prepared by using a convectional melt quenching technique. The amorphous nature of the quenched glasses has been confirmed by powder X-ray diffraction analysis. In order to study the spectroscopic and nonlinear optical properties of fabricated glasses, ultraviolet-visible transmission spectroscopy and open aperture z-scan measurements have been employed. In Nd doped glasses, the transition 4I9/2 → 4G5/2 + 2G7/2 has found more prominent than the other transitions. Optical band gap energies of glasses have been determined and found less for Nd doped glass.

  15. Optical Properties of Eu3+ Doped Lead Borate Tellurite and Zinc Borate Tellurite Glasses

    NASA Astrophysics Data System (ADS)

    Shigihalli, N. B.; Rajaramakrishna, R.; Anavekar, R. V.

    2011-07-01

    This paper describes the synthesis and optical absorption studies of the glass system 20PbO-20TeO2-(60-x)B2O3-x Eu2O3 (x = 0,1 mol %) and 20ZnO-20TeO2-(60-x)B2O3-xEu2O3 (x = 0,1 mol %). These glass systems have been successfully prepared by the melt quenching technique. The X-ray diffractograms show broad peaks indicating glasses are amorphous. DSC thermograms show glass transition temperatures around 655K for PbO content and around 675 K for ZnO content glass samples. In the UV-Visible spectra, several absorption lines are observed. The absorption peaks are around 362, 375, 393 and 464 nm for both Eu3+ doped PbO and ZnO content glass systems. These correspond to transitions from ground state of 7F0 to the excited state of 5D4, 5G4, 5L6 and 5D2 respectively for both Eu3+ doped PbO and ZnO content glass systems. These glasses are expected to give interesting applications in the area of optical devices.

  16. Optical spectroscopy of Dy3+ doped borate glasses for luminescence applications

    NASA Astrophysics Data System (ADS)

    Venkata Rao, K.; Babu, S.; Venkataiah, G.; Ratnakaram, Y. C.

    2015-08-01

    Dy3+ ion embedded in (50 - x)B2O3-20PbO-15MgF2-15NaCl-xDy2O3(x = 0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 mol%) borate glasses are prepared and investigated using Differential Thermal Analysis (DTA), X-ray Diffractometer (XRD), Raman spectra, optical absorption and photoluminescence (PL) as function of different concentrations. Thermal stability of borate glass has been calculated from DTA profiles. The amorphous nature of glass matrix is confirmed by XRD. Based on Raman spectra, the functional groups that are present in the glass matrices have been analyzed. Based on the Judd-Ofelt theory, three spectral intensity parameters Ωλ (λ = 2, 4, 6) are calculated from absorption spectra. These parameters are used to determine radiative transition probabilities (AR), radiative lifetimes (τR) and branching ratios (βR) of Dy3+ transitions from the excited state manifolds to corresponding lower laying multiplet manifolds. PL spectra show two intense and one weak band due to 4F9/2 → 6H15/2 (blue), 6H13/2 (yellow) and 6H11/2 (red) transitions respectively. For these transitions luminescence properties are studied. With the increase in the concentration of Dy3+ ions, intensity increases up to 0.8 mol% and then concentration quenching is observed. This is (0.8 mol%) the optimized concentration for the present prepared glasses. Lifetimes (τexp) are calculated for all the glass matrices from decay curve analysis. Spectroscopic and luminescence properties at 0.8 mol% doped dysprosium ion are compared with other reported glass matrices. From the above analysis suggest that 0.8 mol% of Dy3+ doped borate glasses can be useful for yellow lighting applications in the visible spectral region.

  17. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    NASA Astrophysics Data System (ADS)

    Omar, R. S.; Wagiran, H.; Saeed, M. A.

    2016-01-01

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B2O3 - 20 CaO - 10 MgO-(y) Dy2O3 with 0.05 mol % ≤ y ≤ 0.7 mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy2O3 concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  18. Structural, dielectric and AC conductivity properties of Co2+ doped mixed alkali zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Madhu, B. J.; Banu, Syed Asma; Harshitha, G. A.; Shilpa, T. M.; Shruthi, B.

    2013-02-01

    The Co2+ doped 19.9ZnO+5Li2CO3+25Na2CO3+50B2O3 (ZLNB) mixed alkali zinc borate glasses have been prepared by a conventional melt quenching method. The structural (XRD & FT-IR), dielectric and a.c. conductivity (σac) properties have been investigated. Amorphous nature of these glasses has been confirmed from their XRD pattern. The dielectric properties and electrical conductivity (σac) of these glasses have been studied from 100Hz to 5MHz at the room temperature. Based on the observed trends in the a.c. conductivities, the present glass samples are found to exhibit a non-Debye behavior.

  19. Three-dimensional optical memory using photoluminescence change in Sm-doped sodium borate glass

    SciTech Connect

    Lim, Jinhyong; Lee, Myeongkyu; Kim, Eunkyoung

    2005-05-09

    The feasibility of three-dimensional (3D) optical memory has been demonstrated by utilizing the photoluminescence (PL) spectrum change in a Sm-doped fluoride glass [K. Miura, J. Qiu, S. Fujiwara, S. Sakasuchi, and K. Hirao, Appl. Phys. Lett. 80 2263 (2002)]. We here report on a femtosecond laser-induced PL change in a Sm-doped sodium borate glass that is easier to synthesize and its potential application to 3D memory. Irradiation with a femtosecond pulsed laser (800 nm, 1 kHz, 100 fs) induced a PL peak near 682 nm, resulting from the photoreduction of the Sm ions. A multilayer pattern (bit size=1 {mu}m,layer separation=8 {mu}m) formed by femtosecond laser irradiation was read out by a reflection-type fluorescent confocal microscope, which detected the emission at 682 nm as a signal. High-contrast pattern images were obtained without crosstalk.

  20. Elastic properties of silver borate glasses doped with praseodymium oxide

    SciTech Connect

    Gowda, G. V. Jagadeesha; Eraiah, B.

    2014-04-24

    A series of glasses xPr{sub 6}O{sub 11−}(35−x) Ag{sub 2}O−65B{sub 2}O{sub 3} with x=0, 0.1, 0.2, 0.3, 0.4 and 0.5 mol % were synthesized by melt quenching technique. Longitudinal and shear ultrasonic velocity were measured at 5 MHz frequency and at room temperature. Elastic moduli, Poisson's ratio and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses. The role of the Pr{sub 6}O{sub 11} inside the glass network was discussed.

  1. Optical Properties of Alkaline Earth Ions Doped Bismuth Borate Glasses

    SciTech Connect

    Kundu, Virender; Dhiman, R. L.; Maan, A. S.; Goyal, D. R.

    2011-07-15

    The optical properties of glasses with composition xLi{sub 2}O(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x = 0, 5, 10, 15 and 20 mol %, prepared by normal melt quench technique were investigated by means of UV-VIS measurement. It was observed that the optical band gap of the present glass system decreases with increasing Li{sub 2}O content up to 15 mol%, and with further increase in lithium oxide content i.e. x>15 mol% the optical band gap increases. It was also observed that the present glass system behaves as an indirect band gap semiconductor.

  2. Optical properties of Nd3+ doped bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Venkatramu, V.; Ravi Kanth Kumar, V. V.

    2014-03-01

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) - x Nd2O3 (where x = 0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to 4F3/2 to 4I9/2, 4I11/2 and 4I13/2 transitions in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd3+ exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process.

  3. Optical properties of Nd3+ doped bismuth zinc borate glasses.

    PubMed

    Shanmugavelu, B; Venkatramu, V; Ravi Kanth Kumar, V V

    2014-03-25

    Glasses with compositions of (100-x) (Bi2ZnOB2O6) -x Nd2O3 (where x=0.1, 0.3, 0.5, 1 and 2 mol%) were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements. Optical absorption spectra have been analyzed using Judd-Ofelt theory. The emission spectra exhibit three peaks at 919, 1063 and 1337 nm corresponding to (4)F3/2 to (4)I9/2, (4)I11/2 and (4)I13/2 transitions in the near infrared region. The emission intensity of the (4)F3/2 to (4)I11/2 transition increases with increase of Nd(3+) concentration up to 1 mol% and then concentration quenching is observed for 2 mol% of Nd(3+) concentration. The lifetimes for the (4)F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses. The decay curves of the glass up to 0.3 mol% of Nd(3+) exhibit single exponential nature and thereafter the curves become nonexponential nature (0.5, 1 and 2 mol%). The nonexponential curve has been fitted to the Inokuti-Hirayama model to understand the nature of energy transfer process. PMID:24326260

  4. Reddish-orange emission from Pr3+ doped zinc alumino bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Mahamuda, Sk.; Swapna, K.; Srinivasa Rao, A.; Sasikala, T.; Rama Moorthy, L.

    2013-11-01

    Praseodymium doped Zinc Alumino Bismuth Borate (ZnAlBiB) glasses were prepared by melt quenching technique and characterized by optical absorption and emission studies. The glassy nature of these glasses has been confirmed through XRD spectral measurements. From the absorption spectra, the Judd-Ofelt intensity parameters Ωλ (λ=2, 4 and 6) and other radiative properties like transition probability (AR), radiative lifetimes (τR) and branching ratios (βR) have been evaluated. Emission spectra were measured for different concentrations of Pr3+ ions doped glasses by exciting the glasses at 445 nm. The intensity of Pr3+ emission spectra increases from 0.1 to 1 mol% and beyond 1 mol% concentration quenching is observed. The suitable concentration of Pr3+ ions in ZnAlBiB glasses to act as a good lasing material at reddish-orange wavelength (604 nm) region has been discussed by measuring the emission cross-sections for the intense emission transition 1D2→3H4. The CIE chromaticity co-ordinates were also evaluated from the emission spectra for all the glasses to understand the suitability of these materials for reddish-orange emission. From the measured emission cross-sections and CIE chromaticity co-ordinates, it was found that 1 mol% of Pr3+ is aptly suitable for the development of visible reddish-orange lasers.

  5. Optical and structural properties of lithium sodium borate glasses doped Dy3+ ions

    NASA Astrophysics Data System (ADS)

    Dawaud, Raghda Saeif Eddin Said; Hashim, Suhairul; Alajerami, Yasser Saleh Mustafa; Mhareb, M. H. A.; Tamchek, N.

    2014-10-01

    Absorption and emission spectra of lithium sodium borate glass doped with different concentrations of Dy3+ have been reported. The concentration of Dy3+ was varied from 0.3 to 1.3 mol%. The amorphous nature of the prepared samples was confirmed by the X-ray Diffraction (XRD). Fourier transforms infrared (FTIR) spectra, and other significant physical properties (energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance) have been analyzed in the light of the different oxidation states of the co-dopant ions. The absorption spectrum showed nine peaks with hypersensitive transition corresponding to 6F11/2 + 6H9/2 at 1256 nm. As a result of 380 nm excitation wavelength, the luminescence spectra showed two characteristic bands at 479 nm and 587 nm. These absorption bands were attributed to 6P15/2 → 6H15/2 and 6P15/2 → 6H13/2 transitions of trivalent Dy3+ ions. The current study indicates that Dy doped lithium sodium borate glasses are attractive for solid-state laser applications.

  6. Optical studies of Sm³⁺ ions doped zinc alumino bismuth borate glasses.

    PubMed

    Swapna, K; Mahamuda, Sk; Srinivasa Rao, A; Shakya, S; Sasikala, T; Haranath, D; Vijaya Prakash, G

    2014-05-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm(3+)) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm(3+) ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm(3+) ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the (4)G5/2 level of Sm(3+) ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm(3+) ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers. PMID:24530709

  7. Optical studies of Sm3+ ions doped Zinc Alumino Bismuth Borate glasses

    NASA Astrophysics Data System (ADS)

    Swapna, K.; Mahamuda, Sk.; Srinivasa Rao, A.; Shakya, S.; Sasikala, T.; Haranath, D.; Vijaya Prakash, G.

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm3+) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm3+ ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm3+ ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the 4G5/2 level of Sm3+ ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm3+ ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers.

  8. Dielectric properties of nickel doped bismuth lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Dalal, Seema; Dahiya, Sunita; Ashima, Khasa, S.

    2016-05-01

    Glasses with composition xBi2O3•(30-x)Li2O•70B2O3 (x = 0, 2, 5, 7 and 10 mol% with codes BLBN1-5 respectively) containing 2 mol% of NiO were prepared via melt-quenching technique and dielectric properties are discussed. The dielectric properties have been studied using impedance spectroscopy. The frequency dependent conductivity investigations for prepared compositions have been carried out using impedance spectroscopy over a frequency range of 1 KHz to 5 MHz and in the temperature range of 300K-523K. The complex impedance data have been analyzed by using both the conductivity and the electric modulus formalisms. Standard dielectric behavior is observed in prepared samples. The ac conductivity variations satisfy the Arrhenius relation. The study of the equivalent circuit analysis up to a temperature of 473K shows a significant change in the equivalent circuit with change in temperature and composition.

  9. Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Mahamuda, Sk.; Swapna, K.; Srinivasa Rao, A.; Jayasimhadri, M.; Sasikala, T.; Pavani, K.; Rama Moorthy, L.

    2013-09-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of neodymium are prepared by using the melt quenching technique to study their physical, absorption and luminescence properties to understand the lasing potentialities of these glasses. From the absorption spectra various spectroscopic parameters and Judd-Ofelt (JO) parameters are evaluated. These JO parameters are used to calculate the transition probability (A), radiative lifetime (τR), and branching ratios (βR) for most of the fluorescent levels of Nd3+. The emission spectra recorded for these glasses gives three prominent transitions 4F3/2→4I9/2, 4F3/2→4I11/2 and 4F3/2→4I13/2 for which effective band widths (ΔλP) and stimulated emission cross-sections (σse) are evaluated. Branching ratios and stimulated emission cross-sections measured for all these glasses show that the 4F3/2→4I11/2 transition under investigation has the potential for laser applications. The intensity of Nd3+ emission spectra increases with increasing concentrations of Nd3+ up to 1 mol% and beyond 1 mol% the concentration quenching is observed. The high stimulated emission cross-section and branching ratios from the present glasses suggests their potential for infrared lasers. From the absorption and emission spectral studies it was found that, 1 mol% of Nd3+ ion concentration is optimum for Zinc Alumino Bismuth Borate glasses to generate a strong laser emission at 1060 nm.

  10. The Preparation and Characterization of Nd{sub 2}O{sub 3} Doped Borate Glass

    SciTech Connect

    Razali, Wan Aizuddin Wan; Kasim, Azman; Mohamed, Ruziana

    2010-07-07

    The Nd{sup 3+} doped borate glass of Nd{sub 2}O{sub 3}-MgO-ZnO-B{sub 2}O{sub 3} glass system is successfully been prepared by melt-quenched technique. Batches of 15g were prepared from certified reagent grades of B{sub 2}O{sub 3}(99.95% purity), MgO (97%), ZnO (98% purity), and Nd{sub 2}O{sub 3}(99.99%). The measured glass densities are found varies from 5683.2 kgm{sup -3} to 5724.0 kgm{sup -3}. The increment in density implies that an addition of Nd{sub 2}O{sub 3} with higher atomic masses than B{sub 2}O{sub 3} tend to increase the packing density of the glass structures since the atomic masses of B{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} are 69.62 and 336.42 respectively. From the density values obtained, the molar volume of glasses was calculated. From the results, it is found that the molar volume of these glasses decreases slightly from 22.50 cm{sup 3} to 27.54 cm{sup 3} with respect to Nd{sub 2}O{sub 3} content.

  11. Optical characterization of Eu3+ and Tb3+ ions doped zinc lead borate glasses.

    PubMed

    Thulasiramudu, A; Buddhudu, S

    2007-02-01

    This paper reports on the spectral analysis of Eu3+ or Tb3+ ions (0.5 mol%) doped heavy metal oxide (HMO) based zinc lead borate glasses from the measurement of their absorption, emission spectra and also different physical properties. From the XRD, DSC profiles, the glass nature and glass thermal properties have been studied. The measured emission spectrum of Eu3+ glass has revealed five transitions (5D0-->7F0, 7F1, 7F2, 7F3 and 7F4) at 578, 591, 613, 654 and 702 nm, respectively, with lambdaexci=392 nm (7F0-->5L6). In the case of Tb3+:ZLB glass, four emission transitions such as (5D4-->7F6, 7F5, 7F4 and 7F3) that are located at 489, 542, 585 and 622 nm, respectively, have been measured with lambdaexci=374 nm. For all these emission bands decay curves have been plotted to evaluate their lifetimes and the emission processes that arise in the glasses have been explained in terms of energy level schemes. PMID:16843052

  12. Spectroscopic Study on Eu3+ Doped Borate Glasses Containing Ag Nanoparticles and Ag Aggregates.

    PubMed

    Fu, Shaobo; Zheng, Hui; Zhang, Jinsu; Li, Xiangping; Sun, Jiashi; Hua, Ruinian; Dong, Bin; Xia, Haiping; Chen, Baojiu

    2015-01-01

    Transparent Eu(3+)-doped borate glasses containing Ag nanoparticles and Ag aggregates with composition (40 - x) CaO-59.5B2O3-0.5Eu2O3-xAgNO3 were prepared by a simple one-step melt-quenching technique. The X-ray diffraction (XRD) patterns of the glasses reveal amorphous structural properties and no diffraction peaks belonging to metal Ag particles. Ag particles and Ag aggregates were observed from the absorption spectra. Effective energy transfers from the Ag aggregates to the Eu3+ ions were observed in the excitation spectra from monitoring the intrinsic emission of Eu3+x .5D0 --> 7F2. The glasses with higher Ag content can be effectively excited by light in a wide wavelength region, indicating that these glasses have potential application in the solid state lighting driven by semiconductor light emitting diodes (LEDs). The emission spectra of the samples with higher Ag contents exhibit plenteous spectral components covering the full visible region from violet to red, thus indicating that these glass materials possess an excellent and tunable color rendering index. The color coordinates for all the glass samples were calculated by using the intensity-corrected emission spectra and the standard data issued by the CIE (Commission International de l' Eclairage) in 1931. It was found that the color coordinates for most samples with higher Ag contents fall into the white region in the color space. PMID:26328363

  13. Thermoluminescence Response of Copper-Doped Potassium Borate Glass Subjected to 6 Megavolt X-Ray Irradiation

    NASA Astrophysics Data System (ADS)

    Hossain, I.; Shekaili, N. K.; Wagiran, H.

    2015-03-01

    This study addresses the characteristics of Cu-doped and undoped potassium borate glass for use as ionizing radiation dosimeters by investigating and comparing the thermoluminescence responses, linearity, sensitivity and dose response s of the two types of glasses. A number of samples based on xK 2 CO 3 + (100 - x)H 3 BO 3 , where 10 ≤ x ≤ 30 mol.%, have been prepared using a melt quenching technique. The amorphous phases were identified using X-ray diffraction (XRD). The undoped potassium borate samples 20K 2 CO 3 + 80H 3 BO 3 (mol.%) and Cu-doped (0.5 mol.%) samples were placed in a solid phantom apparatus and irradiated with in X-ray tube under 6 MV accelerating voltage with doses ranging from 0.5 to 4.0 Gy. This beam was produced by the Primus MLC 3339 linear accelerator (LINAC) available at Hospital Sultan Ismail, Johor Bahru, Malaysia. The results clearly show the superiority of Cu-doped glass in terms of response and sensitivity to producing luminescence over undoped potassium borate glass. The sensitivity of Cu-doped glass is 6.75 times greater than that of undoped glass.

  14. Spectroscopic investigations of Nd3+ doped flouro- and chloro-borate glasses.

    PubMed

    Mohan, Shaweta; Thind, Kulwant Singh; Sharma, Gopi; Gerward, Leif

    2008-10-01

    Spectroscopic and physical properties of Nd3+ doped sodium lead flouro- and chloro-borate glasses of the type 20NaX-30PbO-49.5B2O3-0.5Nd2O3 (X=F and Cl) have been investigated. Optical absorption spectra have been used to determine the Slater Condon (F2, F4, and F6), spin orbit xi4f and Racah parameters (E1, E2, and E3). The oscillator strengths and the intensity parameters Omega2, Omega4 and Omega6 have been determined by the Judd-Ofelt theory, which in turn provide the radiative transition probability (A), total transition probability (A(T)), radiative lifetime (tauR) and branching ratio (beta) for the fluorescent level 4F3/2. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Omega4/Omega6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. Nephelauxetic effect results in a red shift in the energy levels of Nd3+ for chloroborate glass. The radiative transition probability of the potential lasing transition 4F3/2-->4I11/2 of Nd3+ ions is found to be higher for flouroborate as compared to chloroborate glass. PMID:18068421

  15. Structural and optical properties of lithium sodium borate glasses doped with Sm3+ ions

    NASA Astrophysics Data System (ADS)

    Dawaud, R. S. E. S.; Hashim, S.; Alajerami, Y. S. M.; Mhareb, M. H. A.; Maqableh, M. M.; Tamchek, N.

    2014-07-01

    Absorption and emission spectra of Sm3+ doped lithium sodium borate (LNB) have been reported. The samples were prepared by the melt-quenching technique and characterized by X-ray diffraction (XRD), diffraction thermal analysis (DTA), Fourier transforms infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). From the thermo-grams spectrum, glass transition (Tg), crystallization (Tc) and melting temperatures (Tm) have been evaluated. Direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. These glasses have shown strong nine absorption bands with hypersensitive transition at 1221 nm (6H5/2→4H3/2) and five emission bands for the transition at 4I7/2→6H13/2 (green color), 4I7/2→6H7/2 (orange color), 4I7/2→6H9/2 (orange color), 4I7/2→6H11/2 (red color) and 4I7/2→6H13/2 (red color) with performing an excitation of 400 nm. The oscillator strengths, refractive index, ions concentration, polaron radius and other parameters have been calculated for each dopant.

  16. Ho3+-doped strontium-aluminium-bismuth-borate glasses for green light emission.

    PubMed

    Rajesh, D; Dhamodhara Naidu, M; Ratnakaram, Y C; Balakrishna, A

    2014-11-01

    Strontium-aluminium-bismuth-borate glasses (SAlBiB) doped with different concentrations of Ho(3+) were prepared using conventional melt quenching technique and their structural and optical properties investigated. X-ray diffraction and scanning electron microscopy analysis were used to study the structural properties. Optical properties were studied by measuring the optical absorption and visible luminescence spectra. The Judd-Ofelt (J-O) theory was applied to evaluate J-O intensity parameters, Ω(λ) (λ = 2, 4 and 6). Using J-O intensity parameters, radiative properties such as spontaneous transition probabilities (A(R)), branching ratios (β(R)) and radiative lifetimes (τ(R)) were determined. From the emission spectra, a strong green emission nearly at 549 nm corresponding to the transition, (5)S2 ((5)F4)→(5)I(8) was observed. Emission peak positions (λ(P)), effective bandwidths (Δλ(eff)) and stimulated emission cross-sections (σ(p)) were calculated for the observed emission transitions, (5)F3 →(5)I(8), (5)S2((5)F4)→(5)I(8) and (5)F5 →(5)I(8) of Ho(3+) in all the glass matrices. Chromaticity color coordinates were calculated using the emission spectra. The experimental results suggest that SAlBiB glass matrix with 1.5 mol% of Ho(3+) has better emission properties. PMID:24519914

  17. Thermoluminescence properties of the Cu-doped lithium potassium borate glass.

    PubMed

    Aboud, Haydar; Wagiran, H; Hussin, R; Ali, Hassan; Alajerami, Yasser; Saeed, M A

    2014-08-01

    Characteristics of lithium potassium borate glasses with various copper concentrations are reported. The glasses were prepared by the melt quenching method and irradiated with photons to doses in the 0.5-4.0 Gy range. Glowing curves, dose response curves, reproducibility of the response, dose threshold, thermal fading and optical bleaching were studied. PMID:24681645

  18. Random lasing in Eu3+ doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation

    NASA Astrophysics Data System (ADS)

    Xu, Xuhui; Zhang, Wenfei; Jin, Limin; Qiu, Jianbei; Yu, Siu Fung

    2015-10-01

    We report the observation of random lasing from Eu3+ doped borate glass ceramic films embedded with Ag nanoparticles through three-photon absorption at room temperature. Under 1179 nm ultrashort femtosecond pulse excitation, discrete sharp peaks with linewidth ~0.4 nm emerge randomly from a broad emission band with peak wavelength at ~612 nm. In addition, the number of sharp peaks increases with the increase of excitation power. We also show that the emission spectrum varies with different observation angles and the corresponding lasing threshold is dependent on the excitation area. Hence, we verify unambiguously that the Eu3+ doped borate glass ceramic film supports random lasing action via three-photon absorption excitation. In addition, Ag nanoparticles, which act as light scatterers, allow the formation of random microcavities inside the bulk film.

  19. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    PubMed

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. PMID:24983922

  20. Waveguides and nonlinear index of refraction of borate glass doped with transition metals

    NASA Astrophysics Data System (ADS)

    Almeida, Juliana M. P.; Fonseca, Ruben D.; De Boni, Leonardo; Diniz, Andre Rosa S.; Hernandes, Antonio C.; Ferreira, Paulo H. D.; Mendonca, Cleber R.

    2015-04-01

    The ability to write 3D waveguides by femtosecond laser micromachining and the nonlinear refractive index (n2) spectrum of a new borate glass matrix, containing zinc and lead oxides - (BZP) have been investigated. The transparent matrix was doped with transition metals (CdCl2, Fe2O3, MnO2 and CoO) in order to introduce electronic transitions in visible spectrum, aiming to evaluate their influence on the waveguides and n2 spectrum. We observed that n2 is approximately constant from 600 to 1500 nm, exhibiting an average value of 4.5 × 10-20 m2/W, which is about twice larger than the one for fused silica. The waveguide profile is influenced by the self-focusing effect of the matrix owing to its positive nonlinear index of refraction in the wavelength used for micromachining. A decrease in the waveguide loss of approximately four times was observed for the sample doped with Fe in comparison to the other ones, which may be associated with the change in the optical gap energy.

  1. Optical properties of Lead bismuth borate glasses doped with neodymium oxide.

    PubMed

    Farouk, M; Abd El-Maboud, A; Ibrahim, M; Ratep, A; Kashif, I

    2015-10-01

    Neodymium doped Lead bismuth borate glasses with the composition of 25PbO-25Bi2O3-50B2O3:xNd2O3, where x=0.5, 1, 1.5 and 2 mol%, have been prepared by melt quenching technique. The behavior of the density and molar volume allows concluding that, addition of Nd2O3 leads to the formation of non-bridging oxygen. Rare earth ion parameters have been calculated and studied. The optical band gap (Eg), and band tails (Ee) were determined. Judd-Ofelt theory for the intensity analysis of induced electric dipole transitions has been applied to the measured oscillator strengths of the absorption bands to determine the three phenomenological intensity parameters Ω2, Ω4 and Ω6 for glass. It was observed that the deviation parameters, rms, was found to be 0.56:0.58(×10(-6)). The estimated Judd-Ofelt parameters were found to be Nd2O3concentration dependent. The hypersensitive transition, (4)I9/2→(4)G5/2+(2)G7/2, is closely related to Ω2 parameter. PMID:25965518

  2. Molecular dynamic simulation of EuT -doped sodium borate glasses and their fluorescence spectra

    SciTech Connect

    Hirao, K.; Soga, N.

    1985-10-01

    A molecular dynamic simulation was performed for sodium borate glasses containing a small amount of Eu2O3 to investigate the local structures of cations in glass. A new potential V /SUB B-B/ in the form -A exp (-C(r - 0.239)S) was added to the regular modified Born-Mayer-Huggins-type potentials, /PHI/ /SUB B-B/ , /PHI/ /SUB B-O/ , and /PHI/ /SUB O-O/ , to account for the directional tendency of the borate network structure. With this potential added, both the radial distribution of sodium borate glasses observed by smallangle X-ray diffraction and the change in coordination number of boron with sodium content obtained by NMR agreed well with the simulation. The average coordination number of EuT ions in the simulated glasses varied from 7.5 to 8.6, depending on the composition of the host sodium borate glasses. The inhomogeneous line width of the VD0-XF2 emission peak also changed, depending on the sodium content, with a maximum at 18 mol % Na2O content; this result agrees well with experimental data obtained from laser-induced fluorescence spectra.

  3. Broad-spectrum antibacterial properties of metal-ion doped borate bioactive glasses for clinical applications

    NASA Astrophysics Data System (ADS)

    Ottomeyer, Megan

    Bioactive glasses with antimicrobial properties can be implemented as coatings on medical devices and implants, as well as a treatment for tissue repair and prevention of common hospital-acquired infections such as MRSA. A borate-containing glass, B3, is also undergoing clinical trials to assess wound-healing properties. The sensitivities of various bacteria to B3, B3-Ag, B3-Ga, and B3-I bioactive glasses were tested. In addition, the mechanism of action for the glasses was studied by spectroscopic enzyme kinetics experiments, Live-Dead staining fluorescence microscopy, and luminescence assays using two gene fusion strains of Escherichia coli. It was found that gram-positive bacteria were more sensitive to all four glasses than gram negative bacteria, and that a single mechanism of action for the glasses is unlikely, as the rates of catalysis for metabolic enzymes as well as membrane permeability were altered after glass exposure.

  4. One-photon band gap engineering of borate glass doped with ZnO for photonics applications

    SciTech Connect

    Abdel-Baki, Manal; Abdel-Wahab, Fathy A.; El-Diasty, Fouad

    2012-04-01

    Lithium tungsten borate glass of the composition (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0 {<=}x{<=} 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B{sub 2}O{sub 3} by ZnO.

  5. One-photon band gap engineering of borate glass doped with ZnO for photonics applications

    NASA Astrophysics Data System (ADS)

    Abdel-Baki, Manal; Abdel-Wahab, Fathy A.; El-Diasty, Fouad

    2012-04-01

    Lithium tungsten borate glass of the composition (0.56-x)B2O3-0.4Li2O-xZnO-0.04WO3 (0 ≤ x ≤ 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B2O3 by ZnO.

  6. The structural, optical and magnetic parameter of manganese doped strontium zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Sumalatha, B.; Omkaram, I.; Rajavardhana Rao, T.; Linga Raju, Ch.

    2013-02-01

    Glasses with composition 10SrO:(30-x)ZnO:60B2O3:xMnO, 0≤x≤0.9 (all compositions in wt%) have been prepared and investigated by X-ray diffraction, EPR, Optical absorption and FT-IR spectroscopic techniques. The XRD pattern of all the glasses confirmed the formation of an amorphous structure. The EPR spectra of all glass samples exhibit resonance signals at g≈2.0 with a sextet of hyperfine lines. The spin concentration (N) and temperature dependence of EPR signals were studied for Mn2+ ions in strontium zinc borate glass samples. The zero-field splitting parameter D has been evaluated from the intensities of the allowed hyperfine lines. The paramagnetic susceptibility (χ) was calculated from EPR data at different temperatures and the Curie temperature (θp) was calculated from the 1/χ verses T graph. The optical absorption spectra exhibit a single broad band near 470 nm and this has been attributed to the spin-allowed 5Eg→5T2g transition of Mn3+ ions in octahedral symmetry. The theoretical optical basicity (Λth) of these glasses have also been evaluated. The FTIR studies show BO3 and BO4 structural units in strontium zinc borate glasses.

  7. Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides.

    PubMed

    Hashim, S; Alajerami, Y S M; Ramli, A T; Ghoshal, S K; Saleh, M A; Abdul Kadir, A B; Saripan, M I; Alzimami, K; Bradley, D A; Mhareb, M H A

    2014-09-01

    Lithium potassium borate (LKB) glasses co-doped with TiO2 and MgO were prepared using the melt quenching technique. The glasses were cut into transparent chips and exposed to gamma rays of (60)Co to study their thermoluminescence (TL) properties. The TL glow curve of the Ti-doped material featured a single prominent peak at 230 °C. Additional incorporation of MgO as a co-activator enhanced the TL intensity threefold. LKB:Ti,Mg is a low-Z material (Z(eff)=8.89) with slow signal fading. Its radiation sensitivity is 12 times lower that the sensitivity of TLD-100. The dose response is linear at doses up to 10(3) Gy. The trap parameters, such as the kinetics order, activation energy, and frequency factor, which are related to the glow peak, were determined using TolAnal software. PMID:24929526

  8. Precipitation of ZnO in Al 2O 3-doped zinc borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Masai, Hirokazu; Ueno, Takahiro; Takahashi, Yoshihiro; Fujiwara, Takumi

    2011-10-01

    Crystallization behavior of the oxide semiconductor ZnO in zinc borate glass was investigated. The precipitated crystalline phase of glass ceramics containing a small amount of Al 2O 3 was α-Zn 3B 2O 6 whereas that of the glass ceramics containing a large amount of Al 2O 3 was ZnO. It was found that the c-oriented precipitation of ZnO in a glass ceramic was brought about by the in-plane crystal growth of needle-like ZnO crystallites along the a-axis. Amount of Al 2O 3 that can make glass network affected the coordination state of B 2O 3 in the glass, and a three-coordinated BO 3 unit was preferentially formed in the glass containing a higher amount of Al 2O 3. The present results suggest that crystallization of ZnO from multi-component glass is dominated by the local coordination state of the mother glass.

  9. Photon Interaction Parameters for Some Borate Glasses

    SciTech Connect

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir; Sharma, J. K.; Singh, Parjit S.

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  10. Photon Interaction Parameters for Some Borate Glasses

    NASA Astrophysics Data System (ADS)

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir; Sharma, J. K.; Singh, Parjit S.

    2010-11-01

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  11. Role of oxygen on the optical properties of borate glass doped with ZnO

    SciTech Connect

    Abdel-Baki, Manal; El-Diasty, Fouad

    2011-10-15

    Lithium tungsten borate glass (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0{<=}x{<=}0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B{sub 2}O{sub 3} the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density, which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B{sub 2}O{sub 3}, which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: > New borate glass for photonic application is prepared. > The dispersion property of the glass is effectively controlled using small amounts of ZnO. > ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. > Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.

  12. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    SciTech Connect

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-03-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu{sup 3+} ions to Eu{sup 2+} ions is presented in this material. • The intensity of Ag{sup +} luminescence. • The introduction of Eu ions accelerated the reaction between Eu{sup 2+} ions and silver ions inducing the silver clusters formation. - Abstract: Ag{sup +} doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag{sup +} decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu{sup 3+} to Eu{sup 2+} in our glass system, it revealed that Ag{sup +} has been reduced by the neighboring Eu{sup 2+} which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag{sup +}/Ag aggregates to the Eu{sup 3+} was investigated for the enhancement of Eu{sup 3+} luminescence.

  13. Optical absorption and photoluminescence properties of Dy3+ doped heavy metal borate glasses - Effect of modifier oxides

    NASA Astrophysics Data System (ADS)

    Sasi kumar, M. V.; Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-06-01

    The present paper aims at reporting the optical absorption and emission properties of Dy3+ doped alkali (Li, Na, K) and mixed alkali (Li-Na, Li-K, Na-K) heavy metal borate glasses. For these glasses X-ray diffraction (XRD), differential scanning calorimetry (DSC), optical absorption, emission and lifetime decay measurements were carried out. Glass transition temperatures are obtained from the DSC spectra. Judd-Ofelt theory has been used to derive the spectral intensities (f), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) and certain radiative properties. Using the Judd-Ofelt intensity parameters, radiative lifetimes (τR), branching ratios (β), integrated absorption cross-sections (Σ) and emission cross-sections (σP) were obtained. The variations in these parameters with the variation of glass matrix are discussed in detail. The decay lifetime of the 4F9/2 level has been measured from the decay profiles and compared with calculated lifetimes. From the emission spectra, chromacity color coordinates are calculated and indicated the white light emission for potassium glass matrices. It was observed that among various glass matrices, potassium glass matrix has exhibited large emission cross-section for 6F9/2 → 6H13/2 transition.

  14. Identification of ε-Fe2O3 nano-phase in borate glasses doped with Fe and Gd

    NASA Astrophysics Data System (ADS)

    Ivanova, O. S.; Ivantsov, R. D.; Edelman, I. S.; Petrakovskaja, E. A.; Velikanov, D. A.; Zubavichus, Y. V.; Zaikovskii, V. I.; Stepanov, S. A.

    2016-03-01

    A new type of magnetic nanoparticles was revealed in borate glasses co-doped with low contents of iron and gadolinium. Structure and magnetic properties of the particles differ essentially from that of the α-Fe2O3, γ-Fe2O3, or Fe3O4 nanoparticles which were detected earlier in similar glass matrices. Transmission electron microscopy including STEM-HAADF and EDX, synchrotron radiation-based XRD, static magnetic measurements, magnetic circular dichroism, and electron magnetic resonance studies allow referring the nanoparticles to the iron oxide phase-ε-Fe2O3. Analysis of the data set has shown that it is Gd atoms that govern the process of nanoparticles' nucleation and its incorporation into the particles in different proportions can be used to adjust their magnetic and magneto-optical characteristics.

  15. FTIR studies of some vanadyl ion doped calcium oxychloride borate glasses

    NASA Astrophysics Data System (ADS)

    Khasa, S.; Dahiya, M. S.; Agarwal, A.

    2013-06-01

    The borate glass system with composition xCaCl2ṡ(30-x)ṡCaOṡ70B2O3+2mol% of V2O5(x = 0,0.02,0.05,0.07,0.10,0.12,0.15,0.20,0.25,0.30) has been prepared with the traditional melt-quenching technique. The FTIR study has been carried out using Perkin Elmer Frontier FTIR with ATR accessory in the mid IR range. The density, molar theoretical optical basicity is calculated so as to determine the structure and covalency in the glass network so formed. The spectra reveal absence of boroxol ring and presence of absorption bands corresponding to the combined contributions of tri and tetra borate stretching vibrations. This confirms the network modifier nature of magnesium chloride. The increasing basicity reveals decrease in the covalence nature of oxygen and octahedral enhancement in the vanadyl ion nature as we replace the CaO content with CaCl2. The increase in molar volume may be due to the increase in openness of the network structure.

  16. Effects of densification on fluorescence spectra and glass structure of Eu3+-doped borate glasses

    NASA Astrophysics Data System (ADS)

    Soga, N.; Hirao, K.; Yoshimoto, M.; Yamamoto, H.

    1988-05-01

    Densified glass specimens of 90 B2O3ṡ10 Na2Oṡ1 Eu2O3 were obtained by applying hydrostatic pressure up to 6 GPa at various temperatures from 250 to 900 °C, and their densities and inhomogeneous bandwidths of Eu3+ fluorescence spectra were determined in order to follow a structural change taking place during densification. The results indicate that the role of hydrostatic pressure is first to eliminate the atomic scale voids usually appearing when quenched from high temperatures and then to increase the fluctuation of local fields around Eu3+ probably due to the distortion of glass network accompanied with a wide variation of bond length. The molecular dynamics simulation of the densified state was also carried out to support the above conclusion.

  17. Er-doped lead borate glasses and transparent glass ceramics for near-infrared luminescence and up-conversion applications.

    PubMed

    Pisarski, Wojciech A; Goryczka, Tomasz; Pisarska, Joanna; Ryba-Romanowski, Witold

    2007-03-15

    Lead borate based glasses have been analyzed using Raman and infrared spectroscopy. The formation of different borate groups and the direction of BO3 <--> BO4 conversion strongly depends on the PbO- and/or PbF2-to-B2O3 ratio in chemical composition. PbF2-PbO-B2O3 based glasses containing Er3+ ions have been studied after annealing. The orthorhombic PbF2 crystallites are formed during thermal treatment, which was evidenced by X-ray diffraction analysis. Near-infrared luminescence at 1530 nm and green up-conversion at 545 nm have been registered for samples before and after annealing. The luminescence bands correspond to 4I13/2-4I15/2 and 4S3/2-4I15/2 transitions of Er3+ ions, respectively. In comparison to the precursor glasses, the luminescence intensities are higher in the studied transparent oxyfluoride glass ceramics. Simultaneously, the half-width of the luminescence lines slightly decreases. It can be the evidence that a small amount of the Er3+ ions is incorporated into the orthorhombic PbF2 phase. PMID:17302452

  18. Physical and optical absorption studies of Fe3+ - ions doped lithium borate glasses containing certain alkaline earths

    NASA Astrophysics Data System (ADS)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2016-05-01

    Iron ion doped lithium borate glasses with the composition 15RO-25Li2O-59B2O3-1Fe2O3 (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to 6A1g(S) → 4Eg (G) of Fe3+ ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  19. Visible red, NIR and Mid-IR emission studies of Ho3+ doped Zinc Alumino Bismuth Borate glasses

    NASA Astrophysics Data System (ADS)

    Mahamuda, Sk.; Swapna, K.; Packiyaraj, P.; Srinivasa Rao, A.; Vijaya Prakash, G.

    2013-12-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of Holmium were prepared by conventional melt quenching technique. The glassy nature of these glasses has been confirmed through the XRD spectral measurements. The FTIR spectra recorded for undoped glass revealed the information related to the functional groups involved in the host glass. Optical absorption, excitation and photoluminescence spectra of these glasses have been recorded at room temperature. The Judd-Ofelt theory has been applied successfully to characterize the absorption spectra of the ZnAlBiB glasses. From this theory various radiative properties such as radiative transition probability (AR), radiative lifetimes (τR), branching ratios (βR) and spectroscopic quality factor (χ) for the prominent emission levels 5F5 → 5I7, 5F5 → 5I8 and 5I7 → 5I8 have been evaluated. The photoluminescence spectra revealed the quenching of luminescence intensity beyond 1.0 mol% of Ho3+ ion concentration in ZnAlBiB glasses. To investigate the lasing potentiality of 5F5 → 5I7, 5F5 → 5I8 and 5I7 → 5I8 transitions, the effective band width (Δλp) and the stimulated emission cross-section (σse) were determined. The CIE chromaticity co-ordinates were also evaluated from the emission spectra for all the glasses to understand the suitability of these materials for visible red laser emission in principle.

  20. Effect of co-doped SnO{sub 2} nanoparticles on photoluminescence of cu-doped potassium lithium borate glass

    SciTech Connect

    Namma, Haydar Aboud; Wagiran, H.; Hussin, R.; Ariwahjoedi, B.

    2012-09-26

    The SnO{sub 2} co-doped lithium potassium borate glasses doped with 0.05, 0.10, 0.25 and 0.50 mol% of Cu were synthesized by the melt quenching technique. The SnO{sub 2} co-dope was added to the compounds in the amounts of 0.05, 0.10, and 0.20 mol%. The photoluminescent spectrum for different concentrations of copper was studied. It was observed that the intensity of blue emission (450, 490 nm) varies with concentration mol%. In addition, with different concentration of SnO{sub 2} to 0.10 mol% Cu, the influence of the luminescence has been observed to enhance intensity and shifted to blue and red (490, 535 nm) emissions.

  1. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    PubMed

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters. PMID:25828828

  2. Thermo-optical characteristics and concentration quenching effects in Nd3+doped yttrium calcium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, D. R. S.; Santos, C. N.; de Camargo, A. S. S.; Silva, W. F.; Santos, W. Q.; Vermelho, M. V. D.; Astrath, N. G. C.; Malacarne, L. C.; Li, M. S.; Hernandes, A. C.; Ibanez, A.; Jacinto, C.

    2011-03-01

    In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd2O3-(5-x)Y2O3-40CaO-55B2O3 (0 ≤ x ≤ 1.0 mol%). Their fluorescence quantum efficiency (η) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Förster-Dexter model of multipolar ion-ion interactions. A maximum η = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd3+ content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of η on the Nd3+ concentration with a high optimum Nd3+ concentration put this system as a strong candidate for photonics applications.

  3. Judd-Ofelt analysis and spectral properties of Dy3+ ions doped niobium containing tellurium calcium zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Ravi, O.; Reddy, C. Madhukar; Reddy, B. Sudhakar; Deva Prasad Raju, B.

    2014-02-01

    Niobium containing tellurium calcium zinc borate (TCZNB) glasses doped with different concentrations of Dy3+ ions were prepared by the melt quenching method and their optical properties have been studied. The Judd-Ofelt (J-O) intensity parameters Ωt (t=2, 4 and 6) were calculated using the least square fit method. Based on the magnitude of Ω2 parameter the hypersensitivity of 6H15/2→6F11/2 has also been discussed. From the evaluated J-O intensity parameters as well as from the emission and lifetime measurements, radiative transition properties such as radiative transition probability rates and branching ratios were calculated for 4F9/2 excited level. It is found that for Dy3+ ion, the transition 4F9/2→6H13/2 shows highest emission cross-section at 1.0 mol% TCZNB glass matrix. From the visible luminescence spectra, yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The TCZNB glasses exhibit good luminescence properties and are suitable for generation of white light.

  4. Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses.

    PubMed

    Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M

    2010-03-01

    Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported. PMID:20060775

  5. Degradable borate glass polyalkenoate cements.

    PubMed

    Shen, L; Coughlan, A; Towler, M; Hall, M

    2014-04-01

    Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time. PMID:24435528

  6. Luminescent properties of lithium-phosphate-borate glasses doped with Tb3+/ Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Valiev, D. T.; Stepanov, S. A.; Cong, Liu

    2016-02-01

    The luminescence of Li2O-B2O3-P2O5-CaF2 scintillation glass doped Tb3+, Eu3+ under different types of excitation sources are investigated. Changing the europium concentration of 0.5 to 1 wt% leads changes in luminescence intensity of Tb3+ ions. The luminescence spectrum of the Tb3+ ions are depend on the concentration of Eu3+. It was found, that the luminescence decay kinetics of terbium ion in the band 543 nm depending on the concentration of europium and from type of excitation. The difference in the nature of the luminescence decay kinetics of glasses under pulsed photo- and electronic excitation discussed.

  7. Optical and other spectroscopic studies of lead, zinc bismuth borate glasses doped with CuO

    NASA Astrophysics Data System (ADS)

    Rajyasree, Ch.; Vinaya Teja, P. Michael; Murthy, K. V. R.; Krishna Rao, D.

    2011-12-01

    10MO·20Bi2O3·(70-x)B2O3·xCuO [M=Pb, Zn] with x=0, 0.4 and 0.8 (wt%) glasses were synthesized by the melt-quenching technique and were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Physical parameters, like density, and spectroscopic studies (optical absorption, EPR, FTIR and photoluminescence) were used to understand the role of modifier oxide and CuO in the glass matrix. A red shift of the absorption band corresponds to 2B1g→2B2g transition of Cu2+ ions from P2 to Z4 samples and the increase of hyperfine splitting factor (A‖) from P2 to Z2 shows that with the integration of PbO by ZnO the electron density around copper ion is increased. It is also supported by the gradual increase in theoretical optical basicity values of ZnO mixed glasses, as compared to that of PbO mixed glass matrix. Reduced bismuth radicals are found in undoped and 0.4% CuO doped glasses of both the series. Analysis of the absorption and emission studies indicates that the concentration of luminescence centers of bismuth ions (Bi3+ ions in UV region) is decreased by the integration of ZnO as well as by increasing the dopant concentration. In lead series PbO4 and BiO3 units are increased from P2 to P4 and in zinc series BiO3 units are decreased from Z0 to Z4. The conductivity of the glass matrices is increased in both the series with the dopant of CuO.

  8. Random lasing in Eu³⁺ doped borate glass-ceramic embedded with Ag nanoparticles under direct three-photon excitation.

    PubMed

    Xu, Xuhui; Zhang, Wenfei; Jin, Limin; Qiu, Jianbei; Yu, Siu Fung

    2015-10-21

    We report the observation of random lasing from Eu(3+) doped borate glass ceramic films embedded with Ag nanoparticles through three-photon absorption at room temperature. Under 1179 nm ultrashort femtosecond pulse excitation, discrete sharp peaks with linewidth ∼0.4 nm emerge randomly from a broad emission band with peak wavelength at ∼612 nm. In addition, the number of sharp peaks increases with the increase of excitation power. We also show that the emission spectrum varies with different observation angles and the corresponding lasing threshold is dependent on the excitation area. Hence, we verify unambiguously that the Eu(3+) doped borate glass ceramic film supports random lasing action via three-photon absorption excitation. In addition, Ag nanoparticles, which act as light scatterers, allow the formation of random microcavities inside the bulk film. PMID:26377118

  9. Optical and FTIR structural studies of CoO-doped sodium borate, sodium silicate and sodium phosphate glasses and effects of gamma irradiation-a comparative study

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; ElBatal, F. H.; ElBatal, H. A.; EzzElDin, F. M.

    2014-09-01

    Undoped and CoO-doped three binary glass systems, namely sodium borate, sodium silicate and sodium phosphate glasses were prepared by the melt annealing technique. Combined optical and FTIR spectral studies were carried out for the prepared samples before and after being subjected to a gamma dose of 8 Mrad (8 × 104 Gy). Optical spectra of the undoped samples before irradiation reveal strong UV absorption varying in depth with the type of glass and such strong UV spectra are related to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of these three basic glasses. CoO-doped (0.25%) glasses show additional visible absorption spectra which are related to the existence of cobalt in the divalent state (Co)2+ ions which are present in two coordination states, namely the octahedral and tetrahedral forms. The broad visible band of Co2+ ions shows in some instances obvious splitting to three component peaks. Gamma irradiation on undoped glasses causes obvious induced UV-visible bands and their extension depends on the type of glass system. Irradiation of CoO-doped glasses causes an obvious increase of absorption within the visible region. Infrared absorption spectra of the undoped three basic glasses reveal IR vibrational bands which are characteristics to the three specific characteristic structural building units within the borate, silicate and phosphate glasses. The introduction of CoO with the doping level causes minor variations of the IR spectra because of the low doping content together with the presence of cobalt ions in structural modifying sites. Gamma irradiation is observed to cause limited changes within the intensities of some bands in the IR spectra which are attributed to changes in bond lengths and/or bond angles of the structural building units by the irradiation process.

  10. Composition dependent spectroscopic properties of Nd3+ doped sodium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-05-01

    Nd3+ doped oxide glasses of the type xNa2O-30 PbO-(69.5-x) B2O3-0.5Nd2O3 were prepared and investigated for physical and spectroscopic properties. Optical absorption spectra and Judd-Ofelt theory has been used to determine the oscillator strengths and the intensity parameters Ωλ (λ=2, 4, 6). The radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ in the prepared glasses have been determined. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4 / Ω6), the value of which is in the range 0.2-1.5, typical for Nd3+ in different laser hosts. The radiative transition probability of the potential lasing transition 4F3/2 → 4I11/2 of Nd3+ ions is found to increase with increase in content of Na2O.

  11. Physical, structural and spectroscopic investigations of Sm3+ doped ZnO mixed alkali borate glass

    NASA Astrophysics Data System (ADS)

    Sailaja, B.; Joyce Stella, R.; Thirumala Rao, G.; Jaya Raja, B.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.

    2015-09-01

    Glass of 20ZnO-15 Li2O-15 Na2O-49.9 B2O3 doped with 0.1 mol% of Sm3+ (ZLNB) was prepared by the melt quenching technique. Physical properties were studied and analysed. The XRD studies confirm the amorphous nature of sample. The FT-IR spectral investigation discloses the BO3, BO4 groups, H and OH bonds. Optical absorption and emission spectra were recorded and characterized. Judd-Ofelt theory was applied to f ↔ f transitions to evaluate Judd-Ofelt intensity parameters (Ωλ). The oscillator strengths and bonding parameters were determined from absorption spectra. The trend observed was Ω4 > Ω6 > Ω2. High value of Ω4 reveals higher rigidity and covalency around the Sm3+ ion. Low value of Ω2 implies ionic nature of ligands and site symmetry around Sm3+ ion. luminescence data and Judd-Ofelt parameters Ωλ (λ = 2, 4, and 6) were used to evaluate various radiative probabilities like spontaneous radiative emission probabilities (AR), radiative lifetime (τR) and branching ratios (βR) stimulated emission cross section (σe) and CIE colour coordinates were measured, CCT temperature evaluated and the values were used to ascertain potential laser transitions at the optimum mixed alkali effect observed for the glass sample prepared. The preparedness of the material as the efficient laser active material is examined.

  12. Glass composition and excitation wavelength dependence of the luminescence of Eu{sup 3+} doped lead borate glass

    SciTech Connect

    Wen Hongli; Duan, Chang-Kui; Jia Guohua; Tanner, Peter A.; Brik, Mikhail G.

    2011-08-01

    This work explores the relationship between the bandwidth of luminescence spectral features and their relative intensities, using glasses doped with europium, Eu{sup 3+}, over a wide composition range. Glasses of composition (B{sub 2}O{sub 3}){sub 70}(PbO){sub 29}(0.5Eu{sub 2}O{sub 3}){sub 1} and (B{sub 2}O{sub 3}){sub z}(PbO){sub 99.6-z}(0.5Eu{sub 2}O{sub 3}){sub 0.4}, (z = 20, 30, 40, 60, 70), were prepared by the melting-quenching technique. Variable-wavelength measurements by the prism-coupling method enabled interpolation of refractive index at selected wavelengths. Diffuse reflectance spectra confirmed the incorporation of Eu{sup 3+} into the glass, and scanning electron microscopy displayed that this was in a homogeneous manner. Vibrational spectra showed a change in boron coordination from BO{sub 3} to BO{sub 4} units with increase of PbO content in the glass. Multi-wavelength excited luminescence spectra were recorded for the glasses at temperatures down to 10 K and qualitative interpretations of spectral differences with change of B{sub 2}O{sub 3} content are given. The quantitative analysis of {sup 5}D{sub 0} luminescence intensity-bandwidth relations showed that although samples with higher boron content closely exhibit a simple proportional relationship with band intensity ratios, as expected from theory, the expression needs to be slightly modified for those with low boron content. The Judd-Ofelt intensity analysis of the {sup 5}D{sub 0} emission spectra under laser excitations at low temperature gives {Omega}{sub 2} values within the range from (3.9-6.5) x 10{sup -20} cm{sup 2}, and {Omega}{sub 4} in the range from (4.1-7.0) x 10{sup -20} cm{sup 2}, for different values of z. However, no clear monotonic relation was found between the parameter values and composition. The Judd-Ofelt parameters are compared with those from other systems doped with Eu{sup 3+} and are found to lie in the normal ranges for Eu{sup 3+}-doped glasses. The comparison of

  13. Spectroscopy and energy transfer in lead borate glasses doubly doped with Dy(3)(+)-Tb(3+) and Tb(3)(+)-Eu(3+) ions.

    PubMed

    Pisarska, Joanna; Kos, Agnieszka; Pisarski, Wojciech A

    2014-08-14

    Lead borate glasses doubly doped with Dy(3)(+)-Tb(3+) and Tb(3+)-Eu(3+) were investigated using optical spectroscopy. Luminescence spectra of rare earths were detected under various excitation wavelengths. The main green emission band due to (5)D4→(7)F5 transition of Tb(3+) is observed under excitation of Dy(3+), whereas the main red emission band related to (5)D0→(7)F2 transition of Eu(3+) is successfully observed under direct excitation of Tb(3+). In both cases, the energy transfer processes from Dy(3+) to Tb(3+) and from Tb(3+) to Eu(3+) in lead borate glasses occur through a nonradiative processes with efficiencies up to 16% and 18%, respectively. The presence of energy transfer process was also confirmed by excitation spectra measurements. PMID:24824577

  14. Crystallization of lithium borate glasses

    NASA Technical Reports Server (NTRS)

    Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.

    1992-01-01

    The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.

  15. Structural study and DC conductivity of vanadyl doped zinc lithium borate glasses

    SciTech Connect

    Seema; Khasa, S. Dahiya, M. S.; Yadav, Arti; Agarwal, A.; Dahiya, S.

    2015-06-24

    Glasses with composition xZnO⋅(30 − x)⋅Li{sub 2}O⋅70B{sub 2}O{sub 3} containing 2 mol% of V{sub 2}O{sub 5} (x = 0, 2, 5, 7 and 10) were prepared by standard melt-quench technique. The amorphous nature of the glass samples was confirmed by using x-ray diffraction. The structural changes in these glasses have been investigated by employing IR spectroscopy in the mid-IR range. The infrared spectroscopic analysis confirms the presence of both triangular and tetraheldral coordinated boron units and absence of boroxol ring. It also shows that metal-oxide vibrations are present which are due to the bonding of lithium and zinc ions with oxygen. The dc conductivity was measured in the temperature range 353-523 K. The dc conductivity results show that conductivity decreases and activation energy increases when Li{sub 2}O is replaced by ZnO, keeping the concentration of B{sub 2}O{sub 3} constant. Decrease in conductivity and increase in activation energy shows that addition of ZnO to the glass matrix shows a “blocking effect” on the overall mobility of alkali ions, but at higher concentration the hopping effect was also observed.

  16. Structural study and DC conductivity of vanadyl doped zinc lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Seema, Khasa, S.; Dahiya, M. S.; Yadav, Arti; Agarwal, A.; Dahiya, S.

    2015-06-01

    Glasses with composition xZnOṡ(30 - x)ṡLi2Oṡ70B2O3 containing 2 mol% of V2O5 (x = 0, 2, 5, 7 and 10) were prepared by standard melt-quench technique. The amorphous nature of the glass samples was confirmed by using x-ray diffraction. The structural changes in these glasses have been investigated by employing IR spectroscopy in the mid-IR range. The infrared spectroscopic analysis confirms the presence of both triangular and tetraheldral coordinated boron units and absence of boroxol ring. It also shows that metal-oxide vibrations are present which are due to the bonding of lithium and zinc ions with oxygen. The dc conductivity was measured in the temperature range 353-523 K. The dc conductivity results show that conductivity decreases and activation energy increases when Li2O is replaced by ZnO, keeping the concentration of B2O3 constant. Decrease in conductivity and increase in activation energy shows that addition of ZnO to the glass matrix shows a "blocking effect" on the overall mobility of alkali ions, but at higher concentration the hopping effect was also observed.

  17. Optical absorption of gamma-irradiated lithium-borate glasses doped with different transition metal oxides

    NASA Astrophysics Data System (ADS)

    Marzouk, S. Y.; Elalaily, N. A.; Ezz-Eldin, F. M.; Abd-Allah, W. M.

    2006-06-01

    We have investigated the effect of gamma irradiation on the optical properties of Li 2O-B 2O 3 containing two concentrations (0.2 or 0.5 g) of each one of the following transition metals, V, Mn, Fe or Ni oxide glass samples. We studied the impacts of gamma irradiation in terms of the mechanism by which radiation-induced defects are generated. A resolution of the observed absorption spectra showed several bands which were induced by photo-reduction or photo-oxidation assumed to take place by photo-chemical reaction according to the type of transition metal oxide (TMO). Small deviations of these induced bands characteristic of the glass constituents were observed and explained in terms of the physical properties, in relation to different oxidation states of TMO in the glass matrix. The series Mn 2+, Fe 2+ and Ni 2+ ions shows a trend of increased photo-oxidation with increasing electronegativity or decreasing mass of the ions. The prepared samples were studied in terms of their dosimetric characteristics: calibration curves from 1.0524 to 42.096 kGy and fading at (25 and 50 °C). Thermal bleaching of irradiated glass was found to permit the reduction of the larger part of TMO ions in Li 2O-B 2O 3. Also, the results showed that the degeneration of the induced bands was faster at 50 than at 25 °C. The optical energy gap Eg was found to decrease with the increase of the radiation dose, and it is suggested that the mechanism of optical transition is forbidden by indirect transition.

  18. Structural and physical properties of vanadium doped copper bismuth borate glasses

    SciTech Connect

    Dhiman, R. L.; Kundu, Virender Singh; Arora, Susheel; Maan, A. S.

    2013-02-05

    The structural and physical properties of xCuO(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x= 0, 5, 10, 15, 20 and 25 mol % with 2 mol %V{sub 2}O{sub 5} glasses prepared by normal melt quench technique have been investigated by means of FT-IR and physical measurement techniques. With the addition of copper oxide (x{<=} 10 mol%), the frequency bands in the higher region shift towards lower wave number, suggest the conversion of BO{sub 3} to BO{sub 4} structural units, which in turn give rise to the formation of Non Bridging Oxygen's (NBOs). For further increase in CuO (i.e. for x{>=} 10 mol %), the frequency bands shift towards higher wave number, indicate the formation of Bridging Oxygen's (BOs). The FTIR analysis reveals that the present glass system is based on the BiO{sub 3} pyramidal, BiO{sub 6} octahedral units and also on BO{sub 3} and BO{sub 4} structural units. The systematic variation in density and molar volume in these glasses indicates the effect of CuO substitution.

  19. Optical properties of bismuth borate glasses doped with Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Boda, Ramesh; Srinivas, G.; Komaraiah, D.; Shareefuddin, Md.; Sayanna, R.

    2016-05-01

    The optical properties of oxide glasses of formula xNa2O-15ZnO-20Bi2O3-(64-x) B2O3-1EuO (ZNB) prepared by melt quenching method have been investigated by means of optical absorption, transmittance, reflectance spectra. The direct band gap values of ZNB changed from 2.709 eV to 2.894 eV with the changed concentration of Na2O. From UV-Vis spectra, the optical band gap, absorption edge (cut-off wavelength), Urbach energy were evaluated due to the varied contents of Na2O. The absorption edge is increasing, band gap (for r=1/2, 2, 1/3, 3) decreasing, Urbach energy is decreasing with the increasing content of Na2O.

  20. XRD and EPR structural investigation of some zinc borate glasses doped with iron ions

    NASA Astrophysics Data System (ADS)

    Stefan, Razvan; Pascuta, Petru; Popa, Adriana; Raita, Oana; Indrea, Emil; Culea, Eugen

    2012-02-01

    Glasses in the system xFe2O3·(100-x) [45ZnO·55B2O3] (0≤x≤10 mol%) have been prepared by melting at 1200 °C and rapidly cooling at room temperature. The obtained samples were submitted to an additional thermal treatment at 570 °C for 12 h in order to relax the glass structure as well as to improve the local order. The as cast and heat treated samples were investigated using X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) measurements. The XRD patterns of all the studied samples show their vitreous nature. Structural modifications occurring in the heat treated samples compared to the untreated ones have been pointed out. EPR spectra of untreated and heat treated samples revealed resonance absorptions centered at g≈2.0, g≈4.3 and g≈6.4. The compositional variation of the line intensity and linewidth of the absorptions from g≈4.3 and g≈2.0 have been interpreted in terms of the variation in the concentration of the Fe3+ ions and the interaction between the iron ions. The EPR spectra of the untreated samples containing 5 mol% Fe2O3 have been studied at different temperatures (110-290 K). The line intensity of the resonance signals decreases with increase in temperature whereas the linewidth is found to be independent of temperature. It was also found that the temperature variation of reciprocal line intensity obeys the Boltzmann law.

  1. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model.

    PubMed

    Zhao, Shichang; Li, Le; Wang, Hui; Zhang, Yadong; Cheng, Xiangguo; Zhou, Nai; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-01-01

    There is a need for better wound dressings that possess the requisite angiogenic capacity for rapid in situ healing of full-thickness skin wounds. Borate bioactive glass microfibers are showing a remarkable ability to heal soft tissue wounds but little is known about the process and mechanisms of healing. In the present study, wound dressings composed of borate bioactive glass microfibers (diameter = 0.4-1.2 μm; composition 6Na2O, 8K2O, 8MgO, 22CaO, 54B2O3, 2P2O5; mol%) doped with 0-3.0 wt.% CuO were created and evaluated in vitro and in vivo. When immersed in simulated body fluid, the fibers degraded and converted to hydroxyapatite within ∼7 days, releasing ions such as Ca, B and Cu into the medium. In vitro cell culture showed that the ionic dissolution product of the fibers was not toxic to human umbilical vein endothelial cells (HUVECs) and fibroblasts, promoted HUVEC migration, tubule formation and secretion of vascular endothelial growth factor (VEGF), and stimulated the expression of angiogenic-related genes of the fibroblasts. When used to treat full-thickness skin defects in rodents, the Cu-doped fibers (3.0 wt.% CuO) showed a significantly better capacity to stimulate angiogenesis than the undoped fibers and the untreated defects (control) at 7 and 14 days post-surgery. The defects treated with the Cu-doped and undoped fibers showed improved collagen deposition, maturity and orientation when compared to the untreated defects, the improvement shown by the Cu-doped fibers was not markedly better than the undoped fibers at 14 days post-surgery. These results indicate that the Cu-doped borate glass microfibers have a promising capacity to stimulate angiogenesis and heal full-thickness skin defects. They also provide valuable data for understanding the role of the microfibers in healing soft tissue wounds. PMID:25890736

  2. [Ce3⁺/Tb3⁺ Doped Alkaline-Earth Borate Glasses Employed in Enhanced Solar Cells].

    PubMed

    Yang, Peng; Zhao, Xin; Wang, Zhi-qiang; Lin, Hai

    2015-12-01

    Ce³⁺ and Tb³⁺ doped alkaline earth borate (LKZBSB) glasses and the photoluminescence properties of glass system have been fabricated and investigated, and the observed violet and green fluorescences are originated from Ce³⁺ and Tb³⁺ emit- ting centers, respectively. Four emission bands peaked at 487, 543, 586 and 621 nm are attributed to the emission transitions ⁵D₄-->⁷F₆, ⁵D₄-->⁷F₅, ⁵D₄-->⁷F₄ and ⁵D₄-->⁷F₃ of Tb³⁺, respectively, and consists of a broad emission band peaking at 389 nm attributed to 5d--4ƒ electric dipole allowed transition of Ce³⁺. With the introduction of Ce³⁺, the effective excitation wavelength range of Tb³⁺ in LKZBSB glasses are remarkably expanded, and the enhanced factor of green fluorescence of Tb³⁺ in Ce³⁺/Tb³⁺ co-doped LKZBSB glasses is up to 73 times in medium-wavelength ultraviolet (UVB) excitation region, compared with that in Tb³⁺ single-doped case. The results show that the conversion from ultraviolet (UV) radiation to visible light is efficient in Ce³⁺/ Tb³⁺ doped LKZBSB glasses, demonstrating that the glasses have potential values in developing enhanced solar cell as a conver- sion layer. PMID:26964196

  3. Cooperative luminescence sensitisation and spontaneous Raman scattering in a borate glass doped with Pr{sup 3+} and Nd{sup 3+} ions

    SciTech Connect

    Chanturiya, G F; Kutaladze, L M; Tatarashvili, R A; Shchegolikhin, Aleksandr N

    2004-04-30

    Cooperative sensitisation of luminescence of Nd{sup 3+} ions at the {sup 4}F{sub 3/2} {yields} {sup 4}I{sub 13/2}, {sup 4}I{sub 9/2} transitions by Pr{sup 3+} ions was observed in a borate glass doped with Pr{sup 3+}-Nd{sup 3+} ion pairs. The luminescence was excited by a 800-mW, 1.064-{mu}m Nd{sup 3+}:YAG laser. Simultaneously, spontaneous Raman scattering was observed in glasses containing Pr{sup 3+}-Nd{sup 3+} ion pairs or only Pr{sup 3+} ions. The Stokes shift from the 9398-cm{sup -1} excitation line is 794 cm{sup -1}. The mechanism of nonradiative energy transfer is discussed. (laser applications and other topics in quantum electronics)

  4. Effect of ZnSe and CdSe nanoparticles on the fluorescence and optical band gap of Sm3+ doped lead borate glasses

    NASA Astrophysics Data System (ADS)

    Fatokun, Stephen O.

    For the first part of this work, we prepared a series of Sm-doped lead borate (PbO-B2O3) glasses containing zinc selenide (ZnSe) and cadmium selenide (CdSe) nanoparticles (NPs) and studied the Sm 3+ fluorescence by varying the glass composition and size of the NPs. We have chosen these heavy metal oxide glasses to incorporate Sm3+ ions because they have large glass forming region, high refractive index, and good physical and thermal stability. Lead borate glasses with the following compositions xPbO:(96.5-x)B2O 3:0.5Sm2O3:3ZnSe/CdSe, x=36.5 and 56.5 mol%) are prepared using the melt-quenching method. Transmission electron microscopy characterization was done to confirm both nucleation and growth of the NPs for different annealing times. Fluorescence spectra of these samples are obtained with the excitation wavelengths at 403 and 477nm. Three fluorescence transitions are observed at 563 nm, 598 nm and 646 nm. The transition at 646 nm is a electric dipole (ED) transition that strongly depends on the covalency of the Sm-O bond and the asymmetry of the crystal field at the Sm3+ site. The 646 nm/598 nm fluorescence intensity ratio has been studied for different annealing times and PbO concentration for both ZnSe and CdSe samples. Longer annealing times tend to make the crystal field at the Sm3+ site more symmetric in nature for these glasses. The presence of CdSe NPs is seen to produce the greatest influence on the fluorescence intensity ratio. This is believed to be due to the larger size of the CdSe nanoparticles and its stronger influence on Sm3+ ions. The second part of this work was dedicated to the understanding of the optical band gap of samarium doped lead borate glasses with and without ZnSe/CdSe NPs. Optical absorption spectra for all these glass samples show their absorption edge in the ultraviolet region. Detailed analysis of the absorption edge was carried out using the Mott-Davis model and the optical band gap and the width of the tail in the band gap

  5. Regulation of structure rigidity for improvement of the thermal stability of near-infrared luminescence in Bi-doped borate glasses.

    PubMed

    Guo, Qiangbing; Xu, Beibei; Tan, Dezhi; Wang, Juechen; Zheng, Shuhong; Jiang, Wei; Qiu, Jianrong; Zhou, Shifeng

    2013-11-18

    The effect of heat-treatment on the near-infrared (NIR) luminescence properties was studied in Bi-doped borate glasses. The luminescence intensity generally decreases with the increase of temperature, and the thermal stability can be improved by nearly 4.5 times with addition of 5 mol% La2O3. Collaborative studies by using steady photoluminescence (PL) and photoluminescence excitation (PLE) spectra, luminescence decay curve, differential thermal analysis (DTA), Raman spectra and X-ray diffraction (XRD) indicate that the luminescence decrement is associated with the agglomeration of Bi active centers during heat-treatment. The improvement of the thermal stability of NIR luminescence with the addition of La2O3 is benefited from the enhancement of structure rigidity due to the strong cationic field strength of La3+. The results not only provide valuable guidance for suppressing performance degradation of Bi-doped glass during fiber drawing process, but also present an effective way to control the luminescence properties of main group elements in glasses from the perspective of glass structure. PMID:24514300

  6. Characterization of Cr3+ doped mixed alkali ions effect in zinc borate glasses - Physical and spectroscopic investigations

    NASA Astrophysics Data System (ADS)

    Rama Sundari, G.; Pushpa Manjari, V.; Raghavendra Rao, T.; Satish, D. V.; Rama Krishna, Ch.; Venkata Reddy, Ch.; Ravikumar, R. V. S. S. N.

    2014-06-01

    The physical and structural properties of Cr3+ doped 19.9 ZnO + xLi2O + (30 - x) Na2O + 50B2O3 (5 ⩽ x ⩽ 25) (ZLNB) glasses have been studied. Powder X-ray diffraction patterns indicated the amorphous nature of the glass samples. The physical parameters of all the glasses were also evaluated with respect to the composition. They exhibit the non-linearity providing the evidence for mixed alkali ions effect. The infrared spectra of the glasses in the range 400-4000 cm-1 showed the presence of BO3 and BO4 local structures in all the glass systems. No boroxol ring formation was observed in the structure of these glasses. Optical absorption and electron paramagnetic resonance studies were carried out at room temperature. From the optical absorption data various optical parameters such as optical band gap, Urbach energy were evaluated. Crystal field and Racah parameters are evaluated from optical absorption spectra. The EPR spectra of Cr3+ doped ZLNB glasses exhibited resonance signals at g = 4.066 and g = 1.9779 characteristic of Cr3+ ions. The evaluated bonding parameters suggest the covalent nature.

  7. Effect of Li 2O content on physical and structural properties of vanadyl doped alkali zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Raghavendra Rao, T.; Rama Krishna, Ch.; Udayachandran Thampy, U. S.; Venkata Reddy, Ch.; Reddy, Y. P.; Sambasiva Rao, P.; Ravikumar, R. V. S. S. N.

    2011-05-01

    The effect of Li 2O content in vanadyl doped 20ZnO+ xLi 2O+(30- x)Na 2O+50B 2O 3 (5≤ x≥25) glasses has been studied with respect to their physical and structural properties. The absence of sharp peaks in XRD spectra of these glass samples confirms the amorphous nature. The physical parameters like density, refractive index, ionic concentration and electronic polarizability vary non-linearly with x mol% depending on the diffusivities of alkali ions. EPR and optical absorption spectra reveal that the resonance signals are characteristics of VO 2+ ions in tetragonally compressed octahedral site. Spin-Hamiltonian, crystal field, tetragonal field and bonding parameters are found to be in good agreement with the other reported glass systems. The tetragonal distortion ( g⊥- g∥) and Dt reveals that their values vary non-linearly with Li 2O content and reaches a minimum at x=10 mol%. An anomaly of character has been observed in all the properties of vanadyl doped glass systems, which gives a clear indication of mixed alkali effect.

  8. Er{sup 3+}-doped strontium lithium bismuth borate glasses for broadband 1.5 {mu}m emission - optical properties

    SciTech Connect

    Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-02-05

    Strontium lithium bismuth borate glasses (SLBiB) doped with various concentrations of Er{sup 3+} were prepared using conventional melt quench technique and investigated their optical properties. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra at room temperature. Judd-Ofelt (J-O) theory has been applied for the f.f transitions of Er{sup 3+} ions to evaluate J-O intensity parameters, {Omega}{lambda} ({lambda} = 2, 4 and 6). Using the J-O intensity parameters, radiative properties such as transition probabilities (A{sub R}), branching ratios ({beta}) and radiative lifetimes ({tau}) are estimated for certain transitions. From the emission spectra, peak emission-cross sections ({sigma}{sub p}) and products of stimulated emission cross-section and full width at half maximum ({sigma}{sub p} Multiplication-Sign FWHM) were calculated for the observed emission transition, {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}.

  9. Comparative study of ion conducting pathways in borate glasses

    SciTech Connect

    Hall, Andreas; Swenson, Jan; Adams, Stefan

    2006-11-01

    The conduction pathways in metal-halide doped silver, lithium, and sodium diborate glasses have been examined by bond valence analysis of reverse Monte Carlo (RMC) produced structural models of the glasses. Although all glass compositions have basically the same short-range structure of the boron-oxygen network, it is evident that the intermediate-range structure is strongly dependent on the type of mobile ion. The topography of the pathways and the coordination of the pathway sites differ distinctly between the three glass systems. The mobile silver ions in the AgI-doped glass tend to be mainly iodine-coordinated and travel in homogeneously distributed pathways located in salt-rich channels of the borate network. In the NaCl-doped glass, there is an inhomogeneous spatial distribution of pathways that reflects the inhomogeneous introduction of salt ions into the glass. However, since the salt clusters are not connected, no long-range conduction pathways are formed without including also oxygen-rich regions. The pathways in the LiCl-doped glass are slightly more evenly distributed compared to the NaCl-doped glass (but not as ordered as in the AgI-doped glass), and the regions of mainly oxygen-coordinated pathway sites are of higher importance for the long-range migration. In order to more accurately investigate how these differences in the intermediate-range order of the glasses affect the ionic conductivity, we have compared the realistic structure models to more or less randomized structures. An important conclusion from this comparison is that we find no evidence that a pronounced intermediate-range order in the atomic structure or in the network of conduction pathways, as in the AgI-doped glass, is beneficial for the dc conductivity.

  10. Structural properties of Zinc Lithium borate glass

    NASA Astrophysics Data System (ADS)

    Saidu, A.; Wagiran, H.; Saeed, M. A.; Alajerami, Y. S. M.

    2014-09-01

    Zinc Lithium Borate glasses of different composition were prepared with the aim of using it for thermoluminescence dosimetry. Melt quenching method was adopted in this process. Fourier transform Infrared (FTIR) spectroscopy and UV-vis-NIR spectroscopy techniques were employed to investigate the infrared spectra and energy band gap of different composition of Zinc Lithium Borate glasses. X-ray diffraction analysis was used to confirm the amorphous nature of the glass samples. Glass forming ability and stability of the glass was checked using Differential thermal analysis (DTA). Density, molar volume, refractive index parameters have been analyzed in the light of different concentration of the modifier. The active vibrational modes of 1200-1600 cm-1 for B-O stretching of BO3 units, 800-1200 cm-1 for B-O stretching of BO4 units and 400-800 cm-1 for bending vibration of various borate segments were detected. Addition of ZnO to lithium borate shows its influence in converting the dominant BO3 group to BO4 group. BO4 are known for creating complex defects, a situation that established deep and stable traps good for thermoluminescence phenomena. From optical data, direct and indirect energy band gap has been calculated using the data obtained from UV-vis-NIR spectroscopy. Both direct and indirect band gaps decrease with the increase of modifier Li2CO3.

  11. Effect of WO 3 on the spectroscopic properties in Er 3+/Yb 3+ co-doped bismuth-borate glasses

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhou, Yaxun; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua

    2007-11-01

    The spectroscopic properties of Er 3+/Yb 3+ co-doped Bi 2O 3-B 2O 3-WO 3 (BBW) glasses were analyzed and discussed. The effect of WO 3 content on the absorption spectra, the Judd-Ofelt parameters Ω t ( t=2, 4, 6), emission spectra and the lifetime of the 4I 13/2 level and the quantum efficiency of Er 3+: 4I 13/2→ 4I 15/2 transition were also investigated. With the substitution of WO 3 for B 2O 3, the measured lifetime of the 4I 13/2 level and the quantum efficiency of Er 3+: 4I 13/2→ 4I 15/2 transition increase from 0.98 to 1.31 ms and from 38.2% to 49.2%, respectively. The effective width of emission band and the emission cross-section both decrease slightly. And the emission spectra is analyzed via the different curve ( σe- σa) of BBW glasses, the influence of OH - is also discussed.

  12. Effect of MoO3 on electron paramagnetic resonance spectra, optical spectra and dc conductivity of vanadyl ion doped alkali molybdo-borate glasses

    NASA Astrophysics Data System (ADS)

    Agarwal, A.; Khasa, S.; Seth, V. P.; Sanghi, S.; Arora, M.

    2014-02-01

    Alkali molybdo-borate glasses having composition xMoO3·(30 - x)M2O·70B2O3 and xMoO3·(70 - x)B2O3·30M2O (M = Li, Na, K) with 0 ⩽ x ⩽ 15 (mol%) doped with 2.0 mol% of V2O5 have been prepared in order to study the influence of MoO3 on electrical conductivity, electron paramagnetic resonance (EPR) and optical spectra. From EPR studies it is observed that V4+ ions in these samples exist as VO2+ ions in octahedral coordination with a tetragonal compression and belong to C4V symmetry. The tetragonal nature and octahedral symmetry of V4+O6 complex increase as well as decrease depending upon the composition of glasses with increase in MoO3 but 3dxy orbit of unpaired electron in the VO2+ ion expands in all the glasses. The decrease in optical band gap suggests that there is an increase in the concentration of non-bridging oxygen's. From the study of optical transmission spectra it is observed that for all the glasses the degree of covalency of the σ-bonding decreases with increase in MoO3 content and the degree of covalency of the π-bonding also varies. These results based on optical spectroscopy are in agreement with EPR findings. It is found that dc conductivity decreases and activation energy increases with increase in MoO3:M2O (M = Li, Na, K) ratio in MoO3·M2O·B2O3 glasses, whereas the conductivity increases and activation energy decreases with increase in MoO3:B2O3 ratio in xMoO3·B2O3·M2O glasses, which is governed by the increase in nonbridging oxygen's. The variation in theoretical optical basicity, Λth is also studied.

  13. Intermediate range order in alkaline borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Carini, G.; Ruello, G.; D'Angelo, G.

    2016-03-01

    We describe the neutron diffraction patterns of a series of alkaline borate glasses at different metal oxide content. Strong differences are observed in the intermediate range order as a function of the specific alkaline ion and of its concentration. On these results, we propose that the first sharp diffraction peak arises from correlations of atoms of voids and show that the compositional variation of this peak intensity in alkaline borate glasses is due to changes in the distribution of void sizes within the three-dimensional network. We argue that our interpretation in terms of interstitial (empty and/or filled) voids, having different sizes, provides a general explanation for all anomalous behaviours revealed for the first sharp diffraction peak.

  14. Interfacial reactions between titanium and borate glass

    SciTech Connect

    Brow, R.K.; Saha, S.K.; Goldstein, J.I.

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  15. Vibrational spectra and the structure of alkali borate glasses

    SciTech Connect

    Kolesova, V.A.

    1986-11-01

    This paper presents systematic data on the IR-absorption spectra of lithium borate glasses. Lithium borate glasses were synthesized from Li/sub 2/CO/sub 3/ and H/sub 3/BO/sub 3/ in Pt crucibles at temperatures from 800 to 1050 C. It was possible in the lithium borate system to obtain glasses continuing significantly more M/sub 2/O than the glasses in the sodium or potassium borate system. An analysis of the data on Raman spectra of alkali borate glasses suggests that the addition of M/sub 2/O to a B/sub 2/O/sub 3/ glass produces network disorder, the replacement of the boroxyl rings by rings of another configuration and the formation of BO/sub 4/ tetrahedra.

  16. Towards modeling gadolinium-lead-borate glasses

    SciTech Connect

    Rada, S.; Ristoiu, T.; Rada, M.; Coroiu, I.; Maties, V.; Culea, E.

    2010-01-15

    Infrared spectra of gadolinium-lead-borate glasses of the xGd{sub 2}O{sub 3}.(100 - x)[3B{sub 2}O{sub 3}.PbO] system, where x = 0, 5, 10, 15, 25, 35 and 50 mol.%, have been recorded to explore the role of content of gadolinium ions behaving as glass modifier. The FTIR spectroscopy data for the xGd{sub 2}O{sub 3}.(1 - x)[3B{sub 2}O{sub 3}.PbO] glasses show the structural role of lead ions as a network-formers and of the gadolinium ions network modifiers. Adding of the rare earth ion up to 35 mol.% into the glass matrix, the IR bands characteristic to the studied glasses become sharper and more pronounced. Structural changes, as recognized by analyzing band shapes of IR spectra, revealed that Gd{sub 2}O{sub 3} causes a change from the continuous borate network to the continuous lead-borate network interconnected through Pb-O-B and B-O-B bridges and the transformation of some tetrahedral [BO{sub 4}] units into trigonal [BO{sub 3}] units. Then, gadolinium ions have affinity towards [BO{sub 3}] structural units which contain non-bridging oxygens necessary for the charge compensation because the more electronegative [BO{sub 3}] structural units were implied in the formation of B-O-Gd bonds and the transformation of glass network into a glass ceramic. We propose a possible structural model of building blocks for the formation of continuous random 3B{sub 2}O{sub 3}.PbO network glass used by density functional theory (DFT) calculations. DFT calculations show that lead atoms occupy three different sites in the proposed model. The first is coordinated with six oxygen atoms forming distorted octahedral geometries. The second lead atom has an octahedral oxygen environment and the five longer Pb-O bonds are considered as participating in the metal coordination scheme. The third lead atom has ionic character. In agreement with the results offered by the experimental FTIR data, the theoretical IR data confirm that our proposed structure is highly possible.

  17. Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide

    NASA Astrophysics Data System (ADS)

    Khalil, M. M. I.

    2007-03-01

    The effect of electric field strength on conduction in lithium borate glasses doped with CuO with different concentration was studied and the value of the jump distance of charge carrier was calculated. The conductivity measurements indicate that the conduction is due to non-adiabatic hopping of polarons and the activation energies are found to be temperature and concentration dependent. Lithium borate glasses are subjected to carefully-programmed thermal treatments which cause the nucleation and growth of crystalline phases. X-ray diffraction analysis confirmed the amorphous nature for the investigated glass sample and the formation of crystalline phase for annealed samples at 650 °C. The main separated crystalline phase is Li2B8O13. The scanning electron micrographs of some selected glasses showed a significant change in the morphology of the films investigated due to heat treatment of the glass samples. It was found that the dc-conductivity decreases with an increase of the HT temperature. The decrease of dc conductivity, with an increase of the HT temperature, can be related to the decrease in the number of free ions in the glass matrix. There is deviation from linearity at high temperature regions in the logσ-1/T plots for all investigated doped samples at a certain temperature at which the transition from polaronic to ionic conduction occurs. The hopping of small polarons is dominant at low temperatures, whereas the hopping of Li+ ions dominates at high temperatures.

  18. Angiogenic effects of borate glass microfibers in a rodent model.

    PubMed

    Lin, Yinan; Brown, Roger F; Jung, Steven B; Day, Delbert E

    2014-12-01

    The primary objective of this research was to evaluate the use of bioactive borate-based glass microfibers for angiogenesis in soft tissue repair applications. The effect of these fibers on growth of capillaries and small blood vessels was compared to that of 45S5 silica glass microfibers and sham implant controls. Compressed mats of three types of glass microfibers were implanted subcutaneously in rats and tissues surrounding the implant sites histologically evaluated 2-4 weeks post surgery. Bioactive borate glass 13-93B3 supplemented with 0.4 wt % copper promoted extensive angiogenesis as compared to silica glass microfibers and sham control tissues. The angiogenic responses suggest the copper-containing 13-93B3 microfibers may be effective for treating chronic soft tissue wounds. A second objective was to assess the possible systemic cytotoxicity of dissolved borate ions and other materials released from implanted borate glass microfibers. Cytotoxicity was assessed via histological evaluation of kidney tissue collected from animals 4 weeks after subcutaneously implanting high amounts of the borate glass microfibers. The evaluation of the kidney tissue from these animals showed no evidence of chronic histopathological changes in the kidney. The overall results indicate the borate glass microfibers are safe and effective for soft tissue applications. PMID:24677635

  19. Variation of photoluminescence features in Pr{sup 3+} doped lithium-fluoro-borate glass by changing different modifier oxides (MgO, CaO, CdO and PbO)-Judd-Ofelt theory application

    SciTech Connect

    Balakrishna, A.; Rajesh, D.; Babu, S.; Ratnakaram, Y. C.

    2015-06-24

    Pr{sup 3+} (1.0 mol%) doped different modifier oxide based six lithium-fluoro-borate glasses with chemical composition of 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-20MO (where M= Mg, Ca, Cd and Pb), 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10MgO-10CaO and 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10CdO-10PbO were prepared by conventional melt quenching technique. Judd-Ofelt theory has been applied for evaluating the Judd-Ofelt intensity parameters for Pr{sup 3+} ion in these glass compositions and are in turn to used to predict radiative properties such as radiative transition probabilities (A{sub T}), branching ratios (β) and stimulated emission cross-section (σ{sub P}). Stimulated emission cross-section (σ{sub p}) of prominent emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} and {sup 1}D{sub 2}→{sup 3}H{sub 4} of Pr{sup 3+} ion in all lithium-fluoro-borate glasses were calculated. Among all the emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} posseses higher branching ratio and stimulated emission cross-section in Mg-Ca glass, which leads to the best laser excitation at 487 nm wavelength.

  20. Effect of silver nanoparticles on the spectral properties of rare-earth ions in a sodium borate glass

    NASA Astrophysics Data System (ADS)

    Obadina, Victor O.; Reddy, B. Rami

    2012-03-01

    Silver doped sodium borate glass was made by the melt quenching technique. As made glass, did not reveal any absorption transitions in the visible or ultraviolet region. Differential scanning calorimeter was used to measure glass transition temperature. Heat treated glass revealed absorption peak at 410 nm due to surface plasmon resonance. Under violet laser excitation the glass revealed emission at 450 - 620 nm, whose lifetimes are more than 30μs. Under near resonant excitation it revealed intense Raman scattering. We also made multielement oxide glasses co-doped with silver and Er3+ and performed spectroscopic studies. Energy upconversion was observed from Er3+ at 415 nm in a 2% Ag co-doped oxide glass but not in other glasses. Infrared to visible upconversion studies were performed in all these glasses under near-infrared laser excitation. 2% Ag doped glass exhibited enhanced upconversion signals from erbium than that of other glasses.

  1. Synthesis and characterization of rare-earth doped SrBi{sub 2}Nb{sub 2}O{sub 9} phase in lithium borate based nanocrystallized glasses

    SciTech Connect

    Harihara Venkataraman, B.; Fujiwara, Takumi; Komatsu, Takayuki

    2009-06-15

    Glass composites comprising of un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites are fabricated in the glass system 16.66SrO-16.66[(1-x)Bi{sub 2}O{sub 3}-xSm{sub 2}O{sub 3}]-16.66Nb{sub 2}O{sub 5}-50Li{sub 2}B{sub 4}O{sub 7} (0<=x<=0.5, in mol%) via the melt quenching technique. The glassy nature of the as-quenched samples is established by differential thermal analyses. Transmission electron microscopic studies reveal the presence of about 15 nm sized spherical crystallites of the fluorite-like SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} phase in the samples heat treated at 530 deg. C. The formation of layered perovskite-type un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites with an orthorhombic structure through the intermediate fluorite phase is confirmed by X-ray powder diffraction and micro-Raman spectroscopic studies. The influence of samarium doping on the lattice parameters, lattice distortions, and the Raman peak positions of SrBi{sub 2}Nb{sub 2}O{sub 9} perovskite phase is clarified. The dielectric constants of the perovskite SrBi{sub 2}Nb{sub 2}O{sub 9} and SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} nanocrystals are relatively larger than those of the corresponding fluorite-like phase and the precursor glass. - Graphical Abstract: This figure shows the XRD patterns at room temperature for the as-quenched and heat treated samples in Sm{sub 2}O{sub 3}-doped (x=0.1) glass. Based on these results, it is concluded that the formation of samarium-doped perovskite SBN phase takes place via an intermediate fluorite-like phase in the crystallization of this glass.

  2. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  3. Interpretation of the IR spectra of alkali borate glasses

    SciTech Connect

    Chekhovskii, V.G.

    1985-11-01

    This paper describes methods of interpretation of the IR spectra of alkali borate glasses. In view of the difficulties which are encountered in a strict interpretation of the IR spectra of crystalline oxygen-containing compounds with complex anions, semiempirical methods of interpretation are commonly used. The existence of glasses of groups with an atomic (ionic) arrangement close to that in the crystalline compounds makes it possible to a certain extent to use the spectra of crystalline compounds in the interpretation of the IR spectra of glasses. The alkali borate glass systems were chosen for this study because the information on their structure is the most detailed by comparison with other borate glasses. IR spectrospcopy showed that the spectral regions in which fundamental asymmetrical stretching vibrations in BO/sub 3/ and BO/sub 4/ polyhedra occur, in most cases, are fairly clearly defined independently of the combined or separate presence of these polyhedra. It is proposed that the bands in the IR spectra of sodium and lithium borate glasses be assigned to vibrations mostly localized on specific fragments of polyborate groups present in the glasses. The data from IR spectroscopy confirms that tetraborate groups are present in lithium borate glasses.

  4. [Effect of Eu ions on the Ag nanoparticles precipitation and their optical properties in borate glasses].

    PubMed

    Liu, Zhi-liang; Jiao, Qing; Qiu, Jian-bei

    2014-08-01

    Eu-Ag co-doped borate glasses were prepared by the high temperature solid method in the present work. Absorption and emission spectra were employed to investigate the precipitation of Ag nanoparticles, which is influenced by the network form B2O3 and the co-doped Eu ions. It was found in the absorption spectra of Eu-Ag co-doped sample that a broad band centered at about 410 nm emerged and their intensity decreased with the increase in the BZ 03 concentration. Meanwhile, under the excitation of 340 nm, a broad emission band was observed in the wavelength range of 350-600 nm, which belongs to the blue-green light of Ag aggregates. The intensity of the Ag aggregates presented an increasing tendency with the increase in the B2O3 contents. The weak characteristic emission of Ag aggregates and Eu3+ was observed respectively in their singly doped samples. It is concluded that both their emissions get significant enhancement when Eu ions and Ag ions are used for co-doping the sample. In addition, the increased absorption of Ag nanoparticles was detected with the increase in the Eu ions concentration. Herein, the mechanism behind Eu3+ contribution to the precipitation of Ag nanoparticles is discussed in detail. The luminescence properties of borate glasses can be controlled by the microstructure of the borate glasses. Therefore, the white emission can be realized by the adjustment of glass structure and Eu ions concentration, owing to the red light from Eu3+ : (5)D0-->(7)Fj electronic transition and the blue-green light form the broad emission of Ag aggregates. The borate glasses are expected to be the candidates for the light-emission diode (LED) luminescent materials. PMID:25508714

  5. [Effect of Eu ions on the Ag nanoparticles precipitation and their optical properties in borate glasses].

    PubMed

    Liu, Zhi-liang; Jiao, Qing; Qiu, Jian-bei

    2014-08-01

    Eu-Ag co-doped borate glasses were prepared by the high temperature solid method in the present work. Absorption and emission spectra were employed to investigate the precipitation of Ag nanoparticles, which is influenced by the network form B2O3 and the co-doped Eu ions. It was found in the absorption spectra of Eu-Ag co-doped sample that a broad band centered at about 410 nm emerged and their intensity decreased with the increase in the BZ 03 concentration. Meanwhile, under the excitation of 340 nm, a broad emission band was observed in the wavelength range of 350-600 nm, which belongs to the blue-green light of Ag aggregates. The intensity of the Ag aggregates presented an increasing tendency with the increase in the B2O3 contents. The weak characteristic emission of Ag aggregates and Eu3+ was observed respectively in their singly doped samples. It is concluded that both their emissions get significant enhancement when Eu ions and Ag ions are used for co-doping the sample. In addition, the increased absorption of Ag nanoparticles was detected with the increase in the Eu ions concentration. Herein, the mechanism behind Eu3+ contribution to the precipitation of Ag nanoparticles is discussed in detail. The luminescence properties of borate glasses can be controlled by the microstructure of the borate glasses. Therefore, the white emission can be realized by the adjustment of glass structure and Eu ions concentration, owing to the red light from Eu3+ : (5)D0-->(7)Fj electronic transition and the blue-green light form the broad emission of Ag aggregates. The borate glasses are expected to be the candidates for the light-emission diode (LED) luminescent materials. PMID:25474935

  6. Spectroscopic studies of lead halo borate glasses

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.

    2015-06-01

    Glasses in the system xPbF2-(30-x) PbO-69B2O3-1CuO (x=5, 10, 15, 20, & 25 mole %) were prepared by melt quenching method and they are characterized by XRD to confirm the glassy nature. Electron Paramagnetic Resonance (EPR) studies at room temperature in the X-band frequencies and FTIR studies on prepared glass systems were reported. The non-linear variation of spin-Hamiltonian parameters with PbF2 content indicated the change in the ligand field strength around Cu2+ ions in the host glass. The ground state of Cu2+ ions in the glass is designated as dx2-y2 orbital (2B1g) while the observed symmetry around it is tetragonally distorted octahedral. The molecular orbital coefficients α2, β2 and β12 are evaluated for Cu2+ doped samples. From the FTIR studies it was observed that the glass made up of BO3 and BO4 units.

  7. Coordination and valence state of transition metal ions in alkali-borate glasses

    NASA Astrophysics Data System (ADS)

    Terczyńska-Madej, A.; Cholewa-Kowalska, K.; Łączka, M.

    2011-10-01

    Borate glasses of the 20R 2O·80B 2O 3 type, where R = Li, Na and K, were colored by doping with transition metal ions (Co, Ni, Cr and Mn). The glasses were obtained by melting at the temperature of 1150 °C. For these glasses optical absorption in UV-VIS-NIR range were recorded. Analysis of the spectra allows to be determined the coordination and oxidation states of the doping transition metal ions. Changes of their coordination or oxidation are presented as a function of the optical basicity Λ after Duffy. Cobalt and nickel are present in examined borate glasses as divalent ions (Co 2+, Ni 2+) in octahedral coordination mainly, but the tetrahedral coordination state of cobalt is also possible. Chromium and manganese are present in the borate glasses in various oxidation state, though Cr 3+ and Mn 3+ ions in the octahedral coordination are probably dominant. A decrease of the electronegativity of the modifiers (Li → Na → K) and an increase of the glass matrix basicity cause a shift of the oxidation/reduction equilibrium towards higher valences of the transition metals (Cr 6+, Mn 3+).

  8. Topological phases in Ba-Borate glasses

    NASA Astrophysics Data System (ADS)

    Holbrook, Chad; Czaja, Andrew; Boolchand, Punit

    2015-03-01

    Twelve compositions in the (BaO)x(B2O3)100-x pseudo binary, in the 15% Borates2. Modes near 808 cm-1, 770 cm-1, 740 cm-1 and 705 cm-1 are observed, and identified with breathing modes of pure and mixed rings from characteristic structural groupings2. These preliminary results suggest that glasses at x <24% are in the stressed-rigid phase, in the 24% 30% in the flexible phase. Supported by NSF Grant DMR 08-53957.

  9. Relationship between Eu3+ reduction and glass polymeric structure in Al2O3-modified borate glasses under air atmosphere

    NASA Astrophysics Data System (ADS)

    Jiao, Qing; Yu, Xue; Xu, Xuhui; Zhou, Dacheng; Qiu, Jianbei

    2013-06-01

    The reduction of Eu3+ to Eu2+ is realized efficiently in Eu2O3-doped borate glasses prepared under air condition by melting-quenching method. Luminescent spectra show an increasing tendency of Eu2+ emission with increasing Al2O3 concentration in B2O3-Na2O glasses. It is interesting that significant enhancement appeared of Eu2+ luminescence in the Al2O3-rich sample comparing to the samples of Al2O3 less than 6 mol%. FTIR and Raman scattering measurements indicated that some new vibration modes assigned to the low-polymerized structure groups decomposed from the slight Al2O3 dopant samples. These results demonstrated that the polymerization of the glass structure decreased with increasing incorporation of Al2O3 into the borate glasses, linking to the efficiency of Eu3+ self-reduction in air at high temperature.

  10. Optical properties of Tm 3+ ions in lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Jayasankar, C. K.; Renuka ^Devi, A.

    1996-09-01

    Optical properties of Tm 3+ ions are investigated in the following lithium borate (LBO) glasses: Li 2CO 3 + H 3BO 3 and MCO 3 + Li 2CO 3 + H 3BO 3 (M = Mg, Ca, Sr and Ba). The assigned energy level data of Tm 3+ (4f 12) in these borate glasses as well as the data that are available for some other systems in the literature are analysed in terms of a parametrized Hamiltonian model that includes 14 free-ion parameters. The absorption linestrengths are measured for Tm 3+:LBO glasses. Using these data, intensity parameters (Ω λ, λ = 2, 4, 6), radiative transition probabilities, radiative lifetimes, fluorescence branching ratios and integrated absorption cross-sections for fluorescent levels of Tm 3+:LBO glasses are calculated by applying Judd-Ofelt theory. The effect of glass network formers and glass modifiers on the optical properties of Tm 3+:glasses are discussed.

  11. Optical characterization of TCO films on borate glasses for high efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Steudel, Franziska; Miclea, Paul-Tiberiu; Teuscher, Nico; Heilmann, Andreas; Schweizer, Stefan

    2012-06-01

    Two different transparent conductive oxides (TCO) were deposited by magnetron sputtering on borate glasses. The influence of sputtering conditions on optical, electrical and microstructural properties was much higher for indium tin oxide (ITO) than for aluminium-doped zinc oxide (AZO) films. Specific resistivity values obtained from simulation of the optical spectra are in good agreement with values obtained from four-point probe measurements.

  12. Barium-borate-flyash glasses: As radiation shielding materials

    NASA Astrophysics Data System (ADS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3°. Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses.

  13. A crystallographic guide to the structure of borate glasses

    SciTech Connect

    Wright, A.C.; Vedishcheva, N.M.; Shakhmatkin, B.A.

    1997-12-31

    Borate glasses are an enigma in that there is now increasing evidence that their structures are dominated by superstructural units, which comprise well defined arrangements of the basic BO{sub 3} and BO{sub 4} structural units, with no internal degrees of freedom in the form of variable bond or torsion angles. In the present paper, it is shown that considerable insight into the structure of borate glasses can be gained from a study of the corresponding crystalline polymorphs. A simple, model is proposed to predict the fraction, x{sub 4}, of 4-fold coordinated boron atoms in vitreous borate networks and the topological criteria for the formation of such networks are discussed, taking into account the degrees of freedom necessary for conventional glass formation.

  14. Strontium borate glass: potential biomaterial for bone regeneration

    PubMed Central

    Pan, H. B.; Zhao, X. L.; Zhang, X.; Zhang, K. B.; Li, L. C.; Li, Z. Y.; Lam, W. M.; Lu, W. W.; Wang, D. P.; Huang, W. H.; Lin, K. L.; Chang, J.

    2010-01-01

    Boron plays important roles in many life processes including embryogenesis, bone growth and maintenance, immune function and psychomotor skills. Thus, the delivery of boron by the degradation of borate glass is of special interest in biomedical applications. However, the cytotoxicity of borate glass which arises with the rapid release of boron has to be carefully considered. In this study, it was found that the incorporation of strontium into borate glass can not only moderate the rapid release of boron, but also induce the adhesion of osteoblast-like cells, SaOS-2, thus significantly increasing the cyto-compatibility of borate glass. The formation of multilayers of apatite with porous structure indicates that complete degradation is optimistic, and the spread of SaOS-2 covered by apatite to form a sandwich structure may induce bone-like tissue formation at earlier stages. Therefore, such novel strontium-incorporated borosilicate may act as a new generation of biomaterial for bone regeneration, which not only renders boron as a nutritious element for bone health, but also delivers strontium to stimulate formation of new bones. PMID:20031984

  15. High-temperature relaxation spectra of borate glasses

    SciTech Connect

    Lomovskoi, V.A.; Bartenev, G.M.

    1993-07-01

    A critical analysis of a method for calculating the spectrum characteristics of mechanical relaxation in glass melts is given. The analysis of changes in the spectrum characteristics (in the Kohlrausch function approximation) for B{sub 2}O{sub 3} and sodium borate glasses within a broad temperature and frequency range allows us to ascertain the specific features of these changes due to structural factors.

  16. Visible properties of Sm3+ ions in chloro-fluoro-borate glasses for reddish - orange emission

    NASA Astrophysics Data System (ADS)

    Rao, K. Venkata; Babu, S.; Rao, B. Venkata; Ratnakaram, Y. C.

    2016-05-01

    Optical properties of different concentration (0.2, 0.4, 0.6, 0.8 and 1.0 mol %) of Sm3+ doped chloro-fluoro-borate glasses have been synthesized and discussed. Structural characterizations have been studied through XRD analysis. Spectroscopic analysis has done from absorption spectra, luminescence spectra and decay lifetime profiles. From the emission spectra, concentration quenching is observed, with increase of samarium concentration and discussed behind the phenomena. The nature of decay curve analysis was performed for the 4G5/2 level. These glasses are expected to give interesting application in the field of optics.

  17. A comparison of HLW-glass and PWR-borate waste glass

    NASA Astrophysics Data System (ADS)

    Luo, Shanggeng; Sheng, Jiawei; Tang, Baolong

    2001-09-01

    Glass can incorporate a wide variety of wastes ranging from high level wastes (HLW) to low and intermediate level wastes (LILW). A comparison of HLW-Glass and PWR-borate waste glass is given in this paper. The HLW glass formulation named GC-12/9B and 90-19/U can incorporate 16-20 wt% HLW at 1100°C or 1150°C. The borate waste glass named SL-1 can incorporate 45 wt% borate waste generated from PWR. Their physical properties, characteristic temperatures, chemical durability and leach behavior are summarized here. The comparison indicates: the PWR-glass SL-1 can incorporate up to 45 wt% waste oxides at lower melting temperature (1000°C) in agreement with minimum additive waste stabilization (MAWS) approach; owing to the PWR-borate glass contain less Si and more B and Na, its mass loss is higher than HWR-glass; both HLW-glass and PWR-borate glass have favorable chemical durability and the same leaching phenomena, i.e., Na is mostly depleted, but Ca, Mg, Al and Ti are enriched in the leached surface layer.

  18. Impact of vanadium ions in barium borate glass.

    PubMed

    Abdelghany, A M; Hammad, Ahmed H

    2015-02-25

    Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data. PMID:25194319

  19. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites. PMID:16043053

  20. The leaching behavior of borate waste glass SL-1

    SciTech Connect

    Sheng, J.; Luo, S.; Tang, B.

    1999-11-01

    Vitrification is an attractive approach for treatment of the borate waste from nuclear power plants. SL-1 glass is a suitable borosilicate glass form to solidify the borate waste containing relatively high quantities of B and Na. The leaching behavior of SL-1 glass in deionized water has been investigated. Compared to the HLW-glass, the network structure of SL-1 glass is weak. It was found that the ion-exchange reactions dominated the glass corrosion process with water in low temperature leading conditions. The ion-exchange and network hydrolysis reactions together controlled the glass dissolution in high temperature leaching conditions. There was a peak in leach rate at about 70 C and a valley at about 100 C. The surface layer thickness was about 25 {micro}m. Na was almost totally depleted in the surface layer. At low temperature, the glass corrosion increases with leaching time. The glass corrosion remains about constant with leaching time at 90 C. The surface layer formed at 90 C is protective, which is less porous than the surface layer formed at 40 and 70 C.

  1. The leaching behavior of borate waste glass SL-1

    SciTech Connect

    Sheng, J. ); Luo, S.; Tang, B. )

    1999-01-01

    Vitrification is an attractive approach for treatment of the borate waste from nuclear power plants. SL-1 glass is a suitable borosilicate glass form to solidify the borate waste containing relatively high quantities of B and Na. The leaching behavior of SL-1 glass in deionized water has been investigated. Compared to the HLW-glass, the network structure of SL-1 glass is weak. It was found that the ion-exchange reactions dominated the glass corrosion process with water in low temperature leading conditions. The ion-exchange and network hydrolysis reactions together controlled the glass dissolution in high temperature leaching conditions. There was a peak in leach rate at about 70 C and a valley at about 100 C. The surface layer thickness was about 25 [micro]m. Na was almost totally depleted in the surface layer. At low temperature, the glass corrosion increases with leaching time. The glass corrosion remains about constant with leaching time at 90 C. The surface layer formed at 90 C is protective, which is less porous than the surface layer formed at 40 and 70 C.

  2. FTIR of binary lead borate glass: Structural investigation

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  3. Synthesis and studies on microhardness of alkali zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Subhashini, Bhattacharya, Soumalya; Shashikala, H. D.; Udayashankar, N. K.

    2014-04-01

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi2O+yNa2O+80B2O3 (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li2O and Na2O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributed to the conversion of tetrahedral boron (BO4/2)- into (BO3/2)-. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.

  4. Optical properties of down-shifting barium borate glass for CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Loos, Sebastian; Steudel, Franziska; Ahrens, Bernd; Schweizer, Stefan

    2015-03-01

    CdTe thin film solar cells have a poor response in the ultraviolet and blue spectral range, mainly due to absorption and thermalization losses in the CdS buffer layer. To overcome this efficiency drop in the short wavelength range trivalent rare-earth doped barium borate glass is investigated for its potential as frequency down-shifting cover glass on top of the cell. The glass is doped with either Tb3+ or Eu3+ up to a level of 2.5 at.% leading to strong absorption in the ultraviolet/blue spectral range. Tb3+ shows intense emission bands in the green spectral range while Eu3+ emits in the orange/red spectral range. Based on rare-earth absorption and luminescence quantum efficiency the possible gain in short-circuit current density is calculated.

  5. Crystal nucleation in lithium borate glass

    NASA Technical Reports Server (NTRS)

    Smith, Gary L.; Neilson, George F.; Weinberg, Michael C.

    1988-01-01

    Crystal nucleation measurements were made on three lithium borate compositions in the vicinity of Li2O-2Br2O3. All nucleation measurements were performed at 500 C. Certain aspects of the nucleation behavior indicated (tentatively) that it proceeded by a homogeneous mechanism. The steady state nucleation rate was observed to have the largest value when the Li2O concentration was slightly in excess of the diborate composition. The change in nucleation rate with composition is controlled by the variation of viscosity as well as the change in free energy with composition. The variation of nucleation rate is explained qualitatively in these terms.

  6. Temperature dependence of elastic properties in alkali borate binary glasses

    NASA Astrophysics Data System (ADS)

    Kawashima, Mitsuru; Matsuda, Yu; Kojima, Seiji

    2011-05-01

    The elastic properties of alkali borate glasses, xM 2O·(100 - x)B 2O 3 (M = Li, Na, K, Rb, Cs, x = 14, 28), have been investigated by Brillouin scattering spectroscopy from room temperature up to 1100 °C. Above the glass transition temperature, Tg, the longitudinal sound velocity, VL, decreases markedly on heating. Such significant changes of the elastic properties result from the breakdown of the glass network above Tg. Alkali borate family with the same x shows the similar behavior in the temperature variations of VL up to around Tg. The absorption coefficient, αL, increases gradually above Tg. With the increase of the size of an alkali ion, the slope of VL just above Tg decreases. Since the fragility is related to the slope, the present results suggest that the fragility of alkali borate glasses increases as the size of alkali ion decreases. Such an alkali dependence of the fragility is discussed on the basis of the fluctuation of the boron coordination number.

  7. Laser spectroscopy of Nd 3+ and Dy 3+ ions in lead borate glasses

    NASA Astrophysics Data System (ADS)

    Pisarska, Joanna; Pisarski, Wojciech A.; Ryba-Romanowski, Witold

    2010-07-01

    The spectroscopic and laser properties of Nd 3+ and Dy 3+ ions in lead borate glass were studied. Luminescence spectra recorded in the near-infrared and visible ranges correspond to 4F 3/2- 4I J/2 ( J=9, 11, 13) transitions of Nd 3+ and 4F 9/2- 6H J/2 ( J=11, 13, 15) transitions of Dy 3+, respectively. Luminescence decay curves were analyzed as a function of activator concentration. Luminescence quenching is observed, which is due to Ln-Ln interaction increasing. Several spectroscopic parameters relevant to laser potential of Ln 3+ ions (Ln=Nd, Dy) in lead borate glass were determined. The relatively large values of the quantum efficiency and the room-temperature emission cross-section for the 4F 3/2- 4I 11/2 transition of Nd 3+ at 1061 nm and the 4F 9/2- 6H 13/2 transition of Dy 3+ at 573 nm imply that Ln-doped lead borate glasses can be considered as promising solid-state materials for laser applications.

  8. Effect of copper oxide on structure and physical properties of lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Kashif, I.; Ratep, A.

    2015-09-01

    Copper-doped Lead lithium borate glass samples with the composition of (35- x) Pb3O4- xCuO-65Li2B4O7, where x = 5, 10, 15 or 20 mol%, have been prepared by melt quenching technique. Glass-forming ability, density, electrical conductivity, magnetic susceptibility and structural properties of lead lithium borate glasses have been investigated. IR spectroscopic data show that the copper ions play the role of glass modifier. Addition of CuO influences BO3 ↔ BO4 conversion. Density is expressed in terms of the structural modifications that take place in glass matrix. The increase in Tg reflects an increase in bond strength, and samples obtain more rigid glass structure. Electrical conductivity and magnetic susceptibility χ data show a variable behavior with the increase in the copper content in two valance states Cu+ and Cu+2. In addition, optical properties depend on the change of the role of copper ions in the samples' structure. Optical energy band gap E opt and Urbach energy E tail are determined. The increase in E opt and UV cutoff with an increase in CuO content is due to the decrease in non-bridging oxygen concentration. The decrease in E tail at higher concentrations is attributed to the copper ion accumulation in the interstitial positions and to the formation of orthoborate groups. These samples are suitable for the green light longpass filters.

  9. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    PubMed

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. PMID:23708372

  10. Wavelength interdependence assessment of all-optical switching in zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Abdel-Baki, Manal; Abdel-Wahab, Fathy; El-Diasty, Fouad

    2012-08-01

    Lithium tungsten borate photonic glass is prepared by the conventional melt-quench technique. Due to semiconductor-like behavior of zinc oxide, the glass is doped by ZnO to adapt its optical nonlinearity. Fresnel-based spectrophotometric measurements and Lorentz dispersion theory are applied to study (in a very wide range of photon energy from 0.5 to 6.2 eV) the dispersion of second-order refractive index, two-photon absorption coefficient, and third-order optical susceptibility of the glass. The figure of merit (FOM) needed for optical switching applications is estimated. We reveal the importance of determining the dispersion of the optical nonlinear parameters to find out the appropriate operating wavelength for optimum FOM of the glass.

  11. Photoluminescence of a Te4+ center in zinc borate glass.

    PubMed

    Masai, Hirokazu; Yamada, Yasuhiro; Okumura, Shun; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-10-01

    Photoluminescent (PL) properties related to Te(4+) species in zinc borate glasses are examined. Broad emission was observed by the excitation of the PL excitation peak of Te(4+) present at the optical absorption edge. The emission intensity of Te(4+) in 5TeO(2)-50ZnO-45B(2)O(3) glass was thermally quenched in a temperature region over 100 K, suggesting that concentration quenching preferentially occurred. The lifetime of the emission was approximately 2.5 μs, which is characteristic of relaxation from the triplet excitation state of an ns(2)-type center. PMID:24081051

  12. Raman and Infrared Spectroscopy of Yttrium Aluminum Borate Glasses and Glass-ceramics

    NASA Technical Reports Server (NTRS)

    Bradley, J.; Brooks, M.; Crenshaw, T.; Morris, A.; Chattopadhyay, K.; Morgan, S.

    1998-01-01

    Raman spectra of glasses and glass-ceramics in the Y2O3-Al2O3-B2O3 system are reported. Glasses with B2O3 contents ranging from 40 to 60 mole percent were prepared by melting 20 g of the appropriate oxide or carbonate powders in alumina crucibles at 1400 C for 45 minutes. Subsequent heat treatments of the glasses at temperatures ranging from 600 to 800 C were performed in order to induce nucleation and crystallization. It was found that Na2CO3 added to the melt served as a nucleating agent and resulted in uniform bulk crystallization. The Raman spectra of the glasses are interpreted primarily in terms of vibrations of boron - oxygen structural groups. Comparison of the Raman spectra of the glass-ceramic samples with spectra of aluminate and borate crystalline materials reveal that these glasses crystallize primarily as yttrium aluminum borate, YAl3(BO3)4.

  13. Third order nonlinear optical properties of bismuth zinc borate glasses

    SciTech Connect

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.; Kuladeep, R.; Narayana Rao, D.

    2013-12-28

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due to dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.

  14. Third order nonlinear optical properties of bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.; Kuladeep, R.; Narayana Rao, D.

    2013-12-01

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi2O3-30ZnO-(70-x) B2O3 (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due to dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σe) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.

  15. High Temperature Brillouin Scattering of Potassium Borate Glasses

    NASA Astrophysics Data System (ADS)

    Kawashima, Mitsuru; Matsuda, Yu; Aramomi, Syunsuke; Kojima, Seiji

    2010-07-01

    High temperature elastic properties of potassium borate glasses, xK2O·(100-x)B2O3 (x=4, 10, 14, 20, 28, and 34 mol %), have been investigated between 20 and 1100 °C by Brillouin scattering. Longitudinal sound velocity of the glasses changes only slightly up to the glass transition temperature (Tg), and, with further heating above Tg, it decreases markedly. This sudden decrease in sound velocity is caused by structural rearrangements that make glass networks soft above Tg. With an increase in K2O composition, the slope of sound velocity just above Tg increases. The composition dependence of the fragility of potassium borate glass is suggested on the basis of the slope. The activation energy of the relaxation process of 28K2O·72B2O3 measured by Brillouin scattering is estimated to be 6.84 kcal/mol, which is comparable to the energy of formation of a boroxol ring structure in a liquid phase.

  16. High Temperature Brillouin Scattering of Potassium Borate Glasses

    NASA Astrophysics Data System (ADS)

    Mitsuru Kawashima,; Yu Matsuda,; Syunsuke Aramomi,; Seiji Kojima,

    2010-07-01

    High temperature elastic properties of potassium borate glasses, xK2O\\cdot(100-x)B2O3 (x=4, 10, 14, 20, 28, and 34 mol %), have been investigated between 20 and 1100 °C by Brillouin scattering. Longitudinal sound velocity of the glasses changes only slightly up to the glass transition temperature (Tg), and, with further heating above Tg, it decreases markedly. This sudden decrease in sound velocity is caused by structural rearrangements that make glass networks soft above Tg. With an increase in K2O composition, the slope of sound velocity just above Tg increases. The composition dependence of the fragility of potassium borate glass is suggested on the basis of the slope. The activation energy of the relaxation process of 28K2O\\cdot72B2O3 measured by Brillouin scattering is estimated to be 6.84 kcal/mol, which is comparable to the energy of formation of a boroxol ring structure in a liquid phase.

  17. Optical and FT Infrared spectral studies of vanadium ions in cadmium borate glass and effects of gamma irradiation.

    PubMed

    AbdelAziz, T D; EzzElDin, F M; El Batal, H A; Abdelghany, A M

    2014-10-15

    Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8×10(4) Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe(3+)). The V2O5-doped glasses reveal an extra band at 380nm and the high V2O5-content glass also shows a further band at about 420nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d(0) configuration). The surplus band at 420nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe(3+) ions by photochemical reactions with the presence of high content (45mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO. PMID:24840491

  18. Composition Dependence of the Boson Peak and Universality in Lithium Borate Binary Glasses: Inelastic Neutron and Raman Scattering Studies

    NASA Astrophysics Data System (ADS)

    Matsuda, Yu; Kawashima, Mitsuru; Moriya, Yosuke; Yamada, Takeshi; Yamamuro, Osamu; Kojima, Seiji

    2010-03-01

    We study the low-energy vibrational dynamics, called the boson peak (BP), of binary lithium borate glasses as a function of the composition of these glasses by inelastic neutron and Raman scattering. Firstly, we analyze the variations in the properties of the BP with the composition. The position and intensity of the BP linearly change with increasing x owing to the changes in the intermediate glass structures. Secondly, we demonstrate that all spectral shapes with different compositions can be scaled by a single master curve, and are the same for all spectra. The results suggests that there is a universal distribution of the vibrational density of states, which does not change with the composition, even though the structures of lithium borate glasses markedly change. The effect of Li2O doping can be understood to be a chemical structure-induced densification.

  19. Structure-property relations in lanthanide borate glasses

    NASA Technical Reports Server (NTRS)

    Chakraborty, I. N.; Day, D. E.; Lapp, J. C.; Shelby, J. E.

    1985-01-01

    Glass formation in the system Ln2O3-B2O3 (Ln = Nd, Sm) was studied. Glasses could be formed in the range from 0 to 28 mol pct rare-earth oxide (Ln2O3), but liquid immiscibility in these systems limits the range of homogeneous glasses to 0 to 1.5 and 25 to 28 mol pct Ln2O3. The infrared spectra indicate that the rare-earth-rich glasses are structurally similar to rare-earth metaborates (LnB3O6) which contain (B3O6)-infinity chains. The variation in density, transformation temperature, thermal expansion coefficient, and transformation-range viscosity of these glasses with the size of the rare-earth ion is discussed. Glasses near the metaborate composition have a transformation temperature of about 700 C, which is high for binary borate glasses. Glasses could not be formed in the systems Eu2O3-, Gd2O3-, Ho2O3-, and Er2O3-B2O3, even by quenching at 1300 C/s. The sudden lack of glass formation in the system Ln2O3-B2O3 with Ln(3+) ions smaller than Sm(3+) is explained on the basis of the size effect of the Ln(3+) ion on the stability of (B3O6)-infinity chains in these metaborates.

  20. Relationship between Eu{sup 3+} reduction and glass polymeric structure in Al{sub 2}O{sub 3}-modified borate glasses under air atmosphere

    SciTech Connect

    Jiao, Qing; Yu, Xue; Xu, Xuhui; Zhou, Dacheng; Qiu, Jianbei

    2013-06-15

    The reduction of Eu{sup 3+} to Eu{sup 2+} is realized efficiently in Eu{sub 2}O{sub 3}-doped borate glasses prepared under air condition by melting-quenching method. Luminescent spectra show an increasing tendency of Eu{sup 2+} emission with increasing Al{sub 2}O{sub 3} concentration in B{sub 2}O{sub 3}–Na{sub 2}O glasses. It is interesting that significant enhancement appeared of Eu{sup 2+} luminescence in the Al{sub 2}O{sub 3}-rich sample comparing to the samples of Al{sub 2}O{sub 3} less than 6 mol%. FTIR and Raman scattering measurements indicated that some new vibration modes assigned to the low-polymerized structure groups decomposed from the slight Al{sub 2}O{sub 3} dopant samples. These results demonstrated that the polymerization of the glass structure decreased with increasing incorporation of Al{sub 2}O{sub 3} into the borate glasses, linking to the efficiency of Eu{sup 3+} self-reduction in air at high temperature. - graphical abstract: A novel europium valence reduction phenomenon occurred in Al{sub 2}O{sub 3} modified borate glasses, FTIR and Raman measurements revealed that high polymeric groups were destroyed to low polymery structures with Al{sub 2}O{sub 3} addition. - Highlights: • The efficient reduction of Eu{sup 3+} to Eu{sup 2+} is observed in the B{sub 2}O{sub 3}–Na{sub 2}O glasses. • Eu{sup 2+} luminescence is significant enhanced in the Al{sub 2}O{sub 3}-rich glasses. • The introduction of Al{sub 2}O{sub 3} changed the network structure of the borate glasses. • High polymeric borate groups in the glass matrix may be destroyed to the lower ones.

  1. Luminescence properties of Sm{sup 3+} impurities in strontium lithium bismuth borate glasses

    SciTech Connect

    Rajesh, D.; Ratnakaram, Y. C.; Seshadri, M.; Balakrishna, A.

    2012-06-05

    In the present work, different concentrations of Sm{sup 3+}-doped strontium lithium bismuth borate glasses (SLBiB) were prepared by melt quench technique. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Using the J-O intensity parameters, emission and decay measurements various radiative properties are studied. The nature of decay curves of {sup 4}G{sub 5/2} level for different Sm{sup 3+} ion concentrations in SLBiB glasses has been analyzed. The intensities of observed emission peaks and measured lifetimes decrease with the increase of Sm{sup 3+} ion concentration which may be due to energy transfer between excited Sm{sup 3+} ions through cross-relaxations and resonant energy channels.

  2. Optical constants, single-oscillator modal and refractive index dispersion analysis of lithium zinc bismuth borate glasses doped with Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Boda, Ramesh; Srinivas, G.; Komaraiah, D.; Srinivas, B.; Shareefuddin, Md.; Sayanna, R.

    2016-05-01

    The glasses of composition xLi2O-15ZnO- 20Bi2O3- (64 - x) B2O3- 1EuO (ZLB) (where x=0, 5, 10, 15, 20 mole %) prepared by melt-quenching technique. The amorphous nature of the prepared glasses was confirmed by XRD spectra. The UV-Vis optical absorption spectrum was recorded in the wave length range of 200-1000 nm. It is observed that the optical band gap is inversely changing with Urbach energy. The optical constants such as G (a constant proportional to the second-order deformation potential) and Ef (a constant that depends on local coordination and is called as free energy of the glass system). The most significant result of the present work is the refractive index dispersion curves of the ZLB glasses obey the single-oscillator model and oscillator parameters (Eo, Ed) changed with the Li2O content. the absorption edge, band gap and Urbach energy is changing nonlinearly with increasing content of Li2O, which can be used to calculate the optical, physical, and other constants.

  3. In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.

    PubMed

    Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-10-01

    Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. PMID:26117744

  4. Thermal, structural and electrical studies of bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.

    2013-06-01

    Bismuth Zinc Borate glasses with compositions xBi2O3-30ZnO-(70 - x)B2O3 (where x = 30, 35, 40 and 45 mol %) have been prepared by melt quenching method. These glasses were characterized by X-ray diffraction (XRD), Differential Thermal Analysis (DTA), Fourier Transform Infrared Spectrometer (FTIR) and Broad Band Dielectric Spectrometer (BDS). DTA and FTIR analysis reveals that Non-Bridging Oxygens (NBOs) increase with increase of bismuth content in the glass. Electrical data have been analyzed in the framework of impedance and modulus formalisms. The activation energy for dc conductivity decreases with increase of bismuth concentration. The imaginary part of modulus spectra has been fitted to non-exponential Kohlrausch-Williams-Watts (KWW) function and the value of the stretched exponent (β) is found to be almost independent of temperature but slightly dependent on composition.

  5. Synthesis and studies on microhardness of alkali zinc borate glasses

    SciTech Connect

    Subhashini, Bhattacharya, Soumalya Shashikala, H. D. Udayashankar, N. K.

    2014-04-24

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi{sub 2}O+yNa{sub 2}O+80B{sub 2}O{sub 3} (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li{sub 2}O and Na{sub 2}O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributed to the conversion of tetrahedral boron (BO{sub 4/2}){sup −} into (BO{sub 3/2}){sup −}. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.

  6. Molecular dynamics simulation of alkali borate glass using coordination dependent potential

    SciTech Connect

    Park, B.; Cormack, A.N.

    1997-12-31

    The structure of sodium borate glass was investigated by molecular dynamics simulation using coordination dependent potential model. The simulated alkali borate glass consists of basic units, BO{sub 3} triangle, BO{sub 4} tetrahedra and structural groups such as boroxol ring and triborate units. The coordination of boron is converted from 3 to 4 by adding alkali oxide.

  7. Preparation and characterization of magnesium borate for special glass

    NASA Astrophysics Data System (ADS)

    Dou, Lishuang; Zhong, Jianchu; Wang, Hongzhi

    2010-05-01

    Magnesium borate with a variety of B2O3/MgO molar ratios, which can be applied for special glass, has been prepared through the reaction of light-burned magnesia with boric acid by a hydrothermal method. The effects of the B2O3/MgO molar ratio of raw materials, reaction time, temperature and liquid to solid ratio (ml g-1) on the synthetic product are investigated. The XRD and TG-DTG analyses indicate that the prepared magnesium borate is a mixture of magnesium hexaborate hydrate and ascharite. The results show that high B2O3/MgO molar ratios of raw materials and low reaction liquid-solid ratios favour the product with a high B2O3/MgO molar ratio and vice versa. There exists free MgO in the product when the reaction temperature is below 140 °C or the reaction time is not enough, because of the incomplete reaction of magnesium oxide with boric acid. The process of fractional crystallization for the magnesium borate mixture is also discussed.

  8. A study of physical and optical absorption spectra of VO2+ ions in potassium and sodium oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Kumar, J. Siva; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    Spectroscopic and physical properties of V2O5 doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K2O and Na2O) were changes and are prepared by melt quenching technique. The values of ri, rp, Rm, αm molar volume and Λth increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K2O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boron separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K2O content which manifests the mixed alkali effect.

  9. Brillouin Scattering Study of Liquid Glass Transition in Lithium Borate Glass

    NASA Astrophysics Data System (ADS)

    Ike, Yuji; Matsuda, Yu; Kojima, Seiji; Kodama, Masao

    2006-05-01

    Elastic properties of different compositions of lithium borate glasses xLi2O\\cdot(1-x)B2O3 (x=0.06--0.28) were investigated in the temperature range from 25 to 600 °C by Brillouin scattering spectroscopy. The composition dependence of the lithium borate glass system shows a stiffening tendency and a higher onset temperature of softening with increasing mole fraction of Li2O. We successfully observed the change in longitudinal elastic modulus in the vicinity of the glass transition temperature (Tg). The elastic moduli show a marked temperature dependence above the glass transition temperature Tg, while they show little change below Tg. These results strongly relate to the structural conversion of cross-linking borate units from triangular BO3 to tetrahedral BO4 units by the addition of Li2O. The increase in lithium oxide enhances the glass network integrity in the composition range of this study. A significant decrease in the elastic modulus above Tg can be attributed to the association of boroxol ring deformation and a change in the coordination number of boron atoms. These elastic properties were discussed in comparison with lithium silicate glass.

  10. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  11. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  12. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  13. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass

    PubMed Central

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns2-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn2+-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  14. Narrow energy gap between triplet and singlet excited states of Sn2+ in borate glass.

    PubMed

    Masai, Hirokazu; Yamada, Yasuhiro; Suzuki, Yuto; Teramura, Kentaro; Kanemitsu, Yoshihiko; Yoko, Toshinobu

    2013-01-01

    Transparent inorganic luminescent materials have attracted considerable scientific and industrial attention recently because of their high chemical durability and formability. However, photoluminescence dynamics of ns(2)-type ions in oxide glasses has not been well examined, even though they can exhibit high quantum efficiency. We report on the emission property of Sn(2+)-doped strontium borate glasses. Photoluminescence dynamics studies show that the peak energy of the emission spectrum changes with time because of site distribution of emission centre in glass. It is also found that the emission decay of the present glass consists of two processes: a faster S1-S0 transition and a slower T1-S0 relaxation, and also that the energy difference between T1 and S1 states was found to be much smaller than that of (Sn, Sr)B6O10 crystals. We emphasize that the narrow energy gap between the S1 and T1 states provides the glass phosphor a high quantum efficiency, comparable to commercial crystalline phosphors. PMID:24345869

  15. Composition-structure-properties relationship of strontium borate glasses for medical applications.

    PubMed

    Hasan, Muhammad S; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-07-01

    We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable. PMID:25366812

  16. Antiquenching effect of modifying cations on samarium clustering: Physical, structural and luminescent behavior of heavy metal borate glass systems

    NASA Astrophysics Data System (ADS)

    Kaur, Simranpreet; Kaur, Parvinder; Pal Singh, Gurinder; Kumar, Sunil; Singh, D. P.

    2015-09-01

    In this paper an attempt has been made to correlate the structural modifications and luminescence efficiencies by changing the environment of the glass network by modifying oxides. Sm3+ doped lead borate (SPB) and lead cadmium alumino borate (SCPB) glasses have been fabricated by melt quench technique at high temperature. The glass samples are characterized by XRD, FTIR, optical absorptions, fluorescence and density measurements. The effect of Sm3+ ion and glass host interaction on the emission spectra has been discussed in the view of the ionicity and covalency of hosts. The ratio of the intensities of electric to magnetic dipole emissions are calculated by varying both the concentration of the Sm3+ ion and the composition of the glass matrix. The XRD profile of all the glasses confirms their amorphous nature and FTIR spectrum shows the presence of BO3 and BO4 groups. These glasses have shown strong absorption bands in the visible (VIS and NIR) region and emit strong orange red wavelengths when excited by ultraviolet light. The concentration quenching has been noticed and ascribed to energy transfer through cross-relaxation between Sm3+ ions. Shifting of UV absorption edge towards longer wavelength with addition of Sm2O3 concentration has been observed. Incorporation of Al2O3 and CdO in 2nd glass system is responsible for strong effect on luminescence of the present glass system. Based on these results, an attempt has been made to throw some light on the relationship between the structural modifications and luminescence efficiencies in two different glass hosts as a laser active medium in the visible region. Moreover the optical basicity values were theoretically determined along with covalent behavior of two glass systems.

  17. Effects of copper on the preparation and characterization of Na-Ca-P borate glasses

    NASA Astrophysics Data System (ADS)

    Shailajha, S.; Geetha, K.; Vasantharani, P.; Sheik Abdul Kadhar, S. P.

    2015-03-01

    Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200 °C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81 eV to 2.99 eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM.

  18. Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.

    PubMed

    Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P

    2015-03-01

    Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. PMID:25605593

  19. Structural investigation and laser plasma diagnostics of borate glasses containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.; Branca, C.; Carini, G.; Ceccio, G.; Crupi, C.; Rifici, S.; Ruello, G.; Wanderlingh, U.; Torrisi, L.

    2016-05-01

    Non-equilibrium plasmas have been produced in vacuum by irradiating thin targets of Ag2O doped borate glasses by pulsed laser. Morphological and optical measurements have shown that in these glasses at high Ag content the metallic cations exist as nanoparticle and can induce effects of resonant absorption in laser-generated plasmas. Furthermore, preliminary time-of-flight measurements have been carried out by means of an infrared laser having a maximum intensity of the order of 1010 W/cm2 evidencing that the ions energy and yield increase with the silver concentrations and depend on the glass structure. This study has shown that concentrations of Ag2O up to 25% enhance the kinetic energies and the yields of the accelerated ions, whereas a higher content of silver oxide gives rise to high laser absorption thus modifying the properties of the plasma. The obtained characterization indicates that the targets may be irradiated by higher repetitive laser intensities in order to enhance the ion acceleration and current.

  20. EPR and optical absorption studies of Cu{sup 2+} ions in alkaline earth alumino borate glasses

    SciTech Connect

    Ramesh Kumar, V.; Rao, J.L. . E-mail: jlrao46@yahoo.co.in; Gopal, N.O.

    2005-08-11

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in alkaline earth alumino borate glasses doped with different concentrations of CuO have been studied. The EPR spectra of all the glasses exhibit the resonance signals, characteristic of Cu{sup 2+} ions present in axially elongated octahedral sites. The number of spins participating in the resonance has been calculated as a function of temperature for calcium alumino borate (CaAB) glass doped with 0.1 mol% of CuO. From the EPR data, the paramagnetic susceptibility ({chi}) was calculated at different temperatures (T) and from the 1/{chi}-T graph, the Curie temperature of the glass has been evaluated. The optical absorption spectra of all the glasses show a single broad band, which has been assigned to the {sup 2}B{sub 1g} {yields} {sup 2}B{sub 2g} transition of the Cu{sup 2+} ions. The variation in the intensity of optical absorption with the ionic radius of the alkaline earth ion has been explained based on the Coulombic forces. By correlating the EPR and optical absorption spectral data, the nature of the in-plane {sigma} bonding between Cu{sup 2+} ion and the ligands is estimated. From the fundamental ultraviolet absorption edges of the glasses, the optical energy gap (E {sub opt}) and the Urbach energy ({delta}E) are evaluated. The variation in E {sub opt} and {delta}E is explained based on the number of defect centers in the glass.

  1. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model.

    PubMed

    Bi, Lianxiang; Rahaman, Mohamed N; Day, Delbert E; Brown, Zackary; Samujh, Christopher; Liu, Xin; Mohammadkhah, Ali; Dusevich, Vladimir; Eick, J David; Bonewald, Lynda F

    2013-08-01

    Borate bioactive glasses are biocompatible and enhance new bone formation, but the effect of their microstructure on bone regeneration has received little attention. In this study scaffolds of borate bioactive glass (1393B3) with three different microstructures (trabecular, fibrous, and oriented) were compared for their capacity to regenerate bone in a rat calvarial defect model. 12weeks post-implantation the amount of new bone, mineralization, and blood vessel area in the scaffolds were evaluated using histomorphometric analysis and scanning electron microscopy. The amount of new bone formed was 33%, 23%, and 15%, respectively, of the total defect area for the trabecular, oriented, and fibrous microstructures. In comparison, the percent new bone formed in implants composed of silicate 45S5 bioactive glass particles (250-300μm) was 19%. Doping the borate glass with copper (0.4 wt.% CuO) had little effect on bone regeneration in the trabecular and oriented scaffolds, but significantly enhanced bone regeneration in the fibrous scaffolds (from 15 to 33%). The scaffolds were completely converted to hydroxyapatite within the 12week implantation. The amount of hydroxyapatite formed, 22%, 35%, and 48%, respectively, for the trabecular, oriented, and fibrous scaffolds, increased with increasing volume fraction of glass in the as-fabricated scaffold. Blood vessels infiltrated into all the scaffolds, but the trabecular scaffolds had a higher average blood vessel area compared with the oriented and fibrous scaffolds. While all three scaffold microstructures were effective in supporting bone regeneration, the trabecular scaffolds supported more bone formation and may be more promising in bone repair. PMID:23643606

  2. Heat capacity, glass transition temperature, size of cooperatively rearranging regions, and network connectivity of sodium silicate and alkali borate glasses

    SciTech Connect

    Borisova, N.V.; Ushakov, V.M.; Shultz, M.M.

    1994-07-01

    The radius of cooperatively rearranging domains at the glass transition in sodium silicate glasses and the number of bridging oxygen atoms in these domains are assessed within the framework of the kinetic theory of thermal fluctuations. The tendencies of the heat capacity, T{sub g}, and the cooperative rearrangement scale with the alkali oxide concentration in sodium silicate and alkali borate glasses are compared. The points of similarity and distinctions between them are revealed.

  3. Investigation of luminescence and spectroscopic properties of Nd3+ions in cadmium alkali borate glasses

    NASA Astrophysics Data System (ADS)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-07-01

    Neodymium doped cadmium alkali borate glasses having composition 20CdOsbnd 20R2Osbnd 59.5H3BO3sbnd 0.5Nd2O3; (R = Li, Na and K) were prepared by conventional melt-quenching technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The physical properties such as density, refractive index, molar volume, rare earth ion concentration etc. were determined. Optical absorption and fluorescence spectra were recorded. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. These parameters were in turn used to predict the radiative properties such as the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ ion in the present glass series. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4/Ω6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. The variation of Ω2 with the change in alkali oxide has been attributed to the changes in the asymmetry of the ligand field at the rare earth ion site. The shift of the hypersensitive bands, study of the oscillator strengths and the variation of the spectral profile of the transition 4I9/2 → 4F7/2 + 4S3/2 indicate a maximum covalency of Ndsbnd O bond for glass with potassium ions. From the fluorescence spectra, peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) have been obtained for the three transitions 4F3/2 → 4I9/2,4F3/2 → 4I11/2 and4F3/2 → 4I13/2 of Nd3+ ion. The relatively high values of σp obtained for Nd3+ in present glass system suggest that these materials can be considered as suitable candidates for laser applications. The glass with potassium ions shows the highest value of the stimulated emission cross-section.

  4. The preparation and characterization of a lithium borate glass prepared by the gel technique

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Neilson, G. F.; Smith, G. L.; Dunn, B.; Moore, G. S.; Mackenzie, J. D.

    1985-01-01

    The preparation of an amorphous lithium borate gel by the metal organic procedure is described. In addition, a preliminary evaluation of the behavior of the gel upon heating is given. In particular the crystallization tendency of the gel is studied with the aid of DTA and X-ray diffraction, and the structural changes in the gel are monitored with the aid of IR spectroscopy. The glass produced from the lithium borate gel is compared to both the gel precursor material and a glass of similar composition prepared by conventional techniques. Specifically, the relevant water contents, crystallization behavior, and structural features are contrasted.

  5. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    SciTech Connect

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-05-09

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg.

  6. Neodymium-doped glasses for waveguide lasers

    NASA Astrophysics Data System (ADS)

    Church, Kenneth H.; Zanoni, Raymond; Sapak, David L.; Hayden, Joseph S.

    1994-10-01

    We report recent results from our work on the fabrication of neodymium waveguide lasers. Several neodymium doped glasses. APG-1, LG-680, BK 7 and S 3 made by Schott Glass Technologies, Inc. were studied as candidates for use as waveguide lasers. It was found that S 3, a standard ophthalmic glass, had the best ion-exchange properties of any of the glasses studied. A waveguide laser was successfully made using the neodymium doped S 3 glass.

  7. In vitro evaluation of cytotoxicity of silver-containing borate bioactive glass.

    PubMed

    Luo, Shi-Hua; Xiao, Wei; Wei, Xiao-Juan; Jia, Wei-Tao; Zhang, Chang-Qing; Huang, Wen-Hai; Jin, Dong-Xu; Rahaman, Mohamed N; Day, Delbert E

    2010-11-01

    The cytotoxicity of silver-containing borate bioactive glass was evaluated in vitro from the response of osteoblastic and fibroblastic cells in media containing the dissolution products of the glass. Glass frits containing 0-2 weight percent (wt %) Ag were prepared by a conventional melting and quenching process. The amount of Ag dissolved from the glass into a simulated body fluid (SBF), measured using atomic emission spectroscopy, increased rapidly within the first 48 h, but slowed considerably at longer times. Structural and microchemical analysis showed that the formation of a hydroxyapatite-like layer on the glass surface within 14 days of immersion in the SBF. The response of MC3T3-E1 and L929 cells to the dissolution products of the glass was evaluated using SEM observation of cell morphology, and assays of MTT hydrolysis, lactate dehydrogenase release, and alkaline phosphatase activity after incubation for up to 48 h. Cytotoxic effects were found for the borate glass containing 2 wt % Ag, but not for 0.75 and 1 wt % Ag. This borate glass containing up to ∼1 wt % Ag could provide a coating material for bacterial inhibition and enhanced bioactivity of orthopaedic implant materials such as titanium. PMID:20878930

  8. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Melo, B. M. G.; Graça, M. P. F.; Prezas, P. R.; Valente, M. A.; Almeida, A. F.; Freire, F. N. A.; Bih, L.

    2016-08-01

    In this work, phosphate-borate based glasses with molar composition 20.7P2O5-17.2Nb2O5-13.8WO3-34.5A2O-13.8B2O3, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σac and σdc, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz-1 MHz.

  9. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.

    PubMed

    Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

    2014-01-01

    Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation. PMID:23241965

  10. Effects of borate-based bioactive glass on neuron viability and neurite extension.

    PubMed

    Marquardt, Laura M; Day, Delbert; Sakiyama-Elbert, Shelly E; Harkins, Amy B

    2014-08-01

    Bioactive glasses have recently been shown to promote regeneration of soft tissues by positively influencing tissue remodeling during wound healing. We were interested to determine whether bioactive glasses have the potential for use in the treatment of peripheral nerve injury. In these experiments, degradable bioactive borate glass was fabricated into rods and microfibers. To study the compatibility with neurons, embryonic chick dorsal root ganglia (DRG) were cultured with different forms of bioactive borate glass. Cell viability was measured with no media exchange (static condition) or routine media exchange (transient condition). Neurite extension was measured within fibrin scaffolds with embedded glass microfibers or aligned rod sheets. Mixed cultures of neurons, glia, and fibroblasts growing in static conditions with glass rods and microfibers resulted in decreased cell viability. However, the percentage of neurons compared with all cell types increased by the end of the culture protocol compared with culture without glass. Furthermore, bioactive glass and fibrin composite scaffolds promoted neurite extension similar to that of control fibrin scaffolds, suggesting that glass does not have a significant detrimental effect on neuronal health. Aligned glass scaffolds guided neurite extension in an oriented manner. Together these findings suggest that bioactive glass can provide alignment to support directed axon growth. PMID:24027222

  11. The effect of composition on the viscosity, crystallization and dissolution of simple borate glasses and compositional design of borate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Goetschius, Kathryn Lynn

    Borate glasses have recently been developed for a variety of medical applications, but much less is known about their structures and properties than more common silicate glasses. Melt properties and crystallization tendency for compositions in the Na2O-CaO-B2O3 system were characterized using differential thermal analysis and viscosity measurements. Characteristic viscosity (isokom) temperatures varied with the ratio between the modifier content (Na2O+CaO) and B2O3, particularly at lower temperatures, consistent with the changes in the relative concentrations of tetrahedral borons in the glass structure. Similar glasses were used to study dissolution processes in water. These alkali-alkaline earth glasses dissolve congruently and follow linear dissolution kinetics. The dissolution rates were dependent on the glass structure, with slower rates associated with greater fractions of four-coordinated boron. For glasses with a fixed alkaline earth identity, the dissolution rates increased in the order Liglasses with a constant alkali identity, the dissolution rates increased in the order Caborate-based bioactive compositions for specific applications. Melt viscosity, thermal expansion coefficient, liquidus temperature and crystallization tendency were determined, as were dissolution rates in simulated body fluid (SBF).

  12. Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses

    SciTech Connect

    Takebe, Hiromichi; Nageno, Yoshikazu; Morinaga, Kenji

    1995-05-01

    Judd-Ofelt parameters {Omega}{sub t} with t = 2, 4, 6 for the rare-earth ions Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Er{sup 3+}, and Tm{sup 3+} in alkali and/or alkaline-earth silicate, borate, and phosphate glasses have been determined. The variations of {Omega}{sub t} with the number of 4{line_integral} electrons of the rare-earth ions are demonstrated, and factors affecting the Judd-Ofelt parameters {Omega}{sub 6} are discussed. The intensity parameter {Omega}{sub 6} depends on the ionic packing ratio of the glass host by changing modifier type in silicate and borate glasses, and it is independent of that in a series of borate glasses as a function of modifier content and phosphate glasses. The peak wavenumber of the transitions whose intensities are determined mainly by the {Omega}{sub 6} < {parallel}U{sup (6)}{parallel}>{sup 2} term-where <{parallel}U{sup (6)}{parallel}> is one of the reduced matrix elements--shift systematically with the values of {Omega}{sub 6} for all the rare-earth ions.

  13. The effect of MgO on the optical properties of lithium sodium borate doped with Cu+ ions

    NASA Astrophysics Data System (ADS)

    Alajerami, Yasser Saleh Mustafa; Hashim, Suhairul; Hassan, Wan Muhamad Saridan Wan; Ramli, Ahmad Termizi; Saleh, Muneer Aziz

    2013-04-01

    The current work presented the photoluminescence (PL) properties of a new glass system, which are reported for the first time. Based on the attractive properties of borate glass, a mixture of boric acid (70-x mol %) modified with lithium (20 mol %) and sodium carbonate (10 mol %) was prepared. The current study illustrated the effect of dopant and co-dopant techniques on the lithium sodium borate (LNB). Firstly, 0.1 mol % of copper ions doped with LNB was excited at 610 nm. The emission spectrum showed two prominent peaks in the violet region (403 and 440 nm). Then, we remarked the effect of adding different concentration of MgO on the optical properties of LNB. The results showed the great effect of magnesium oxide on the PL intensities (enhanced more than two times). Moreover, an obvious shifting has been defined toward the blue region (440 → 475 nm). The up-conversion optical properties were observed in all emission spectra. This enhancement is contributed to the energy transfer from MgO ions to monovalent Cu+ ion. It is well known that magnesium oxide alone generates weak emission intensity, but during this increment the MgO act as an activator (co-doped) for Cu+ ions. Finally, energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance all were measured for the current samples. The current samples were subjected to XRD for amorphous confirmation and IR for glass characterization before and after dopants addition. Finally, some of significant physical and optical parameters were also calculated.

  14. Stability of cement-glass packages containing sodium borate salt generated from pressurized water reactor power plants

    SciTech Connect

    Izumida, T.; Kawamura, F.; Chino, K.; Kikuchi, M.

    1987-08-01

    A new solidification technique using cement-glass, which is a mixture of sodium silicate and cement, was studied for solidification of sodium borate salt of liquid waste generated from pressurized water reactor plants. When the sodium borate salt was solidified with the cement-glass, the resulting package contained eight times more sodium borate than was found in cement because it did not interact with sodium borate. The leaching ratio of cesium ion from the cement-glass package was one-tenth that of cement. Its low leaching ratio was due to the high cesium adsorption ability of cement-glass. The ratio could be theoretically evaluated by considering the cesium adsorption-desorption equilibrium.

  15. Effect of SnO addition on optical absorption of bismuth borate glass and photocatalytic property of the crystallized glass

    SciTech Connect

    Masai, Hirokazu; Fujiwara, Takumi; Mori, Hiroshi

    2008-04-07

    We have found that an addition of SnO in a bismuth-borate glass, CaO-B{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-TiO{sub 2}, decreases the optical absorption coefficient in the visible region, in which selective crystallization of TiO{sub 2} was observed after heat treatment. Since selective crystallization of TiO{sub 2} was also attained in the SnO-containing glass, the transparency of TiO{sub 2} crystallized glass can be improved independently of selective crystallization of TiO{sub 2}. We have also demonstrated that the rutile-nanocrystallized glass with SnO addition shows a higher photocatalytic activity than the glass without SnO, indicating that this crystallized glass has a large potential for application as transparent photocatalytic materials.

  16. Magnetic properties of cobalt-strontium-borate oxide glasses

    SciTech Connect

    Ardelean, I.; Ilonca, G.; Simon, S.; Filip, S.; Jurcut, T.

    1997-02-01

    The results of the temperature dependence of the magnetic susceptibility on xCoO{center_dot}(1 {minus} x)[2B{sub 2}O{sub 3}{center_dot}SrO] glasses with 0 < x {le} 50 mol% are reported. The effective magnetic moment values suggest that the Co{sup 2+} ions are predominantly octahedral coordinated in low CoO content glasses, whereas in higher CoO content glasses the Co{sup 2+} ions are located in tetrahedral sites. Also {theta}{sub p} values indicate that the Co{sup 2+} ions participate at the negative superexchange interaction for x {ge} 20 mol%.

  17. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    SciTech Connect

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish; Babu, Panakkattu K.

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the optical absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.

  18. Fluorescence line narrowing spectroscopy of Sm{sup 2+} and Eu{sup 3+} in sodium borate glasses

    SciTech Connect

    Fujita, K.; Tanaka, K.; Hirao, K.; Soga, N.

    1997-01-01

    A fluorescence line narrowing technique was carried out for sodium borate glasses containing a Sm{sup 2+} ion and its isoelectonic Eu{sup 3+} ion under a pulsed tunable dye laser excitation. In order to obtain site-dependent information, measurements were made by exciting the inhomogeneously broadened {sup 5}{ital D}{sub 0}-{sup 7}{ital F}{sub 0} transition at 10 K. Line-narrowing fluorescence of the {sup 5}{ital D}{sub 0}{r_arrow}{sup 7}{ital F}{sub 1} transition and the temporal changes of the emission lines were investigated as a function of excitation energy, and the dynamics of excited states for both ions were compared with each other. The results indicate that the site-to-site variations of the inhomogeneous broadening of {sup 5}{ital D}{sub 0}{endash}{sup 7}{ital F}{sub 0} transitions are attributed to the apparent difference in local environment between the Sm{sup 2+} and Eu{sup 3+} ions doped in borate glasses with Na{sub 2}O content from 10 to 20 mol{percent}. Also, a decrease in concentration of rare-earth ions causes a more significant effect on Eu{sup 3+} ions than on Sm{sup 2+} ions in the high-excitation-energy range. It is concluded that the difference in the local environment between Sm{sup 2+} and Eu{sup 3+} is mainly ascribable to the difference in the valence and in the ionic radius. {copyright} {ital 1997 American Institute of Physics.}

  19. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    PubMed

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. PMID:26204506

  20. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  1. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    NASA Astrophysics Data System (ADS)

    Sasi Kumar, M. V.; Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-04-01

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li-Na, Li-K and Na-K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd-Ofelt (J-O) theory has been applied to calculate J-O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J-O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions.

  2. Effect of Sm{sub 2}O{sub 3} addition on electrical and optical properties of lithium borate glasses

    SciTech Connect

    Gedam, R. S.; Ramteke, D. D.

    2012-06-05

    The electrical and optical property of lithium borate glasses was investigated. It is observed that conductivity decreases while density and refractive index increases with the addition of Sm{sub 2}O{sub 3}. Radiation length of glasses was determined and it is observed that radiation length decreases with the addition of Sm{sub 2}O{sub 3}.

  3. Role of electron transfer in Ce3+ sensitized Yb3+ luminescence in borate glass

    NASA Astrophysics Data System (ADS)

    Sontakke, Atul D.; Ueda, Jumpei; Katayama, Yumiko; Zhuang, Yixi; Dorenbos, Pieter; Tanabe, Setsuhisa

    2015-01-01

    In a Ce3+-Yb3+ system, two mechanisms are proposed so far namely, the quantum cutting mechanism and the electron transfer mechanism explaining Yb3+ infrared luminescence under Ce3+ excitation. Among them, the quantum cutting mechanism, where one Ce3+ photon (ultraviolet/blue) gives rise to two Yb3+ photons (near infrared) is widely sought for because of its huge potential in enhancing the solar cell efficiency. In present study on Ce3+-Yb3+ codoped borate glasses, Ce3+ sensitized Yb3+ luminescence at ˜1 μm have been observed on Ce3+ 5d state excitation. However, the intensity of sensitized Yb3+ luminescence is found to be very weak compared to the strong quenching occurred in Ce3+ luminescence in Yb3+ codoped glasses. Moreover, the absolute luminescence quantum yield also showed a decreasing trend with Yb3+ codoping in the glasses. The overall behavior of the luminescence properties and the quantum yield is strongly contradicting with the quantum cutting phenomenon. The results are attributed to the energetically favorable electron transfer interactions followed by Ce3+-Yb3+ ⇌ Ce4+-Yb2+ inter-valence charge transfer and successfully explained using the absolute electron binding energies of dopant ions in the studied borate glass. Finally, an attempt has been presented to generalize the electron transfer mechanism among opposite oxidation/reduction property dopant ions using the vacuum referred electron binding energy (VRBE) scheme for lanthanide series.

  4. Studies on the effect of Li{sub 2}SO{sub 4} on the structure of lithium borate glasses

    SciTech Connect

    Ganguli, M.; Rao, K.J.

    1999-02-11

    Thermal and spectroscopic investigations have been carried out on a number of glasses with a wide range of compositions in the pseudoternary glass system, Li{sub 2}SO{sub 4}-Li{sub 2}O-B{sub 2}O{sub 3}, to understand the role of sulfate ions in modifying the borate glass structure. Both nuclear magnetic resonance (NMR) and infrared (IR) spectroscopic results indicate that four-coordinate boron atoms are retained in the glass structure to a greater extent in sulfate-containing glasses than in pure lithium borate glasses. There seems to be some evidence for the existence of sulfoborate-type units in Raman spectra in the region of 800--960 cm{sup {minus}1}. These conclusions are supported by the observed behavior of glass transition temperatures and molar volumes. The possibility of formation of sulfoborate-type units is discussed from bonding and thermodynamic points of view.

  5. Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering.

    PubMed

    Deliormanlı, Aylin M

    2015-02-01

    Bioactive glasses are widely used in biomedical applications due to their ability to bond to bone and even to soft tissues. In this study, borate based (13-93B3) bioactive glass powders containing up to 5 wt% Ce2O3 and Ga2O3 were prepared by the melt quench technique. Cerium (Ce+3) and gallium (Ga+3) were chosen because of their low toxicity associated with bacteriostatic properties. Bioactive glass scaffolds were fabricated using the polymer foam replication method. In vitro degradation and bioactivity of the scaffolds were evaluated in SBF under static conditions. Results revealed that the cerium- and gallium-containing borate glasses have much lower degradation rates compared to the bare borate glass 13-93B3. In spite of the increased chemical durability, substituted glasses exhibited a good in vitro bioactive response except when the Ce2O3 content was 5 wt%. Taking into account the high in vitro hydroxyapatite forming ability, borate glass scaffolds containing Ce+3 and Ga+3 therapeutic ions are promising candidates for bone tissue engineering applications. PMID:25631259

  6. Conductivity and modulus formulation in lithium modified bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, Sajjan; Punia, R.; Murugavel, S.; Maan, A. S.

    2016-05-01

    The conductivity and modulus formulation in lithium modified bismuth zinc borate glasses with compositions xLi2O-(50-x) Bi2O3-10ZnO-40B2O3 has been studied in the frequency range 0.1 Hz-1.5 × 105 Hz in the temperature range 573 K-693 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the studied compositions, the dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of the experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating centre (Hf) and enthalpy of migration (Hm) have been estimated. It has been observed that number of charge carriers and ac conductivity in the lithium modified bismuth zinc borate glasses increases with increase in Li2O content. Further, the conduction mechanism in the glass sample with x = 0 may be due to overlapping large polaron tunneling, whereas, conduction mechanism in other studied glass samples more or less follows diffusion controlled relaxation model. The ac conductivity is scaled using σdc and ωH as the scaling parameter and is found that these are suitable scaling parameter for conductivity scaling. Non-Debye type relaxation is found prevalent in the studied glass system. Scaling of ac conductivity as well as electric modulus confirms the presence of different type of conduction mechanism in the glass samples with x = 0 and 5 from other studied samples. The activation energy of relaxation (ER) and dc conductivity (Edc) are almost equal, suggesting that polarons/ions have to overcome same barrier while relaxing and conducting.

  7. Elastic Properties of Potassium Borate Glass in a Wide Composition Range Studied by Brillouin Scattering

    NASA Astrophysics Data System (ADS)

    Kawashima, Mitsuru; Matsuda, Yu; Fukawa, Yasuteru; Mamiya, Seiichi; Kodama, Masao; Kojima, Seiji

    2009-07-01

    The elastic properties of potassium borate glass, xK2O·(100 - x)B2O3, where x is the molar composition of K2O in mol %, have been investigated by Brillouin scattering spectroscopy over a wide composition range of 2 ≤x ≤42 mol %. From the observed values of longitudinal sound velocity, the elastic constant has been determined and compared with that of lithium borate glass. The sound velocity increases with increasing x below x = 30; however, for a further increase in x, it decreases owing to the softening caused by the formation and increase in the number of nonbridging oxygen atoms. The absorption coefficient also increases markedly above x = 30 owing to the scattering of acoustic waves by nonbridging oxygen atoms. The temperature dependences of both sound velocity and absorption coefficient of 14K2O·86B2O3 show a markedly change at approximately the glass transition temperature Tg of 395 °C.

  8. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution.

    PubMed

    Liu, Xin; Pan, Haobo; Fu, Hailuo; Fu, Qiang; Rahaman, Mohamed N; Huang, Wenhai

    2010-02-01

    Porous scaffolds of a borate-based glass (composition in mol%: 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5), with interconnected porosity of approximately 70% and pores of size 200-500 microm, were prepared by a polymer foam replication technique. The degradation of the scaffolds and conversion to a hydroxyapatite-type material in a 0.02 M K2HPO4 solution (starting pH = 7.0) at 37 degrees C were studied by measuring the weight loss of the scaffolds, as well as the pH and the boron concentration of the solution. X-ray diffraction, scanning electronic microscopy and energy dispersive x-ray analysis showed that a hydroxyapatite-type material was formed on the glass surface within 7 days of immersion in the phosphate solution. Cellular response to the scaffolds was assessed using murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed that the scaffolds supported cell attachment and proliferation during the 6 day incubation. The results indicate that this borate-based glass could provide a promising degradable scaffold material for bone tissue engineering applications. PMID:20057014

  9. Spectroscopic properties of Pr3+ ions embedded in lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Ramteke, D. D.; Swart, H. C.; Gedam, R. S.

    2016-01-01

    A series of lithium borate glasses with different Pr3+ contents were prepared by the melt quench technique to explore the new material for solid state light applications. We found that the addition of Pr3+ ions in the glass matrix has a profound effect on the properties of the glasses. The presence of Pr3+ ions in the glass matrix created various absorption bands compared to the base glass. These bands were due to the ground state (3H4) of the Pr3+ to the various excited states. Optical energy band gap was calculated by Tauc's method which showed a decreasing trend with an increase in the Pr3+ content. This might be due to structural changes when the glass structure became rigid due to the Pr3+ ions and this was confirmed by the density results. Rigidity of the glass structure was further confirmed by the Fourier transformed infrared results. The excitation spectra showed bands at 3H4→3P2, 3P1 and 3P0 nm. The 3H4→3P2 band was used to study the unresolved 1D2→3H4 and 3P0→3H6 transitions of the Pr3+ ions.

  10. Thermoluminescence mechanism in rare-earth-doped magnesium tetra borate phosphors

    NASA Astrophysics Data System (ADS)

    Annalakshmi, O.; Jose, M. T.; Madhusoodanan, U.; Sridevi, J.; Venkatraman, B.; Amarendra, G.; Mandal, A. B.

    2014-07-01

    Magnesium tetra borate (MTB) doped with rare earths (REs) was prepared by the solid state sintering technique. Among the different RE dopants studied in this phosphor, gadolinium-doped phosphors resulted in a dosimetric peak at a relatively higher temperature. The thermoluminescence (TL) emission spectra of RE-doped MTB showed characteristic RE 3+ emissions. Electron paramagnetic resonance measurements were carried out in these phosphors to identify the defect centers formed during gamma irradiation and to establish a mechanism for the TL process. Signals corresponding to (BO 3)2-, O v- were seen upon irradiation which vanished on annealing at 250 °C, showing the role of these centers in the TL process. The thermal activation energies calculated based on the decay of these signals matched well with those calculated on the basis of the usual conventional method showing the validity of the mechanism of TL.

  11. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model.

    PubMed

    Zhang, Yadong; Cui, Xu; Zhao, Shichang; Wang, Hui; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-02-01

    The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 ± 1.2 min) and a compressive strength of 19 ± 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery. PMID:25591177

  12. Coordination and ion-ion interactions of chromium centers in alkaline earth zinc borate glasses probed by electron paramagnetic resonance and optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Sumalatha, B.; Omkaram, I.; Rajavardana Rao, T.; Linga Raju, Ch

    2013-05-01

    Electron paramagnetic resonance (EPR), optical absorption and FT-IR studies have been carried out on chromium ions incorporated in alkaline earth zinc borate glasses. The EPR spectra exhibit two resonance signals with effective g values at g ≈ 1.99 and ≈1.97. The resonance signal at g ≈ 1.99 is attributed to the contribution from both the exchange coupled Cr3+-Cr3+ ion pairs and the isolated Cr3+ ions and the resonance signal at g ≈ 1.97 is due to Cr5+ ions. The paramagnetic susceptibility (χ) was calculated from the EPR data at various (123-303 K) temperatures and the Curie temperature (θp) was calculated from the 1/χ-T graph. The optical absorption spectra exhibit three bands at ˜360 nm, ˜440 nm and a broad band at ˜615 nm characteristic of Cr3+ ions in an octahedral symmetry. From the observed band positions, the crystal-field splitting parameter Dq and the Racah parameters (B and C) have been evaluated. From the ultraviolet edges, the optical band gap energies (Eopt) and Urbach energy (ΔE) are calculated. The theoretical optical basicity (Λth) of these glasses has also been evaluated. Chromium ions doped alkaline earth zinc borate glasses show BO3 and BO4 structural units in the FT-IR studies.

  13. Spectroscopic properties of Pr3+ and Er3+ ions in lead-free borate glasses modified by BaF2

    NASA Astrophysics Data System (ADS)

    Pisarska, Joanna; Pisarski, Wojciech A.; Dorosz, Dominik; Dorosz, Jan

    2015-09-01

    Lead-free oxyfluoride borate glasses singly doped with Pr3+ and Er3+ were prepared and next investigated using absorption and luminescence spectroscopy. In the studied glass system, barium oxide was substituted by BaF2. Two luminescence bands of Pr3+ located at visible spectral region are observed, which correspond to 3P0-3H4 (blue) and 1D2-3H4 (reddish orange) transitions, respectively. The luminescence bands due to 1D2-3H4 transition of Pr3+ are shifted to shorter wavelengths, when BaO was substituted by BaF2. Near-infrared luminescence spectra of Er3+ ions in lead-free borate glasses modified by BaF2 correspond to 4I13/2-4I15/2 transition. Their spectral linewidths increase with increasing BaF2 concentration. The changes in measured lifetimes of rare earth ions are well correlated with the bonding parameters calculated from the optical absorption spectra.

  14. Effect of TeO 2 on the elastic moduli of sodium borate glasses

    NASA Astrophysics Data System (ADS)

    Saddeek, Yasser B.; Latif, Lamia. Abd El

    2004-05-01

    Sodium borate glass containing tellurite as Te xNa 2-2 xB 4-4 xO 7-5 x with x=0, 0.05, 0.15, 0.25 and 0.35 have been prepared by rapid quenching. Ultrasonic velocity (both longitudinal and shear) measurements have been made using a transducer operated at the fundamental frequency of 4 MHz at room temperature. The density was measured by the conventional Archimedes method. The elastic moduli, the Debye temperature, Poisson's ratio, and the parameters derived from the Makishima-Mackenzie model and the bond compression model have been obtained as a function of TeO 2 content. The monotonic decrease in the velocities and the elastic moduli, and the increase in the ring diameter and the ratio Kbc/ Ke as a function of TeO 2 modifier content reveals the loose packing structure, which is attributed to the increase in the molar volume and the reduction in the vibrations of the borate lattice. The observed results confirm that the addition of TeO 2 changes the rigid character of Na 2B 4O 7 to a matrix of ionic behaviour bonds (NBOs). This is due to the creation of more and more discontinuities and defects in the glasses, thus breaking down the borax structure.

  15. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing.

    PubMed

    Zhou, Jie; Wang, Hui; Zhao, Shichang; Zhou, Nai; Li, Le; Huang, Wenhai; Wang, Deping; Zhang, Changqing

    2016-03-01

    Full-thickness skin defects represent urgent clinical problem nowadays. Wound dressing materials are hotly needed to induce dermal reconstruction or to treat serious skin defects. In this study, the borate bioactive glass (BG) micro-fibers were fabricated and compared with the traditional material 45S5 Bioglass(®) (SiG) micro-fibers. The morphology, biodegradation and bioactivity of BG and SiG micro-fibers were investigated in vitro. The wound size reduction and angiogenic effects of BG and SiG micro-fibers were evaluated by the rat full-thickness skin defect model and Microfil technique in vivo. Results indicated that the BG micro-fibers showed thinner fiber diameter (1 μm) and better bioactivity than the SiG micro-fibers did. The ionic extracts of BG and SiG micro-fibers were not toxic to human umbilical vein endothelial cells (HUVECs). In vivo, the BG micro-fiber wound dressings obviously enhanced the formation of blood vessel, and resulted in a much faster wound size reduction than the SiG micro-fibers, or than the control groups, after 9 days application. The good skin defect reconstruction ability of BG micro-fibers contributed to the B element in the composition, which results in the better bioactivity and angiogenesis. As shown above, the novel bioactive borate glass micro-fibers are expected to provide a promising therapeutic alternative for dermal reconstruction or skin defect repair. PMID:26706550

  16. Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model.

    PubMed

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang; Zhang, Changqing

    2013-07-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

  17. Gentamicin-Loaded Borate Bioactive Glass Eradicates Osteomyelitis Due to Escherichia coli in a Rabbit Model

    PubMed Central

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang

    2013-01-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

  18. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection. PMID:23820937

  19. Influence of drawing conditions on the properties of bismuth borate glass fibers

    NASA Astrophysics Data System (ADS)

    Walker, Juergen

    In this study the influence of forming conditions, namely draw temperature and draw speed, on thermal properties of glass fibers of the composition 0.25 Bi2O3--0.75 B2O 3 were examined using mainly DSC measurements and confocal micro---Raman spectroscopy. Glass fibers were drawn at temperatures of 525, 550 and 575°C and draw speeds ranging from 1 to 10 m/sec. DSC measurements were performed to measure glass transition, heat capacity, fictive temperature, and pre--T g exotherm, both in strength and the onset. Concurrently micro---Raman measurements were used to identify the structural borate groups present in the fibers and their change with forming conditions. Several trends could be observed. As draw speed increases the glass transition decreases, indicating a more disordered structure. Pre--Tg exotherms show a local maximum at draw speeds of 4 m/s. Raman spectroscopy indicates the presence of [BiO6] octahedra that are becoming more distorted as the draw speed increases. The local maximum in both the pre--Tg exotherm and the corresponding Raman peak show that there is an optimal distortion. Pre--T g exotherm onset temperatures show a linear decrease with draw speeds. All this supports the conclusion that there is no major structural rearrangement. Heat capacity shows no overall trends of behavior dependant on forming conditions. These glass fibers also show a decrease in glass transition height during reheating that indicates a decreasing amount of glass. This can either be due to crystallization or phase separation. Finally the aspect ratio of the glass fibers seems to have a direct influence on heat capacity. As the aspect ratio increases the heat capacity of the glass fibers increases suddenly by a factor of two. The exact mechanism for this effect is unclear at this point.

  20. Glass Transitions and Elastic Properties of Lithium Borate Glasses over a Wide Composition Range Studied by Micro-Brillouin Scattering

    NASA Astrophysics Data System (ADS)

    Fukawa, Yasuteru; Matsuda, Yu; Ike, Yuji; Kodama, Masao; Kojima, Seiji

    2008-05-01

    The elastic properties of lithium borate glasses, denoted by the composition formula xLi2O·(100 - x)B2O3 where x is the molar concentration in mol %, have been investigated over a wide composition range 6 ≤x ≤52 mol % by micro-Brillouin scattering. From the observed values of the longitudinal and transverse sound velocities, the elastic constants such as longitudinal modulus, shear modulus, Young's modulus, and Poisson's ratio have been determined. The elastic constants have shown a strong composition dependence due to the variation of intermediate structural units. The temperature dependences of the longitudinal sound velocity and absorption coefficient of 44Li2O·56B2O3 clearly show the anomalies at the glass transition and crystallization temperatures.

  1. UV-VIS-NIR spectral optical properties of silver iodide borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Di Marco, G.; Torrisi, L.; Branca, C.; Carini, G.; Wanderlingh, U.; D'Angelo, G.

    2014-04-01

    We present a study of optical properties of a series of silver iodide borate glasses(AgI)x(Ag2O·B2O3)1-xby UV-VIS-NIR spectroscopy. The results show an increased absorbance in the whole analysed spectral range when the AgI concentration is augmented. In particular, the enhanced intensity of the wavelength band at 400-500 nm with silver iodine content suggests that this band arises from plasmon-related absorption, describing the formation of silver nanoparticles. With respect to this study, our results could motivate novel target designs consisting of ternary silver boron based bulk glasses for generating resonant absorption of laser light by plasma.

  2. Complex Heat Capacity of Lithium Borate Glasses Studied by Modulated DSC

    SciTech Connect

    Matsuda, Yu; Ike, Yuji; Matsui, Chihiro; Kodama, Masao; Kojima, Seiji

    2006-05-05

    Complex heat capacity, C{sub p}* = C{sub p}' - iC{sub p}'', of lithium borate glasses Li2O{center_dot}(1-x)B2O3 (x = 0.00 - 0.33) has been investigated by Modulated DSC (MDSC). We have successfully observed the frequency dependent C{sub p}* by MDSC in the frequency range 0.01 to 0.1 Hz, and the average relaxation time of glass transition has been determined as a function of temperature. Moreover, the composition dependence of the thermal properties has been investigated. The calorimetric glass transition temperatures become higher with the increase of concentration of Li2O and show the board maximum around x = 0.26-0.28. The width of glass transition region becomes narrower as Li2O increases. These results relate to the change of the fragility of the system. It has been proven that the complex heat capacity spectroscopy by MDSC is a powerful tool to investigate the glass transition phenomena.

  3. Lasing properties of new Yb-doped borate compounds with varying gadolinium and yttrium concentration

    NASA Astrophysics Data System (ADS)

    Manek-Hönninger, Inka; Chavoutier, Marie; Jubera, Véronique; Descamps, Dominique; Veber, Philippe; Velazquez, Matias; Garcia, A.; Canioni, L.

    2011-02-01

    We show spectroscopic and lasing properties of new ytterbium-doped borate compounds with the structure Li6(Gd(1- x)Yx)0.75Yb0.25(BO3)3 with x = 0, 0.25, 0.5, 0.75 and 1, respectively. All compounds show large emission spectra suitable for femtosecond pulse generation. We studied the laser performances in a diode-pumped linear laser cavity on about 1- mm-thick crystal samples having an ytterbium doping concentration of 22 %. The compounds show all cw lasing at wavelengths around 1040 to 1060 nm with a slope efficiency of 32 %. The maximum observed output power was 460 mW at an incident pump power of 1.6 W at 972 nm.

  4. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone.

    PubMed

    Cui, Xu; Zhao, Cunju; Gu, Yifei; Li, Le; Wang, Hui; Huang, Wenhai; Zhou, Nai; Wang, Deping; Zhu, Yi; Xu, Jun; Luo, Shihua; Zhang, Changqing; Rahaman, Mohamed N

    2014-03-01

    Osteomyelitis (bone infection) is often difficult to cure. The commonly-used treatment of surgical debridement to remove the infected bone combined with prolonged systemic and local antibiotic treatment has limitations. In the present study, an injectable borate bioactive glass cement was developed as a carrier for the antibiotic vancomycin, characterized in vitro, and evaluated for its capacity to cure osteomyelitis in a rabbit tibial model. The cement (initial setting time = 5.8 ± 0.6 min; compressive strength = 25.6 ± 0.3 MPa) released vancomycin over ~25 days in phosphate-buffered saline, during which time the borate glass converted to hydroxyapatite (HA). When implanted in rabbit tibial defects infected with methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis, the vancomycin-loaded cement converted to HA and supported new bone formation in the defects within 8 weeks. Osteomyelitis was cured in 87 % of the defects implanted with the vancomycin-loaded borate glass cement, compared to 71 % for the defects implanted with vancomycin-loaded calcium sulfate cement. The injectable borate bioactive glass cement developed in this study is a promising treatment for curing osteomyelitis and for regenerating bone in the defects following cure of the infection. PMID:24477872

  5. Specific features of the optical properties of potassium-aluminum borate glasses with copper chloride nanocrystals at high temperatures

    NASA Astrophysics Data System (ADS)

    Shirshnev, P. S.; Babkina, A. N.; Tsekhomskii, V. A.; Nikonorov, N. V.

    2015-09-01

    It is shown that heating of potassium-aluminum borate glasses with CuCl nanocrystals above 80°C leads to the disappearance of exciton absorption peaks, whereas cooling below 50°C gives rise to these peaks. These effects are related, respectively, to the melting of nanocrystals and crystallization of nanophase.

  6. A Novel Injectable Borate Bioactive Glass Cement as an Antibiotic Delivery Vehicle for Treating Osteomyelitis

    PubMed Central

    Cui, Xu; Gu, Yi-Fei; Jia, Wei-Tao; Rahaman, Mohamed N.; Wang, Yang; Huang, Wen-Hai; Zhang, Chang-Qing

    2014-01-01

    Background A novel injectable cement composed of chitosan-bonded borate bioactive glass (BG) particles was evaluated as a carrier for local delivery of vancomycin in the treatment of osteomyelitis in a rabbit tibial model. Materials and Methods The setting time, injectability, and compressive strength of the borate BG cement, and the release profile of vancomycin from the cement were measured in vitro. The capacity of the vancomycin-loaded BG cement to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in rabbit tibiae in vivo was evaluated and compared with that for a vancomycin-loaded calcium sulfate (CS) cement and for intravenous injection of vancomycin. Results The BG cement had an injectability of >90% during the first 3 minutes after mixing, hardened within 30 minutes and, after hardening, had a compressive strength of 18±2 MPa. Vancomycin was released from the BG cement into phosphate-buffered saline for up to 36 days, and the cumulative amount of vancomycin released was 86% of the amount initially loaded into the cement. In comparison, vancomycin was released from the CS cement for up 28 days and the cumulative amount released was 89%. Two months post-surgery, radiography and microbiological tests showed that the BG and CS cements had a better ability to eradicate osteomyelitis when compared to intravenous injection of vancomycin, but there was no significant difference between the BG and CS cements in eradicating the infection. Histological examination showed that the BG cement was biocompatible and had a good capacity for regenerating bone in the tibial defects. Conclusions These results indicate that borate BG cement is a promising material both as an injectable carrier for vancomycin in the eradication of osteomyelitis and as an osteoconductive matrix to regenerate bone after the infection is cured. PMID:24427311

  7. The Development of Doped Radiosensitive Glass

    SciTech Connect

    Bradley, D. A.; Okoya, O. O.; Hugtenburg, R. P.; Hashim, Suhairul; Ramli, A. T.; Wagiran, H.; Yusoff, A. L.; Hassan, A. Aziz Mat

    2007-05-09

    For a range of industrial and medical situations there exists need for sensitive, robust high spatial resolution systems for radiation measurements. Our overall focus is on the development of doped silica-glass thermoluminescent dosimeters (TLD) with a view towards improving upon the thermoluminescence (TL) yield of commercially produced optical fibers. In baseline studies of the latter, as detailed herein, measurements have been conducted using Ge-doped communication fibers, employing sources of irradiation including bremsstrahlung x-rays (produced by a nominal accelerating potential of 50 kVp), alpha particles from an 241Am source (predominant emission 5.486 MeV) and protons of energy 2.5 MeV provided by an ion beam source. Present studies, also including elemental analysis via the PIXE and RBS techniques, permit comparison with higher TL yield doped glasses previously made by this group via the sol-gel technique and characterized in part using a range of synchrotron techniques.

  8. Appearance of small polaron hopping conduction in iron modified cobalt lithium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, M. S.; Khasa, S.; Yadav, Arti; Agarwal, A.

    2016-05-01

    Lithium bismuth borate glasses containing different amounts of cobalt and iron oxides having chemical composition xFe2O3•(20-x)CoO•30Li2O•10Bi2O3•40B2O3 (x = 0, 5, 10, 15 and 20 mol% abbreviated as CFLBB1-5 respectively) prepared via melt quench technique have been investigated for their dc electrical conductivity. The amorphous nature of prepared glasses has been confirmed through X-ray diffraction measurements. The dc electrical conductivity has been analyzed by applying Mott's small polaron hopping model. Activation energies corresponding to lower and higher temperature region have been evaluated. The iron ion concentration (N), mean spacing between iron ions (R) and polaron radius (Rp) has been evaluated using the values of phonon radius (Rph) and Debye temperature (θD). The glass sample without iron (CFLBB1) shows ionic conductivity but the incorporation of iron in the glass matrix results in the appearance of electronic conductivity.

  9. Ultrafast processes in semiconductor doped glasses

    NASA Astrophysics Data System (ADS)

    Brito Cruz, Carlos H.; Cesar, Carlos Lenz; Barbosa, Luis Carlos; de Paula, Ana M.; Tsuda, Sérgio

    1997-02-01

    We review studies of resonant and nonresonant ultrafast optical processes in semiconductor doped glasses, made at the University of Campinas. First we discuss measurements done in CdTe quantum-dots in glass, excited resonantly. In this case we observe a fast recombination, that depends on the size of the quantum-dot. For the smallest dots, with 3.2 nm average radius, the recovery time constant was found to be 360 fs. Then we describe the observation of the Optical Stark shift in CdSxSe1-x semiconductor-doped glass (SDG) excited under nonresonant below gap condition and probed with femtosecond optical pulses. An ultrafast and pure light-induced shift of the band edge is observed. For a pump intensity of 3 GW/cm2 the band shifts by 11 meV. The response of the shift tracks the profile of the pumping pulse.

  10. Optical Absorption Spectra of Sodium Borate Cobalt Doped Glasses

    SciTech Connect

    Elokr, M. M.; Hassan, M. A.; Yaseen, A. M.; Elokr, R.

    2007-02-14

    Glassy system: xNa2O-(100-x-y)B2O3-yCo3O4 has been prepared by conventional melt quenching technique. Optical absorption spectra have been obtained in the range 300 - 2500 nm at room temperature. An absorption edge was observed in the near UV range, the analysis of which reveals that indirect transition is the dominant absorption mechanism. All prepared samples exhibit blue color, indicating that the Co ions are acted upon by tetrahedral ligand field. Obtained spectra were used to estimate some ligand field parameters.

  11. Ions of metals of groups (II-V)B in anomalous oxidation states (the /sup 2/S/sub 1/2/ electronic state) in sodium borate and potassium borate glasses

    SciTech Connect

    Aleksandrov, A.I.; Prokof'ev, A.I.; Raspertova, Z.I.; Solinov, V.F.; Bubnov, N.N.

    1987-02-01

    The authors studied sodium borate glasses (SBG's), potassium borate glasses (PBG's), and potassium sodium borate glasses (PSBG's) containing oxides of metals from groups (II-V)B. Chemically pure reagents were used for their synthesis. In order to create the metal ions in unusual oxidation states, the glasses were subjected to ..gamma.. radiation from /sup 60/Co at 77 K and 300 K in doses up to 100 kGy. The ESR spectra were recorded on a Varian E-12 radiofrequency spectrometer at 77 K in the 3-CM microwave range. Glasses without the metal oxides were investigated in parallel. Following the irradiation of SBG's, PBG's, and PSBG's containing the oxides of cadmium, mercury, gallium, thallium, tin, and lead, additional ESR signals appear in the region of the g factor of a free electron g/sub e/ and at high fields.

  12. Effect of R(3+) ions on the structure and properties of lanthanum borate glasses

    NASA Technical Reports Server (NTRS)

    Chakraborty, I. N.; Day, D. E.

    1985-01-01

    The present investigation of glass formation in the (mole percent) systems 25La2O3 (x)R2O3 (75-x)B2O3, where R = Al, Ga, and (25-x)La2O3 (x)Ln2O3 75B2O3, where Ln = Gd, Er, Y, notes that up to 25 mol pct Al2O3 or Ga2O3 can be substituted for B2O3, while no more than about 5 mol pct Ln2O3, substituted for La2O3, caused macro-phase separation. The substitution of either R2O3 or Ln2O3 in the lanthanum borate system changes the separation distance between adjacent B3O6 chains. The effect of this structural change on the molar volume, transformation temperature, thermal expansion coefficient, and transformation-range viscosity is discussed.

  13. Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses

    SciTech Connect

    Liu Yin; Zhu Bin; Wang Li; Qiu Jianrong; Dai Ye; Ma Hongliang

    2008-03-24

    We report on the coordination transformation of B{sup 3+} ions and migration of Na{sup +} and O{sup 2-} ions in sodium borate glasses, induced by 250 kHz, 800 nm femtosecond laser irradiation. Micro-Raman spectra show that the ratio of the integrated intensity of the two peaks at 806 and 774 cm{sup -1} decreases at first and then increases with increasing distance from the center of the laser modified zone. Electron dispersive x-ray spectra show that a portion of Na{sup +} and O{sup 2-} ions migrate from the vicinity of focal point after the femtosecond laser irradiation. A possible mechanism is proposed to explain the observed phenomena.

  14. B K-Edge XANES of Superstructural Units in Borate Glasses

    SciTech Connect

    Sipr, O.; Simunek, A.; Rocca, F.

    2007-02-02

    The potential of x-ray absorption near-edge structure (XANES) spectroscopy for studying medium range order in borate glasses is assessed by theoretical modelling of the spectra. B K edge XANES is calculated in case that B atoms are located in isolated BO3 and BO4 units and in case that B atom are located in superstructural units of 9-15 atoms. It is found that boroxol ring and diborate and ditriborate superstructural units give rise to spectra which differ from spectra obtained by a mere superposition of spectra of isolated BO3 and BO4 units. On the other hand, spectra of pentaborate and triborate units do not differ significantly from spectra of isolated BO3 and BO4.

  15. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    NASA Astrophysics Data System (ADS)

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-11-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.

  16. New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses.

    PubMed

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO(2) glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO(2) glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  17. Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide

    NASA Astrophysics Data System (ADS)

    Raghunatha, S.; Eraiah, B.

    2016-05-01

    Holmium doped lithium-antimony-lead borate glasses having 1mol% AgNO3 with composition 50B2O3-20PbO-25Sb2O3-5Li2O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range of 2.31 to 2.37.

  18. Czochralski growth of six Yb-doped double borate and silicate laser materials

    NASA Astrophysics Data System (ADS)

    Haumesser, Paul-Henri; Gaumé, Romain; Benitez, Jean-Marie; Viana, Bruno; Ferrand, Bernard; Aka, Gérard; Vivien, Daniel

    2001-11-01

    New Yb-doped oxides have been grown by the Czochralski method. They include borates such as Ca 3Y 2(BO 3) 4 (CYB), Ca 3Gd 2(BO 3) 4 (CaGB), Sr 3Y(BO 3) 3 (SrYBO) and Ba 3Lu(BO 3) 3 (BLuB) as well as the silicates Y 2SiO 5 (YSO), Ca 2Al 2SiO 7 (CAS) and SrY 4(SiO 4) 3O (SYS). Successful Czochralski growth is reported for the first time in the case of SrYBO. Scattering center free CAS single crystals were obtained as well. Spectroscopic evaluation reveals that all those materials should be suitable for diode pumping at 980 nm due to broad absorption lines, and operate in a quasi-3-level scheme with large crystal-field splitting of the Yb ground state manifold.

  19. On the Electron Paramagnetic Resonance Studies in Mixed Alkali Borate Glasses

    SciTech Connect

    Padmaja, G.; Reddy, T. Goverdhan; Kistaiah, P.

    2011-10-20

    Mixed alkali effect in oxide based glasses is one of the current research activity and studies on the behavior of spectroscopic parameters in these systems are quite important to understand the basic nature of this phenomenon. EPR studies of mixed alkali glasses Li{sub 2}O-K{sub 2}O-ZnO-B{sub 2}O{sub 3} doped with Fe{sup 3+} and Mn{sup 2+} were carried out at room temperature. The EPR spectra show typical resonances of d{sup 5} system (Fe{sup 3+} and Mn{sup 2+}) in all the measured glass specimens. Evaluated hyperfine constant, number of paramagnetic centers and paramagnetic susceptibility values show deviation from the linearity with the progressive substitution of the Li ion with K in glass network.

  20. Magnetic behavior of erbium-zinc-borate glasses and glass ceramics

    NASA Astrophysics Data System (ADS)

    Borodi, G.; Pascuta, P.; Bosca, M.; Stefan, R.; Tetean, R.; Pop, V.; Radulescu, D.

    2013-11-01

    Glasses of the system (Er2O3)xṡ(B2O3)(60-x)ṡ(ZnO)40 (3 ≤ x ≤ 15 mol%) were prepared by conventional melt quenching and subsequently converted to glass ceramics by heat treatment of glass samples at 860 °C for 2 h. The magnetic behaviour of the studied glasses and glass ceramics were investigated using a vibrating sample magnetometer (VSM) and a Faraday-type magnetic balance. Magnetic data show that erbium ions are involved in negative superexchange interactions in all the investigated samples, being antiferromagnetically coupled. For all studied samples the experimental values obtained for the effective magnetic moments are lower than the value corresponding to free Er3+ ions and decrease with the increasing of Er2O3 content. The decrease is more pronounced in heat treated samples than untreated ones.

  1. Magnetic behavior of erbium-zinc-borate glasses and glass ceramics

    SciTech Connect

    Borodi, G.; Pascuta, P.; Bosca, M.; Pop, V.; Stefan, R.; Tetean, R.; Radulescu, D.

    2013-11-13

    Glasses of the system (Er{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} (3 ≤ x ≤ 15 mol%) were prepared by conventional melt quenching and subsequently converted to glass ceramics by heat treatment of glass samples at 860 °C for 2 h. The magnetic behaviour of the studied glasses and glass ceramics were investigated using a vibrating sample magnetometer (VSM) and a Faraday-type magnetic balance. Magnetic data show that erbium ions are involved in negative superexchange interactions in all the investigated samples, being antiferromagnetically coupled. For all studied samples the experimental values obtained for the effective magnetic moments are lower than the value corresponding to free Er{sup 3+} ions and decrease with the increasing of Er{sub 2}O{sub 3} content. The decrease is more pronounced in heat treated samples than untreated ones.

  2. Spectroscopic analysis of a novel Nd3+-activated barium borate glass for broadband laser amplification

    NASA Astrophysics Data System (ADS)

    Vázquez, G. V.; Muñoz H., G.; Camarillo, I.; Falcony, C.; Caldiño, U.; Lira, A.

    2015-08-01

    Spectroscopic parameters of a novel Nd3+-activated barium borate (BBONd) glass have been analyzed for broadband laser amplification. The Judd-Ofelt (JO) intensity parameters were determined through a systematic analysis of the absorption spectrum of Nd3+ ions in the BBONd glass. High values of the JO intensity parameters reveal a great centro-symmetrical loss of the Nd3+ sites and high covalency degree of the ligand field. The very high Ω6 intensity parameter value makes evident both a great structural distortion of the Nd3+ sites and a strong electron-phonon coupling between Nd3+ and free OH- ions, which is consistent with the phonon energy maximum (3442.1 cm-1) recorded by Raman spectroscopy. This strong electron-phonon coupling favors high effective bandwidth and gain bandwidth values of the laser emission (4F3/2 → 4I11/2) of Nd3+ ions. The electric-dipole oscillator strengths of all the Nd3+ absorption transitions, and in particular that of the hypersensitive transition (4I9/2 → 4G5/2), are enhanced by this great structural distortion of the host. Broadband laser amplification of the 4F3/2 → 4I11/2 emission (1062 nm) of Nd3+ ions in the BBONd glass pumped at 805 nm (4I9/2 → 4F5/2 + 2H9/2) is evaluated through the main fluorescent parameters in competition with non-radiative processes. In general, the BBONd glass exhibits spectroscopic parameters comparable with those reported in the literature for broadband laser amplification into the IR region.

  3. Spectroscopic, mechanical and magnetic characterization of some bismuth borate glasses containing gadolinium ions

    NASA Astrophysics Data System (ADS)

    Saddeek, Yasser B.; Yahia, I. S.; Aly, K. A.; Dobrowolski, W.

    2010-08-01

    The ultrasonic parameters, the optical parameters along with the IR spectroscopy and magnetic susceptibility studies have been employed to explore the role of Gd 2O 3 in the structure of the glasses xGd 2O 3-60B 2O 3-10MoO 3-(30- x)Bi 2O 3, with 0 ≤ x ≤ 7 mol %. IR analysis indicates that Gd 2O 3 is preferentially incorporated into the borate network-forming BO 4 units. It is assumed that Bi 2O 3 and MoO 3 enter the structure as modifiers in the form of BiO 6 and MoO 6 only. The compositional dependence of the mechanical and the optical parameters are interpreted in terms of the transformation of the structural units BO 3 into BO 4, the increase in the number of bridging oxygen atoms, and the substitution of high bond strength Gd-O, in the place of low bond strength Bi-O bond. The results of the magnetic susceptibility reveal the paramagnetic behavior as described by the Curie-Weiss law and indicating the presence of weak antiferromagnetic exchange interactions between Gd 3+ ions. The magnetic entropy change of the glasses was determined according to the temperature and magnetic field dependence of magnetization.

  4. Comparisons in Neutron Detection, as modeled by MCNPX, in Li-6 Glass, HE-3, BF-3, and Borated PVT

    SciTech Connect

    Lawrence Lakeotes, Craig Marianno

    2009-04-03

    With the potential shortage of He-3 being reported by venders, it is important to consider other materials for neutron detection. Traditional neutron detectors are composed of BF-3 and He-3. Recently Li-6 Glass and borated PVT have been presented as possible replacements. This work will compare the relative detection efficiencies and consider other factors to determine the most appropriate neutron detection material.

  5. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses.

    PubMed

    Gu, Yifei; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E

    2013-11-01

    Previous studies have evaluated the capacity of porous scaffolds composed of a single bioactive glass to regenerate bone. In the present study, scaffolds composed of a mixture of two different bioactive glasses (silicate 13-93 and borate 13-93B3) were created and evaluated for their response to osteogenic MLO-A5 cells in vitro and their capacity to regenerate bone in rat calvarial defects in vivo. The scaffolds, which have similar microstructures (porosity=58-67%) and contain 0, 25, 50 and 100 wt.% 13-93B3 glass, were fabricated by thermally bonding randomly oriented short fibers. The silicate 13-93 scaffolds showed a better capacity to support cell proliferation and alkaline phosphatase activity than the scaffolds containing borate 13-93B3 fibers. The amount of new bone formed in the defects implanted with the 13-93 scaffolds at 12 weeks was 31%, compared to values of 25, 17 and 20%, respectively, for the scaffolds containing 25, 50 and 100% 13-93B3 glass. The amount of new bone formed in the 13-93 scaffolds was significantly higher than in the scaffolds containing 50 and 100% 13-93B3 glass. While the 13-93 fibers were only partially converted to hydroxyapatite at 12 weeks, the 13-93B3 fibers were fully converted and formed a tubular morphology. Scaffolds composed of an optimized mixture of silicate and borate bioactive glasses could provide the requisite architecture to guide bone regeneration combined with a controllable degradation rate that could be beneficial for bone and tissue healing. PMID:23827095

  6. Physical and structural properties of Nd3+ doped BaO-ZnO-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Nanda, Kirti; Kundu, R. S.; Punia, R.; Parmar, R.; Kishore, N.

    2013-06-01

    Nd3+ doped Barium-Zinc-Borate glasses with composition xNd2O3-(100-x)[0.1BaO-0.4ZnO-0.5B2O3];x = 0,0.5,1.0,1.5,2.0 have been prepared by melt-quenching method. X-Ray Diffractogram of the synthesized glass samples confirms the amorphous nature. The physical properties i.e. density and molar volume have been measured and both increases with increase in Nd3+ content. Glass transition temperature have been measured using DSC and found to be increase with Nd3+ content shows good thermal stability. Analysis of FTIR spectra estimate the presence of tetrahedral coordination of Zn (i.e. ZnO4) in synthesized glasses. The basic structural units [BO3] and [BO4] are observed in glasses under study.

  7. Luminescent thermochromism in potassium-alumina-borate glass with copper-containing molecular clusters at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Babkina, Anastasiya N.; Nikonorov, Nikolaij V.; Shakhverdov, Teimur A.; Shirshnev, Pavel S.; Sidorov, Alexander I.

    2014-02-01

    It is experimentally shown that a considerable luminescent thermochromic effect occurs in potassium-alumina-borate (PAB) glasses with copper-containing molecular clusters. This effect is manifested in a reversible blue spectral shift of luminescence band about 100 nm and its narrowing, with negligible change of luminescence amplitude in maximum during heating from 20 up to 300 °C. Luminescence and excitation spectra of PAB glass at different temperatures are presented. It is shown that the temperature rise results in a red spectral shift of excitation bands and in their broadening.

  8. Concentration dependent spectroscopic properties of Dy3+ ions doped boro-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Mariyappan, M.; Marimuthu, K.

    2016-05-01

    Dy3+ ions doped boro-phosphate glasses have been synthesized by melt quenching method and characterized through FTIR, absorption and luminescence spectral measurements. The presence of various stretching and bending vibrations of different borate and phosphate groups were identified from the FTIR spectra. In order to examine the electronic band structure of the studied glasses, Optical energy gap (Eopt) and Urbach energy (ΔE) values were estimated from the absorption spectra. The Judd-Ofelt (JO) intensity parameters were calculated to examine the symmetry of the ligand environment around the Dy3+ ions site. The emission spectra exhibit two intense emission bands at around 482 nm (blue) and 574 nm (yellow) corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions respectively. The emission spectra were characterized through Commission International d'Eclairage (CIE) 1931 chromaticity diagram to explore its suitability for WLED applications.

  9. Concentration quenching in Nd-doped glasses

    SciTech Connect

    Stokowski, S.E.; Cook, L.; Mueller, H.; Weber, M.J.

    1984-08-28

    Fluorescence from trivalent Nd in solids is unfortunately quenched by interactions between Nd ions. Thus, laser materials with high Nd concentrations have reduced efficiencies because of this self-quenching, also known as concentration quenching. Nd self-quenching in different crystals and glasses varies considerably. We are therefore investigating this effect in a large number of materials in an effort to: (1) find those materials with long Nd fluorescent lifetimes at high Nd concentrations; and (2) elucidate the basic mechanisms of quenching and how the material structure controls its magnitude. We have concentrated on Nd-doped glasses because they provide a rich variety of structures, albeit complicated by Nd site inhomogeneities, and are easily and quickly made.

  10. Defect formation of gamma irradiated MoO3-doped borophosphate glasses.

    PubMed

    Abdelghany, A M; Ouis, M A; Azooz, M A; Ellbatal, H A

    2013-10-01

    Borophosphate glasses of the basic composition (50P2O5, 30B2O3, 20Na2O mol%) containing different doping molybdenum oxide percents (0.16-0.98) were prepared by melting and annealing method. Infrared and UV-visible absorption spectroscopic measurements before and after gamma irradiation were carried out. The base undoped borophosphate glass reveals strong UV absorption bands but with no visible bands and these UV bands are related to unavoidable trace iron impurities contaminated within the raw materials used for the preparation of this glass. The introduction of MoO3 (in doping ratio) into this glass produces an additional UV band and a broad visible band and their intensities increase with the MoO3 content. These additional bands are related to both Mo(6+) and Mo(5+) ions. The base undoped borophosphate glass shows retardation effect towards gamma irradiation. Gamma irradiation produces marked changes in the UV-visible spectra of Mo-O3-doped glasses. Such changes can be related to the production of induced defects from photochemical reactions and the generation of positive holes. Infrared absorption spectrum of the undoped borophosphate glass reveals complex vibrational bands due to the presence of both phosphate groups beside borate groups with triangular and tetrahedrally coordinated units. The introduction of MoO3 causes some limited variations in the FTIR spectra. Gamma irradiation produces minor changes in the intensities of some IR bands. Such changes are related to the changes in the bond angles and/or bond lengths of few structural groups upon irradiation while the main structural groups remain unchanged in their number and position. PMID:23800775

  11. Structural and morphological transformations of BaTiO3 nanocrystals in thin layers of borate oxide glasses

    NASA Astrophysics Data System (ADS)

    Kedrov, V. V.; Shmyt'ko, I. M.

    2015-02-01

    The influence of thin layers (2-15 μm) of some oxide glass melts on BaTiO3 nanocrystallites has been investigated using X-ray diffractometry and scanning electron microscopy. It has been shown that lead borate and sodium borate glass melts bring about the dissolution of BaTiO3 nanocrystallites and the subsequent crystallization in glasses of lead titanate PbTiO3 and sodium titanate Na2TiO3, respectively. It has been found that thin layers of melts of these glasses have a strong orientation effect on crystallites of the PbTiO3 and Na2TiO3 compounds newly synthesized from barium titanate. The orientation effect exerted by these glass layers results in the formation of a pronounced texture of the perovskite crystallites with the texture axes oriented along the [100] and [001] directions parallel to the surface normal of the substrate for lead titanate and the orientation of the planes of the film surface for the sodium titanium oxide.

  12. Luminescence properties of Tm3+/Yb3+ codoped lead alumina bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2016-05-01

    This paper reports on the spectroscopic properties of Yb3+ and Tm3+ codoped lead alumina bismuth borate glasses. Optical absorption spectra of these Samples were recorded at room temperature in the wavelength range 350-2000 nm. The absorption spectra exhibited the bands at 658 nm (3H6→3F2), 686 nm (3H6→3F3), 792 nm (3H6→3H4), 1211 nm (3H6→3H5) and 1663 nm (3H6→3F4) due to Tm3+ ions. The band at 977 nm (2F7/2→2F5/2) is due to Yb3+ ions. Optical band gap (Eopt) and Urbach energy (ΔE) values were calculated from the spectra. It was observed that the value of optical band gap decreases with increase in the concentration of Tm3+ ions. The upconversion luminescence spectra were measured under excitation of 980 nm laser diode, and the intense blue (470 nm) and green (656 nm) emission were simultaneously observed at room temperature. A proposed upconversion mechanism involving energy transfer from Yb3+ to Tm3+ has been presented.

  13. Effect of TiO2 on the optical, structural and crystallization behavior of barium borate glasses

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; ElBatal, F. H.; ElBatal, H. A.

    2016-07-01

    Collective characterizations of prepared binary barium borate glass (50 mol % BaO - 50 mol % B2O3) together with samples containing increasing added TiO2 contents (5% → 30%) were carried out by optical and FT infrared absorption measurements. FT infrared and X-ray diffraction analysis were done for heat treated glass - ceramic derivatives prepared through two step regime process. Optical spectra of the glasses reveal the presence of titanium ions mainly in the tetravalent state imparting additional UV band beside strong UV absorption due to trace iron impurity. IR spectral studies indicate the presence of triangular and tetrahedral borate groups through the modification of BaO to some BO3 to BO4 groups beside the presence of titanium ions as interfering or overlapping TiO4 or Bsbnd Osbnd Ti groupings in the glassy network. Crystalline X-ray diffraction results indicate the separation of crystalline barium borate of the composition (2BaO.5 B2O3) as a main constituent together with some crystalline alkali titanates confirming the role of TiO2 of both as nucleating agent beside acting as structural forming through reaction with alkali oxides to form crystalline titanates. The optical band gap values reveal progressive decrease and increase of Urbach energy with TiO2 content and the same for the refractive index values and all these parameters are correlated with the proposed changes in the glass constitution with the introduction of TiO2. The additional thermal expansion measurements indicate the peculiar characteristic negative expansion up to 300 °C and after which an increase in the coefficient of thermal expansion is identified with the increase in temperature. The thermal parameters are also correlated with the modification of the glass structure by the introduction of titanium ions.

  14. Physical and optical properties of magnesium sulfoborate glasses doped Dy3+ ions

    NASA Astrophysics Data System (ADS)

    Dalhatu, S. A.; Deraman, Karim; Hussin, R.

    2016-04-01

    The optical properties of alkaline earth borate glasses doped with rare earth are attractive field of research due to many optical applications. We have concentrated on the physical and optical properties of MgO-SO4-B2O3 glass with different concentrations of Dy3+ ions. The samples of glass were prepared using the melting quenching technique. The physical parameter and optical properties of the prepared glass were determined. It was observed that the density of the glass samples increased and the molar volume reduced with respect to Dy3+ ions content. Dy3+: MgO-SO4-B2O3 glass displayed 10 absorption bands with hypersensitive transition around 1265 nm (6H15/6 →6F11/2). Two intense luminescence emissions were observed at 482 nm (4F9/2 →6H15/2: blue) and 573 nm (4F9/2 →6H13/2: yellow) and weak band at 662 nm (4F9/2 →6H11/2: red) with excitation wavelength 380 nm. A strong enhancement in the emission peaks at 573 nm in the yellow region was observed with the 0.07 mol% concentration of dysprosium oxide, which may assign to the energy transfer from Mg2+ to Mg3+ ions. Beyond the optimum concentration, contrary result was observed.

  15. Electronic polarizability and interaction parameter of gadolinium tungsten borate glasses with high WO{sub 3} content

    SciTech Connect

    Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi; Dimitrov, Vesselin; Komatsu, Takayuki

    2014-12-15

    Glasses with the compositions of 25Gd{sub 2}O{sub 3}–xWO{sub 3}–(75−x)B{sub 2}O{sub 3} with x=25–65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(n{sub o}), and interaction parameters A(n{sub o}) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO{sub 3} contents. The optical basicity of the glasses increases monotonously with the substitution of WO{sub 3} for B{sub 2}O{sub 3}, and contrary the interaction parameter decreases monotonously with increasing WO{sub 3} content. A good linear correlation was observed between Λ(n{sub o}) and A(n{sub o}) and between the glass transition temperature and A(n{sub o}). It was proposed that Gd{sub 2}O{sub 3} oxide belongs to the category of basic oxide with a value of A(n{sub o})=0.044 Å{sup −3} as similar to WO{sub 3}. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO{sub 3} and Gd{sub 2}O{sub 3} contents would be a floppy network system consisting of mainly basic oxides. - Graphical abstract: This figure shows the correlation between the optical basicity and interaction parameter in borate-based glasses. The data obtained in the present study for Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses are locating in the correlation line for other borate glasses. These results shown in Fig. 8 clearly demonstrate that Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses having a wide range of optical basicity and interaction parameter are regarded as glasses consisting of acidic and basic oxides. - Highlights: • Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses with high WO{sub 3} contents were prepared. • Electronic polarizability and interaction parameter were estimated. • Optical basicity increases

  16. The effect of V 2O 5 on alkaline earth zinc borate glasses studied by EPR and optical absorption

    NASA Astrophysics Data System (ADS)

    Sumalatha, B.; Omkaram, I.; Rajavardhana Rao, T.; Linga Raju, Ch.

    2011-12-01

    10 wt% SrO:30 wt% ZnO:60 wt% B 2O 3 incorporated with different vanadyl concentrations were studied by means of electron paramagnetic resonance (EPR) and optical absorption techniques. The spin-Hamiltonian parameters ( g and A), bonding parameters ( α2 and β2∗2) and Fermi contact interaction parameter K have been calculated. The values of spin-Hamiltonian parameters indicate that the VO 2+ ions in strontium zinc borate glasses were present in octahedral sites with tetragonal compression. The spin concentration ( N) participating in resonance was calculated as a function of temperature (93-273 K) for strontium zinc borate glass sample containing 0.9 wt% of VO 2+ ions and the activation energy ( Ea) was calculated. From the EPR data, the paramagnetic susceptibility ( χ) was calculated at various temperatures and the Curie constant ( C) was evaluated from the 1/ χ- T graph. The optical absorption spectra of VO 2+ ions in these glasses show two bands corresponding to the transitions 2B 2g → 2B 1g and 2B 2g → 2E g in the order of decreasing energy respectively. The optical band gap energies ( Eopt) and Urbach energy (Δ E) have been determined from their ultraviolet edges. The theoretical values of optical basicity ( Λth) of these glasses have also been evaluated.

  17. The effect of semiconducting CdSe and ZnSe nanoparticles on the fluorescence of Sm3+ in lead borate glasses

    NASA Astrophysics Data System (ADS)

    Mallur, Saisudha; Fatokun, Stephen; Babu, P. K.

    2015-03-01

    We studied the fluorescence spectra of Sm3+ doped lead borate glasses containing zinc selenide (ZnSe) and cadmium selenide (CdSe) nanoparticles with the following compositions (x PbO: 96.5-x B2O3:0.5 Sm2O3:3ZnSe/CdSe, x =36.5 and 56.5 mol%). These glass samples are prepared using the melt-quenching technique. Each sample is annealed just below the glass transition temperature at 400°C for 3 hrs and 6 hrs. We have chosen PbO-B2O3 glasses to incorporate Sm3+ ions because they have large glass forming region, high refractive index, and good physical and thermal stability. Fluorescence spectra of these samples are obtained with the excitation wavelength at 477 nm. Four fluorescence transitions are observed at 563 nm, 598 nm, 646 nm and 708 nm. The transition at 646 nm is found to be a hypersensitive transition that strongly depends on the covalency of the Sm-O bond and the asymmetry of the crystal field at Sm site. The 646 nm/598 nm fluorescence intensity ratio has been studied for different annealing times and PbO concentration for both ZnSe and CdSe samples. The presence of CdSe nanoparticles is seen to produce the greatest influence on the fluorescence intensity ratio. This could be due to the size of the CdSe nanoparticles and covalency of the Sm-O bond.

  18. IR luminescence in bismuth-doped germanate glasses and fibres

    SciTech Connect

    Pynenkov, A A; Firstov, Sergei V; Panov, A A; Firstova, E G; Nishchev, K N; Bufetov, Igor' A; Dianov, Evgenii M

    2013-02-28

    We have studied the optical properties of lightly bismuth doped ({<=}0.002 mol %) germanate glasses prepared in an alumina crucible. The glasses are shown to contain bismuth-related active centres that have been identified previously only in bismuth-doped fibres produced by MCVD. With increasing bismuth concentration in the glasses, their luminescence spectra change markedly, which is attributable to interaction between individual bismuth centres. (optical fibres)

  19. Photoluminescence of a silver-doped glass

    NASA Astrophysics Data System (ADS)

    Paje, S. E.; Llopis, J.; Villegas, M. A.; Fernández Navarro, J. M.

    1996-11-01

    The absorption, emission and excitation spectra of Ag+ ions in a soda lime glass doped with two different concentration of silver are investigated. Absorption spectra exhibit a main broad band peaked at about 260 nm (4.77 eV) with a shoulder at about 227 nm (5.46 eV). The relative height of the shoulder depends on silver concentration in the glass. Emission spectra of Ag+ are dominated by an ultraviolet broad band at about 330 nm (3.76 eV). The excitation spectra for this emission show a preponderant broad band peaked at about 227 nm (5.46 eV) which coincides with peak position of the shoulder displayed in the optical absorption spectra. A weak broad featureless emission band centred at about 550 nm (2.25 eV) with an excitation peak at about 242 nm (5.12 eV) is tentatively related to an impurity from the host silica glass rather than originated in silver-type centres. Comparison of the luminescence decay curves for both emissions show substantial differences between them. Consequently, the emissions in the time-resolved spectra can easily be discriminated.

  20. Structure of Alkali Borate Glasses at High Pressure: B and Li K-Edge Inelastic X-Ray Scattering Study

    SciTech Connect

    Lee, Sung Keun; Eng, Peter J.; Mao, Ho-kwang; Meng, Yue; Shu, Jinfu

    2008-06-16

    We report the first in situ boron K-edge inelastic x-ray scattering (IXS) spectra for alkali borate glasses (Li{sub 2}B{sub 4}O{sub 7}) at high pressure up to 30 GPa where pressure-induced coordination transformation from three-coordinated to four-coordinated boron was directly probed. Coordination transformation (reversible upon decompression) begins around 5 GPa and the fraction of four-coordinated boron increases with pressure from about 50% (at 1 atm) to more than 95% (at 30 GPa) with multiple densification mechanisms, evidenced by three distinct pressure ranges for (d{sup [4]}B/dP){sub T}. The lithium K-edge IXS spectrum for Li-borate glasses at 5 GPa shows IXS features similar to that at 1 atm, suggesting that the Li environment does not change much with pressure up to 5 GPa. These results provide improved understanding of the structure of low-z glass at high pressure.

  1. Influence of modifier oxides on spectroscopic properties of Sm3+ doped lithium fluoroborate glass

    NASA Astrophysics Data System (ADS)

    Ratnakaram, Y. C.; Balakrishna, A.; Rajesh, D.; Seshadri, M.

    2012-11-01

    Sm3+ doped lithium fluoro-borate glasses with different modifier oxides (Li2B4O7-BaF2-NaF-MO where M = Mg, Ca, Cd and Pb) and combinations of modifier oxides (Li2B4O7-BaF2-NaF-MgO+CaO, Li2B4O7-BaF2-NaF-CdO+PbO) were prepared by means of melt quenching method. These samples were characterized by XRD, FTIR, optical absorption and fluorescence techniques at room temperature. The XRD profiles of all the glasses confirm their amorphous nature and the FTIR spectra reveal the presence of BO3 and BO4 units along with the strong OH- groups in the glass matrices. The influence of modifier oxides on Judd-Ofelt (J-O) intensity parameters and intensity of the emission lines are reported. Judd-Ofelt theory is used to study the spectral properties and to calculate the radiative transition probabilities (AT), branching ratios (βR), integrated absorption cross sections (Σ) and radiative lifetimes (τR) for certain spectral transitions. From the emission spectral analysis, emission cross-sections (σP) are calculated for the four emission transitions, 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 of Sm3+ ion in different lithium fluoro-borate glasses. Among the four transitions, it is observed that the transition 4G5/2 → 6H7/2 has higher emission cross-section (σP) in all the glass matrices, except in Mg, Cd and Mg-Ca glass matrices. The non-exponential nature of the luminescence decay curves of 4G5/2 level of Sm3+ doped glass matrices are also reported.

  2. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials

    NASA Astrophysics Data System (ADS)

    Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder

    2004-09-01

    Gamma-ray mass attenuation coefficients have been measured experimentally and calculated theoretically for PbO-B 2O 3 and Bi 2O 3-PbO-B 2O 3 glass systems using narrow beam transmission method. These values have been used to calculate half value layer (HVL) parameter. These parameters have also been calculated theoretically for some standard radiation shielding concretes at same energies. Effect of replacing lead by bismuth has been analyzed in terms of density, molar volume and mass attenuation coefficient.

  3. Surface characterization of silver-doped bioactive glass.

    PubMed

    Vernè, E; Di Nunzio, S; Bosetti, M; Appendino, P; Brovarone, C Vitale; Maina, G; Cannas, M

    2005-09-01

    A bioactive glass belonging to the system SiO(2)-CaO-Na(2)O was doped with silver ions by ion exchange in molten salts as well as in aqueous solution. The ion exchange in the solution was done to check if it is possible to prepare an antimicrobial material using a low silver content. The doped glass was characterized by means of X-ray diffraction, SEM observation, EDS analysis, bioactivity test (soaking in a simulated body fluid), leaching test (GFAAS analyses) and cytotoxicity test. It is demonstrated that these surface silver-doped glasses maintain, or even improve, the bioactivity of the starting glass. The measured quantity of released silver into simulated body fluid compares those reported in literature for the antibacterial activity and the non-cytotoxic effect of silver. Cytotoxicity tests were carried out to understand the effect of the doped surfaces on osteogenic cell adhesion and proliferation. PMID:15792537

  4. Probing and modeling of pressure-induced coordination transformation in borate glasses: Inelastic x-ray scattering study at high pressure

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Eng, Peter J.; Mao, Ho-Kwang; Shu, Jinfu

    2008-12-01

    Here, we report on the in situ synchrotron inelastic x-ray scattering spectra of Na-borate glasses at high pressure up to 25 GPa. The pressure-induced boron coordination transformation from B[3] to B[4] is linear with pressure characterized by a single value of (∂B[3]/∂P)T . Previous studies of Li-borate and pure-borate glasses show a nonlinear transformation with multiple (∂B[3]/∂P)T values for different pressure ranges, revealing the important role cation field strength plays in densification and pressure-induced structural changes. Considering the distribution of the energy difference between low- and high-pressure states (Δɛ) in the energy landscape and the variance of the ratio Δɛ to its pressure gradient (∂Δɛ/∂P)T as a measure of network flexibility with pressure, an amorphous system with a large variance in Δɛ at 1 atm and/or a small (∂Δɛ/∂P)T may undergo a gradual coordination transformation (e.g., Na borates). In contrast, a system with the opposite behavior (e.g., Li borates) undergoes an abrupt coordination transformation. The results and concepts of this study thus can shed light on opportunities to study the effect of composition on the nature of densification in low- z oxide and other archetypal glasses and melts.

  5. Role of electron transfer in Ce{sup 3+} sensitized Yb{sup 3+} luminescence in borate glass

    SciTech Connect

    Sontakke, Atul D. Katayama, Yumiko; Zhuang, Yixi; Tanabe, Setsuhisa; Ueda, Jumpei; Dorenbos, Pieter

    2015-01-07

    In a Ce{sup 3+}-Yb{sup 3+} system, two mechanisms are proposed so far namely, the quantum cutting mechanism and the electron transfer mechanism explaining Yb{sup 3+} infrared luminescence under Ce{sup 3+} excitation. Among them, the quantum cutting mechanism, where one Ce{sup 3+} photon (ultraviolet/blue) gives rise to two Yb{sup 3+} photons (near infrared) is widely sought for because of its huge potential in enhancing the solar cell efficiency. In present study on Ce{sup 3+}-Yb{sup 3+} codoped borate glasses, Ce{sup 3+} sensitized Yb{sup 3+} luminescence at ∼1 μm have been observed on Ce{sup 3+} 5d state excitation. However, the intensity of sensitized Yb{sup 3+} luminescence is found to be very weak compared to the strong quenching occurred in Ce{sup 3+} luminescence in Yb{sup 3+} codoped glasses. Moreover, the absolute luminescence quantum yield also showed a decreasing trend with Yb{sup 3+} codoping in the glasses. The overall behavior of the luminescence properties and the quantum yield is strongly contradicting with the quantum cutting phenomenon. The results are attributed to the energetically favorable electron transfer interactions followed by Ce{sup 3+}-Yb{sup 3+} ⇌ Ce{sup 4+}-Yb{sup 2+} inter-valence charge transfer and successfully explained using the absolute electron binding energies of dopant ions in the studied borate glass. Finally, an attempt has been presented to generalize the electron transfer mechanism among opposite oxidation/reduction property dopant ions using the vacuum referred electron binding energy (VRBE) scheme for lanthanide series.

  6. Synthesis and photoluminescence properties of Pb2+ doped inorganic borate phosphor NaSr4(BO3)3

    NASA Astrophysics Data System (ADS)

    Chauhan, A. O.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    A series of Inorganic borate phosphors NaSr4(BO3)3 doped with Pb2+ was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb2+ concentration for the NaSr4(BO3)3 were studied in details. The concentration quenching of Pb2+ doped NaSr4(BO3)3 was observed at 0.02 mol. The Stokes shifts of NaSr4(BO3)3: Pb2+ phosphor was calculated to be 7574 cm-1.

  7. Effect of Co(2+) and Ni(2+)-doped zinc borate nano crystalline powders by co-precipitation method.

    PubMed

    Shim, Jaesool; Venkata Reddy, Ch; Sarma, G V S S; Narayana Murthy, P; Ravikumar, R V S S N

    2015-05-01

    A simple co-precipitation method has been used for the synthesis of Co(2+) and Ni(2+)-doped zinc borate nanopowders. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV/Vis absorption, Scanning electron microscope (SEM) with EDS and photoluminescence (PL) spectroscopies techniques has been employed for their characterization. Powder X-ray diffraction data reveals that the crystal structure belongs to monoclinic for both as-prepared samples. SEM images showed surface morphology of the prepared samples. Optical absorption spectra showed the characteristic bands of doped ions in octahedral site symmetry. From the optical absorption data crystal field and inter-electronic repulsion parameters are evaluated. The FT-IR spectra showed the characteristic vibrational bands related to ZnO, BO3 and BO4 molecules. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions. PMID:25706597

  8. Effect of Co2+ and Ni2+-doped zinc borate nano crystalline powders by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Shim, Jaesool; Venkata Reddy, Ch.; Sarma, G. V. S. S.; Narayana Murthy, P.; Ravikumar, R. V. S. S. N.

    2015-05-01

    A simple co-precipitation method has been used for the synthesis of Co2+ and Ni2+-doped zinc borate nanopowders. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV/Vis absorption, Scanning electron microscope (SEM) with EDS and photoluminescence (PL) spectroscopies techniques has been employed for their characterization. Powder X-ray diffraction data reveals that the crystal structure belongs to monoclinic for both as-prepared samples. SEM images showed surface morphology of the prepared samples. Optical absorption spectra showed the characteristic bands of doped ions in octahedral site symmetry. From the optical absorption data crystal field and inter-electronic repulsion parameters are evaluated. The FT-IR spectra showed the characteristic vibrational bands related to ZnO, BO3 and BO4 molecules. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions.

  9. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions.

    PubMed

    Huang, Wenhai; Day, Delbert E; Kittiratanapiboon, Kanisa; Rahaman, Mohamed N

    2006-07-01

    Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37 degrees Celsius. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO(2) with B(2)O(3). Higher B(2)O(3) content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO(2) in a Na-depleted core. The concentration of Na(+) in the phosphate solution increased with reaction time whereas the PO(4) (3-) concentration decreased, both reaching final limiting values at a rate that increased with the B(2)O(3) content of the glass. However, the Ca(2+) concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K(2)HPO(4) and K(2)CO(3) produced a carbonate-substituted HA but the presence of the K(2)CO(3) had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process. PMID:16770542

  10. Lanthanide and actinide doped glasses as reference standards for dye doped systems

    SciTech Connect

    Pope, E.J.A.; Hentschel, A.

    1996-12-31

    Organic dye molecules are well known to be subject to chemical and optical bleaching damage, temperature instability, and other forms of optical degradation. Currently recognized methods of referencing rely upon fluorescent salt solutions, such as quinine sulfate. In this paper, optically-active lanthanide and actinide doped gel-glasses are compared as reference standards for dye doped polymers. Samples are subjected to continuous illumination by 254 nm UV radiation. While dye-doped polymers exhibited approximately 65 percent decline in fluorescence intensity after 96 hours of irradiation, glass samples and glass powder in resin showed no decline in fluorescence intensities.